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Semaphores (Dijkstra 1965)

+ Semaphores are a kind of generalized lock.

* They are the main synchronization pr

imitives used in the earlier Unix.

+ Semaphores have a non-negative integer value, and

support two operations:

- semaphore->P(): an atomic operation that waits for semaphore
to become positive, then decrements it by 1

- semaphore->V(): an atomic operation that increments

semaphore by 1, waking up a waiti

ng P, if any.

¢ Semaphores are like integers except:

(1) none-negative values; (2) only allow P&

V --- can't read/write value except

to set it initially; (3) operations must be atomic: two P's that occur together
can't decrement the value below zero. Similarly, thread going to sleep in P
won't miss wakeup from V, even if they both happen at about the same time.

Implementing semaphores

P means "test” (proberen in Dutch)
V means "increment” (verhogen in Dutch)

class Semaphore { int value = initialValue; }

Semaphore::P() {

Disable interrupts;

while (value == 0) {
Put on queue of threads waiting
for this semaphore;
6o to sleep;

}

value = value - 1;

Enable interrupts

Semaphore:V() {

Disable interrupts;

if anyone on wait queue {
Take a waiting thread of f wait
queue and put it on the ready
queue;

}

value = value + 1;

Enable interrupts

}
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Binary semaphores

Like a lock; also known as "mutex”; can only have value O or 1 (unlike the
previous “counting semaphore” which can be any non-negative integers)

class Semaphore {|int value = 0 or 1;|}
Semaphore:V() {

Semaphore::P() { Disable interrupts;
Disable interrupts; if anyone on wait queue {
while (value == 0) { Take a waiting thread off wait
Put on queue of threads waiting queue and put it on the ready
for this semaphore; queue;
Go to sleep; }

)

Enable interrupts
Enable interrupts }

}

How to use semaphores

+ Binary semaphores can be used for mutual exclusion:

initial value of 1; P() is called before the critical section; and V() is
called after the critical section.

semaphore->P();
// critical section goes here
semaphore->V();

# Scheduling constraints

- having one thread to wait for something to happen
* Example: Thread::Join, which must wait for a thread to terminate. By
setting the initial value to O instead of 1, we can implement waiting on a
semaphore

# Controlling access to a finite resource




Scheduling constaints

¢ Something must happen after one another

Initial value of semaphore = O;
Fork a child thread
Thread::Join calls P // will wait until something
// makes the semaphore positive

Thread finish calls V. // makes the semaphore positive
// and wakes up the thread
// waiting in Join

Scheduling with semaphores

# Ingeneral, scheduling dependencies between threads T,
T2, ..., Ty can be enforced with n-1 semaphores, Sy, Sa, ...,
Sn.1 used as follows:

- Tj runs and signals V(S;) when done.
- Ty, waits on Sy, 1 (using P) and signals V(S;,) when done.

+ (contrived) example: schedule print(f(x.y))

float x,y, z;

sem Sx=0,Sy=0,5z=0;

TL: T2: T3:
Xz .. P(5x); P(s2);
V(5x); P(SY): print(z);
Y= . z = f(xy)
V(Sy): V(S52);
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Producer-consumer with semaphores (1)

¢ Correctness constraints

* consumer must wait for producer to fill buffers, if all empty (scheduling

constraints)

* producer must wait for consumer to empty buffers, if all full (scheduling

constaints)

* Only one thread can manipulate buffer queue at a time (mutual exclusion)

¢ General rule of thumb: use a separate semaphore for

each constraint
Semaphore fullBuffers;

Semaphore emptyBuffers;

Semaphore mutex;

// consumer’s constraint

// if 0, no coke in machine

// producer’s constraint

// if 0, nowhere to put more coke

// mutual exclusion

Producer-consumer with semaphores (2)

Semaphore fullBuffers = 0;  // initially no coke
Semaphore emptyBuffers = numBuffers:
// initially, # of empty slots semaphore used to
// count how many resources there are
Semaphore mutex = 1; // o one using the machine

Producer() {
emptyBuffers.P();  // check if there is space
// for more coke

mutex.P(); // make sure no one else
// is using machine

put 1 Coke in machine;
mutex.V(); // ok for others to use machine

fullBuffers.V(); // tell consumers there is now
// a Coke in the machine

Consumer() {
fullBuffers.P(); // check if there is
// a coke in the machine

mutex.P(); // make sure no one
// else is using machine

take 1 Coke out;

mutex.V(); // next person’s turn
emptyBuffers.V():  // tell producer
// we need more

What if we have 2 producers and
2 consumers?
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Order of P&Vs --- what can go wrong

Semaphore fullBuffers = 0;  // initially no coke
Semaphore emptyBuffers = numBuffers;
// initially, # of empty slots semaphore used to
// count how many resources there are

Semaphore mutex = 1; // no one using the machine

Producer() {
mutex.P() // make sure no one else

// is using machine

emptyBuffers.P():  // check if there is space

// for more coke
put 1 Coke in machine;

fullBuffers.V(): // tell consumers there is now
// a Coke in the machine
mutex.V():

}

// ok for others to use machine

Consumer() {
mutex.P(): // make sure no one

// else is using machine
// check if there is

// a coke in the machine

fullBuffers.P();

take 1 Coke out;

emptyBuffers.V():  // tell producer
// we need more

mutex.V(): // next person's turn

}

Deadlock---two or more processes are
waiting indefinitely for an event that
can be caused by only one of the waiting
processes.
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Implementing synchronization

Take 1: using memory load/store
- See too much milk solution/Peterson’s algorithm

Take 2:
Lock::acquire()
{ disable interrupts }
Lock::release()
{ enable interrupts }

Take 3: queueing locks

No point on running the threads waiting for locks

13

Lock implementation, uniprocessor

Lock::acquire() {
disableInterrupts();

if (value == BUSY) {
waiting.add(myTCB);
myTCB->state = WAITING;
next = readyList.remove();
switch(myTCB, next);
myTCB->state = RUNNING;

class Lock {
private int value = FREE;
private Queue waiting;
public void acquire();
public void release();

}

Lock::release() {
disableInterrupts();

if (Iwaiting.Empty()) {

next = waiting.remove();

next->state = READY;

}else {
value = BUSY: readyList.add(next);
} }else {
value = FREE;
enableInterrupts(); }
} enableInterrupts();
}
14
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Multiprocessor

¢ Read-modify-write instructions

- Atomically read a value from memory, operate on it, and then
write it back to memory

- Intervening instructions prevented in hardware
¢ Examples
- Test and set
- Intel: xchgb, lock prefix
- Compare and swap
& Any of these can be used for implementing locks and
condition variables!

15

Spinlocks

A spinlock is a lock where the processor waits in a loop for
the lock to become free

- Assumes lock will be held for a short time
- Used to protect the CPU scheduler and o implement locks

Spinlock::acquire() {
while (testAndSet(&lockValue) == BUSY)

}

Spinlock::release() {
lockValue = FREE;
memorybarrier();

16
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How many spinlocks?

+ Various data structures
- Queue of waiting threads on lock X

- Queue of waiting threads on lock Y
- List of threads ready to run

+ One spinlock per kernel?
- Bottleneck!

+ Instead:
- One spinlock per lock

- One spinlock for the scheduler ready list
* Per-core ready list: one spinlock per core

17

What thread is currently running?

+ Thread scheduler needs to find the TCB of the
currently running thread
- To suspend and switch to a new thread
- To check if the current thread holds a lock before acquiring
or releasing it
+ On a uniprocessor, easy: just use a global
+ On a multiprocessor, various methods:

- Compiler dedicates a register (e.g., r31 points o TCB running
on the this CPU; each CPU has its own r31)
- If hardware has a special per-processor register, use it
- Fixed-size stacks: put a pointer to the TCB at the bottom of
its stack
* Find it by masking the current stack pointer

18
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Lock implementation, multiprocessor

class Lock { Lock::release() {
private int value = FREE;
private SpinLock spinLock;
private Queue waiting; ..}

Lock::acquire() {

disableInterrupts();
spinLock.acquire();

disableInterrupts(); if (waiting.Empty()) {

spinLock.acquire(); next = waiting.remove();

if (value == BUSY) { scheduler->makeReady(next);
waiting.add(myTCB): }else{
scheduler->suspend(&spinlock); value = FREE;

}else {
va!ue = BUSY. spinLock.release();

) spinLock.release(); enableInterrupts();

enableInterrupts(); )

19

Lock implementation, multiprocessor (cont'd)

thread->state = READY: schedulerSpinLock.release();

schedulerSpinLock.release(); enableInterrupts();
enableInterrupts(); }

class Scheduler { void
private: Scheduler::suspend(SpinLock *lock) {
Qu-eue readyList; ‘ TCB *chosenTCB:
SpinLock schedulerSpinLock:
public: .
void suspend(SpinLock *lock); disableInterrupts();
void makeReady(Thread *thread); schedulerSpinLock.acquire();
}
lock->release();
void
Scheduler::makeReady(TCB *thread) { runningThread->state = WAITING:
disableInterrupts(); chosenTCB = readyList.getNextThread():
schedulerSpinLock.acquire(); thread_switch(runningThread, chosenTCB);
. runningThread->state = RUNNING;
readyList.add(thread);

20
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Condition variable implementation, multiprocessor

class CV {
private Queue waiting;
public void wait(Lock *lock);
public void signal();
public void broadcast();

}

// Monitor lock held by current thread.

void CV::wait(Lock *lock) {
assert(lock.isHeld());
waiting.add(myTCB);
// Switch to new thread & release lock.

scheduler.suspend(&lock);
lock->acquire();

// Monitor lock held by current thread.
void CV::signal() {
if (waiting.notEmpty()) {

}
}

thread = waiting.remove();
scheduler.makeReady(thread);

void CV::broadcast() {
while (waiting.notEmpty()) {

}
}

thread = waiting.remove();
scheduler.makeReady(thread);
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Semaphore implementation, a comparison

Semaphore::P() {
disableInterrupts();
spinLock.acquire();

if (value == 0) {
waiting.add(myTCB);
suspend(&spinlock);
}else {
value--;

}

spinLock.release();
enableInterrupts();

Semaphore::V() {

}

disableInterrupts();
spinLock.acquire();

if (waiting.Empty()) {
next = waiting.remove();
scheduler->makeReady(next);

}else {
value++;

}

spinLock.release();
enableInterrupts();

22
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"Semaphores considered harmfull”

¢ Using separate lock and condition variable classes
makes code more self-documenting and easier to read

- The code is clearer when the role of each synchronization
variable is made clear through explicit typing

¢ A stateless condition variable bound to a lock is a
better abstraction for generalized waiting than a

semaphore

- Semaphores rely on the programmer to carefully map the
object's state to the semaphore’s value ...

¢ Nevertheless, semaphores are used for synchronizing
communication between an I/0 device and threads
waiting for I/O completion.

23

Implementing Condition Variables using
Semaphores (Take 1)

wait(lock) {
lock.release():
semaphore.P();
lock.acquire();

}

signal() {
semaphore.V():

}

24
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Implementing Condition Variables
using Semaphores (Take 2)

wait(lock) {
lock.release();
semaphore.P();
lock.acquire();
}

signal() {
if (semaphore queue is not empty)
semaphore.V();

25
Implementing Condition Variables
using Semaphores (Take 3)
wait(lock) {
semaphore = new Semaphore;
queue.Append(semaphore); // queue of waiting threads
lock.release();
semaphore.P();
lock.acquire();
}
signal() {
if (Iqueue Empty()) {
semaphore = queue.Remove();
semaphore.V(); // wake up waiter
}
}
26
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Lock implementation, Linux

# Most locks are free most of the time

- Why?

- Linux implementation takes advantage of this fact
¢ Fast path

- If lock is FREE, and no one is waiting, two instructions to
acquire the lock

- If no one is waiting, two instructions to release the lock

¢ Slow path
- If lock is BUSY or someone is waiting, use multiproc impl.

+ User-level locks
- Fast path: acquire lock using testé&set
- Slow path: system call to kernel, use kernel lock

27

Lock implementation, Linux

struct mutex { // atomic decrement

/* 1: unlocked ; // %eax is pointer to count
0: locked;
negative : locked, lock decl (%eax)

possible waiters */ jns 1f // jump if not signed
// (if value is now 0)

atomic_t count; call slowpath_acquire
spinlock_t wait_lock; 1:

struct list_head wait_list;

)

28
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Communicating Sequential Processes
(CSP/Google Go)

¢ A thread per shared object
- Only thread allowed to touch object's data

- To call a method on the object, send thread a message with
method name, arguments

- Thread waits in a loop, get msg, do operation

+ No memory races!

29
Example: Bounded Buffer
get() { put(item) {
lock.acquire(); lock.acquire();
while (front == tail) { while ((tail - front) == MAX) {
empty.wait(lock); full.wait(lock);
} }
item = buf[front % MAX]; buf[tail % MAX] = item;
front++; tail++:
full.signal(lock); emp‘ry.signal(lock),‘
lock.release(); _
o lock.release();
return item;
} }
Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables
30
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Bounded Buffer (CSP)

while (cmd = getNext()) {

if (cmd == GET){
if (front < tail) {
// do get else {// cmd == PUT
// send reply if ((tail - front) < MAX) {
// if pending put, do it // do put
// and send reply // send reply
}e)fe + " // if pending get, do it
} queue get operation /7 and send reply

} else
// queue put operation

31

Locks/CVs vs. CSP

# Create a lock on shared data
= create a single thread o operate on data
# Call a method on a shared object
= send a message/wait for reply
+ Wait for a condition
= queue an operation that can't be completed just yet
+ Signal a condition
= perform a queued operation, now enabled

32
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Remember the rules

+ Use consistent structure
¢ Always use locks and condition variables

+ Always acquire lock at beginning of procedure, release
at end

¢ Always hold lock when using a condition variable
+ Always wait in while loop
+ Never spin in sleep()

33
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