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Semaphores (Dijkstra 1965)

! Semaphores are a kind of generalized lock. 
* They are the main synchronization primitives used in the earlier Unix. 

! Semaphores have a non-negative integer value, and 
support two operations:
– semaphore->P(): an atomic operation that waits for semaphore 

to become positive, then decrements it by 1
– semaphore->V(): an atomic operation that increments 

semaphore by 1, waking up a waiting P, if any.

! Semaphores are like integers except: 
(1) none-negative values; (2) only allow P&V --- can’t read/write value except 
to set it initially; (3) operations must be atomic: two P’s that occur together 
can’t decrement the value below zero. Similarly, thread going to sleep in P 
won’t miss wakeup from V, even if they both happen at about the same time.
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Implementing semaphores

P means “test” (proberen in Dutch)
V means “increment” (verhogen in Dutch)

class Semaphore { int value = initialValue; }

Semaphore::P()   { 
Disable interrupts;
while (value == 0) {

Put on queue of threads waiting 
for this semaphore;
Go to sleep;

}
value = value - 1;
Enable interrupts

}

Semaphore::V()   { 
Disable interrupts;
if  anyone on wait queue {

Take a waiting thread off wait 
queue and put it on the ready   
queue;

}
value = value + 1;
Enable interrupts

}
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Binary semaphores

Like a lock; also known as “mutex”; can only have value 0 or 1 (unlike the 
previous “counting semaphore” which can be any non-negative integers)

class Semaphore { int value = 0 or 1; }

Semaphore::P()   { 
Disable interrupts;
while (value == 0) {

Put on queue of threads waiting 
for this semaphore;
Go to sleep;

}
value = 0;
Enable interrupts

}

Semaphore::V()   { 
Disable interrupts;
if  anyone on wait queue {

Take a waiting thread off wait 
queue and put it on the ready   
queue;

}
value = 1;
Enable interrupts

}
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! Binary semaphores can be used for mutual exclusion:
initial value of 1; P() is called before the critical section; and V() is 
called after the critical section.

semaphore->P();
// critical section goes here
semaphore->V();

! Scheduling constraints 
– having one thread to wait for something to happen

* Example: Thread::Join, which must wait for a thread to terminate. By 
setting the initial value to 0 instead of 1, we can implement waiting on a 
semaphore

! Controlling access to a finite resource

How to use semaphores
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Scheduling constaints

! Something must happen after one another

Initial value of semaphore = 0;
Fork a child thread
Thread::Join calls P     // will wait until something 

// makes the semaphore positive
-------------------------------------------------------------------------

Thread finish calls V    // makes the semaphore positive
// and wakes up the thread
// waiting in Join
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Scheduling with semaphores

! In general, scheduling dependencies between threads T1, 
T2, …, Tn can be enforced with n-1 semaphores, S1, S2, …, 
Sn-1 used as follows:
– T1 runs and signals V(S1) when done.
– Tm waits on Sm-1 (using P) and signals V(Sm) when done.

! (contrived) example: schedule print(f(x,y))
float  x, y, z;
sem   Sx = 0, Sy = 0, Sz = 0;
T1: T2: T3:

x = …; P(Sx); P(Sz);
V(Sx); P(Sy); print(z);
y = …; z = f(x,y); …
V(Sy); V(Sz);
…                       ...
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Producer-consumer with semaphores (1)

! Correctness constraints
* consumer must wait for producer to fill buffers, if all empty (scheduling 

constraints)
* producer must wait for consumer to empty buffers, if all full (scheduling 

constaints)
* Only one thread can manipulate buffer queue at a time (mutual exclusion)

! General rule of thumb: use a separate semaphore for 
each constraint

Semaphore fullBuffers;                       // consumer’s constraint
// if 0, no coke in machine

Semaphore emptyBuffers;                   // producer’s constraint
// if 0, nowhere to put more coke

Semaphore mutex;                                // mutual exclusion
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Producer-consumer with semaphores (2)

What if we have 2 producers and 
2 consumers?

Semaphore fullBuffers = 0;      // initially no coke
Semaphore emptyBuffers = numBuffers;

// initially, # of empty slots semaphore used to
// count how many resources there are

Semaphore mutex = 1;         // no one using the machine

Producer() {
emptyBuffers.P();      // check if there is space           

//  for more coke
mutex.P();                  // make sure no one else

// is using machine

put 1 Coke in machine;

mutex.V();                // ok for others to use machine
fullBuffers.V();        // tell consumers there is now 

// a Coke in the machine
}

Consumer() {
fullBuffers.P();        // check if there is           

// a coke in the machine
mutex.P();                // make sure no one

// else is using machine

take 1 Coke out;

mutex.V();              // next person’s turn
emptyBuffers.V();      // tell producer 

// we need more
}
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Order of P&Vs --- what can go wrong

Deadlock---two or more processes are 
waiting indefinitely for an event that 
can be caused by only one of the waiting 
processes.

Semaphore fullBuffers = 0;      // initially no coke
Semaphore emptyBuffers = numBuffers;

// initially, # of empty slots semaphore used to
// count how many resources there are

Semaphore mutex = 1;         // no one using the machine

Producer() {
mutex.P(); // make sure no one else

// is using machine
emptyBuffers.P();      // check if there is space           

//  for more coke

put 1 Coke in machine;

fullBuffers.V();        // tell consumers there is now 
// a Coke in the machine

mutex.V(); // ok for others to use machine
}

Consumer() {
mutex.P(); // make sure no one

// else is using machine
fullBuffers.P();        // check if there is           

// a coke in the machine

take 1 Coke out;

emptyBuffers.V();      // tell producer 
// we need more

mutex.V(); // next person’s turn
}
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Implementing synchronization

Take 1: using memory load/store
– See too much milk solution/Peterson’s algorithm

Take 2:
Lock::acquire() 

{ disable interrupts }
Lock::release() 

{ enable interrupts }

Take 3: queueing locks
No point on running the threads waiting for locks
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Lock implementation, uniprocessor

Lock::acquire() { 

disableInterrupts(); 

if (value == BUSY) { 
waiting.add(myTCB);
myTCB->state = WAITING;
next = readyList.remove();
switch(myTCB, next);
myTCB->state = RUNNING;

} else { 
value = BUSY; 

} 

enableInterrupts(); 
}

Lock::release() { 
disableInterrupts();

if (!waiting.Empty()) { 
next = waiting.remove();
next->state = READY;    

readyList.add(next); 
} else {

value = FREE; 
} 
enableInterrupts(); 

} 

class Lock {
private int value = FREE;
private Queue waiting;

public void acquire();
public void release();

}
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Multiprocessor

! Read-modify-write instructions
– Atomically read a value from memory, operate on it, and then 

write it back to memory
– Intervening instructions prevented in hardware

! Examples
– Test and set
– Intel: xchgb, lock prefix
– Compare and swap

! Any of these can be used for implementing locks and 
condition variables!
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Spinlocks

A spinlock is a lock where the processor waits in a loop for 
the lock to become free
– Assumes lock will be held for a short time
– Used to protect the CPU scheduler and to implement locks

Spinlock::acquire() {
while (testAndSet(&lockValue) == BUSY)

;
}

Spinlock::release() {
lockValue = FREE;
memorybarrier();

}
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How many spinlocks?

! Various data structures
– Queue of waiting threads on lock X
– Queue of waiting threads on lock Y
– List of threads ready to run

! One spinlock per kernel?
– Bottleneck!

! Instead:
– One spinlock per lock
– One spinlock for the scheduler ready list

* Per-core ready list: one spinlock per core
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What thread is currently running?

! Thread scheduler needs to find the TCB of the 
currently running thread
– To suspend and switch to a new thread
– To check if the current thread holds a lock before acquiring 

or releasing it
! On a uniprocessor, easy: just use a global
! On a multiprocessor, various methods:

– Compiler dedicates a register (e.g., r31 points to TCB running 
on the this CPU; each CPU has its own r31)

– If hardware has a special per-processor register, use it
– Fixed-size stacks: put a pointer to the TCB at the bottom of 

its stack
* Find it by masking the current stack pointer

18
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Lock implementation, multiprocessor

class Lock {
private int value = FREE;
private SpinLock spinLock;
private Queue waiting; …}

Lock::acquire() { 
disableInterrupts();
spinLock.acquire();

if (value == BUSY) { 
waiting.add(myTCB);
scheduler->suspend(&spinlock);

} else { 
value = BUSY; 
spinLock.release();

}
enableInterrupts();

}

Lock::release() { 

disableInterrupts();
spinLock.acquire();

if (!waiting.Empty()) { 
next = waiting.remove();    
scheduler->makeReady(next);

} else {
value = FREE; 

} 

spinLock.release();
enableInterrupts();

} 
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Lock implementation, multiprocessor (cont’d)

class Scheduler {
private:
Queue readyList;
SpinLock schedulerSpinLock;

public:
void suspend(SpinLock *lock);
void makeReady(Thread *thread);

}

void 
Scheduler::makeReady(TCB *thread) {

disableInterrupts();  
schedulerSpinLock.acquire();

readyList.add(thread);
thread->state = READY;

schedulerSpinLock.release();
enableInterrupts(); 

}

void 
Scheduler::suspend(SpinLock *lock) {

TCB *chosenTCB;

disableInterrupts();  
schedulerSpinLock.acquire();

lock->release();    

runningThread->state = WAITING;
chosenTCB = readyList.getNextThread(); 
thread_switch(runningThread, chosenTCB);    
runningThread->state = RUNNING;

schedulerSpinLock.release();
enableInterrupts();

}
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Condition variable implementation, multiprocessor

class CV {
private Queue waiting;
public void wait(Lock *lock);
public void signal();
public void broadcast();

}

// Monitor lock held by current thread.
void CV::wait(Lock *lock) {

assert(lock.isHeld());

waiting.add(myTCB); 
// Switch to new thread & release lock.

scheduler.suspend(&lock);
lock->acquire();

}

// Monitor lock held by current thread.
void CV::signal() {

if (waiting.notEmpty()) {
thread = waiting.remove();
scheduler.makeReady(thread);

}
}

void CV::broadcast() {
while (waiting.notEmpty()) {

thread = waiting.remove();
scheduler.makeReady(thread);

}
}
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Semaphore implementation, a comparison

Semaphore::P() { 
disableInterrupts();
spinLock.acquire();

if (value == 0) { 
waiting.add(myTCB);
suspend(&spinlock);

} else { 
value--; 

}

spinLock.release();
enableInterrupts();

}

Semaphore::V() { 
disableInterrupts();
spinLock.acquire();

if (!waiting.Empty()) { 
next = waiting.remove();    
scheduler->makeReady(next);

} else {
value++; 

} 

spinLock.release();
enableInterrupts();

} 
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“Semaphores considered harmful!”

! Using separate lock and condition variable classes 
makes code more self-documenting and easier to read
– The code is clearer when the role of each synchronization 

variable is made clear through explicit typing

! A stateless condition variable bound to a lock is a 
better abstraction for generalized waiting than a 
semaphore
– Semaphores rely on the programmer to carefully map the 

object’s state to the semaphore’s value … 

! Nevertheless, semaphores are used for synchronizing 
communication between an I/O device and threads 
waiting for I/O completion. 
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Implementing Condition Variables using 
Semaphores (Take 1)

wait(lock) { 
lock.release(); 
semaphore.P(); 
lock.acquire();

}
signal() {

semaphore.V();
}
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Implementing Condition Variables
using Semaphores (Take 2)

wait(lock) { 
lock.release(); 
semaphore.P(); 
lock.acquire();

}
signal() {

if (semaphore queue is not empty)
semaphore.V();

}
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Implementing Condition Variables
using Semaphores (Take 3)

wait(lock) { 
semaphore = new Semaphore;
queue.Append(semaphore);   // queue of waiting threads
lock.release(); 
semaphore.P(); 
lock.acquire();

}
signal() {

if (!queue.Empty()) {
semaphore = queue.Remove();
semaphore.V(); // wake up waiter

}
}
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Lock implementation, Linux

! Most locks are free most of the time
– Why?
– Linux implementation takes advantage of this fact

! Fast path
– If lock is FREE, and no one is waiting, two instructions to 

acquire the lock
– If no one is waiting, two instructions to release the lock

! Slow path
– If lock is BUSY or someone is waiting, use multiproc impl.

! User-level locks
– Fast path: acquire lock using test&set
– Slow path: system call to kernel, use kernel lock
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Lock implementation, Linux

struct mutex { 
/∗ 1: unlocked ; 

0: locked; 
negative : locked,    

possible waiters ∗/ 

atomic_t count; 
spinlock_t wait_lock;
struct list_head wait_list;
}; 

// atomic decrement
// %eax is pointer to count 

lock decl (%eax) 
jns 1f // jump if not signed

// (if value is now 0) 
call slowpath_acquire
1: 
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Communicating Sequential Processes
(CSP/Google Go)

! A thread per shared object
– Only thread allowed to touch object’s data
– To call a method on the object, send thread a message with 

method name, arguments
– Thread waits in a loop, get msg, do operation 

! No memory races!
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Example: Bounded Buffer

get() {
lock.acquire();
while (front == tail) {

empty.wait(lock);
}
item = buf[front % MAX];
front++;
full.signal(lock);
lock.release();
return item;

}

put(item) {
lock.acquire();
while ((tail – front) == MAX) {

full.wait(lock);
}
buf[tail % MAX] = item;
tail++;
empty.signal(lock);
lock.release();

}

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables
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Bounded Buffer (CSP)

while (cmd = getNext()) {
if (cmd == GET) {

if (front < tail) {
// do get
// send reply
// if pending put, do it 
// and send reply

} else
// queue get operation

}

else { // cmd == PUT
if ((tail – front) < MAX) {

// do put
// send reply
// if pending get, do it 

// and send reply
} else

// queue put operation
}
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Locks/CVs vs. CSP

! Create a lock on shared data
= create a single thread to operate on data

! Call a method on a shared object
= send a message/wait for reply

! Wait for a condition
= queue an operation that can’t be completed just yet

! Signal a condition
= perform a queued operation, now enabled
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Remember the rules

! Use consistent structure
! Always use locks and condition variables
! Always acquire lock at beginning of procedure, release 

at end
! Always hold lock when using a condition variable
! Always wait in while loop
! Never spin in sleep()
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