
9/22/20

1

CS 422/522 Design & Implementation
of Operating Systems

Lectures 8-9: Implementing
Synchronization

Zhong Shao
Dept. of Computer Science

Yale University

1

The big picture

Shared Objects

Synchronization Variables

Atomic Instructions

Hardware

Interrupt Disable

Bounded Bu!er

Multiple Processors

Semaphores Locks

Test-and-Set

Barrier

Hardware Interrupts

Condition Variables

Concurrent Applications

2

9/22/20

2

Semaphores (Dijkstra 1965)

! Semaphores are a kind of generalized lock.
* They are the main synchronization primitives used in the earlier Unix.

! Semaphores have a non-negative integer value, and
support two operations:
– semaphore->P(): an atomic operation that waits for semaphore

to become positive, then decrements it by 1
– semaphore->V(): an atomic operation that increments

semaphore by 1, waking up a waiting P, if any.

! Semaphores are like integers except:
(1) none-negative values; (2) only allow P&V --- can’t read/write value except
to set it initially; (3) operations must be atomic: two P’s that occur together
can’t decrement the value below zero. Similarly, thread going to sleep in P
won’t miss wakeup from V, even if they both happen at about the same time.

3

Implementing semaphores

P means “test” (proberen in Dutch)
V means “increment” (verhogen in Dutch)

class Semaphore { int value = initialValue; }

Semaphore::P() {
Disable interrupts;
while (value == 0) {

Put on queue of threads waiting
for this semaphore;
Go to sleep;

}
value = value - 1;
Enable interrupts

}

Semaphore::V() {
Disable interrupts;
if anyone on wait queue {

Take a waiting thread off wait
queue and put it on the ready
queue;

}
value = value + 1;
Enable interrupts

}

4

9/22/20

3

Binary semaphores

Like a lock; also known as “mutex”; can only have value 0 or 1 (unlike the
previous “counting semaphore” which can be any non-negative integers)

class Semaphore { int value = 0 or 1; }

Semaphore::P() {
Disable interrupts;
while (value == 0) {

Put on queue of threads waiting
for this semaphore;
Go to sleep;

}
value = 0;
Enable interrupts

}

Semaphore::V() {
Disable interrupts;
if anyone on wait queue {

Take a waiting thread off wait
queue and put it on the ready
queue;

}
value = 1;
Enable interrupts

}

5

! Binary semaphores can be used for mutual exclusion:
initial value of 1; P() is called before the critical section; and V() is
called after the critical section.

semaphore->P();
// critical section goes here
semaphore->V();

! Scheduling constraints
– having one thread to wait for something to happen

* Example: Thread::Join, which must wait for a thread to terminate. By
setting the initial value to 0 instead of 1, we can implement waiting on a
semaphore

! Controlling access to a finite resource

How to use semaphores

6

9/22/20

4

Scheduling constaints

! Something must happen after one another

Initial value of semaphore = 0;
Fork a child thread
Thread::Join calls P // will wait until something

// makes the semaphore positive

Thread finish calls V // makes the semaphore positive
// and wakes up the thread
// waiting in Join

7

Scheduling with semaphores

! In general, scheduling dependencies between threads T1,
T2, …, Tn can be enforced with n-1 semaphores, S1, S2, …,
Sn-1 used as follows:
– T1 runs and signals V(S1) when done.
– Tm waits on Sm-1 (using P) and signals V(Sm) when done.

! (contrived) example: schedule print(f(x,y))
float x, y, z;
sem Sx = 0, Sy = 0, Sz = 0;
T1: T2: T3:

x = …; P(Sx); P(Sz);
V(Sx); P(Sy); print(z);
y = …; z = f(x,y); …
V(Sy); V(Sz);
… ...

8

9/22/20

5

Producer-consumer with semaphores (1)

! Correctness constraints
* consumer must wait for producer to fill buffers, if all empty (scheduling

constraints)
* producer must wait for consumer to empty buffers, if all full (scheduling

constaints)
* Only one thread can manipulate buffer queue at a time (mutual exclusion)

! General rule of thumb: use a separate semaphore for
each constraint

Semaphore fullBuffers; // consumer’s constraint
// if 0, no coke in machine

Semaphore emptyBuffers; // producer’s constraint
// if 0, nowhere to put more coke

Semaphore mutex; // mutual exclusion

9

Producer-consumer with semaphores (2)

What if we have 2 producers and
2 consumers?

Semaphore fullBuffers = 0; // initially no coke
Semaphore emptyBuffers = numBuffers;

// initially, # of empty slots semaphore used to
// count how many resources there are

Semaphore mutex = 1; // no one using the machine

Producer() {
emptyBuffers.P(); // check if there is space

// for more coke
mutex.P(); // make sure no one else

// is using machine

put 1 Coke in machine;

mutex.V(); // ok for others to use machine
fullBuffers.V(); // tell consumers there is now

// a Coke in the machine
}

Consumer() {
fullBuffers.P(); // check if there is

// a coke in the machine
mutex.P(); // make sure no one

// else is using machine

take 1 Coke out;

mutex.V(); // next person’s turn
emptyBuffers.V(); // tell producer

// we need more
}

10

9/22/20

6

Order of P&Vs --- what can go wrong

Deadlock---two or more processes are
waiting indefinitely for an event that
can be caused by only one of the waiting
processes.

Semaphore fullBuffers = 0; // initially no coke
Semaphore emptyBuffers = numBuffers;

// initially, # of empty slots semaphore used to
// count how many resources there are

Semaphore mutex = 1; // no one using the machine

Producer() {
mutex.P(); // make sure no one else

// is using machine
emptyBuffers.P(); // check if there is space

// for more coke

put 1 Coke in machine;

fullBuffers.V(); // tell consumers there is now
// a Coke in the machine

mutex.V(); // ok for others to use machine
}

Consumer() {
mutex.P(); // make sure no one

// else is using machine
fullBuffers.P(); // check if there is

// a coke in the machine

take 1 Coke out;

emptyBuffers.V(); // tell producer
// we need more

mutex.V(); // next person’s turn
}

11

Implementing synchronization

Shared Objects

Synchronization Variables

Atomic Instructions

Hardware

Interrupt Disable

Bounded Bu!er

Multiple Processors

Semaphores Locks

Test-and-Set

Barrier

Hardware Interrupts

Condition Variables

Concurrent Applications

12

9/22/20

7

Implementing synchronization

Take 1: using memory load/store
– See too much milk solution/Peterson’s algorithm

Take 2:
Lock::acquire()

{ disable interrupts }
Lock::release()

{ enable interrupts }

Take 3: queueing locks
No point on running the threads waiting for locks

13

Lock implementation, uniprocessor

Lock::acquire() {

disableInterrupts();

if (value == BUSY) {
waiting.add(myTCB);
myTCB->state = WAITING;
next = readyList.remove();
switch(myTCB, next);
myTCB->state = RUNNING;

} else {
value = BUSY;

}

enableInterrupts();
}

Lock::release() {
disableInterrupts();

if (!waiting.Empty()) {
next = waiting.remove();
next->state = READY;

readyList.add(next);
} else {

value = FREE;
}
enableInterrupts();

}

class Lock {
private int value = FREE;
private Queue waiting;

public void acquire();
public void release();

}

14

9/22/20

8

Multiprocessor

! Read-modify-write instructions
– Atomically read a value from memory, operate on it, and then

write it back to memory
– Intervening instructions prevented in hardware

! Examples
– Test and set
– Intel: xchgb, lock prefix
– Compare and swap

! Any of these can be used for implementing locks and
condition variables!

15

Spinlocks

A spinlock is a lock where the processor waits in a loop for
the lock to become free
– Assumes lock will be held for a short time
– Used to protect the CPU scheduler and to implement locks

Spinlock::acquire() {
while (testAndSet(&lockValue) == BUSY)

;
}

Spinlock::release() {
lockValue = FREE;
memorybarrier();

}

16

9/22/20

9

How many spinlocks?

! Various data structures
– Queue of waiting threads on lock X
– Queue of waiting threads on lock Y
– List of threads ready to run

! One spinlock per kernel?
– Bottleneck!

! Instead:
– One spinlock per lock
– One spinlock for the scheduler ready list

* Per-core ready list: one spinlock per core

17

What thread is currently running?

! Thread scheduler needs to find the TCB of the
currently running thread
– To suspend and switch to a new thread
– To check if the current thread holds a lock before acquiring

or releasing it
! On a uniprocessor, easy: just use a global
! On a multiprocessor, various methods:

– Compiler dedicates a register (e.g., r31 points to TCB running
on the this CPU; each CPU has its own r31)

– If hardware has a special per-processor register, use it
– Fixed-size stacks: put a pointer to the TCB at the bottom of

its stack
* Find it by masking the current stack pointer

18

9/22/20

10

Lock implementation, multiprocessor

class Lock {
private int value = FREE;
private SpinLock spinLock;
private Queue waiting; …}

Lock::acquire() {
disableInterrupts();
spinLock.acquire();

if (value == BUSY) {
waiting.add(myTCB);
scheduler->suspend(&spinlock);

} else {
value = BUSY;
spinLock.release();

}
enableInterrupts();

}

Lock::release() {

disableInterrupts();
spinLock.acquire();

if (!waiting.Empty()) {
next = waiting.remove();
scheduler->makeReady(next);

} else {
value = FREE;

}

spinLock.release();
enableInterrupts();

}

19

Lock implementation, multiprocessor (cont’d)

class Scheduler {
private:
Queue readyList;
SpinLock schedulerSpinLock;

public:
void suspend(SpinLock *lock);
void makeReady(Thread *thread);

}

void
Scheduler::makeReady(TCB *thread) {

disableInterrupts();
schedulerSpinLock.acquire();

readyList.add(thread);
thread->state = READY;

schedulerSpinLock.release();
enableInterrupts();

}

void
Scheduler::suspend(SpinLock *lock) {

TCB *chosenTCB;

disableInterrupts();
schedulerSpinLock.acquire();

lock->release();

runningThread->state = WAITING;
chosenTCB = readyList.getNextThread();
thread_switch(runningThread, chosenTCB);
runningThread->state = RUNNING;

schedulerSpinLock.release();
enableInterrupts();

}

20

9/22/20

11

Condition variable implementation, multiprocessor

class CV {
private Queue waiting;
public void wait(Lock *lock);
public void signal();
public void broadcast();

}

// Monitor lock held by current thread.
void CV::wait(Lock *lock) {

assert(lock.isHeld());

waiting.add(myTCB);
// Switch to new thread & release lock.

scheduler.suspend(&lock);
lock->acquire();

}

// Monitor lock held by current thread.
void CV::signal() {

if (waiting.notEmpty()) {
thread = waiting.remove();
scheduler.makeReady(thread);

}
}

void CV::broadcast() {
while (waiting.notEmpty()) {

thread = waiting.remove();
scheduler.makeReady(thread);

}
}

21

Semaphore implementation, a comparison

Semaphore::P() {
disableInterrupts();
spinLock.acquire();

if (value == 0) {
waiting.add(myTCB);
suspend(&spinlock);

} else {
value--;

}

spinLock.release();
enableInterrupts();

}

Semaphore::V() {
disableInterrupts();
spinLock.acquire();

if (!waiting.Empty()) {
next = waiting.remove();
scheduler->makeReady(next);

} else {
value++;

}

spinLock.release();
enableInterrupts();

}

22

9/22/20

12

“Semaphores considered harmful!”

! Using separate lock and condition variable classes
makes code more self-documenting and easier to read
– The code is clearer when the role of each synchronization

variable is made clear through explicit typing

! A stateless condition variable bound to a lock is a
better abstraction for generalized waiting than a
semaphore
– Semaphores rely on the programmer to carefully map the

object’s state to the semaphore’s value …

! Nevertheless, semaphores are used for synchronizing
communication between an I/O device and threads
waiting for I/O completion.

23

Implementing Condition Variables using
Semaphores (Take 1)

wait(lock) {
lock.release();
semaphore.P();
lock.acquire();

}
signal() {

semaphore.V();
}

24

9/22/20

13

Implementing Condition Variables
using Semaphores (Take 2)

wait(lock) {
lock.release();
semaphore.P();
lock.acquire();

}
signal() {

if (semaphore queue is not empty)
semaphore.V();

}

25

Implementing Condition Variables
using Semaphores (Take 3)

wait(lock) {
semaphore = new Semaphore;
queue.Append(semaphore); // queue of waiting threads
lock.release();
semaphore.P();
lock.acquire();

}
signal() {

if (!queue.Empty()) {
semaphore = queue.Remove();
semaphore.V(); // wake up waiter

}
}

26

9/22/20

14

Lock implementation, Linux

! Most locks are free most of the time
– Why?
– Linux implementation takes advantage of this fact

! Fast path
– If lock is FREE, and no one is waiting, two instructions to

acquire the lock
– If no one is waiting, two instructions to release the lock

! Slow path
– If lock is BUSY or someone is waiting, use multiproc impl.

! User-level locks
– Fast path: acquire lock using test&set
– Slow path: system call to kernel, use kernel lock

27

Lock implementation, Linux

struct mutex {
/∗ 1: unlocked ;

0: locked;
negative : locked,

possible waiters ∗/

atomic_t count;
spinlock_t wait_lock;
struct list_head wait_list;
};

// atomic decrement
// %eax is pointer to count

lock decl (%eax)
jns 1f // jump if not signed

// (if value is now 0)
call slowpath_acquire
1:

28

9/22/20

15

Communicating Sequential Processes
(CSP/Google Go)

! A thread per shared object
– Only thread allowed to touch object’s data
– To call a method on the object, send thread a message with

method name, arguments
– Thread waits in a loop, get msg, do operation

! No memory races!

29

Example: Bounded Buffer

get() {
lock.acquire();
while (front == tail) {

empty.wait(lock);
}
item = buf[front % MAX];
front++;
full.signal(lock);
lock.release();
return item;

}

put(item) {
lock.acquire();
while ((tail – front) == MAX) {

full.wait(lock);
}
buf[tail % MAX] = item;
tail++;
empty.signal(lock);
lock.release();

}

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables

30

9/22/20

16

Bounded Buffer (CSP)

while (cmd = getNext()) {
if (cmd == GET) {

if (front < tail) {
// do get
// send reply
// if pending put, do it
// and send reply

} else
// queue get operation

}

else { // cmd == PUT
if ((tail – front) < MAX) {

// do put
// send reply
// if pending get, do it

// and send reply
} else

// queue put operation
}

31

Locks/CVs vs. CSP

! Create a lock on shared data
= create a single thread to operate on data

! Call a method on a shared object
= send a message/wait for reply

! Wait for a condition
= queue an operation that can’t be completed just yet

! Signal a condition
= perform a queued operation, now enabled

32

9/22/20

17

Remember the rules

! Use consistent structure
! Always use locks and condition variables
! Always acquire lock at beginning of procedure, release

at end
! Always hold lock when using a condition variable
! Always wait in while loop
! Never spin in sleep()

33

