CS 422/522 Design & Implementation
of Operating Systems

Lectures 8-9: Implementing
Synchronization

Zhong Shao
Dept. of Computer Science
Yale University

The big picture

Concurrent Applications

Shared Objects

Bounded Buffer Barrier

Synchronization Variables

Semaphores Locks Condition Variables

Atomic Instructions

Interrupt Disable Test-and-Set

Hardware

Multiple Processors Hardware Interrupts

9/22/20

Semaphores (Dijkstra 1965)

+ Semaphores are a kind of generalized lock.

* They are the main synchronization pr

imitives used in the earlier Unix.

+ Semaphores have a non-negative integer value, and

support two operations:

- semaphore->P(): an atomic operation that waits for semaphore
to become positive, then decrements it by 1

- semaphore->V(): an atomic operation that increments

semaphore by 1, waking up a waiti

ng P, if any.

¢ Semaphores are like integers except:

(1) none-negative values; (2) only allow P&

V --- can't read/write value except

to set it initially; (3) operations must be atomic: two P's that occur together
can't decrement the value below zero. Similarly, thread going to sleep in P
won't miss wakeup from V, even if they both happen at about the same time.

Implementing semaphores

P means "test” (proberen in Dutch)
V means "increment” (verhogen in Dutch)

class Semaphore { int value = initialValue; }

Semaphore::P() {

Disable interrupts;

while (value == 0) {
Put on queue of threads waiting
for this semaphore;
6o to sleep;

}

value = value - 1;

Enable interrupts

Semaphore:V() {

Disable interrupts;

if anyone on wait queue {
Take a waiting thread of f wait
queue and put it on the ready
queue;

}

value = value + 1;

Enable interrupts

}

9/22/20

9/22/20

Binary semaphores

Like a lock; also known as "mutex”; can only have value O or 1 (unlike the
previous “counting semaphore” which can be any non-negative integers)

class Semaphore {|int value = 0 or 1;|}
Semaphore:V() {

Semaphore::P() { Disable interrupts;
Disable interrupts; if anyone on wait queue {
while (value == 0) { Take a waiting thread off wait
Put on queue of threads waiting queue and put it on the ready
for this semaphore; queue;
Go to sleep; }

)

Enable interrupts
Enable interrupts }

}

How to use semaphores

+ Binary semaphores can be used for mutual exclusion:

initial value of 1; P() is called before the critical section; and V() is
called after the critical section.

semaphore->P();
// critical section goes here
semaphore->V();

Scheduling constraints

- having one thread to wait for something to happen
* Example: Thread::Join, which must wait for a thread to terminate. By
setting the initial value to O instead of 1, we can implement waiting on a
semaphore

Controlling access to a finite resource

Scheduling constaints

¢ Something must happen after one another

Initial value of semaphore = O;
Fork a child thread
Thread::Join calls P // will wait until something
// makes the semaphore positive

Thread finish calls V. // makes the semaphore positive
// and wakes up the thread
// waiting in Join

Scheduling with semaphores

Ingeneral, scheduling dependencies between threads T,
T2, ..., Ty can be enforced with n-1 semaphores, Sy, Sa, ...,
Sn.1 used as follows:

- Tj runs and signals V(S;) when done.
- Ty, waits on Sy, 1 (using P) and signals V(S;,) when done.

+ (contrived) example: schedule print(f(x.y))

float x,y, z;

sem Sx=0,Sy=0,5z=0;

TL: T2: T3:
Xz .. P(5x); P(s2);
V(5x); P(SY): print(z);
Y= . z = f(xy)
V(Sy): V(S52);

9/22/20

Producer-consumer with semaphores (1)

¢ Correctness constraints

* consumer must wait for producer to fill buffers, if all empty (scheduling

constraints)

* producer must wait for consumer to empty buffers, if all full (scheduling

constaints)

* Only one thread can manipulate buffer queue at a time (mutual exclusion)

¢ General rule of thumb: use a separate semaphore for

each constraint
Semaphore fullBuffers;

Semaphore emptyBuffers;

Semaphore mutex;

// consumer’s constraint

// if 0, no coke in machine

// producer’s constraint

// if 0, nowhere to put more coke

// mutual exclusion

Producer-consumer with semaphores (2)

Semaphore fullBuffers = 0; // initially no coke
Semaphore emptyBuffers = numBuffers:
// initially, # of empty slots semaphore used to
// count how many resources there are
Semaphore mutex = 1; // o one using the machine

Producer() {
emptyBuffers.P(); // check if there is space
// for more coke

mutex.P(); // make sure no one else
// is using machine

put 1 Coke in machine;
mutex.V(); // ok for others to use machine

fullBuffers.V(); // tell consumers there is now
// a Coke in the machine

Consumer() {
fullBuffers.P(); // check if there is
// a coke in the machine

mutex.P(); // make sure no one
// else is using machine

take 1 Coke out;

mutex.V(); // next person’s turn
emptyBuffers.V(): // tell producer
// we need more

What if we have 2 producers and
2 consumers?

9/22/20

Order of P&Vs --- what can go wrong

Semaphore fullBuffers = 0; // initially no coke
Semaphore emptyBuffers = numBuffers;
// initially, # of empty slots semaphore used to
// count how many resources there are

Semaphore mutex = 1; // no one using the machine

Producer() {
mutex.P() // make sure no one else

// is using machine

emptyBuffers.P(): // check if there is space

// for more coke
put 1 Coke in machine;

fullBuffers.V(): // tell consumers there is now
// a Coke in the machine
mutex.V():

}

// ok for others to use machine

Consumer() {
mutex.P(): // make sure no one

// else is using machine
// check if there is

// a coke in the machine

fullBuffers.P();

take 1 Coke out;

emptyBuffers.V(): // tell producer
// we need more

mutex.V(): // next person's turn

}

Deadlock---two or more processes are
waiting indefinitely for an event that
can be caused by only one of the waiting
processes.

11

Implementing synchronization

Concurrent Applications

Shared Objects

Bounded Buffer

Barrier

Synchronization Variables

Semaphores Locks

Condition Variables

Atomic Instructions

Interrupt Disable

Test-and-Set

Hardware

Multiple Processors

Hardware Interrupts

12

9/22/20

Implementing synchronization

Take 1: using memory load/store
- See too much milk solution/Peterson’s algorithm

Take 2:
Lock::acquire()
{ disable interrupts }
Lock::release()
{ enable interrupts }

Take 3: queueing locks

No point on running the threads waiting for locks

13

Lock implementation, uniprocessor

Lock::acquire() {
disableInterrupts();

if (value == BUSY) {
waiting.add(myTCB);
myTCB->state = WAITING;
next = readyList.remove();
switch(myTCB, next);
myTCB->state = RUNNING;

class Lock {
private int value = FREE;
private Queue waiting;
public void acquire();
public void release();

}

Lock::release() {
disableInterrupts();

if (Iwaiting.Empty()) {

next = waiting.remove();

next->state = READY;

}else {
value = BUSY: readyList.add(next);
} }else {
value = FREE;
enableInterrupts(); }
} enableInterrupts();
}
14

9/22/20

Multiprocessor

¢ Read-modify-write instructions

- Atomically read a value from memory, operate on it, and then
write it back to memory

- Intervening instructions prevented in hardware
¢ Examples
- Test and set
- Intel: xchgb, lock prefix
- Compare and swap
& Any of these can be used for implementing locks and
condition variables!

15

Spinlocks

A spinlock is a lock where the processor waits in a loop for
the lock to become free

- Assumes lock will be held for a short time
- Used to protect the CPU scheduler and o implement locks

Spinlock::acquire() {
while (testAndSet(&lockValue) == BUSY)

}

Spinlock::release() {
lockValue = FREE;
memorybarrier();

16

9/22/20

How many spinlocks?

+ Various data structures
- Queue of waiting threads on lock X

- Queue of waiting threads on lock Y
- List of threads ready to run

+ One spinlock per kernel?
- Bottleneck!

+ Instead:
- One spinlock per lock

- One spinlock for the scheduler ready list
* Per-core ready list: one spinlock per core

17

What thread is currently running?

+ Thread scheduler needs to find the TCB of the
currently running thread
- To suspend and switch to a new thread
- To check if the current thread holds a lock before acquiring
or releasing it
+ On a uniprocessor, easy: just use a global
+ On a multiprocessor, various methods:

- Compiler dedicates a register (e.g., r31 points o TCB running
on the this CPU; each CPU has its own r31)
- If hardware has a special per-processor register, use it
- Fixed-size stacks: put a pointer to the TCB at the bottom of
its stack
* Find it by masking the current stack pointer

18

9/22/20

Lock implementation, multiprocessor

class Lock { Lock::release() {
private int value = FREE;
private SpinLock spinLock;
private Queue waiting; ..}

Lock::acquire() {

disableInterrupts();
spinLock.acquire();

disableInterrupts(); if (waiting.Empty()) {

spinLock.acquire(); next = waiting.remove();

if (value == BUSY) { scheduler->makeReady(next);
waiting.add(myTCB): }else{
scheduler->suspend(&spinlock); value = FREE;

}else {
va!ue = BUSY. spinLock.release();

) spinLock.release(); enableInterrupts();

enableInterrupts();)

19

Lock implementation, multiprocessor (cont'd)

thread->state = READY: schedulerSpinLock.release();

schedulerSpinLock.release(); enableInterrupts();
enableInterrupts(); }

class Scheduler { void
private: Scheduler::suspend(SpinLock *lock) {
Qu-eue readyList; ‘ TCB *chosenTCB:
SpinLock schedulerSpinLock:
public: .
void suspend(SpinLock *lock); disableInterrupts();
void makeReady(Thread *thread); schedulerSpinLock.acquire();
}
lock->release();
void
Scheduler::makeReady(TCB *thread) { runningThread->state = WAITING:
disableInterrupts(); chosenTCB = readyList.getNextThread():
schedulerSpinLock.acquire(); thread_switch(runningThread, chosenTCB);
. runningThread->state = RUNNING;
readyList.add(thread);

20

9/22/20

10

Condition variable implementation, multiprocessor

class CV {
private Queue waiting;
public void wait(Lock *lock);
public void signal();
public void broadcast();

}

// Monitor lock held by current thread.

void CV::wait(Lock *lock) {
assert(lock.isHeld());
waiting.add(myTCB);
// Switch to new thread & release lock.

scheduler.suspend(&lock);
lock->acquire();

// Monitor lock held by current thread.
void CV::signal() {
if (waiting.notEmpty()) {

}
}

thread = waiting.remove();
scheduler.makeReady(thread);

void CV::broadcast() {
while (waiting.notEmpty()) {

}
}

thread = waiting.remove();
scheduler.makeReady(thread);

21

Semaphore implementation, a comparison

Semaphore::P() {
disableInterrupts();
spinLock.acquire();

if (value == 0) {
waiting.add(myTCB);
suspend(&spinlock);
}else {
value--;

}

spinLock.release();
enableInterrupts();

Semaphore::V() {

}

disableInterrupts();
spinLock.acquire();

if (waiting.Empty()) {
next = waiting.remove();
scheduler->makeReady(next);

}else {
value++;

}

spinLock.release();
enableInterrupts();

22

9/22/20

11

"Semaphores considered harmfull”

¢ Using separate lock and condition variable classes
makes code more self-documenting and easier to read

- The code is clearer when the role of each synchronization
variable is made clear through explicit typing

¢ A stateless condition variable bound to a lock is a
better abstraction for generalized waiting than a

semaphore

- Semaphores rely on the programmer to carefully map the
object's state to the semaphore’s value ...

¢ Nevertheless, semaphores are used for synchronizing
communication between an I/0 device and threads
waiting for I/O completion.

23

Implementing Condition Variables using
Semaphores (Take 1)

wait(lock) {
lock.release():
semaphore.P();
lock.acquire();

}

signal() {
semaphore.V():

}

24

9/22/20

12

Implementing Condition Variables
using Semaphores (Take 2)

wait(lock) {
lock.release();
semaphore.P();
lock.acquire();
}

signal() {
if (semaphore queue is not empty)
semaphore.V();

25
Implementing Condition Variables
using Semaphores (Take 3)
wait(lock) {
semaphore = new Semaphore;
queue.Append(semaphore); // queue of waiting threads
lock.release();
semaphore.P();
lock.acquire();
}
signal() {
if (Iqueue Empty()) {
semaphore = queue.Remove();
semaphore.V(); // wake up waiter
}
}
26

9/22/20

13

Lock implementation, Linux

Most locks are free most of the time

- Why?

- Linux implementation takes advantage of this fact
¢ Fast path

- If lock is FREE, and no one is waiting, two instructions to
acquire the lock

- If no one is waiting, two instructions to release the lock

¢ Slow path
- If lock is BUSY or someone is waiting, use multiproc impl.

+ User-level locks
- Fast path: acquire lock using testé&set
- Slow path: system call to kernel, use kernel lock

27

Lock implementation, Linux

struct mutex { // atomic decrement

/* 1: unlocked ; // %eax is pointer to count
0: locked;
negative : locked, lock decl (%eax)

possible waiters */ jns 1f // jump if not signed
// (if value is now 0)

atomic_t count; call slowpath_acquire
spinlock_t wait_lock; 1:

struct list_head wait_list;

)

28

9/22/20

14

Communicating Sequential Processes
(CSP/Google Go)

¢ A thread per shared object
- Only thread allowed to touch object's data

- To call a method on the object, send thread a message with
method name, arguments

- Thread waits in a loop, get msg, do operation

+ No memory races!

29
Example: Bounded Buffer
get() { put(item) {
lock.acquire(); lock.acquire();
while (front == tail) { while ((tail - front) == MAX) {
empty.wait(lock); full.wait(lock);
} }
item = buf[front % MAX]; buf[tail % MAX] = item;
front++; tail++:
full.signal(lock); emp‘ry.signal(lock),‘
lock.release(); _
o lock.release();
return item;
} }
Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables
30

9/22/20

15

Bounded Buffer (CSP)

while (cmd = getNext()) {

if (cmd == GET){
if (front < tail) {
// do get else {// cmd == PUT
// send reply if ((tail - front) < MAX) {
// if pending put, do it // do put
// and send reply // send reply
}e)fe + " // if pending get, do it
} queue get operation /7 and send reply

} else
// queue put operation

31

Locks/CVs vs. CSP

Create a lock on shared data
= create a single thread o operate on data
Call a method on a shared object
= send a message/wait for reply
+ Wait for a condition
= queue an operation that can't be completed just yet
+ Signal a condition
= perform a queued operation, now enabled

32

9/22/20

16

Remember the rules

+ Use consistent structure
¢ Always use locks and condition variables

+ Always acquire lock at beginning of procedure, release
at end

¢ Always hold lock when using a condition variable
+ Always wait in while loop
+ Never spin in sleep()

33

9/22/20

17

