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Multi-object programs

! What happens when we try to synchronize across 
multiple objects in a large program?
– Each object with its own lock, condition variables
– Is locking modular?

! Performance

! Semantics/correctness

! Deadlock

! Eliminating locks
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Synchronization performance 

! A program with lots of concurrent threads can still have 
poor performance on a multiprocessor:
– Overhead of creating threads, if not needed
– Lock contention: only one thread at a time can hold a given lock
– Shared data protected by a lock may ping back and forth 

between cores
– False sharing: communication between cores even for data that is 

not shared
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Topics

! Multiprocessor cache coherence

! MCS locks (if locks are mostly busy)

! RCU locks (if locks are mostly busy, and data is mostly 
read-only)
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Multiprocessor cache coherence

! Scenario:
– Thread A modifies data inside a critical section and releases 

lock
– Thread B acquires lock and reads data

! Easy if all accesses go to main memory
– Thread A changes main memory; thread B reads it

! What if new data is cached at processor A?

! What if old data is cached at processor B
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Write-back cache coherence

! Cache coherence = system behaves as if there is one 
copy of the data
– If data is only being read, any number of caches can have a 

copy
– If data is being modified, at most one cached copy

! On write: (get ownership)
– Invalidate all cached copies, before doing write
– Modified data stays in cache (“write back”)

! On read:
– Fetch value from owner or from memory
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Cache state machine

Invalid
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(writable)

Read-Only
Read miss

Write miss

Peer write

Peer write

Peer read Write hit
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Directory-based cache coherence

! How do we know which cores have a location cached?
– Hardware keeps track of all cached copies
– On a read miss, if held exclusive, fetch latest copy and 

invalidate that copy
– On a write miss, invalidate all copies

! Read-modify-write instructions
– Fetch cache entry exclusive, prevent any other cache from 

reading the data until instruction completes
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A simple critical section

// A counter protected by a spinlock
Counter::Increment() {

while (test_and_set(&lock))
;

value++;
lock = FREE; 
memory_barrier(); 

} 
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A simple test of cache Behavior

Array of 1K counters, each protected by a separate spinlock
– Array small enough to fit in cache

! Test 1: one thread loops over array

! Test 2: two threads loop over different arrays

! Test 3: two threads loop over single array

! Test 4: two threads loop over alternate elements in single 
array
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Results (64 core AMD Opteron)

One thread, one array 51 cycles
Two threads, two arrays 52 cycles
Two threads, one array 197 cycles
Two threads, odd/even 127 cycles
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Reducing lock contention

! Fine-grained locking
– Partition object into subsets, each protected by its own lock
– Example: hash table buckets

! Per-processor data structures
– Partition object so that most/all accesses are made by one 

processor
– Example: per-processor heap

! Ownership/staged architecture
– Only one thread at a time accesses shared data
– Example: pipeline of threads
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What if locks are still mostly busy?

! MCS Locks
– Optimize lock implementation for when lock is contended

! RCU (read-copy-update)
– Efficient readers/writers lock used in Linux kernel
– Readers proceed without first acquiring lock
– Writer ensures that readers are done

! Both rely on atomic read-modify-write instructions
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The problem with test-and-set

Counter::Increment() {
while (test_and_set(&lock))

;
value++;
lock = FREE; 
memory_barrier(); 

} 

What happens if many processors try to acquire the lock 
at the same time?
– Hardware doesn’t prioritize FREE
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The problem with test-&-test-and-set

Counter::Increment() {
while (lock == BUSY && test_and_set(&lock))

;
value++;
lock = FREE; 
memory_barrier(); 

} 

What happens if many processors try to acquire the 
lock?
– Lock value pings between caches
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Test (and test) and set performance
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Some Approaches

! Insert a delay in the spin loop
– Helps but acquire is slow when not much contention

! Spin adaptively
– No delay if few waiting
– Longer delay if many waiting
– Guess number of waiters by how long you wait

! MCS
– Create a linked list of waiters using compareAndSwap
– Spin on a per-processor location
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Atomic CompareAndSwap

! Operates on a memory word

! Check that the value of the memory word hasn’t 
changed from what you expect
– E.g., no other thread did compareAndSwap first

! If it has changed, return an error (and loop)

! If it has not changed, set the memory word to a new 
value

18



9/24/20

10

MCS Lock

! Maintain a list of threads waiting for the lock
– Front of list holds the lock
– MCSLock::tail is last thread in list
– New thread uses CompareAndSwap to add to the tail

! Lock is passed by setting next->needToWait = FALSE;
– Next thread spins while its needToWait is TRUE
TCB {

TCB *next;                 // next in line
bool needToWait;   

}
MCSLock {

Queue *tail = NULL; // end of line
}

19

MCS Lock implementation
MCSLock::acquire() {

Queue ∗oldTail = tail; 

myTCB−>next = NULL;

while (!compareAndSwap(&tail, 
oldTail, &myTCB)) { 

// try again if someone changed tail
oldTail = tail;

} 

if (oldTail != NULL) {
// Need to wait 
myTCB->needToWait = TRUE;
memory_barrier(); 
oldTail->next = myTCB;
while (myTCB−>needToWait)

; // spin
}

}

class MCSLock {
private Queue *tail = NULL;

}

MCSLock::release() { 

if (compareAndSwap(&tail, 
myTCB, NULL)) {

// if tail == myTCB, no one is waiting. 
// MCSLock is now free.

} else { 
// someone  is waiting
while (myTCB−>next == NULL)

;  // spin until next is set

// Tell next thread to proceed
myTCB−>next−>needToWait=FALSE;

}
}
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MCSLock in operation
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Read-Copy-Update

! Goal: very fast reads to shared data 
– Reads proceed without first acquiring a lock
– OK if write is (very) slow

! Restricted update
– Writer computes new version of data structure 
– Publishes new version with a single atomic instruction

! Multiple concurrent versions
– Readers may see old or new version

! Integration with thread scheduler
– Guarantee all readers complete within grace period, and then 

garbage collect old version
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Read-Copy-Update
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Read-Copy-Update implementation

! Readers disable interrupts on entry
– Guarantees they complete critical section in a timely fashion
– No read or write lock

! Writer
– Acquire write lock
– Compute new data structure
– Publish new version with atomic instruction
– Release write lock
– Wait for time slice on each CPU
– Only then, garbage collect old version of data structure
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Non-blocking synchronization

! Goal: data structures that can be read/modified 
without acquiring a lock
– No lock contention!
– No deadlock!

! General method using compareAndSwap
– Create copy of data structure
– Modify copy
– Swap in new version iff no one else has
– Restart if pointer has changed
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Deadlock definition

! Resource: any (passive) thing needed by a thread to do 
its job (CPU, disk space, memory, lock)
– Preemptable: can be taken away by OS
– Non-preemptable: must leave with thread

! Starvation: thread waits indefinitely
! Deadlock: circular waiting for resources

– Deadlock => starvation, but not vice versa
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Example: two locks

Thread A

lock1.acquire();
lock2.acquire();
lock2.release();
lock1.release();

Thread B

lock2.acquire();
lock1.acquire();
lock1.release();
lock2.release();
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Bidirectional bounded buffer

Thread A

buffer1.put(data);
buffer1.put(data);

buffer2.get();
buffer2.get();

Thread B

buffer2.put(data);
buffer2.put(data);

buffer1.get();
buffer1.get();

Suppose buffer1 and buffer2 both start almost full.
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Two locks and a condition variable

Thread A

lock1.acquire();
…
lock2.acquire();
while (need to wait) {

condition.wait(lock2);
}
lock2.release();
…
lock1.release();

Thread B

lock1.acquire();
…
lock2.acquire();
…
condition.signal(lock2);
…
lock2.release();
…
lock1.release();
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The bridge-crossing example

! Traffic only in one direction.
! Each section of a bridge can be viewed as a resource.
! If a deadlock occurs, it can be resolved if one car backs 

up (preempt resources and rollback).
! Several cars may have to be backed up if a deadlock 

occurs.
! Starvation is possible.

30
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The dining philosophers problem

! Five philosophers around a table --- thinking or eating 
! Five plates of spaghetti + five forks (placed between 

each plate) 
! The spaghetti is so slippery that a philosopher needs 

two forks to eat it. 
void philosopher (int i) {

while (TRUE) {
think();
take_fork (i);
take_fork ((i+1) % 5);
eat();
put_fork (i);
put_fork ((i+1) % 5);

}
}

31

Necessary conditions for deadlock

! Limited access to resources
– If infinite resources, no deadlock!

! No preemption
– If resources are virtual, can break deadlock

! Multiple independent requests
– “wait while holding”

! Circular chain of requests
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Question

! How does Dining Philosophers meet the necessary 
conditions for deadlock?
– Limited access to resources
– No preemption
– Multiple independent requests (wait while holding)
– Circular chain of requests

! How can we modify Dining Philosophers to prevent 
deadlock?

33

Preventing deadlock

! Exploit or limit program behavior
– Limit program from doing anything that might lead to deadlock

! Predict the future
– If we know what program will do, we can tell if granting a 

resource might lead to deadlock

! Detect and recover
– If we can rollback a thread, we can fix a deadlock once it 

occurs
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Exploit or limit behavior

! Provide enough resources
– How many chopsticks are enough?

! Eliminate wait while holding
– Release lock when calling out of module
– Telephone circuit setup

! Eliminate circular waiting
– Lock ordering: always acquire locks in a fixed order
– Example: move file from one directory to another
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Example

Thread 1

1. Acquire A
2.

3. Acquire C
4.

5. If (maybe) Wait 
for B

Thread 2

1.

2. Acquire B
3.

4. Wait for A

How can we make sure to avoid deadlock?
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System model

! Resource types R1, R2, . . ., Rm
CPU cycles, memory space, I/O devices

! Each resource type Ri has Wi instances.

! Each process utilizes a resource as follows:
– request 
– use 
– release
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Resource-allocation graph (1)

! V is partitioned into two types:
– P = {P1, P2, …, Pn }, the set consisting of all the 

processes in the system.

– R = {R1, R2, …, Rm }, the set consisting of all 
resource types in the system.

! request edge – directed edge P1 ® Rj

! assignment edge – directed edge Rj ® Pi

A set of vertices V and a set of edges E.

38



9/24/20

20

Resource-allocation graph (2)

! Process

! Resource type with 4 instances

! Pi requests instance of Rj

! Pi is holding an instance of Rj

Pi

Pi

Rj

Rj
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Example: resource-allocation graph
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Resource-allocation graph with a deadlock

41

Resource-allocation graph with 
a cycle but no deadlock
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Resource allocation graph vs. deadlock?

! If graph contains no cycles Þ no deadlock.

! If graph contains a cycle Þ
– if only one instance per resource type, then deadlock.
– if several instances per resource type, possibility of deadlock.

43

A                         B                        C

How deadlocks occur?
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How deadlocks can be avoided

(o)                              (p)                         (q)

Block 
process B 
when it asks 
for S.
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Deadlock detection: data structures

Data structures needed by deadlock detection algorithm

46



9/24/20

24

Deadlock detection: example

An example for the deadlock detection algorithm
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Methods for handling deadlocks

! Ensure that the system will never enter a deadlock 
state.                    (deadlock prevention and avoidance)

* problems: low device utilization, reduced throughput
* avoidance also requires prediction of resource needs 

! Allow the system to enter a deadlock state and then 
recover.                (deadlock detection and recovery)

* costly; sometimes impossible to recover

! Ignore the problem and pretend that deadlocks never 
occur in the system; used by most operating systems, 
including UNIX.
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Deadlock dynamics

! Safe state:
– For any possible sequence of future resource requests, it is 

possible to eventually grant all requests
– May require waiting even when resources are available!

! Unsafe state:
– Some sequence of resource requests can result in deadlock
–

! Doomed state:
– All possible computations lead to deadlock

49

Possible system states

Safe

Unsafe
Deadlock
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Safe and unsafe states

Demonstration that the state in (a) is safe

(a)                          (b)                         (c)                          (d)                          (e)
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Safe and unsafe states

Demonstration that the state in (b) is not safe

(a)                                (b)                                       (c)                             (d)
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Predict the future

! Banker’s algorithm
– State maximum resource needs in advance
– Allocate resources dynamically when resource is needed --

wait if granting request would lead to deadlock
– Request can be granted if some sequential ordering of 

threads is deadlock free

53

Banker’s algorithm

! Grant request iff result is a safe state
! Sum of maximum resource needs of current threads 

can be greater than the total resources
– Provided there is some way for all the threads to finish 

without getting into deadlock

! Example: proceed iff
– total available resources - # allocated >= max remaining that 

might be needed by this thread in order to finish 
– Guarantees this thread can finish
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Banker's algorithm for a single resource

(a)                                                (b)                                               (c)

55

Banker's algorithm for multiple resources

Example of banker's algorithm with multiple resources
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Banker’s algorithm: data structures 

! Available: Vector of length m. If avail [j] = k, there 
are k instances of resource type Rj available.

! Max: n x m matrix.  If max [i,j] = k, then process Pj
may request at most k instances of resource type Ri

! Allocation:  n x m matrix.  If alloc[i,j] = k then Pj is 
currently allocated k instances of Ri

! Need:  n x m matrix. If Need[i,j] = k, then Pj may need 
k more instances of Ri to complete its task.

Need [i,j] = Max[i,j] – Allocation [i,j].

Let n = number of processes, and m = number of resources types. 
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Banker’s algorithm
class ResourceMgr {

private:
Lock lock;
CV cv;
int r;         // Number of resources
int t;          // Number of threads
int avail[];    // avail[i]: instances of resource i available
int max[][];    // max[i][j]: max of resource i needed by thread j
int alloc[][];  // alloc[i][j]: current allocation of resource i to thread j

...
}

// Invariant: the system is in a safe state.
ResourceMgr::Request(int resourceID, int threadID) {

lock.Acquire();
assert(isSafe());
while (!wouldBeSafe(resourceID, threadID)) {

cv.Wait(&lock);
}
alloc[resourceID][threadID]++;
avail[resourceID]--;
assert(isSafe());
lock.Release();

}
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Banker’s algorithm (cont’d)
// A state is safe iff there exists a safe sequence of grants that are sufficient 
// to allow all threads to eventually receive their maximum resource needs.
bool ResourceMgr::isSafe() {

int j;
int toBeAvail[] = copy avail[];
int need[][] = max[][] - alloc[][]; // need[i][j] is initialized to max[i][j] - alloc[i][j]
bool finish[] = [false, false, false, ...]; // finish[j] is true if thread j is guaranteed to finish
while (true) {

j = any threadID such that:
(finish[j] == false) && forall i: need[i][j] <= toBeAvail[i];

if (no such j exists) {
if (forall j: finish[j] == true) {

return true;
} else {

return false;
}

} else {  // Thread j will eventually finish and return its current allocation to the pool.
finish[j] = true;
forall i:  toBeAvail[i] = toBeAvail[i] + alloc[i][j];

}
}

}
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Banker’s algorithm (cont’d)
// Hypothetically grant request and see if resulting state is safe.

bool
ResourceMgr::wouldBeSafe(int resourceID, int threadID) {  

bool result = false;       

avail[resourceID]--;
alloc[resourceID][threadID]++;
if (isSafe()) {

result = true;
}
avail[resourceID]++;
alloc[resourceID][threadID]--;
return result;

}
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Why we need Banker’s algorithm?

8 pages of memory available

Three processes: A, B, C which need 4, 5, 5 pages respectively

The following would leads to deadlock

61

Why we need Banker’s algorithm?

8 pages of memory available

Three processes: A, B, C which need 4, 5, 5 pages respectively

The following would work!
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Detect and repair

! Algorithm
– Scan wait for graph
– Detect cycles
– Fix cycles

! Proceed without the resource
– Requires robust exception handling code

! Roll back and retry
– Transaction: all operations are provisional until have all 

required resources to complete operation
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