
9/24/20

1

CS 422/522 Design & Implementation
of Operating Systems

Lecture 10: Multi-Object
Synchronization

Zhong Shao
Dept. of Computer Science

Yale University

1

Multi-object programs

! What happens when we try to synchronize across
multiple objects in a large program?
– Each object with its own lock, condition variables
– Is locking modular?

! Performance

! Semantics/correctness

! Deadlock

! Eliminating locks

2

9/24/20

2

Synchronization performance

! A program with lots of concurrent threads can still have
poor performance on a multiprocessor:
– Overhead of creating threads, if not needed
– Lock contention: only one thread at a time can hold a given lock
– Shared data protected by a lock may ping back and forth

between cores
– False sharing: communication between cores even for data that is

not shared

3

Topics

! Multiprocessor cache coherence

! MCS locks (if locks are mostly busy)

! RCU locks (if locks are mostly busy, and data is mostly
read-only)

4

9/24/20

3

Multiprocessor cache coherence

! Scenario:
– Thread A modifies data inside a critical section and releases

lock
– Thread B acquires lock and reads data

! Easy if all accesses go to main memory
– Thread A changes main memory; thread B reads it

! What if new data is cached at processor A?

! What if old data is cached at processor B

5

Write-back cache coherence

! Cache coherence = system behaves as if there is one
copy of the data
– If data is only being read, any number of caches can have a

copy
– If data is being modified, at most one cached copy

! On write: (get ownership)
– Invalidate all cached copies, before doing write
– Modified data stays in cache (“write back”)

! On read:
– Fetch value from owner or from memory

6

9/24/20

4

Cache state machine

Invalid

Exclusive
(writable)

Read-Only
Read miss

Write miss

Peer write

Peer write

Peer read Write hit

7

Directory-based cache coherence

! How do we know which cores have a location cached?
– Hardware keeps track of all cached copies
– On a read miss, if held exclusive, fetch latest copy and

invalidate that copy
– On a write miss, invalidate all copies

! Read-modify-write instructions
– Fetch cache entry exclusive, prevent any other cache from

reading the data until instruction completes

8

9/24/20

5

A simple critical section

// A counter protected by a spinlock
Counter::Increment() {

while (test_and_set(&lock))
;

value++;
lock = FREE;
memory_barrier();

}

9

A simple test of cache Behavior

Array of 1K counters, each protected by a separate spinlock
– Array small enough to fit in cache

! Test 1: one thread loops over array

! Test 2: two threads loop over different arrays

! Test 3: two threads loop over single array

! Test 4: two threads loop over alternate elements in single
array

10

9/24/20

6

Results (64 core AMD Opteron)

One thread, one array 51 cycles
Two threads, two arrays 52 cycles
Two threads, one array 197 cycles
Two threads, odd/even 127 cycles

11

Reducing lock contention

! Fine-grained locking
– Partition object into subsets, each protected by its own lock
– Example: hash table buckets

! Per-processor data structures
– Partition object so that most/all accesses are made by one

processor
– Example: per-processor heap

! Ownership/staged architecture
– Only one thread at a time accesses shared data
– Example: pipeline of threads

12

9/24/20

7

What if locks are still mostly busy?

! MCS Locks
– Optimize lock implementation for when lock is contended

! RCU (read-copy-update)
– Efficient readers/writers lock used in Linux kernel
– Readers proceed without first acquiring lock
– Writer ensures that readers are done

! Both rely on atomic read-modify-write instructions

13

The problem with test-and-set

Counter::Increment() {
while (test_and_set(&lock))

;
value++;
lock = FREE;
memory_barrier();

}

What happens if many processors try to acquire the lock
at the same time?
– Hardware doesn’t prioritize FREE

14

9/24/20

8

The problem with test-&-test-and-set

Counter::Increment() {
while (lock == BUSY && test_and_set(&lock))

;
value++;
lock = FREE;
memory_barrier();

}

What happens if many processors try to acquire the
lock?
– Lock value pings between caches

15

Test (and test) and set performance

Number of processors

Ti
m

e
to

 e
xe

cu
te

 a
 c

rit
ic

al
 se

ct
io

n

0

50

100

150

200

250

300

350

20151050

MCS Lock

Test-And-Test-And-Set Lock

Test-And-Set Lock

16

9/24/20

9

Some Approaches

! Insert a delay in the spin loop
– Helps but acquire is slow when not much contention

! Spin adaptively
– No delay if few waiting
– Longer delay if many waiting
– Guess number of waiters by how long you wait

! MCS
– Create a linked list of waiters using compareAndSwap
– Spin on a per-processor location

17

Atomic CompareAndSwap

! Operates on a memory word

! Check that the value of the memory word hasn’t
changed from what you expect
– E.g., no other thread did compareAndSwap first

! If it has changed, return an error (and loop)

! If it has not changed, set the memory word to a new
value

18

9/24/20

10

MCS Lock

! Maintain a list of threads waiting for the lock
– Front of list holds the lock
– MCSLock::tail is last thread in list
– New thread uses CompareAndSwap to add to the tail

! Lock is passed by setting next->needToWait = FALSE;
– Next thread spins while its needToWait is TRUE
TCB {

TCB *next; // next in line
bool needToWait;

}
MCSLock {

Queue *tail = NULL; // end of line
}

19

MCS Lock implementation
MCSLock::acquire() {

Queue ∗oldTail = tail;

myTCB−>next = NULL;

while (!compareAndSwap(&tail,
oldTail, &myTCB)) {

// try again if someone changed tail
oldTail = tail;

}

if (oldTail != NULL) {
// Need to wait
myTCB->needToWait = TRUE;
memory_barrier();
oldTail->next = myTCB;
while (myTCB−>needToWait)

; // spin
}

}

class MCSLock {
private Queue *tail = NULL;

}

MCSLock::release() {

if (compareAndSwap(&tail,
myTCB, NULL)) {

// if tail == myTCB, no one is waiting.
// MCSLock is now free.

} else {
// someone is waiting
while (myTCB−>next == NULL)

; // spin until next is set

// Tell next thread to proceed
myTCB−>next−>needToWait=FALSE;

}
}

20

9/24/20

11

MCSLock in operation

NIL FALSE

a)

b)

TAIL N IL

TA IL

next needToWait

A :

B FALSE

NIL TRUE

c)

TAIL

A:

B:

B FALSE

C TRUE

NIL TRUE

d)

TAIL

A:

B:

C:

C FALSE

NIL TRUE

e)

TAIL

TAIL

B:

C:

NIL FALSEf)

21

Read-Copy-Update

! Goal: very fast reads to shared data
– Reads proceed without first acquiring a lock
– OK if write is (very) slow

! Restricted update
– Writer computes new version of data structure
– Publishes new version with a single atomic instruction

! Multiple concurrent versions
– Readers may see old or new version

! Integration with thread scheduler
– Guarantee all readers complete within grace period, and then

garbage collect old version

22

9/24/20

12

Read-Copy-Update

Read (Old)

Read (Old or New) Read (New)

Read (New)

Read (New)

Read (Old)

Write (New) Delete (Old)

Read (Old or New)

Update is
Published

Grace Period
Ends

Grace Period

Time

23

Read-Copy-Update implementation

! Readers disable interrupts on entry
– Guarantees they complete critical section in a timely fashion
– No read or write lock

! Writer
– Acquire write lock
– Compute new data structure
– Publish new version with atomic instruction
– Release write lock
– Wait for time slice on each CPU
– Only then, garbage collect old version of data structure

24

9/24/20

13

Non-blocking synchronization

! Goal: data structures that can be read/modified
without acquiring a lock
– No lock contention!
– No deadlock!

! General method using compareAndSwap
– Create copy of data structure
– Modify copy
– Swap in new version iff no one else has
– Restart if pointer has changed

25

Deadlock definition

! Resource: any (passive) thing needed by a thread to do
its job (CPU, disk space, memory, lock)
– Preemptable: can be taken away by OS
– Non-preemptable: must leave with thread

! Starvation: thread waits indefinitely
! Deadlock: circular waiting for resources

– Deadlock => starvation, but not vice versa

26

9/24/20

14

Example: two locks

Thread A

lock1.acquire();
lock2.acquire();
lock2.release();
lock1.release();

Thread B

lock2.acquire();
lock1.acquire();
lock1.release();
lock2.release();

27

Bidirectional bounded buffer

Thread A

buffer1.put(data);
buffer1.put(data);

buffer2.get();
buffer2.get();

Thread B

buffer2.put(data);
buffer2.put(data);

buffer1.get();
buffer1.get();

Suppose buffer1 and buffer2 both start almost full.

28

9/24/20

15

Two locks and a condition variable

Thread A

lock1.acquire();
…
lock2.acquire();
while (need to wait) {

condition.wait(lock2);
}
lock2.release();
…
lock1.release();

Thread B

lock1.acquire();
…
lock2.acquire();
…
condition.signal(lock2);
…
lock2.release();
…
lock1.release();

29

The bridge-crossing example

! Traffic only in one direction.
! Each section of a bridge can be viewed as a resource.
! If a deadlock occurs, it can be resolved if one car backs

up (preempt resources and rollback).
! Several cars may have to be backed up if a deadlock

occurs.
! Starvation is possible.

30

9/24/20

16

The dining philosophers problem

! Five philosophers around a table --- thinking or eating
! Five plates of spaghetti + five forks (placed between

each plate)
! The spaghetti is so slippery that a philosopher needs

two forks to eat it.
void philosopher (int i) {

while (TRUE) {
think();
take_fork (i);
take_fork ((i+1) % 5);
eat();
put_fork (i);
put_fork ((i+1) % 5);

}
}

31

Necessary conditions for deadlock

! Limited access to resources
– If infinite resources, no deadlock!

! No preemption
– If resources are virtual, can break deadlock

! Multiple independent requests
– “wait while holding”

! Circular chain of requests

32

9/24/20

17

Question

! How does Dining Philosophers meet the necessary
conditions for deadlock?
– Limited access to resources
– No preemption
– Multiple independent requests (wait while holding)
– Circular chain of requests

! How can we modify Dining Philosophers to prevent
deadlock?

33

Preventing deadlock

! Exploit or limit program behavior
– Limit program from doing anything that might lead to deadlock

! Predict the future
– If we know what program will do, we can tell if granting a

resource might lead to deadlock

! Detect and recover
– If we can rollback a thread, we can fix a deadlock once it

occurs

34

9/24/20

18

Exploit or limit behavior

! Provide enough resources
– How many chopsticks are enough?

! Eliminate wait while holding
– Release lock when calling out of module
– Telephone circuit setup

! Eliminate circular waiting
– Lock ordering: always acquire locks in a fixed order
– Example: move file from one directory to another

35

Example

Thread 1

1. Acquire A
2.

3. Acquire C
4.

5. If (maybe) Wait
for B

Thread 2

1.

2. Acquire B
3.

4. Wait for A

How can we make sure to avoid deadlock?

36

9/24/20

19

System model

! Resource types R1, R2, . . ., Rm
CPU cycles, memory space, I/O devices

! Each resource type Ri has Wi instances.

! Each process utilizes a resource as follows:
– request
– use
– release

37

Resource-allocation graph (1)

! V is partitioned into two types:
– P = {P1, P2, …, Pn }, the set consisting of all the

processes in the system.

– R = {R1, R2, …, Rm }, the set consisting of all
resource types in the system.

! request edge – directed edge P1 ® Rj

! assignment edge – directed edge Rj ® Pi

A set of vertices V and a set of edges E.

38

9/24/20

20

Resource-allocation graph (2)

! Process

! Resource type with 4 instances

! Pi requests instance of Rj

! Pi is holding an instance of Rj

Pi

Pi

Rj

Rj

39

Example: resource-allocation graph

40

9/24/20

21

Resource-allocation graph with a deadlock

41

Resource-allocation graph with
a cycle but no deadlock

42

9/24/20

22

Resource allocation graph vs. deadlock?

! If graph contains no cycles Þ no deadlock.

! If graph contains a cycle Þ
– if only one instance per resource type, then deadlock.
– if several instances per resource type, possibility of deadlock.

43

A B C

How deadlocks occur?

44

9/24/20

23

How deadlocks can be avoided

(o) (p) (q)

Block
process B
when it asks
for S.

45

Deadlock detection: data structures

Data structures needed by deadlock detection algorithm

46

9/24/20

24

Deadlock detection: example

An example for the deadlock detection algorithm

47

Methods for handling deadlocks

! Ensure that the system will never enter a deadlock
state. (deadlock prevention and avoidance)

* problems: low device utilization, reduced throughput
* avoidance also requires prediction of resource needs

! Allow the system to enter a deadlock state and then
recover. (deadlock detection and recovery)

* costly; sometimes impossible to recover

! Ignore the problem and pretend that deadlocks never
occur in the system; used by most operating systems,
including UNIX.

48

9/24/20

25

Deadlock dynamics

! Safe state:
– For any possible sequence of future resource requests, it is

possible to eventually grant all requests
– May require waiting even when resources are available!

! Unsafe state:
– Some sequence of resource requests can result in deadlock
–

! Doomed state:
– All possible computations lead to deadlock

49

Possible system states

Safe

Unsafe
Deadlock

50

9/24/20

26

Safe and unsafe states

Demonstration that the state in (a) is safe

(a) (b) (c) (d) (e)

51

Safe and unsafe states

Demonstration that the state in (b) is not safe

(a) (b) (c) (d)

52

9/24/20

27

Predict the future

! Banker’s algorithm
– State maximum resource needs in advance
– Allocate resources dynamically when resource is needed --

wait if granting request would lead to deadlock
– Request can be granted if some sequential ordering of

threads is deadlock free

53

Banker’s algorithm

! Grant request iff result is a safe state
! Sum of maximum resource needs of current threads

can be greater than the total resources
– Provided there is some way for all the threads to finish

without getting into deadlock

! Example: proceed iff
– total available resources - # allocated >= max remaining that

might be needed by this thread in order to finish
– Guarantees this thread can finish

54

9/24/20

28

Banker's algorithm for a single resource

(a) (b) (c)

55

Banker's algorithm for multiple resources

Example of banker's algorithm with multiple resources

56

9/24/20

29

Banker’s algorithm: data structures

! Available: Vector of length m. If avail [j] = k, there
are k instances of resource type Rj available.

! Max: n x m matrix. If max [i,j] = k, then process Pj
may request at most k instances of resource type Ri

! Allocation: n x m matrix. If alloc[i,j] = k then Pj is
currently allocated k instances of Ri

! Need: n x m matrix. If Need[i,j] = k, then Pj may need
k more instances of Ri to complete its task.

Need [i,j] = Max[i,j] – Allocation [i,j].

Let n = number of processes, and m = number of resources types.

57

Banker’s algorithm
class ResourceMgr {

private:
Lock lock;
CV cv;
int r; // Number of resources
int t; // Number of threads
int avail[]; // avail[i]: instances of resource i available
int max[][]; // max[i][j]: max of resource i needed by thread j
int alloc[][]; // alloc[i][j]: current allocation of resource i to thread j

...
}

// Invariant: the system is in a safe state.
ResourceMgr::Request(int resourceID, int threadID) {

lock.Acquire();
assert(isSafe());
while (!wouldBeSafe(resourceID, threadID)) {

cv.Wait(&lock);
}
alloc[resourceID][threadID]++;
avail[resourceID]--;
assert(isSafe());
lock.Release();

}

58

9/24/20

30

Banker’s algorithm (cont’d)
// A state is safe iff there exists a safe sequence of grants that are sufficient
// to allow all threads to eventually receive their maximum resource needs.
bool ResourceMgr::isSafe() {

int j;
int toBeAvail[] = copy avail[];
int need[][] = max[][] - alloc[][]; // need[i][j] is initialized to max[i][j] - alloc[i][j]
bool finish[] = [false, false, false, ...]; // finish[j] is true if thread j is guaranteed to finish
while (true) {

j = any threadID such that:
(finish[j] == false) && forall i: need[i][j] <= toBeAvail[i];

if (no such j exists) {
if (forall j: finish[j] == true) {

return true;
} else {

return false;
}

} else { // Thread j will eventually finish and return its current allocation to the pool.
finish[j] = true;
forall i: toBeAvail[i] = toBeAvail[i] + alloc[i][j];

}
}

}

59

Banker’s algorithm (cont’d)
// Hypothetically grant request and see if resulting state is safe.

bool
ResourceMgr::wouldBeSafe(int resourceID, int threadID) {

bool result = false;

avail[resourceID]--;
alloc[resourceID][threadID]++;
if (isSafe()) {

result = true;
}
avail[resourceID]++;
alloc[resourceID][threadID]--;
return result;

}

60

9/24/20

31

Why we need Banker’s algorithm?

8 pages of memory available

Three processes: A, B, C which need 4, 5, 5 pages respectively

The following would leads to deadlock

61

Why we need Banker’s algorithm?

8 pages of memory available

Three processes: A, B, C which need 4, 5, 5 pages respectively

The following would work!

62

9/24/20

32

Detect and repair

! Algorithm
– Scan wait for graph
– Detect cycles
– Fix cycles

! Proceed without the resource
– Requires robust exception handling code

! Roll back and retry
– Transaction: all operations are provisional until have all

required resources to complete operation

63

