CS 422/522 Design & Implementation
of Operating Systems

Lecture 10: Multi-Object
Synchronization

Zhong Shao
Dept. of Computer Science
Yale University

Multi-object programs

¢ What happens when we try to synchronize across
multiple objects in a large program?
- Each object with its own lock, condition variables
- Is locking modular?

¢ Performance

& Semantics/correctness
¢ Deadlock

+ Eliminating locks

9/24/20

9/24/20

Synchronization performance

¢ A program with lots of concurrent threads can still have
poor performance on a multiprocessor:
- Overhead of creating threads, if not needed
- Lock contention: only one thread at a time can hold a given lock

- Shared data protected by a lock may ping back and forth
between cores

- False sharing: communication between cores even for data that is
not shared

Topics

¢ Multiprocessor cache coherence
& MCS locks (if locks are mostly busy)

RCU locks (if locks are mostly busy, and data is mostly
read-only)

Multiprocessor cache coherence

¢ Scenario:

- Thread A modifies data inside a critical section and releases
lock

- Thread B acquires lock and reads data

¢ Easy if all accesses go to main memory
- Thread A changes main memory: thread B reads it

& What if new data is cached at processor A?

¢ What if old data is cached at processor B

Write-back cache coherence

Cache coherence = system behaves as if there is one
copy of the data
- If data is only being read, any number of caches can have a

copy
- If data is being modified, at most one cached copy

¢ On write: (get ownership)
- Invalidate all cached copies, before doing write
- Modified data stays in cache ("write back")

+ On read:
- Fetch value from owner or from memory

9/24/20

Cache state machine

Read-Only

Read miss

Peer write

InVGlld Peer read Write hit

Write miss

Exclusive
(writable)

Peer write

Directory-based cache coherence

¢ How do we know which cores have a location cached?
- Hardware keeps track of all cached copies

- Onaread miss, if held exclusive, fetch latest copy and
invalidate that copy

- Onawrite miss, invalidate all copies

¢ Read-modify-write instructions

- Fetch cache entry exclusive, prevent any other cache from
reading the data until instruction completes

9/24/20

A simple critical section

// A counter protected by a spinlock
Counter::Increment() {
while (test_and_set(&lock))

value++;
lock = FREE;
memory_barrier();

}

A simple test of cache Behavior

Array of 1K counters, each protected by a separate spinlock
- Array small enough to fit in cache

¢ Test 1: one thread loops over array
¢ Test 2: two threads loop over different arrays
¢ Test 3: two threads loop over single array

¢ Test 4: two threads loop over alternate elements in single
array

10

9/24/20

Results (64 core AMD Opteron)

One thread, one array 51 cycles
Two threads, two arrays 52 cycles
Two threads, one array 197 cycles
Two threads, odd/even 127 cycles

11

Reducing lock contention

+ Fine-grained locking
- Partition object into subsets, each protected by its own lock
- Example: hash table buckets

& Per-processor data structures

- Partition object so that most/all accesses are made by one
processor

- Example: per-processor heap

+ Ownership/staged architecture
- Only one thread at a time accesses shared data
- Example: pipeline of threads

12

9/24/20

What if locks are still mostly busy?

& MCS Locks

- Optimize lock implementation for when lock is contended

¢ RCU (read-copy-update)
- Efficient readers/writers lock used in Linux kernel
- Readers proceed without first acquiring lock
- Writer ensures that readers are done

¢ Both rely on atomic read-modify-write instructions

13

The problem with test-and-set

Counter::Increment() {
while (test_and_set(&lock))

value++;
lock = FREE;
memory_barrier();

}

What happens if many processors try to acquire the lock
at the same time?
- Hardware doesn't prioritize FREE

14

9/24/20

The problem with test-&-test-and-set

Counter::Increment() {
while (lock == BUSY && test_and_set(&lock))

value++;
lock = FREE;
memory_barrier();

}

What happens if many processors try to acquire the
lock?

- Lock value pings between caches

15

Test (and test) and set performance

350
Test-And-Set Lock

300

Test-And-Test-And-Set Lock

250

200

150

100

MCS Lock

Time to execute a critical section

50

0

0 5 10 15 20

Number of processors

16

9/24/20

Some Approaches

+ Insert a delay in the spin loop
- Helps but acquire is slow when not much contention

Spin adaptively
- No delay if few waiting
- Longer delay if many waiting
- Guess number of waiters by how long you wait

& MCS
- Create a linked list of waiters using compareAndSwap
- Spin on a per-processor location

17

Atomic CompareAndSwap

¢ Operates on a memory word

¢ Check that the value of the memory word hasn't
changed from what you expect
- E.g., no other thread did compareAndSwap first

& If it has changed, return an error (and loop)

o If it has not changed, set the memory word fo a new
value

18

9/24/20

MCS Lock

¢ Maintain a list of threads waiting for the lock

- Front of list holds the lock
- MCSLock::tail is last thread in list
- New thread uses CompareAndSwap to add to the tail

¢ Lock is passed by setting next->needToWait = FALSE;
- Next thread spins while its needToWait is TRUE

TCB{
TCB *next; // next in line
bool needToWait;
}
MCSLock {
Queue *tail = NULL; // end of line
}

19

MCS Lock implementation

class MCSLock { MCSLock::acquire() {
private Queue *tail = NULL;
Queue *oldTail = tail;

MCSLock::release() { myTCB->next = NULL:
if (compareAndSwap(&tail, while (Icompare AndSwap(&tail,
myTCB, NULL)) { oldTail, &myTCB)) {
// try again if someone changed tail
// if tail == myTCB, no one is waiting. oldTail = tail;
// MCSLock is now free. }
}else { if (oldTail 1= NULL) {
// someone is waiting // Need to wait
while (myTCB->next == NULL) my TCB->need ToWait = TRUE;
; // spin until next is set memory_barrier();
oldTail->next = myTCB;
// Tell next thread to proceed while (myTCB->needToWait)
my TCB->next->need ToWait=FALSE; ; // spin
}
} }
20

9/24/20

10

9/24/20

MCSLock in operation

B: C FALSE
next needToWait -
b) a NIL FALSE c: i NIL TRUE

TAIL-

o a [8 | rFase |
B NTL TRUE

f) NIL FALSE

TAIL-

@ n

NIL TRUE

|

TAIL-

21

Read-Copy-Update

Goal: very fast reads to shared data
- Reads proceed without first acquiring a lock
- OK if write is (very) slow
Restricted update
- Writer computes new version of data structure
- Publishes new version with a single atomic instruction
+ Multiple concurrent versions
- Readers may see old or new version
+ Integration with thread scheduler

- Guarantee all readers complete within grace period, and then
garbage collect old version

22

11

Read-Copy-Update

Update is Grace Period
Published Ends

Read (0ld) Read (New)
Read (0ld) Read (New)
Reéad (0ld or New) Read (New)

| Read (0ld or New) |

Grace Period

Time

23

Read-Copy-Update implementation

+ Readers disable interrupts on entry
- Guarantees they complete critical section in a timely fashion
- No read or write lock

+ Writer
- Acquire write lock
- Compute new data structure
- Publish new version with atomic instruction
- Release write lock
- Wait for time slice on each CPU
- Only then, garbage collect old version of data structure

24

9/24/20

12

Non-blocking synchronization

& Goal: data structures that can be read/modified
without acquiring a lock

- No lock contentionl
- No deadlock!

+ General method using compareAndSwap
- Create copy of data structure
- Modify copy
- Swap in new version iff no one else has
- Restart if pointer has changed

25

Deadlock definition

its job (CPU, disk space, memory, lock)
- Preemptable: can be taken away by OS
- Non-preemptable: must leave with thread

Starvation: thread waits indefinitely

+ Deadlock: circular waiting for resources
- Deadlock => starvation, but not vice versa

Resource: any (passive) thing needed by a thread to do

26

9/24/20

13

Example: two locks

Thread A

lockl.acquire():
lock2.acquire();
lock2.release():
lockl.release();

Thread B

lock2.acquire();
lockl.acquire();
lockl.release();
lock2.release();

27

9/24/20

Bidirectional bounded buffer

Thread A Thread B
bufferl.put(data); buffer2.put(data);
bufferl.put(data); buffer2.put(data);
buffer2.get(); bufferl.get();
buffer2.get(); bufferl.get();

Suppose bufferl and buffer2 both start almost full.

14

Two locks and a condition variable

Thread A Thread B
lockl.acquire(); lockl.acquire();
i;ckZ.acquir‘e(); i;ckZ.acqui re();

while (need to wait) {
condition.wait(lock2); condition.signal(lock?2);

lock2.release(); i.cl)ckZ.r'elease():

iackl.release(); i.cl)ckl.release():

29

The bridge-crossing example

+ Traffic only in one direction.

*

Each section of a bridge can be viewed as a resource.

¢ If adeadlock occurs, it can be resolved if one car backs
up (preempt resources and rollback).

Several cars may have to be backed up if a deadlock
occurs.

+ Starvation is possible.

30

9/24/20

15

The dining philosophers problem

+ Five philosophers around a table --- thinking or eating

¢ Five plates of spaghetti + five forks (placed between
each plate)

+ The spaghetti is so slippery that a philosopher needs

two forks to eat it.
void philosopher (int i) {

while (TRUE) {
think(); O l
take_fork (i); O
take_fork ((i+1) % 5); ~ ——

eat(); O
put_fork (i): O
put_fork ((i+1) % 5);

})

31

Necessary conditions for deadlock

o Limited access to resources
- If infinite resources, no deadlock!

+ No preemption
- If resources are virtual, can break deadlock

¢ Multiple independent requests
- "wait while holding"

Circular chain of requests

32

9/24/20

16

Question

+ How does Dining Philosophers meet the necessary
conditions for deadlock?
- Limited access fo resources
- No preemption
- Multiple independent requests (wait while holding)
- Circular chain of requests

+ How can we modify Dining Philosophers to prevent
deadlock?

33
Preventing deadlock
¢ Exploit or limit program behavior
- Limit program from doing anything that might lead to deadlock
¢ Predict the future
- If we know what program will do, we can tell if granting a
resource might lead to deadlock
¢ Detect and recover
- If we can rollback a thread, we can fix a deadlock once it
occurs
34

9/24/20

17

Exploit or limit behavior

Provide enough resources
- How many chopsticks are enough?

+ Eliminate wait while holding
- Release lock when calling out of module
- Telephone circuit setup

+ Eliminate circular waiting

- Lock ordering: always acquire locks in a fixed order
- Example: move file from one directory to another

35

Example

Thread 1 Thread 2

1. Acquire A 1

2, 2. Acquire B

3. Acquire C 3.

4, 4. Wait for A

5. If (maybe) Wait

for B
How can we make sure to avoid deadlock?

36

9/24/20

18

System model

Resource types Ry, R, . . ., R
CPU cycles, memory space, I/O devices

¢ Each resource type R has W instances.

¢ Each process utilizes a resource as follows:
- request
- use
- release

37

Resource-allocation graph (1)

A set of vertices V and a set of edges E.

¢ Vs partitioned into two types:
- P={A, P, .., P,}, the set consisting of all the
processes in the system.

- R={R, R, .., Ry}, the set consisting of all
resource types in the system.

¢ request edge - directed edge A — R;

¢ assignment edge - directed edge R, — A

38

9/24/20

19

9/24/20

Resource-allocation graph (2)

o Process O

¢ Resource type with 4 instances

|

¢ Pirequests instance of R,

o
o Piis holding an instance of R

Ry

39

Example: resource-allocation graph
R, R,
\ A\
\\./
R, -
R4

40

20

Resource-allocation graph with a deadlock

e ®
®
1?2 3
R

41

Resource-allocation graph with
a cycle but no deadlock

42

9/24/20

21

9/24/20

Resource allocation graph vs. deadlock?

+ If graph contains no cycles = no deadlock.

+ If graph contains a cycle =
- if only one instance per resource type, then deadlock.
- if several instances per resource type, possibility of deadlock.

43

How deadlocks occur?

A B C
Request R Request S Request T
Request S Request T Request R
Release R Release S Release T
Release S Release T Release R
(a) (b) ()

1. Arequests R

5 Greauesie T ® O ® © ®

et B O RO, OXO ®® ©

4. Arequests S

5. Brequests T

6. C requests R . . .

deadiock [~] 7] /]

(d) (e) (U] (9)

@O ®®MEO
IH [~] [s] [7]

(h) 0}

44

22

How deadlocks can be avoided

1. Arequests R

2. Crequests T . @
3. Arequests S 0 e

4. C requests R

5. Areleases R

Covsedick LD

(k) (U]

Block
process B
when it asks
for S.

® ® ©
R[] R

()

45

Deadlock detection: data structures

Resources in existence

(Ey Ep Eq oo Ep)

Current allocation matrix

11 C12
21 22

(j Cn1 Cn2 Cn3 e Cnm
Row n is current allocation

to process n

C C

C

13 - C

23 " Vom

m

Resources available

(A, Ay Ay . AL

Request matrix

Rit Rz Rz " Ry
21 22 23 7 Mom
Rn1 an Rn3 e an

Row 2 is what process 2 needs

Data structures needed by deadlock detection algorithm

46

9/24/20

23

Deadlock detection: example

))
@ @
&\\\ & QQ)@ 06\9 R QQ}G) 06‘%
@ %Q' Q)Q < < ‘,\\QJ rbo <&
«@Q Q\o %0 CJO &@Q Q\o 90 C)Q
E=(4 2 3 1) A=(2 1 0 0)
Current allocation matrix Request matrix

0 0 1
c=|2 00
01 2

o =0

|l

An example tor The deadlock detection algorithm

N =N

0
0
1

o =0

47

Methods for handling deadlocks

+ Ensure that the system will never enter a deadlock

state. (deadlock prevention and avoidance)
* problems: low device utilization, reduced throughput
* avoidance also requires prediction of resource needs

¢ Allow the system to enter a deadlock state and then
recover. (deadlock detection and recovery)
* costly; sometimes impossible to recover

Ignore the problem and pretend that deadlocks never

occur in the system; used by most operating systems,
including UNIX.

48

9/24/20

24

Deadlock dynamics

¢ Safe state:

- For any possible sequence of future resource requests, it is
possible to eventually grant all requests

- May require waiting even when resources are available!

Unsafe state:
- Some sequence of resource requests can result in deadlock

+ Doomed state:
- All possible computations lead to deadlock

49

Possible system states

Deadlock
Unsafe H

50

9/24/20

25

Safe and unsafe states

Has Max Has Max Has Max Has Max Has Max

3 9 Al 3 9 Al 3 9 Al 3 9 Al 3 9

B | 2 4 B | 4 4 BJ|]o| - B| o - B | O -

2 7 c| 2 7 c] 2 7 c\|7 d cjlo| -
Free: 3 Free: 1 Free: 5 Free: 0 Free: 7

(a (b) © (d) (e

Demonstration that the state in (a) is safe

51
Safe and unsafe states
Has Max Has Max Has Max Has Max
3 9 4 B 4 9 A 4 9
2| 4 B|l2| 4 4 | 4 B| —| —
2 7 2 7 2 7 2 7
Free: 3 Free: 2 Free: 0 Free: 4
(a) (b) (©) (d)
Demonstration that the state in (b) is not safe
52

9/24/20

26

Predict the future

¢ Banker's algorithm
- State maximum resource needs in advance

- Allocate resources dynamically when resource is needed --
wait if granting request would lead to deadlock

- Request can be granted if some sequential ordering of
threads is deadlock free

53

Banker's algorithm

¢ Grant request iff result is a safe state

+ Sum of maximum resource needs of current threads
can be greater than the total resources

- Provided there is some way for all the threads to finish
without getting into deadlock

o Example: proceed iff
- total available resources - # allocated >= max remaining that
might be needed by this thread in order to finish

- Guarantees this thread can finish

54

9/24/20

27

9/24/20

Banker's algorithm for a single resource

Has Max Has Max Has Max
AloO 6 A 1 6 Al1 6
B| O 5 B 1 5 B | 2 5
c|lo 4 cC|l 2 4 c|]2 4
D] O 7 D| 4 7 D| 4 7

Free: 10 Free: 2 Free: 1

(a) (b) (c)

55

Banker's algorithm for multiple resources

@ o @ R o 2

S & o & Q9® S &L & Q~O®
FLFL F LT L
TGO T AR SO
Al3|o0]|1]1 Ajt1]1fo]o E = (6342)
Blo[1]o]0 Blo|1]1]2 ijgfgggg
cp1|1j]1}|o cjJs3|1foj]o
DJ1]1]0]1 Djojof1]oO
EJojO|O0]O Ej2(1]11]0
Resources assigned Resources still needed

Example of banker's algorithm with multiple resources

56

28

Banker’ s algorithm: data structures

Let n = number of processes, and m = number of resources types.

o Available: Vector of length m. If avail [/] = A, there
are kinstances of resource type R;available.

¢ Max: n x mmatrix. If max[ij]= k then process 7
may request at most kinstances of resource type R;

¢ Allocation: nx mmatrix. If alloc[//]= kthen P;is
currently allocated kinstances of R;

¢ Need: nx mmatrix. If Need(/j] = k, then P;may need
k more instances of R;to complete its task.

Need [/, j]= Max(ij] - Allocation[i,j].

57

Banker's algorithm

class ResourceMgr {

private:
Lock lock;
CVev;
int r; // Number of resources
int t; // Number of threads

int avail[]; // avail[i]: instances of resource i available
int max[1[l: // max[i][j]: max of resource i needed by thread j
int alloc[J[]; // alloc[i][j]: current allocation of resource i to thread j

}

// Invariant: the system is in a safe state.
ResourceMgr::Request(int resourceID, int threadID) {

lock.Acquire();

assert(isSafe());

while (IwouldBeSafe(resourceID, threadID)) {
cv.Wait(&lock);

}

alloc[resourceID][threadID]++;

avail[resourceID]--;

assert(isSafe());

lock.Release();

58

9/24/20

29

Banker's algorithm (cont'd)

// A state is safe iff there exists a safe sequence of grants that are sufficient
// to allow all threads to eventually receive their maximum resource needs.

bool ResourceMgr::isSafe() {
int j:
int foBeAvail[] = copy avail[];
int need[][]1= max[][] - alloc[][]. // need[i][j]is initialized to max[i][j]- alloc[i][j]
bool finish[] = [false, false, false, ...]; // finish[j] is true if thread j is guaranteed to finish

while (true) {
j = any threadID such that:
(finish[j] == false) && forall i: need[i][j] <= toBeAvail[il;
if (no such j exists) {
if (forall j: finish[j] == true) {
return true;
}else{
return false;
}
Yelse { // Thread j will eventually finish and return its current allocation to the pool.
finish[j] = true;
forall i: toBeAvail[i] = toBeAvail[i] + alloc[i][j];
}
}
}

59

Banker's algorithm (cont'd)

// Hypothetically grant request and see if resulting state is safe.

bool
ResourceMgr::wouldBeSafe(int resourceID, int threadID) {

bool result = false;

avail[resourceID]--;
alloc[resourceID][threadID]++;
if (isSafe()) {

result = true;
}
avail[resourceID]++;
alloc[resourceID][threadID]--;
return result;

60

9/24/20

30

Why we need Banker's algorithm?

8 pages of memory available
Three processes: A, B, C which need 4, 5, 5 pages respectively

The following would leads to deadlock

61

Why we need Banker's algorithm?

8 pages of memory available
Three processes: A, B, C which need 4, 5, 5 pages respectively

The following would work!

Total

62

9/24/20

31

Detect and repair

¢ Algorithm

- Scan wait for graph

- Detect cycles

- Fix cycles
¢ Proceed without the resource

- Requires robust exception handling code
¢ Roll back and retry

- Transaction: all operations are provisional until have all
required resources to complete operation

63

9/24/20

32

