
10/13/20

1

CS 422/522 Design & Implementation
of Operating Systems

Lecture 14: I/O Devices & Drivers

Zhong Shao
Dept. of Computer Science

Yale University

1

The big picture

! Previous lectures
– Management of CPU & concurrency
– Management of main memory & virtual memory

! Future lectures --- “Management of I/O devices”

2

10/13/20

2

Concurrency: a summary

! Thread vs. process
! How to implement threads/processes ?

* thread/process state transition diagram
* thread/process scheduler
* context switch
* thread/process creation / finish

! How to write concurrent programs ?
* how to eliminate race condition ? how to synchronize?
* locks, condition variables, monitors, semaphore, message passing

! Multithreading model (kernel vs. user threads)
! How to deal with deadlocks
! Effective CPU scheduling (local + global)

3

Virtual memory: a summary

! Goal: multiprogramming with protection + illusion of
infinite memory

! Approaches
– HW-based solution for protection

* dual mode operation + address space

– address translation: virtual address -> physical address
* segmentation + paging + multilevel paging

– making address translation faster? use TLB
– demand paged virtual memory
– techniques for dealing with thrashing

! Other topics
– kernel memory allocator (similar to malloc-free packages)
– virtual memory-based hack (exploiting page fault)

4

10/13/20

3

The big picture

! Previous lectures
– Management of CPU & concurrency
– Management of main memory & virtual memory

! Future lectures --- “Management of I/O devices”
– This week: I/O devices & device drivers
– This week: storage devices
– Next week: file systems

* File system structure
* Naming and directories
* Efficiency and performance
* Reliability and protection

5

Raw hardware revisited

CPU

ChipsetMemory
I/O bus

CPU. . .

Network

ROM

6

10/13/20

4

I/O hardware

! A computer = CPU(s) + Memory + I/O devices

! Common concepts
– Port (a connection point between a machine and a device)
– Bus (one or more devices share a common set of wires)
– Controller (has private processor, microcode, memory)

! The processor gives commands and data to a controller
to accomplish an I/O transfer
– The controller has a few registers for data & control signals

* typical registers: status, control, data-in, data-out
– Special I/O instructions (w. port addr) or memory mapped I/O

7

A typical PC bus structure

8

10/13/20

5

Device I/O port locations on PCs (partial)

9

CPU – I/O interaction: polling

! the status register indicates the state of the device
– a command-ready bit and a busy bit

! Procedure for writing out a byte:
– the host reads the “busy” bit until it becomes clear
– the host issues “write” command, puts the byte in “data-out”
– The host sets the “command-ready” bit
– The controller sees “command-ready”, sets the “busy” bit
– The controller executes the “write”, does I/O
– The controller clears the “command-ready” and “busy” bits

! Inefficient: busy-wait cycle to wait for device I/O

10

10/13/20

6

CPU – I/O interaction: interrupts

! CPU interrupt request line triggered by I/O device
! Interrupt handler receives interrupts
! Maskable to ignore or delay some interrupts
! Interrupt vector to dispatch interrupt to correct

handler
– Based on priority
– Some unmaskable

! Interrupt mechanism also used for exceptions

11

Interrupt-driven I/O cycle

12

10/13/20

7

Intel processor event-vector table

13

Interrupt handling revisited/refined

! Save more context
! Mask interrupts if needed
! Set up a context for interrupt service
! Set up a stack for interrupt service
! Acknowledge the interrupt controller, enable it if

needed
! Save entire context to PCB
! Run the interrupt service
! Unmask interrupts if needed
! Possibly change the priority of the process
! Run the scheduler

14

10/13/20

8

I/O software stack

User-Level I/O Software

Device-Independent
OS software

Device Drivers

Interrupt handlers

Hardware

15

Direct Memory Access (DMA)

! Used to avoid programmed I/O for large data
movement

! Requires DMA controller

! Bypasses CPU to transfer data directly between I/O
device and memory

16

10/13/20

9

Performing DMA transfer

17

Application I/O interface

! I/O system calls encapsulate device behaviors in
generic classes

! Device-driver layer hides differences among I/O
controllers from kernel

! Devices vary in many dimensions
– Character-stream or block
– Sequential or random-access
– Sharable or dedicated
– Speed of operation
– read-write, read only, or write only

18

10/13/20

10

A kernel I/O structure

19

Characteristics of I/O devices

20

10/13/20

11

Block and character devices

! Block devices include disk drives
– Commands include read, write, seek
– Raw I/O or file-system access
– Memory-mapped file access possible

! Character devices include keyboards, mice, serial ports
– Commands include get, put
– Libraries layered on top allow line editing

21

Network devices

! Different enough from the block & character devices
to have own interface

! Unix and Windows/NT include socket interface
– Separates network protocol from network operation

! Approaches vary widely (pipes, FIFOs, streams,
queues, mailboxes)

22

10/13/20

12

Clocks and timers

! Provide current time, elapsed time, timer

! if programmable interval time used for timings,
periodic interrupts

! ioctl (on UNIX) covers odd aspects of I/O such as
clocks and timers

23

Blocking and nonblocking I/O

! Blocking - process suspended until I/O completed
– Easy to use and understand
– Insufficient for some needs

! Nonblocking - I/O call returns as much as available
– User interface, data copy (buffered I/O)
– Implemented via multi-threading
– Returns quickly with count of bytes read or written

! Asynchronous - process runs while I/O executes
– Difficult to use
– I/O subsystem signals process when I/O completed

24

10/13/20

13

Two I/O methods

Synchronous Asynchronous

25

Next: device drivers

26

10/13/20

14

Device driver design issues

! Operating system and driver communication
– Commands and data between OS and device drivers

! Driver and hardware communication
– Commands and data between driver and hardware

! Driver operations
– Initialize devices
– Interpreting commands from OS
– Schedule multiple outstanding requests
– Manage data transfers
– Accept and process interrupts
– Maintain the integrity of driver and kernel data structures

27

Device driver interface

! Open(deviceNumber)
– Initialization and allocate resources (buffers)

! Close(deviceNumber)
– Cleanup, deallocate, and possibly turnoff

! Device driver types
– Block: fixed sized block data transfer
– Character: variable sized data transfer
– Terminal: character driver with terminal control
– Network: streams for networking

28

10/13/20

15

Block device interface

! read(deviceNumber, deviceAddr, bufferAddr)
– transfer a block of data from “deviceAddr” to “bufferAddr”

! write(deviceNumber, deviceAddr, bufferAddr)
– transfer a block of data from “bufferAddr” to “deviceAddr”

! seek(deviceNumber, deviceAddress)
– move the head to the correct position
– usually not necessary

29

Character device interface

! read(deviceNumber, bufferAddr, size)
– reads “size” bytes from a byte stream device to
“bufferAddr”

! write(deviceNumber, bufferAddr, size)
– write “size” bytes from “bufferSize” to a byte stream

device

30

10/13/20

16

Unix device driver interface entry points

! init(): initialize hardware
! start(): boot time initialization (require system

services)
! open(dev, flag, id): initialization for read or write
! close(dev, flag, id): release resources after read and

write
! halt(): call before the system is shutdown
! intr(vector): called by the kernel on a hardware

interrupt
! read/write calls: data transfer
! poll(pri): called by the kernel 25 to 100 times a second
! ioctl(dev, cmd, arg, mode): special request processing

31

Device driver: other design issues

! Build device drivers
– Statically
– Dynamically

! How to down load device driver dynamically?
– Load drivers into kernel memory
– Install entry points and maintain related data structures
– Initialize the device drivers

32

10/13/20

17

Next: kernel I/O subsystem

33

Kernel I/O subsystem: “Scheduling”

! Some I/O request ordering via per-device queue
! Some OSes try fairness

Device status table

34

10/13/20

18

Kernel I/O subsystem (cont’d)

! Buffering - store data in memory while transferring between
devices
– To cope with device speed mismatch
– To cope with device transfer size mismatch (e.g., packets in

networking)
– To maintain “copy semantics”

* Copy data from user buffer to kernel buffer

! How to deal with address translation?
– I/O devices see physical memory, but programs use virtual memory

! Caching - fast memory holding copy of data
– Always just a copy
– Key to performance

! Spooling - hold output for a device
– If a device can serve only one request at a time, i.e., printing

35

Error handling

! OS can recover from disk read, device unavailable,
transient write failures

! Most return an error number or code when I/O
request fails

! System error logs hold problem reports

36

10/13/20

19

I/O protection

! User process may accidentally or purposefully attempt
to disrupt normal operation via illegal I/O instructions

– All I/O instructions defined to be privileged

– I/O must be performed via system calls
* Memory-mapped and I/O port memory locations must be protected too

37

Life cycle of an I/O request

38

10/13/20

20

Kernel data structures

! Kernel keeps state info for I/O components, including
open file tables, network connections, character device
state

! Many, many complex data structures to track buffers,
memory allocation, “dirty” blocks

! Some use object-oriented methods and message
passing to implement I/O

39

UNIX I/O kernel structure

40

10/13/20

21

I/O requests to hardware operations

! Consider reading a file from disk for a process:

– Determine device holding file
– Translate name to device representation
– Physically read data from disk into buffer
– Make data available to requesting process
– Return control to process

41

Another example: blocked read w. DMA

! A process issues a read call which executes a system call
! System call code checks for correctness and cache
! If it needs to perform I/O, it will issues a device driver call
! Device driver allocates a buffer for read and schedules I/O
! Controller performs DMA data transfer, blocks the process
! Device generates an interrupt on completion
! Interrupt handler stores any data and notifies completion
! Move data from kernel buffer to user buffer and wakeup blocked

process
! User process continues

42

