CS 422/522 Design & Implementation
of Operating Systems

Lecture 14: I/0 Devices & Drivers

Zhong Shao
Dept. of Computer Science
Yale University

The big picture

¢ Previous lectures
- Management of CPU & concurrency
- Management of main memory & virtual memory

+ Future lectures --- "Management of I/O devices"”

10/13/20

10/13/20

Concurrency: a summary

2

Thread vs. process

How to implement threads/processes ?
* thread/process state transition diagram
* thread/process scheduler
* context switch
* thread/process creation / finish

+ How to write concurrent programs ?

* how to eliminate race condition ? how to synchronize?
* locks, condition variables, monitors, semaphore, message passing

2

+ Multithreading model (kernel vs. user threads)
+ How to deal with deadlocks
+ Effective CPU scheduling (local + global)

Virtual memory: a summary

¢ Goal: multiprogramming with protection + illusion of
infinite memory
& Approaches

- HW-based solution for protection
* dual mode operation + address space

address translation: virtual address -> physical address
* segmentation + paging + multilevel paging

making address translation faster? use TLB

demand paged virtual memory

techniques for dealing with thrashing

& Other topics
- kernel memory allocator (similar to malloc-free packages)
- virtual memory-based hack (exploiting page fault)

The big picture

Previous lectures
- Management of CPU & concurrency
- Management of main memory & virtual memory
¢ Future lectures --- "Management of I/0 devices"”
- This week: I/0 devices & device drivers
- This week: storage devices

- Next week: file systems
* File system structure
* Naming and directories
* Efficiency and performance
* Reliability and protection

Raw hardware revisited

CPU ces CPU

I/O bus

L L |ROM |

Network

10/13/20

I/0 hardware

+ A computer = CPU(s) + Memory + I/O devices

+ Common concepts
- Port (a connection point between a machine and a device)
- Bus (one or more devices share a common set of wires)
- Controller (has private processor, microcode, memory)

¢ The processor gives commands and data to a controller
to accomplish an I/0 transfer

- The controller has a few registers for data & control signals
* typical registers: status, control, data-in, data-out

- Special I/0 instructions (w. port addr) or memory mapped I/0

A typical PC bus structure

monitor processor

‘ }—{ cache ‘
graphics bridge/memory SCSI controller
controller controller

] ! : L_PCI bus .)

IDE disk controller expansion bus keyboard
interface

|
@ @ (L r-expansionbus—)
\ |
@ @ parallel serial
port port

2000

10/13/20

Device I/0 port locations on PCs (partial)

1/0 address range (hexadecimal) device
000-00F DMA controller
020-021 interrupt controller
040-043 timer
200-20F game controller
2F8-2FF serial port (secondary)
320-32F hard-disk controller
378-37F parallel port
3D0-3DF graphics controller
3F0-3F7 diskette-drive controller
3F8-3FF serial port (primary)

9
CPU - I/0 interaction: polling
+ the status register indicates the state of the device
- a command-ready bit and a busy bit
¢ Procedure for writing out a byte:
- the host reads the "busy” bit until it becomes clear
- the host issues "write" command, puts the byte in "data-out”
- The host sets the "command-ready” bit
- The controller sees "command-ready”, sets the “busy” bit
- The controller executes the “write", does I/0
- The controller clears the "command-ready” and “busy"” bits
¢ Inefficient: busy-wait cycle to wait for device I/0
10

10/13/20

CPU - I/0 interaction: interrupts

CPU interrupt request line triggered by I/0 device
Interrupt handler receives interrupts
Maskable to ignore or delay some interrupts

Interrupt vector to dispatch interrupt to correct
handler

- Based on priority

- Some unmaskable

¢ Interrupt mechanism also used for exceptions

* 6 o o

11

Interrupt-driven I/0 cycle

CPU 1/0 controller

—* device driver initiates I/O \
initiates 1/0

|
CPU executing checks for
interrupts between instructions
'

3
i
i
¥
CPU receiving interrupt, a4 input ready, output
transfers control to complete, or error
interrupt handler generates interrupt signal

7
IE
interrupt handler

processes data,
returns from interrupt

B
CPU resumes

— processing of
interrupted task

12

10/13/20

Intel processor event-vector table

vector number description
(0] divide error
1 debug exception
2 null interrupt
3 breakpoint
4 INTO-detected overflow
5 bound range exception
6 invalid opcode
7 device not available
8 double fault
9 coprocessor segment overrun (reserved)
10 invalid task state segment
i1 segment not present
12 stack fault
13 general protection
14 page fault
15 (Intel reserved, do not use)
16 floating-point error
17/ alignment check
18 machine check
19-31 (Intel reserved, do not use)
32-255 maskable interrupts

13

Interrupt handling revisited/refined

Save more context

Mask interrupts if needed

Set up a context for interrupt service
Set up a stack for interrupt service

Acknowledge the interrupt controller, enable it if
needed

Save entire context to PCB

Run the interrupt service

Unmask interrupts if needed

Possibly change the priority of the process
Run the scheduler

* 6 6 o o

*® 6 6 o o

14

10/13/20

I/0 software stack

User-Level I/O Software

Device-Independent
OS software

Device Drivers

Interrupt handlers

Hardware

15

Direct Memory Access (DMA)

+ Used to avoid programmed I/0 for large data
movement

+ Requires DMA controller

¢ Bypasses CPU to transfer data directly between I/0
device and memory

16

10/13/20

Performing DMA transfer

5.

2]

1. device driver is told
to transfer disk data CPU
to buffer at address X
DMA controller 2. device driver tells
transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk to buffer cache
and decreasing C at address X
untilC =0
when C = 0, DMA Dl

interrupts CPU to signal

interrupt }— CPU memory bus —

controller

X
memory

transfer completion |
i ‘ ' PCl bus
‘ 3. disk controller initiates
IDE disk DMA transfer
controller 4. disk controller sends
each byte to DMA
@ @ controller
disk) (disk

17

Application I/0 interface

+ I/0 system calls encapsulate device behaviors in
generic classes

+ Device-driver layer hides differences among I/0
controllers from kernel

+ Devices vary in many dimensions
Character-stream or block
Sequential or random-access
Sharable or dedicated

Speed of operation

read-write, read only, or write only

18

10/13/20

A kernel I/0 structure

kernel
o
©
= kernel I/O subsystem
3
SCsSI keyboard mouse PCI bus floppy ATAPI
device device device ece device device device
driver driver driver driver driver driver
SCsSI keyboard mouse PCI bus floppy ATAPI
device device device LX) device device device
° controller | controller | controller controller | controller | controller
S T T T A R
S
2 ATAPI
scs| floppy- | | devices
s keyboard mouse eoe PCI bus d_|sk (disks,
drives tapes,
drives)
19
Characteristics of I/0 devices
aspect variation example
ol oo oas character terminal
block disk
sequential modem
access method b CD-ROM
transfer schedule SUHBAETILE Sl
asynchronous keyboard
. dedicated tape
sharing sharable keyboard
device speed latency
seek time
transfer rate
delay between operations
read only CD-ROM
1/O direction write only graphics controller
read—write disk
20

10/13/20

10

Block and character devices

o Block devices include disk drives
- Commands include read, write, seek

- Raw I/O or file-system access
- Memory-mapped file access possible

¢ Character devices include keyboards, mice, serial ports
- Commands include get, put
- Libraries layered on top allow line editing

21

Network devices

+ Different enough from the block & character devices
to have own interface

+ Unix and Windows/NT include socket interface
- Separates network protocol from network operation

+ Approaches vary widely (pipes, FIFOs, streams,
queues, mailboxes)

22

10/13/20

11

Clocks and timers

Provide current time, elapsed time, fimer

+ if programmable interval time used for timings,
periodic interrupts

¢ ioctl (on UNIX) covers odd aspects of I/0 such as
clocks and timers

23

Blocking and nonblocking I/0

+ Blocking - process suspended until I/0 completed
- Easy to use and understand
- Insufficient for some needs

+ Nonblocking - I/0 call returns as much as available
- User interface, data copy (buffered I/0)
- Implemented via multi-threading
- Returns quickly with count of bytes read or written

& Asynchronous - process runs while I/0 executes

- Difficult to use
- I/0 subsystem signals process when I/0 completed

24

10/13/20

12

Two I/0 methods

kernel user { requesting process requesting process } user
waiting A 4 A
‘ N
device driver device driver
! ! i
< | v interrupt handler v tinterrupt handler > kernel
A} A !
hardware L hardware
L— data transfer — - - - data transfer —
~ -
time ——— time ———
(a) (b)
Synchronous Asynchronous

25
Next: device drivers
kernel
[
5]
é kernel I/O subsystem
3
SCsSI keyboard mouse PCI bus floppy ATAPI
device device device LX) device device device
driver driver driver driver driver driver
SCSI keyboard mouse PCI bus floppy ATAPI
device device device LXR device device device
° controller | controller | controller controller | controller | controller
S T A T A R
S
2 ATAPI
scs| floppy- | | devices
& keyboard mouse LXRY PCI bus disk (disks
evices :)
drives tapes,
drives)
26

10/13/20

13

Device driver design issues

+ Operating system and driver communication

- Commands and data between OS and device drivers

¢ Driver and hardware communication

- Commands and data between driver and hardware

¢ Driver operations

Initialize devices

Interpreting commands from OS

Schedule multiple outstanding requests

Manage data transfers

Accept and process interrupts

Maintain the integrity of driver and kernel data structures

27

Device driver interface

¢ Open(deviceNumber)

- TInitialization and allocate resources (buffers)

o Close(deviceNumber)

2

- Cleanup, deallocate, and possibly turnoff

Device driver types

- Block: fixed sized block data transfer

- Character: variable sized data transfer

- Terminal: character driver with terminal control
- Network: streams for networking

28

10/13/20

14

Block device interface

+ read(deviceNumber, deviceAddr, bufferAddr)

- transfer a block of data from “deviceAddr” to “bufferAddr”
+ write(deviceNumber, deviceAddr, bufferAddr)

- transfer a block of data from “bufferAddr” to “deviceAddr”

o seek(deviceNumber, deviceAddress)
- move the head to the correct position
- usually not necessary

29

Character device interface

+ read(deviceNumber, bufferAddr, size)
- reads “size” bytes from a byte stream device to
“bufferAddr”
+ write(deviceNumber, bufferAddr, size)

- write “size” bytes from “bufferSize” to a byte stream
device

30

10/13/20

15

Unix device driver interface entry points

o init(): initialize hardware

+ start(): boot time initialization (require system
services)

+ open(dev, flag, id): initialization for read or write

+ close(dev, flag, id): release resources after read and
write

¢ halt(): call before the system is shutdown

+ intr(vector): called by the kernel on a hardware
interrupt

¢ read/write calls: data transfer
¢ poll(pri): called by the kernel 25 to 100 times a second
+ ioctl(dev, cmd, arg, mode): special request processing

31

Device driver: other design issues

+ Build device drivers
- Statically
- Dynamically

+ How to down load device driver dynamically?
- Load drivers into kernel memory
- Install entry points and maintain related data structures
- Initialize the device drivers

32

10/13/20

16

Next: kernel I/O subsystem

kernel
<
@
é kernel I/O subsystem
3
SCsSI keyboard mouse PCI bus floppy ATAPI
device device device ece device device device
driver driver driver driver driver driver
SCsSI keyboard mouse PCI bus floppy ATAPI
device device device LX) device device device
° controller | controller | controller controller | controller | controller
- T T T A R
S
2 ATAPI
scs| floppy- | | devices
devices | |Keyboard| | mouse soe PCI bus disk (disks,
drives tapes,
drives)

33

Kernel I/0 subsystem: "Scheduling”

* Some I/0 request ordering via per-device queue

& Some OSes try fairness

operation: read
address: 43046
length: 20000

PR Device status table
status: idle
device: laser printer request for L
status: busy > |aser printer
address: 38546
device: mouse length: 1372
status: idle
device: disk unit 1
status: idle
device: disk unit 2 f _ . T
status: busy rgquest_ or re'quest' or
disk unit 2 disk unit 2
file: xxx file: yyy

operation: write
address: 03458
length: 500

34

10/13/20

17

Kernel I/0 subsystem (cont'd)

& Buffering - store data in memory while transferring between
devices
- To cope with device speed mismatch

- To cope with device transfer size mismatch (e.g., packets in
networking)

- To maintain "copy semantics”
* Copy data from user buffer to kernel buffer

& How to deal with address translation?
- I/0O devices see physical memory, but programs use virtual memory

& Caching - fast memory holding copy of data
- Always just a copy
- Key to performance

& Spooling - hold output for a device
- If adevice can serve only one request at a time, i.e., printing

35

Error handling

& OS can recover from disk read, device unavailable,
transient write failures

¢ Most return an error number or code when I/0
request fails

+ System error logs hold problem reports

36

10/13/20

18

I/0 protection

¢ User process may accidentally or purposefully attempt
to disrupt normal operation via illegal I/0O instructions

- Al T/0 instructions defined to be privileged

- I/0 must be performed via system calls
* Memory-mapped and I/0 port memory locations must be protected too

37

Life cycle of an I/0 request

user 1/O completed,
request VO process input data available, or
output completed

system call

kernel
e e YO subsystem
satisfy request? p

send request to device
driver, block process if emel
appropriate /O subsystem

1

R ey S s s R determine which VO
commands to controller, device SRR L
configure controller to driver ERAN Io 1O sbs velong
block until interrupted

I

interrupt receive interrupt, store
device-controller commands ,nnd,e’r data in device-driver buffer
. it input, signal to unblock
device driver

return from system call

transfer data
(if appropriate) to process,
return completion
or error code

interrupt

device
monitor device, controller
interrupt when 170 g"g’r%fac:g“i’r’“ee‘f%p(
completed

time >

38

10/13/20

19

Kernel data structures

¢ Kernel keeps state info for I/O components, including
open file tables, network connections, character device

state

¢ Many, many complex data structures o track buffers,

memory allocation, “dirty” blocks

+ Some use object-oriented methods and message

passing to implement I/0

39

UNIX I/O kernel structure

system-wide open-file table

file descriptor

per-process
open-file table

7

file-system record

active-inode
table

inode pointer -

pointer to read and write functions

pointer to select function
pointer to ioctl function
pointer to close function

user-process memory

networking (socket) record

network-
information
table

pointer to network info e

pointer to read and write functions

pointer to select function
pointer to ioctl function
pointer to close function

kernel memory

40

10/13/20

20

I/0 requests to hardware operations

Consider reading a file from disk for a process:

Determine device holding file

Translate name to device representation
Physically read data from disk into buffer
Make data available to requesting process
Return control to process

41

Another example: blocked read w. DMA

A process issues a read call which executes a system call
System call code checks for correctness and cache

If it needs to perform I/0, it will issues a device driver call
Device driver allocates a buffer for read and schedules I/O
Controller performs DMA data transfer, blocks the process
Device generates an interrupt on completion

Interrupt handler stores any data and notifies completion

Move data from kernel buffer to user buffer and wakeup blocked
process

User process continues

L 2R R 2R JER SR R 2R 2

*

42

10/13/20

21

