
10/15/20

1

CS 422/522 Design & Implementation
of Operating Systems

Lecture 15: Storage Devices

Zhong Shao
Dept. of Computer Science

Yale University

1

The big picture

! Lectures before the fall break:
– Management of CPU & concurrency
– Management of main memory & virtual memory

! Current topics --- “Management of I/O devices”
– Last lecture: I/O devices & device drivers
– This lecture: storage devices
– Next week: file systems

* File system structure
* Naming and directories
* Efficiency and performance
* Reliability and protection

2

10/15/20

2

Main points

! File systems
– Useful abstractions on top of physical devices

! Storage hardware characteristics
– Disks and flash memory

! File system usage patterns

3

File systems

! Abstraction on top of persistent storage
– Magnetic disk
– Flash memory (e.g., USB thumb drive)

! Devices provide
– Storage that (usually) survives across machine crashes
– Block level (random) access
– Large capacity at low cost
– Relatively slow performance

* Magnetic disk read takes 10-20M processor instructions

4

10/15/20

3

File system as illusionist: hide limitations of
physical storage

! Persistence of data stored in file system:
– Even if crash happens during an update
– Even if disk block becomes corrupted
– Even if flash memory wears out

! Naming:
– Named data instead of disk block numbers
– Directories instead of flat storage
– Byte addressable data even though devices are block-oriented

! Performance:
– Cached data
– Data placement and data structure organization

! Controlled access to shared data

5

File system abstraction

! File system
– Persistent, named data
– Hierarchical organization (directories, subdirectories)
– Access control on data

! File: named collection of data
– Linear sequence of bytes (or a set of sequences)
– Read/write or memory mapped

! Crash and storage error tolerance
– Operating system crashes (and disk errors) leave file system

in a valid state
! Performance

– Achieve close to the hardware limit in the average case

6

10/15/20

4

Storage devices

! Magnetic disks
– Storage that rarely becomes corrupted
– Large capacity at low cost
– Block level random access
– Slow performance for random access
– Better performance for streaming access

! Flash memory
– Storage that rarely becomes corrupted
– Capacity at intermediate cost (50x disk)
– Block level random access
– Good performance for reads; worse for random writes

7

A typical disk controller

! External connection
– IDE / ATA, SATA
– SCSI, SCSI-2, Ultra SCSI,

Ultra-160 SCSI, Ultra-320
SCSI

– Fibre channel (FC)
! Cache

– Buffer data between disk
and the I/O bus

! Controller
– Details of read/write
– Cache replacement algorithm
– Failure detection and

recovery

Disk
controller
firmware

DRAM
cache

Interface

Controller

External connection

Disk

8

10/15/20

5

Caching inside a disk controller

! Method
– Disk controller has DRAM to cache recently accessed blocks

* Hitachi disk has 16MB
* Some of the RAM space stores “firmware” (an embedded OS)

– Blocks are replaced usually in an LRU order

! Pros
– Good for reads if accesses have locality

! Cons
– Expensive
– Need to deal with reliable writes

9

Magnetic disk

10

10/15/20

6

Disk organization

! Disk surface
– Circular disk coated with

magnetic material
! Tracks

– Concentric rings around
disk surface, bits laid out
serially along each track

! Sectors
– Each track is split into arc

of track (min unit of
transfer) sectors

11

Disk tracks

! ~ 1 micron wide
– Wavelength of light is ~ 0.5 micron
– Resolution of human eye: 50 microns
– 100K tracks on a typical 2.5” disk

! Separated by unused guard regions
– Reduces likelihood neighboring tracks are corrupted during

writes (still a small non-zero chance)
! Track length varies across disk

– Outside: More sectors per track, higher bandwidth
– Disk is organized into regions of tracks with same # of

sectors/track
– Only outer half of radius is used

* Most of the disk area in the outer regions of the disk

12

10/15/20

7

Sectors

! Sectors contain sophisticated error correcting codes
– Disk head magnet has a field wider than track
– Hide corruptions due to neighboring track writes

! Sector sparing
– Remap bad sectors transparently to spare sectors on the

same surface
! Slip sparing

– Remap all sectors (when there is a bad sector) to preserve
sequential behavior

! Track skewing
– Sector numbers offset from one track to the next, to allow

for disk head movement for sequential ops

13

Moving-head disk mechanism

14

10/15/20

8

Disk cylinder and arm

! CD’s and floppies come
individually, but magnetic disks
come organized in a disk pack

! Cylinder
– Certain track of the platter

! Disk arm
– A disk arm carries disk heads

! Read/write operation
– Disk controller receives a

command with <track#, sector#>
– Seek the right cylinder (tracks)
– Wait until the right sector comes
– Perform read/write

seek a cylinder

15

Disk performance

Disk Latency =
Seek Time + Rotation Time + Transfer Time
Seek Time: time to move disk arm over track (1-20ms)

Fine-grained position adjustment necessary for head to “settle”
Head switch time ~ track switch time (on modern disks)

Rotation Time: time to wait for disk to rotate under disk head
Disk rotation: 4 – 15ms (depending on price of disk)
On average, only need to wait half a rotation

Transfer Time: time to transfer data onto/off of disk
Disk head transfer rate: 50-100MB/s (5-10 usec/sector)
Host transfer rate dependent on I/O connector (USB, SATA, …)

16

10/15/20

9

Toshiba disk (2008)

17

Question

! How long to complete 500 random disk reads, in FIFO
order?

18

10/15/20

10

Question

! How long to complete 500 random disk reads, in FIFO
order?
– Seek: average 10.5 msec
– Rotation: average 4.15 msec
– Transfer: 5-10 usec

! 500 * (10.5 + 4.15 + 0.01)/1000 = 7.3 seconds

19

Question

! How long to complete 500 sequential disk reads?

20

10/15/20

11

Question

! How long to complete 500 sequential disk reads?
– Seek Time: 10.5 ms (to reach first sector)
– Rotation Time: 4.15 ms (to reach first sector)
– Transfer Time: (outer track)

500 sectors * 512 bytes / 128MB/sec = 2ms

Total: 10.5 + 4.15 + 2 = 16.7 ms
Might need an extra head or track switch (+1ms)
Track buffer may allow some sectors to be read off disk out of

order (-2ms)

21

Question

! How large a transfer is needed to achieve 80% of the
max disk transfer rate?

22

10/15/20

12

Question

! How large a transfer is needed to achieve 80% of the
max disk transfer rate?
Assume x rotations are needed, then solve for x:
0.8 (10.5 ms + (1ms + 8.5ms) x) = 8.5ms x

Total: x = 9.1 rotations, 9.8MB

23

Disk scheduling

! FIFO
– Schedule disk operations in order they arrive
– Downsides?

24

10/15/20

13

FIFO (FCFS) order

! Method
– First come first serve

! Pros
– Fairness among requests
– In the order applications

expect
! Cons

– Arrival may be on random
spots on the disk (long
seeks)

– Wild swing can happen

0 199

98, 183, 37, 122, 14, 124, 65, 67

53

25

SSTF (Shortest Seek Time First)

! Method
– Pick the one closest on disk
– Rotational delay is in calculation

! Pros
– Try to minimize seek time

! Cons
– Starvation

! Question
– Is SSTF optimal?
– Can we avoid the starvation?

0 199

98, 183, 37, 122, 14, 124, 65, 67
(65, 67, 37, 14, 98, 122, 124, 183)

53

26

10/15/20

14

Disk scheduling

! SCAN: move disk arm in
one direction, until all
requests satisfied, then
reverse direction

! Also called “elevator
scheduling”

1

2

34
Disk Arm

6

7

5

27

Elevator (SCAN)

! Method
– Take the closest request in

the direction of travel
– Real implementations do not

go to the end (called LOOK)
! Pros

– Bounded time for each
request

! Cons
– Request at the other end will

take a while

0 199

98, 183, 37, 122, 14, 124, 65, 67
(37, 14, 65, 67, 98, 122, 124, 183)

53

28

10/15/20

15

Disk scheduling

! CSCAN: move disk
arm in one direction,
until all requests
satisfied, then start
again from farthest
request 1

2

34
Disk Arm

6

5

7

29

C-SCAN (Circular SCAN)

! Method
– Like SCAN
– But, wrap around
– Real implementation doesn’t

go to the end (C-LOOK)
! Pros

– Uniform service time
! Cons

– Do nothing on the return

0 199

98, 183, 37, 122, 14, 124, 65, 67
(65, 67, 98, 122, 124, 183, 14, 37)

53

30

10/15/20

16

Disk scheduling

! R-CSCAN: CSCAN
but take into account
that short track
switch is < rotational
delay

1

3

24
Disk Arm

6

5

7

31

Question

! How long to complete 500 random disk reads, in any
order?

32

10/15/20

17

Question

! How long to complete 500 random disk reads, in any
order?
– Disk seek: 1ms (most will be short)
– Rotation: 4.15ms
– Transfer: 5-10usec

! Total: 500 * (1 + 4.15 + 0.01) = 2.2 seconds
– Would be a bit shorter with R-CSCAN
– vs. 7.3 seconds if FIFO order

33

Question

! How long to read all of the bytes off of a disk?

34

10/15/20

18

Question

! How long to read all of the bytes off of a disk?
– Disk capacity: 320GB
– Disk bandwidth: 54-128MB/s

! Transfer time =
Disk capacity / average disk bandwidth
~ 3500 seconds (1 hour)

35

Flash memory

Control
Gate

Floating
Gate

Source Drain

ControlSource Drain

36

10/15/20

19

Flash memory

! Writes must be to “clean” cells; no update in place
– Large block erasure required before write
– Erasure block: 128 – 512 KB
– Erasure time: Several milliseconds

! Write/read page (2-4KB)
– 50-100 usec

37

Flash drive (2011)

38

10/15/20

20

Question

! Why are random writes so slow?
– Random write: 2000/sec
– Random read: 38500/sec

39

Flash translation layer

! Flash device firmware maps logical page # to a physical
location
– Garbage collect erasure block by copying live pages to new

location, then erase
* More efficient if blocks stored at same time are deleted at same time

(e.g., keep blocks of a file together)
– Wear-leveling: only write each physical page a limited number

of times
– Remap pages that no longer work (sector sparing)

! Transparent to the device user

40

10/15/20

21

File system – flash

! How does Flash device know which blocks are live?
– Live blocks must be remapped to a new location during erasure

! TRIM command
– File system tells device when blocks are no longer in use

41

File system workload

! File sizes
– Are most files small or large?
– Which accounts for more total storage: small or large files?

42

10/15/20

22

File system workload

! File sizes
– Are most files small or large?

* SMALL
– Which accounts for more total storage: small or large files?

* LARGE

43

File system workload

! File access
– Are most accesses to small or large files?
– Which accounts for more total I/O bytes: small or large files?

44

10/15/20

23

File system workload

! File access
– Are most accesses to small or large files?

* SMALL
– Which accounts for more total I/O bytes: small or large files?

* LARGE

45

File system workload

! How are files used?
– Most files are read/written sequentially
– Some files are read/written randomly

* Ex: database files, swap files
– Some files have a pre-defined size at creation
– Some files start small and grow over time

* Ex: program stdout, system logs

46

10/15/20

24

File system design

! For small files:
– Small blocks for storage efficiency
– Concurrent ops more efficient than sequential
– Files used together should be stored together

! For large files:
– Storage efficient (large blocks)
– Contiguous allocation for sequential access
– Efficient lookup for random access

! May not know at file creation
– Whether file will become small or large
– Whether file is persistent or temporary
– Whether file will be used sequentially or randomly

47

File system abstraction

! Directory
– Group of named files or subdirectories
– Mapping from file name to file metadata location

! Path
– String that uniquely identifies file or directory
– Ex: /cse/www/education/courses/cse451/12au

! Links
– Hard link: link from name to metadata location
– Soft link: link from name to alternate name

! Mount
– Mapping from name in one file system to root of another

48

10/15/20

25

UNIX file system API

! create, link, unlink, createdir, rmdir
– Create file, link to file, remove link
– Create directory, remove directory

! open, close, read, write, seek
– Open/close a file for reading/writing
– Seek resets current position

! fsync
– File modifications can be cached
– fsync forces modifications to disk (like a memory barrier)

49

File system interface

! UNIX file open is a Swiss Army knife:
– Open the file, return file descriptor
– Options:

* if file doesn’t exist, return an error
* If file doesn’t exist, create file and open it
* If file does exist, return an error
* If file does exist, open file
* If file exists but isn’t empty, nix it then open
* If file exists but isn’t empty, return an error
* …

50

10/15/20

26

Interface design question

! Why not separate syscalls for open/create/exists?
– Would be more modular!

if (!exists(name))
create(name); // can create fail?

fd = open(name); // does the file exist?

51

