10/15/20

CS 422/522 Design & Implementation
of Operating Systems

Lecture 15: Storage Devices

Zhong Shao
Dept. of Computer Science
Yale University

The big picture

Lectures before the fall break:
- Management of CPU & concurrency
- Management of main memory & virtual memory

+ Current topics --- "Management of I/0 devices"
- Last lecture: I/0 devices & device drivers
- This lecture: storage devices
- Next week: file systems
* File system structure
* Naming and directories

* Efficiency and performance
* Reliability and protection

10/15/20

Main points

¢ File systems

- Useful abstractions on top of physical devices
Storage hardware characteristics

- Disks and flash memory
¢ File system usage patterns

File systems

& Abstraction on top of persistent storage
- Magnetic disk
- Flash memory (e.g., USB thumb drive)
¢ Devices provide
- Storage that (usually) survives across machine crashes
- Block level (random) access
- Large capacity at low cost

- Relatively slow performance
* Magnetic disk read takes 10-20M processor instructions

File system as illusionist: hide limitations of
physical storage

& Persistence of data stored in file system:

- Even if crash happens during an update

- Even if disk block becomes corrupted

- Even if flash memory wears out
+ Naming:

- Named data instead of disk block humbers

- Directories instead of flat storage

- Byte addressable data even though devices are block-oriented
+ Performance:

- Cached data

- Data placement and data structure organization
Controlled access to shared data

File system abstraction

+ File system
- Persistent, named data
- Hierarchical organization (directories, subdirectories)
- Access control on data
+ File: named collection of data
- Linear sequence of bytes (or a set of sequences)
- Read/write or memory mapped
Crash and storage error tolerance

- Operating system crashes (and disk errors) leave file system
in a valid state

+ Performance
- Achieve close to the hardware limit in the average case

10/15/20

Storage devices

+ Magnetic disks

Large capacity at low cost
Block level random access

¢ Flash memory

Storage that rarely becomes corrupted

Slow performance for random access
Better performance for streaming access

- Storage that rarely becomes corrupted
- Capacity at intermediate cost (50x disk)

- Block level random access

- Good performance for reads; worse for random writes

A typical disk controller

¢ External connection
- IDE/ ATA, SATA

- SCSI, SCSI-2, Ultra SCSI,
Ultra-160 SCST, Ultra-320
SCST

- Fibre channel (FC)
+ Cache
- Buffer data between disk
and the I/0 bus
+ Controller
- Details of read/write
- Cache replacement algorithm

- Failure detection and
recovery

External connection

|

Interface

DRAM
cache

Controller

Disk
controller
firmware

10/15/20

Caching inside a disk controller

¢ Method

- Disk controller has DRAM to cache recently accessed blocks
* Hitachi disk has 16MB
* Some of the RAM space stores “firmware” (an embedded OS)

- Blocks are replaced usually in an LRU order

* Pros
- Good for reads if accesses have locality

¢ Cons
- Expensive
- Need to deal with reliable writes

Magnetic disk

10

10/15/20

Disk organization

+ Disk surface
- Circular disk coated with
magnetic material
¢ Tracks

- Concentric rings around
disk surface, bits laid out
serially along each track

¢ Sectors

- Each track is split into arc
of track (min unit of

sectors
transfer)

11

Disk tracks

+ ~ 1 micron wide
- Wavelength of light is ~ 0.5 micron
- Resolution of human eye: 50 microns
- 100K tracks on a typical 2.5" disk
+ Separated by unused guard regions
- Reduces likelihood neighboring tracks are corrupted during
writes (still a small non-zero chance)
Track length varies across disk
- Outside: More sectors per track, higher bandwidth

- Disk is organized into regions of tracks with same # of
sectors/track

- Only outer half of radius is used
* Most of the disk area in the outer regions of the disk

12

10/15/20

Sectors

Sectors contain sophisticated error correcting codes
- Disk head magnet has a field wider than track
- Hide corruptions due to neighboring track writes

+ Sector sparing

- Remap bad sectors transparently to spare sectors on the
same surface

+ Slip sparing
- Remap all sectors (when there is a bad sector) to preserve
sequential behavior

+ Track skewing

- Sector numbers offset from one track to the next, to allow
for disk head movement for sequential ops

13
Moving-head disk mechanism
track t e spindle
3 Caivg
I | <— arm assembly
sector s I !
|
3 g
I i
| |
cylinder ¢ i | read-write
} : head
I
| |
platter
rotation
14

10/15/20

Disk cylinder and arm

¢ CD’s and floppies come
individually, but magnetic disks
come organized in a disk pack
¢ Cylinder
- Certain track of the platter
¢ Disk arm
- A disk arm carries disk heads
¢ Read/write operation s

- Disk controller receives a seek a cylinder
command with <track#, sector#>

- Seek the right cylinder (tracks)
- Wait until the right sector comes
- Perform read/write

15

Disk performance

Disk Latency =
Seek Time + Rotation Time + Transfer Time

Seek Time: time to move disk arm over track (1-20ms)
Fine-grained position adjustment necessary for head to “settle”
Head switch time ~ track switch time (on modern disks)

Rotation Time: time to wait for disk to rotate under disk head
Disk rotation: 4 - 15ms (depending on price of disk)
On average, only need to wait half a rotation

Transfer Time: time to transfer data onto/off of disk
Disk head transfer rate: 50-100MB/s (5-10 usec/sector)
Host transfer rate dependent on I/0 connector (USB, SATA, ..)

16

10/15/20

Toshiba disk (2008)

Size

Platters/Heads 2/4

Capacity 320 GB
Performance

Spindle speed 7200 RPM
Average seek time read/write 10.5 ms/ 12.0 ms
Maximum seek time 19 ms
Track-to-track seek time 1ms

Transfer rate (surface to buffer) 54-128 MB/s
Transfer rate (buffer to host) 375 MB/s

Buffer memory 16 MB
Power
Typical 16.35 W
Idle 11.68 W
17
Question

+ How long to complete 500 random disk reads, in FIFO
order?

18

10/15/20

Question

+ How long to complete 500 random disk reads, in FIFO
order?
- Seek: average 10.5 msec
- Rotation: average 4.15 msec
- Transfer: 5-10 usec

+ 500 * (10.5 + 4.15 + 0.01)/1000 = 7.3 seconds

19

Question

¢ How long to complete 500 sequential disk reads?

20

10/15/20

10

Question

+ How long to complete 500 sequential disk reads?
- Seek Time: 10.5 ms (to reach first sector)
- Rotation Time: 4.15 ms (to reach first sector)

- Transfer Time: (outer track)
500 sectors * 512 bytes / 128MB/sec = 2ms

Total: 105 +4.15+2=16.7ms
Might need an extra head or track switch (+1ms)

Track buffer may allow some sectors to be read off disk out of
order (-2ms)

21

Question

+ How large a transfer is needed to achieve 80% of the
max disk transfer rate?

22

10/15/20

11

Question

+ How large a transfer is needed to achieve 80% of the
max disk transfer rate?

Assume x rotations are needed, then solve for x:
0.8 (10.5 ms + (Ims + 8.5ms) x) = 8.5ms x

Total: x = 9.1 rotations, 9.8 MB

23

Disk scheduling

s FIFO
- Schedule disk operations in order they arrive
- Downsides?

24

10/15/20

12

FIFO (FCFS) order

¢ Method

- First come first serve

+ Pros
- Fairness among requests
- In the order applications
expect
+ Cons

- Arrival may be on random
spots on the disk (long
seeks)

- Wild swing can happen

98, 183,37, 122, 14, 124, 65, 67

25
SSTF (Shortest Seek Time First)
¢ Method
- Pick the one closest on disk 0 53 199
- Rotational delay is in calculation
o Pros
- Try to minimize seek time
¢ Cons
- Starvation
¢ Question
- Is SSTF optimal?
- Can we avoid the starvation?
98, 183, 37, 122, 14, 124, 65, 67
(65, 67,37, 14, 98, 122, 124, 183)
26

10/15/20

13

Disk scheduling

¢ SCAN: move disk arm in
one direction, until all
requests satisfied, then
reverse direction

+ Also called “elevator
scheduling”

27

Elevator (SCAN)

¢ Method

- Take the closest request in
the direction of travel

- Real implementations do not
go to the end (called LOOK)

¢ Pros

- Bounded time for each
request

¢ Cons

- Request at the other end will
take a while

0 53 199

98, 183, 37, 122, 14, 124, 65, 67
(37,14, 65, 67, 98, 122, 124, 183)

28

10/15/20

14

Disk scheduling

& CSCAN: move disk
arm in one direction,
until all requests
satisfied, then start
again from farthest
request

29

C-SCAN (Circular SCAN)

+ Method
- Like SCAN
- But, wrap around

- Real implementation doesn't
go to the end (C-LOOK)

¢ Pros
- Uniform service time

* Cons
- Do nothing on the return

o

53 199

98, 183, 37, 122, 14, 124, 65, 67
(65, 67,98, 122, 124, 183, 14, 37)

30

10/15/20

15

Disk scheduling

& R-CSCAN: CSCAN
but take into account
that short track

switch is < rotational
delay

31

Question

+ How long to complete 500 random disk reads, in any
order?

32

10/15/20

16

Question

+ How long to complete 500 random disk reads, in any
order?
- Disk seek: Ims (most will be short)
- Rotation: 4.15ms
- Transfer: 5-10usec
o Total: 500 * (1 +4.15 + 0.01) = 2.2 seconds
- Would be a bit shorter with R-CSCAN
- vs. 7.3 seconds if FIFO order

33

Question

¢ How long fo read all of the bytes off of a disk?

34

10/15/20

17

Question

¢ How long to read all of the bytes of f of a disk?
- Disk capacity: 32068
- Disk bandwidth: 54-128 MB/s
¢ Transfer time =
Disk capacity / average disk bandwidth
~ 3500 seconds (1 hour)

35
Flash memory
Source Control Drain
O O
ControlD
Floating
Gate
@)
Source Drain
36

10/15/20

18

Flash memory

+ Writes must be to "clean” cells; no update in place
- Large block erasure required before write
- Erasure block: 128 - 512 KB
- Erasure time: Several milliseconds

¢ Write/read page (2-4KB)

- 50-100 usec
37
Flash drive (2011)
Size
Capacity 300 GB
Page Size 4KB
Performance
Bandwidth (Sequential Reads) 270 MB/s
Bandwidth (Sequential Writes) 210 MB/s
Read/Write Latency 75 us
Random Reads Per Second 38,500
Random Writes Per Second 2,000 (2,400 with 20% space reserve)
Interface SATA 3 Gb/s
Endurance
Endurance 1.1 PB (1.5 PB with 20% space reserve)
Power
Power Consumption Active/ldle 3.7W/0.7W
38

10/15/20

19

Question

¢ Why are random writes so slow?
- Random write: 2000/sec
- Random read: 38500/sec

39

Flash translation layer

¢ Flash device firmware maps logical page # to a physical
location

- Garbage collect erasure block by copying live pages to new
location, then erase

* More efficient if blocks stored at same time are deleted at same time
(e.g., keep blocks of a file together)

- Wear-leveling: only write each physical page a limited number
of times

- Remap pages that no longer work (sector sparing)
¢ Transparent to the device user

40

10/15/20

20

File system - flash

+ How does Flash device know which blocks are live?
- Live blocks must be remapped to a new location during erasure

¢ TRIM command
- File system tells device when blocks are no longer in use

41

File system workload

+ File sizes
- Are most files small or large?
- Which accounts for more total storage: small or large files?

42

10/15/20

21

10/15/20

File system workload

o File sizes

- Are most files small or large?
* SMALL

- Which accounts for more total storage: small or large files?
* LARGE

43

File system workload

+ File access
- Are most accesses to small or large files?
- Which accounts for more total I/0 bytes: small or large files?

44

22

10/15/20

File system workload

o File access

- Are most accesses to small or large files?
* SMALL

- Which accounts for more total I/0 bytes: small or large files?
* LARGE

45

File system workload

+ How are files used?
Most files are read/written sequentially
Some files are read/written randomly
* Ex: database files, swap files
Some files have a pre-defined size at creation

Some files start small and grow over time
* Ex: program stdout, system logs

46

23

File system design

o For small files:

- Small blocks for storage efficiency
- Concurrent ops more efficient than sequential
- Files used together should be stored together

¢ For large files:

- Storage efficient (large blocks)
- Contiguous allocation for sequential access
- Efficient lookup for random access

¢ May not know at file creation

- Whether file will become small or large
- Whether file is persistent or temporary
- Whether file will be used sequentially or randomly

47

File system abstraction

*

Directory

- Group of named files or subdirectories

- Mapping from file name to file metadata location
Path

- String that uniquely identifies file or directory
- Ex: /cse/www/education/courses/cse451/12au

Links
- Hard link: link from name to metadata location
- Soft link: link from name to alternate name
Mount
- Mapping from name in one file system to root of another

48

10/15/20

24

10/15/20

UNIX file system API

o create, link, unlink, createdir, rmdir
- Create file, link to file, remove link
- Create directory, remove directory
+ open, close, read, write, seek
- Open/close a file for reading/writing
- Seek resets current position
+ fsync
- File modifications can be cached
- fsync forces modifications to disk (like a memory barrier)

49

File system interface

+ UNIX file open is a Swiss Army knife:
- Open the file, return file descriptor
- Options:

if file doesn't exist, return an error

If file doesn't exist, create file and open it

If file does exist, return an error

If file does exist, open file

If file exists but isn't empty, nix it then open

If file exists but isn't empty, return an error

* OOk k% % X %

50

25

Interface design question

¢ Why not separate syscalls for open/create/exists?
- Would be more modular!

if (lexists(name))
create(name); // can create fail?
fd = open(name); // does the file exist?

51

10/15/20

26

