
CPSC 422/522 Design & Implementation

of Operating Systems

Lecture 22: Distributed Systems

Zhong Shao
Dept. of Computer Science

Yale University

Acknowledgement: some slides are taken from previous lectures by Dr. Ennan Zhai

Have you used distributed system?

Have you used distributed system? Have you used distributed system?

Have you used distributed system? Have you used distributed system?

What is a distributed system?

• A system of multiple computers (nodes)
communicating over a network

What is a distributed system?

• A system of multiple computers (nodes)
communicating over a network

• Some following questions:
- What is a decentralized system?
- What is a cloud system?
- What is a centralized distributed system?

• We connect computers via point-to-point links:
- Local area network, DNS and ISP routers
- Communications are unreliable
- No global control of the network

Network Basics
• We connect computers via point-to-point links:

- Local area network, DNS and ISP routers
- Communications are unreliable
- No global control of the network

Routers tie LANs together into one Internet

10

Tier 3 ISP

Tier 2 ISP

Tier 1 ISP

Tier 1 ISP Tier 2 ISP

A packet may pass through many networks – within and between ISPs

September 15, 2016 © 2014-2016 Paul Krzyzanowski

Network Basics

Example: HTTP Layer Encapsulation End Hosts vs. Routers

End Hosts vs. Routers End Hosts vs. Routers

System Developer

Network Developer

Finding Nodes
• Each interface on a host has a unique MAC

address:
- My machine 48-bit ethernet address =

32:00:19:ac:b1:40

• This is not too interesting to us as programmers
- We usually do not communicate at the data link layer

Network Basics

• Each interface on a host has a unique MAC
address:
- My machine 48-bit ethernet address =

32:00:19:ac:b1:40

• This is not too interesting to us as programmers
- We usually do not communicate at the data link layer

Network Basics

Why we need a physical address?

• Each interface on a host has a unique MAC
address:
- My machine 48-bit ethernet address =

32:00:19:ac:b1:40

• This is not too interesting to us as programmers
- We usually do not communicate at the data link layer

Network Basics

Which layer in OSI model it belongs to?
Why we need a physical address?

• Each interface on a host has a unique MAC
address:
- My machine 48-bit ethernet address =

32:00:19:ac:b1:40

• This is not too interesting to us as programmers
- We usually do not communicate at the data link layer

Network Basics
• Addressing applications:

- IP address (32-bit for IPv4) and port number (16-bit)
- Well-known port numbers (0-1023), e.g., ftp, ssh and

http

• We have two transport-layer protocols
- TCP (SSH and FTP) and UDP (Streaming and local

broadcast)
- What is the difference?

Network Basics

• Addressing applications:
- IP address (32-bit for IPv4) and port number (16-bit)
- Well-known port numbers (0-1023), e.g., ftp, ssh and

http

• We have two transport-layer protocols
- TCP (SSH and FTP) and UDP (Streaming and local

broadcast)
- What is the difference?

Network Basics End Hosts vs. Routers

System Developer

Network Developer

End Hosts vs. Routers

System Developer

Network Developer

End Hosts vs. Routers

PC

Today’s Cluster

PC Server

Today’s Cluster

PC Server Cluster

Today’s Cluster Today’s Cluster

Rack Today’s Cluster
Network switches

(connects nodes with
each other and with other

racks)

Rack Today’s Cluster

Network switches
(connects nodes with

each other and with other
racks)

Many nodes/blades
(often identical)

Rack Today’s Cluster
Network switches

(connects nodes with
each other and with other

racks)

Many nodes/blades
(often identical)

Storage device(s)

Rack Today’s Cluster

• What if cluster is too big to fit into machine
room?
- Build a separate building for the cluster
- Building can have lots of cooling and power
- Result: Data center

PC Server Cluster

Today’s Cluster

• What if cluster is too big to fit into machine
room?
- Build a separate building for the cluster
- Building can have lots of cooling and power
- Result: Data center

PC Server Cluster

Datacenter

• What if cluster is too big to fit into machine
room?
- Build a separate building for the cluster
- Building can have lots of cooling and power
- Result: Data center

PC Server Cluster Data center

Datacenter Google Datacenter in Oregon

Data centers (size of
a football field)

Google Datacenter in Oregon

• A warehouse-sized computer
- A single data center can easily contain 10,000 racks

with 100 cores in each rack (1,000,000 cores total)

Data centers (size of
a football field)

Google Datacenter in Oregon

Google Datacenters in the US Google Datacenters in this World

End Hosts vs. Routers

• Programmers need to access the network
• A network application programming interface

(API)
- Socket programming
- Remote procedure calls

Network APIs

Connection-Oriented (TCP) socket operations

41

Create a socket

Name the socket
(assign local address, port)

Connect to the other side

read / write byte streams

close the socket

Create a socket

Name the socket
(assign local address, port)

Set the socket for listening

Wait for and accept a
connection; get a socket for
the connection

close the socket

read / write byte streams

close the listening socket

Client
Server

socket

bind

connect

read/write

close

socket

bind

listen

accept

read/write

close

close

September 15, 2016 © 2014-2016 Paul Krzyzanowski

Socket (TCP)
Connection-Oriented (TCP) socket operations

41

Create a socket

Name the socket
(assign local address, port)

Connect to the other side

read / write byte streams

close the socket

Create a socket

Name the socket
(assign local address, port)

Set the socket for listening

Wait for and accept a
connection; get a socket for
the connection

close the socket

read / write byte streams

close the listening socket

Client
Server

socket

bind

connect

read/write

close

socket

bind

listen

accept

read/write

close

close

September 15, 2016 © 2014-2016 Paul Krzyzanowski

Socket (TCP)

import socket

s = socket.socket(AF_INET,\
 SOCK_STREAM)

s.blind(host, port)
s.listen(5)

while 1:
 conn, addr = s.accept()
 msg = conn.recv()
 conn.close

s.close

Connection-Oriented (TCP) socket operations

41

Create a socket

Name the socket
(assign local address, port)

Connect to the other side

read / write byte streams

close the socket

Create a socket

Name the socket
(assign local address, port)

Set the socket for listening

Wait for and accept a
connection; get a socket for
the connection

close the socket

read / write byte streams

close the listening socket

Client
Server

socket

bind

connect

read/write

close

socket

bind

listen

accept

read/write

close

close

September 15, 2016 © 2014-2016 Paul Krzyzanowski

Socket (TCP)

import socket

s = socket.socket(AF_INET,\
 SOCK_STREAM)

s.blind(host, port)
s.listen(5)

while 1:
 conn, addr = s.accept()
 msg = conn.recv()
 conn.close

s.close

Connection-Oriented (TCP) socket operations

41

Create a socket

Name the socket
(assign local address, port)

Connect to the other side

read / write byte streams

close the socket

Create a socket

Name the socket
(assign local address, port)

Set the socket for listening

Wait for and accept a
connection; get a socket for
the connection

close the socket

read / write byte streams

close the listening socket

Client
Server

socket

bind

connect

read/write

close

socket

bind

listen

accept

read/write

close

close

September 15, 2016 © 2014-2016 Paul Krzyzanowski

Socket (TCP)

import socket

s = socket.socket(AF_INET,\
 SOCK_STREAM)

s.bind(host, port)
s.listen(5)

while 1:
 conn, addr = s.accept()
 msg = conn.recv()
 conn.close

s.close

Connection-Oriented (TCP) socket operations

41

Create a socket

Name the socket
(assign local address, port)

Connect to the other side

read / write byte streams

close the socket

Create a socket

Name the socket
(assign local address, port)

Set the socket for listening

Wait for and accept a
connection; get a socket for
the connection

close the socket

read / write byte streams

close the listening socket

Client
Server

socket

bind

connect

read/write

close

socket

bind

listen

accept

read/write

close

close

September 15, 2016 © 2014-2016 Paul Krzyzanowski

Socket (TCP)

import socket

s = socket.socket(AF_INET,\
 SOCK_STREAM)

s.bind(host, port)
s.listen(5)

while 1:
 conn, addr = s.accept()
 msg = conn.recv()
 conn.close

s.close

Connection-Oriented (TCP) socket operations

41

Create a socket

Name the socket
(assign local address, port)

Connect to the other side

read / write byte streams

close the socket

Create a socket

Name the socket
(assign local address, port)

Set the socket for listening

Wait for and accept a
connection; get a socket for
the connection

close the socket

read / write byte streams

close the listening socket

Client
Server

socket

bind

connect

read/write

close

socket

bind

listen

accept

read/write

close

close

September 15, 2016 © 2014-2016 Paul Krzyzanowski

Socket (TCP)

import socket

s = socket.socket(AF_INET,\
 SOCK_STREAM)

s.bind(host, port)
s.listen(5)

while 1:
 conn, addr = s.accept()
 msg = conn.recv()
 conn.close

s.close

Connection-Oriented (TCP) socket operations

41

Create a socket

Name the socket
(assign local address, port)

Connect to the other side

read / write byte streams

close the socket

Create a socket

Name the socket
(assign local address, port)

Set the socket for listening

Wait for and accept a
connection; get a socket for
the connection

close the socket

read / write byte streams

close the listening socket

Client
Server

socket

bind

connect

read/write

close

socket

bind

listen

accept

read/write

close

close

September 15, 2016 © 2014-2016 Paul Krzyzanowski

Socket (TCP)

import socket

s = socket.socket(AF_INET,\
 SOCK_STREAM)

s.bind(host, port)
s.listen(5)

while 1:
 conn, addr = s.accept()
 msg = conn.recv()
 conn.close

s.close

Connection-Oriented (TCP) socket operations

41

Create a socket

Name the socket
(assign local address, port)

Connect to the other side

read / write byte streams

close the socket

Create a socket

Name the socket
(assign local address, port)

Set the socket for listening

Wait for and accept a
connection; get a socket for
the connection

close the socket

read / write byte streams

close the listening socket

Client
Server

socket

bind

connect

read/write

close

socket

bind

listen

accept

read/write

close

close

September 15, 2016 © 2014-2016 Paul Krzyzanowski

Socket (TCP)

import socket

s = socket.socket(AF_INET,\
 SOCK_STREAM)

a = socket.gethostbyname(host)
s.connect(a, port)
s.sendall(msg)

Connection-Oriented (TCP) socket operations

41

Create a socket

Name the socket
(assign local address, port)

Connect to the other side

read / write byte streams

close the socket

Create a socket

Name the socket
(assign local address, port)

Set the socket for listening

Wait for and accept a
connection; get a socket for
the connection

close the socket

read / write byte streams

close the listening socket

Client
Server

socket

bind

connect

read/write

close

socket

bind

listen

accept

read/write

close

close

September 15, 2016 © 2014-2016 Paul Krzyzanowski

Socket (TCP)
Connectionless (UDP) socket operations

44

Create a socket

Name the socket
(assign local address, port)

Send a message

Receive a message

close the socket

Create a socket

Name the socket
(assign local address, port)

close the socket

Send a message

Receive a message

Client Server

socket

bind

sendto

recvfrom

close

socket

bind

recvfrom

sendto

close

September 15, 2016 © 2014-2016 Paul Krzyzanowski

Socket (UDP)

What’s the Cloud Computing What’s the Cloud Computing
Cloud computing is a business model for enabling
convenient network access to a shared pool of configurable
resources which can be rapidly provisioned and released
with minimal management effort or service provider
interaction.

 --- according to NIST(National Institute of Standards and Technology)

Have You Used the Cloud? Have You Used the Cloud?

Have You Used the Cloud? Have You Used the Cloud?

Why We Like It?

• Why users like it?
- Do not care where it is, it is “just there”
- Access from “any” platform

Why We Like It?

• Why users like it?
- Do not care where it is, it is “just there”
- Access from “any” platform

Why We Like It?

Cloud Services v.s. Traditional Distributed
Systems

Why We Like It?

• Why users like it?
- Do not care where it is, it is “just there”
- Access from “any” platform

• Why CS researchers like it?
- High-performance computation with less money
- Lots of hard and interesting new challenges

Building Blocks
• What techniques are used to support

cloud?
- Internet
- Smart and cheap personal devices
- Robust and scalable software systems
- Virtualization
-

Types of Cloud Services
• Three types of services:
- Software as a Service (SaaS)
- Analogy: Restaurant. Prepares&serves entire meal, does

the dishes, etc

- Platform as a Service (PaaS)
- Analogy: Take-out food. Prepares meal but does not serve

it.

- Infrastructure as a Service (IaaS)
- Analogy: Grocery store. Provides raw ingredients.

Types of Cloud Services
• Three types of services:
- Software as a Service (SaaS)
- Analogy: Restaurant. Prepares&serves entire meal, does

the dishes, etc

- Platform as a Service (PaaS)
- Analogy: Take-out food. Prepares meal but does not serve

it.

- Infrastructure as a Service (IaaS)
- Analogy: Grocery store. Provides raw ingredients.

Types of Cloud Services
• Three types of services:
- Software as a Service (SaaS)
- Analogy: Restaurant. Prepares&serves entire meal, does

the dishes, etc

- Platform as a Service (PaaS)
- Analogy: Take-out food. Prepares meal but does not serve

it.

- Infrastructure as a Service (IaaS)
- Analogy: Grocery store. Provides raw ingredients.

Types of Cloud Services
• Three types of services:
- Software as a Service (SaaS)
- Analogy: Restaurant. Prepares&serves entire meal, does

the dishes, etc

- Platform as a Service (PaaS)
- Analogy: Take-out food. Prepares meal but does not serve

it.

- Infrastructure as a Service (IaaS)
- Analogy: Grocery store. Provides raw ingredients.

Software as a Service (SaaS)

Hardware

Middleware

Application

Cloud Provider (i.e., SaaS Provider)

Software as a Service (SaaS)

Hardware

Middleware

Application

Cloud Provider (i.e., SaaS Provider)

• SaaS provider offers an entire
application
- Word processor, spreadsheet, CRM software,

etc.
- Customer pays cloud provider
- Example: Google Apps, Salesforce.com, etc.

Software as a Service (SaaS)

Hardware

Middleware

Application

Cloud Provider (i.e., SaaS Provider)

• SaaS provider offers an entire
application
- Word processor, spreadsheet, CRM software,

etc.
- Customer pays cloud provider
- Example: Google Apps, Salesforce.com, etc.

Software as a Service (SaaS)

Hardware

Middleware

Application

Customer

Cloud Provider (i.e., SaaS Provider)

• SaaS provider offers an entire application
- Word processor, spreadsheet, CRM software, etc.
- Customer pays cloud provider and uses the service
- Example: Google Apps, Salesforce.com, etc.

Software as a Service (SaaS)

Hardware

Middleware

Application

Customer

Cloud Provider (i.e., SaaS Provider)

• SaaS provider offers an entire application
- Word processor, spreadsheet, CRM software, etc.
- Customer pays cloud provider and uses the service
- Example: Google Apps, Salesforce.com, etc.

Software as a Service (SaaS)

Hardware

Middleware

Application

Customer

Cloud Provider (i.e., SaaS Provider)

• SaaS provider offers an entire application
- Word processor, spreadsheet, CRM software, etc.
- Customer pays cloud provider and uses the service
- Example: Google Apps, Salesforce.com, etc.

Software as a Service (SaaS)

SaaS Example: Gmail

Hardware

Middleware

Application

Gmail Provider

SaaS Example: Gmail

Hardware

Middleware

Application

Gmail Provider

• Outsourcing your e-mail software:
- Distributed, replicated message store in BigTable
- Weak consistency model for some operations (e.g., msg

read)
- Stronger consistency for others (e.g., send msg)

SaaS Example: Gmail

Hardware

Middleware

Application

Gmail Provider

BigTable

• Outsourcing your e-mail software:
- Distributed, replicated message store in BigTable
- Weak consistency model for some operations (e.g., msg

read)
- Stronger consistency for others (e.g., send msg)

SaaS Example: Gmail

Hardware

Middleware

Application

Gmail Provider

BigTable

BigTable APIs

• Outsourcing your e-mail software:
- Distributed, replicated message store in BigTable
- Weak consistency model for some operations (e.g., msg

read)
- Stronger consistency for others (e.g., send msg)

SaaS Example: Gmail

Hardware

Middleware

Application

Gmail Provider

Gmail

• Outsourcing your e-mail software:
- Distributed, replicated message store in BigTable
- Weak consistency model for some operations (e.g., msg

read)
- Stronger consistency for others (e.g., send msg)

BigTable

BigTable APIs

SaaS Example: Gmail

Hardware

Middleware

Application

Customer

Gmail Provider

Gmail

• Outsourcing your e-mail software:
- Distributed, replicated message store in BigTable
- Weak consistency model for some operations (e.g., msg

read)
- Stronger consistency for others (e.g., send msg)

BigTable

BigTable APIs

SaaS Example: Gmail

Hardware

Middleware

Application

Customer

Gmail Provider

Gmail

• Outsourcing your e-mail software:
- Distributed, replicated message store in BigTable
- Weak consistency model for some operations (e.g., msg

read)
- Stronger consistency for others (e.g., send msg)

BigTable

BigTable APIs

SaaS Example: Gmail

Hardware

Middleware

Application

Customer

Gmail Provider

Gmail

• Outsourcing your e-mail software:
- Distributed, replicated message store in BigTable
- Weak consistency model for some operations (e.g., msg

read)
- Stronger consistency for others (e.g., send msg)

BigTable

BigTable APIs

SaaS Example: Gmail

Hardware

Middleware

Application

Customer

Gmail Provider

Gmail

• Outsourcing your e-mail software:
- Distributed, replicated message store in BigTable
- Weak consistency model for some operations (e.g., msg

read)
- Stronger consistency for others (e.g., send msg)

BigTable

BigTable APIs

SaaS Example: Gmail

Platform as a Service (PaaS)

Hardware

Middleware

Application

• Cloud provides middleware/infrastructure
- For example, Microsoft Common Language Runtime

(CLR)
- Customer pays SaaS provider for the service
- SaaS provider pays the cloud for the platform
- Example: Windows Azure, Google App Engine, etc.

Cloud Provider (i.e., PaaS Provider)

Application

Platform as a Service (PaaS)

Hardware

Middleware

Application

• Cloud provides middleware/infrastructure
- For example, Microsoft Common Language Runtime

(CLR)
- Customer pays SaaS provider for the service
- SaaS provider pays the cloud for the platform
- Example: Windows Azure, Google App Engine, etc.

Cloud Provider (i.e., PaaS Provider)

Application

Platform as a Service (PaaS)

Hardware

Middleware

Application

App Provider

• Cloud provides middleware/infrastructure
- For example, Microsoft Common Language Runtime

(CLR)
- App provider pays the cloud for the platform
- Customer pays App provider for the service
- Example: Windows Azure, Google App Engine, etc.

Cloud Provider (i.e., PaaS Provider)

Application

Platform as a Service (PaaS)

Hardware

Middleware

Application

App Provider

• Cloud provides middleware/infrastructure
- For example, Microsoft Common Language Runtime

(CLR)
- App provider pays the cloud for the platform
- Customer pays App provider for the service
- Example: Windows Azure, Google App Engine, etc.

Cloud Provider (i.e., PaaS Provider)

Application

Platform as a Service (PaaS)

Hardware

Middleware

Application

CustomerApp Provider

• Cloud provides middleware/infrastructure
- For example, Microsoft Common Language Runtime

(CLR)
- App provider pays the cloud for the platform
- Customer pays app provider for the service
- Example: Windows Azure, Google App Engine, etc.

Cloud Provider (i.e., PaaS Provider)

Application

Platform as a Service (PaaS)

Hardware

Middleware

Application

CustomerApp Provider

• Cloud provides middleware/infrastructure
- For example, Microsoft Common Language Runtime

(CLR)
- App provider pays the cloud for the platform
- Customer pays app provider for the service
- Example: Windows Azure, Google App Engine, etc.

Cloud Provider (i.e., PaaS Provider)

Application

Platform as a Service (PaaS)

Hardware

Middleware

Application

CustomerApp Provider

• Cloud provides middleware/infrastructure
- For example, Microsoft Common Language Runtime

(CLR)
- App provider pays the cloud for the platform
- Customer pays app provider for the service
- Example: Windows Azure, Google App Engine, etc.

Cloud Provider (i.e., PaaS Provider)

Application

Platform as a Service (PaaS)

PaaS Example: Facebook

Hardware

Middleware

Application

Facebook Provider

PaaS Example: Facebook

Hardware

Middleware

Application

• Facebook offers PaaS capabilities to App provider
- Facebook APIs allow access to social network properties
- Third-party game applications
- Facebook itself also uses PaaS provided by its company,

e.g., log analysis for recommendations

Facebook Provider

PaaS Example: Facebook

Hardware

Middleware

Application

• Facebook offers PaaS capabilities to App provider
- Facebook APIs allow access to social network properties
- Third-party game applications
- Facebook itself also uses PaaS provided by its company,

e.g., log analysis for recommendations

Facebook APIs

Facebook Clusters

Facebook Provider

PaaS Example: Facebook

Hardware

Middleware

Application

• Facebook offers PaaS capabilities to App provider
- Facebook APIs allow access to social network properties
- Third-party game applications
- Facebook itself also uses PaaS provided by its company,

e.g., log analysis for recommendations

Facebook APIs

Facebook Clusters

Facebook Provider

PaaS Example: Facebook

Hardware

Middleware

Application

App Provider

• Facebook offers PaaS capabilities to App provider
- Facebook APIs allow access to social network properties
- App providers adopt their services (e.g., game) onto

Facebook
- Facebook itself also uses PaaS provided by its company,

e.g., log analysis for recommendations

Facebook Game

Facebook APIs

Facebook Clusters

Facebook Provider

PaaS Example: Facebook

Hardware

Middleware

Application

App Provider

• Facebook offers PaaS capabilities to App provider
- Facebook APIs allow access to social network properties
- App providers adopt their services (e.g., game) onto

Facebook
- Facebook itself also uses PaaS provided by its company,

e.g., log analysis for recommendations

Facebook APIs

Facebook Clusters

Facebook Provider

Facebook Game

PaaS Example: Facebook

Hardware

Middleware

Application

CustomerApp Provider

• Facebook offers PaaS capabilities to App provider
- Facebook APIs allow access to social network properties
- App providers adopt their services (e.g., game) onto

Facebook
- Facebook itself also uses PaaS provided by its company,

e.g., log analysis for recommendations

Facebook Game

Facebook APIs

Facebook Clusters

Facebook Provider

Facebook Game

PaaS Example: Facebook

Hardware

Middleware

Application

CustomerApp Provider

• Facebook offers PaaS capabilities to App provider
- Facebook APIs allow access to social network properties
- App providers adopt their services (e.g., game) onto

Facebook
- Facebook itself also uses PaaS provided by its company,

e.g., log analysis for recommendations

Facebook Game

Facebook APIs

Facebook Clusters

Facebook Provider

Facebook Game

PaaS Example: Facebook

Hardware

Middleware

Application

CustomerApp Provider

• Facebook offers PaaS capabilities to App provider
- Facebook APIs allow access to social network properties
- App providers adopt their services (e.g., game) onto

Facebook
- Facebook itself also uses PaaS provided by its company,

e.g., log analysis for recommendations

Facebook Game

Facebook APIs

Facebook Clusters

Facebook Provider

Facebook Game

PaaS Example: Facebook

Infrastructure as a Service (IaaS)

Hardware

Middleware

Application Application

Middleware

• Cloud provides raw computing resources
- Virtual machines, blade servers, hard disk, etc.
- Customer pays SaaS provider for the service
- SaaS provider pays the cloud for the resources
- Example: Amazon Web Services, Rackspace

Cloud, etc.

Cloud Provider (i.e., IaaS Provider)

Infrastructure as a Service (IaaS)

Hardware

Middleware

Application Application

Middleware

• Cloud provides raw computing resources
- Virtual machines, blade servers, hard disk, etc.
- Customer pays SaaS provider for the service
- SaaS provider pays the cloud for the resources
- Example: Amazon Web Services, Rackspace

Cloud, etc.

Cloud Provider (i.e., IaaS Provider)

Infrastructure as a Service (IaaS)

Hardware

Middleware

Application Application

Middleware

• Cloud provides raw computing resources
- Virtual machines, blade servers, hard disk, etc.
- App provider pays the cloud for the resources
- Customer pays App provider for the service
- Example: Amazon Web Services, Rackspace

Cloud, etc.

App Provider

Cloud Provider (i.e., IaaS Provider)

Infrastructure as a Service (IaaS)

Hardware

Middleware

Application Application

Middleware

• Cloud provides raw computing resources
- Virtual machines, blade servers, hard disk, etc.
- App provider pays the cloud for the resources
- Customer pays App provider for the service
- Example: Amazon Web Services, Rackspace

Cloud, etc.

App Provider

Cloud Provider (i.e., IaaS Provider)

Middleware

Application

Infrastructure as a Service (IaaS)

Hardware

Middleware

Application Application

Customer

Middleware

App Provider

Cloud Provider (i.e., IaaS Provider)

• Cloud provides raw computing resources
- Virtual machines, blade servers, hard disk, etc.
- App provider pays the cloud for the resources
- Customer pays App provider for the service
- Example: Amazon Web Services, Rackspace

Cloud, etc.

Middleware

Application

Infrastructure as a Service (IaaS)

Hardware

Middleware

Application Application

Customer

Middleware

App Provider

Cloud Provider (i.e., IaaS Provider)

• Cloud provides raw computing resources
- Virtual machines, blade servers, hard disk, etc.
- App provider pays the cloud for the resources
- Customer pays App provider for the service
- Example: Amazon Web Services, Rackspace

Cloud, etc.

Middleware

Application

Infrastructure as a Service (IaaS)

Hardware

Middleware

Application Application

Customer

Middleware

App Provider

Cloud Provider (i.e., IaaS Provider)

• Cloud provides raw computing resources
- Virtual machines, blade servers, hard disk, etc.
- App provider pays the cloud for the resources
- Customer pays App provider for the service
- Example: Amazon Web Services, Rackspace

Cloud, etc.

Middleware

Application

Infrastructure as a Service (IaaS)

Hardware

Middleware

Application Application

Middleware

Amazon

IaaS Example: EC2 and S3

(Elastic Compute Cloud & Simple Storage Service)

Hardware

Middleware

Application Application

Middleware

Amazon

EC2 S3

IaaS Example: EC2 and S3

Hardware

Middleware

Application Application

Middleware

Amazon

EC2 S3

Netflix Provider

• Netflix (app) heavily depends on Amazon AWS:
- Media files are stored in S3
- Transcoding to target devices (e.g., iPad) using EC2
- Analysis of streaming sessions based on Elastic

MapReduce

IaaS Example: EC2 and S3

Hardware

Middleware

Application

Middleware

Amazon

EC2 S3

Netflix Provider

• Netflix (app) heavily depends on Amazon AWS:
- Media files are stored in S3
- Transcoding to target devices (e.g., iPad) using EC2
- Analysis of streaming sessions based on Elastic

MapReduce

IaaS Example: EC2 and S3

Hardware

Middleware

Application

Middleware

Amazon

EC2 S3

Netflix Provider

• Netflix (app) heavily depends on Amazon AWS:
- Media files are stored in S3
- Transcoding to target devices (e.g., iPad) using EC2
- Analysis of streaming sessions based on Elastic

MapReduce

Netflix

IaaS Example: EC2 and S3

Hardware

Middleware

Application

Middleware

Amazon

EC2 S3

Netflix Provider

• Netflix (app) heavily depends on Amazon AWS:
- Media files are stored in S3
- Transcoding to target devices (e.g., iPad) using EC2
- Analysis of streaming sessions based on Elastic

MapReduce

Netflix

IaaS Example: EC2 and S3

Hardware

Middleware

Application Application

Middleware

Amazon

EC2 S3

CustomerNetflix Provider

• Netflix (app) heavily depends on Amazon AWS:
- Media files are stored in S3
- Transcoding to target devices (e.g., iPad) using EC2
- Analysis of streaming sessions based on Elastic

MapReduce

Netflix

IaaS Example: EC2 and S3

Hardware

Middleware

Application Application

Middleware

Amazon

EC2 S3

CustomerNetflix Provider

• Netflix (app) heavily depends on Amazon AWS:
- Media files are stored in S3
- Transcoding to target devices (e.g., iPad) using EC2
- Analysis of streaming sessions based on Elastic

MapReduce

Netflix

IaaS Example: EC2 and S3

Types of Cloud Services
• Three types of services:
- Software as a Service (SaaS)
- Analogy: Restaurant. Prepares&serves entire meal, does

the dishes, etc

- Platform as a Service (PaaS)
- Analogy: Take-out food. Prepares meal but does not serve

it.

- Infrastructure as a Service (IaaS)
- Analogy: Grocery store. Provides raw ingredients.

The Major Cloud Providers
• Amazon is the big player:

- Infrastructure as a service (e.g., EC2)
- Storage as a service (e.g., S3)

• But there are many others:
- Microsoft Azure: It has similar services to Amazon, with an

emphasis on .Net programming model
- Google App Engine: It offers programming interface,

Hadoop, also software as a service, e.g., Gmail and
Google Docs

- IBM, HP, Yahoo!: They seem to focus on enterprise scale
cloud apps

The Major Cloud Providers
• Amazon is the big player:

- Infrastructure as a service (e.g., EC2)
- Storage as a service (e.g., S3)

• But there are many others:
- Microsoft Azure: It has similar services to Amazon, with an

emphasis on .Net programming model
- Google App Engine: It offers programming interface,

Hadoop, also software as a service, e.g., Gmail and
Google Docs

- IBM, HP, Yahoo!: They seem to focus on enterprise scale
cloud apps

Challenges?

In the cloud, we have much more data
and users than before

• What if cluster is too big to fit into machine
room?
- Build a separate building for the cluster
- Building can have lots of cooling and power
- Result: Data center

PC Server Cluster Data center

Data! Users! Traffic!

• A warehouse-sized computer
- A single data center can easily contain 10,000 racks

with 100 cores in each rack (1,000,000 cores total)

Data centers (size of
a football field)

Google’s Datacenter in Oregon

Google’s Datacenter Locations Challenges?
• How to manage a huge group of data?

- How to store the data?
- How to process and extract something from the data?
- How to handle multiple availability and consistency?
- How to preserve the data privacy?

Example: Google
• How to manage a huge group of data?

- How to store the data?
- How to process and extract something from the data?
- How to handle multiple availability and consistency?
- How to preserve the data privacy?

Google File System & BigTable

MapReduce
Paxos

BitCoin Blockchain=

The Blockchain

A: $10 B: $2

D: $7 C: $5

The Blockchain

A->B	:	3
A: $10 B: $2

D: $7 C: $5

The Blockchain

A->B	:	3
A: $10 B: $2

D: $7 C: $5

A->B:3	
A:10-3=7	
B:2+3=5

The Blockchain

A->B	:	3
A: $7 B: $5

D: $7 C: $5

A->B:3	
A:10-3=7	
B:2+3=5

The Blockchain

A->B	:	3
A: $7 B: $5

D: $7 C: $5

A->B:3	
A:10-3=7	
B:2+3=5

The Blockchain

A->B	:	3
A: $7 B: $5

D: $7 C: $5

• Blockchain is used to decentralize the log:
- Decentralization
- Public accountability
- Efficiency

A->B:3	
A:10-3=7	
B:2+3=5

The Blockchain

A->B	:	3

A: $7 B: $5

D: $7 C: $5

• Blockchain is used to decentralize the log:
- Decentralization
- Public accountability
- Efficiency

The Blockchain

A->B	:	3

A: $7 B: $5

D: $7 C: $5

• Blockchain is used to decentralize the log:
- Decentralization
- Public accountability
- Efficiency

Ledger

!Block

• Each block contains multiple transactions
• Each user locally maintains a ledger
• All ledgers should have the same data

Log (or Ledger)

Log (or Ledger)

The Blockchain

!Block

Log (or Ledger)

Log (or Ledger)

The Blockchain

Will disk space become a burden?

!Block
• Transactions are hashed in a Merkle

Tree.
• If we suppose blocks are generated

every 10 minutes, then 4.2MB per year.

Log (or Ledger)

Log (or Ledger)

The Blockchain The Blockchain
Log (or Ledger)

hash	 hash	 hash	

• Each hash identifies the entire prefix of the
log

A: $7 B: $5

D: $7
C: $5

Transactions in the Blockchain

A->B	:	4

A: $3 B: $9

D: $7
C: $5

Transactions in the Blockchain

A: $3 B: $9

D: $7
C: $5

A->B	:	4

Transactions in the Blockchain

D: $7
C: $5

B->D	:	1A: $3 B: $9

A->B	:	4

Transactions in the Blockchain

D: $8
C: $5

A: $3 B: $8

B->D	:	1
A->B	:	4

Transactions in the Blockchain

D: $8
C: $5

A: $3 B: $8

B->D	:	1
A->B	:	4

I am the
leader

Consensus

D: $8
C: $5

A: $3 B: $8

New Block
B->D	:	1
A->B	:	4

New Block Generation

D: $8
C: $5

A: $3 B: $8

B->D	:	1
A->B	:	4

New Block

New Block Generation

The Blockchain
• Blockchain can be used to decentralize any

centralized service:
- Making them decentralized (without single-point-

fault)
- Public accountability

The Blockchain
• Blockchain can be used to decentralize any

centralized service:
- Making them decentralized (without single-point-

fault)
- Public accountability

• We still have two problems:
- How to achieve consensus?
- How to preserve the privacy?

How to decentralize app via blockchain?
Log (or Ledger)

hash	 hash	 hash	

• What data we want to put as “transaction”
• The data is what we want to audit

Smart Contract

A->B	:	3

Contract:	
If	xx	
then	yy

Smart Contract

A->B	:	3

Contract:	
If	xx	
then	yy

Example
• You are planning to ship a laptop to your friend Bob

- You trust Bob, but you do not trust trucker Tom
- Tom will carry your laptop
- Tom does not trust since maybe you will not pay him

Example
• You are planning to ship a laptop to your friend Bob

- You trust Bob, but you do not trust trucker Tom
- Tom will carry your laptop
- Tom does not trust since maybe you will not pay him

You and Tom have to sign a contract.

Example
• We can use smart contract:

- You and Tom define all the rules in code
- You make a payment for shipment to smart contract on

a day of loading.
- It holds payment till shipment delivery is confirmed by

Bob.
- Smart contract releases the payment and money is

transferred to Tom automatically.

Another Example Another Example

Another Example Another Example

Another Example The Blockchain
• Blockchain can be used to decentralize any

centralized service:
- Making them decentralized (without single-point-

fault)
- Public accountability

• We still have two problems:
- How to achieve consensus?
- How to preserve the privacy?

Deployment of BitCoin Nodes

A->B	:	3

A: $7 B: $5

D: $7 C: $5

• Blockchain is used for a decentralized bank:
- Each user has several wallets (public keys)
- They sign the money transaction using the private

key
A->D	:	1
A->B	:	4

E->D	:	3
A->B	:	1
B->C	:	1

C->D	:	3

If B’s initial value is 0, then B is 4-1+1-2+1=3

A->B	:	1
B->D	:	2

A->C	:	1
...	...

How to compute BitCoin?

How to compute BitCoin?

A->D	:	1
A->B	:	4

A->B	:	1
B->C	:	1

A->B	:	1
B->D	:	2

...	...

How to compute BitCoin?

E->D	:	3 C->D	:	3 A->C	:	1

A->B	:	4

A->D	:	1
A->B	:	4

A->B	:	1
B->C	:	1

A->B	:	1
B->D	:	2

...	...

How to compute BitCoin?

E->D	:	3 C->D	:	3 A->C	:	1

C->D	:	1
A->B	:	4

A->D	:	1
A->B	:	4

A->B	:	1
B->C	:	1

A->B	:	1
B->D	:	2

...	...

How to compute BitCoin?

E->D	:	3 C->D	:	3 A->C	:	1

Who should generate a new block to
include these two transactions?

C->D	:	1
A->B	:	4

A->D	:	1
A->B	:	4

A->B	:	1
B->C	:	1

A->B	:	1
B->D	:	2

...	...

How to compute BitCoin?

E->D	:	3 C->D	:	3 A->C	:	1

They need to compete, and the
winner can earn money

C->D	:	1
A->B	:	4

A->D	:	1
A->B	:	4

A->B	:	1
B->C	:	1

A->B	:	1
B->D	:	2

...	...

How to compute BitCoin?

E->D	:	3 C->D	:	3 A->C	:	1X = SHA256(H + salt)

X should be ‘0000....’

H

X = SHA256(H + salt)

X should be ‘0000....’ X = SHA256(H + salt)

X should be ‘0000....’

C->D	:	1
A->B	:	4

A->D	:	1
A->B	:	4

A->B	:	1
B->C	:	1

A->B	:	1
B->D	:	2

...	...

How to compute BitCoin?

E->D	:	3 C->D	:	3 A->C	:	1X = SHA256(H + salt)

X should be ‘0000....’

H

X = SHA256(H + salt)

X should be ‘0000....’ X = SHA256(H + salt)

X should be ‘0000....’

C->D	:	1
A->B	:	4

A->D	:	1
A->B	:	4

A->B	:	1
B->C	:	1

A->B	:	1
B->D	:	2

...	...

How to compute BitCoin?

E->D	:	3 C->D	:	3 A->C	:	1X = SHA256(H + salt)

X should be ‘0000....’

H

X = SHA256(H + salt)

X should be ‘0000....’ X = SHA256(H + salt)

X should be ‘0000....’

SHA256("The quick brown fox jumps over the lazy dog")
0x d7a8fbb307d7809469ca9abcb0082e4f8d5651e46d3cdb762d02d0bf37c9e592
SHA256("The quick brown fox jumps over the lazy dog.")
0x ef537f25c895bfa782526529a9b63d97aa631564d5d789c2b765448c8635fb6c

C->D	:	1
A->B	:	4

A->D	:	1
A->B	:	4

A->B	:	1
B->C	:	1

A->B	:	1
B->D	:	2

...	...

How to compute BitCoin?

E->D	:	3 C->D	:	3 A->C	:	1X = SHA256(H + salt)

X should be ‘0000....’

H

X = SHA256(H + salt)

X should be ‘0000....’ X = SHA256(H + salt)

X should be ‘0000....’

SHA256("The quick brown fox jumps over the lazy dog")
0x d7a8fbb307d7809469ca9abcb0082e4f8d5651e46d3cdb762d02d0bf37c9e592
SHA256("The quick brown fox jumps over the lazy dog.")
0x ef537f25c895bfa782526529a9b63d97aa631564d5d789c2b765448c8635fb6c

100
200
300
...

1
3
5
...

2
4
6
...

C->D	:	1
A->B	:	4

A->D	:	1
A->B	:	4

A->B	:	1
B->C	:	1

A->B	:	1
B->D	:	2

...	...

How to compute BitCoin?

E->D	:	3 C->D	:	3 A->C	:	1

H

Salt=8

C->D	:	1
A->B	:	4

A->D	:	1
A->B	:	4

A->B	:	1
B->C	:	1

A->B	:	1
B->D	:	2

...	...

How to compute BitCoin?

C->D	:	1
A->B	:	4

E->D	:	3 C->D	:	3 A->C	:	1

H

Salt=8

Proof of Work
• BitCoin uses the proof of work to achieve many

goals:
- Generating additional money
- Achieving consensus while tolerating malicious users
- A great incentive mechanism

Proof of Work
• BitCoin uses the proof of work to achieve many

goals:
- Generating additional money
- Achieving consensus while tolerating malicious users
- A great incentive mechanism

Proof of Work
• Occasionally, more than one block will be solved at

the same time, leading to several possible
branches

Proof of Work
• We should build on top of the first one you received.
• Others may have received the blocks in a different

order, and will be building on the first block they
received

Example

Example Example

Example Example

Proof of Work
• We do not need to worry about the branch problem:

- You always immediately switch to the longest branch
- The math makes it rare for blocks to be solved at the same

time, and even more rare for this to happen multiple times
- The end result is the block chain quickly stabilizes

Proof of Work
• We do not need to worry about the branch problem:

- You always immediately switch to the longest branch
- The math makes it rare for blocks to be solved at the same

time, and even more rare for this to happen multiple times
- The end result is the block chain quickly stabilizes

• ~10 minutes to generate a new block
• Your transactions are confirmed after 6 blocks

Proof of Work
• We do not need to worry about the branch problem:

- You always immediately switch to the longest branch
- The math makes it rare for blocks to be solved at the same

time, and even more rare for this to happen multiple times
- The end result is the block chain quickly stabilizes

• ~10 minutes to generate a new block
• Your transactions are confirmed after 6 blocks

Miners in BitCoin can earn a lot of money!

Miner’s life

