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- What is a centralized distributed system?
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Google Datacenter in Oregon

• A warehouse-sized computer 
- A single data center can easily contain 10,000 racks 

with 100 cores in each rack (1,000,000 cores total)

Data centers (size of 
a football field)

Google Datacenter in Oregon

Google Datacenters in the US Google Datacenters in this World



End Hosts vs. Routers

• Programmers need to access the network
• A network application programming interface 

(API)
- Socket programming
- Remote procedure calls

Network APIs

Connection-Oriented (TCP) socket operations 
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Socket (TCP)

import socket 

s = socket.socket(AF_INET,\    
                 SOCK_STREAM) 

s.blind(host, port) 
s.listen(5) 

while 1: 
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  msg = conn.recv() 
  conn.close 

s.close
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What’s the Cloud Computing What’s the Cloud Computing
Cloud computing is a business model for enabling 
convenient network access to a shared pool of configurable 
resources which can be rapidly provisioned and released 
with minimal management effort or service provider 
interaction.
                             

                       --- according to NIST(National Institute of Standards and Technology)
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Cloud Services v.s. Traditional Distributed 
Systems

Why We Like It?

• Why users like it? 
- Do not care where it is, it is “just there”
- Access from “any” platform

• Why CS researchers like it? 
- High-performance computation with less money
- Lots of hard and interesting new challenges

Building Blocks
• What techniques are used to support 

cloud? 
- Internet
- Smart and cheap personal devices
- Robust and scalable software systems
- Virtualization
- ... ...

Types of Cloud Services
• Three types of services:
- Software as a Service (SaaS)
- Analogy: Restaurant. Prepares&serves entire meal, does 

the dishes, etc

- Platform as a Service (PaaS)
- Analogy: Take-out food. Prepares meal but does not serve 

it.

- Infrastructure as a Service (IaaS)
- Analogy: Grocery store. Provides raw ingredients.
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Types of Cloud Services
• Three types of services:
- Software as a Service (SaaS)
- Analogy: Restaurant. Prepares&serves entire meal, does 

the dishes, etc

- Platform as a Service (PaaS)
- Analogy: Take-out food. Prepares meal but does not serve 

it.

- Infrastructure as a Service (IaaS)
- Analogy: Grocery store. Provides raw ingredients.

The Major Cloud Providers
• Amazon is the big player: 

- Infrastructure as a service (e.g., EC2)
- Storage as a service (e.g., S3)

• But there are many others:
- Microsoft Azure: It has similar services to Amazon, with an 

emphasis on .Net programming model
- Google App Engine: It offers programming interface, 

Hadoop, also software as a service, e.g., Gmail and 
Google Docs

- IBM, HP, Yahoo!: They seem to focus on enterprise scale 
cloud apps



The Major Cloud Providers
• Amazon is the big player: 

- Infrastructure as a service (e.g., EC2)
- Storage as a service (e.g., S3)

• But there are many others:
- Microsoft Azure: It has similar services to Amazon, with an 

emphasis on .Net programming model
- Google App Engine: It offers programming interface, 

Hadoop, also software as a service, e.g., Gmail and 
Google Docs

- IBM, HP, Yahoo!: They seem to focus on enterprise scale 
cloud apps

Challenges?

In the cloud, we have much more data 
and users than before

• What if cluster is too big to fit into machine 
room? 
- Build a separate building for the cluster
- Building can have lots of cooling and power
- Result: Data center

PC Server Cluster Data center

Data! Users! Traffic!

• A warehouse-sized computer 
- A single data center can easily contain 10,000 racks 

with 100 cores in each rack (1,000,000 cores total)

Data centers (size of 
a football field)

Google’s Datacenter in Oregon



Google’s Datacenter Locations Challenges?
• How to manage a huge group of data? 

- How to store the data? 
- How to process and extract something from the data?
- How to handle multiple availability and consistency?
- How to preserve the data privacy?

Example: Google
• How to manage a huge group of data? 

- How to store the data? 
- How to process and extract something from the data?
- How to handle multiple availability and consistency?
- How to preserve the data privacy?

Google File System & BigTable

MapReduce
Paxos

BitCoin Blockchain=
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• Blockchain is used to decentralize the log:
- Decentralization
- Public accountability
- Efficiency

Ledger



!Block

• Each block contains multiple transactions
• Each user locally maintains a ledger
• All ledgers should have the same data

Log (or Ledger)

Log (or Ledger)

The Blockchain

!Block

Log (or Ledger)

Log (or Ledger)

The Blockchain

Will disk space become a burden?

!Block
• Transactions are hashed in a Merkle 

Tree.
• If we suppose blocks are generated 

every 10 minutes, then 4.2MB per year.

Log (or Ledger)

Log (or Ledger)

The Blockchain The Blockchain
Log (or Ledger)

hash	 hash	 hash	

• Each hash identifies the entire prefix of the 
log
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I am the 
leader

Consensus

D: $8
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New Block
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New Block Generation
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The Blockchain
• Blockchain can be used to decentralize any 

centralized service:
- Making them decentralized (without single-point-

fault)
- Public accountability

The Blockchain
• Blockchain can be used to decentralize any 

centralized service:
- Making them decentralized (without single-point-

fault)
- Public accountability

• We still have two problems:
- How to achieve consensus?
- How to preserve the privacy?

How to decentralize app via blockchain?
Log (or Ledger)

hash	 hash	 hash	

• What data we want to put as “transaction”
• The data is what we want to audit

Smart Contract

A->B	:	3

Contract:	
If	xx	
then	yy
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Contract:	
If	xx	
then	yy

Example
• You are planning to ship a laptop to your friend Bob

- You trust Bob, but you do not trust trucker Tom
- Tom will carry your laptop
- Tom does not trust since maybe you will not pay him

Example
• You are planning to ship a laptop to your friend Bob

- You trust Bob, but you do not trust trucker Tom
- Tom will carry your laptop
- Tom does not trust since maybe you will not pay him

You and Tom have to sign a contract.

Example
• We can use smart contract:

- You and Tom define all the rules in code
- You make a payment for shipment to smart contract on 

a day of loading.
- It holds payment till shipment delivery is confirmed by 

Bob.
- Smart contract releases the payment and money is 

transferred to Tom automatically.
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Another Example The Blockchain
• Blockchain can be used to decentralize any 

centralized service:
- Making them decentralized (without single-point-

fault)
- Public accountability

• We still have two problems:
- How to achieve consensus?
- How to preserve the privacy?

Deployment of BitCoin Nodes

A->B	:	3

A: $7 B: $5

D: $7 C: $5

• Blockchain is used for a decentralized bank:
- Each user has several wallets (public keys)
- They sign the money transaction using the private 

key
A->D	:	1
A->B	:	4

E->D	:	3
A->B	:	1
B->C	:	1

C->D	:	3

If B’s initial value is 0, then B is 4-1+1-2+1=3

A->B	:	1
B->D	:	2

A->C	:	1
...	...

How to compute BitCoin?
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...	...

How to compute BitCoin?

E->D	:	3 C->D	:	3 A->C	:	1

Who should generate a new block to 
include these two transactions?

C->D	:	1
A->B	:	4
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- Generating additional money
- Achieving consensus while tolerating malicious users
- A great incentive mechanism



Proof of Work
• BitCoin uses the proof of work to achieve many 

goals:
- Generating additional money
- Achieving consensus while tolerating malicious users
- A great incentive mechanism

Proof of Work
• Occasionally, more than one block will be solved at 

the same time, leading to several possible 
branches

Proof of Work
• We should build on top of the first one you received.
• Others may have received the blocks in a different 

order, and will be building on the first block they 
received

Example



Example Example
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Proof of Work
• We do not need to worry about the branch problem:

- You always immediately switch to the longest branch
- The math makes it rare for blocks to be solved at the same 

time, and even more rare for this to happen multiple times
- The end result is the block chain quickly stabilizes
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Proof of Work
• We do not need to worry about the branch problem:

- You always immediately switch to the longest branch
- The math makes it rare for blocks to be solved at the same 

time, and even more rare for this to happen multiple times
- The end result is the block chain quickly stabilizes

• ~10 minutes to generate a new block
• Your transactions are confirmed after 6 blocks

Miners in BitCoin can earn a lot of money!

Miner’s life


