CPSC 422/522 Design & Implementation of Operating Systems

Lecture 22: Distributed Systems

Zhong Shao Dept. of Computer Science Yale University

Acknowledgement: some slides are taken from previous lectures by Dr. Ennan Zhai

Have you used distributed system?

Have you used distributed system?

Have you used distributed system?

•	00 0 / Minbox - eman.zhal@gmail × / To Google Tra	irslete ×			A	
	Apps Setting Started Latest Headlines	4%8D%AU%E4%8C%9A%E8%AF%84%E4%88%AL ported from Find	MEEN960870E50900970EF90	CR9F	W 6	
Dropbox - Files - Simplify your life - Mozilla Firefox File Edit View Higtory Bookmarks Iools Help Docebox - Edit - Simplify your life	-You Seach lange Maps Pay You'lde New Onal Die Gleader Non				ennan zhai	
dropbox.com https://www.dropbox.com/ho	Translate					
	English Spanish Prench Chinese-detected v		to English Spanish Arabic	* Translate		
Vropbox	你会说中文吗?		× Do you speak C	chinese?		
× Dropbox on the gol		+) 🗰	Ä ☆ ■		0 = ~	
Always have your Dropbox at hand with any of our mobile apps!	N hui shuô zhôngwên ma?					
		Geogle Translate for Business: Translator Too	akit Website Translator Gio	of Market Finder		
	Press biblions	Transformer		Adven	How to build muscle now provided by Force Factor Soing provided by: Wileshyle.cor	
👸 Get extra space free		From theorazycal	From In CubeCallery	Groups	mor	
		Prer chocobal	Tren Stelle B.	sky & clou 50, 102 ment clouds 21,550 ment	8s ers 503, 129 photos ers 239,641 photos	
	From In CubeGall	From Hpy2baal	From	Photographers	mor	
			-	Capitolsho	s Photography	

Have you used distributed system?

What is a distributed system?

• A system of multiple computers (nodes) communicating over a network

What is a distributed system?

- A system of multiple computers (nodes) communicating over a network
- Some following questions:
 - What is a decentralized system?
 - What is a cloud system?
 - What is a centralized distributed system?

Network Basics

- We connect computers via point-to-point links:
 - Local area network, DNS and ISP routers
 - Communications are unreliable
 - No global control of the network

Network Basics

- We connect computers via point-to-point links:
- Local area network, DNS and ISP routers
- Communications are unreliable
- No global control of the network

Example: HTTP Layer Encapsulation

End Hosts vs. Routers

Finding Nodes Hey What's your address? 705 PM def 705 PM def

Network Basics

- Each interface on a host has a unique MAC address:
 - My machine 48-bit ethernet address = 32:00:19:ac:b1:40

Network Basics

- Each interface on a host has a unique MAC address:
 - My machine 48-bit ethernet address =
 - 32:00:19:ac:b1:40

Why we need a physical address?

Network Basics

- Each interface on a host has a unique MAC address:
 - My machine 48-bit ethernet address = 32:00:19:ac:b1:40

Why we need a physical address?

Which layer in OSI model it belongs to?

Network Basics

- Each interface on a host has a unique MAC address:
 - My machine 48-bit ethernet address = 32:00:19:ac:b1:40
- This is not too interesting to us as programmers
 - We usually do not communicate at the data link layer

Network Basics

- Addressing applications:
 - IP address (32-bit for IPv4) and port number (16-bit)
 - Well-known port numbers (0-1023), e.g., ftp, ssh and http

Network Basics

- Addressing applications:
 - IP address (32-bit for IPv4) and port number (16-bit)
 - Well-known port numbers (0-1023), e.g., ftp, ssh and http
- We have two transport-layer protocols
 - TCP (SSH and FTP) and UDP (Streaming and local broadcast)
 - What is the difference?

Today's Cluster PC Server Cluster

Today's Cluster

<image>FCToday's ClusterImage: Delta clust

Datacenter

- What if cluster is too big to fit into machine room?
 - Build a separate building for the cluster
 - Building can have lots of cooling and power

- Result: Data center

Google Datacenter in Oregon

Google Datacenter in Oregon

Data centers (size of a football field)

Google Datacenter in Oregon

Data centers (size of a football field)

- A warehouse-sized computer
 - A single data center can easily contain 10,000 racks with 100 cores in each rack (1,000,000 cores total)

Google Datacenters in the US

Google Datacenters in this World

Network APIs

- Programmers need to access the network
- A network application programming interface (API)
 - Socket programming
 - Remote procedure calls

Socket (TCP)

What's the Cloud Computing

Cloud computing is a business model for enabling convenient network access to a shared pool of configurable resources which can be rapidly provisioned and released with minimal management effort or service provider interaction.

--- according to NIST(National Institute of Standards and Technology)

Have You Used the Cloud?

Have You Used the Cloud?

Have You Used the Cloud?

Why We Like It? • Why users like it? • Do not care where it is, it is "just there • Access from "any" platform

Why We Like It?

- Why users like it?
 - Do not care where it is, it is "just there
 - Access from "any" platform

Cloud Services v.s. Traditional Distributed Systems

Why We Like It?

- Why users like it?
 - Do not care where it is, it is "just there
 - Access from "any" platform

- Why CS researchers like it?
 - High-performance computation with less money
 - Lots of hard and interesting new challenges

Building Blocks

- What techniques are used to support cloud?
 - Internet
 - Smart and cheap personal devices
 - Robust and scalable software systems
 - Virtualization
 -

Types of Cloud Services

• Three types of services:

Types of Cloud Services

• Three types of services:

it.

- Infrastructure as a Service (laaS)
 - Analogy: Grocery store. Provides raw ingredients.

Types of Cloud Services

• Three types of services:

- Platform as a Service (PaaS)

- Analogy: Take-out food. Prepares meal but does not serve it.
- Infrastructure as a Service (laaS)
- Analogy: Grocery store. Provides raw ingredients.

Types of Cloud Services

- Three types of services:
 - Software as a Service (SaaS)
 - Analogy: Restaurant. Prepares&serves entire meal, does the dishes, etc
 - Platform as a Service (PaaS)
 - Analogy: Take-out food. Prepares meal but does not serve it.
 - Infrastructure as a Service (laaS)
 - Analogy: Grocery store. Provides raw ingredients.

Software as a Service (SaaS)

Cloud Provider (i.e., SaaS Provider)

SaaS provider offers an entire application

- Word processor, spreadsheet, CRM software, etc.

- Customer pays cloud provider and uses the service

Cloud Provider (i.e., SaaS Provider)

SaaS provider offers an entire

application

- Word processor, spreadsheet, CRM software, etc.

- SaaS provider offers an entire application
 - Word processor, spreadsheet, CRM software, etc.
 - Customer pays cloud provider and uses the service

- Word processor, spreadsheet, CRM software, etc.
- Customer pays cloud provider and uses the service
- Example: Google Apps, Salesforce.com, etc.

- Outsourcing your e-mail software:
 - Distributed, replicated message store in BigTable

- Distributed, replicated message store in BigTable

- read)
- Stronger consistency for others (e.g., send msg)

- For example, Microsoft Common Language Runtime (CLR)

- App provider pays the cloud for the platform

(CLR)

- Customer pays app provider for the service

- Customer pays app provider for the service
- Example: Windows Azure, Google App Engine, etc.

- Facebook offers PaaS capabilities to App provider
 - Facebook APIs allow access to social network properties

- App providers adopt their services (e.g., game) onto Facebook

- Facebook offers PaaS capabilities to App provider
 - Facebook APIs allow access to social network properties
 - App providers adopt their services (e.g., game) onto Facebook

- Facebook offers PaaS capabilities to App provider
 - Facebook APIs allow access to social network properties
 - App providers adopt their services (e.g., game) onto Facebook
 - Facebook itself also uses PaaS provided by its company, e.g., log analysis for recommendations

Infrastructure as a Service (IaaS)

Infrastructure as a Service (IaaS)

Infrastructure as a Service (IaaS)

App Provider Image: App Provider Image: Application Image:

Infrastructure as a Service (IaaS)

Infrastructure as a Service (IaaS)

- Customer pays App provider for the service
- Example: Amazon Web Services, Rackspace Cloud, etc.

- Netflix (app) heavily depends on Amazon AWS:
 - Media files are stored in S3
 - Transcoding to target devices (e.g., iPad) using EC2

- Netflix (app) heavily depends on Amazon AWS:
- Media files are stored in S3
- Transcoding to target devices (e.g., iPad) using EC2

Types of Cloud Services

- Three types of services:
 - Software as a Service (SaaS)
 - Analogy: Restaurant. Prepares&serves entire meal, does the dishes, etc
 - Platform as a Service (PaaS)
 - Analogy: Take-out food. Prepares meal but does not serve it.
 - Infrastructure as a Service (laaS)
 - Analogy: Grocery store. Provides raw ingredients.

The Major Cloud Providers

- Amazon is the big player:
- Infrastructure as a service (e.g., EC2)
- Storage as a service (e.g., S3)

The Major Cloud Providers

- Amazon is the big player:
 - Infrastructure as a service (e.g., EC2)
 - Storage as a service (e.g., S3)
- But there are many others:
 - Microsoft Azure: It has similar services to Amazon, with an emphasis on .Net programming model
 - Google App Engine: It offers programming interface, Hadoop, also software as a service, e.g., Gmail and Google Docs
 - IBM, HP, Yahoo!: They seem to focus on enterprise scale cloud apps

Challenges?

In the cloud, we have much more data and users than before

Data! Users! Traffic!

Server

Data center

- What if cluster is too big to fit into machine room?
 - Build a separate building for the cluster
 - Building can have lots of cooling and power
 - Result: Data center

PC

Google's Datacenter in Oregon

Data centers (size of a football field)

- A warehouse-sized computer
 - A single data center can easily contain 10,000 racks with 100 cores in each rack (1,000,000 cores total)

Google's Datacenter Locations

Challenges?

- How to manage a huge group of data?
 - How to store the data?
 - How to process and extract something from the data?
 - How to handle multiple availability and consistency?
 - How to preserve the data privacy?

Example: Google

- How to manage a huge group of data?
 - How to store the data Google File System & BigTable
 - How to process and extract something fro MapReduce
 - How to handle multiple ava Paxos onsistency?
 - How to preserve the data privacy?

BitCoin ≠ Blockchain

The Blockchain

• Blockchain is used to decentralize the log:

The Blockchain

- Blockchain is used to decentralize the log:
 - Decentralization
 - Public accountability
 - Efficiency

The Blockchain

- Blockchain is used to decentralize the log:
 - Decentralization
 - Public accountability
 - Efficiency

Transactions in the Blockchain

The Blockchain

- Blockchain can be used to decentralize any centralized service:
 - Making them decentralized (without single-pointfault)
 - Public accountability

The Blockchain

- Blockchain can be used to decentralize any centralized service:
 - Making them decentralized (without single-pointfault)
 - Public accountability
- We still have two problems:
 - How to achieve consensus?
 - How to preserve the privacy?

Example

- You are planning to ship a laptop to your friend Bob
 - You trust Bob, but you do not trust trucker Tom
 - Tom will carry your laptop
 - Tom does not trust since maybe you will not pay him

Example

- You are planning to ship a laptop to your friend Bob
 - You trust Bob, but you do not trust trucker Tom
 - Tom will carry your laptop
 - Tom does not trust since maybe you will not pay him

You and Tom have to sign a contract.

Example

- We can use smart contract:
- You and Tom define all the rules in code
- You make a payment for shipment to smart contract on a day of loading.
- It holds payment till shipment delivery is confirmed by Bob.
- Smart contract releases the payment and money is transferred to Tom automatically.

Another Example

need to exercise

exercise regime

Another Example A ledger records all changes Doctor informs Patient agrees to A "HealthCoin" is As an individual patient that they need to exercise exercise regime placed – a smart performs agreed on

contract - is placed

in the patients

wallet (with

demurrage)

actions, health

coins change (either go up or

down) - tracked by wearable

The Blockchain

- Blockchain can be used to decentralize any centralized service:
 - Making them decentralized (without single-pointfault)
 - Public accountability
- We still have two problems:
 - How to achieve consensus?
 - How to preserve the privacy?

Deployment of BitCoin Nodes

- Blockchain is used for a decentralized bank:
 - Each user has several wallets (public keys)
 - They sign the money transaction using the private key

How to compute BitCoin?

If B's initial value is 0, then B is 4-1+1-2+1=3

How to compute BitCoin?

How to compute BitCoin?

Proof of Work

- BitCoin uses the proof of work to achieve many goals:
 - Generating additional money
 - Achieving consensus while tolerating malicious users
 - A great incentive mechanism

Proof of Work

- BitCoin uses the proof of work to achieve many goals:
 - Generating additional money
 - Achieving consensus while tolerating malicious users
 - A great incentive mechanism

Proof of Work

 Occasionally, more than one block will be solved at the same time, leading to several possible branches

Proof of Work

- We should build on top of the first one you received.
- Others may have received the blocks in a different order, and will be building on the first block they received

Proof of Work

- We do not need to worry about the branch problem:
 - You always immediately switch to the longest branch
 - The math makes it rare for blocks to be solved at the same time, and even more rare for this to happen multiple times
 - The end result is the block chain quickly stabilizes

Proof of Work

- We do not need to worry about the branch problem:
 - You always immediately switch to the longest branch
 - The math makes it rare for blocks to be solved at the same time, and even more rare for this to happen multiple times
 - The end result is the block chain quickly stabilizes
- ~10 minutes to generate a new block
- Your transactions are confirmed after 6 blocks

Proof of Work

- We do not need to worry about the branch problem:
 - You always immediately switch to the longest branch

Miners in BitCoin can earn a lot of money!

- ~10 minutes to generate a new block
- Your transactions are confirmed after 6 blocks

Miner's life

