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Replication Technique
• Distributed systems replicate data across multiple 

servers
- Replication provides fault-tolerance if servers fail
- Allowing clients to access different servers potentially 

increasing scalability (max throughput)
- What is the problem?
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Consistency Models
• A consistency model specifies a contract between 

programmer and system, wherein the system guarantees 
that if the programmer follows the rules, data will be 
consistent.

• A consistency model basically refers to the degree of 
consistency that should be maintained for the shared data.

• If a system supports the stronger consistency model, then 
the weaker consistency model is automatically supported.

• But stronger consistency models sacrifice more availability 
and fault tolerance.  
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Consistency Models

• Strict consistency

• Strong consistency (Linearizability)

• Sequential consistency

• Causal consistency

• Eventual consistency

Weaker
Consistency

Models

These models describe when and how different 
nodes in a distributed system view the order of 
operations
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Why we have so many consistency models?

They are used for different application scenarios that 
balance the trade-off between 

consistency/availability/fault-tolerance.

Consistency Models

• Strict consistency

• Strong consistency (Linearizability)

• Sequential consistency

• Causal consistency

• Eventual consistency

Weaker
Consistency

Models

These models describe when and how different 
nodes in a distributed system view the order of 
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Strict Consistency
• Strongest consistency model we will consider

- Any read on a data item X returns value corresponding to 
result of the most recent write on X

• Need an absolute global time
- “Most recent” needs to be unambiguous
- Corresponds to when operation was issued
- Impossible to implement in real-world (network delays)
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• Strongest consistency model we will consider
- Any read on a data item X returns value corresponding to 

result of the most recent write on X

• Need an absolute global time
- “Most recent” needs to be unambiguous
- Corresponds to when operation was issued
- Impossible to implement in real-world (network delays)
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Strong Consistency
• Provide behavior of a single copy of object:

- Read should return the most recent write
- Subsequent reads should return same value, until next 

write

Strong Consistency
• Provide behavior of a single copy of object:

- Read should return the most recent write
- Subsequent reads should return same value, until next 

write

• Telephone intuition:
- 1. Alice updates Facebook post
- 2. Alice calls Bob on phone: “Check my Facebook post!”
- 3. Bob read’s Alice’s wall, sees her post



Strong Consistency ?
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Phone call:   Ensures happens-before relationship, even 
                          though “out-of-band” communication

Strong Consistency ?
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read(A)
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Cool idea:   Delay responding to writes/ops until committed

Strong Consistency ?



Server 1
Server 2
Server 3

write(A,1)

read(A)
1? or 0?

Strong Consistency? This is buggy!

- Isn’t sufficient to return value of server3:
        It does not know precisely when op is “globally” committed

- Instead: Need to actually order read operation
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Strong Consistency? This is buggy!

committed

success

- Isn’t sufficient to return value of server3:
        It does not know precisely when op is “globally” committed

- Instead: Need to actually order read operation
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read(A)
1

Strong Consistency!!!

write success
on all servers

- Order all operations via (1) leader and (2) agreement

Strong Consistency = Linearizability

• Linearizability:
- All servers execute all ops in some identical sequential order
- Global ordering preserves each client’s own local ordering
- Global ordering preserves real-time guarantee

• All operations receive global time-stamp via a sync’d clock
• If TS(x)<TS(y), then OP(x) precedes OP(y) in the sequence

• Once write completes, all later reads should return value 
of that write or value of later write

• Once read returns particular value, all later reads should 
return that value or value of later write



Intuition: Real-time ordering

• Once write completes, all later reads should return value 
of that write or value of later write

• Once read returns particular value, all later reads should 
return that value or value of later write

Server 1
Server 2
Server 3

write(A,1)

read(A)
1committed

Intuition: Real-time ordering

• Once write completes, all later reads should return value 
of that write or value of later write

• Once read returns particular value, all later reads should 
return that value or value of later write
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Consistency Models

• Strict consistency

• Strong consistency (Linearizability)

• Sequential consistency

• Causal consistency

• Eventual consistency
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Consistency

Models

These models describe when and how different 
nodes in a distributed system view the order of 
operations

✔
✔

Weaker: Sequential Consistency
Sequential = linearizability - real-time ordering



Weaker: Sequential Consistency

• Linearizability:
- All servers execute all ops in some identical sequential order
- Global ordering preserves each client’s own local ordering
- Global ordering preserves real-time guarantee

• All operations receive global time-stamp via a sync’d clock
• If TS(x)<TS(y), then OP(x) precedes OP(y) in the sequence

Sequential = linearizability - real-time ordering

Weaker: Sequential Consistency

• Linearizability  Sequential:
- All servers execute all ops in some identical sequential order
- Global ordering preserves each client’s own local ordering
- Global ordering preserves real-time guarantee

• All operations receive global time-stamp via a sync’d clock
• If TS(x)<TS(y), then OP(x) precedes OP(y) in the sequence

Sequential = linearizability - real-time ordering

Weaker: Sequential Consistency

• Sequential consistency:
All (read/write) operations on data store were executed in 
some sequential order, and the operations of each individual 
process appear in this sequence

• With concurrent ops, “reordering” of ops acceptable, 
but all servers must see same order:
- linearizability cares about time but sequential consistency 

cares about program order

Server 1
Server 2
Server 3

write(A,1)

read(A)
0

In this example, system orders read(A) before write(A, 1)

Sequential Consistency



Implementing Sequential Consistency

• Nodes use vector clocks to determine if two events had 
distinct happens-before relationship:
- lf timestamp(a) < timestamp(b) => a       b

• If ops are concurrent (i,j, a[i]<b[i] and a[j]>b[j]):
- Hosts can order ops a, b arbitrarily but consistently

OP1

OP2

OP3

OP4

Building Block: Vector Clock
• Initially all clocks are zero
• Each time a process experiences an internal event, it increments its 

own logical clock in the vector by one
• Each time for a process to send a message, it increments its own 

clock and then sends a copy of its own vector
• Each time a process receives a message, it increments its own logical 

clock by one and updates each element in its vector by max(own, 
received)

Building Block: Vector Clock
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Implementing Sequential Consistency

• Nodes use vector clocks to determine if two events 
had distinct happens-before relationship:
- lf timestamp(a) < timestamp(b) => a       b

• If ops are concurrent (i,j, a[i]<b[i] and a[j]>b[j]):
- Hosts can order ops a, b arbitrarily but consistently
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Implementing Sequential Consistency

Host1: OP 1, 2, 3, 4
Host2: OP 1, 2, 3, 4

✔

OP1

OP2

OP3

OP4

Implementing Sequential Consistency

Host1: OP 1, 2, 3, 4
Host2: OP 1, 2, 3, 4

Host1: OP 1, 3, 2, 4
Host2: OP 1, 3, 2, 4

✔ ✔

OP1

OP2

OP3

OP4



Implementing Sequential Consistency
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W(x,a)

b=R(x)

Server 4

W(x,b)

b=R(x)
a=R(x)
a=R(x)

• Is this valid sequential consistency?
- It is, because Server 3 and 4 agree on order of ops
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• Is this valid sequential consistency?
- No, because Server 3 and 4 do not agree on order of ops.
- In practice, does not matter when events took place on 

different machine, as long as server agree on order
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• Is this valid sequential consistency?
- No, because Server 3 and 4 do not agree on order of ops.
- In practice, does not matter when events took place on 

different machine, as long as server agree on order
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Causal consistency
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Sequential Consistency
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A valid sequential consistency or not?



Sequential Consistency
Server 1
Server 2
Server 3

W(x,a)

b=R(x)

Server 4

W(x,b)

b=R(x)
a=R(x)
a=R(x)

A valid sequential consistency or not?
- No, because it does not preserve local ordering

Consistency Models

• Strict consistency

• Strong consistency (Linearizability)

• Sequential consistency

• Causal consistency

• Eventual consistency

Weaker
Consistency

Models

These models describe when and how different 
nodes in a distributed system view the order of 
operations

✔
✔

✔

Weak consistency model

Causal Consistency
• Causal consistency:

- Causal consistency is one of weak consistency models
- Causally related writes must be seen by all processes in 

the same order
- Concurrent writes may be seen in different orders on 

different machines

Causal Consistency

Server 1
Server 2
Server 3

W(x,a)
a=R(x)

Server 4

W(x,b)

a=R(x)b=R(x)
a=R(x) b=R(x)

Not valid

Causally related writes must be seen by all 
processes in the same order



Causal Consistency
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Valid

Consistency Models

• Strict consistency

• Strong consistency (Linearizability)

• Sequential consistency

• Causal consistency

• Eventual consistency

Weaker
Consistency

Models

These models describe when and how different 
nodes in a distributed system view the order of 
operations

Weak consistency model

✔
✔

✔
✔

Eventual Consistency
• Eventual consistency:

- Achieve high availability
- If no new updates are made to a given data item, 

eventually all accesses to the data will return the last 
updated value.

• Eventual consistency is commonly used:
- Git repo, iPhone sync
- Dropbox and Amazon Dynamo

Consistency Models

• Strict consistency

• Strong consistency (Linearizability)

• Sequential consistency

• Causal consistency

• Eventual consistency

Weaker
Consistency

Models

These models describe when and how different 
nodes in a distributed system view the order of 
operations

Weak consistency model

✔
✔

✔
✔
✔
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• Consistency Issues
• Consistency Models
• Two-Phase Commit
• Consensus
• Case Study: Paxos

Two-Phase Commit
• Goal: Reliably agree to commit or abort a collection of 

sub-transactions

• All the operations happens at single master node
- Concurrent machines
- Failure and recovery of machines

Achieve strong consistency!

Intuitive Example
• You want to organize outing with 3 friends at 6pm Tue

- Go out only if all friends can make it

• What do you do?
- Call each of them and ask if can do 6pm Tue (voting phase)
- If all can do Tue, call each friend back to ACK (commit)
- If one cannot do Tue, call others to cancel (abort)

Intuitive Example
• You want to organize outing with 3 friends at 6pm Tue

- Go out only if all friends can make it

• What do you do?
- Call each of them and ask if can do 6pm Tue (voting phase)
- If all can do Tue, call each friend back to ACK (commit)
- If one cannot do Tue, call others to cancel (abort)

This is exactly how two-phase commit works



Two-Phase Commit Protocol

Coordinator
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Participant
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commit?
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• Phase 1: Voting phase
- Get commit agreement from every participant
- A single “no” response means that we will have to abort

Two-Phase Commit Protocol
• Phase 1: Voting phase

- Get commit agreement from every participant
- A single “no” response means that we will have to abort
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Two-Phase Commit Protocol
• Phase 1: Voting phase

- Get commit agreement from every participant
- A single “no” response means that we will have to abort

Coordinator

Participant

Participant

Participant

Participant

yes

yes

yes

yes

Two-Phase Commit Protocol

Coordinator

Participant

Participant

Participant

Participant

commit

commit

commitcommit

• Phase 2: Commit phase
- Send the results of the vote to every participant
- Send abort if any participant voted “no” in Phase 1



Two-Phase Commit Protocol
• Phase 2: Commit phase

- Get “committed” acknowledgements from every participant
- A single “no” response means that we will have to abort

Coordinator

Participant

Participant

Participant

Participant

ack

ack

ack

ack

Two-Phase Commit Protocol
• Two-phase commit assumes a fail-recover model

- Any failed system will eventually recover

• A recovered system cannot change its mind
- If a node agreed to commit and then crashed, it must be 

willing and able to commit upon recovery

• If the leader fails?
- Lose availability: system not longer “live”

Lecture Roadmap

• Consistency Issues
• Consistency Models
• Two-Phase Commit
• Consensus
• Case Study: Paxos

Consensus / Agreement Problem
• Definition:

- A general agreement about something
- An idea or opinion that is shared by all the people in a group

• Given a set of processors, each with an initial value:
- Termination: All non-faulty processes eventually decide on 

a value
- Agreement: All processes that decide do so on the same 

value
- Validity: The value that has been decided must have 

proposed by some process



Consensus / Agreement Problem
• Goal: N processes want to agree on a value

• Correctness (safety):
- All N nodes agree on the same value
- The agreed value has been proposed by some node

• Fault-tolerance:
- If <= F faults in a window, consensus reached eventually
- Liveness not guaranteed: If > F faults, no consensus
- Given goal of F, what is N? Depends on fault model 

(“Crash fault” need 2F+1; Byzantine fault needs 3F+1)
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Paxos
• Safety:

- Only a single value is chosen
- Only a proposed value can be chosen
- Only chosen values are learned by processes

• Liveness:
- Some proposed value eventually chosen if fewer than half 

of processes fail
- If value is chosen, a process eventually learns it

Paxos
• Three conceptual roles:

- Proposers: propose values
- Acceptors: accept values, where chosen if majority accept
- Learners: learn the outcome (the chosen value)

• In reality, a process can play any/all roles

• Ordering: proposal is tuple [proposal #, value] = [n,v]
- Proposal # strictly increasing, globally unique
- Globally unique? Trick: set low-order bits to proposer’s ID

Paxos
• Three conceptual roles:

- Proposers: propose values
- Acceptors: accept values, where chosen if majority accept
- Learners: learn the outcome (the chosen value)

• In reality, a process can play any/all roles

• Ordering: proposal is tuple [proposal #, value] = [n,v]
- Proposal # strictly increasing, globally unique
- Globally unique? Trick: set low-order bits to proposer’s ID

Paxos + Two-Phase Commit
• Use Paxos for view-change

- If anybody notices current master unavailable, or one or 
more replicas unavailable

- Propose view change Paxos to establish new group:
        Value agreed upon = <2PC Master, {2PC Replicas} >.

• Use two-phase commit for actual data
- Writes go to master for two-phase commit
- Reads go to acceptors and/or master


