CPSC 422/522 Design & Implementation
of Operating Systems

Lecture 22: Replications & Consensus

Zhong Shao
Dept. of Computer Science
Yale University

Acknowledgement: some slides are taken from previous lectures by Dr. Ennan Zhai

Lecture Roadmap

e Consistency Issues

Replication Technique
* Distributed systems replicate data across multiple
servers

Replica Replica Replica

P © ©

Server1 Server2 Server3

Replication Technique

* Distributed systems replicate data across multiple

servers

- Replication provides fault-tolerance if servers fail

Replica

Replica

Replica

Serveri

e

e

Server2 Server3

Replication Technique

* Distributed systems replicate data across multiple
servers

- Replication provides fault-tolerance if servers fail
- Allowing clients to access different servers potentially
increasing scalability (max throughput)

= —

— — — Client
. eplica eplica eplica
Client - - -

(bC)
(Beijing) Q & &

Server1 Server2 Server3

Replication Technique
* Distributed systems replicate data across multiple
servers
- Replication provides fault-tolerance if servers fail
- Allowing clients to access different servers potentially
increasing scalability (max throughput)

- What is the problem? / g
@\, — — — Client
Client eplica eplica eplica (DC)

(Beijing) & Q m

Server1i Server2 Server3

Consistency Problem

- =

Client
Client

X=0 X=0 X=0 (DC)
(Beijing) Q & m

Server1 Server2 Server3

Consistency Problem

WX.1) =
—_— Client
Client (DC)

X=0 X=0 X=0
(Beijing) & & &

Server1 Server2 Server3

Consistency Problem

R(X) =1 or 0?
WX, 1 =
(\3 — Client
Client (DC)
(Beijing)

© & ®

Server1 Server2 Server3

Consistency Problem
Wy Aoy =

—_— - - - Client
Client - - - (DC)

(Beijing) m Q m

Server1 Server2 Server3

Consistency Problem

=

QM) . Client

Client X X X (DC)
(Beijing) m m m

Server1 Server2 Server3

S — R(/O» =

— Client

Client
(Beijing)

(DC)

® e 0

Server1 Server2 Server3

Lecture Roadmap

» Consistency Issues
» Consistency Models

Consistency Models

* A consistency model specifies a contract between
programmer and system, wherein the system guarantees
that if the programmer follows the rules, data will be
consistent.

Consistency Models

* A consistency model specifies a contract between
programmer and system, wherein the system guarantees
that if the programmer follows the rules, data will be
consistent.

« A consistency model basically refers to the degree of
consistency that should be maintained for the shared data.

Consistency Models

A consistency model specifies a contract between
programmer and system, wherein the system guarantees
that if the programmer follows the rules, data will be
consistent.

* A consistency model basically refers to the degree of
consistency that should be maintained for the shared data.

* If a system supports the stronger consistency model, then
the weaker consistency model is automatically supported.

Consistency Models

« A consistency model specifies a contract between
programmer and system, wherein the system guarantees
that if the programmer follows the rules, data will be
consistent.

* A consistency model basically refers to the degree of
consistency that should be maintained for the shared data.

« If a system supports the stronger consistency model, then
the weaker consistency model is automatically supported.

« But stronger consistency models sacrifice more availability
and fault tolerance.

Consistency Models

* Strict consistency
» Strong consistency (Linearizability) Weaker
* Sequential consistency Consistency

) Models
* Causal consistency

* Eventual consistency v

These models describe when and how different
nodes in a distributed system view the order of
operations

Consistency Models

« Strict consistency
* Strong consistency H

o Why we have so many consistency models?

They are used for different application scenarios that
balance the trade-off between
° consistency/availability/fault-tolerance.

Icy

operations

Consistency Models

* Strict consistency
* Strong consistency (Linearizability) Weaker
* Sequential consistency Consistency

: Models
 Causal consistency

* Eventual consistency v

These models describe when and how different
nodes in a distributed system view the order of
operations

Strict Consistency

« Strongest consistency model we will consider

- Any read on a data item X returns value corresponding to
result of the most recent write on X

* Need an absolute global time

- “Most recent” needs to be unambiguous
- Corresponds to when operation was issued
- Impossible to implement in real-world (network delays)

Strict Consistency

* Strongest consistency model we will consider

- Any read on a data item X returns value corresponding to
result of the most recent write on X

* Need an absolute global time

- “Most recent” needs to be unambiguous
- Corresponds to when operation was issued
- Impossible to implement in real-world (network delays)

Server 1 Wix.2) >
Server 2 0=R(x) > x
Server 3 a=R(x) >

‘/ » Strict consistency

Consistency Models

» Strong consistency (Linearizability) Weaker

Consistency
Models

» Sequential consistency

 Causal consistency

* Eventual consistency v

These models describe when and how different
nodes in a distributed system view the order of
operations

Strong Consistency

* Provide behavior of a single copy of object:

- Read should return the most recent write
- Subsequent reads should return same value, until next
write

Strong Consistency

* Provide behavior of a single copy of object:

- Read should return the most recent write
- Subsequent reads should return same value, until next
write

* Telephone intuition:

- 1. Alice updates Facebook post
- 2. Alice calls Bob on phone: “Check my Facebook post!”
- 3. Bob read’s Alice’s wall, sees her post

Strong Consistency ?

| >

\write(A,1) f
success

Strong Consistency ?
Ezzl\\rnneoAJ) /f \ﬁ‘:i:?
\

Server 1 > Server 1 >
Server 2 > Server 2 \ >
Server 3 > Server 3
1
g\ [ead(A) \4 .
Strong Consistency ? Strong Consistency ?
= \write(A,1) / \(:\\ g\write(AJ) f \(:\\

Server 1 \ > Server 1 \

Server 2 > Server 2 >
Server 3 > Server 3 >

\
g\ Aad(A) \1

Phone call: Ensures happens-before relationship, even
though “out-of-band” communication

>

\
g\ [ead(A) \1

Cool idea: Delay responding to writes/ops until committed

Strong Consistency? This is buggy!

= A1) 8
"/ \\Q

Server 2 >

\ f \‘:? or 0?
g read(A) >

- Isn’t sufficient to return value of server3:
It does not know precisely when op is “globally” committed

\ 4

Server 1

Server 3

- Instead: Need to actually order read operation

Strong Consistency? This is buggy!
g\write(AJ)lf g
Server 1 w SLIo0eSS
Server 2 \-/ ;
Server 3
commit’Eed / \1
g read(A)

- Isn’t sufficient to return value of server3:
It does not know precisely when op is “globally” committed

\ 4

A 4

\ 4

- Instead: Need to actually order read operation

Strong Consistency!!!
= 7 >

\write(A,1) .
. [write success
'/ on all servers
Server 1

Server 2 Wf \
Server 3 \‘/ / \
g /ead(A)\ 5

- Order all operations via (1) leader and (2) agreement

\ 4

\ 4

\ 4

Strong Consistency = Linearizability

* Linearizability:
- All servers execute all ops in some identical sequential order
- Global ordering preserves each client’s own local ordering
- Global ordering preserves real-time guarantee
* All operations receive global time-stamp via a sync’d clock
* If TS(x)<TS(y), then OP(x) precedes OP(y) in the sequence

* Once write completes, all later reads should return value
of that write or value of later write

* Once read returns particular value, all later reads should
return that value or value of later write

In’rui’rion' Real-time ordering Intuition: Real-time ordering

\wrlteA1 /\g
oz T\
\/ \ / \

Server 3

L

g write(A,1 .
Server 1 \ (%bz\@/\\
Server 2 / \ W
\ S\

Server 3 \]
commltted \ / \ committled \ / \
g read(A) = g read(A)

\ 4

\ 4

\ 4
\ 4

\ 4

\ 4

> >

* Once write completes, all later reads should return value * Once write completes, all later reads should return value
of that write or value of later write of that write or value of later write
* Once read returns particular value, all later reads should » Once read returns particular value, all later reads should
return that value or value of later write return that value or value of later write
Consistency Models Weaker: Sequential Consistency

. . — Sequential = linearizability - real-time ordering
‘/ * Strict consistency

¢/ * Strong consistency (Linearizability) Weaker
B« Sequential consistency Consistency

: Models
 Causal consistency

* Eventual consistency v

These models describe when and how different
nodes in a distributed system view the order of
operations

Weaker: Sequential Consistency

Sequential = linearizability - real-time ordering

* Linearizability:
- All servers execute all ops in some identical sequential order
- Global ordering preserves each client’s own local ordering
- Global ordering preserves real-time guarantee
* All operations receive global time-stamp via a sync’d clock
* If TS(x)<TS(y), then OP(x) precedes OP(y) in the sequence

Weaker: Sequential Consistency

Sequential = linearizability - real-time ordering

* Linearizability Sequential:

- All servers execute all ops in some identical sequential order
- Global ordering preserves each client’s own local ordering

—Clobalerderingpreservesreal-timeguarantee
Al i ; bakt ; d-elock
< - TSE)<TS(y)-then-OR(x)-precedes-OR(y)-in-the-sequence

Weaker: Sequential Consistency

» Sequential consistency:

All (read/write) operations on data store were executed in
some sequential order, and the operations of each individual
process appear in this sequence

» With concurrent ops, “reordering” of ops acceptable,

but all servers must see same order:

- linearizability cares about time but sequential consistency
cares about program order

Sequential Consistency
g\write(AJ) f\ §
\

Server 1

Server 2

Server 3 \ 0 >
g\« [ead(A)\ 5

In this example, system orders read(A) before write(A, 1)

Implementing Sequential Consistency Building Block: Vector Clock

* Initially all clocks are zero
* Nodes use vector clocks to determine if two events had Each time a process experiences an internal event, it increments its

distinct happens-before relationship: own logical clock in the vector by one
. i ' Each time for a process to send a message, it increments its own
- If timestamp(a) < timestamp(b) =>a — b clock and then sends a copy of its own vector
- » Each time a process receives a message, it increments its own logical
- If ops are concurrent (I’J’ a[l]<b[l] and a[J]>b[l])' clock by one and updates each element in its vector by max(own,

- Hosts can order ops a, b arbitrarily but consistently received)

OoP2 OP4

A\ 4

OP1 OP3

\ 4

Building Block: Vector Clock Building Block: Vector Clock

A > A >
A:0 A:0
B > B >
B:0 B:0
C > C >

Building Block: Vector Clock

>
>

A\ 4

A\ 4

Building Block: Vector Clock

— >
>

A 4

7‘ A2
B:1|B:2 B:3\ B4
C:1|C: C:1]\/C1

V

Building Block: Vector Clock

>
>

\ 4

\ 4

>
>

\ 4

B:1|B:2 B:3\ B4
C:1|[C: C: C:

oW
Ny W
ow
W w
oOw>
RON
 Z

Building Block: Vector Clock Implementing Sequential Consistency

A o
r— A4
A0 B5 * Nodes use vector clocks to determine if two events
| 5 had distinct happens-before relationship:
- If timestamp(a) < timestamp(b) =>a — b
B =
] « If ops are concurrent (i,j, a[i]<b[i] and a[j]>b][j]):
B0 - Hosts can order ops a, b arbitrarily but consistently
OoP2 OP4
C > >

A2
BS B:3 BS BS

\ 4

Implementing Sequential Consistency Implementing Sequential Consistency
Host1: OP 1, 2, 3, 4 Host1: OP 1, 2, 3,4 Host1: OP 1,3, 2, 4
Host2: OP 1, 2, 3, 4 Host2: OP 1, 2, 3,4 Host2: OP 1, 3, 2, 4

OP2 OP4 OoP2 OP4

\ 4
\ 4

OP1 OP3 OP1 OP3

A\ 4
\ 4

Implementing Sequential Consistency

Host1: OP 1, 2, 3,4 Host1: OP 1, 3, 2,4Host1: OP 1, 2, 3, 4
Host2: OP 1, 2, 3,4 Host2: OP 1, 3, 2, 4Host2: OP 1, 3, 2, 4

v v X

OoP2 OP4

A\ 4

OP1 OP3

\ 4

Sequential Consistency

Server 1W(x,a) >
Server 2 W(x,b) >
Server 3 b=R(x) a=R(x)
Server 4 b=R() a=R(x) ,

* |s this valid sequential consistency?

Sequential Consistency

Server 1W(x,a) >
Server 2 Wix.b) >
Server 3 b=R(Xx) a=R(x)
Server 4 b=R(x) a=R(Xx)

* |s this valid sequential consistency?
- ltis, because Server 3 and 4 agree on order of ops

Sequential Consistency

Server 1W(x,a) >
Server 2 W(x.b) >
Server 3 b=R(x) a=R(x)
Server 4 a=R(x) b=R(x)

* |s this valid sequential consistency?

Sequential Consistency

Server 1W(x,a) >
Server 2 Wix.b) >
Server 3 b=R(x) a=R(x)
Server 4 a=Rx) b=R() ,

* |s this valid sequential consistency?

- No, because Server 3 and 4 do not agree on order of ops.
- In practice, does not matter when events took place on
different machine, as long as server agree on order

Sequential Consistency

Server 1W(x,a) >
Server 2 W(x,b) >
Server 3 b=R(x) a=R(x)
Server 4 a=Rx) b=R(x)

* |s this valid sequential consistency?

- No, because Server 3 and 4 do not agree on order of ops.
- In practice, does not matter when events took place on
different machine, as long as server agree on order

Causal consistency

Sequential Consistency

Server 1W(x,a) >
Server 2 Wx,b) >
Server 3 b=R(x) a=R(x)
Server 4 b=R() a=R(x) ,

A valid sequential consistency

Sequential Consistency

Server YV(x,a)W(x,b) >
Server 2 >
Server 3 b=R(x) a=R(x)
Server 4 b=R(x) a=R(x)

A valid sequential consistency or not?

Sequential Consistency

Server ¥V(x,a)W(x,b) >
Server 2 >
Server 3 b=R(x) a=R(x)
Server 4 b=R(x) a=R(x)

A valid sequential consistency or not!?
- No, because it does not preserve local ordering

Consistency Models

¢/ ° Strict consistency
‘/ » Strong consistency (Linearizability)

‘/ » Sequential consistency

. Models
B « Causal consistency

* Eventual consistency v

Weak consistency model

These models describe when and how different
nodes in a distributed system view the order of
operations

Weaker
Consistency

Causal Consistency

 Causal consistency:

- Causal consistency is one of weak consistency models

- Causally related writes must be seen by all processes in
the same order

- Concurrent writes may be seen in different orders on
different machines

Causal Consistency

Server 1W(x,a) >
- a=R(x) W(x,b)

Server 2 >

Server 3 b=R(x) _a=R(x) |

Server 4 a=R(x) Db=R(x)

Not valid

Causally related writes must be seen by all
processes in the same order

Causal Consistency

Consistency Models

¢/ ° Strict consistency
V » Strong consistency (Linearizability)

‘/ » Sequential consistency

Server 1W(x,a) >
W(x,b
Server 2 (x.5) >
Server 3 b=R() a=Rk)
Server 4 a=R(x) b=R(x)
Valid

‘/ * Causal consistency

B « Eventual consistency

Weak consistency model

Weaker
Consistency
Models

N

These models describe when and how different
nodes in a distributed system view the order of

operations

Eventual Consistency

» Eventual consistency:

- Achieve high availability

- If no new updates are made to a given data item,
eventually all accesses to the data will return the last
updated value.

» Eventual consistency is commonly used:

- Git repo, iPhone sync
- Dropbox and Amazon Dynamo

Consistency Models

¢/ ° Strict consistency
¢/ * Strong consistency (Linearizability)

t/ » Sequential consistency

¢/ * Causal consistency

I/ » Eventual consistency

Weaker
Consistency
Models

N

Weak consistency model

These models describe when and how different
nodes in a distributed system view the order of

operations

Lecture Roadmap

» Consistency Issues
» Consistency Models
* Two-Phase Commit

Two-Phase Commit

» Goal: Reliably agree to commit or abort a collection of
sub-transactions

* All the operations happens at single master node

- Concurrent machines
- Failure and recovery of machines

Achieve strong consistency!

Intuitive Example

* You want to organize outing with 3 friends at 6pm Tue
- Go out only if all friends can make it

* What do you do?

- Call each of them and ask if can do 6pm Tue (voting phase)
- If all can do Tue, call each friend back to ACK (commit)
- If one cannot do Tue, call others to cancel (abort)

Intuitive Example

* You want to organize outing with 3 friends at 6pm Tue
- Go out only if all friends can make it

* What do you do?

- Call each of them and ask if can do 6pm Tue (voting phase)
- If all can do Tue, call each friend back to ACK (commit)
- If one cannot do Tue, call others to cancel (abort)

This is exactly how two-phase commit works

Two-Phase Commit Protocol

* Phase 1: Voting phase
- Get commit agreement from every participant

Two-Phase Commit Protocol

* Phase 1: Voting phase
- Get commit agreement from every participant

Participant

Participant

Participant

Participant

Two-Phase Commit Protocol

* Phase 1: Voting phase

- Get commit agreement from every participant
- A single “no” response means that we will have to abort

Participant

y@s
Participant
£
Q)

Participant

Two-Phase Commit Protocol

* Phase 2: Commit phase

- Send the results of the vote to every participant
- Send abort if any participant voted “no” in Phase 1

Participant

Participant

Two-Phase Commit Protocol

* Phase 2: Commit phase
- Get “committed” acknowledgements from every participant

Participant

Participant

Participant

Participant

Two-Phase Commit Protocol

» Two-phase commit assumes a fail-recover model
- Any failed system will eventually recover

* A recovered system cannot change its mind

- If a node agreed to commit and then crashed, it must be
willing and able to commit upon recovery

* If the leader fails?
- Lose availability: system not longer “live”

Lecture Roadmap

Consistency Issues
Consistency Models
Two-Phase Commit
Consensus

Consensus / Agreement Problem

* Definition:
- A general agreement about something
- An idea or opinion that is shared by all the people in a group

* Given a set of processors, each with an initial value:

- Termination: All non-faulty processes eventually decide on
a value

- Agreement: All processes that decide do so on the same
value

- Validity: The value that has been decided must have
proposed by some process

Consensus / Agreement Problem

» Goal: N processes want to agree on a value

* Correctness (safety):

- All N nodes agree on the same value
- The agreed value has been proposed by some node

Consensus / Agreement Problem

» Goal: N processes want to agree on a value

* Correctness (safety):

- All N nodes agree on the same value
- The agreed value has been proposed by some node

e Fault-tolerance:

- If <= F faults in a window, consensus reached eventually
- Liveness not guaranteed: If > F faults, no consensus

Consensus / Agreement Problem

» Goal: N processes want to agree on a value

* Correctness (safety):

- All N nodes agree on the same value
- The agreed value has been proposed by some node

* Fault-tolerance:

- If <= F faults in a window, consensus reached eventually

- Liveness not guaranteed: If > F faults, no consensus

- Given goal of F, what is N? Depends on fault model
(“Crash fault” need 2F+1; Byzantine fault needs 3F+1)

Lecture Roadmap

Consistency Issues

Consistency Models
Two-Phase Commit
Consensus

Case Study: Paxos

Paxos

 Safety:
- Only a single value is chosen
- Only a proposed value can be chosen
- Only chosen values are learned by processes

* Liveness:
- Some proposed value eventually chosen if fewer than half
of processes falil
- If value is chosen, a process eventually learns it

Paxos

» Three conceptual roles:

- Proposers: propose values
- Acceptors: accept values, where chosen if majority accept
- Learners: learn the outcome (the chosen value)

* In reality, a process can play any/all roles

Paxos

» Three conceptual roles:

- Proposers: propose values
- Acceptors: accept values, where chosen if majority accept
- Learners: learn the outcome (the chosen value)

* In reality, a process can play any/all roles

* Ordering: proposal is tuple [proposal #, value] = [n,v]
- Proposal # strictly increasing, globally unique
- Globally unique? Trick: set low-order bits to proposer’s ID

Paxos + Two-Phase Commit

» Use Paxos for view-change
- If anybody notices current master unavailable, or one or
more replicas unavailable
- Propose view change Paxos to establish new group:
Value agreed upon = <2PC Master, {2PC Replicas} >.

» Use two-phase commit for actual data

- Writes go to master for two-phase commit
- Reads go to acceptors and/or master

