
CPSC 422/522 Design & Implementation

of Operating Systems

Lecture 22: Replications & Consensus

Zhong Shao
Dept. of Computer Science

Yale University

Acknowledgement: some slides are taken from previous lectures by Dr. Ennan Zhai

Lecture Roadmap

• Consistency Issues
• Consistency Models
• Two-Phase Commit
• Consensus
• Case Study: Paxos

Replication Technique
• Distributed systems replicate data across multiple

servers
- Replication provides fault-tolerance if servers fail
- Allowing clients to access different servers potentially

increasing scalability (max throughput)
- What is the problem?

Server1 Server2 Server3

Replica Replica Replica

Replication Technique
• Distributed systems replicate data across multiple

servers
- Replication provides fault-tolerance if servers fail
- Allowing clients to access different servers potentially

increasing scalability (max throughput)
- What is the problem?

Server1 Server2 Server3

Replica Replica Replica

Replication Technique
• Distributed systems replicate data across multiple

servers
- Replication provides fault-tolerance if servers fail
- Allowing clients to access different servers potentially

increasing scalability (max throughput)
- What is the problem?

Server1 Server2 Server3

Replica Replica Replica
Client
(DC)Client

(Beijing)

Replication Technique
• Distributed systems replicate data across multiple

servers
- Replication provides fault-tolerance if servers fail
- Allowing clients to access different servers potentially

increasing scalability (max throughput)
- What is the problem?

Server1 Server2 Server3

Replica Replica ReplicaClient
(Beijing)

Client
(DC)

Consistency Problem

Server1 Server2 Server3

X=0 X=0 X=0Client
(Beijing)

Client
(DC)

Consistency Problem

Server1 Server2 Server3

X=0 X=0 X=0Client
(Beijing)

Client
(DC)

W(X,1)

Consistency Problem

Server1 Server2 Server3

X=1 X=? X=?Client
(Beijing)

Client
(DC)

W(X,1)
R(X) = 1 or 0?

Consistency Problem

Server1 Server2 Server3

X=1 X=1 X=1Client
(Beijing)

Client
(DC)

W(X,1) R(X)=1

Consistency Problem

Server1 Server2 Server3

X=1 X=1 X=1Client
(Beijing)

Client
(DC)

W(X,1)

Server1 Server2 Server3

X=1 X=0 X=0Client
(Beijing)

Client
(DC)

W(X,1)

R(X)=1

R(X)=0

Lecture Roadmap

• Consistency Issues
• Consistency Models
• Two-Phase Commit
• Consensus
• Case Study: Paxos

Consistency Models
• A consistency model specifies a contract between

programmer and system, wherein the system guarantees
that if the programmer follows the rules, data will be
consistent.

• A consistency model basically refers to the degree of
consistency that should be maintained for the shared data.

• If a system supports the stronger consistency model, then
the weaker consistency model is automatically supported.

• But stronger consistency models sacrifice more availability
and fault tolerance.

Consistency Models
• A consistency model specifies a contract between

programmer and system, wherein the system guarantees
that if the programmer follows the rules, data will be
consistent.

• A consistency model basically refers to the degree of
consistency that should be maintained for the shared data.

• If a system supports the stronger consistency model, then
the weaker consistency model is automatically supported.

• But stronger consistency models sacrifice more availability
and fault tolerance.

Consistency Models
• A consistency model specifies a contract between

programmer and system, wherein the system guarantees
that if the programmer follows the rules, data will be
consistent.

• A consistency model basically refers to the degree of
consistency that should be maintained for the shared data.

• If a system supports the stronger consistency model, then
the weaker consistency model is automatically supported.

• But stronger consistency models sacrifice more availability
and fault tolerance.

Consistency Models
• A consistency model specifies a contract between

programmer and system, wherein the system guarantees
that if the programmer follows the rules, data will be
consistent.

• A consistency model basically refers to the degree of
consistency that should be maintained for the shared data.

• If a system supports the stronger consistency model, then
the weaker consistency model is automatically supported.

• But stronger consistency models sacrifice more availability
and fault tolerance.

Consistency Models

• Strict consistency

• Strong consistency (Linearizability)

• Sequential consistency

• Causal consistency

• Eventual consistency

Weaker
Consistency

Models

These models describe when and how different
nodes in a distributed system view the order of
operations

Consistency Models
• Strict consistency

• Strong consistency
(Linearizability)

• Sequential consistency

• Causal consistency

• Eventual consistency

Weaker
Consistency

Models

These models describe when and how different
nodes in a distributed system view the order of
operations

Why we have so many consistency models?

They are used for different application scenarios that
balance the trade-off between

consistency/availability/fault-tolerance.

Consistency Models

• Strict consistency

• Strong consistency (Linearizability)

• Sequential consistency

• Causal consistency

• Eventual consistency

Weaker
Consistency

Models

These models describe when and how different
nodes in a distributed system view the order of
operations

Strict Consistency
• Strongest consistency model we will consider

- Any read on a data item X returns value corresponding to
result of the most recent write on X

• Need an absolute global time
- “Most recent” needs to be unambiguous
- Corresponds to when operation was issued
- Impossible to implement in real-world (network delays)

Strict Consistency

Server 1
Server 2
Server 3

W(x,a)

0=R(x)
a=R(x)

• Strongest consistency model we will consider
- Any read on a data item X returns value corresponding to

result of the most recent write on X

• Need an absolute global time
- “Most recent” needs to be unambiguous
- Corresponds to when operation was issued
- Impossible to implement in real-world (network delays)

✘

Consistency Models

• Strict consistency

• Strong consistency (Linearizability)

• Sequential consistency

• Causal consistency

• Eventual consistency

Weaker
Consistency

Models

These models describe when and how different
nodes in a distributed system view the order of
operations

✔

Strong Consistency
• Provide behavior of a single copy of object:

- Read should return the most recent write
- Subsequent reads should return same value, until next

write

Strong Consistency
• Provide behavior of a single copy of object:

- Read should return the most recent write
- Subsequent reads should return same value, until next

write

• Telephone intuition:
- 1. Alice updates Facebook post
- 2. Alice calls Bob on phone: “Check my Facebook post!”
- 3. Bob read’s Alice’s wall, sees her post

Strong Consistency ?

Server 1
Server 2
Server 3

write(A,1)
success Server 1

Server 2
Server 3

write(A,1)

read(A)
1

Strong Consistency ?

Server 1
Server 2
Server 3

write(A,1)

read(A)
1

Phone call: Ensures happens-before relationship, even
 though “out-of-band” communication

Strong Consistency ?

Server 1
Server 2
Server 3

write(A,1)

read(A)
1

Cool idea: Delay responding to writes/ops until committed

Strong Consistency ?

Server 1
Server 2
Server 3

write(A,1)

read(A)
1? or 0?

Strong Consistency? This is buggy!

- Isn’t sufficient to return value of server3:
 It does not know precisely when op is “globally” committed

- Instead: Need to actually order read operation

Server 1
Server 2
Server 3

write(A,1)

read(A)
1

Strong Consistency? This is buggy!

committed

success

- Isn’t sufficient to return value of server3:
 It does not know precisely when op is “globally” committed

- Instead: Need to actually order read operation

Server 1
Server 2
Server 3

write(A,1)

read(A)
1

Strong Consistency!!!

write success
on all servers

- Order all operations via (1) leader and (2) agreement

Strong Consistency = Linearizability

• Linearizability:
- All servers execute all ops in some identical sequential order
- Global ordering preserves each client’s own local ordering
- Global ordering preserves real-time guarantee

• All operations receive global time-stamp via a sync’d clock
• If TS(x)<TS(y), then OP(x) precedes OP(y) in the sequence

• Once write completes, all later reads should return value
of that write or value of later write

• Once read returns particular value, all later reads should
return that value or value of later write

Intuition: Real-time ordering

• Once write completes, all later reads should return value
of that write or value of later write

• Once read returns particular value, all later reads should
return that value or value of later write

Server 1
Server 2
Server 3

write(A,1)

read(A)
1committed

Intuition: Real-time ordering

• Once write completes, all later reads should return value
of that write or value of later write

• Once read returns particular value, all later reads should
return that value or value of later write

Server 1
Server 2
Server 3

write(A,1)

read(A)
1committed

Consistency Models

• Strict consistency

• Strong consistency (Linearizability)

• Sequential consistency

• Causal consistency

• Eventual consistency

Weaker
Consistency

Models

These models describe when and how different
nodes in a distributed system view the order of
operations

✔
✔

Weaker: Sequential Consistency
Sequential = linearizability - real-time ordering

Weaker: Sequential Consistency

• Linearizability:
- All servers execute all ops in some identical sequential order
- Global ordering preserves each client’s own local ordering
- Global ordering preserves real-time guarantee

• All operations receive global time-stamp via a sync’d clock
• If TS(x)<TS(y), then OP(x) precedes OP(y) in the sequence

Sequential = linearizability - real-time ordering

Weaker: Sequential Consistency

• Linearizability Sequential:
- All servers execute all ops in some identical sequential order
- Global ordering preserves each client’s own local ordering
- Global ordering preserves real-time guarantee

• All operations receive global time-stamp via a sync’d clock
• If TS(x)<TS(y), then OP(x) precedes OP(y) in the sequence

Sequential = linearizability - real-time ordering

Weaker: Sequential Consistency

• Sequential consistency:
All (read/write) operations on data store were executed in
some sequential order, and the operations of each individual
process appear in this sequence

• With concurrent ops, “reordering” of ops acceptable,
but all servers must see same order:
- linearizability cares about time but sequential consistency

cares about program order

Server 1
Server 2
Server 3

write(A,1)

read(A)
0

In this example, system orders read(A) before write(A, 1)

Sequential Consistency

Implementing Sequential Consistency

• Nodes use vector clocks to determine if two events had
distinct happens-before relationship:
- lf timestamp(a) < timestamp(b) => a b

• If ops are concurrent (i,j, a[i]<b[i] and a[j]>b[j]):
- Hosts can order ops a, b arbitrarily but consistently

OP1

OP2

OP3

OP4

Building Block: Vector Clock
• Initially all clocks are zero
• Each time a process experiences an internal event, it increments its

own logical clock in the vector by one
• Each time for a process to send a message, it increments its own

clock and then sends a copy of its own vector
• Each time a process receives a message, it increments its own logical

clock by one and updates each element in its vector by max(own,
received)

Building Block: Vector Clock
A

B

C

A:0

B:0

C:0

Building Block: Vector Clock
A

B

C

A:0

B:0

C:0 C:1

B:1
C:1

Building Block: Vector Clock
A

B

C

A:0

B:0

C:0 C:1

B:1
C:1

B:2
C:1

A:1
B:2
C:1

Building Block: Vector Clock
A

B

C

A:0

B:0

C:0 C:1

B:1
C:1

B:2
C:1

A:1
B:2
C:1

A:2
B:2
C:1

B:3
C:1

B:3
C:2

A:2
B:4
C:1

Building Block: Vector Clock
A

B

C

A:0

B:0

C:0 C:1

B:1
C:1

B:2
C:1

A:1
B:2
C:1

A:2
B:2
C:1

B:3
C:1

B:3
C:2

B:3
C:3

A:2
B:4
C:1

A:3
B:3
C:3

Building Block: Vector Clock
A

B

C

A:0

B:0

C:0 C:1

B:1
C:1

B:2
C:1

A:1
B:2
C:1

A:2
B:2
C:1

B:3
C:1

B:3
C:2

B:3
C:3

A:3
B:3
C:3

A:2
B:5
C:4

A:2
B:4
C:1

A:2
B:5
C:1

Building Block: Vector Clock
A

B

C

A:0

B:0

C:0 C:1

B:1
C:1

B:2
C:1

A:1
B:2
C:1

A:2
B:2
C:1

B:3
C:1

B:3
C:2

B:3
C:3

A:3
B:3
C:3

A:2
B:5
C:4

A:2
B:5
C:5

A:4
B:5
C:5

A:2
B:4
C:1

A:2
B:5
C:1

Implementing Sequential Consistency

• Nodes use vector clocks to determine if two events
had distinct happens-before relationship:
- lf timestamp(a) < timestamp(b) => a b

• If ops are concurrent (i,j, a[i]<b[i] and a[j]>b[j]):
- Hosts can order ops a, b arbitrarily but consistently

OP1

OP2

OP3

OP4

Implementing Sequential Consistency

Host1: OP 1, 2, 3, 4
Host2: OP 1, 2, 3, 4

✔

OP1

OP2

OP3

OP4

Implementing Sequential Consistency

Host1: OP 1, 2, 3, 4
Host2: OP 1, 2, 3, 4

Host1: OP 1, 3, 2, 4
Host2: OP 1, 3, 2, 4

✔ ✔

OP1

OP2

OP3

OP4

Implementing Sequential Consistency

Host1: OP 1, 2, 3, 4
Host2: OP 1, 2, 3, 4

Host1: OP 1, 3, 2, 4
Host2: OP 1, 3, 2, 4

Host1: OP 1, 2, 3, 4
Host2: OP 1, 3, 2, 4

✔ ✔ ✘

OP1

OP2

OP3

OP4

Sequential Consistency
Server 1
Server 2
Server 3

W(x,a)

b=R(x)

Server 4

W(x,b)

b=R(x)
a=R(x)
a=R(x)

• Is this valid sequential consistency?
- It is, because Server 3 and 4 agree on order of ops

Sequential Consistency
Server 1
Server 2
Server 3

W(x,a)

b=R(x)

Server 4

W(x,b)

b=R(x)
a=R(x)
a=R(x)

• Is this valid sequential consistency?
- It is, because Server 3 and 4 agree on order of ops

Sequential Consistency
Server 1
Server 2
Server 3

W(x,a)

b=R(x)

Server 4

W(x,b)

a=R(x)
a=R(x)
b=R(x)

• Is this valid sequential consistency?
- No, because Server 3 and 4 do not agree on order of ops.
- In practice, does not matter when events took place on

different machine, as long as server agree on order

Sequential Consistency

• Is this valid sequential consistency?
- No, because Server 3 and 4 do not agree on order of ops.
- In practice, does not matter when events took place on

different machine, as long as server agree on order

Server 1
Server 2
Server 3

W(x,a)

b=R(x)

Server 4

W(x,b)

a=R(x)
a=R(x)
b=R(x)

Sequential Consistency

• Is this valid sequential consistency?
- No, because Server 3 and 4 do not agree on order of ops.
- In practice, does not matter when events took place on

different machine, as long as server agree on order

Server 1
Server 2
Server 3

W(x,a)

b=R(x)

Server 4

W(x,b)

a=R(x)
a=R(x)
b=R(x)

Causal consistency

Sequential Consistency
Server 1
Server 2
Server 3

W(x,a)

b=R(x)

Server 4

W(x,b)

b=R(x)
a=R(x)
a=R(x)

A valid sequential consistency

Sequential Consistency
Server 1
Server 2
Server 3

W(x,a)

b=R(x)

Server 4

W(x,b)

b=R(x)
a=R(x)
a=R(x)

A valid sequential consistency or not?

Sequential Consistency
Server 1
Server 2
Server 3

W(x,a)

b=R(x)

Server 4

W(x,b)

b=R(x)
a=R(x)
a=R(x)

A valid sequential consistency or not?
- No, because it does not preserve local ordering

Consistency Models

• Strict consistency

• Strong consistency (Linearizability)

• Sequential consistency

• Causal consistency

• Eventual consistency

Weaker
Consistency

Models

These models describe when and how different
nodes in a distributed system view the order of
operations

✔
✔

✔

Weak consistency model

Causal Consistency
• Causal consistency:

- Causal consistency is one of weak consistency models
- Causally related writes must be seen by all processes in

the same order
- Concurrent writes may be seen in different orders on

different machines

Causal Consistency

Server 1
Server 2
Server 3

W(x,a)
a=R(x)

Server 4

W(x,b)

a=R(x)b=R(x)
a=R(x) b=R(x)

Not valid

Causally related writes must be seen by all
processes in the same order

Causal Consistency

Server 1
Server 2
Server 3

W(x,a)

Server 4

W(x,b)

a=R(x)b=R(x)
a=R(x) b=R(x)

Valid

Consistency Models

• Strict consistency

• Strong consistency (Linearizability)

• Sequential consistency

• Causal consistency

• Eventual consistency

Weaker
Consistency

Models

These models describe when and how different
nodes in a distributed system view the order of
operations

Weak consistency model

✔
✔

✔
✔

Eventual Consistency
• Eventual consistency:

- Achieve high availability
- If no new updates are made to a given data item,

eventually all accesses to the data will return the last
updated value.

• Eventual consistency is commonly used:
- Git repo, iPhone sync
- Dropbox and Amazon Dynamo

Consistency Models

• Strict consistency

• Strong consistency (Linearizability)

• Sequential consistency

• Causal consistency

• Eventual consistency

Weaker
Consistency

Models

These models describe when and how different
nodes in a distributed system view the order of
operations

Weak consistency model

✔
✔

✔
✔
✔

Lecture Roadmap

• Consistency Issues
• Consistency Models
• Two-Phase Commit
• Consensus
• Case Study: Paxos

Two-Phase Commit
• Goal: Reliably agree to commit or abort a collection of

sub-transactions

• All the operations happens at single master node
- Concurrent machines
- Failure and recovery of machines

Achieve strong consistency!

Intuitive Example
• You want to organize outing with 3 friends at 6pm Tue

- Go out only if all friends can make it

• What do you do?
- Call each of them and ask if can do 6pm Tue (voting phase)
- If all can do Tue, call each friend back to ACK (commit)
- If one cannot do Tue, call others to cancel (abort)

Intuitive Example
• You want to organize outing with 3 friends at 6pm Tue

- Go out only if all friends can make it

• What do you do?
- Call each of them and ask if can do 6pm Tue (voting phase)
- If all can do Tue, call each friend back to ACK (commit)
- If one cannot do Tue, call others to cancel (abort)

This is exactly how two-phase commit works

Two-Phase Commit Protocol

Coordinator

Participant

Participant

Participant

Participant

commit?

commit?

commit?commit?

• Phase 1: Voting phase
- Get commit agreement from every participant
- A single “no” response means that we will have to abort

Two-Phase Commit Protocol
• Phase 1: Voting phase

- Get commit agreement from every participant
- A single “no” response means that we will have to abort

Coordinator

Participant

Participant

Participant

Participant

yes

yes

yes

yes

Two-Phase Commit Protocol
• Phase 1: Voting phase

- Get commit agreement from every participant
- A single “no” response means that we will have to abort

Coordinator

Participant

Participant

Participant

Participant

yes

yes

yes

yes

Two-Phase Commit Protocol

Coordinator

Participant

Participant

Participant

Participant

commit

commit

commitcommit

• Phase 2: Commit phase
- Send the results of the vote to every participant
- Send abort if any participant voted “no” in Phase 1

Two-Phase Commit Protocol
• Phase 2: Commit phase

- Get “committed” acknowledgements from every participant
- A single “no” response means that we will have to abort

Coordinator

Participant

Participant

Participant

Participant

ack

ack

ack

ack

Two-Phase Commit Protocol
• Two-phase commit assumes a fail-recover model

- Any failed system will eventually recover

• A recovered system cannot change its mind
- If a node agreed to commit and then crashed, it must be

willing and able to commit upon recovery

• If the leader fails?
- Lose availability: system not longer “live”

Lecture Roadmap

• Consistency Issues
• Consistency Models
• Two-Phase Commit
• Consensus
• Case Study: Paxos

Consensus / Agreement Problem
• Definition:

- A general agreement about something
- An idea or opinion that is shared by all the people in a group

• Given a set of processors, each with an initial value:
- Termination: All non-faulty processes eventually decide on

a value
- Agreement: All processes that decide do so on the same

value
- Validity: The value that has been decided must have

proposed by some process

Consensus / Agreement Problem
• Goal: N processes want to agree on a value

• Correctness (safety):
- All N nodes agree on the same value
- The agreed value has been proposed by some node

• Fault-tolerance:
- If <= F faults in a window, consensus reached eventually
- Liveness not guaranteed: If > F faults, no consensus
- Given goal of F, what is N? Depends on fault model

(“Crash fault” need 2F+1; Byzantine fault needs 3F+1)

Consensus / Agreement Problem
• Goal: N processes want to agree on a value

• Correctness (safety):
- All N nodes agree on the same value
- The agreed value has been proposed by some node

• Fault-tolerance:
- If <= F faults in a window, consensus reached eventually
- Liveness not guaranteed: If > F faults, no consensus
- Given goal of F, what is N? Depends on fault model

(“Crash fault” need 2F+1; Byzantine fault needs 3F+1)

Consensus / Agreement Problem
• Goal: N processes want to agree on a value

• Correctness (safety):
- All N nodes agree on the same value
- The agreed value has been proposed by some node

• Fault-tolerance:
- If <= F faults in a window, consensus reached eventually
- Liveness not guaranteed: If > F faults, no consensus
- Given goal of F, what is N? Depends on fault model

(“Crash fault” need 2F+1; Byzantine fault needs 3F+1)

Lecture Roadmap

• Consistency Issues
• Consistency Models
• Two-Phase Commit
• Consensus
• Case Study: Paxos

Paxos
• Safety:

- Only a single value is chosen
- Only a proposed value can be chosen
- Only chosen values are learned by processes

• Liveness:
- Some proposed value eventually chosen if fewer than half

of processes fail
- If value is chosen, a process eventually learns it

Paxos
• Three conceptual roles:

- Proposers: propose values
- Acceptors: accept values, where chosen if majority accept
- Learners: learn the outcome (the chosen value)

• In reality, a process can play any/all roles

• Ordering: proposal is tuple [proposal #, value] = [n,v]
- Proposal # strictly increasing, globally unique
- Globally unique? Trick: set low-order bits to proposer’s ID

Paxos
• Three conceptual roles:

- Proposers: propose values
- Acceptors: accept values, where chosen if majority accept
- Learners: learn the outcome (the chosen value)

• In reality, a process can play any/all roles

• Ordering: proposal is tuple [proposal #, value] = [n,v]
- Proposal # strictly increasing, globally unique
- Globally unique? Trick: set low-order bits to proposer’s ID

Paxos + Two-Phase Commit
• Use Paxos for view-change

- If anybody notices current master unavailable, or one or
more replicas unavailable

- Propose view change Paxos to establish new group:
 Value agreed upon = <2PC Master, {2PC Replicas} >.

• Use two-phase commit for actual data
- Writes go to master for two-phase commit
- Reads go to acceptors and/or master

