Previous Up Next

Chapter 2  Extensions of Gallina

Gallina is the kernel language of Coq. We describe here extensions of the Gallina's syntax.

2.1  Record types

The Record construction is a macro allowing the definition of records as is done in many programming languages. Its syntax is described on figure 2.1. In fact, the Record macro is more general than the usual record types, since it allows also for ``manifest'' expressions. In this sense, the Record construction allows to define ``signatures''.

sentence ++= record
     
record ::= Record ident [binderlet ... binderlet] : sort :=
        [ident] { [field ; ... ; field] } .
     
field ::= name : type
  | name [: term] := term

Figure 2.1: Syntax for the definition of Record


In the expression


Record ident params : sort := ident0 { ident1 : term1; ...identn : termn }.
the identifier ident is the name of the defined record and sort is its type. The identifier ident0 is the name of its constructor. If ident0 is omitted, the default name Build_ident is used. The identifiers ident1, .., identn are the names of fields and term1, .., termn their respective types. Remark that the type of identi may depend on the previous identj (for j<i). Thus the order of the fields is important. Finally, params are the parameters of the record.

More generally, a record may have explicitly defined (a.k.a. manifest) fields. For instance, Record ident [ params ] : sort := { ident1 : type1 ; ident2 := term2 ; ident3 : type3 } in which case the correctness of type3 may rely on the instance term2 of ident2 and term2 in turn may depend on ident1.


Example: The set of rational numbers may be defined as:
Coq < Record Rat : Set := mkRat
Coq <   {sign : bool;
Coq <    top : nat;
Coq <    bottom : nat;
Coq <    Rat_bottom_cond : 0 <> bottom;
Coq <    Rat_irred_cond :
Coq <     forall x y z:nat, (x * y) = top /\ (x * z) = bottom -> x = 1}.
Rat is defined
Rat_rect is defined
Rat_ind is defined
Rat_rec is defined
sign is defined
top is defined
bottom is defined
Rat_bottom_cond is defined
Rat_irred_cond is defined

Remark here that the field Rat_cond depends on the field bottom.

Let us now see the work done by the Record macro. First the macro generates an inductive definition with just one constructor:
Inductive ident params :sort :=
    ident0 (ident1:term1) .. (identn:termn).
To build an object of type ident, one should provide the constructor ident0 with n terms filling the fields of the record.

As an example, let us define the rational 1/2:
Coq < Require Import Arith.

Coq < Theorem one_two_irred :
Coq <  forall x y z:nat, x * y = 1 /\ x * z = 2 -> x = 1.
...
Coq < Qed.

Coq < Definition half := mkRat true 1 2 (O_S 1) one_two_irred.
half is defined

Coq < Check half.
half
     : Rat

The macro generates also, when it is possible, the projection functions for destructuring an object of type ident. These projection functions have the same name that the corresponding fields. If a field is named ``_'' then no projection is built for it. In our example:

Coq < Eval compute in half.(top).
     = 1
     : nat

Coq < Eval compute in half.(bottom).
     = 2
     : nat

Coq < Eval compute in half.(Rat_bottom_cond).
     = O_S 1
     : 0 <> bottom half


Warnings:
  1. Warning: identi cannot be defined.

    It can happen that the definition of a projection is impossible. This message is followed by an explanation of this impossibility. There may be three reasons:
    1. The name identi already exists in the environment (see Section 1.3.1).
    2. The body of identi uses an incorrect elimination for ident (see Sections 1.3.4 and 4.5.4).
    3. The type of the projections identi depends on previous projections which themselves couldn't be defined.

Error messages:
  1. A record cannot be recursive

    The record name ident appears in the type of its fields.

  2. During the definition of the one-constructor inductive definition, all the errors of inductive definitions, as described in Section 1.3.3, may also occur.

See also: Coercions and records in Section 16.9 of the chapter devoted to coercions.


Remark: Structure is a synonym of the keyword Record.


Remark: An experimental syntax for projections based on a dot notation is available. The command to activate it is
Set Printing Projections.

term ++= term .( qualid )
  | term .( qualid arg ... arg )
  | term .( @qualid term ... term )

Figure 2.2: Syntax of Record projections


The corresponding grammar rules are given Figure 2.2. When qualid denotes a projection, the syntax term.(qualid) is equivalent to qualid term, the syntax term.(qualid arg1  ...  argn) to qualid arg1 ...argn term, and the syntax term.(@qualid term1 ... termn) to @qualid term1 ...termn term. In each case, term is the object projected and the other arguments are the parameters of the inductive type.

To deactivate the printing of projections, use Unset Printing Projections.

2.2  Variants and extensions of match

2.2.1  Multiple and nested pattern-matching

The basic version of match allows pattern-matching on simple patterns. As an extension, multiple and nested patterns are allowed, as in ML-like languages.

The extension just acts as a macro that is expanded during parsing into a sequence of match on simple patterns. Especially, a construction defined using the extended match is printed under its expanded form.


See also: chapter 15.

2.2.2  Pattern-matching on boolean values: the if expression

For inductive types with exactly two constructors and for pattern-matchings expressions which do not depend on the arguments of the constructors, it is possible to use a if ... then ... else notation. For instance, the definition

Coq < Definition not (b:bool) :=
Coq <   match b with
Coq <   | true => false
Coq <   | false => true
Coq <   end.
not is defined

can be alternatively written

Coq < Definition not (b:bool) := if b then false else true.
not is defined

More generally, for an inductive type with constructors C1 and C2, we have the following equivalence




if term [dep_ret_type] then term1 else term2 same as
match term [dep_ret_type] with
| C1 _ ... _ => term1
| C2 _ ... _ => term2
end

Here is an example.

Coq < Check (fun x (H:{x=0}+{x<>0}) =>
Coq <   match H with
Coq <   | left _ => true
Coq <   | right _ => false
Coq <   end).
fun (x : nat) (H : {x = 0} + {x <> 0}) => if H then true else false
     : forall x : nat, {x = 0} + {x <> 0} -> bool

Notice that the printing uses the if syntax because sumbool is declared as such (see section 2.2.4).

2.2.3  Irrefutable patterns: the destructuring let

Closed terms (that is not relying on any axiom or variable) in an inductive type having only one constructor, say foo, have necessarily the form (foo ...). In this case, the match construction can be written with a syntax close to the let ... in ... construction. Expression let ( ident1,...,identn ) := term0 in term1 performs case analysis on term0 which must be in an inductive type with one constructor with n arguments. Variables ident1...identn are bound to the n arguments of the constructor in expression term1. For instance, the definition

Coq < Definition fst (A B:Set) (H:A * B) := match H with
Coq <                                       | pair x y => x
Coq <                                       end.
fst is defined

can be alternatively written

Coq < Definition fst (A B:Set) (p:A * B) := let (x, _) := p in x.
fst is defined
Note however that reduction is slightly different from regular let ... in ... construction since it can occur only if term0 can be put in constructor form. Otherwise, reduction is blocked.

The pretty-printing of a definition by matching on a irrefutable pattern can either be done using match or the let construction (see Section 2.2.4).

The general equivalence for an inductive type with one constructors C is


let (ident1,...,identn) [dep_ret_type] := term in term'
same as  match term [dep_ret_type] with C ident1 ... identn => term' end

2.2.4  Options for pretty-printing of match

There are three options controlling the pretty-printing of match expressions.

Printing of wildcard pattern

Some variables in a pattern may not occur in the right-hand side of the pattern-matching clause. There are options to control the display of these variables.
Set Printing Wildcard.
The variables having no occurrences in the right-hand side of the pattern-matching clause are just printed using the wildcard symbol ``_''.
Unset Printing Wildcard.
The variables, even useless, are printed using their usual name. But some non dependent variables have no name. These ones are still printed using a ``_''.
Test Printing Wildcard.
This tells if the wildcard printing mode is on or off. The default is to print wildcard for useless variables.

Printing of the elimination predicate

In most of the cases, the type of the result of a matched term is mechanically synthesisable. Especially, if the result type does not depend of the matched term.
Set Printing Synth.
The result type is not printed when Coq knows that it can re-synthesise it.
Unset Printing Synth.
This forces the result type to be always printed.
Test Printing Synth.
This tells if the non-printing of synthesisable types is on or off. The default is to not print synthesisable types.

Printing matching on irrefutable pattern

If an inductive type has just one constructor, pattern-matching can be written using let ... := ... in ...
Add Printing Let ident.
This adds ident to the list of inductive types for which pattern-matching is written using a let expression.
Remove Printing Let ident.
This removes ident from this list.
Test Printing Let ident.
This tells if ident belongs to the list.
Print Table Printing Let.
This prints the list of inductive types for which pattern-matching is written using a let expression.

The list of inductive types for which pattern-matching is written using a let expression is managed synchronously. This means that it is sensible to the command Reset.

Printing matching on booleans

If an inductive type is isomorphic to the boolean type, pattern-matching can be written using if ... then ... else ...
Add Printing If ident.
This adds ident to the list of inductive types for which pattern-matching is written using an if expression.
Remove Printing If ident.
This removes ident from this list.
Test Printing If ident.
This tells if ident belongs to the list.
Print Table Printing If.
This prints the list of inductive types for which pattern-matching is written using an if expression.

The list of inductive types for which pattern-matching is written using an if expression is managed synchronously. This means that it is sensible to the command Reset.

Example

This example emphasizes what the printing options offer.

Coq < Test Printing Let prod.
Cases on elements of prod are printed using a `let' form

Coq < Print fst.
fst = 
fun (A B : Set) (p : A * B) => let (x, _) := p in x
     : forall A B : Set, A * B -> A
Argument scopes are [type_scope type_scope _]

Coq < Remove Printing Let prod.

Coq < Unset Printing Synth.

Coq < Unset Printing Wildcard.

Coq < Print fst.
fst = 
fun (A B : Set) (p : A * B) => let (x, _) return A := p in x
     : forall A B : Set, A * B -> A
Argument scopes are [type_scope type_scope _]

2.3  Section mechanism

The sectioning mechanism allows to organise a proof in structured sections. Then local declarations become available (see Section 1.3.2).

2.3.1  Section ident

This command is used to open a section named ident.

2.3.2  End ident

This command closes the section named ident. When a section is closed, all local declarations (variables and local definitions) are discharged. This means that all global objects defined in the section are generalised with respect to all variables and local definitions it depends on in the section. None of the local declarations (considered as autonomous declarations) survive the end of the section.

Here is an example :
Coq < Section s1.

Coq < Variables x y : nat.
x is assumed
y is assumed

Coq < Let y' := y.
y' is defined

Coq < Definition x' := S x.
x' is defined

Coq < Definition x'' := x' + y'.
x'' is defined

Coq < Print x'.
x' = S x
     : nat

Coq < End s1.
x' is discharged.
x'' is discharged.

Coq < Print x'.
x' = fun x : nat => S x
     : nat -> nat
Argument scope is [nat_scope]

Coq < Print x''.
x'' = fun x y : nat => let y' := y in x' x + y'
     : nat -> nat -> nat
Argument scopes are [nat_scope nat_scope]
Notice the difference between the value of x' and x'' inside section s1 and outside.


Error messages:
  1. This is not the last opened section

Remarks:
  1. Most commands, like Hint, Notation, option management, ... which appear inside a section are cancelled when the section is closed.

2.4  Module system

The module system provides a way of packaging related elements together, as well as a mean of massive abstraction.

module_type ::= ident
  | module_type with Definition ident := term
  | module_type with Module ident := qualid
     
module_binding ::= ( ident ... ident : module_type )
     
module_bindings ::= module_binding ... module_binding
     
module_expression ::= qualid ... qualid

Figure 2.3: Syntax of modules


2.4.1  Module ident

This command is used to start an interactive module named ident.


Variants:
  1. Module ident module_bindings

    Starts an interactive functor with parameters given by module_bindings.

  2. Module ident : module_type

    Starts an interactive module specifying its module type.

  3. Module ident module_bindings : module_type

    Starts an interactive functor with parameters given by module_bindings, and output module type module_type.

  4. Module ident <: module_type

    Starts an interactive module satisfying module_type.

  5. Module ident module_bindings <: module_type

    Starts an interactive functor with parameters given by module_bindings. The output module type is verified against the module type module_type.

2.4.2  End ident

This command closes the interactive module ident. If the module type was given the content of the module is matched against it and an error is signaled if the matching fails. If the module is basic (is not a functor) its components (constants, inductive types, submodules etc) are now available through the dot notation.


Error messages:
  1. No such label ident
  2. Signature components for label ident do not match
  3. This is not the last opened module

2.4.3  Module ident := module_expression

This command defines the module identifier ident to be equal to module_expression.


Variants:
  1. Module ident module_bindings := module_expression

    Defines a functor with parameters given by module_bindings and body module_expression.

  2. Module ident module_bindings : module_type := module_expression

    Defines a functor with parameters given by module_bindings (possibly none), and output module type module_type, with body module_expression.

  3. Module ident module_bindings <: module_type := module_expression

    Defines a functor with parameters given by module_bindings (possibly none) with body module_expression. The body is checked against module_type.

2.4.4  Module Type ident

This command is used to start an interactive module type ident.


Variants:
  1. Module Type ident module_bindings

    Starts an interactive functor type with parameters given by module_bindings.

2.4.5  End ident

This command closes the interactive module type ident.


Error messages:
  1. This is not the last opened module type

2.4.6  Module Type ident := module_type

Defines a module type ident equal to module_type.


Variants:
  1. Module Type ident module_bindings := module_type

    Defines a functor type ident specifying functors taking arguments module_bindings and returning module_type.

2.4.7  Declare Module ident

Starts an interactive module declaration. This command is available only in module types.


Variants:
  1. Declare Module ident module_bindings

    Starts an interactive declaration of a functor with parameters given by module_bindings.

  2. Declare Module ident module_bindings <: module_type

    Starts an interactive declaration of a functor with parameters given by module_bindings (possibly none). The declared output module type is verified against the module type module_type.

2.4.8  End ident

This command closes the interactive declaration of module ident.

2.4.9  Declare Module ident : module_type

Declares a module of ident of type module_type. This command is available only in module types.


Variants:
  1. Declare Module ident module_bindings : module_type

    Declares a functor with parameters module_bindings and output module type module_type.

  2. Declare Module ident := qualid

    Declares a module equal to the module qualid.

  3. Declare Module ident <: module_type := qualid

    Declares a module equal to the module qualid, verifying that the module type of the latter is a subtype of module_type.

Example

Let us define a simple module.
Coq < Module M.
Interactive Module M started

Coq <   Definition T := nat.
T is defined

Coq <   Definition x := 0.
x is defined

Coq <   Definition y : bool.
1 subgoal
  
  ============================
   bool

Coq <     exact true.
Proof completed.

Coq <   Defined.
exact true.
y is defined

Coq < End M.
Module M is defined
Inside a module one can define constants, prove theorems and do any other things that can be done in the toplevel. Components of a closed module can be accessed using the dot notation:
Coq < Print M.x.
M.x = 0
     : nat
A simple module type:
Coq < Module Type SIG.
Interactive Module Type SIG started

Coq <   Parameter T : Set.
T is assumed

Coq <   Parameter x : T.
x is assumed

Coq < End SIG.
Module Type SIG is defined
Inside a module type the proof editing mode is not available. Consequently commands like Definition without body, Lemma, Theorem are not allowed. In order to declare constants, use Axiom and Parameter.

Now we can create a new module from M, giving it a less precise specification: the y component is dropped as well as the body of x.

Coq < Module N  :  SIG with Definition T := nat  :=  M.
Coq < Coq < Module N is defined

Coq < Print N.T.
N.T = nat
     : Set

Coq < Print N.x.
*** [ N.x : N.T ]

Coq < Print N.y.
User error: N.y not a defined object

The definition of N using the module type expression SIG with Definition T:=nat is equivalent to the following one:

Coq < Module Type SIG'.

Coq <   Definition T : Set := nat.

Coq <   Parameter x : T.

Coq < End SIG'.

Coq < Module N : SIG' := M.
If we just want to be sure that the our implementation satisfies a given module type without restricting the interface, we can use a transparent constraint
Coq < Module P <: SIG := M.
Module P is defined

Coq < Print P.y.
P.y = true
     : bool
Now let us create a functor, i.e. a parametric module
Coq < Module Two (X Y: SIG).
Interactive Module Two started

Coq <   Definition T := (X.T * Y.T)%type.

Coq <   Definition x := (X.x, Y.x).

Coq < End Two.
Module Two is defined
and apply it to our modules and do some computations
Coq < Module Q := Two M N.
Module Q is defined

Coq < Eval compute in (fst Q.x + snd Q.x).
     = N.x
     : nat
In the end, let us define a module type with two sub-modules, sharing some of the fields and give one of its possible implementations:
Coq < Module Type SIG2.
Interactive Module Type SIG2 started

Coq <   Declare Module M1 : SIG.
Module M1 is declared

Coq <   Declare Module M2 <: SIG.
Interactive Declaration of Module M2 started

Coq <     Definition T := M1.T.
T is defined

Coq <     Parameter x : T.
x is assumed

Coq <   End M2.
Module M2 is declared

Coq < End SIG2.
Module Type SIG2 is defined

Coq < Module Mod <: SIG2.

Coq <   Module M1.

Coq <     Definition T := nat.

Coq <     Definition x := 1.

Coq <   End M1.

Coq <   Module M2 := M.

Coq < End Mod.
Module Mod is defined
Notice that M is a correct body for the component M2 since its T component is equal nat and hence M1.T as specified.


Remarks:
  1. Modules and module types can be nested components of each other.
  2. When a module declaration is started inside a module type, the proof editing mode is still unavailable.
  3. One can have sections inside a module or a module type, but not a module or a module type inside a section.
  4. Commands like Hint or Notation can also appear inside modules and module types. Note that in case of a module definition like:


    Module N : SIG := M.


    or


    Module N : SIG.
    ...
    End N.

    hints and the like valid for N are not those defined in M (or the module body) but the ones defined in SIG.

2.4.10  Import qualid

If qualid denotes a valid basic module (i.e. its module type is a signature), makes its components available by their short names.

Example:

Coq < Module Mod.
Interactive Module Mod started

Coq <   Definition T:=nat.
T is defined

Coq <   Check T.
T
     : Set

Coq < End Mod.
Module Mod is defined

Coq < Check Mod.T.
Mod.T
     : Set

Coq < Check T. (* Incorrect ! *)
Toplevel input, characters 6-7
> Check T.
>       ^
Error: The reference T was not found in the current environment

Coq < Import Mod.

Coq < Check T. (* Now correct *)
T
     : Set


Variants:
  1. Export qualid

    When the module containing the command Export qualid is imported, qualid is imported as well.

Error messages:
  1. qualid is not a module

Warnings:
  1. Warning: Trying to mask the absolute name qualid !

2.4.11  Print Module ident

Prints the module type and (optionally) the body of the module ident.

2.4.12  Print Module Type ident

Prints the module type corresponding to ident.

2.5  Libraries and qualified names

2.5.1  Names of libraries and files

Libraries
The theories developed in Coq are stored in libraries. A library is characterised by a name called root of the library. The standard library of Coq has root name Coq and is known by default when a Coq session starts.

Libraries have a tree structure. E.g., the Coq library contains the sub-libraries Init, Logic, Arith, Lists, ... The ``dot notation'' is used to separate the different component of a library name. For instance, the Arith library of Coq standard library is written ``Coq.Arith''.



Remark: no blank is allowed between the dot and the identifier on its right, otherwise the dot is interpreted as the full stop (period) of the command!


Physical paths vs logical paths
Libraries and sub-libraries are denoted by logical directory paths (written dirpath and of which the syntax is the same as qualid, see 1.2.3). Logical directory paths can be mapped to physical directories of the operating system using the command (see 6.5.3)
Add LoadPath physical_path as dirpath.
A library can inherit the tree structure of a physical directory by using the -R option to coqtop or the command (see 6.5.4)
Add Rec LoadPath physical_path as dirpath.

Remark: When used interactively with coqtop command, Coq opens a library called Top.

The file level
At some point, (sub-)libraries contain modules which coincide with files at the physical level. As for sublibraries, the dot notation is used to denote a specific module of a library. Typically, Coq.Init.Logic is the logical path associated to the file Logic.v of Coq standard library. Notice that compilation (see 12) is done at the level of files.

If the physical directory where a file File.v lies is mapped to the empty logical directory path (which is the default when using the simple form of Add LoadPath or -I option to coqtop), then the name of the module it defines is File.

2.5.2  Qualified names

Modules contain constructions (sub-modules, axioms, parameters, definitions, lemmas, theorems, remarks or facts). The (full) name of a construction starts with the logical name of the module in which it is defined followed by the (short) name of the construction. Typically, the full name Coq.Init.Logic.eq denotes Leibniz' equality defined in the module Logic in the sublibrary Init of the standard library of Coq.

Absolute, partially qualified and short names
The full name of a library, module, section, definition, theorem, ... is its absolute name. The last identifier (eq in the previous example) is its short name (or sometimes base name). Any suffix of the absolute name is a partially qualified name (e.g. Logic.eq is a partially qualified name for Coq.Init.Logic.eq). Partially qualified names (shortly qualified name) are also built from identifiers separated by dots. They are written qualid in the documentation.

Coq does not accept two constructions (definition, theorem, ...) with the same absolute name but different constructions can have the same short name (or even same partially qualified names as soon as the full names are different).

Visibility
Coq maintains a name table mapping qualified names to absolute names. This table is modified by the commands Require (see 6.4.1), Import and Export (see 2.4.10) and also each time a new declaration is added to the context.

An absolute name is called visible from a given short or partially qualified name when this name suffices to denote it. This means that the short or partially qualified name is mapped to the absolute name in Coq name table.

It may happen that a visible name is hidden by the short name or a qualified name of another construction. In this case, the name that has been hidden must be referred to using one more level of qualification. Still, to ensure that a construction always remains accessible, absolute names can never be hidden.

Examples:
Coq < Check 0.
0
     : nat

Coq < Definition nat := bool.
nat is defined

Coq < Check 0.
0
     : Datatypes.nat

Coq < Check Datatypes.nat.
Datatypes.nat
     : Set

Coq < Locate nat.
Constant Top.nat
Inductive Coq.Init.Datatypes.nat (visible as Datatypes.nat)


Remark: There is also a name table for sublibraries, modules and sections.


Remark: In versions prior to Coq 7.4, lemmas declared with Remark and Fact kept in their full name the names of the sections in which they were defined. Since Coq 7.4, they strictly behaves as Theorem and Lemma do.


See also: Command Locate in Section 6.2.10.

Requiring a file
A module compiled in a ``.vo'' file comes with a logical names (e.g. physical file theories/Init/Datatypes.vo in the Coq installation directory is bound to the logical module Coq.Init.Datatypes). When requiring the file, the mapping between physical directories and logical library should be consistent with the mapping used to compile the file (for modules of the standard library, this is automatic -- check it by typing Print LoadPath).

The command Add Rec LoadPath is also available from coqtop and coqc by using option -R.

2.6  Implicit arguments

An implicit argument of a function is an argument which can be inferred from the knowledge of the type of other arguments of the function, or of the type of the surrounding context of the application. Especially, an implicit argument corresponds to a parameter dependent in the type of the function. Typical implicit arguments are the type arguments in polymorphic functions. More precisely, there are several kinds of implicit arguments.

Strict Implicit Arguments.
An implicit argument can be either strict or non strict. An implicit argument is said strict if, whatever the other arguments of the function are, it is still inferable from the type of some other argument. Technically, an implicit argument is strict if it corresponds to a parameter which is not applied to a variable which itself is another parameter of the function (since this parameter may erase its arguments), not in the body of a match, and not itself applied or matched against patterns (since the original form of the argument can be lost by reduction).

For instance, the first argument of
cons: forall A:Set, A -> list A -> list A
in module List.v is strict because list is an inductive type and A will always be inferable from the type list A of the third argument of cons. On the opposite, the second argument of a term of type
forall P:nat->Prop, forall n:nat, P n -> ex nat P
is implicit but not strict, since it can only be inferred from the type P n of the the third argument and if P is e.g. fun _ => True, it reduces to an expression where n does not occur any longer. The first argument P is implicit but not strict either because it can only be inferred from P n and P is not canonically inferable from an arbitrary n and the normal form of P n (consider e.g. that n is 0 and the third argument has type True, then any P of the form fun n => match n with 0 => True | _ => anything end would be a solution of the inference problem.

Contextual Implicit Arguments.
An implicit argument can be contextual or non. An implicit argument is said contextual if it can be inferred only from the knowledge of the type of the context of the current expression. For instance, the only argument of
nil : forall A:Set, list A
is contextual. Similarly, both arguments of a term of type
forall P:nat->Prop, forall n:nat, P n \/ n = 0
are contextual (moreover, n is strict and P is not).

2.6.1  Casual use of implicit arguments

In a given expression, if it is clear that some argument of a function can be inferred from the type of the other arguments, the user can force the given argument to be guessed by replacing it by ``_''. If possible, the correct argument will be automatically generated.


Error messages:
  1. Cannot infer a term for this placeholder

    Coq was not able to deduce an instantiation of a ``_''.

2.6.2  Declaration of implicit arguments for a constant

In case one wants that some arguments of a given object (constant, inductive types, constructors, assumptions, local or not) are always inferred by Coq, one may declare once for all which are the expected implicit arguments of this object. The syntax is
Implicit Arguments qualid [ ident ... ident ]
where the list of ident is the list of parameters to be declared implicit. After this, implicit arguments can just (and have to) be skipped in any expression involving an application of qualid.


Example:
Coq < Inductive list (A:Set) : Set :=
Coq <  | nil : list A 
Coq <  | cons : A -> list A -> list A.

Coq < Check (cons nat 3 (nil nat)).
cons nat 3 (nil nat)
     : list nat

Coq < Implicit Arguments cons [A].

Coq < Implicit Arguments nil [A].

Coq < Check (cons 3 nil).
cons 3 nil
     : list nat


Remark: To know which are the implicit arguments of an object, use command Print Implicit (see 2.6.8).


Remark: If the list of arguments is empty, the command removes the implicit arguments of qualid.

2.6.3  Automatic declaration of implicit arguments for a constant

Coq can also automatically detect what are the implicit arguments of a defined object. The command is just
Implicit Arguments qualid.
The auto-detection is governed by options telling if strict and contextual implicit arguments must be considered or not (see Sections 2.6.5 and 2.6.6).


Example:
Coq < Inductive list (A:Set) : Set := 
Coq <   | nil : list A 
Coq <   | cons : A -> list A -> list A.

Coq < Implicit Arguments cons.

Coq < Print Implicit cons.
cons : forall A : Set, A -> list A -> list A
Argument A is implicit

Coq < Implicit Arguments nil.

Coq < Print Implicit nil.
nil : forall A : Set, list A
No implicit arguments

Coq < Set Contextual Implicit.

Coq < Implicit Arguments nil.

Coq < Print Implicit nil.
nil : forall A : Set, list A
Argument A is implicit

The computation of implicit arguments takes account of the unfolding of constants. For instance, the variable p below has type (Transitivity R) which is reducible to forall x,y:U, R x y -> forall z:U, R y z -> R x z. As the variables x, y and z appear strictly in body of the type, they are implicit.

Coq < Variable X : Type.

Coq < Definition Relation := X -> X -> Prop.

Coq < Definition Transitivity (R:Relation) :=
Coq <   forall x y:X, R x y -> forall z:X, R y z -> R x z.

Coq < Variables (R : Relation) (p : Transitivity R).

Coq < Implicit Arguments p.

Coq < Print p.
*** [ p : Transitivity R ]
Expanded type for implicit arguments
p : forall x y : X, R x y -> forall z : X, R y z -> R x z
Arguments x, y, z are implicit

Coq < Print Implicit p.
p : forall x y : X, R x y -> forall z : X, R y z -> R x z
Arguments x, y, z are implicit

Coq < Variables (a b c : X) (r1 : R a b) (r2 : R b c).

Coq < Check (p r1 r2).
p r1 r2
     : R a c

2.6.4  Mode for automatic declaration of implicit arguments

In case one wants to systematically declare implicit the arguments detectable as such, one may switch to the automatic declaration of implicit arguments mode by using the command
Set Implicit Arguments.
Conversely, one may unset the mode by using Unset Implicit Arguments. The mode is off by default. Auto-detection of implicit arguments is governed by options controlling whether strict and contextual implicit arguments have to be considered or not.

2.6.5  Controlling strict implicit arguments

By default, Coq automatically set implicit only the strict implicit arguments. To relax this constraint, use command
Unset Strict Implicit.
Conversely, use command Set Strict Implicit to restore the strict implicit mode.


Remark: In versions of Coq prior to version 8.0, the default was to declare the strict implicit arguments as implicit.

2.6.6  Controlling contextual implicit arguments

By default, Coq does not automatically set implicit the contextual implicit arguments. To tell Coq to infer also contextual implicit argument, use command
Set Contextual Implicit.
Conversely, use command Unset Contextual Implicit to unset the contextual implicit mode.

2.6.7  Explicit Applications

In presence of non strict or contextual argument, or in presence of partial applications, the synthesis of implicit arguments may fail, so one may have to give explicitly certain implicit arguments of an application. The syntax for this is (ident:=term) where ident is the name of the implicit argument and term is its corresponding explicit term. Alternatively, one can locally deactivate the hidding of implicit arguments of a function by using the notation @qualid term1..termn. This syntax extension is given Figure 2.4.

term ++= @ qualid term ... term
  | @ qualid
  | qualid argument ... argument
 
argument ::= term
  | (ident:=term)

Figure 2.4: Syntax for explicitations of implicit arguments


Example (continued):
Coq < Check (p r1 (z:=c)).
p r1 (z:=c)
     : R b c -> R a c

Coq < Check (p (x:=a) (y:=b) r1 (z:=c) r2).
p r1 r2
     : R a c

2.6.8  Displaying what the implicit arguments are

To display the implicit arguments associated to an object use command
Print Implicit qualid.

2.6.9  Explicitation of implicit arguments for pretty-printing

By default the basic pretty-printing rules hide the inferable implicit arguments of an application. To force printing all implicit arguments, use command
Set Printing Implicit.
Conversely, to restore the hidding of implicit arguments, use command
Unset Printing Implicit.

See also: Set Printing All in section 2.8.

2.6.10  Canonical structures

A canonical structure is an instance of a record/structure type that can be used to solve equations involving implicit arguments. Assume that qualid denotes an object (Build_struc  c1  ...  cn) in the structure struct of which the fields are x1, ..., xn. Assume that qualid is declared as a canonical structure using the command
Canonical Structure qualid.
Then, each time an equation of the form (xi  _)=betadeltaiotazetaci has to be solved during the type-checking process, qualid is used as a solution. Otherwise said, qualid is canonically used to extend the field ci into a complete structure built on ci.

Canonical structures are particularly useful when mixed with coercions and strict implicit arguments. Here is an example.
Coq < Require Import Relations.

Coq < Require Import EqNat.

Coq < Set Implicit Arguments.

Coq < Unset Strict Implicit.

Coq < Structure Setoid : Type := 
Coq <   {Carrier :> Set;
Coq <    Equal : relation Carrier;
Coq <    Prf_equiv : equivalence Carrier Equal}.

Coq < Definition is_law (A B:Setoid) (f:A -> B) :=
Coq <   forall x y:A, Equal x y -> Equal (f x) (f y).

Coq < Axiom eq_nat_equiv : equivalence nat eq_nat.

Coq < Definition nat_setoid : Setoid := Build_Setoid eq_nat_equiv.

Coq < Canonical Structure nat_setoid.

Thanks to nat_setoid declared as canonical, the implicit arguments A and B can be synthesised in the next statement.
Coq < Lemma is_law_S : is_law S.
1 subgoal
  
  ============================
   is_law (A:=nat_setoid) (B:=nat_setoid) S


Remark: If a same field occurs in several canonical structure, then only the structure declared first as canonical is considered.


Variants:
  1. Canonical Structure ident := term : type.
    Canonical Structure ident := term.
    Canonical Structure ident : type := term.

    These are equivalent to a regular definition of ident followed by the declaration

    Canonical Structure ident.

See also: more examples in user contribution category (Rocq/ALGEBRA).

2.6.11  Implicit types of variables

It is possible to bind variable names to a given type (e.g. in a development using arithmetic, it may be convenient to bind the names n or m to the type nat of natural numbers). The command for that is
Implicit Types ident ... ident : type
The effect of the command is to automatically set the type of bound variables starting with ident (either ident itself or ident followed by one or more single quotes, underscore or digits) to be type (unless the bound variable is already declared with an explicit type in which case, this latter type is considered).


Example:
Coq < Require Import List.

Coq < Implicit Types m n : nat.

Coq < Lemma cons_inj_nat : forall m n l, n :: l = m :: l -> n = m.
1 subgoal
  
  ============================
   forall m n (l : list nat), n :: l = m :: l -> n = m

Coq < intros m n.
1 subgoal
  
  m : nat
  n : nat
  ============================
   forall l : list nat, n :: l = m :: l -> n = m

Coq < Lemma cons_inj_bool : forall (m n:bool) l, n :: l = m :: l -> n = m.
1 subgoal
  
  ============================
   forall (m n : bool) (l : list bool), n :: l = m :: l -> n = m


Variants:
  1. Implicit Type ident : type
    This is useful for declaring the implicit type of a single variable.

2.7  Coercions

Coercions can be used to implicitly inject terms from one class in which they reside into another one. A class is either a sort (denoted by the keyword Sortclass), a product type (denoted by the keyword Funclass), or a type constructor (denoted by its name), e.g. an inductive type or any constant with a type of the form forall (x1:A1) .. (xn:An), s where s is a sort.

Then the user is able to apply an object that is not a function, but can be coerced to a function, and more generally to consider that a term of type A is of type B provided that there is a declared coercion between A and B. The main command is
Coercion qualid : class1 >-> class2.
which declares the construction denoted by qualid as a coercion between class1 and class2.

More details and examples, and a description of the commands related to coercions are provided in chapter 16.

2.8  Printing constructions in full

Coercions, implicit arguments, the type of pattern-matching, but also notations (see chapter 11) can obfuscate the behavior of some tactics (typically the tactics applying to occurrences of subterms are sensitive to the implicit arguments). The command
Set Printing All.
deactivates all high-level printing features such as coercions, implicit arguments, returned type of pattern-matching, notations and various syntactic sugar for pattern-matching or record projections. Otherwise said, Set Printing All includes the effects of the commands Set Printing Implicit, Set Printing Coercions, Set Printing Synth, Unset Printing Projections and Unset Printing Notations. To reactivate the high-level printing features, use the command
Unset Printing All.

Previous Up Next