
CS 428 / 528
Language-Based Security

(Spring 2024)

Zhong Shao
Yale University

http://flint.cs.yale.edu/cs428

Problem and Approach

How to build truly “secure” software?

Conventional security:
• software is black box
• Encryption, firewalls, system calls/privileged mode

Language-based security:
• must reason about software (need formal methods)
• Information-flow control + dealing w. zero-day vulnerabilities
• How to verify a small amount of software to get the security guarantee for an

entire system.

Course Overview

• Read papers, write reviews, discuss ideas in class, and
work on a course project
• Tuesday classes: discuss papers we read
• Thursday classes: learn Coq, CertiKOS, DeepSEA, and

CompCert and prepare for the final course projects

• A reading list will be made available soon

• Grading:
• Class participation/discussion (10%)
• Paper reviews and/or problem sets (25%)
• Class presentation (15%)
• Final course project (40%)

Course Objectives

• Learn cutting-edge research & fundamental principles
for building secure and reliable system software

• Learn state-of-the-art tools for writing certified code
• The Coq proof assistant
• Certified C language & compiler (Clight & CompCert)
• Certified OS kernels (CertiKOS and seL4)
• DeepSEA and CCAL

• Study various language-based security technologies
• Abstraction layers and formal specification & verification
• OS kernel and hypervisor and secure enclave design
• Capabilities & access control & information flow control
• Reasoning about IPC, interrupts, atomicity, and transactions

Certified Heterogeneous Systems
• How to build efficient, scalable, and trustworthy

heterogeneous systems?
Need a high-level architectural design + stepwise refinement

• Correct-by-Construction or Secure-by-Construction
• HW/SW Implementation à Deep/Fully-Abstract Functional Spec

(VeriLog, C, Asm) (written in some formal
logic)
(semantics for these languages) (need formal proof assistant)

• Mechanized proofs for the above “implements” relation

• Need a theory of component composition
• What is a component? (HW vs. SW ones)
• What is a “certified” component?
• What are different ways of connecting/composing these components?

Sample Research Themes
• Shared-memory concurrency & concurrent objects

• Virtual memory management & spatial isolation

• File and storage systems and device drivers

• OS kernel and hypervisor for heterogeneous architecture

• Secure enclaves

• Web server

• Blockchains and smart contracts

• Consensus-based distributed systems

• Efficient proof-certificate checking

CS428/528 Summary

You will spend most of your time doing the following:

•Read papers and discuss with fellow 428/528 students
• learn cutting-edge research & fundamental principles on building

secure and reliable system software

•Learn to write formal specs & proofs in Coq
• write certified C code inside a proof assistant & compile it using a

certified C compiler
• work on an open-ended project

Warning: this is more of a “research-seminar” course; we
need your active participation

First Two Weeks

• Jan 16 (Tuesday): Read the paper on “Hints on
Programming Language Design” by Hoare.

• Jan 18 (Thursday): Coq Tutorial (Software Foundations)

• Jan 23 (Tuesday): Read the paper on “Hints and
Principles for Computer System Design” by Lampson.

• Jan 25 (Thursday): Coq Tutorial (Software Foundations)

Problem Definition
• What is a certified OS kernel / hypervisor / security monitor?

– a system binary implements its specification running over a HW
machine model (w. devices & interrupts)?

– what should the specification & the machine model be like?

• What properties do we want to prove?
– safety & partial correctness properties
– total functional correctness
– security properties (isolation, confidentiality, integrity, availability)
– resource usage properties (stack overflow, real time properties)
– race-freedom, atomicity, and linearizability
– liveness properties (deadlock-freedom, starvation freedom)

• How to cut down the cost of verification?

Problem Definition: Example OS Kernel

Formally Verified Concurrent CertiKOS (mC2) [OSDI 2016]

Problem Definition: Example Deployment

REFUEL: Formally Verified Composition of Secure Enclaves
[Joint w. Columbia U., DARPA V-SPELLS 2021-2025]

OS Verification: The Conventional Approach

OS Kernel Binaries (in Assembly)

HW Machine Model

OS Kernel
Spec 1

Property 1

OS Kernel
Spec 2

Property 2

OS Kernel
Spec 3

Property 3 …
… OS Kernel

Spec N

Property N

The CertiKOS Approach

OS Kernel Binaries (in Assembly)

HW Machine Model

Deep Functional Spec for OS Kernel

Property 1 Property 2 Property 3 … Property N

Do this only once
for all properties !

The CertiKOS Approach

OS Kernel Binaries (in Assembly)

HW Machine Model

Deep Functional Spec for OS Kernel

Property 1 Property 2 Property 3 … Property N

AFSpec1 AFSpec2 AFSpec3 AFSpec4 … AFSpeck

OSKBin1 OSKBin2 OSKBin3 OSKBin4 … OSKBink

CMod1 CMod2 CMod3 CMod4 … CModk

Compiler
1

Compiler
2

Compiler
3

Compiler
4

Compiler
k

But such horizontal decomposition is
neither realistic nor enough !

AFSpec1 AFSpec2 AFSpec3 AFSpec4 … AFSpeck

OSKBin1 OSKBin2 OSKBin3 OSKBin4 … OSKBink

The CertiKOS Approach

OS Kernel Binaries (in Assembly)

HW Machine Model

Deep Functional Spec for OS Kernel

Property 1 Property 2 Property 3 … Property N

compilers

The CertiKOS Approach

OS Kernel Binaries (in Assembly)

HW Machine Model

Deep Functional Spec for OS Kernel

Property 1 Property 2 Property 3 … Property N

compilers

What is a Deep Spec?

C	&	AsmModule	
Implementation

C	&	AsmModules	
w.	rich	spec	A

C	or	Asm module rich	spec	A

Want	to	prove	
another	spec	B	?

rich	spec	B

?						?					?
Need	to	
revisit	&	
reverify
all	the	
code!

What is a Deep Spec?

L2 is	a	deep	specification	of	M over	L1
if	under	any	valid program	context		P of	L2 ,	

【 P⊕M】 (L1) and		【P】(L2)	are	
observationally	equivalent	

L2

M

L1

R

Making	it	“contextual”	using	
the	whole-program	semantics	【•】

〖M 〗 (L1)		and		L2 simulates	each	other!	

L2 captures	everything	about	running	M over	L1

〖 M	 〗 L1	 ∼R	 L2

Shallow vs. Deep Specifications

C	&	AsmModule	
Implementation

C	&	Asm
Modules	w.	
Shallow	Specs

C	&	Asm
Modules	w.	Deep	

Specs

C	or	Asm module shallow	spec deep	spec

The CertiKOS Approach
• We developed a language-based formalization of certified

abstraction layers with deep specifications

• We developed new languages & tools in Coq
– A formal layer calculus for composing certified layers
– ClightX for writing certified layers in a C-like language
– LAsm for writing certified layers in assembly
– CompCertX that compiles ClightX layers into LAsm layers

• We built multiple certified OS kernels in Coq
– The initial version has 37 layers and can boot Linux as a guest
– The later versions support interrupts & multicore concurrency &

security (spatial & temporal isolation w. real-time guarantee)

The CertiKOS Toolchain (CAL) [POPL’15]

L1

Ma

L

R
L3

Na

L

R

L1

Mc

L

R

Extended
Asm Language

LAsm

Clight

Asm

CompCert
CompCertX[L]
compositional
compiler

ClightX[L]

LAsm[L]

Layer	Spec	
L

Coq L2

Nc

L

R

LayerLib
calculus

Parametrize it	w.	
abstract	states	&	
primitives	in		L

Layered	
prog.		in	
ClightX

Layered	
prog.		in	
LAsm

Link	
everything	
together

The CertiKOS Toolchain (CCAL) [PLDI’18]

New programming toolkit w. certified multicore & multithreaded linking:

Composition = parallel composition + hiding (abstraction)

PerCore / PerLayerPerCoreLayer L[c]

PerThread / PerLayerPerThreadLayer L[t]

C
Code

C
Spec

Thread Safe
CompCertX

Asm
Code

Asm
Code

Atomic
Spec

Atomic
Spec

Compositional
Semantic Model

⊕

C
Verifier

Asm
Verifier

Refinement
Libraries

⊕

⊕

L[A]

C
er

tifi
ed

M
ul

ti-
tr

he
ad

ed

Li
nk

in
g

⊕ L[P]

C
er

tifi
ed

M
ul

ti-
co

re

Li
nk

in
g

 PerThreadLayer	L’[t] L’[A]

⊕ Certified
Multi-layer

Linking

Certified
Asm

Linking

c:	CPU	id;				P	=	{c1,	c2,	…}
t:	thread	id;	A	=	{t1,	t2,	…}

Other CCAL Use Cases

“ ”— seL4 [SOSP’09]

Complete formal verification is the only
known way to guarantee that a system is
free of programming errors.

Motivation

“
”—NSF SFM Report[2016]

Formal methods are the only reliable way to
achieve security and privacy in computer
systems.

mathematically prove

under all inputs
under all execution

program meets specification

rule out entire classes of attacks

Formal
Verification

Challenges: Compositionality

Asm

Abstraction Gap

C

A Complex System

Asm

Challenges: Compositionality

C

A Complex System

Asm

Challenges: Compositionality

C

Verify

Verify

Verify

Verify
Verify

Verify

Verify

Verify Verify

10 11

8

A Complex System

Asm

Compiler

Challenges: Compositionality

C

Verify

Verify

Verify

Verify
Verify

Verify

Verify

5

42

7 6

9

1

3

Verify

Verify

10

8

5

11
4

2

7 6

9

1

3

A Complex System

Asm

Compiler

Challenges: Compositionality

C

Complete
Verification

multiprocessor

I/O concurrency
multi-thread

fine-grained lock fine-grained lock

Challenges: Concurrency

10 11

8

5

42

7 6

9

1

3

Challenges: Concurrency

1 0 1 18

 5

42

7 6

9
1

3

Challenges: Concurrency

1 0 1 18

 5

42

7 6

9
1

3

CPU i CPU j

fine-grained lock

Complete
Verification

Contribution

Certified Abstraction Layers

1 0 1 18

 5

42

7 6

9
1

3

1 0 1 18

 5

42

7 6

9
1

3

CPU i CPU j

fine-grained lock

untangle

Contribution

Certified Abstraction Layers

verify existing systems

build the next generation
heterogeneous systems
designed to be reliable

and secure

Contribution

Certified Abstraction Layers

verify existing systems

build the next generation
ssssssss heterogeneous systemscertified

Contribution

Certified Abstraction Layers

M1

L

L1

R1

L

M2

L2

R1
�

L0

M0

L
R0

Contribution

Certified Abstraction Layers

R1

L0

M0

L
R0

M1

L

L1

� M2

L2�

�

Contribution

Certified Abstraction Layers

R1

L0

M0

R0

M1

L1

� M2

L2�

�
o

CompCertX

R1

L0

M0

R0

M1

L1

� M2

L2�

�
o

C

Asm L0

M3

R0
�

L3

Asm

R’1

L’0

M’0
R’0

M’1

L’1

� M’2

L’2�

�
o

CompCertX

R’1

L’0

M’0
R’0

M’1

L’1

� M’2

L’2�

�
o

C

Asm

Contribution

mC2 [OSDI’16] 
the first formally certified concurrent
OS kernel with fine-grained locks 
6.5k C&Asm, 2 py

mCertiKOS [POPL’15] 
certified sequential OS kernels 
3k C&Asm, 1 py

Security [PLDI’16b] 0.5 py

Interrupt [PLDI’16a] 0.5 py Certified
Abstraction

Layers
[PLDI’18]

Contribution

functional correctness

liveness

no stack/integer/buffer 
overflow

no race condition

Certified
System

Software

Contribution
mC2

CP
U

Se
ria

l

VGA
(Video)

Ke
yb

oa
rd

IO
AP

IC

Legend

Hardware

Driver

drive

Use

Data

Kern. Module

Core 0
LAPIC 0

Core 1
LAPIC 1

Core 8
LAPIC 8...

Memory

Heap

BI
O

S

DM
A

Sp
in

Lo

ck
s

Ticket MCS Container

Alloc Tbl

PMM

IPC

SleepQPendQ

ELF Ldr

Trap & Syscall

Per Core

RdyQ

Scheduler

Thread

Cur TID PCPUPe
r T

hr
ea

d

k_stack

TCB

k_contextTSC

Hz

Timer

LAPIC

ProcessVM Monitor

Lib MemSy
nc

.
&

M
ut

ua
l

Ex
clu

.

CVFIFOBBQ ...

Page Map VMM

Serial

VideoConsole Buffer

Kbd

Console

IO
AP

IC

APIC

Contribution
mC2

Coq

machine-
checkable proof

C layers
6.1k LOC

400 LOC
CompCertX

Asm layers Asm layers�

11

certified objects

specification of 
modules to trust

1

Certified Sequential Layer [POPL’15]

11
certified objects

specification of 
modules to trust

1

abs-state

Certified Sequential Layer [POPL’15]

11

certified objects

specification of 
modules to trust

1

abs-state

primitives

Certified Sequential Layer [POPL’15]

111

memory

module

Certified Sequential Layer

M

L1

implementation

111

A
T

Certified Sequential Layer

L1

M

L2

111
A
T

implementation

Certified Sequential Layer

specification

L1

M

L2

111

A
T

3
3

3

implementation

specification

L1

Certified Sequential Layer

M

L2

implementation

Example: Thread Queue

typedef struct tcb {

 state s;

 tcb *prev, *next;

} tcb;

tcb tcbp[1024];

typedef struct tdq {

 tcb *head, *tail;

} tdq;

tdq* td_queue; C

tcbp[0] tcbp[1] tcbp[2]

3

M

implementation

Example: Thread Queue

typedef struct tcb {

 state s;

 tcb *prev, *next;

} tcb;

tcb tcbp[1024];

typedef struct tdq {

 tcb *head, *tail;

} tdq;

tdq* td_queue; C

tcbp[0] tcbp[1] tcbp[2]

3

M

implementation

Example: Thread Queue

s0 s1 s2

typedef struct tcb {

 state s;

 tcb *prev, *next;

} tcb;

tcb tcbp[1024];

typedef struct tdq {

 tcb *head, *tail;

} tdq;

tdq* td_queue; C

tcbp[0] tcbp[1] tcbp[2]

3

M

implementation

Example: Thread Queue

s0 s1 s2

head tail

tcbp[0] tcbp[1] tcbp[2]

typedef struct tcb {

 state s;

 tcb *prev, *next;

} tcb;

tcb tcbp[1024];

typedef struct tdq {

 tcb *head, *tail;

} tdq;

tdq* td_queue; C

3

M

3

implementation

Example: Thread Queue

tcb* dequeue(tdq* q) {

 tcb *head, *next;

 tcb *i = null;

 if (!q) return i;

 head = q -> head;

 if (!head) return i;

 i = head;

 next = i -> next;

 if (!next) {

 q -> head = null;

 q -> tail = null;

 } else {

 next -> prev = null;

 q -> head = next;

 }

 return i;

}

s0 s1 s2

head tail

C

tcbp[0] tcbp[1] tcbp[2]

M

3

implementation

Example: Thread Queue

tcb* dequeue(tdq* q) {

 tcb *head, *next;

 tcb *i = null;

 if (!q) return i;

 head = q -> head;

 if (!head) return i;

 i = head;

 next = i -> next;

 if (!next) {

 q -> head = null;

 q -> tail = null;

 } else {

 next -> prev = null;

 q -> head = next;

 }

 return i;

}

s0 s1 s2

head tail

C

tcbp[0] tcbp[1] tcbp[2]

M

3

implementation

Example: Thread Queue

tcb* dequeue(tdq* q) {

 tcb *head, *next;

 tcb *i = null;

 if (!q) return i;

 head = q -> head;

 if (!head) return i;

 i = head;

 next = i -> next;

 if (!next) {

 q -> head = null;

 q -> tail = null;

 } else {

 next -> prev = null;

 q -> head = next;

 }

 return i;

}

s0 s1 s2

head tail

C

tcbp[0] tcbp[1] tcbp[2]

M

Coq

Example: Thread Queue

Definition tcbp := ZMap.t state.

Definition td_queue := List Z.

3

specification

3

L2

Coq

Example: Thread Queue

Definition tcbp := ZMap.t state.

Definition td_queue := List Z.

3

specification
tcbp(0) tcbp(1) tcbp(2)

s0 s1 s2

3

L2

Coq

Example: Thread Queue

Definition tcbp := ZMap.t state.

Definition td_queue := List Z.

3

specification

s0 s1 s2

tcbp(0) tcbp(1) tcbp(2)

1

td_queue

:: 0 2:: :: nil

3

L2

Example: Thread Queue
3

specification
tcbp(0) tcbp(1) tcbp(2)

1

td_queue

:: 0 2:: :: nil

3

implementation

s0 s1 s2

head tail

tcbp[0] tcbp[1] tcbp[2]

R

s0 s1 s2

3

L2

M

Example: Thread Queue

specification
tcbp(0) tcbp(1) tcbp(2)

1

td_queue

:: 0 2:: :: nil

3

Coq

Function dequeue (q) :=

match q with

 | head :: q’ => (q’, Some head)

 | nil => (nil, None)

end.

s0 s1 s2

3

L2

Example: Thread Queue

specification
tcbp(0) tcbp(1) tcbp(2)

1

td_queue

0 2:: :: nil

3

Coq

Function dequeue (q) :=

match q with

 | head :: q’ => (q’, Some head)

 | nil => (nil, None)

end.

s0 s1 s2

executable

3

L2

Program Context3
3

specification

3

implementation

Simulation Proof

R R
M

L1

L2

R

Deep 
SpecificationL2

M

Deep Specification [POPL’15]

Deep spec captures all we 
need to know about over

No need to look at again

L2

M L1

M

Any property about can be 
proved using alone

M

L2

M

L1

L2

R

kernel

MM

TM

PM

Trap

code

seq machine

mCertiKOS

TM

PM

Trap

MM

seq machine

kernelmCertiKOS

mem MM

TM

PM

Trap

memory management

seq machine

kernelmCertiKOS

�

Trap

PM

MM

TM

TM

PM

Trap

mem

thread

proc

trap

seq machine

kernelmCertiKOS

Trap

PM

TM

mem

thread

proc

trap

certified sequential kernel
MM

mCertiKOS

seq machine

VM

Trap

VM

mCertiKOS

mem

thread

proc

trap

seq machine virt�

virt�

PM

TM

MM

Trap
mCertiKOS

mem

thread

proc

seq machine virt�

virt�
VM

VM

PM

TM

MM

trap

vm

Trap
mCertiKOS

mem

thread

proc

trap

seq machine virt

virt

vm

VM

PM

TM

MM

certified hypervisor
mCertiKOS
[POPL’15]

3k LOC 
1 person year

Can boot Linux as a guest

Contribution Summary

Certified Concurrent Abstraction Layers CertiKOS

Strategy Refinement  
Thread-safe 
 CompCert 

End-to-End Security [PLDI16’b]

TM

PM

Trap

mem

thread

proc

trap

seq machine

OObservation function
specify and prove general
security policies with
declassification

MM

non-interference
found security-bugs:  
spawn, palloc,…

security-preservation
simulation

O

O0

O1

O2

O3

secure

secure

secure

secure

secure

Spin-lock Module

Case Study

Thread Queue Module

Scheduling Module
Inter-Process Communication

Keyboard

User Application

SendCompiler

Security

CPU 0 CPU 1

3

Keyboard 
Driver

Build a Certified System
Summary: The CertiKOS / DeepSpec Project

Killer-app: high-assurance “heterogeneous” systems of systems!

Conjecture: today’s PLs fail because they ignored OS, and today’s
OSes fail because they get little help from PLs

New Insights:
• deepspec & certified abstraction layers;
• a unifying framework for composing heterogeneous components (

via game semantics + linear logic connectives)

Opportunities:
– New certified system software stacks (CertiKOS ++)
– New certifying programming languages (DeepSEA vs. C & Asm)
– New certified programming tools
– New certified modeling & arch. description lang. (DeepSEA)
– We verify all interesting properties (correctness, safety, security, availability, …)

