CS 428 / 528

Language-Based Security
(Spring 2024)

Zhong Shao
Yale University

http://flint.cs.yale.edu/cs428

Problem and Approach

How to build truly “secure” software?

Conventional security:

e software is black box

e Encryption, firewalls, system calls/privileged mode

Language-based security:
e must reason about software (need formal methods)
¢ Information-flow control + dealing w. zero-day vulnerabilities

e How to verify a small amount of software to get the security guarantee for an
entire system.

Course Overview

* Read papers, write reviews, discuss ideas in class, and
work on a course project

e Tuesday classes: discuss papers we read

e Thursday classes: learn Coq, CertiKOS, DeepSEA, and
CompCert and prepare for the final course projects

« Areading list will be made available soon

» Grading:
e Class participation/discussion (10%)
e Paper reviews and/or problem sets (25%)
e Class presentation (15%)
e Final course project (40%)

Course Obijectives

» Learn cutting-edge research & fundamental princijples
for building secure and reliable system software

» Learn state-of-the-art tools for writing certified code

» The Coq proof assistant

 Certified C language & compiler (Clight & CompCert)
* Certified OS kernels (CertiKOS and selL4)

* DeepSEA and CCAL

« Study various language-based security technologies

e Abstraction layers and formal specification & verification

e OS kernel and hypervisor and secure enclave design

e Capabilities & access control & information flow control

e Reasoning about IPC, interrupts, atomicity, and transactions

Certified Heterogeneous Systems

» How to build efficient, scalable, and trustworthy
heterogeneous systems?

Need a high-level architectural design + stepwise refinement

» Correct-by-Construction or Secure-by-Construction
« HW/SW Implementation - Deep/Fully-Abstract Functional Spec

(VeriLog, C, Asm) (written in some formal
logic)
(semantics for these languages) (need formal proof assistant)

» Mechanized proofs for the above “implements” relation

* Need a theory of component composition

* What is a component? (HW vs. SW ones)

* What is a “certified” component?
* What are different ways of connecting/composing these components?

Sample Research Themes
Shared-memory concurrency & concurrent objects
Virtual memory management & spatial isolation
File and storage systems and device drivers
OS kernel and hypervisor for heterogeneous architecture
Secure enclaves
Web server
Blockchains and smart contracts
Consensus-based distributed systems

Efficient proof-certificate checking

CS428/528 Summary

You will spend most of your time doing the following:

*Read papers and discuss with fellow 428/528 students
* learn cutting-edge research & fundamental principles on building
secure and reliable system software
Learn to write formal specs & proofs in Coq

« write certified C code inside a proof assistant & compile it using a
certified C compiler

« work on an open-ended project

Warning: this is more of a “research-seminar” course; we
need your active participation

First Two Weeks

Jan 16 (Tuesday): Read the paper on “Hints on
Programming Language Design” by Hoare.

Jan 18 (Thursday): Coq Tutorial (Software Foundations)

Jan 23 (Tuesday): Read the paper on “Hints and
Principles for Computer System Design” by Lampson.

Jan 25 (Thursday): Coq Tutorial (Software Foundations)

Problem Definition

What is a certified OS kernel / hypervisor / security monitor?
— a system binary implements its specification running over a HW

machine model (w. devices & interrupts)?

— what should the specification & the machine model be like?

What properties do we want to prove?

safety & partial correctness properties

total functional correctness

security properties (isolation, confidentiality, integrity, availability)
resource usage properties (stack overflow, real time properties)
race-freedom, atomicity, and linearizability

liveness properties (deadlock-freedom, starvation freedom)

How to cut down the cost of verification?

Problem Definition: Example OS Kernel

Trap & Syscall

v IPC

E | _
S « 2 ¢ FIFOBBQ cv [~ TLegend)
— y Lib Mem ELF Ldr | [

Hardware
Per Core — — v v i Console | |
VM Monitor ‘— Process Page Map - VMM APIC | |

| Data
Timer <— Scheduler ; | |
H* '° W R Pe!dQ SleepQ i | Driver I
v < Thead RdyQ v \ I |
LAPIC| = k_stack + \ J + + ‘ Qllgeiisl Setxlly ihd | Kern. Module I
5 c 9 v SN W | S |
Q |k context CurTID = PCPU 3G Ticket MCS ; =

Isc w3 ‘ Container O | Console Buffer | Video | l
— = ¥ ') | drive |
_ [Coreo Core 1 Core 8 8 Heap g % VEA | |

2 7 —» Use
& |[LAPico]| |[LAPIC 1] LAPIC 8 @ g S | |(video) | |
Memory - 3 - B

Formally Verified Concurrent CertikOS (mC2) [OSDI 2016]

Problem Definition: Example Deployment

__

1S Gatewa)

ELO E ‘ MAVProxy H

! Main-Stream Linux CEE-Verityp : Driver + ! .
i +ROS i Kserv | Passthrough | CEE-CertiKOS OS
[8 " 1 Linux + KVM : . N | . .
EL1 oo ThinROS Driver 1 L ThinROS Driver ThinROS Runtime UART, SP|, ...
' t . { |
| « Partition-based IPC
+ Attestation
EL2 CEE-VeriHyp CEE-VeriHyp KCore | e by CEE-CertiKOS
L. Device-passthrough
| * VM attestation |
EL3 : ARM Trusted Firmware (ATF) + CertiKOS Extension
I « secure monitor « world switch 1
s RQrouting l,
Controller H Raspberry Pi 4 QEMU ARM Nvidia TX2

REFUEL.: Formally Verified Composition of Secure Enclaves
[Joint w. Columbia U., DARPA V-SPELLS 2021-2025]

OS Verification: The Conventional Approach

Property 1 Property 2 Property 3 Property N
OS Kernel OS Kernel 0S Kernel . OS Kernel
Spec 1 Spec 2 Spec 3 Spec N

A

This will not .
be practical

OS Kernel Binaries (in Assembly)

v v v

HW Machine Model

The CertiKOS Approach

Property 1 Property 2 Property 3 Property N

Deep Functional Spec for OS Kernel

AN

Do this only once
for all properties !

OS Kernel Binaries (in Assembly)

v v v

HW Machine Model

The CertiKOS Approach

Property 1 Property 2 Property 3 Property N
Deep Functional Spec for OS Kernel
| AN |
AFS$ec1 OO AFSpec, 07 AFSpec, j{h AFSpec, 0Op == AFS$eck
¢ ¢ ¢
CMod; CMod, CMods CMod, CMod
Compiler Compiler Compiler Compiler Compiler
1 2 3 4 ki
OSKBin, G7 OSKBin, §7 OSKBin; 07| OSKBin, §F 0P OSKBin,

y

OS Kernel Binaries (in Assembly)

y

v

HW Machine Model

The CertiKOS Approach

Property 1 Property 2 Property 3 Property N

Deep Functional Spec for OS Kernel
|

Argpec; 1§ ~AFSpec, EE,:' AFSpec; EE,:' AFSpec, EE,:' EE,:' AFSpecy
Y Y Y - compilers
v vy VB sucl'v“;wr;"'"vﬂtal dec=*=Z5jtion is
. N , v v

v v Vv v lthve’vl vaqstlc Or erTUUQI. / v Y ¥ v

Y YY'VY v Vv v
OSKBin; §F OSKBin, G7 OSKBin; G§F OSKBin, 0O Y v Wewsp

I

OS Kernel Binaries (in Assembly)

v v v

HW Machine Model

The CertiKOS Approach

Property 1 Property 2 Property 3 Property N

Deep Functional Spec for OS Kernel
|

v Y
Y Y Y ¥ v v compilers
VVVV\VVVV v Y
Y Y Y Y - - Y VY Y ¥
Y YVY'VY Vv VvV ¥
Y Y Y VY
|

OS Kernel Binaries (in Assembly)

v v v

HW Machine Model

What is a Deep Spec?

. C or Asm module g rich spec A . rich spec B
C & Asm Module C & Asm Modules Want to prove
Implementation w. rich spec A another spec B ?

i sl

Need to

revisit &

reverify
all the

code!

What is a Deep Spec?

KMﬂlq ~R Lz

(M) (L;) and L,simulates each other!

L, captures everything about running Mover L,

Making it “contextual” using
the whole-program semantics [e]

L,is a deep specification of Mover L;

if under any valid program context P of L,,

[POM]) (L) and [P] (L)) are
observationally equivalent

Shallow vs. Deep Specifications

. C or Asm module g shallow spec . deep spec
C & Asm Module C& Asm C& Asm
Implementation Modules w. Modules w. Deep
Shallow Specs Specs

sl

The CertiKOS Approach

« We developed a language-based formalization of certified
abstraction layers with deep specifications

« We developed new languages & tools in Coq
— A formal layer calculus for composing certified layers

— ClightX for writing certified layers in a C-like language
— LAsm for writing certified layers in assembly
— CompCertX that compiles ClightX layers into LAsm layers

« We built multiple certified OS kernels in Coq
— The initial version has 37 layers and can boot Linux as a guest

— The later versions support interrupts & multicore concurrency &
security (spatial & temporal isolation w. real-time guarantee)

The CertiKOS Toolchain (CAL) [POPL15]

Parametrize it w.

Layered
abstract states & l_'ln l_lzn prog. in
primitives in L = T ClightX

% | N,
5 v
| L
~~~~~~~~~ Link
everything
together
----------- /b
: ot
* N, Layered
v prog. in
L L LAsm




The CertiKOS Toolchain (CCAL) [PLDI'18]

New programming toolkit w. certified multicore & multithreaded linking:

Composition = parallel composition + hiding (abstraction)

PerCorelLayer L[c]

PerThreadlLayer L[t] L 3
C __/ Refinement \ _ Atomic Atomic T § o o
Spec Libraries Spec Spec 5.%_’ oS 8o D
T THE £8S
| S5 | 5EE
C Compositional ! Asm % o 5|-
Verifier Semantic Model | Verifier
‘ | ® @
. L[P]
C ./ Thread Safe | Asm ® Asm > L[A]| 1>
Code CompCertX Code Code ® -
e Certified

NSt - B Multi-layer
PerThreadLayer L’ [t] Linking =L"[A] Linking




Other CCAL Use Cases

Formal Verification of a Multiprocessor Hypervisor on
Arm Relaxed Memory Hardware

[runcrionat [l Rerrovuceo|

Design and Verification of the Arm Confidential Compute Architecture

Xupeng Li
Columbia University

Xuheng Li

Jason Nieh
Columbia University

Abstract

The increasing use of sensitive private data in computing is
matched by a growing concern regarding data privacy. System
software such as hypervisors and operating systems are sup-
posed to protect and isolate applications and their private data,
but their large codebases contain many vulnerabilities that can
risk data confidentiality and integrity. We introduce Realms, a
new abstraction for confidential computing to protect the data
confidentiality and integrity of virtual machines. Hardware
creates and enforces Realm world, a new physical address
space for Realms. Firmware controls the hardware to secure

N1 11 11 c 1 .

Columbia University

Yousuf Sait
Arm Ltd

Christoffer Dall Ronghui Gu
Arm Ltd Columbia University

Gareth Stockwell
Arm Ltd

To address this problem, we introduce the Arm Confidential
Compute Architecture (Arm CCA). CCA provides Realms,
secure execution environments that are completely opaque
to privileged, untrusted system software such as OSes and
hypervisors. CCA retains the ability of existing system
software to manage hardware resources for Realms while
preventing it from violating Realm confidentiality and
integrity. For example, a hypervisor should retain its ability to
dynamically allocate memory to or free memory from a Realm
VM, but must never be allowed to access the protected memory
contents of a Realm VM. CCA guarantees the confidentiality
and integrity of Realm code and data in use, that is data in CPU




Motivation Challenges: Compositionality

Formal N
Verification .c-
mathematically prove —
program meets specification Abstraction Gap
under all inputs
under all execution m
rule out entire classes of attacks Asmm
I
Challenges: Compositionality Challenges: Compositionality
A Complex System A Complex System

Verify

I e
I I ey

Verify




Challenges: Compositionality

A Complex System

Verify

Compiler

Asm

Challenges: Compositionality

A Complex System

Complete
Verification

Challenges: Concurrency

fine-grained lock g fine-grained lock

I/O concurrency

multi-thread

multiprocessor

Challenges: Concurrency




Challenges: Concurrency

Contribution

Certified Abstraction Layers
untangle

fine-grained lock

CPU i CPU j

Complete

Verification

fine-grained lock

CPUIi CPU |

Contribution

Certified Abstraction Layers

verify existing systems

build the next generation

heterogeneous systems

designed to be reliable
and secure

Contribution

Certified Abstraction Layers

verify existing systems

build
certified heterogeneous systems




Certified Abstraction Layers

Certified Abstraction Layers

L1 Lo L1 & L2
R1 R1 R1
® -2
L L L
S¥
L L
Ro Ro
L Mo |
Lo Lo
Certified Abstraction Layers = mCertiKOS
certified sequential OS kernels
L« @& L2 L+ © L2 3k C&Asm, 1 py
R1 0 Ro R’10 R’o ’
v [ M: R M @@9 N 1 Interrupt 0.5 py
Lo L' Abstraction Security 0e
Layer 2 Py
ic...c. 1. e
mC2
Li @ L Ls ‘ ‘ LT @ L% the first formally certified concurrent
R1 0 Ro Ro R’10 R OS kernel with fine-grained locks
M- -M IR -E - IR 6.5k C&Asm, 2 py
Lo Lo Lo




mC?2

Trap & Syscall

H v
functional correctness _ —— s

T3
« 2 G FIFOBBQ cv
5%

(~ Tegend N

-Hardware

Data

Sync

= Lib Mem ELF Ldr

. Y — Console
I IVG n eSS per core VM Monitor > L —p Page Map = VMM

Certified . o
SR

System no StaCk/integer/bUffer Hz E TCB P T PendQ S\eepQ Driver
Software overflow o Eroen [0 o por0 | 58 e | wes |t | =

C sole Buffer ‘Vdeo

|
no race condition )| |[wes]| - | s |i“i

Memory

e drive

CPU

—» Use

| |

| |

| |

| |

| |

Yoo 12 stack | |
LAPICl IE | kstack —— f_ Alloc Tbl Serial ‘Kbd | |
| |

| |

| |

| |

| |

IOAPIC

r‘
|
|
|
L

mC?2

6.1k LOC Cog L
C layers certified objects

CompCertX L]

400 LOC

Asm layers S5 Asm layers

machine-
checkable proof

specification of
modules to trust




Certified Sequential Layer [POPL’15]

abs-state

certified objects

specification of
modules to trust

Certified Sequential Layer [POPL’15]

aps-state certified objects
L]
specification of
orimitives modules to trust

Certified Sequential Layer

module M

[]
e

memory

Certified Sequential Layer




Certified Sequential Layer

specification

implementation

Lo

M

Certified Sequential Layer
specification

=,

_BY

implementation ]

B 00O

Example: Thread Queue

typedef struct tcb {
state s;
tch *prev, *next;
} tcb;

tcb tebp[1024];

typedef struct tdq {
tcb *head, *talil;
} tda;

tdg* td_queue;

M
]

tcbpl[0]

implementation

tcbp[1]

tcbp[2]

Example: Thread Queue

typedef struct tcb { typedef struct tdq {
state s; tcb *head, *tail;
tcb *prev, *next; |} tdq;

} tcb;

tcb tebp[1024]; tdg* td_queue;

tcbp[0] tcbp[1] tcbp[2]

implementation




Example: Thread Queue

typedef struct tcb {
state s;
tcb *prev, *next;
} tcb;

tch tcbp[1024];

typedef struct tdq {
tcb *head, *tail;
} tda;

tdg* td_queue;

Example: Thread Queue

typedef struct tcb { |typedef struct tdq {
state s; tcb *head, *tail;
tcb *prev, *next; |} tdq;

} tcb;

tcb tcbp[1024]; tdg* td_queue;

tcbp[0] tcbp[1] tcbp[2]

implementation

head tail

tcbp[0] tcbp[1] tcbp[2]

implementation

Example: Thread Queue

Example: Thread Queue

tcb* dequeue(tdg” g) {
tcb *head, *next;
tcb *i = null;
if (!q) return i;
head = g -> head;
if ('head) return i;
i = head,
next = i -> next;

if (Inext) {
q -> head = null;
q -> tail = null;

} else {
next -> prev = null;
g -> head = next;

}

return i;
|

implementation

head

tcbp[1]

tcb* dequeue(tdg® q) {
tcb *head, *next;
tcb *i = null;
if (Iq) return i;
head = g -> head;
if (!head) return i;
i = head;
next = i -> next;

if (‘next) {
g -> head = null;
q -> tail = null;

} else {
next -> prev = null;
g -> head = next;

}

return i;
|

implementation

head

tcbp[1]




Example: Thread Queue

tchb* dequeue(tdg” g) {
tcb *head, *next; q -> head = null;
tch *i = null; q -> tail = null;
if (1q) return i; } else {
head = g -> head; next -> prev = null;
if ('head) return i; g -> head = next;
i = head, }

next = i -> next; return i;
}

head tail

if (Inext) {

tchbp[0] tcbp[1] tcbp[2]

M
]

implementation

EINNE
IT

Example: Thread Queue

specification

[ ]

Ly

Definition td_queue := List Z.

Definition tebp := ZMap t state.

=

Example: Thread Queue

specification

tcbp(0) tcbp(1) tcbp(2)
Lo [so] [s1] [s2]

Definition tcbp := ZMap.t state.
Definition td_queue := List Z.

Example: Thread Queue

specification

I:I tcbp(0) tebp(1) tcbp(2 td_queue
L2 . . . ::@::::n

Definition tcbp := ZMap.t state.
Definition td_queue := List Z.

=




Example: Thread Queue Example: Thread Queue

specification specification
td_queue

I:I tcbp(0) tcbp(1) tebp(2) td_queue I:I tcbp(0) tebp(1) tcbp(2)
EI [1]:[0]=[2]z: ni Lo (][0 ]=[2]:

Lo
@ R
Function dequeue (q) .=
head ail match g with
| head :: @' => (q’, Some head)
- tcbp(0] tcbp[1] tcbp(2] | nil => (nil, None)
end.

implementation

Example: Thread Queue Simulation Proof

specification specification

I:I tcbp(0) tebp(1) tebp(2) td_queue I:I Program Context Deep
Lo [s1] Lo]=[ 2]z i Lo O O Specification

L2

Function dequeue (q) := L
match g with
| head :: @' => (q’, Some head)

| nil => (nil, None) -

end. M
executable [ ]
implementation

L+




Deep spec L. captures all we

] need to know about [llover L

“ Any property about llcan be
proved using L. alone

L+

No need to look at [l again

seq machine

kernel

kernel
Trap

| Trap |
L (]

seg machine

memory management

seq machine

kernel




kernel

trap o
certified sequential kernel
proc [ mm ] [ vm ]
trap
PV proc
thread thread
mem
mem .
seq machine
seq machine
VM
trap
o L™ |
trap  —
proc virt proc virt
thread thread
mem mem
seq machine virt seq machine virt




certified hypervisor

trap
vm
proc virt
thread
mem
seq machine virt

Trap
VM

™

iidid

mCertiKOS 3k LOC
1 person year

Can boot Linux as a guest

S~
TSysCall Layer
(pe, ikern, ihost, ipt, AT, PT, ptp, pbit, kctxp, Htcbp, Htgp, cid, chanp, uctxp, npt, hctx, vmst)

thread_wakeup/kill/sleep/yield I pt_read l get/set_uctx I palloc/free l cid_get

sys_chan_send/recv/wait/check | sys_yield I sys_get_exit_reason | sys_get eip

sys_check_shadow/pending_event l sys_proc_create | sys_set_seg | sys_inject

sys_get_exit_io_width/port/rep/str/write/eip I sys_set_intcept_int I sys_npt_instr

vmcebinit | pagefault_handler | sys_reg_get/set I sys_syncl sys_run l vm_exit

i}

- N\
TSysCall Layer ; | —
g o Sys_run, PageFault : sys_check/exit/sync, mm,
| (mm/proc/virt.abs) | vmcbinit | vym‘exit _Handler I sys_yield I i:l\jEct/set chan 17{ | proc, prim
N

TTrap Layer : ‘17 T -
A R et _ar i
| (mm/procivirt.abs) | vmebinit | V" l s re%/ six?égt/igt/%';{\s{f;{ | pronc.:'.n;/rim L
1 1 1

L L

Certified Concurrent Abstraction Layers CertikOS

@ CompCertX

Lh & L2
R’10 Ro

IR -0H - IR
Eii! L’

Thread-safe

CompCert

Observation function O

trap MO

Trap | secure

specify and prove general

| proc |Os security. poligies with
declassification
security-preservation
hiegd O simulation
o) non-interference

MM |[secure

seq machine Oo

found security-bugs:
spawn, palloc,...




Summary: The CertiKOS / DeepSpec Project
Build a Certified System

Killer-app: high-assurance “heterogeneous” systems of systems!

Conjecture: today’s PLs fail because they ignored OS, and today’s
OSes fail because they get little help from PLs

User Application

New Insights:
- deepspec & certified abstraction layers;

- a unifying framework for composing heterogeneous components (
via game semantics + linear logic connectives)

Inter-Process Communication

Scheduling Module | | Keyboard

Thread Queue Module
Spin-lock Module

— New certifying programming languages (DeepSEA vs. C & Asm)
CPUO Keyboard CPU 1 — New certified programming tools

— New certified modeling & arch. description lang. (DeepSEA)

S ecu rity — We verify all interesting properties (correctness, safety, security, availability, ...)

Opportunities:
— New certified system software stacks (CertiKOS ++)




