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Problem and Approach

How to build truly “secure” software?

Conventional security:
• software is black box
• Encryption, firewalls, system calls/privileged mode

Language-based security:
• must reason about software (need formal methods)
• Information-flow control + dealing w. zero-day vulnerabilities
• How to verify a small amount of software to get the security guarantee for an 

entire system. 



Course Overview

• Read papers, write reviews, discuss ideas in class, and 
work on a course project
• Tuesday classes: discuss papers we read
• Thursday classes: learn Coq, CertiKOS, DeepSEA, and 

CompCert and prepare for the final course projects

• A reading list will be made available soon

• Grading:
• Class participation/discussion (10%)
• Paper reviews and/or problem sets (25%)
• Class presentation (15%)
• Final course project (40%)



Course Objectives

• Learn cutting-edge research & fundamental principles 
for building secure and reliable system software

• Learn state-of-the-art tools for writing certified code
• The Coq proof assistant
• Certified C language & compiler (Clight & CompCert)
• Certified OS kernels (CertiKOS and seL4)
• DeepSEA and CCAL

• Study various language-based security technologies 
• Abstraction layers and formal specification & verification
• OS kernel and hypervisor and secure enclave design
• Capabilities & access control & information flow control
• Reasoning about IPC, interrupts, atomicity, and transactions



Certified Heterogeneous Systems
• How to build efficient, scalable, and trustworthy 

heterogeneous systems?
Need a high-level architectural design + stepwise refinement

• Correct-by-Construction or Secure-by-Construction
• HW/SW Implementation à Deep/Fully-Abstract Functional Spec

(VeriLog, C, Asm) (written in some formal 
logic)
(semantics for these languages) (need formal proof assistant)

• Mechanized proofs for the above “implements” relation

• Need a theory of component composition 
• What is a component? (HW vs. SW ones)
• What is a “certified” component? 
• What are different ways of connecting/composing these components? 



Sample Research Themes
• Shared-memory concurrency & concurrent objects

• Virtual memory management & spatial isolation

• File and storage systems and device drivers

• OS kernel and hypervisor for heterogeneous architecture

• Secure enclaves

• Web server

• Blockchains and smart contracts

• Consensus-based distributed systems

• Efficient proof-certificate checking



CS428/528 Summary

You will spend most of your time doing the following:

•Read papers and discuss with fellow 428/528 students
• learn cutting-edge research & fundamental principles on building 

secure and reliable system software

•Learn to write formal specs & proofs in Coq 
• write certified C code inside a proof assistant & compile it using a 

certified C compiler
• work on an open-ended project

Warning: this is more of a “research-seminar” course; we 
need your active participation



First Two Weeks

• Jan 16 (Tuesday): Read the paper on “Hints on 
Programming Language Design” by Hoare. 

• Jan 18 (Thursday): Coq Tutorial (Software Foundations)

• Jan 23 (Tuesday): Read the paper on “Hints and 
Principles for Computer System Design” by Lampson. 

• Jan 25 (Thursday): Coq Tutorial (Software Foundations) 



Problem Definition
• What is a certified OS kernel / hypervisor / security monitor? 

– a system binary implements its specification running over a HW 
machine model (w. devices & interrupts)? 

– what should the specification & the machine model be like?  

• What properties do we want to prove? 
– safety & partial correctness properties
– total functional correctness
– security properties (isolation, confidentiality, integrity, availability)
– resource usage properties (stack overflow, real time properties)
– race-freedom, atomicity, and linearizability 
– liveness properties (deadlock-freedom, starvation freedom)

• How to cut down the cost of verification?  



Problem Definition: Example OS Kernel 

Formally Verified Concurrent CertiKOS (mC2)   [OSDI 2016]



Problem Definition: Example Deployment 

REFUEL: Formally Verified Composition of Secure Enclaves
[Joint w. Columbia U., DARPA V-SPELLS 2021-2025]



OS Verification: The Conventional Approach

OS Kernel Binaries (in Assembly)

HW Machine Model 

OS Kernel 
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The CertiKOS Approach

OS Kernel Binaries (in Assembly)

HW Machine Model 

Deep Functional Spec for OS Kernel

Property 1 Property 2 Property 3 … Property N

Do this only once 
for all properties !



The CertiKOS Approach

OS Kernel Binaries (in Assembly)

HW Machine Model 

Deep Functional Spec for OS Kernel
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But such horizontal decomposition is 
neither realistic nor enough ! 

AFSpec1 AFSpec2 AFSpec3 AFSpec4 … AFSpeck

OSKBin1 OSKBin2 OSKBin3 OSKBin4 … OSKBink

The CertiKOS Approach

OS Kernel Binaries (in Assembly)

HW Machine Model 

Deep Functional Spec for OS Kernel

Property 1 Property 2 Property 3 … Property N

compilers



The CertiKOS Approach

OS Kernel Binaries (in Assembly)

HW Machine Model 

Deep Functional Spec for OS Kernel

Property 1 Property 2 Property 3 … Property N

compilers



What is a Deep Spec?

C	&	AsmModule	
Implementation

C	&	AsmModules	
w.	rich	spec	A

C	or	Asm module rich	spec	A

Want	to	prove	
another	spec	B	?

rich	spec	B

?						?					?
Need	to	
revisit	&	
reverify
all	the	
code!



What is a Deep Spec? 

L2 is	a	deep	specification	of	M over	L1
if	under	any	valid program	context		P of	L2 ,	

【 P⊕M】 (L1) and		【P】(L2)	are	
observationally	equivalent	

L2

M

L1

R

Making	it	“contextual”	using	
the	whole-program	semantics	【•】

〖M 〗 (L1)		and		L2 simulates	each	other!	

L2 captures	everything	about	running	M over	L1

〖 M	 〗 L1	 ∼R	 L2



Shallow vs. Deep Specifications

C	&	AsmModule	
Implementation

C	&	Asm
Modules	w.	
Shallow	Specs

C	&	Asm
Modules	w.	Deep	

Specs

C	or	Asm module shallow	spec deep	spec



The CertiKOS Approach
• We developed a language-based formalization of certified 

abstraction layers with deep specifications

• We developed new languages & tools in Coq
– A formal layer calculus for composing certified layers
– ClightX for writing certified layers in a C-like language 
– LAsm for writing certified layers in assembly 
– CompCertX that compiles ClightX layers into LAsm layers

• We built multiple certified OS kernels in Coq
– The initial version has 37 layers and can boot Linux as a guest
– The later versions support interrupts & multicore concurrency & 

security (spatial & temporal isolation w. real-time guarantee)



The CertiKOS Toolchain (CAL) [POPL’15]
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The CertiKOS Toolchain (CCAL) [PLDI’18]

New programming toolkit w. certified multicore & multithreaded linking:

Composition = parallel composition + hiding (abstraction)
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Other CCAL Use Cases



“ ”— seL4 [SOSP’09]

Complete formal verification is the only 
known way to guarantee that a system is 
free of programming errors.

Motivation

“
”—NSF SFM Report[2016]

Formal methods are the only reliable way to 
achieve security and privacy in computer 
systems. 
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Contribution
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mC2 [OSDI’16] 
the first formally certified concurrent 
OS kernel with fine-grained locks 
6.5k C&Asm, 2 py

mCertiKOS [POPL’15] 
certified sequential OS kernels 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[PLDI’18]



Contribution

functional correctness

liveness

no stack/integer/buffer 
overflow

no race condition

Certified 
System 

Software

Contribution
mC2

CP
U

Se
ria

l

VGA
(Video)

Ke
yb

oa
rd

IO
AP

IC

Legend

Hardware

Driver

drive

Use

Data

Kern. Module

Core 0
LAPIC 0

Core 1
LAPIC 1

Core 8
LAPIC 8...

Memory

Heap

BI
O

S

DM
A

Sp
in

 
Lo

ck
s

Ticket MCS Container

Alloc Tbl

PMM

IPC

SleepQPendQ

ELF Ldr

Trap & Syscall

Per Core

RdyQ

Scheduler

Thread

Cur TID PCPUPe
r T

hr
ea

d

k_stack

TCB

k_contextTSC

Hz

Timer

LAPIC

ProcessVM Monitor

Lib MemSy
nc

. 
& 

M
ut

ua
l 

Ex
clu

.

CVFIFOBBQ ...

Page Map VMM

Serial

VideoConsole Buffer

Kbd

Console

IO
AP

IC

APIC

Contribution
mC2

Coq

machine-
checkable proof

C layers
6.1k LOC

400 LOC
CompCertX

Asm layers Asm layers�

11

certified objects

specification of 
modules to trust

1

Certified Sequential Layer [POPL’15]



11
certified objects

specification of 
modules to trust

1

abs-state

Certified Sequential Layer [POPL’15]

11

certified objects

specification of 
modules to trust

1

abs-state

primitives

Certified Sequential Layer [POPL’15]

111

memory

module

Certified Sequential Layer

M

L1

implementation

111

A
T

Certified Sequential Layer

L1

M

L2



111
A
T

implementation

Certified Sequential Layer

specification

L1

M

L2

111

A
T

3
3

3

implementation

specification

L1

Certified Sequential Layer

M

L2

implementation

Example: Thread Queue

typedef struct tcb {

    state s;

    tcb *prev, *next;

} tcb;


tcb tcbp[1024];

typedef struct tdq {

    tcb *head, *tail;

} tdq;


tdq* td_queue; C

tcbp[0] tcbp[1] tcbp[2]
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Example: Thread Queue

typedef struct tcb {

    state s;

    tcb *prev, *next;
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implementation

Example: Thread Queue

s0 s1 s2
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Example: Thread Queue
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Example: Thread Queue

tcb* dequeue(tdq* q) {

    tcb *head, *next;

    tcb *i = null;

    if (!q) return i;

    head = q -> head;

    if (!head) return i;

    i = head;

    next = i -> next;

    if (!next) {

        q -> head = null;

        q -> tail = null;

    } else {

        next -> prev = null;

        q -> head = next;

    }

    return i;

}
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Example: Thread Queue

tcb* dequeue(tdq* q) {

    tcb *head, *next;

    tcb *i = null;

    if (!q) return i;

    head = q -> head;

    if (!head) return i;

    i = head;

    next = i -> next;

    if (!next) {

        q -> head = null;

        q -> tail = null;

    } else {

        next -> prev = null;

        q -> head = next;

    }

    return i;

}
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Definition tcbp := ZMap.t state.

Definition td_queue := List Z.
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Example: Thread Queue
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Function dequeue (q) :=

match q with

  | head :: q’ => (q’, Some head)

  | nil => (nil, None)

end.
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Deep Specification [POPL’15]

Deep spec     captures all we 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No need to look at     again
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Trap
mCertiKOS
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certified hypervisor
mCertiKOS 
[POPL’15]

3k LOC 
1 person year

Can boot Linux as a guest

Contribution Summary

Certified Concurrent Abstraction Layers CertiKOS

Strategy Refinement  
Thread-safe 
 CompCert 

End-to-End Security [PLDI16’b]
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Spin-lock Module

Case Study

Thread Queue Module
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SendCompiler
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Build a Certified System
Summary: The CertiKOS / DeepSpec Project

Killer-app:  high-assurance “heterogeneous” systems of systems!

Conjecture:  today’s PLs fail because they ignored OS, and today’s 
OSes fail because they get little help from PLs

New Insights:    
• deepspec & certified abstraction layers;  
• a unifying framework for composing heterogeneous components ( 

via game semantics + linear logic connectives)

Opportunities:
– New certified system software stacks (CertiKOS ++) 
– New certifying programming languages (DeepSEA vs. C & Asm)
– New certified programming tools
– New certified modeling & arch. description lang. (DeepSEA)
– We verify all interesting properties (correctness, safety, security, availability, …)


