
1/7/24

1

CS 428/528 Lecture 2
Logical Foundations & Coq

Zhong Shao
January 18, 2024

(Slides based on those from the Software Foundations
course material developed by Benjamin Pierce at Penn)

1

How do we build software?
that works^

(and be convinced
that it does)

^

2

1/7/24

2

Critical Software
Individual programs

• Operating systems
• Network stacks
• Crypto
• Medical devices
• Flight control systems
• Power plants
• Home security
• …

Programming languages
• Static type systems
• Data abstraction and modularity
• Security controls
• Compiler correctness

3

SOFTWARE FOUNDATIONS

Logic

+ Reasoning about
 individual programs

+ Reasoning about
 whole programming
 languages

4

1/7/24

3

LOGICAL FOUNDATIONS

5

Q: How do we know something is true?
A: We prove it

Q: How do we know that we have a proof?
A: We need to define what it means for something to

be a proof.
A proof is a logical sequence of arguments, starting
from some initial assumptions

Q: How do we know that we have a valid sequence of
arguments? Can any sequence be a proof? E.g.

All humans are mortal
All Greeks are human
Therefore I am a Greek!

A: No, no, no! We need to think harder about valid
ways of reasoning...

Aristotle
384 – 322 BC

Euclid
~300 BC

6

1/7/24

4

First we need a language…
• Gottlob Frege: a German mathematician

who started in geometry but became
interested in logic and foundations of
arithmetic.

• 1879 Published “Begriffsschrift, eine der
arithmetischen nachgebildete Formelsprache
des reinen Denkens” (Concept-Script: A
Formal Language for Pure Thought Modeled
on that of Arithmetic)
– First rigorous treatment of functions and

quantified variables
– ⊢ A, ¬A, ∀x.F(x)
– First notation able to express arbitrarily

complicated logical statements

Gottlob Frege
1848-1925

Images in this & following slides taken from Wikipedia.

7

Formalization of Arithmetic
• 1884: Die Grundlagen der Arithmetik (The Foundations of Arithmetic)
• 1893: Grundgesetze der Arithmetik (Basic Laws of Arithmetic, Vol. 1)

• 1903: Grundgesetze der Arithmetik (Basic Laws of Arithmetic, Vol. 2)
• Frege’s goals:

– isolate logical principles of inference
– derive laws of arithmetic from first principles
– set mathematics on a solid foundation of logic

The plot thickens…

Just as Volume 2 was going to print in 1903,
Frege received a letter…

9

1/7/24

5

Addendum to Frege’s 1903 Book

“Hardly anything more unfortunate can befall
a scientific writer than to have one of the foundations

of his edifice shaken after the work is finished.
This was the position I was placed in by a letter of
Mr. Bertrand Russell, just when the printing of this

volume was nearing its completion.”

– Frege, 1903

10

Bertrand Russell
• Russell’s paradox:

• Frege’s language could derive Russell’s
paradox ⇒ it was inconsistent.

• Frege’s logical system could derive anything.
Oops(!!)

Bertrand Russell
 1872 - 1970

1. Set comprehension notation:
 { x | P(x) } “The set of x such that P(x)”

2. Let X be the set (of sets) { Y | Y ∉ Y }.

3. Ask the logical question:
 Does X ∈ X hold?

4. Paradox! If X ∈ X then X ∉ X.
 If X ∉ X then X ∈ X.

11

1/7/24

6

Aftermath of Frege and Russell
• Frege came up with a fix… but it made his

logic trivial :-(

• 1908: Russell fixed the inconsistency of Frege’s
logic by developing a theory of types.

• 1910, 1912, 1913, (revised 1927):
Principia Mathematica (Whitehead & Russell)
– Goal: axioms and rules from which all

mathematical truths could be derived.
– It was a bit unwieldy…

Whitehead Russell

"From this proposition it will follow,
when arithmetical addition has been defined,
that 1+1=2."
—Volume I, 1st edition, page 379

12

Logic in the 1930s and 1940s
• 1931: Kurt Gödel’s first and second

incompleteness theorems.
– Demonstrated that any consistent formal theory

capable of expressing arithmetic cannot be
complete.

–

• 1936: Genzen proves consistency of arithmetic.
• 1936: Church introduces the l-calculus.
• 1936: Turing introduces Turing machines

– Is there a decision procedure for arithmetic?
– Answer: no, it’s undecidable
– The famous “halting problem”

• N.b.: Only in 1938 did Turing get his Ph.D.

• 1940: Church introduces the simple theory of
types Alonzo Church

 1903 - 1995
Alan Turing
 1912 - 1954

Kurt Gödel
1906 - 1978

Gerhard Gentzen
1909 - 1945

13

1/7/24

7

Fast Forward…
• Two logicians in 1958 (Haskell Curry) and 1969 (William Howard)

observe a remarkable correspondence:

• 1967 – 1980’s: N.G. de Bruijn runs Automath project
– uses the Curry-Howard correspondence for

computer-verified mathematics

• 1971: Jean-Yves Girard introduces System F
• 1972: Girard introduces Fw
• 1972: Per Marin-Löf introduces intuitionistic type theory
• 1974: John Reynolds independently discovers System F

types ~ propositions

programs ~ proofs

computation ~ simplification

N.G. de Bruijn
 1918 - 2012

Basis for modern
type systems:
OCaml, Haskell,
Scala, Java, C#, …

Haskell Curry
1900 – 1982

William Howard
1926 –

14

… to the Present
• 1984: Coquand and Huet first begin

implementing a new theorem prover “Coq”
• 1985: Coquand introduces the

calculus of constructions
– combines features from intuitionistic type

theory and Fw
• 1989: Coquand and Paulin extend CoC to

the calculus of inductive constructions
– adds “inductive types” as a primitive

• 1992: Coq ported to Xavier Leroy’s OCaml
• 1990’s: up to Coq version 6.2
• 2000-2015: up to Coq version 8.4
• 2017: Coq version 8.6

• 2013: Coq receives ACM Software System
Award

Thiery Coquand
1961 –

Gérard Huet
1947 –

http://coq.inria.fr/refman/Reference-Manual002.html

Too many contributors
to list here…

15

1/7/24

8

PROGRAMMING FOUNDATIONS

So much for foundations… what about the “software” part?

(LANGUAGE)

16

Building Reliable Software
• Suppose you work at (or run) a software company.

• Suppose, like Frege, you’ve sunk 30+ person-years into developing the
“next big thing”:
– Boeing Dreamliner2 flight controller
– Autonomous vehicle control software for Nissan
– Gene therapy DNA tailoring algorithms
– Super-efficient green-energy power grid controller

• Suppose, like Frege, your company has invested a lot of material
resources that are also at stake.

• How do you avoid getting a letter like the one from Russell?

Or, worse yet, not getting the letter,
with disastrous consequences down the road?

17

1/7/24

9

Approaches to Software Reliability
• Social

– Code reviews
– Extreme/Pair programming

• Methodological
– Design patterns
– Test-driven development
– Version control
– Bug tracking

• Technological
– “lint” tools, static analysis
– Fuzzers, random testing

• Mathematical
– Sound type systems
– Formal verification

More “formal”: eliminate
with certainty as many problems
as possible.

Less “formal”: Lightweight,
inexpensive techniques (that may
miss problems)

This isn’t a tradeoff… all of
these methods should be used.

Even the most “formal” argument
can still have holes:
• Did you prove the right thing?
• Do your assumptions match reality?

• Knuth: “Beware of bugs in the above
 code; I have only proved it correct, not
 tried it.”

18

Can formal methods scale?
Use of formal methods to verify full-scale software systems is a hot research
topic!

• CompCert – fully verified C compiler
Leroy, INRIA

• Vellvm – formalized LLVM IR
Zdancewic, Penn

• Verified Software Toolchain
Appel, Princeton

• Bedrock – web programming, packet filters
Chlipala, MIT

• CertiKOS – certified OS kernel
Shao, Yale

19

1/7/24

10

Does it work?

LLVM

Random test-case
generation

{8 other C compilers}

79 bugs:
25 critical

202 bugs
325 bugs in
total

Source
Programs

Finding and Understanding Bugs in C Compilers [Yang et al. PLDI 2011]

Verified Compiler: CompCert [Leroy et al.]
<10 bugs found in (at the time unverified) front-end
component

20

Regehr’s Group Concludes

The striking thing about our CompCert results is that
the middle-end bugs we found in all other compilers
are absent. As of early 2011, the under-development
version of CompCert is the only compiler we have
tested for which Csmith cannot find wrong-code errors.
This is not for lack of trying: we have devoted about six
CPU-years to the task. The apparent unbreakability of
CompCert supports a strong argument that developing
compiler optimizations within a proof framework,
where safety checks are explicit and machine-checked,
has tangible benefits for compiler users.

21

