1/7/24

CS 428/528 Lecture 2
Logical Foundations & Coq

Zhong Shao
January 18, 2024

(Slides based on those from the Software Foundations
course material developed by Benjamin Pierce at Penn)

How do we build softwareA?

that works
(and be convinced
that it does)

1/7/24

Critical Software
—

Individual programs ~ Programming languages

* Operating systems * Static type systems

* Network stacks + Data abstraction and modularity
* Crypto * Security controls

* Medical devices * Compiler correctness

* Flight control systems
* Power plants
* Home security

Logic

+ Reasoning about
individual programs

+ Reasoning about
whole programming
languages

SOFTWARE FOUNDATIONS

LOGICAL FOUNDATIONS

Q: How do we know something is true?

A: We prove it

Q: How do we know that we have a proof?

A: We need to define what it means for something to
be a proof.
A proof is a logical sequence of arguments, starting
from some initial assumptions

Q: How do we know that we have a valid sequence of
arguments? Can any sequence be a proof? E.g.

Aristotle
384 -322 BC

All humans are mortal
All Greeks are human
Therefore | am a Greek!

A: No, no, no! We need to think harder about valid
ways of reasoning...

1/7/24

First we need a language...

Gottlob Frege: a German mathematician
who started in geometry but became
interested in logic and foundations of
arithmetic.

1879 Published “Begriffsschrift, eine der

arithmetischen nachgebildete Formelsprache

des reinen Denkens” (Concept-Script: A

Formal Language for Pure Thought Modeled

on that of Arithmetic) Gottlob Frege

— First rigorous treatment of functions and = ssamersserarer, 1848-1925

quantified variables

— FA, A, Vx.F(x)

— First notation able to express arbitrarily
complicated logical statements

Formalization of Arithmetic

1884: Die Grundlagen der Arithmetik (The Foundations of Arithmetic)
1893: Crundgesetze der Arithmetik (Basic Laws of Arithmetic, Vol. 1)
1903: Crundgesetze der Arithmetik (Basic Laws of Arithmetic, Vol. 2)
Frege’s goals:

— isolate logical principles of inference

— derive laws of arithmetic from first principles

— set mathematics on a solid foundation of logic

The plot thickens...

Just as Volume 2 was going to print in 1903,
Frege received a letter...

1/7/24

Addendum to Frege’s 1903 Book

“Hardly anything more unfortunate can befall
a scientific writer than to have one of the foundations
of his edifice shaken after the worK is finished.
This was the position I was placed in by a letter of
Mr. Bertrand Russell, just when the printing of this
volume was nearing its completion.”

— Frege, 1903

10

Bertrand Russell

Russell’s paradox:

1. Set comprehension notation:
{x|P(x)} “The setof x such that P(x)"

2. Let X be the set (of sets) {Y |Y &Y }.

3. Ask the logical question:
Does X € X hold?

4. Paradox! If X € X then X & X.
If X ¢ X then X € X.

* Frege’s language could derive Russell’s Bertrand Russell
: oo 1872 - 1970
paradox = it was inconsistent.

+ Frege’s logical system could derive anything.
Oops(!!)

11

1/7/24

Aftermath of Frege and Russell

* Frege came up with a fix... but it made his i
logic trivial :~(0

+ 1908: Russell fixed the inconsistency of Frege’s Whichead

Principia Mathematica (Whitehead & Russell)
— Goal: axioms and rules from which all
mathematical truths could be derived.
— It was a bit unwieldy...

"From this proposition it will follow,

when arithmetical addition has been defined,
that 1+1=2."

—Volume I, Tst edition, page 379

Russell
logic by developing a theory of types.
PRINCIPIA
+ 1910, 1912, 1913, (revised 1927): Rl

12

Logic in the 1930s and 1940s

* 1931: Kurt Godel’s first and second
incompleteness theorems.
— Demonstrated that any consistent formal theory

capable of expressing arithmetic cannot be
complete.

* 1936: Church introduces the).-calculus.
+1936: Turing introduces Turing machines
— Is there a decision procedure for arithmetic?
— Answer: no, it's undecidable <
— The famous “halting problem”)
* N.b.: Only in 1938 did Turing get his Ph.D.

* 1940: Church introduces the simple theory of
types Alonzo Church
1903 - 1995

Kurt Godel
1906 - 1978

+ 1936: Genzen proves consistency of arithmetic. Bl Gerhard Gentzen

Alan Turing
1912 -1954

13

1/7/24

» Two logicians in 1958 (Haskell Curry) and 1969 (William Howard)
observe a remarkable correspondence:

types ~ propositions

programs proofs

computation ~ simplification

William Howard

[
Haskell Curry \
1900 - 1982 1926 - . .

* 1967 = 1980's: N.C. de Bruijn runs Automath project N.G. de Bruijn
— uses the Curry-Howard correspondence for 1918 -2012
computer-verified mathematics

Basis for modern
type systems:

* 1972: Per Marin-L6f introduces intuitionistic type thedry
+ 1974:John Reynolds independently discovers System F

+ 1971: Jean-Yves Girard introduces System F <————— 0caml, Haskell,
+1972: Girard introduces Fo / Scala, Java, C#; ...

14

+ 1984: Coquand and Huet first begin
implementing a new theorem prover “Coq”

+ 1985: Coquand introduces the
calculus of constructions
— combines features from intuitionistic type
theory and Fo
* 1989: Coquand and Paulin extend CoC to

N A . Thiery Coquand Gérard Huet
the calculus of inductive constructions 1961 - 1947 -

— adds “inductive types” as a primitive
+ 1992: Coq ported to Xavier Leroy’s OCaml
* 1990's: up to Coq version 6.2 Too many contributors
* 2000-2015: up to Coq version 8.4 to list here...
e 2017: Coq version 8.6

+ 2013: Coq receives ACM Software System
Award

ttp://coq.inria.fr/refman/Reference-Manual 002.html

15

1/7/24

’

So much for foundations... what about the “software” part?

PROGRAMMING FOUNDATIONS

16

Building Reliable Software

Suppose you work at (or run) a software company.

Suppose, like Frege, you've sunk 30+ person-years into developing the
“next big thing”:

— Boeing Dreamliner2 flight controller

— Autonomous vehicle control software for Nissan

— Gene therapy DNA tailoring algorithms

— Super-efficient green-energy power grid controller

Suppose, like Frege, your company has invested a lot of material
resources that are also at stake.

How do you avoid getting a letter like the one from Russell?

Or, worse yet, not getting the letter,
with disastrous consequences down the road?

17

1/7/24

1/7/24

* Social
— Code reviews
— Extreme/Pair programming

* Methodological
— Design patterns
— Test-driven development
— Version control

This isn’t a tradeoff... all of
these methods should be used.

Even the most “formal” argument

~ Bugtracking can still have holes:
+ Did you prove the right thing?
. Technologica] + Do your assumptions match reality?
)i : :
— “lint tOOIS’ static anz-ily5|s * Knuth: “Beware of bugs in the above
— Fuzzers, random testing code; I have only proved it correct, not
tried it.”

* Mathematical
— Sound type systems
— Formal verification

18
Use of formal methods to verify full-scale software systems is a hot research
topic!
« CompCert — fully verified C compiler
Leroy, INRIA
« Vellvm - formalized LLVM IR Verified
Zdancewic, Penn eritie
Software
+ Verified Software Toolchain Toolchain
Appel, Princeton
« Bedrock — web programming, packet filters . W
Chlipala, MIT
(|
« CertiKOS - certified OS kernel '
Shao, Yale II
CERTIKOS
19

Finding and Understanding Bugs in C Compilers [Yang et al. PLDI 2011]

N

79 bugs:
25 critical

Random test-case
generation

)

Source

Programs

202 bugs .
325 bugs in
total

NG

{8 other C compilers}j

Verified Compiler: CompCert [Leroy et al]
<10 bugs found in (at the time unverified) front-end
comnonent

20

The striking thing about our CompCert results is that
the middle-end bugs we found in all other compilers
are absent. As of early 2011, the under-development
version of CompCert is the only compiler we have
tested for which Csmith cannot find wrong-code errors.
This is not for lack of trying: we have devoted about six
CPU-years to the task. The apparent unbreakability of
CompCert supports a strong argument that developing
compiler optimizations within a proof framework,
where safety checks are explicit and machine-checked,
has tangible benefits for compiler users.

21

1/7/24

10

