CS428 Lecture 9: Layered and Object-Based Game Semantics

Zhong Shao
Joint work with Arthur Oliveira Vale, Paul-André Mellies, Jérémie Koenig, and Leo Stefanesco

February 15, 2024

Hints on Programming Language Design (Hoare 1973)

] Program Design

The first and very difficult aspect of design is deciding what the
program is to do, and formulating this as a clear, precise, and acceptable
specification. Often just as difficult is deciding how to do it, -- how
to divide a complex task into simpler subtasks, and to specify the purpose
of each part, and define clear, precise, and efficient interfaces between
them. A good programming language should give assistance in expressing
not only how the program is to run, but what it is intended to accomplish;
and it should enable this to be expressed at various levels, from the
overall strategy to the details of coding and data representation. It
should assist in establishing and enforcing the programming conventions
and disciplines which will ensure harmonious cooperation of the parts of

a large program when they are developed separately and finally assembled
together. --

2/78

Notes on Structured Programming (Dijkstra 1972)

- - ~

I want to view the main program as executed by its own, dedicated
machine, equipped with the adequate instruction repertoire operating on
the adequate variables and sequenced under control of its own instruction
counter, in order that my main program would solve my problem if I had
such a machine. I want to view it that way, because it stresses the fact that

the correctness of the main program can be discussed and established
regardless of the availability of this (probably still virtual) machine: I don’t
need to have it, I only need to have its specifications as far as relevant for
the proper execution of the main program under consideration.

3/78

Notes on Structured Programming (Dijkstra 1972)

In actual practice, of course, this ideal machine will turn out not to exist,
so our next task—structurally similar to the original one—is to program
the simulation of the “upper” machine. In programming this simulation
we have to decide upon data structures to provide for the state space of the
upper machine; furthermore we have to make a bunch of algorithms, each
of them providing an implementation of an instruction assumed for the
order code of the upper machine. Finally, the “lower” machine may have a
set of private variables, introduced for its own benefit and completely outside
the realm and scope of the upper machine. But this bunch of programs is
written for a machine that in all probability will not exist, so our next job
will be to simulate it in terms of programs for a next-lower machine, etc.
until finally we have a program that can be executed by our hardware.

4/78

Notes on Structured Programming (Dijkstra 1972)

If we succeed in building up our program along the lines just given, we
have arranged our program in layers. Each program layer is to be understood
all by itself, under the assumption of a suitable machine to execute it, while
the function of each layer is to simulate the machine that is assumed to be
available on the level immediately above it.

5/78

Certified Abstraction Layers

> Layer: » Layering: » Certified
C Implementation:
Overlay Ly N Ly
LFM:L
Underlay Ly . Lh ! 2
: Lq » Encapsulation:
77
/I\
Abstract State
/I\

Concrete State

6/78

Modeling State: Global vs Local State

Global State: Local State:
» C Memory Model » Algebraic Effects (Local)

» ML Reference Types » Object-Based Semantics
» Haskell State Monads :
» Algebraic Effects (Global)

7/78

Object-Based Semantics

Lisp and Symbolic Computation, 9, 7-76 (1996)
®© 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Global State Considered Unnecessary:
An Introduction to Object-Based Semantics

UDAY S. REDDY . reddy @cs.uiuc.edu
Department of Computer Science, University of Illinois ar Urbana-Champaign, Urbana, IL.

Abstract. Semantics of imperative programming languages is traditionally described in terms of functions on
global states. We propose here a novel approach based on a notion of objects and characterize them in terms
of their observable behavior. States are regarded as part of the internal structure of objects and play no role
in the observable behavior. It is shown that this leads to considerable accuracy in the semantic modelling of
locality and single-threadedness properties of objects.

Keywords: Imperative programs, Syntactic control of interference, Denotational semantics, Objects. 8/78

Objects

Operations

|

9/78

Object Functions

Operations Operations

Object Function

i
=

10/78

Object-Based Semantics and Certified Abstraction Layers

Object Type ~ Layer Signature
Object ~ Layer Specification
Object Function = Layer Implementation
777 ~ Certified Layer

How to build compositional semantic models for certifying large heterogenous systems?

11/78

Our Main Results (Oliveira Vale et al POPL 2022)

» A novel model of Certified Abstraction Layers.

» No explicit state

» Rooted in linear logic

» Clarifies some aspects of the abstract semantics of CAL

» Supports an operational account as a game semantics model
» Supports a denotational account as a domain-theoretic model

» Generalized notion of layer interface that faithfully encapsulates state
P> An extension to handle non-determinism in layer interfaces

P> An extension to support concurrency

12/78

From Code to External Behaviors

inc () {
i+ get();
set (i+1);
return ok;

}

(SCountera —Cou nter)

inc.ok
L

get.n d

n

get.n+1 inc.ok
n+1

inc.ok

VCounter c TCounter

VCounter :{67 get7 inc

get
get
get
inc
inc

get

-0,inc - ok,
-0 - get,
-0 -inc,
- ok - get,
-ok - inc,
-0-get-0,

*

13/78

Layer Signatures

Every layer receives a type describing the operations it supports.

Example

Var ;= {get: 1 — N,set: N — 1} Counter := {get: 1 — N;set: N — 1 init: 1 — 1}
Which implicitly describe small interactions:

get —— n
get —— n

inc —— ok
set(m) —— ok
init —— ok

14/78

Effect Signatures as Types for Systems

Definition
An effect signature consists of a set £ of operations together with an assignment
ar(—) : E — Set of a set to each effect.

E:={e :ar(e1),e:ar(e),...}

The set ar(e) is called the arity of e.
Its associated game E has, for every e € E and v € ar(e), plays:

env
e — Vv

sys

15/78

The Replay Modality

A signature such as Var allows interactions with a single operation:

get —— n set(m) —— ok

Layers generally support many consecutive interactions:

get > 0 get > 0 set(3) > ok get 3

16/78

The Replay Modality

The type TE has as corresponding game {E which consists of plays:

env env env

é1 > V1 () > VD én —————- > Vp

sys sys sys

where for every i < n, ¢ € E and v; € ar(e;).

17/78

The Replay Modality

Example
The game for tVar supports plays such as

1. get 0 get 0 set(3) ok > get 3

2. get —— 5

3. set(5) > ok get 42 get > 17

4. set(5) » ok set(3) » ok get

18/78

External Behaviors from Transition Systems

Interaction : get ——

get.0

State : 0 0

19/78

External Behaviors from Transition Systems

Interaction : get —— 0

get.0

State : 0 0

20/78

External Behaviors from Transition Systems

Interaction : get —— 0 —— set(3)

t.0
State : 0 g

21/78

External Behaviors from Transition Systems

Interaction : get —— 0 —— set(3) —— ok

get.0

State : 0 y 0 3 3

22/78

External Behaviors from Transition Systems

~

Interaction : get —— 0 —— set(3) » ok get

get.0 set(3).ok

~
()

State : 0

23/78

External Behaviors from Transition Systems

~

Interaction : get —— 0 —— set(3) » ok get

get.0 set(3).ok get.3

State : 0

24 /78

External Behaviors from Transition Systems

Interaction : get —— 0 —— set(3) » ok get 3

get.0 set(3).ok get.3

State : 0

25/78

Layer Specifications from State Transition Systems
Given a transition system L = (§,— C S x (Uecge x ar(e)) x S) we recursively

construct a set of plays Lig by

cecliq VecE=ecllg e—v> clig < 3¢ cS.q>5q¢ Aseliq

Example (Bounded Queue)
Signature Epq = {enq: U — 1,deq: 1 — U}
States Spq = U*

_, enq(v).ok
——qv

Transitions P |g| < N = ¢
. = _, deq. =
> G=vid=q4—5q

We can define a layer specification for Eq as

Vbq 1= (Sbq, —)H()

26 /78

Example: Variable Object

Example

The usual Var semantics is encoded as an object as the set W, of plays s of {Var

representing its externally observable behaviors:
> If get is the first operation then it returns 0

s=get —v—— ... =>v=0
» Consecutive calls to get return the same value:
S1 S2
s = > get v > get %) >
> A call to get after a successful set(n) returns n
52
> v

s= — set(n) ok > get

= Vi =W

27/78

Example: Counter Object

Example

Similarly, the object Vounter €ncoding the usual Counter semantics is defined as the
set of all plays s of {Counter such that:

> Any non-empty play must start with the initialization procedure:
/
s= e—— v —— = e=init

» Calls to get return the same number of calls to inc that happened since the last

init:
s1 52

s = > get > v > = v = #inc(s1)

28/78

Layer Specifications

We use objects over types E as layer specifications. Generally:
Definition
A layer specification Vg for an effect signature E is a deterministic strategy
Ve : TE. That is, it is a set of plays of {E satisfying:
» Vg is non-empty
> Vg is prefix-closed
» Vg is receptive: If —2—+ € Vg is even-length thenVec E. —— e € Vg

v

» Vg is deterministicc:. —>— e EVe=v=V

29/78

Determinism

e — Vi — ... — € —> Vg — ... — € ——=> Vp
€EVeE= vk = v
el — VI — ... e — V — .. e - V]

30/78

Layer Specifications are Stateful

Seg = plays of tE s~ s.e-v e s-e-ve Vg

31/78

Implementations

Example
We would like to define an implementation

M : Var — Counter

encoding the code:

inc () { get O { init () {
i+ get(); i+ get(Q); set (0);
set (i+1); return ij; return ok;
return ok; } }

}

32/78

Object Functions

As the implementation must map objects to objects it needs to be able to handle many
consecutive operations:
M : tVar —o TCounter

But as it must handle any object of type Var it must not assume anything about the
state of the object across invocations

inc ok — get ng

Vni,ny € N. \\} j \
get — n — set(m + 1) — ok get — nz

eM

33/78

Object Functions

As the implementation must map objects to objects it needs to be able to handle many
consecutive operations:
M : tVar —o TCounter

But as it must handle any object of type Var it must not assume anything about the
state of the object across invocations

inc ok — get ng

Vni,ny € N. \\} / \
get — n — set(m + 1) — ok get — nz

eM
Theorem (Reddy)
TE —Reg TF =1E — F

33/78

Example: Implementing Counter
We will define the implementation M

M : Var — Counter a linear map M : tVar — Counter

as:
M = Minc U Mget U Minit

where:

inc ok

Minc::J/ \) /\ ’nEN
get — n — set(n+1) — ok

et get n | - init ok
Mmest .= | neNM™ .= \’
\get%nﬁ set(O)%okj J

34/78

Regular Map Correspondence

inc M ok — get

n ~
\\ j \\ j €M
get — n — set(n; +1) — ok get — o

Linear maps tVar —o Counter can be extended to regular maps {Var — 7Counter
similarly to a Kleene star:

M

M ~ M*

Regular maps have no state!

35/78

Game Semantics of Implementations

Plays of 1E —o F are of the form

f v

\el Vi & > Vo > ep v,,/

36/78

Layer Implementations
Definition
An implementation M : E — F is a deterministic strategy of type {E — F. That
is, M is a set of plays of tE — F such that:
> M is non-empty and prefix-closed

> M is receptive:
» For all f € F the play f isin M

> s GM:>\\S% eM
e e — VvV

» M is deterministic
> \\ eEMA \} EM=e=¢
e e’

f
> VeMA \\ EM=m=v
— ——m

f
N s, S

37/78

Regular Extension of Implementations

Definition R
Given an implementation M : E — F its regular extension M is a deterministic
strategy of type TE —o TF defined as

M = {si1-...-sn|s1,...,5, € M}
Essentially, the plays of M are of the form:

fi M Vi
N

n Vn
™
/

M
fz "] /N .
\
\
/\ AN 4

38/78

Implementation Composition

An implementation N : F — G makes several invocations to operations in F:

N
g "4

\fl vi s f Vo Yo f, >v,,j

While M : E — F describes plays

p M

e

Which involves a single invocation of F.

39/78

Composing Strategies
Essentially, interactions have shape

g\ /
f M v o T M
N

Which after hiding look like

4

n Vn

> M v2/x‘...
N, 5 S N

NoM
g v

40/78

Refinement

Definition
For specifications Vg and V[over E refinement is defined by

Ve C VL := Ve C Vf

41/78

Certified Layer Implementations

Definition
A certified layer implementation M : Lg — Lg between layer interfaces

Le = (E, VE) and Lr = (F, VF) consists of an implementation M : E — F satisfying
the refinement property:

o~

VEC Ve; M
The refinement property explicitly reads as:

VEC Ve:M < Vse Ve3te Vedpe Mple=sAplr=t

Example

M : (Var, War) — (Counter, Vounter)

42/78

Certified Layer Implementations

~

A—wvi—>h—>w—...—fHh—v, € VEEM

—
—{
f M woho M v AT M Ve
eM
K 51 j \) £> j \) Sn j
R T

43/78

Outline

Introduction

Layer Signatures: E

Implementations: M : tE — F

Layer Interfaces: L = (E, Vg)

Certified Layer Implementations: L = M : L,
Non-Deterministic Layer Specifications: L = (E, Vg)
Concurrent Layers: L = (E, R, VE)

Conclusion

4478

Outline

Layer Signatures: E

45/78

Layer Signatures

Definition
An effect signature consists of
> A set E of operations

> A set ar(e) to each operation e called the arity of e

46 /78

Layer Signatures

Definition
An effect signature consists of
> A set E of operations

> A set ar(e) to each operation e called the arity of e

Example
» Var:={get:1— N;set: N — 1}:

Operations Var = {get, set(n) | n € N}
Arities P ar(get) =N

> ar(set(n)) =1 = {ok}

46 /78

State-Based Layer Specifications

Var:= {get: 1 — N,set : N — 1}
State: n,m € Sy, =N
Initial State: 0

.. et.n
Transitions: n £ p
set(m).ok
oy

47/78

State-Based Layer Specifications

Var:= {get: 1 — N,set : N — 1}

FAl := {fai: 1 — N}
State: n,m € Sy, =N

State: n € Spa =N

Initial State: 0 .
o get.n Initial State: 0
Transitions: n =—— n . fai.n
set(m).ok Transitions: n — n+1
n———m

47/78

Bounded Queue

Queue Semantics:

Signature
= enq(uy).ok

~

Epqg :={enq: U —1,deq:1— U}

I
—

States Spq = U*

Initial State €

. . . k
Transitions » || < N =g ena(v)-ok, = gv

> G=vg =G g

N w £ o1 (=)}

Jdeq.ul

48/78

Bounded Queue

Queue Semantics:

Signature enq(uy).ok
uz

~—

Epqg :={enq: U —1,deq:1— U}

I
—

States Spq = U*

Initial State €

. . . ok
Transitions » || < N =g ena(v)-ok, gv

. . _, deq. .
> G=vqd =G —"5q

N w £ o1 (=)}

Overlay —————— [}

Pnderlay —===—=="Ln,

.

eq.uy

48 /78

Ring Buffer

Initial State:
Signature:

Ep:={set: N xU—1,get: N — U}
U{fai; : 1 = N,fai; : 1 — N}

State: Sp:=UN x N x N
Initial State: (@,0,0)

49/78

Ring Buffer

set Semantics:
Signature:
set(3,u3).ok

Ep = {set: I x 1 —1,get: | — U} (2,0,17) ({3 1s},0,17)

U{fai; : 1 = N, fai : 1 = N}

State: S :=UNXxNxN
Initial State: (2,0,0)

49/78

Ring Buffer

get Semantics:
Signature:

({3 u3},0,17) Z (131, 1} 0,17)

Ep:={set: NxU—1,get: N — U}
U{fai; : 1 = N, fai : 1 = N}

State: S :=UNXxNxN
Initial State: (2,0,0)

49/78

Ring Buffer

get Semantics:

({3 w3}, 0, 17) 5405,

Signature:

Ep:={set: NxU—1,get: N — U}
U{fai; : 1 = N, fai : 1 = N}

State: S :=UNXxNxN
Initial State: (2,0,0)

49/78

Ring Buffer

fai Semantics:
Signature:

fai1.0
2,0,17) 20 (5 117
Ep:={set: NxU—1,get: N — U} () ()

U{fai; : 1 = N, fai : 1 = N}

State: S :=UNXxNxN
Initial State: (2,0,0)

49/78

Ring Buffer

fai Semantics:
Signature:

(2,0,17) 2% (2,1,17)

Ep:={set: NxU—1,get: N — U}
U{fai; : 1 = N, fai : 1 = N}

State: S :=UNXxNxN
Initial State: (2,0,0)

49/78

Ring Buffer

fai Semantics:
Signature:

(2,1,17) 2217, (5 1.0)

Ep:={set: NxU—1,get: N — U}
U{fai; : 1 = N, fai : 1 = N}

State: S :=UNXxNxN
Initial State: (2,0,0)

49/78

Ring Buffer

fai Semantics:
Signature:

fai2‘17
2,1,17) 2217 (51,0
Ep:={set: NxU—1,get: N — U} () ()

U{fai; : 1 = N, fai : 1 = N}

State: S :=UNXxNxN
Initial State: (2,0,0)

49/78

Implementing a Bounded Queue using a Ring Buffer

M enq(ur)
enq(u) {

i faiz();

set (i,u);

return ok
)
deq() {

i fain();

ot (0
d

50 /78

Implementing a Bounded Queue using a Ring Buffer

M enq(ur)
enqg (u) {

S N —

set (i,u);

return ok
}
deq() {

i fain();

ot (4
d

50 /78

Implementing a Bounded Queue using a Ring Buffer

M enq(u7).ok
enq(u) {

P s

set (i,u);

return ok
}
deq() {

i fain();

ot (0
}

50 /78

Implementing a Bounded Queue using a Ring Buffer

M deq
enq(u) {

1 fair();

set (i,u);

return ok
)
deq() {

i fain();

ot (1
}

50 /78

Implementing a Bounded Queue using a Ring Buffer

M deq.uq
enq(u) {

1 fair();

set (i,u);

return ok
)
deq() {

i o fain();

ot (1
d

50 /78

Outline

Implementations: M : tE — F

51/78

Layer Signatures and Interactions

Example

Every effect signature E has an associated

game, which for every e € E and v € ar(e), Erp = {set :NxU— 1,get: N~ U}
has a play: U {fa|1 :1— N, fai, : 1 — N}

env set(i,u) —— ok
get(i) —— u

sys _
faip, —— v

faip, —— v

52/78

The Replay Modality T1E

The game TE consists of plays:

env env env

€1 > Vi € > Vo en ———-—- > Vn

sys sys sys

Example
A linear logic modality TE,, describes plays as sequences of E,, interactions:

> fai1 0 fai1 1 fai1 2

> faip —— 7 —— get(3) —— uz —— set(2, w2) ok faiy 13

53/78

Implementation Plays: {E — F

Plays of 1E —o F are of the form

f v

\el Vi & > Vo > ep v,,/

54/78

Implementations: Example

M i= (Vo M=) U e

enq(u) {

i« faiz(); enq(u) ok

set(i,u); = Menq(u) ::l(llGN
return ok \} . . . /
3 fai, — i — set(i,u) — ok

deq () {
i+ faii(); deq u

get (1) = MdeQ::\L \N / |ieNuelU
} faih — i — get(i) — u

55/78

Regular Extensions

From an implementation:

M:tE — F
We build its regular extension:
M:tE — tF
by
f1 M Vi - fo M vo | . 7 fn M Vi N
Y » € M
K EN j K =2 j Sy
In general, approximately:
M ~ M*

With local states implementations are stateless!

56 /78

Implementations as Strategies

An implementation M : E — F is a deterministic strategy of type tE — F.
That is, M is a set of plays that is:

> non-empty,
» prefix-closed,

» deterministic

57/78

The Structure of the Replay Modality

The replay modality {— is a Comonad:

en:tA —o A

TA TTA +B
kAt TA— 1A . }’?‘ B
The regular extension is just the Kleisli sl M e,
morphism: e [a,]
ag \ ag _L) b3
M:{A— B e |25

A 4B =t 1A M i

58/78

Outline

Layer Interfaces: L = (E, Vg)

59/78

Layer Specifications from State Transition Systems

How to get rid of state-based specifications?

60/78

Layer Specifications from State Transition Systems

How to get rid of state-based specifications?

Counter ;== {get: 1 — N,inc: 1 — 1}
State: n € Scounter := N
Initial State: 0

- et.n
Transitions: n £ p
inc.ok
n——sn+1

get.0 get.1 get.2

0 inc.ok 1 inc.ok | 2 inc.ok

\
~

60/78

Layer Specifications from State Transition Systems

How to get rid of state-based specifications?

Counter ;== {get: 1 — N,inc: 1 — 1}
State: n € Scounter := N
Initial State: 0

- et.n
Transitions: n £ p
inc.ok
n——sn+1

get.0 get.1 get.2

0 inc.ok 1 inc.ok | 2 inc.ok

\
~

Denote the observable behaviors at state g as:

(S, —)tq

(Scounters —>Counter)0 = {€, get - 0,inc - ok, get - 0 - get - 0,inc - ok - get - 1,
get-0-inc-ok,inc-ok-inc-ok,get-0-inc-ok-get-1,...}

60/78

Bounded Queue Specification: V4

Example (Bounded Queue)
Signature Epq = {enq:U — 1,deq: 1 — U}
States Spq = U*
Initial State e

. - . ok

Transitions >|q|<N:>qM>
N ") _, deq.v

> g=vqd=q——q

We can define a layer specification for E,q as

Vbq = (qu, —>)|je

61/78

Stateless Variable Specification: W,

Example
War is the set of plays s of {Var satisfying:
>
s= get —— v —— ...
>
s = ... get Vi get Vo ...
>
s = ... set(n) > ok get

=v=0
= Vi = W
=V =n

62/78

Structure of Trace Sets
> Two sides: system and
environment

63/78

Structure of Trace Sets
> Two sides: system and

i » Interfaces play as system.
environment

63/78

Structure of Trace Sets
> Two sides: system and
environment

» The environment is unpredictable hence non-deterministic:

env sys env
set(i, u)
////////)det(i)
faiy — 0 =
::::::::i faiy
faiz

» Interfaces play as system.

63/78

Structure of Trace Sets
> Two sides: system and

environment
» The environment is unpredictable hence non-deterministic:

» Interfaces play as system.

env sys env
set(i, u)
////////)det(i)
fai, — 0 "
::::::::i faiy
faiz
env env
» The system is deterministic: faj; s 0 > faig v1 € Vip
sys sys

63/78

Layer Specifications

A layer specification Vg over E is a deterministic strategy of type {E.
That is, Ve is a set of {E plays that is:

> non-empty,
» prefix-closed,

» deterministic

64/78

Layer Interfaces

Definition

A layer interface is a pair L = (E, Vg : TE).

65/78

Outline

Certified Layer Implementations: L = M : L,

66 /78

Certified Implementations

» M : Ey — Epq does not know rb semantics or bq semantics.

» Composing with Vi, “gives” the rb semantics to M:

A—wv —>h—>w—...—f — v, EVE;I\7I

<
—
f1 M Vi > M Vo > fa M Vi N
eM
N 2 S s ot 2 e Ve

67/78

Certified Layer Implementations
Definition
A certified layer implementation Lg = M : V¢ consists of:

Underlay: Overlay: Implementation:
LE:(E,VE) LF:(F,VF) M:E—F

Correctness:

o~

Ve C Ve, M

Example

(El'b7 Vrb) =M : (qu7 Vbq)

“For every Viq behavior there is some Vi, that can be used by M to implement the V44
behavior"”

68/78

Outline

Non-Deterministic Layer Specifications: L = (E, VE)

69 /78

Non-Deterministic Layer Specifications

A non-deterministic layer specification Vg for E is a non-empty set of Vg : TE.

A non-deterministic layer interface is pair (E, Vg).

Example (Non-Deterministic rb Initialization)

> Bounded queue: Vi 1= {Viq}
» Ring buffer:

Vip i = Lrbﬁ @ 0, O

Deterministic: Non-Deterministic:
Vi = {L34(f,c,c) | fe UM, c < N}

70/78

Non-Deterministic Certified Abstraction Layers

Definition
A non-deterministic certified abstraction layer Lg - M : Lg consists of:

Underlay: Overlay: Implementation:
Le =(E,Ve) Lr=(F,VF) M:E—F

Correctness:

VVe € Ve. AVE € VE. (E, VE) FM: (F, VF)

Example

(Erb7vrb) =M: (qu7Vbq)

71/78

Outline

Concurrent Layers: L = (E, R, VE)

72/78

Certified Concurrent Layers

» A concurrent layer interface is a triple (E, R, Vg) where R is a coherent
congruence between plays of {E.

P> R is essentially a “determinism preserving” equational theory:
s-e1-vi-e-vo-t R s-e-vo-e1-vy-t
» Implementations work on equivalence classes under coherent congruences:
M :iRE —o isF

[slr = [t]s

Check paper for details!

73/78

Equational Theories and 7-Coalgebras

Given equational theory R €

Rel(fA,tA) we construct a fi- TRA TTpA
Coalgebra: pn— B
a Kp a, M ™
(TRA, kR : TR — TTR) az — 7 |- '
M
a
Generalized regular extension: a3 >] —> |b:
4
a M
M ied— B ool |~ [z} |
agl| ag -

tRA M 1B = 1A "4 oA M B

74/78

Certified Concurrent Layers

This allows us to:
P Reasoning up to the equational theory R

> Express independent products of layers
(E,R,VE)® (F,S,Vg) =(EWF,R®S, Vg e Vf)

» Express specific patterns of state sharing (e.g. lock-based)

» Express the implementation of synchronization primitives (e.g. ticket lock)

75/78

Conclusion

» We have a novel way of building models of CAL
» No explicit state
» Rooted in linear logic
> Extensible

» Promising direction in compositional semantics for reasoning about large systems.
>

New CAL [POPL '22] ™", DeepSEA [OOPSLA '19] <221 CompCertO [PLDI '21]

76 /78

Layer Implementations are Regular Maps

Implementations are regular maps:
M:tE — tF

Regular maps are linear maps that are “replayable”

P N

Theorem (Reddy)

TE —Reg TF = 1E — F

77/78

Layer Specifications are Stateful

Veounter = {€, get, inc, get - 0, inc - ok, inc - ok - get,inc- ok - get- 1,...}

State as Past
Sg = plays of Vg Initial: € s s.e-v e s-e-ve Vg

get.1
inc.ok inc.ok

. 1.
inc - ok J§14>|nc~ok~get~1

inc.ok
inc.ok
get.0 get.0
e ——— > get - 00— ...

78/78

	Introduction
	Layer Signatures: ForestGreenE
	Implementations: ForestGreenM : E F
	Layer Interfaces: ForestGreenL = (E, VE)
	Certified Layer Implementations: ForestGreenL1 M : L2
	Non-Deterministic Layer Specifications: ForestGreenL = (E,VE)
	Concurrent Layers: ForestGreenL = (E, R,VE)
	Conclusion
	Appendix

