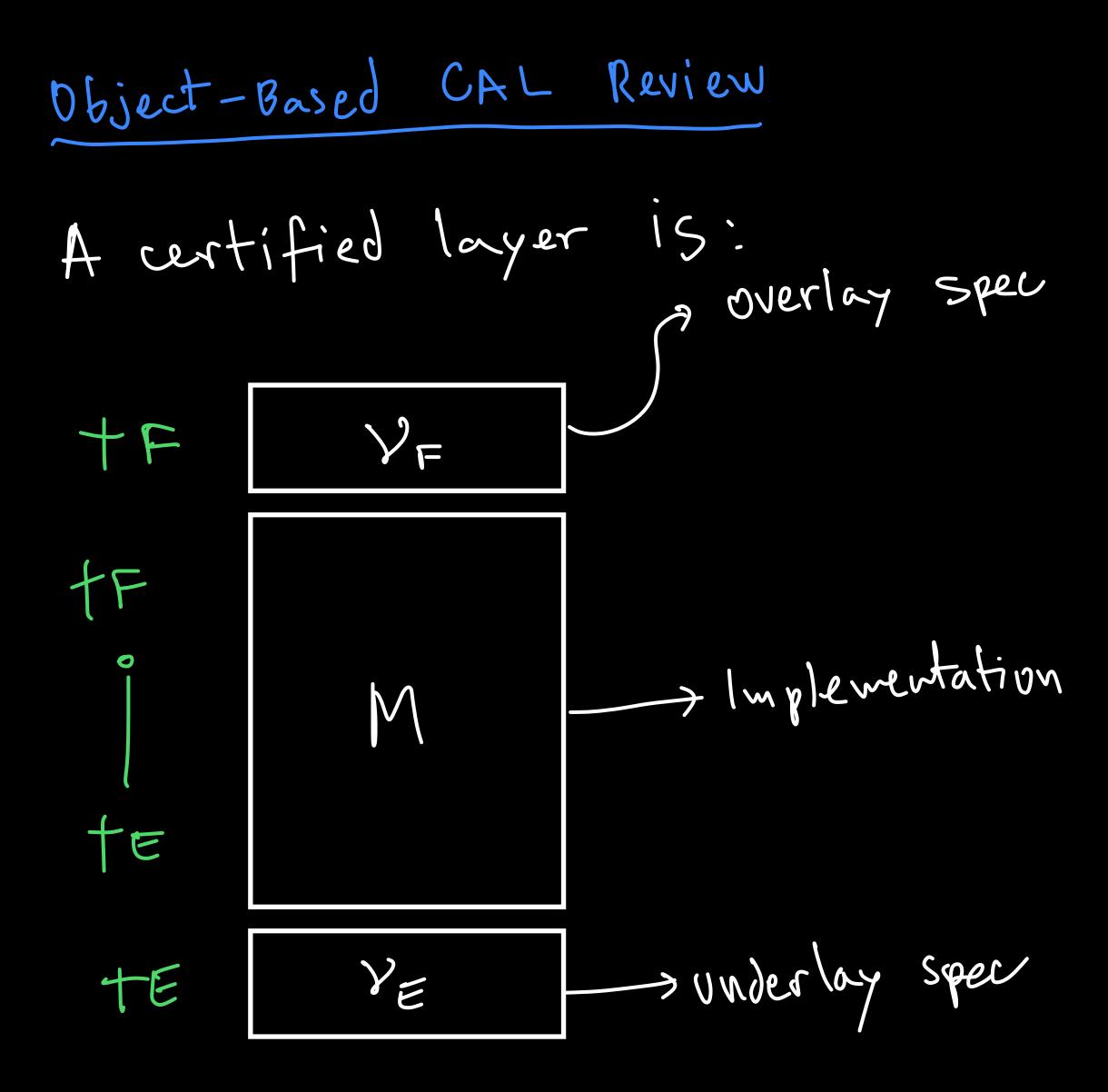
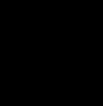
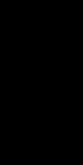
Linearizability and Compositional CCAL

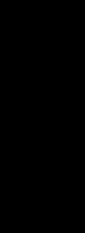
Arthur Oliveira Vale - Feb 22nd 2024

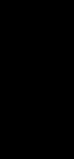


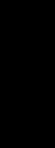
A spee (stratesy) is a set o
of "well-formed" traces s.t.
• non - empty
• prefix - closed alternating
• veceptive + ype-depende
• deterministic
Implementations are regular:
M: TE - oF
M: TE - oFF
M: TE - oFF
Qertified when refinement condition I
VE;
$$\widehat{M} \supseteq V_F$$







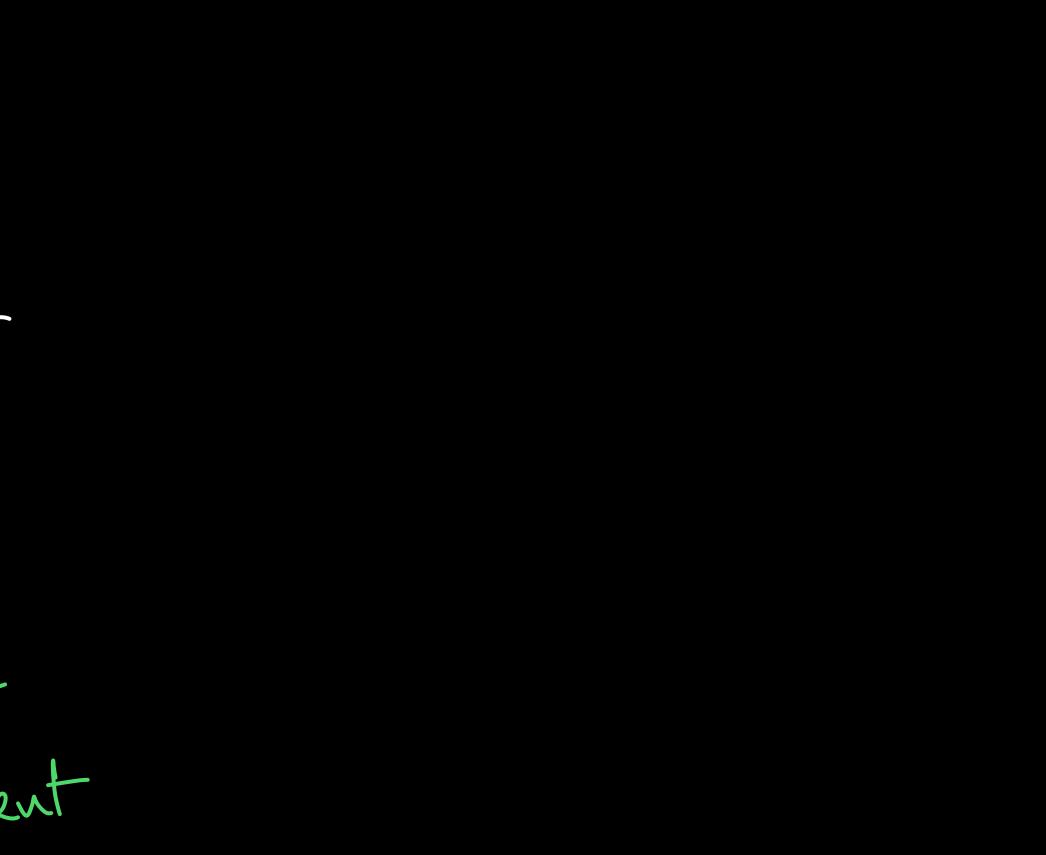




What should a concurrent implementation look like? Simple idea : several "threads" Import X: Var [Nat] Nort get() 2 $\Lambda \leftarrow \chi \cdot \chi \circ ()$ ret v 7 vnit inc () 2 V K X.rd()j - K X. wrt(V41);ret ok 1

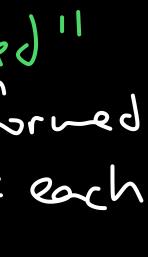
- $\stackrel{\Delta}{=} (N[\alpha] \circ M[\alpha])_{\alpha \in \Gamma}$ $= (\widehat{M}[\alpha]j N[\alpha]) \times \varepsilon$
- ncurrent implementation
- ent ん plementation Hart & runs
- of agent names
- running sequential code in parallel

What is a concurrent spee?



What is a concurrent spee?

What does it mean to be "well-formed" Simple idea: interleaving of well-formed sequential traces of each three T_{tE} = "well-formed sequential fE fraces" $\gamma: T_{t_{e}} = \prod_{d \in Y} \langle T_{t_{e}} \rangle$



2.0 1.get

1.get

What is a concurrent spee?

What does it mean to be "well-formed" Simple idea: interleaving of well-formed sequential traces of each threed T_{fE} = "well-formed sequential fE fraces" $\gamma: T_{t_E} = \prod_{d \in Y} Q: T_{t_E}$ Example: $\gamma = 1, 2$ E = Counter1: une liok 1: set ziget z: D 1: inc 1:0 K 2: set 1: get 2:0 2:9et = 1: mc 2: set 1.0 k 1. get 2:02:6 2: set 1: mc 1.0 k 1. get 2:0 1. inc 1. oK 1. oK 1. set1. inc 1:0K 2:0 2: set 1: mc 1.0 k 2:0 1.get o 2: set 2:0 1: (nc 1.0 k 1. get NOT Alternating

What is a concurrent spee?

A Spec (strategy) is a set o of "well-formed" traces s.t. • Non - empty · prefix - closed fype-dependent · veceptive interleavings of well-formed · deterministic Seguential traces

· Sequential counter

get

What is a concurrent spee?

A Spec (strategy) is a set o of "well-formed" traces s.t. • Non - empty · prefix - closed fype-dependent · veceptive interleavings of well-formed · deterministic Seguential traces

· Seguential courter

get ~ 0

What is a concurrent spee?

A Spec (strategy) is a set o of "well-formed" traces s.t. • Non - empty · prefix - closed fype-dependent · receptive interleavings of well-formed · deterministic Seguential traces

· Seguential courter get ~ 0 · Concurrent counter 1: set

What is a concurrent spee?

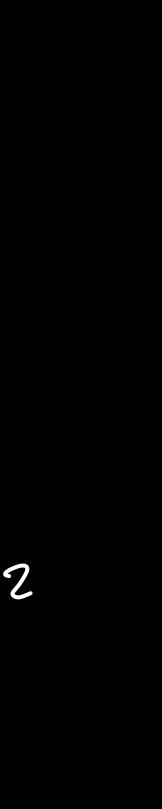
A Spec (strategy) is a set o of "well-formed" traces s.t. • Non - empty · prefix - closed fype-dependent · veceptive interleavings of well-formed · deterministic Seguential traces

· Sequential counter get ~ 0 · Concurrent counter 1: set 1:0

What is a concurrent spee?

A spec (strategy) is a set o of "well-formed" traces s.t. Non - empty · prefix - closed fype-dependent · receptive interleavings of well-formed • deterministic Seguential traces

· Sequential counter get ~ 0 · Concurrent counter 1: set 1:0 1: set 2: inc 2:0K 1:1 1: set 2:inc 2:0K Zive 2:0K 1:2 1: set (2:inc 2:0K)* 1: N Deterministic NOT



What is a concurrent spee?

A Spec (strategy) is a set o of "well-formed" traces s.t. • Non - empty · prefix - closed fype-dependent · veceptive interleavings of well-formed Seguential traces

Receptive? What if I want to describe an atomic counter?

What is a concurrent spee?

A spec (strategy) is a set o of "well-formed" traces s.t. • Non - empty · prefix - closed fype-dependent · veceptive interleavings of well-formed Seguential traces

Receptive? What if I want to describe an atomic conter?

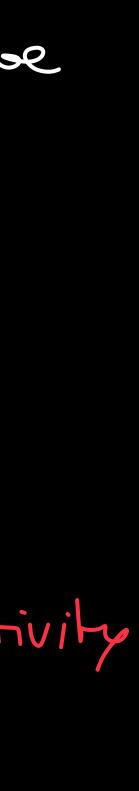
N. UNC A: ine 1:0K 1: ine 1:0K 2: get 1: inc 1: ok 2: set 2:1

la fernating but threaded "

What is a concurrent spee?

A spec (strategy) is a set o of "well-formed" traces s.t. • Non - empty · prefix - closed fype-dependent interleavings of well-formed · veceptive Seguential traces

Receptive? What if I want to describe an atomic counter? 1: inc 2: set 1: CAC A: OK 2: set 1: MC That addric but required by receptivity NOT Receptive



What is a concurrent spee?

A Spec (strategy) is a set o of "well-formed" traces s.t. • Non - empty closed 4 ype-dependent interleavings of well-formed Seguential traces

Lock
 \leq
 tacq: unit, rel: unit

<math>jLock Concurrent Spee States: 92(M) × Maybe M × D(~) (Waiting, owner?, releasing) xince (Waiting & Locz, owner?, releasing) (Waiting, None, releasing) <u>~: ok</u> (Waiting, Some &, releasing) (Waiting, Some & releasing) a. rely (Waiting, None, releasing & day) (Waiting, Owner?, releasing & Lat) and (Waiting, Owner?, releasing) Conditional Spec: Assumes agents alternate release calls

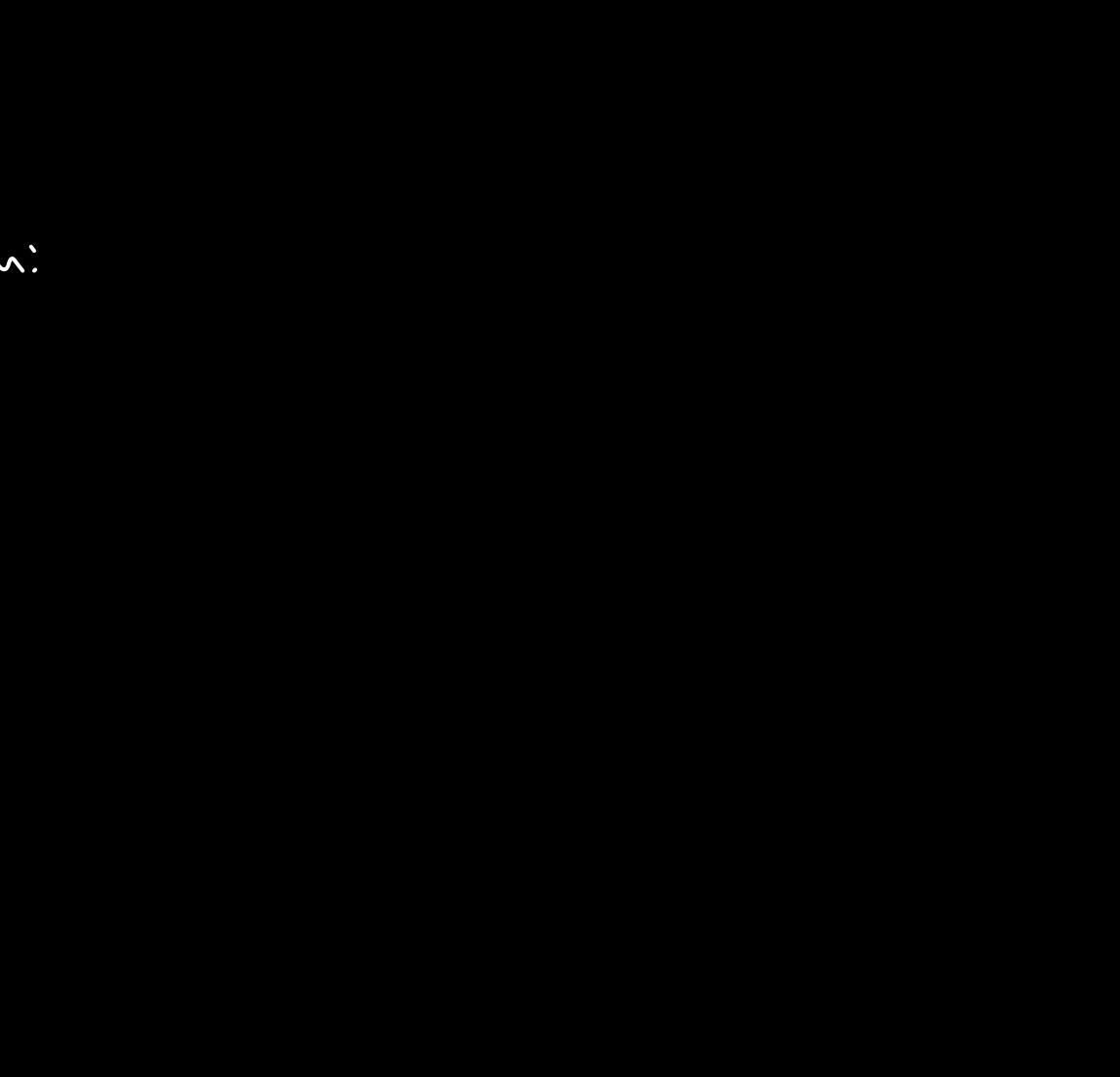
Executions of Concurrent Implementations

Given a concurrent implementation M[r]= (M[~])~er me define its set of executions as $M[\gamma]^{\pm} \|_{xer} M[x]$

The identity
(requestial)
Identity for Implementation composition

$$1d: tF - oF$$

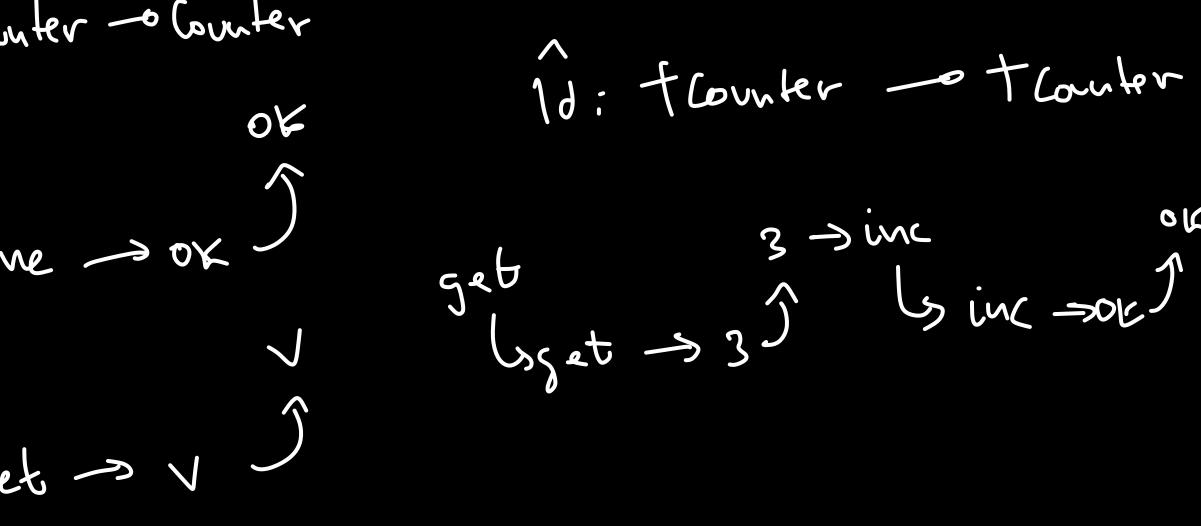
 $f(a_{1,...,a_{n}}) \in$
 $v \leftarrow f(a_{1,...,a_{n}});$
 $v \in t v$
}



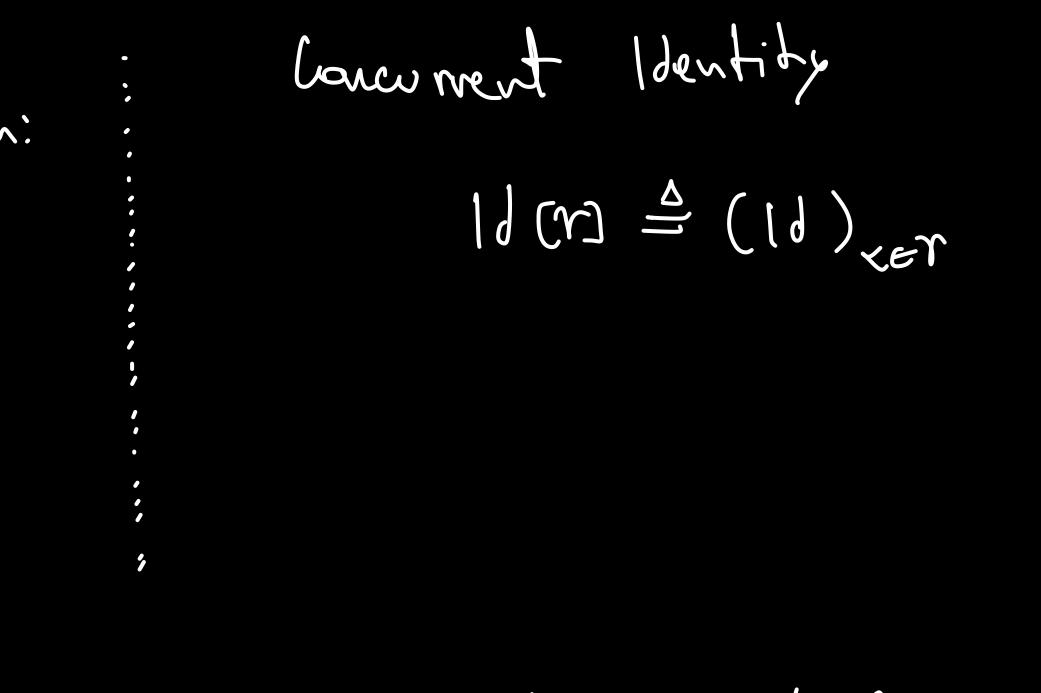
The identity
(requirial)
Identity for Implementation composition:
13:
$$TE = F$$

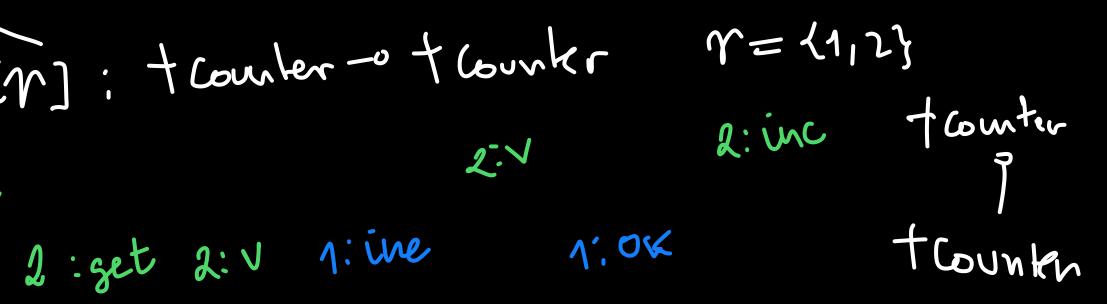
 $f(a_{1,...,a_{1}}) \in$
 $v \leftarrow f(a_{1,...,a_{1}}) \in$
 $v \leftarrow f(a_{1,...,a_{1}})$;
 $v \neq v$
3
 $tx comple:$
 $iv c (s + set(s) + iv + set(s); iv + set(s) + iv + set(s) + iv + set(s); iv + set(s) + iv + set(s) +$

0



ってょ • • •





Spec + Implementation Composition

J Y_{E} , M[T]: FVEITE MEM]: te-otF

Ve; MENJ = StrFl temens ~ treevez sprojection of t to only Feweres

Example:

 $[d[\gamma]]$; tcounter-o tcounter $\gamma = \{1, 2\}$ 2.0 2:inc 7 counter ? 1:inc 2: get 2: get 2:0 1: ine 1: 05% tCounter Countre un

Spec + Implementation Composition

YEIMENJ: HE VE: TE MEM]: TE-0TF

 Y_{E} , MET] = Str_{F} | teMET] $\wedge tr_{E} e V_{E}$ } ls projection of t to only F events

Example:

 $\gamma = \{1, 2\}$ Id[n]: + counter - 0 + counter 2.0 2:inc 7 counter 1:inc 2: get 2: get 2:0 1: ine 1: 0% tounter Countre un

Sidebar: (N(x)) « (M(x)) M[m]; N[m]

A Problem: Identity?

t 2:9 2:0 2:0 1:10 1:00 2:001:inc 2: get J/ 1: inc 2: get 2:0 2: unc & V camber ; 12[7]

 \wedge

but

1:inc 2: get 2:0 2:unc & Camber

2: get 2:0 1: ine 1: 0x E V Counter

A Problem : Identity?

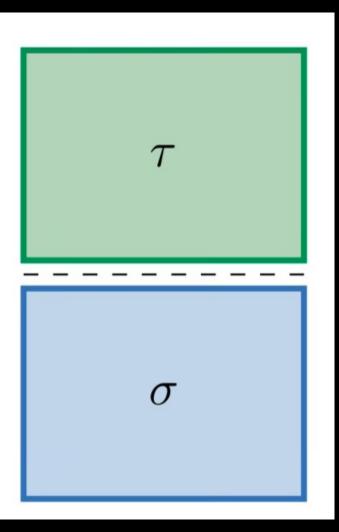
UCM is Not the identity

Algebra of Composition

There is a composition operation denoted by $\sigma: \mathbf{A} \multimap \mathbf{B}$ $\tau: \mathbf{B} \multimap \mathbf{C} \longmapsto$ Which is **associative** ... but there is **no identity element**! $\forall \sigma : \mathbf{A} \multimap \mathbf{B}.\mathbf{id}_{\mathbf{A}}; \sigma$

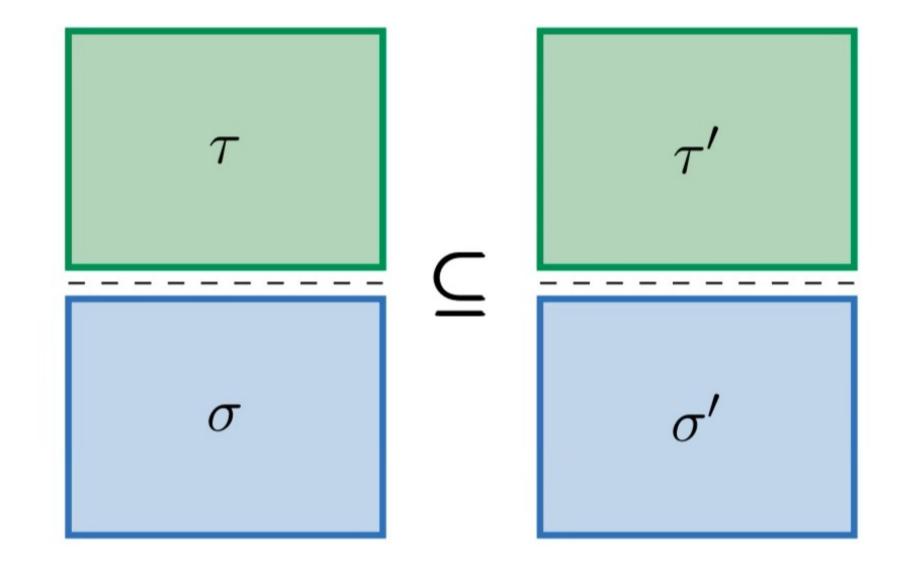
$$\longrightarrow \sigma; \tau: \mathbf{A} \multimap \mathbf{C}$$

$$\sigma$$
; $\mathbf{id}_{\boldsymbol{B}} = \sigma$

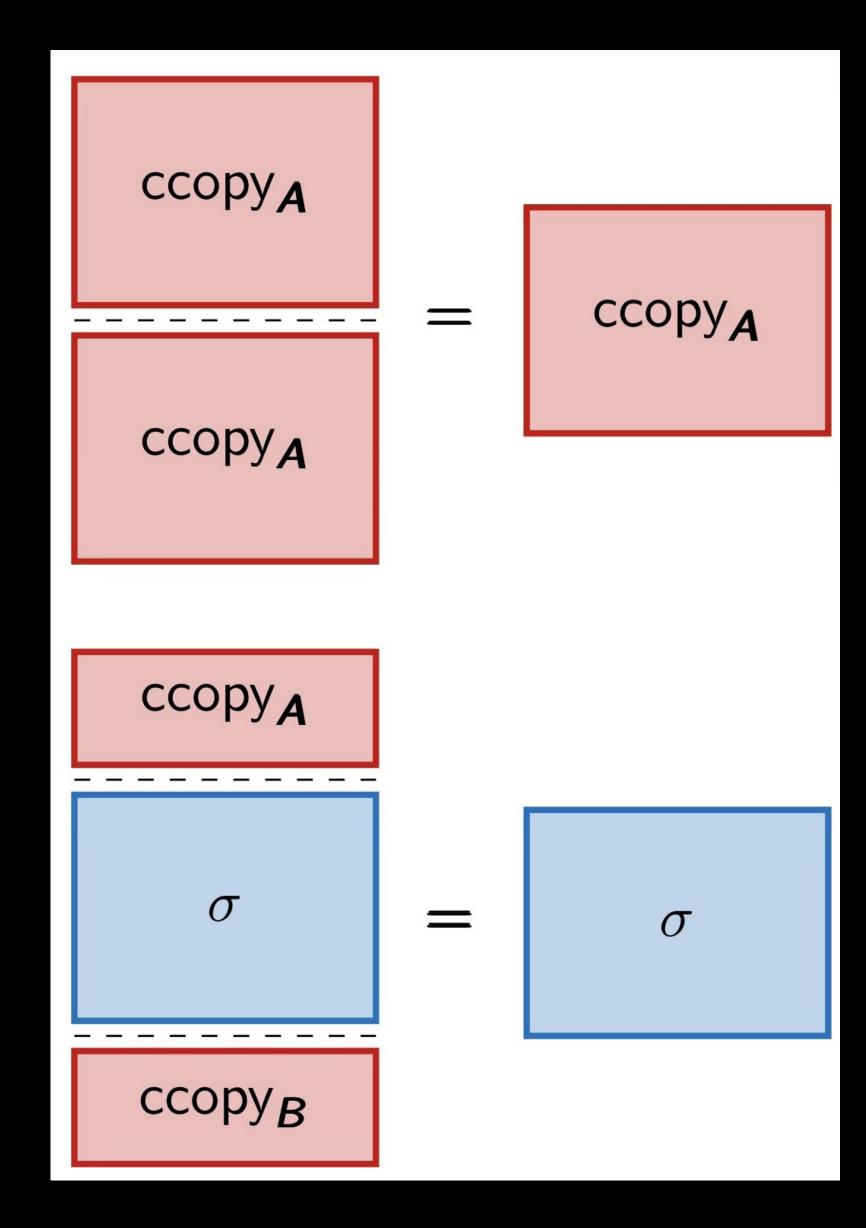


Algebra of Composition

au	\subseteq	au'
	٨	
σ	\subseteq	σ'



Algebra of Composition



$copy_{te} = Id[r]: te - te$

>> idempotency

when o = || M[x]5 der

Observational

Refinement

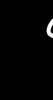
Suppose

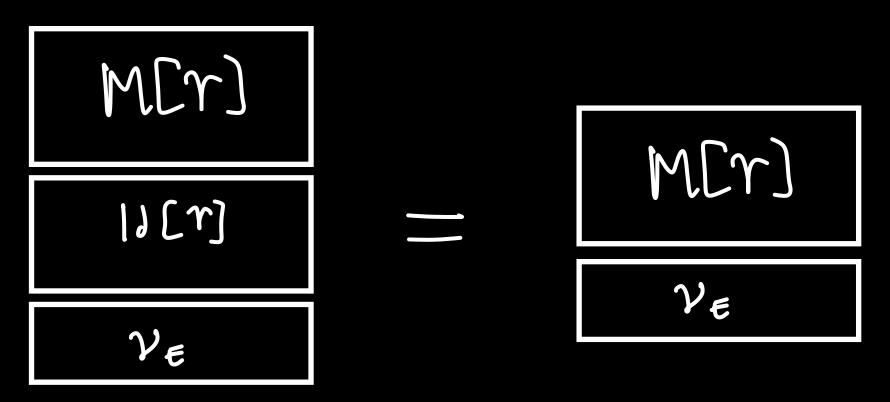
Then

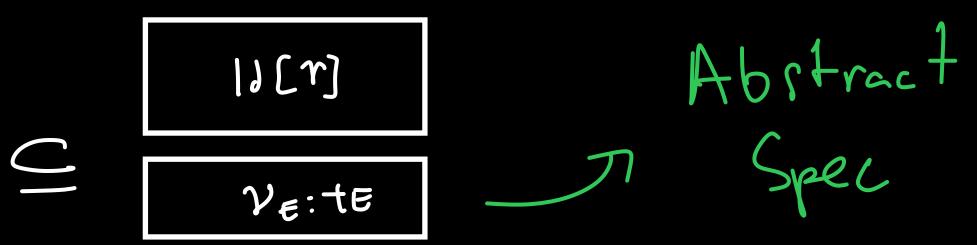
 $M[\gamma]$

YE

Concrete Object







VE is linearizable to VE when

 ν'_{E} : tE

Notation Le NA VE

[][r] $\mathcal{V}_{\mathbf{E}}$:te

Certified Consument Layers

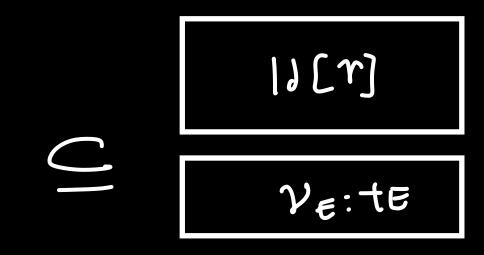
A layer interface is pair $\gamma_{\mathcal{E}}^{\mid} \sim \gamma_{\mathcal{E}}^{\mid}$

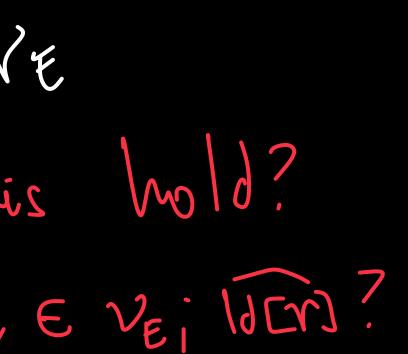
concurrent layer consists of overlag spec C VENDYE $\gamma_F \subseteq \gamma_E; M[r]$ concurrent implementation \wedge ς.t. M[M] underlag spec VEIMEN ~> VE VE NOYE

VE is linearizable to VE when

 $v_{E}': tE$

Nobation When does this hold? I.e. when does te veilder?



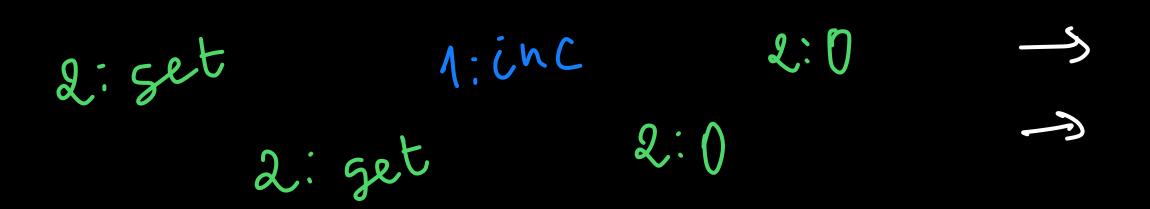


Examples: Consider 2 counter as M

Examples: Consider d'abonic as the abstract specification 1:0% 2:0K -> more concurrent alone → less concurrent decrecse 1: ine 2: ine 1: ine 1:012 d: inc d:02 Courrentes

Examples: Consider 2 counter as M

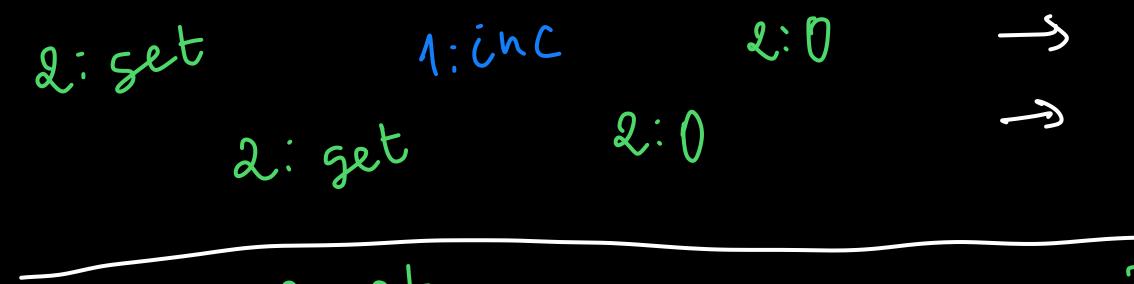
1: ine 2: ine 1: ine 1: ok 2: inc 2: ok



•

Examples: Consider 2 canter as Ś

1: ine 2: ine 1: ine 1: ok 2: inc 2: ok



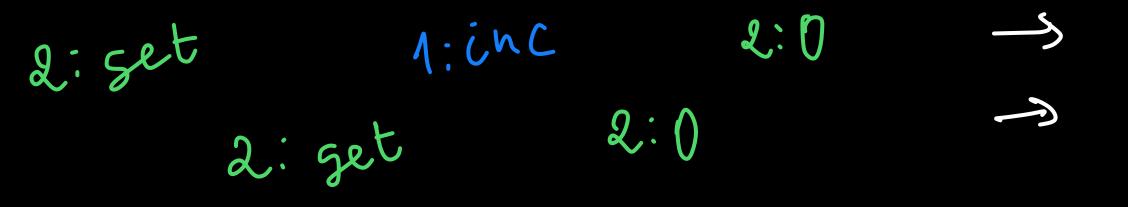
Λ:

in C.	2: gev					
		A: inc	1:0K	2:set	2:1	

•

Examples: Consider 2 counter as

1: ine 2: ine 1: ine 1: ok d: inc d: ok

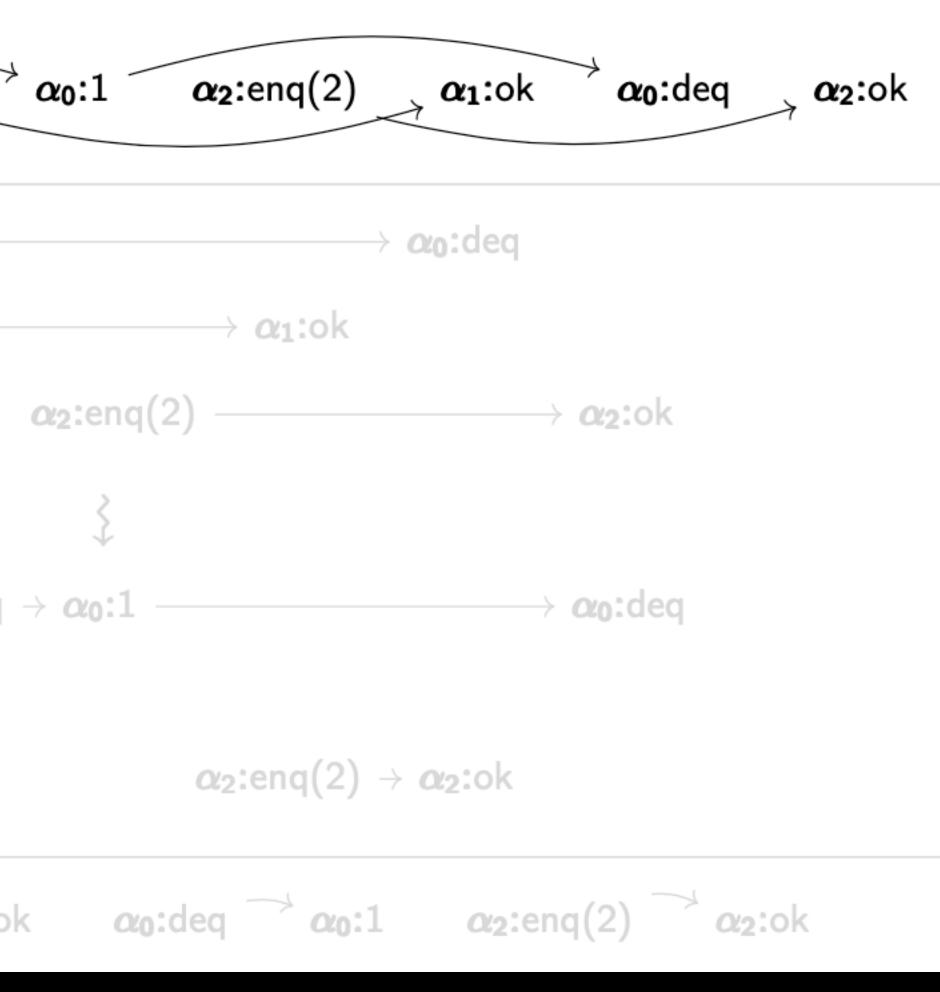


A: in c	2: get				6
A: CMC		1: inc	1:0K	2:set	2:1

1: ok 2: set 2:0 siere Niok

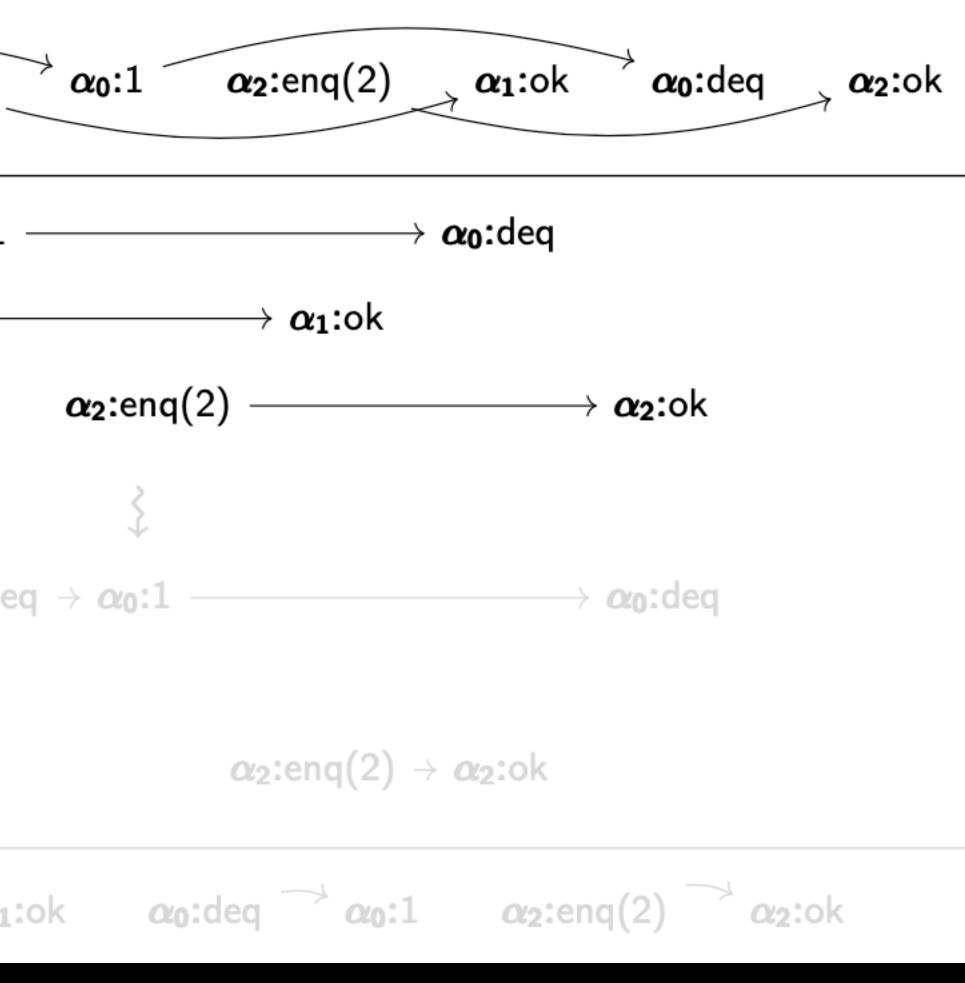
Another Example:

$ u_{\sf squeue}'$:	α₀: de	q α 1:e	nq(1)
	αo:deq —		→ α₀:1 –
	0	x 1:enq(1)	
			αo:deq
	α 1:enq(1)	$\rightarrow \alpha_1:ok$	
$ u_{\sf squeue}$	8 -	α 1:enq(1)	α1:ο



Another Example.

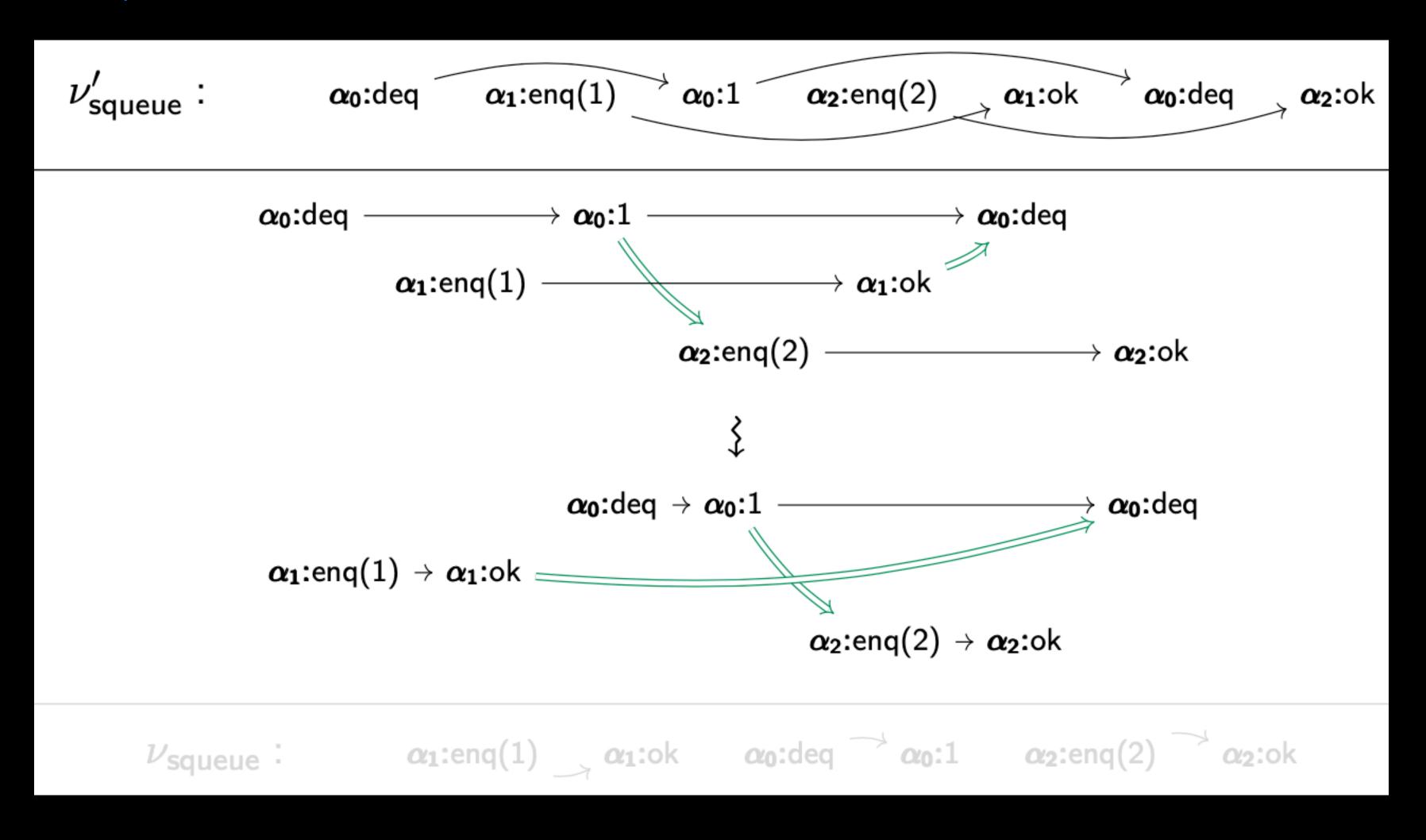
$ u_{\sf squeue}'$:	α₀: deq ⊂	α ₁ :enq(1)
	α ₀:deq	→ α₀:1 -
	α 1:e	enq(1) ———
		α₀: deq
	$oldsymbol{lpha_1}$:enq(1) $ ightarrow$	
$ u_{ m squel}$		enq(1) α ₁ :α



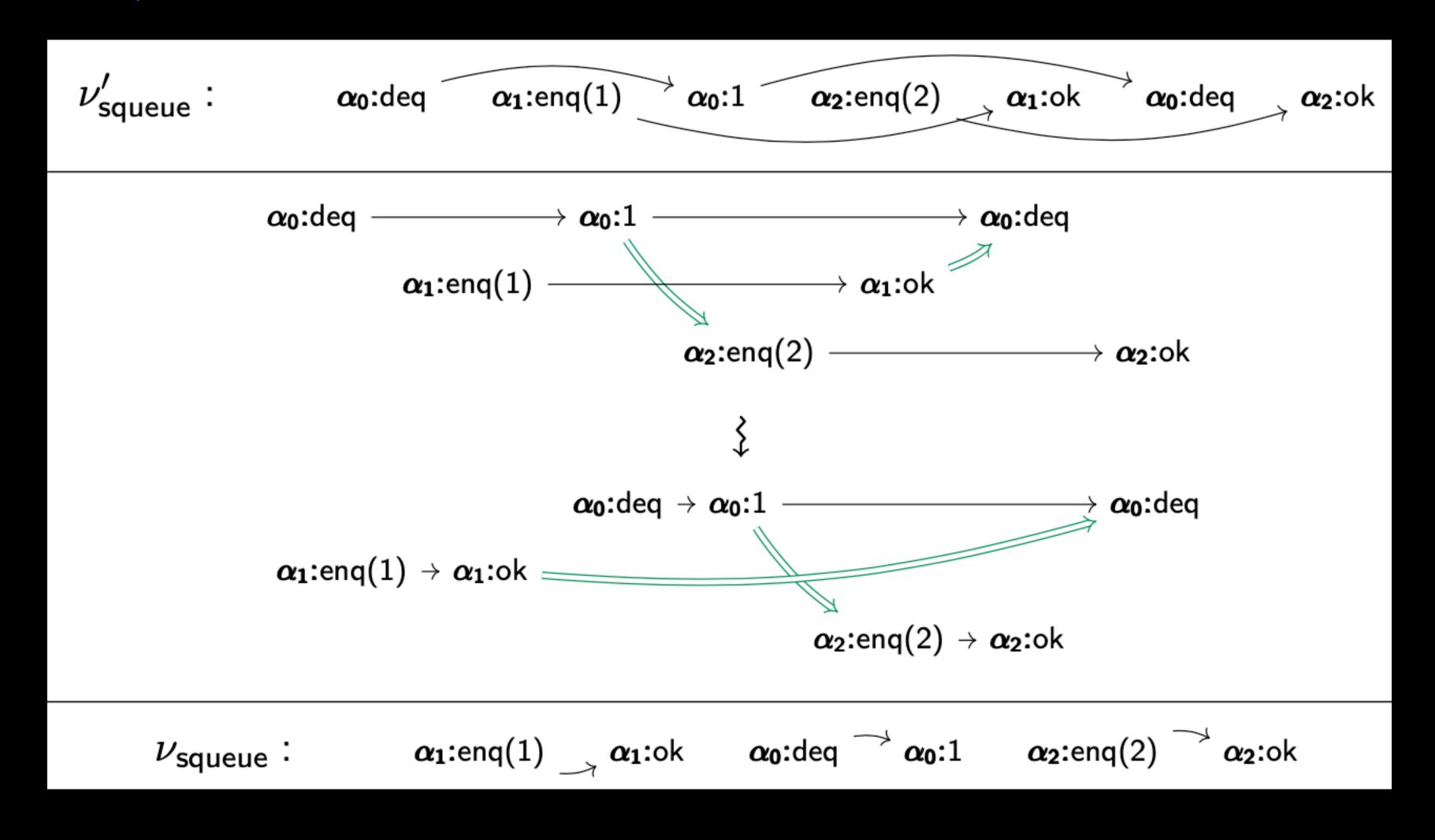
Example: Another



Example: Another



Example: Another



Concrete Linearizability

DEFINITION

s is linearizable to t when there exists a sequence s_O of invocations and a sequence s_P of responses such that

- t need not be atomic (coincides with Herlihy-Wing when it is);
- s_P = returns;
- \triangleright s_0 = removed pending invocations (not all need be removed);
- $\blacktriangleright \rightsquigarrow_{A}$ = happens-before order preservation.

 $s \cdot s_P \rightsquigarrow_A t \cdot s_O$

t E VEIDEN & Jt EVE, t'is lineavizable W.r.t. VE

The Trap of Adomicity Not every object is abomic 1: exch(X) 2: exch(Y) 1: y 2: X lineavizes to 1: $exch(x) \land \gamma$ 2. $exch(\gamma)$ 2: X 2. exch(y) 2:x 1: exch(x) 1:y

