
CS428/528 Lecture 13: Information-
Flow Security for mCertiKOS

Zhong Shao

Yale University

February 27, 2024

Based on the PLDI 2016 paper by Costanzo et al.

https://flint.cs.yale.edu/flint/publications/pldi16-security/

Information-Flow Security

a.com b.com

Web Browser

Proc 1 Proc 2

OS Kernel

VM 1 VM 2

Hypervisor

Mach 1 Mach 2

Distributed System

Goal: formally prove an end-to-end information-flow policy that applies to the
low-level code of these systems

Challenges
Ø How to specify the information flow policy?
• ideally, specify at high level of abstraction
• allow for some well-specified flows (e.g., declassification)

Proc 1 Proc 2

OS Kernel

policy?

Challenges
Ø Most systems are written in both C and assembly

• must deal with low-level assembly code
• must deal with compilation

• even verified compilation may not preserve security

Challenges
Ø How to prove security on low-level code?
• Security type systems (e.g., JIF) don’t work well for weakly-typed languages like

C and assembly
• How do we deal with declassification?
• Systems may have “internal leaks” hidden from clients

Ø How to prove security for all components in a unified way that allows
us to link everything together into a system-wide guarantee?

No existing system solves all of these challenges!

Related Work
� Practical languages with security labels: JIF [1], FlowCaml [2]

� Typed languages only, no C or assembly
� No formal end-to-end guarantees

[1] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized label
model. ACM Trans. Softw. Eng. Methodol., 9(4):410–442, 2000.

[2] Vincent Simonet and Inria Rocquencourt. Flow Caml in a Nutshell. Proceedings of the first
APPSEM-II workshop. 2003

Related Work
� Dynamic label tracking and label checks (e.g., [1], [2])

� Runtime exceptions can leak information
� Declassifications are particularly problematic
� Necessarily incomplete

� dynamic label checks may disallow safe “internal leaks”

� Execution overhead

[1] Thomas H. Austin and Cormac Flanagan. Efficient purely-dynamic information flow analysis. In PLAS,
pages 113–124, 2009.

[2] Catalin Hritcu, Michael Greenberg, Ben Karel, Benjamin C. Pierce, and Greg Morrisett. All your
ifcexception are belong to us. In IEEE Symposium on Security and Privacy, pages 3–17, 2013.

Related Work
� seL4 (NICTA) end-to-end security proof [1]

� no assembly code verification
� everything verified w.r.t. a C-level machine model

� ignores many intricacies of virtual memory address translation, page fault
handling, and context switching

� no guarantee that the C compiler maintains security

[1] Toby C. Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy Bourke, Sean Seefried,
Corey Lewis, Xin Gao, and Gerwin Klein. sel4: From general purpose to a proof of information flow
enforcement. In IEEE Symposium on Security and Privacy, pages 415–429, 2013.

Contribution 1
New methodology to solve all of these challenges!

specify, prove, and propagate IFC policies with a single unifying
mechanism: the observation function

� specify – expressive generalization of classical noninterference that
cleanly handles all kinds of declassifications

� prove – general proof method that subsumes both security label proofs
and information hiding proofs

� propagate – security-preserving simulations and compilation

Contribution 2
Application to a real OS kernel (our group’s CertiKOS [1])

� First fully-verified secure kernel involving C and assembly, including
compilation

� Verification done entirely within Coq

� Fixed multiple bugs (security leaks)

� Policy: user processes running over CertiKOS cannot influence each
other in any way (IPC disabled)

[1] Ronghui Gu, Jeremie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong
Zhang, and Yu Guo. Deep specifications and certified abstraction layers. In Proc. 42nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL), Mumbai, India, pages 595–608, 2015.

Program Logic Basics

𝑃 	𝐶	{𝑄}
derive

soundness

i := 0;
while (i < 64) do
 x := [A+i];
 if (x = 0)
 then
 output i;
 else
 skip;
 i := i+1;

Program 𝐶
Hoare Triple

1. 𝐶 doesn’t crash when 𝑃 holds
2. 𝐶 always takes 𝑃 states to 𝑄 states
3. 𝐶 satisfies the security policy

specified by 𝑃

E ::= x | n | E + E | …
B ::= E = E | true | false | B ∧ B | …

C ::= x := E | x := [E] | [E] := E | output E | skip

| C; C | if B then C else C | while B do C

Language

i := 0;

while (i < 64) do

 x := [A+i];

 if (x = 0)
 then

 output i;

 else

 skip;

 i := i+1;

Example Program

i := 0;

while (i < 64) do

 x := [A+i];

 if (x = 0)
 then

 output i;

 else

 skip;

 i := i+1;

Lo ⊢ {P}

Lo ⊢ {P ∧ (i ≥ 0 ∧ lbl(i) = Lo)}

Lo ⊢ {P ∧ (0 ≤ i < 64 ∧ lbl(i) = Lo)}

Lo ⊢ {P ∧ (lbl(i) = Lo ∧ ((x = 0 ∧ lbl(x) = Lo) ∨ (x ≠ 0 ∧ lbl(x) = Hi)))}

Lo ⊢ {P ∧ (lbl(i) = Lo ∧ x = 0 ∧ lbl(x) = Lo)}

Lo ⊢ {P ∧ (lbl(i) = Lo)}

Hi ⊢ {P ∧ (lbl(i) = Lo ∧ x ≠ 0 ∧ lbl(x) = Hi)}

Hi ⊢ {P ∧ (lbl(i) = Lo)}

Lo ⊢ {P ∧ (lbl(i) = Lo)}

Lo ⊢ {P ∧ (lbl(i) = Lo)}

Lo ⊢ {P}

P = * iϵ[0,63] A+i ↦ (ni,li)
∧ ((ni = 0 ∧ li = Lo) ∨

 (ni ≠ 0 ∧ li = Hi))

Example Program Verification

Problems with this Approach
� Language-specific

� bound to C-level reasoning and control flow constructs

� Depends on specific code details
� any change in the system’s code would require reverification

� Overlaps functional correctness with security concerns
� which aspects of 𝑃 are important for safety, and which for security?

� Incomplete
� some programs are secure but cannot be verified in the logic
� informal observation: all such programs can be rewritten to become

verifiable

Ideal Solution

i := 0;
while (i < 64) do
 x := [A+i];
 if (x = 0)
 then
 output i;
 else
 skip;
 i := i+1;

Program 𝐶

High Level Specification

abstract

Proof: Spec is Secure

Proof: All Code
Implementing Spec is

Secure

Conclusion: 𝐶	is secure

Ideal Solution – Achievable!

Security Policy

Proof: spec secure wrt policy

End-to-End Guarantee

Observation
Function

x86 Machine Model

Security-Preserving
Simulation

and Whole-Execution
BehaviorsSi

m
ul

at
io

n

1. Specifying and proving security

2. Propagating security across simulations

3. CertiKOS security proof

4. Limitations and extensions

Rest of Talk

Ideal Solution

i := 0;
while (i < 64) do
 x := [A+i];
 if (x = 0)
 then
 output i;
 else
 skip;
 i := i+1;

Program 𝐶

High Level Specification

abstract

Proof: Spec is Secure

Proof: All Code
Implementing Spec is

Secure

Conclusion: 𝐶	is secure

Pure Noninterference

Bob1

Alice

Bob1'

Alice'

Bob2

Alice

Bob2'

Alice'

=

=

“Alice’s behavior is influenced only by her own data.”

Common end-to-end security property for systems using security-label reasoning.

More Complex Policies

employee
salaries avg salary

declassify

void printAvg() {
 int sum = 0;
 for int i = 0 to db.size-1
 sum += db[i];

 double avg = double(sum) / (db.size-1);
 print(avg);
}

More Complex Policies

M T W F

Bob’s detailed event
calendar

Bob says: Alice can see only whether a day is free or not free

schedule meeting
with Bob

More Complex Policies

M T W F

Bob’s detailed event
calendar

Bob says: Alice can see only whether
a day is free or not free

void sched(event e) {
 for int i = 0 to cal.size-1 {
 int day = -1;
 if cal[i] == None {
 day = i;
 break;
 }
 }
 if day != -1
 cal[day] = Some e;
}

Requires conditional labels, as the security
levels depend on the values themselves

Generalized Noninterference

σ1

ΘA(σ1)

σ1'

ΘA(σ1')

σ2

ΘA(σ2)

σ2'

ΘA(σ2')

=

=
“Alice’s behavior is influenced only by her own observation.”

Observation Function

Θ : principal à program state à observation
(can be any type)

S : program state à program state à prop

“spec S is secure for principal p”

∀ σ1 , σ2, σ’1, σ’2 .

Θp(σ1) = Θp(σ2) ∧ S(σ1, σ’1) ∧ S(σ2, σ’2)

⟹

Θp(σ’1) = Θp(σ’2)

Example Observation Functions

w (5, {A})

x (17, {A,B})

y (42, {B})

z (13, {})

w (5, {A})

x (?, {A,B})

y (?, {B})

z (13, {})

ΘA

{}

{A} {B}

{A,B}
⊑

⊑ΘA

Average Salary

employee
salaries avg salary

ΘA

Average Salary employee
salaries

avg
salary

ΘA

0 5

1 17

2 42

3 13

19.25

0 35

1 8

2 22

3 12

19.25

same behavior

Average Salary employee
salaries

avg
salary

ΘA

void printAvg() {
 int sum = 0;
 for int i = 0 to db.size-1
 sum += db[i];

 double avg = double(sum) / (db.size-1);
 print(avg);
}

abstract

printAvgSpec(σ) = σ{out out(σ) ++ [avg(σ)]}

avg(σ) = (σ(0) + σ(1) + ... + σ(size-1)) / (size-1)

ΘA(σ) = (avg(σ), out(σ))

Proof: Generalized
Noninterference

Event Calendar

M T W F M T W F

Bob’s detailed event
calendar

Bob’s available / unavailable time
slots

ΘA

Bob says: Alice can see only whether a day is free or not free

Event Calendar

abstract

first(σ) = Some <first available slot>, if an empty slot exists
 OR None, otherwise

schedSpec(e, σ) = σ{f Some e}, if first(σ) = Some f
 OR σ, if first(σ) = None

ΘA(σ) = 𝜆	i . true, if σ(i) = None
 OR false, otherwise

Proof: Generalized
Noninterference

void sched(event e) {
 for int i = 0 to cal.size-1 {
 int day = -1;
 if cal[i] == None {
 day = i;
 break;
 }
 }
 if day != -1
 cal[day] = Some e;
}

Virtual Address Translation
va_load

page
tables

va pa global heap data

Definition va_load va σ rs rd :=
 match ZMap.get (PDX va) (ptpool σ) with
 PDEValid _ pte =>
 match ZMap.get (PTX va) pte with
 | PTEValid pg _ =>
 Next (rs # rd <-
 FlatMem.load (HP σ) (pg*PGSIZE + va%PGSIZE))
 | PTEUnPresent => exec_pagefault σ va rs
 end
 end.

Process p

:= fun va => va_load va σΘp(σ)

High SecurityDeclassify?

1. Specifying and proving security

2. Propagating security across simulations

3. Experience with CertiKOS security proof

4. Limitations and extensions

Rest of Talk

Ideal Solution

i := 0;
while (i < 64) do
 x := [A+i];
 if (x = 0)
 then
 output i;
 else
 skip;
 i := i+1;

Program 𝐶

High Level Specification

abstract

Proof: Spec is Secure

Proof: All Code
Implementing Spec is

Secure

Conclusion: 𝐶	is secure

Insecure Simulation
� OS and compiler refinement proofs use simulations

� Simulations may not preserve security!

x 17

y 42

x 17

y 42

z 0

x 42

y 17

z 17

x 42

y 17

swap(x,y)

z = x; x = y; y = z

R R

𝑅 𝜎", 𝜎# 	≔ (𝜎" 𝑥 = 𝜎# 𝑥 	∧ 𝜎" 𝑦 = 𝜎#(𝑦))

Machine M

Machine N

• Define an observation function for each machine, ΘM and ΘN

• Require that the simulation is security-preserving

Propagating Security

Security-Preserving Simulation (for principal p)

∀ σ1 , σ2, s1, s2 .

𝚯𝒑𝑴(σ1) =𝚯𝒑𝑴(σ2) ∧ R(σ1, s1) ∧ R(σ2, s2)

⟹

𝚯𝒑𝑵(s1) =𝚯𝒑𝑵	(s2)

Whole-Execution Behaviors

𝐵! (𝜎)= ???

Can define 𝐵! (𝜎) if Θ! is “monotonic” (behaves like an output buffer)
• only required for low-level implementation
• see PLDI2016 paper for technical details

End-to-End Security

∀𝜎', 𝜎(, 𝜎'), 𝜎() 	.	
Θ*+ 𝜎' = Θ*+ 𝜎(∧ 𝜎' → 𝜎') 	∧ 𝜎(→ 𝜎()

⇒ Θ*+ 𝜎') = Θ*+(𝜎())

Generalized Noninterference:

∀𝜎', 𝜎(, 𝑠', 𝑠(.	
Θ*+ 𝜎' = Θ*+ 𝜎(∧ 𝜎', 𝑠' ∈ 𝑅 ∧ 𝜎(, 𝑠(∈ 𝑅

⇒ 𝐵*, 𝑠' = 𝐵*,(𝑠()

End-to-End Security:

If 𝑅 is a security-preserving simulation and Θ*, is monotonic, then:

Spec S

Implementation I

Θ"#

Θ"$

𝑅

1. Specifying and proving security

2. Propagating security across simulations

3. Experience with CertiKOS security proof

4. Limitations and extensions

Rest of Talk

CertiKOS Overview
� Certified functionally correct OS kernel with 32 layers

� 354 lines of assembly code, ~3000 lines of C code
� CompCert compiles C to assembly

� Each layer has primitives that can be called atomically

� Bottom layer MBoot is the x86 machine model

� Top layer TSysCall contains 9 system calls as primitives
� init, vmem load/store, page fault, memory quota, spawn child, yield, print

va_load

page
tables

va pa global heap data

CertiKOS Observation Function
� For a process p, the observation function is:

� registers, if p is currently executing
� the output buffer of p
� the function from p’s virtual addresses to values
� p’s available memory remaining (quota)
� the number of children p has spawned
� the saved register context of p
� the spawned status and currently-executing status of p

CertiKOS Security Property
TSysCall layer

MBoot machine model

Θ"# defined as described

Θ"$ = p’s output buffer

𝑅

∀𝜎', 𝜎(, 𝜎'), 𝜎() 	.	
Θ*+ 𝜎' = Θ*+ 𝜎(∧ 𝜎' → 𝜎') 	∧ 𝜎(→ 𝜎()

⇒ Θ*+ 𝜎') = Θ*+(𝜎())

Generalized Noninterference:

∀𝜎', 𝜎(, 𝑠', 𝑠(.	
Θ*+ 𝜎' = Θ*+ 𝜎(∧ 𝜎', 𝑠' ∈ 𝑅 ∧ 𝜎(, 𝑠(∈ 𝑅

⇒ 𝐵*, 𝑠' = 𝐵*,(𝑠()

End-to-End Security:

𝑅 is a security-preserving simulation
 Θ*, is monotonic

Evaluation

Load 147

Store 258

Page Fault 188

Get Quota 10

Spawn 30

Yield 960

Start User 11

Print 17

Total 1621

Primitives 1621

Glue 853

Framework 2192

Invariants 1619

Total 6285

Security Proof (LOC)

Security of Primitives (LOC)

Time needed for Coq proof effort: ~ 6 months

CertiKOS Security Leak

function alice {
 int pid1 = proc_spawn();
 yield();
 int pid2 = proc_spawn();

 print(pid2 – pid1 + 1);
}

function bob {
 int secret = 42;
 for i = 0 to secret {
 proc_spawn();
 }
 yield();
}

||

pid1 pid2

secret

IDs

Solution to Leak
0

max children = 3

1 2 3

4 5 6 7 8 9 10 11 12

1. Specifying and proving security

2. Propagating security across simulations

3. Experience with CertiKOS security proof

4. Limitations and Extensions
a. Model Fidelity
b. Virtualized Time
c. Top-Level CertiKOS Theorem

Rest of Talk

Machine Model Fidelity
� Gaps between MBoot machine model and the physical x86 hardware

� Completeness – some unmodeled assembly instructions (e.g., RDTSC)
� Soundness – must trust that we modeled x86 instructions faithfully
� Safety – must assume that users never execute code modeled as undefined behavior

� Define a user-level machine model with three types of instructions
� Interrupt – trap into the kernel to handle a privileged instruction or syscall
� Load/Store – access global heap according to the kernel’s load/store specs
� Other – other user-level instructions, which are only allowed to use local registers

� Instructions of first two types are proved to be safe
� Instructions of third type are safe due to restriction to local registers

Future plans to deal with safety gap:

New Feature: Virtualized Time

function alice {
 int t0 = gettime();

 while (true) {

 for i = 0 to 106 {

 // do some work...

 }

 int t = gettime();

 print(t – t0);

 yield();

 }

}

function bob {
 int t0 = gettime();

 while (true) {

 for i = 0 to 106 {

 // do some work...

 }

 int t = gettime();

 print(t – t0);

 yield();

 }

}

||

New Feature: Virtualized Time

time
paused

time
advances

time
advances

time
paused

time
paused

time
advances

= p is active = p is not active

void stoptime() {
 int p = get_cid();

 int t = rd_tsc();

 sump += t – cur;

}

int gettime() {
 int p = get_cid();

 int t = rd_tsc();

 return (sump + (t – cur));

}

void starttime() {
 cur = rd_tsc();

}

New Feature: Virtualized Time

End-to-End Security in CertiKOS

∀𝜎', 𝜎(, 𝑠', 𝑠(.	
Θ*+ 𝜎' = Θ*+ 𝜎(∧ 𝜎', 𝑠' ∈ 𝑅 ∧ 𝜎(, 𝑠(∈ 𝑅

⇒ 𝐵*, 𝑠' = 𝐵*,(𝑠()

End-to-End Security:

Requires understanding and trusting the observation function.

But CertiKOS enforces pure isolation on processes; can we do better?

1. Define 𝑆𝑝𝑎𝑤𝑛𝑒𝑑 𝑝 = process p was just spawned by the kernel
2. Prove: ∀𝜎', 𝜎(∈ 𝑆𝑝𝑎𝑤𝑛𝑒𝑑 𝑝 	.Θ*+ 𝜎' = Θ*+ 𝜎(

End-to-end security theorem is independent from
choice of observation function!⇒

Proposed solution (not yet completed):

Conclusion
� New methodology using observation function to specify, prove,

and propagate IFC policies
� applicable to all kinds of real-world systems!

� Verification of secure kernel done fully within Coq
� machine-checked proofs!

� Future Work
� higher-level process isolation theorem (independent of observation function choice)
� more realistic x86 model
� preemption
� concurrency

