CS 428/528 Lecture 14: A Lattice of
Information & Robust Declassification

Feb 29, 2024

Based on the CSFWO01 paper/slides by Zdancewic &
Myers and the CSFW93 paper by Landauer and
Redmond

Information Flow Security

Information flow policies are a natural way
to specify precise, system-wide, multi-level security
requirements.

Enforcement mechanisms are often too restrictive —
prevent desired policies.

Information flow controls provide declassification
mechanisms to accommodate intentional leaks.

~

@: hard to understand end-to-end system behavior/

2

Declassification

‘Declassification (downgrading) is A
the intentional release of confidential
information.

\ J

Policy governs use of declassification operation.

Password Example

public
query

N/

confidential
password

Password
Checker
This system
includes
declassification.
public

result

Attack: Copy data into passwa@

public high security

query data copy
Attacker can Password high security
launder data Checker data
through the
password checker. /

Robust Declassification

ﬁoal:

Formalize the intuition that an attacker

more information to be declassified than
intended.

-

should not be able to abuse the downgrade
mechanisms provided by the system to cause

~

/

How to Proceed?

(Characterize what information is declassified.\

e Make a distinction between “intentional” and
“unintentional” information flow.

e Explore some of the consequences of robust
declassification.

- /

A Simple System Model

/A system S is a pair:
> is a set of states: o,, 0,,...
— iS a transition relation in =xX

2 4 03
o, > O, <
o o,
O

s—> 0

Views of a System

[A view of (Z, —) is an equivalence relation on X. }

Example: = = String x Integer
"integer component is visible"

(x,1) = (yg) iff i=]
("attack at dawn", 3) =, ("retreat”, 3)

("attack at dawn", 3) #, ("retreat”, 4)

Example Views

Example: £ = String x Integer
"string component is visible"
(Xli) =g (YI.]) iff x = y

"integer is even or odd"
(x,1) ~E (YIj) iff %2 = J%02

"complete view"
(Xli) =T (YIJ) iff (Xli) = (YIJ)

Passive Observers

A view induces an observation of a trace:

—_ (ll n 1)%(" n 1)%(" n Z)Q(" n 3)
1:1 through View =
1-1—-2-3

= ("a",1)—("b",2)—("z",2)—("c",3)

1:2 through View =

1-2—-2-3

Observational Equivalence

éhe induced observational equivalence is S[=]: \

O S[=] o' if the traces from o look the same
as the traces from o' through the view =.

- /

Simple Example

oy =

Simple Example

e

Observational Equivalence

‘ Are ¢ and o' observationally
S[=] ‘7 equivalent with respect to = ?

Observational Equivalence

Take the sets of traces
starting at o and o'
0,

Observational Equivalence

O3

0, O, —

7 T~

6) 04

modulo =.

[Look at the traces

Observational Equivalence

—
/ \
Look at the traces
[modulo =.
/
\

Observational Equivalence

N\ Obs (S, =)

AR
" ’
J
N Obsy(S,=)
v
N ’
J

Observational Equivalence

Obs (S, =) [Are they)
stutter
I equivalent?
] - /
I
— Yes!
Obs (S, =) o S[=] o

Why Did We Do This?

/ ~ is a view of X indicating what \
an observer sees directly.

S[=] is a view of X indicating what
an observer learns by watching S evolve.

[Need some way to compare them... }

An Information Lattice

The views of a system S
form a lattice.

Order: =, C =

-

~

N N

O O, O, O O =
< X q
“»/‘Q I

Intuition:
Higher = "more information"

Lattice Order

~T
O,
~71 IS the identity relation O% No -~
. . 1
~ is the total relation 2 *5»».;4‘

. (©)
Join: =, Ll ~, ¢
Meet: =, M =;

il

Information Learned via Obsé

/Intuition: An observer \
only learns information
by watching the system.
(Can't lose information.)

N

[Lemma: ~ C S[=] }

Natural Security Condition

4 h

Definition: A system S is
~-Secure whenever
~ = S[~]

_

-

Closely related to standard
definitions of non-interference
style properties.

_ /

Example: A Password System

State of a 5-tuple: <t, h, p, q, r>
t: 0 or 1 (0 the password checker has not run yet, 1 the checker completed)

e h: a bit representing the high security data

e p: a bit representing the password

e Q: the query submitted by the external user

e r: toggles the boolean value if p and g match

State transition relation S: (t,h,p,q,m) = (t', 0, p', ¢, 1)
=4

<0,h,p,p,0> —> <1,h,p,p,1> E=rlg=d)nir=r)

<Olhlplp/1> —> <11h/p/p10>
<OIhIpIqIO> —> <1IhIpIpIO>
<O/hlplq11> —> <1/hlplp11>

Example: A Password System

State transition relation S:

<OlhlplpIO> —> <1lhIpIpI1>
<Olhlplpll> —> <1lhlpIpIO>
<Olh/p/q/0> —> <1lh/p/p10>
<Olhlplq11> —> <1Ihlplpll>

Attack transition relation A:

<0,h r>—>A < >
0,h,p,q, 0,h,h,q,r (t,h,p,q,r) S'[~] (', 1, p,q ")
=14
t=t)YA(g=¢) N (r=r)A
(t=0=p=pVh=HKVp=hVh=p)

SS=SUA

Example: A Password System

~
State transition relation S:
<OlhlplpI0> —> <1lhIpIpI1>
<Olhlplpll> —> <1lhIpIpI0>
<OIhIpIqIO> —> <11h/p/p/0>
<Olhlplqll> —> <1lhlplp11>
Attack transition relation A:
<0,h,p,q,0> —>A <0,h,h,q,1> (t,h,p,q,7)ST~] (', I, 0", ¢, 1")
<0,h,p,q,1> —>A <0,h,h,q,0> o
t=t")N(g=¢)N(r=1")A
S=SUA t=0= (p=p)V(h="))
- J

Declassification

/Declassification is intentional
leakage of information.

Implies that =~ # S[=]

_

~

We want to characterize
unintentional declassification.

A Simple Attack Model

An ~,-attack is a system A = (=, —,)
such that =, = A[=,]

~, IS the attacker's view

— , is a set of additional transitions
introduced by the attacker

~, = A[=,] means "fair environment"

Attacked Systems

0,
o
Os

/Given a system S = (2, —)
and attack A = (£, —))
the attacked system is:

SUA= (5, > U —,)

~

O3
’02< Sy %)
04 X
>O6 05 06

More Intuition

4 S[=] describes the information intentionally A
declassified by the system — a specification
for how S ought to behave.

\ /

(S U A)[=,] describes the information obtained
by an attack A.

Example Attack

A
S

Example Attack

[Attack transitions affect the system.

@ @

3

4

Example Attack

[Attacked system may reveal more.

/.\
~(SUA)[=,] S[=] \ 9
b/

o

U

[

N

|
.
A

&

35

Robust Declassification

G system S is robust \

with respect to
attack A whenever

SV A)[”A] L S[=4l-

N /

Intuition: Attack reveals no
additional information.

Secure Systems are Robust

Theorem: A
If S is =,-secure then S is =,-robust with
respect to all =,-attacks.

- /

Intuition: S doesn't leak any information to
~,-0observer, so no declassifications to exploit.

Characterizing Attacks

Given a system S and a view =, , for what
~,-attacks is S robust?

_

Need to rule out
Attack transitions
Like this:

Providing Robustness

ﬁdentify a class of relevant attacks \

— Example: attacker may modify / copy files
— Example: untrusted host may send bogus requests

e Try to verify that the system is robust vs. that
class of attacks.

e Proof fails... system is insecure.

e Possible to provide enforcement mechanisms
against certain classes of attacks
- Protecting integrity of downgrade policy /

39

Conclusions

It's critical to prevent downgrading mechanisms in a system from being
abused.

Robustness is an attempt to capture this idea
in a formal way.

Suggests that integrity and confidentiality are
linked in systems with declassification.

A Lattice of Information aces

We will now construct of the lattice. We first define
a set, Z(X), to be the set of all equivalence relations on
the set X. We will define an ordering on this set that
makes it a complete lattice. The ordering on Z(X) is
defined as follows

<~ — VO’l,O'Q (0'1’\-‘0'2:}0'1%0'2) (1)

where m and ~ are elements of the set Z.

We will now demonstrate why the ordering (1)
makes the information set on ¥ into a complete lat-
tice. It is sufficient to show that for any set, P C Z(X),
there exists a least upper bound for that set [1, 2]. It
follows from lattice theory that this is enough to guar-
antee that the information set is a lattice. It is not
difficult to see that the least upper bound of the set
P is the the equivalence relation, ~, given by

Ve,yeYX (z~y—VmEP zry)

A Lattice of Information e

as follows: for any function, f : ¥ — X, we will define

|| || to be the element of Z(X) for which

Vo,o' € X (o ||f]| o' — f(o) = f(c"))

Theorem 1 For any set X, the following properties
hold:

o any element of T(X) can be represented as || f|| for
some set, X, and some function f:YX — X.

o |71l = lgll iff there exists a set isomorphism, @,
from the range of f to the range of g such that

g=¢of.

o |lgll < ||l iff there exists a function, ¢, such that
g=0¢of.

o iff: X —= X andg:X —Y then
A1V gl = (1A

where h : X — X XY is defined by

Vo €X h(o) = (f(v),9(c))

4

2

A Lattice of Information et

The most basic property of the lattice is the manner
in which a function f : ¥; — X, induces a function

f# 1 Z(X2) — Z(X1). The function fyx can be defined
by the equation

Fallgll) = llg o fll

Equivalently, if ~€ Z(X5), then fx(~) is the equiv-
alence relation given by

v fa(~) oy = f@) ~)

An 1important property of this induced function is
that for f : Y31 — X5 and ¢ : ¥5 — X3, we have,

feoge =(g0f)x

Also if id : X1 — X4 1s the identity map, then idy4
denotes the identity map on Z(Xq).

4

3

A Lattice of Information et

-

w2 v 2 v

The practical significance of the induced function
J# 1s that 1t provides a formalism for determining the
source of updated information after a state change. To
elaborate, we formalize the notion of state change. Let
R : Y — X be a transition function. Let f : X — X be
a view of the state space. If ¢ 1s the state before the
transition, then the value of f after the transition is
foR(c). Thus the informationin f after the transition
can be determined from knowing the information in

1 o Bl = R (| £]])

before the transition.

4

/

4

A Lattice of Information et

A second important concept is the notion of a func-
tion leaving certain information invariant. If R : % —
Y is a function then we define fix(R) to be the greatest
element of Z(X) such that

Vo eX o fix(R) R(o)

The equivalence relation fix(R) can be formed by con-
structing the reflexive transitive closure of the sym-
metric relation that identifies ¢ and R(o) forall ¢ € X.

This is important for expressing a requirement that
a high process does not write down. If ~& Z(3) rep-
resents information with a low sensitivity label and
IR represents a transition that is being executed by a
high process, then we require that the high transition
leave the low information invariant. Using the above
notation this can be expressed as ~< fix(R). This

4

5

A Lattice of Information e

We will suppose the existence of a distributive lat-
tice, L, representing sensitivity levels. We will suppose
that we have a state machine consisting of an initial
state, og € X, a transition function

R:Y¥YxI—=X

and output functions oy : ¥ — Op for each sensitivity
level A € L. We will assume also that the set of inputs
I is partitioned into disjoint sets, I, where A € L.

The transition function, R, can be used to define a
function

R xI* =X

where I* is the set of sequences of elements of I as
follows:

R (o,()=o

R*(O', (io, ey in+1)) = R(R*(O', (io, ceey Zn)), in+1)

For each sensitivity level A € L we will form a purge
function, py : I* — I*, that takes a sequence of ele-
ments of I and returns the sequence formed by remov-
ing all the elements not in some Iy, where A < A.

The non-interference property states that for all
sensitivity levels, A € L, and all input sequences
(ig,...,1) € I*, we have

ox(R* (oo, (fo, - - -,in)) = oa(R*(00, palio, - - -,in))

A Lattice of Information aces

Theorem 3 Haigh-Young Unwinding Suppose
that all states are reachable and let Ri(c) = R(c,1)
for all 0 € X and i € I. The non-interference prop-
erty is satisfied if and only if there exists a function,
vl : L — Z(X) such that

o (Information flows up) For alli € I

(Ro) (i) < | WiV

A<

e (Processes only write up) For all X\, X such that
A is not greater than X, and all i € I,

Wl(X') < fix((R)4)

o (Output is determined by the information at a
level) For all A,

lloall < wl(A)

47

