
CS 428/528 Lecture 14: A Lattice of 
Information & Robust Declassification

Feb 29, 2024 

Based on the CSFW01 paper/slides by Zdancewic & 
Myers and the CSFW93 paper by Landauer and 

Redmond



2

Information flow policies are a natural way 
to specify precise, system-wide, multi-level security 
requirements. 

Enforcement mechanisms are often too restrictive – 
prevent desired policies. 

Information flow controls provide declassification 
mechanisms to accommodate intentional leaks. 

But… hard to understand end-to-end system behavior.

Information Flow Security



3

Declassification

Declassification (downgrading) is 
the intentional  release of confidential 
information. 

Policy governs use of declassification operation.



4

Password Example

Password 
Checker

public 
query

confidential 
password

public 
result

This system  
includes  
declassification.



5

Attack: Copy data into password

Password 
Checker

public 
query

high security 
data

leaked 
result

high security 
data

copy

Attacker can 
launder data 
through the  
password checker. 



6

Robust Declassification

Goal:  

Formalize the intuition that an attacker 
should not be able to abuse the downgrade 
mechanisms provided by the system to cause 
more information to be declassified than  
intended.



7

How to Proceed?

• Characterize what information is declassified. 
• Make a distinction between “intentional” and 

“unintentional” information flow. 
• Explore some of the consequences of robust 

declassification.



8

A Simple System Model

A system S is a pair: 
Σ is a set of states: σ1, σ2,…

→ is a transition relation in Σ×Σ 

σ

σ1

σ4

σ3

σ5 σ6

σ2



9

Views of a System

A view of (Σ, →) is an equivalence relation on Σ.

Example: Σ = String × Integer 
           "integer component is visible"

("attack at dawn", 3) ≈I ("retreat", 3)

(x,i) ≈I (y,j)  iff  i = j

("attack at dawn", 3) ≈I ("retreat", 4)/



10

Example Views

Example: Σ = String × Integer 
           "string component is visible" 
           (x,i) ≈S (y,j)  iff  x = y 
   
           "integer is even or odd" 
           (x,i) ≈E (y,j)  iff  i%2 = j%2 

           "complete view" 
           (x,i) ≈  (y,j)  iff (x,i) = (y,j) ⊤



11

Passive Observers

A view induces an observation of a trace:

τ1 = ("x",1)→("y",1)→("z",2)→("z",3)
τ1 through view ≈I 

             1 → 1 → 2 → 3 

τ2 = ("a",1)→("b",2)→("z",2)→("c",3)
τ2 through view ≈I 

             1 → 2 → 2 → 3 



12

Observational Equivalence

The induced observational equivalence is S[≈]: 

σ S[≈] σ'   if the traces from σ look the same 
as the traces from σ' through the view ≈.



13

Simple Example

≈ ≈



14

Simple Example

S[≈] ¬S[≈]



15

Observational Equivalence

σ

σ'

S[≈]  ?
Are σ and σ' observationally  
equivalent with respect to ≈ ?



16

Observational Equivalence

σ

σ1

σ4

σ3

σ5 σ6

σ2

σ'

σ4'

σ2'

σ5'

σ1'

σ3'

Take the sets of traces  
starting at σ and σ'.

Trcσ(S)

Trcσ'(S)



17

Observational Equivalence

σ

σ1

σ4

σ3

σ5 σ6

σ2

σ'

σ4'

σ2'

σ5'

σ1'

σ3'

Look at the traces  
modulo ≈.



18

Observational Equivalence

σ

σ1

σ4

σ3

σ5 σ6

σ2

σ'

σ4'

σ2'

σ5'

σ1'

σ3'

Look at the traces  
modulo ≈.



19

Observational Equivalence

σ

σ1

σ4

σ3

σ5 σ6

σ2

σ'

σ4'

σ2'

σ5'

σ1'

σ3'

Obsσ(S, ≈)

Obsσ'(S, ≈)



20

Observational Equivalence

Obsσ(S, ≈)

Obsσ'(S, ≈)

Are they  
stutter  
equivalent?

Yes! 
σ  S[≈]  σ'

=

≡

≡



21

Why Did We Do This?

≈ is a view of Σ indicating what  
an observer sees directly. 

S[≈] is a view of Σ indicating what  
an observer learns by watching S evolve.

Need some way to compare them…



22

An Information Lattice

The views of a system S  
form a lattice.  

Order:     ≈A     ≈B⊑

≈⊤

≈I

≈⊥

≈E

≈S

Intuition:  
Higher  = "more information"  



23

≈  is the identity relation 

≈  is the total relation
⊤

⊥

Lattice Order

Join:   ≈A  ≈B 
Meet: ≈A  ≈B

⊔
⊓

≈⊤

≈I

≈⊥

≈E

≈S



24

Intuition: An observer 
only learns information  
by watching the system. 
(Can't lose information.)

Information Learned via Observation

≈⊥

≈⊤

S[≈]

≈

Lemma:  ≈  S[≈] ⊑



25

Natural Security Condition

≈ = S[≈]

Definition: A system S is 
≈-secure whenever 
           ≈ = S[≈]

Closely related to standard  
definitions of non-interference  
style properties.

≈⊤

≈⊥



26

Example: A Password System 

State of a 5-tuple: <t, h, p, q, r> 
•  t: 0 or 1 (0 the password checker has not run yet, 1 the checker completed) 
•  h: a bit representing the high security data 
•  p: a bit representing the password 
•  Q: the query submitted by the external user 
•  r: toggles the boolean value if p and q match 

State transition relation S: 

<0,h,p,p,0> —> <1,h,p,p,1> 
<0,h,p,p,1> —> <1,h,p,p,0> 
<0,h,p,q,0> —> <1,h,p,p,0> 
<0,h,p,q,1> —> <1,h,p,p,1> 

declassification by simply taking the greatest lower bound
on the members of D, namely ⇡D = glb{⇡` 2 D}. By
distributivity,⇡D is guaranteed to be an element ofD itself.
It is the smallest level of information that, together with ⇡
is sufficient to explain the ⇡-view of the system. If LC is
not distributive, any one of the vI-minimal elements of D
could have declassified information sufficient to cause the
evident information flow.

3 An Example

To illustrate the model, let us consider the example of the
attack discussed in the introduction, in which a password
system is used to launder confidential information.
To model that scenario, we assume that the state of the

system consists of a 5-tuple ht, h, p, q, ri. The compo-
nent t 2 {0, 1} is the time—0 indicates that the password
checker has not run yet, and 1 indicates that the password
checker has completed. In more realistic examples, this
simple notion of time could be replaced with the program
counter of a computer, but this suffices for our discussion.
The component h is a bit representing some high security
data that should not be leaked to external users of the sys-
tem. For simplicity, we assume that there is only one user
password in the database, and its value is a bit given by the
component p. The external user submits a query, q, which
will be compared against p by the password checker. If p
and q match, the password checker toggles the value of the
boolean r, which stores the result of the query. If p and q
are not the same, the password checker leaves the value of
r unchanged.
The execution of the password checker can be given by

the transition relation below:

ht, h, p, q, ri 7! ht, h, p, q, ri
h0, h, p, p, 0i 7! h1, h, p, p, 1i (p = q, toggle r)
h0, h, p, p, 1i 7! h1, h, p, p, 0i (p = q, toggle r)
h0, h, p, q, 0i 7! h1, h, p, q, 0i (p 6= q, leave r)
h0, h, p, q, 1i 7! h1, h, p, q, 1i (p 6= q, leave r)

An external user of the system is only able to directly see
the value of the query submitted to the password checker,
the result that the password checker returns, and that the
password checker has completed its computation (time has
passed). This leads to an equivalence relation, ⇡, given by:

ht, h, p, q, ri ⇡ ht0, h0, p0, q0, r0i
,

(t = t0) ^ (q = q0) ^ (r = r0)

Let S be the password checking system just described.
The external user of the system can learn some information
about the password p, namely whether it matches the query

they submitted, by watching the system run. Thus the sys-
tem S induces an observational equivalence S[⇡] which is
strictly higher in the information lattice I(⌃):

ht, h, p, q, ri S[⇡] ht0, h0, p0, q0, r0i
,

(t = t0) ^ (q = q0) ^ (r = r0) ^ (t = 0 ) (p = p0))

Now suppose that the owner of the password alters p
based on the value of the high-security data h before the
password checker is run. Because we’ve assumed that both
the high-security data and the password are represented as
bits, the simplest variant of such an attack is to copy the high
security data into the password. This attack corresponds to
adding some transitions2to the system above:

h0, h, p, q, ri 7!A h0, h, h, q, ri

Now, as expected, the observational equivalence induced on
the attacked system S0 is not the same as the one induced
by the original system S. We have:

ht, h, p, q, ri S0[⇡] ht0, h0, p0, q0, r0i
,

(t = t0) ^ (q = q0) ^ (r = r0)^
(t = 0 ) p = p0 _ h = h0 _ p = h0 _ h = p0)

Stating the equivalence relations in this way, it is easy to
see that the external observer can possibly learn the value of
h by watching the system S0 run. The external observer can
distinguish any two states based on the run of the system �
and �0 just when � is not related to �0 via S0[⇡]. Negating
the right hand side of the equivalence above yields:

(t 6= t0) _ (q 6= q0) _ (r 6= r0)_
(t = 0 ^ p 6= p0 ^ h 6= h0 ^ p 6= h0 ^ h 6= p0)

This says that the external observer can see when time has
passed, when q changes, when r changes, or when t = 0
and p = h, p0 = h0 and p 6= p. Some information about h
has been leaked.
As this example shows, the equivalence relations in-

duced by a system may be quite complex.3 Note that the at-
tack just described doesn’t leak all of the information about
h because when h = p, copying it into the password doesn’t
lead to any new behavior in the system (with respect to ob-
servations through view ⇡). A more savvy attacker might
also toggle r whenever he copied h into p, thus indicating
that p does in fact contain h. This smarter attack adds these
transitions:

2We use the subscriptA to indicate that these are transitions introduced
by an attacker.

3In this setting, because there are only two possible values for p, h,
etc., more information is leaked than when more values are possible. The
reason is that p 6= q and h 6= q implies that p = h, which, in general
is not true. We have made use of this kind of reasoning to simplify the
description of the equivalence relations.

declassification by simply taking the greatest lower bound
on the members of D, namely ⇡D = glb{⇡` 2 D}. By
distributivity,⇡D is guaranteed to be an element ofD itself.
It is the smallest level of information that, together with ⇡
is sufficient to explain the ⇡-view of the system. If LC is
not distributive, any one of the vI-minimal elements of D
could have declassified information sufficient to cause the
evident information flow.

3 An Example

To illustrate the model, let us consider the example of the
attack discussed in the introduction, in which a password
system is used to launder confidential information.
To model that scenario, we assume that the state of the

system consists of a 5-tuple ht, h, p, q, ri. The compo-
nent t 2 {0, 1} is the time—0 indicates that the password
checker has not run yet, and 1 indicates that the password
checker has completed. In more realistic examples, this
simple notion of time could be replaced with the program
counter of a computer, but this suffices for our discussion.
The component h is a bit representing some high security
data that should not be leaked to external users of the sys-
tem. For simplicity, we assume that there is only one user
password in the database, and its value is a bit given by the
component p. The external user submits a query, q, which
will be compared against p by the password checker. If p
and q match, the password checker toggles the value of the
boolean r, which stores the result of the query. If p and q
are not the same, the password checker leaves the value of
r unchanged.
The execution of the password checker can be given by

the transition relation below:

ht, h, p, q, ri 7! ht, h, p, q, ri
h0, h, p, p, 0i 7! h1, h, p, p, 1i (p = q, toggle r)
h0, h, p, p, 1i 7! h1, h, p, p, 0i (p = q, toggle r)
h0, h, p, q, 0i 7! h1, h, p, q, 0i (p 6= q, leave r)
h0, h, p, q, 1i 7! h1, h, p, q, 1i (p 6= q, leave r)

An external user of the system is only able to directly see
the value of the query submitted to the password checker,
the result that the password checker returns, and that the
password checker has completed its computation (time has
passed). This leads to an equivalence relation, ⇡, given by:

ht, h, p, q, ri ⇡ ht0, h0, p0, q0, r0i
,

(t = t0) ^ (q = q0) ^ (r = r0)

Let S be the password checking system just described.
The external user of the system can learn some information
about the password p, namely whether it matches the query

they submitted, by watching the system run. Thus the sys-
tem S induces an observational equivalence S[⇡] which is
strictly higher in the information lattice I(⌃):

ht, h, p, q, ri S[⇡] ht0, h0, p0, q0, r0i
,

(t = t0) ^ (q = q0) ^ (r = r0) ^ (t = 0 ) (p = p0))

Now suppose that the owner of the password alters p
based on the value of the high-security data h before the
password checker is run. Because we’ve assumed that both
the high-security data and the password are represented as
bits, the simplest variant of such an attack is to copy the high
security data into the password. This attack corresponds to
adding some transitions2to the system above:

h0, h, p, q, ri 7!A h0, h, h, q, ri

Now, as expected, the observational equivalence induced on
the attacked system S0 is not the same as the one induced
by the original system S. We have:

ht, h, p, q, ri S0[⇡] ht0, h0, p0, q0, r0i
,

(t = t0) ^ (q = q0) ^ (r = r0)^
(t = 0 ) p = p0 _ h = h0 _ p = h0 _ h = p0)

Stating the equivalence relations in this way, it is easy to
see that the external observer can possibly learn the value of
h by watching the system S0 run. The external observer can
distinguish any two states based on the run of the system �
and �0 just when � is not related to �0 via S0[⇡]. Negating
the right hand side of the equivalence above yields:

(t 6= t0) _ (q 6= q0) _ (r 6= r0)_
(t = 0 ^ p 6= p0 ^ h 6= h0 ^ p 6= h0 ^ h 6= p0)

This says that the external observer can see when time has
passed, when q changes, when r changes, or when t = 0
and p = h, p0 = h0 and p 6= p. Some information about h
has been leaked.
As this example shows, the equivalence relations in-

duced by a system may be quite complex.3 Note that the at-
tack just described doesn’t leak all of the information about
h because when h = p, copying it into the password doesn’t
lead to any new behavior in the system (with respect to ob-
servations through view ⇡). A more savvy attacker might
also toggle r whenever he copied h into p, thus indicating
that p does in fact contain h. This smarter attack adds these
transitions:

2We use the subscriptA to indicate that these are transitions introduced
by an attacker.

3In this setting, because there are only two possible values for p, h,
etc., more information is leaked than when more values are possible. The
reason is that p 6= q and h 6= q implies that p = h, which, in general
is not true. We have made use of this kind of reasoning to simplify the
description of the equivalence relations.



27

Example: A Password System 

State transition relation S: 

<0,h,p,p,0> —> <1,h,p,p,1> 
<0,h,p,p,1> —> <1,h,p,p,0> 
<0,h,p,q,0> —> <1,h,p,p,0> 
<0,h,p,q,1> —> <1,h,p,p,1> 

Attack transition relation A: 

<0,h,p,q,r> —>A <0,h,h,q,r> 

S’ = S  A ∪

declassification by simply taking the greatest lower bound
on the members of D, namely ⇡D = glb{⇡` 2 D}. By
distributivity,⇡D is guaranteed to be an element ofD itself.
It is the smallest level of information that, together with ⇡
is sufficient to explain the ⇡-view of the system. If LC is
not distributive, any one of the vI-minimal elements of D
could have declassified information sufficient to cause the
evident information flow.

3 An Example

To illustrate the model, let us consider the example of the
attack discussed in the introduction, in which a password
system is used to launder confidential information.
To model that scenario, we assume that the state of the

system consists of a 5-tuple ht, h, p, q, ri. The compo-
nent t 2 {0, 1} is the time—0 indicates that the password
checker has not run yet, and 1 indicates that the password
checker has completed. In more realistic examples, this
simple notion of time could be replaced with the program
counter of a computer, but this suffices for our discussion.
The component h is a bit representing some high security
data that should not be leaked to external users of the sys-
tem. For simplicity, we assume that there is only one user
password in the database, and its value is a bit given by the
component p. The external user submits a query, q, which
will be compared against p by the password checker. If p
and q match, the password checker toggles the value of the
boolean r, which stores the result of the query. If p and q
are not the same, the password checker leaves the value of
r unchanged.
The execution of the password checker can be given by

the transition relation below:

ht, h, p, q, ri 7! ht, h, p, q, ri
h0, h, p, p, 0i 7! h1, h, p, p, 1i (p = q, toggle r)
h0, h, p, p, 1i 7! h1, h, p, p, 0i (p = q, toggle r)
h0, h, p, q, 0i 7! h1, h, p, q, 0i (p 6= q, leave r)
h0, h, p, q, 1i 7! h1, h, p, q, 1i (p 6= q, leave r)

An external user of the system is only able to directly see
the value of the query submitted to the password checker,
the result that the password checker returns, and that the
password checker has completed its computation (time has
passed). This leads to an equivalence relation, ⇡, given by:

ht, h, p, q, ri ⇡ ht0, h0, p0, q0, r0i
,

(t = t0) ^ (q = q0) ^ (r = r0)

Let S be the password checking system just described.
The external user of the system can learn some information
about the password p, namely whether it matches the query

they submitted, by watching the system run. Thus the sys-
tem S induces an observational equivalence S[⇡] which is
strictly higher in the information lattice I(⌃):

ht, h, p, q, ri S[⇡] ht0, h0, p0, q0, r0i
,

(t = t0) ^ (q = q0) ^ (r = r0) ^ (t = 0 ) (p = p0))

Now suppose that the owner of the password alters p
based on the value of the high-security data h before the
password checker is run. Because we’ve assumed that both
the high-security data and the password are represented as
bits, the simplest variant of such an attack is to copy the high
security data into the password. This attack corresponds to
adding some transitions2to the system above:

h0, h, p, q, ri 7!A h0, h, h, q, ri

Now, as expected, the observational equivalence induced on
the attacked system S0 is not the same as the one induced
by the original system S. We have:

ht, h, p, q, ri S0[⇡] ht0, h0, p0, q0, r0i
,

(t = t0) ^ (q = q0) ^ (r = r0)^
(t = 0 ) p = p0 _ h = h0 _ p = h0 _ h = p0)

Stating the equivalence relations in this way, it is easy to
see that the external observer can possibly learn the value of
h by watching the system S0 run. The external observer can
distinguish any two states based on the run of the system �
and �0 just when � is not related to �0 via S0[⇡]. Negating
the right hand side of the equivalence above yields:

(t 6= t0) _ (q 6= q0) _ (r 6= r0)_
(t = 0 ^ p 6= p0 ^ h 6= h0 ^ p 6= h0 ^ h 6= p0)

This says that the external observer can see when time has
passed, when q changes, when r changes, or when t = 0
and p = h, p0 = h0 and p 6= p. Some information about h
has been leaked.
As this example shows, the equivalence relations in-

duced by a system may be quite complex.3 Note that the at-
tack just described doesn’t leak all of the information about
h because when h = p, copying it into the password doesn’t
lead to any new behavior in the system (with respect to ob-
servations through view ⇡). A more savvy attacker might
also toggle r whenever he copied h into p, thus indicating
that p does in fact contain h. This smarter attack adds these
transitions:

2We use the subscriptA to indicate that these are transitions introduced
by an attacker.

3In this setting, because there are only two possible values for p, h,
etc., more information is leaked than when more values are possible. The
reason is that p 6= q and h 6= q implies that p = h, which, in general
is not true. We have made use of this kind of reasoning to simplify the
description of the equivalence relations.



28

Example: A Password System 

State transition relation S: 

<0,h,p,p,0> —> <1,h,p,p,1> 
<0,h,p,p,1> —> <1,h,p,p,0> 
<0,h,p,q,0> —> <1,h,p,p,0> 
<0,h,p,q,1> —> <1,h,p,p,1> 

Attack transition relation A: 

<0,h,p,q,0> —>A <0,h,h,q,1> 
<0,h,p,q,1> —>A <0,h,h,q,0> 

S’ = S  A ∪

h0, h, p, q, 0i 7!A h0, h, h, q, 1i
h0, h, p, q, 1i 7!A h0, h, h, q, 0i

The equivalence relation induced by S0 now is given by:

ht, h, p, q, ri S[⇡] ht0, h0, p0, q0, r0i
,

(t = t0) ^ (q = q0) ^ (r = r0)^
(t = 0 ) (p = p0) _ (h = h0))

Reading off the negation, we see that an attacker can dis-
tinguish states whenever t = 0 and h 6= h0 and p 6= p0,
that is, it is possible for the observer to learn the complete
information about the initial state of the system.

Clearly this simple password system is not secure with
respect to an attacker who has the ability to both alter one
piece of high-security data (the password) based on another
(h) and communicate that this change has been done (toggle
r). On the other hand, if the attacker may only toggle r
no additional information is leaked. In what follows, we
develop a methodology for characterizing systems in terms
of their robustness against different kinds of attacks.

4 Robust Declassification

This section examines declassification in a system, spec-
ifies a class of attackers that is interesting from the inform-
ation-flow perspective, and defines robustness for systems
with respect to this class of attackers.
Having defined information flow in terms of the lattice

of information, I(⌃), we are now in a position to consider
declassification of data. The starting point for our notion of
declassification is that any system that leaks information—
any system that does not satisfy SP(⇡)—can be thought of
as containing declassifications. A passive attacker may be
able to learn some information by observing the system but,
by assumption, that information leakage is allowed by the
security policy.
We first define active attackers: principals that may alter

the system in an attempt to learn secret information.

4.1 Active Attacks

What constitutes a valid attack on the system? We would
like to model ways that an attack can affect the confidential-
ity properties of the system. Typical assumptions about the
attacker in an information-flow setting are that the attacker
can make (perhaps limited) observations of the system and
draw inference from those observations—passive attacks.
Another common means of specifying attackers is to re-
quire that they are programs running concurrently with the
system (for example, in process calculi such as CSP [21] or

the Spi calculus [1]) or perhaps more limited processes (for
example, restricted to polynomial-time probabilistic com-
putation).
Our concern is that an attacker will be able to exploit the

information learned via declassification, or simply the fact
that a declassification occurs, to cause a system to divulge
more information than permitted by the security policy.
In our model attackers are able to change the behavior

of the executing system. For example, in a system that is
a single-computer program, the attacker might overwrite
memory locations or registers of the machine. As in Sec-
tion 3, we model these changes as an attack transition rela-
tion 7!A that performs the change to the state. The power
of the attacker can also be captured simply by the attacker’s
view⇡A, because any attack must be secure with respect to
⇡A:

Definition 4.1 (⇡A-Attack)
An ⇡A-attack is a system A = h⌃, 7!Ai such that

A |= SP(⇡A).

Note that the requirement that A |= SP(⇡A) is essentially
the fair environment assumption: The attacker must not
know the secret already (or be able to learn it from means
other than the system in question). We use A(⇡A) to mean
the set of all attacks with respect to the view ⇡A.
Given an attackA and a system S, both specified in terms

of the same set of states ⌃, the attack on S by A is just the
union of the systems: S [ A. This means of composition
is justified by our possibilistic interpretation of information
flow: the attacker will learn more information if it is pos-
sible for a trace in the new system to distinguish one state
from another.

4.2 Robust Systems

Given a system S and an attacker’s view of the system
⇡A, we would like a way to characterize classes of attacks
drawn from the set A(⇡A). The first such characterization,
on which all our other classifications are based, is robust-
ness:

Definition 4.2 (Robust Declassification)
A system S = h⌃, 7!i is robust with respect to the class

B ✓ A(⇡A) of attacks if for all attacks A = h⌃, 7!Ai in B,
it is the case that (S [ A)[⇡A] vI S[⇡A]. To indicate that
S is robust in this way, we write:

S |= R(B)

This says formally that observing the attacked system S [
A reveals no more information than watching the original
system S.

S’



29

Declassification

Declassification is intentional  
leakage of information.  

Implies that ≈ = S[≈]/

We want to characterize  
unintentional declassification.



30

A Simple Attack Model

An ≈A-attack  is a system A = (Σ, →Α) 
such that ≈A = A[≈A]

≈A is the attacker's view 

→Α is a set of additional transitions 
      introduced by the attacker  

≈A = A[≈A]  means "fair environment"



31

Attacked Systems

Given a system S = (Σ, →)  
       and attack A = (Σ, →Α) 
 the attacked system is: 

S  A = (Σ, →  →Α)∪ ∪

σ

σ1

σ4

σ3

σ5 σ6

σ2 σ1

σ5 σ6

σ2

∪ = σ

σ1

σ4

σ3

σ5 σ6

σ2σ1

σ5 σ6

σ2



32

More Intuition

S[≈] describes the information intentionally 
declassified by the system – a specification  
for how S ought to behave.

(S  A)[≈A] describes the information obtained 
by an attack A. 

∪



33

Example Attack

≈A ≈A



34

Example Attack

≈A ≈A

Attack transitions affect the system.



35

Example Attack

¬S[≈A]¬(S A)[≈A]∪

Attacked system may reveal more.

S[≈]



36

Robust Declassification

A system S is robust  
with respect to  
attack A whenever 

(S  A)[≈A]  S[≈A]. ∪ ⊑   S[≈A]

 ≈A

(S A)[≈A]∪

Intuition: Attack reveals no  
additional information.

≈⊥

≈⊤



37

Secure Systems are Robust

Theorem: 
If S is ≈A-secure then S is ≈A-robust with  
respect to all ≈A-attacks.

Intuition: S doesn't leak any information to 
≈A-observer, so no declassifications to exploit. 



38

Characterizing Attacks

Given a system S and a view ≈A  , for what 
≈A-attacks is S robust?

Need to rule out 
Attack transitions 
Like this: S[≈] ¬S[≈]



39

Providing Robustness

• Identify a class of relevant attacks 
– Example: attacker may modify / copy files 
– Example: untrusted host may send bogus requests 

• Try to verify that the system is robust vs. that 
class of attacks. 

• Proof fails… system is insecure. 

• Possible to provide enforcement mechanisms 
against certain classes of attacks 
- Protecting integrity of downgrade policy



40

Conclusions 

It’s critical to prevent downgrading mechanisms in a system from being 
abused.

Robustness is an attempt to capture this idea 
in a formal way.

Suggests that integrity and confidentiality are  
linked in systems with declassification.



41

 A Lattice of Information [Landauer & Redmond CSFW93]



42

 A Lattice of Information [Landauer & Redmond CSFW93]



43

 A Lattice of Information [Landauer & Redmond CSFW93]



44

 A Lattice of Information [Landauer & Redmond CSFW93]



45

 A Lattice of Information [Landauer & Redmond CSFW93]



46

 A Lattice of Information [Landauer & Redmond CSFW93]



47

 A Lattice of Information [Landauer & Redmond CSFW93]


