
CS 428/528 Lecture 15: The P Framework
for Communicating State Machines

March 5, 2024

Based on the PLDI13 paper by Desai et al

Communicating
State Machines

P Architecture

P Examples

Init

Deferred:
Action:

Elevator = new Elevator();
raise(unit)

start

Loop

Deferred:
Action:

if ⇤ then

send(Elevator ,OpenDoor);
else if ⇤ then

send(Elevator ,CloseDoor);

raise(unit)

unit
unit

(a) User ghost machine

Init

Deferred:
Action: (SendCmdToStop, Ignore),

(SendCmdToReset , Ignore)

skip

start

OpenDoor

Deferred:
Action:

send(Elevator ,DoorOpened);
raise(unit)

ObjectEncountered

Deferred:
Action:

send(Elevator ,ObjectDetected);
raise(unit)

CloseDoor

Deferred:
Action:

send(Elevator ,DoorClosed);
raise(unit)

StopDoor

Deferred:
Action:

send(Elevator ,DoorStopped);
raise(unit)

Reset

Deferred:
Action: (SendCmdToOpen, Ignore),

(SendCmdToClose, Ignore),
(SendCmdToStop, Ignore)

skip

ConsiderClosingDoor

Deferred:
Action:

if ⇤ then

raise(unit)
else if ⇤ then

raise(ObjectEncountered)

SendCmdToOpen

unit

SendCmdToClose

unit

ObjectEncountered

SendCmdToStop

unit

unit

unit

SendCmdToReset

(b) Door ghost machine

Init

Deferred:
Action:
(StopTimer , Ignore)

skip

start

TimerStarted

Deferred: StartTimer

Action:

if ⇤ then

raise(unit)

SendTimerFired

Deferred: StartTimer

Action:

send(Elevator ,TimerFired);
raise(unit)

ConsiderStopping

Deferred: StartTimer

Action:

if ⇤ then

send(Elevator ,OperationFailure);
send(Elevator ,TimerFired)

else

send(Elevator ,OperationSuccess);

raise(unit)

StartTimer

unit

StopTimer

unit

unit

(c) Timer ghost machine

Figure 2: Environment for elevator

variables Timer and Door. Ghost variables are used only during
verification and are used to hold references to ghost machines.

Each state description consists of a 4-tuple (n, d, a, s), where
(1) n is a state name, (2) d is a set of events (called deferred

set), (3) a is a set of (event, action) pairs (called action handlers),
and (4) s is a statement (called entry statement), which gets exe-
cuted when the state is entered. For instance, the Init state in Fig-
ure 1 has an empty deferred set, no action handlers, and an en-
try statement that creates an instance of the Timer and Door ma-
chines and raises the event unit. As another example, the Open-
ing state has {CloseDoor} as the deferred set, a single action han-
dler (OpenDoor, Ignore), and send(Door, SendCmdToOpen)
as the entry statement. If the state machine enters the Opening
state, the following things happen: on entry to the state, the state-
ment send(Door, SendCmdToOpen) is executed, which results
in the event SendCmdToOpen being sent to the Door machine. On
finishing the execution of the entry statement, the machine waits
for events on the input buffer. The initial state of the Elevator
machine is Init. Whenever an instance of the Elevator machine

is created (using the new statement), the state of this machine in-
stance is initialized to Init.

Deferred events and action handlers. Events sent to a machine
are stored in a FIFO queue. However, it is possible to influence
the order in which the events are delivered. In a given state, some
events can be deferred. When trying to receive an event a machine
scans its event queue, starting from the front dequeuing the first
event that is not in the deferred set. A dequeued event is either
processed by executing an action handler or executing an outgoing
transition. An action is simply a named piece of code. The Elevator

machine has a single action called Ignore that does nothing. For
instance, in the Opening state, the event CloseDoor is deferred
and therefore never dequeued. If the event OpenDoor is dequeued,
the Ignore action is executed (which just drops the event on the
floor) and control stays in Opening. If the event DoorOpened is
dequeued, the outgoing transition labeled by DoorOpened is taken
and control moves to state Opened.

Step and call transitions. The edges in Figure 1 specify how the
state of the Elevator machine transitions on events. There are two
types of transitions: (1) step transitions, and (2) call transitions.
Both these transition types have the form (n1, e, n2), where n1

is the source state of the transition, e is an event name, and n2

is the target state of the transition. Step transitions are shown by
simple edges and call transitions by double edges. For instance,
when the machine is in the Init state, if an unit event arrives the
machine transitions to the Closed state. On the other hand, call
transitions have the semantics of pushing the new state on the top of
the call stack. Call transitions are used to provide a subroutine-like
abstraction for machines. For instance, there is a call transition to
the StoppingTimer state from the Opened state on the OpenDoor

event, and a similar call transition to the StoppingTimer state
from the OkToClose state on the CloseDoor event. One can think
about the StoppingTimer state as the starting point of a subroutine
that needs to be executed in both these contexts. This subroutine
has 3 states: StoppingTimer, WaitingForTimer and ReturnState.
The “return” from the call happens when ReturnState raises the
StopTimerReturned event. This event gets handled by the callers of
the subroutine Opened and OkToClose respectively.

Unhandled events. The P language has been designed to aid the
implementation of responsive systems. Responsiveness is under-
stood as follows. If an event e arrives in a state n, and there is
no transition defined for e, then the verifier flags an “unhandled
event” violation. There are certain circumstances under which the
programmer may choose to delay handling of specific events or
ignore the events by dropping them. These need to be specified ex-
plicitly by marking such events in the associated deferred set, so
that they are not flagged by the verifier as unhandled. The verifier
also implements a liveness check that prevents deferring events in-
definitely. This check avoids trivial ways to silence the verifier by
making every event deferred in every state.

Environment modeling. Figure 2 shows the environment ma-
chines (which are ghost machines) and initialization statement
for the elevator. There are 3 ghost machines: User, Door and
Timer. These machines are used to model the environment dur-
ing verification, but no code is generated for these machines. For
the purpose of modeling, the entry statements in the states of
these machines are allowed to include nondeterminism. For ex-
ample, the entry statement of the TimerStarted state is specified
as “if ⇤ then raise(unit)”. The ⇤ expression evaluates nondeter-
ministically to true or false. Thus, when the Timer machine enters
this state, it can nondeterministically raise the unit event. The ver-
ifier considers both possibilities and ensures absence of errors in
both circumstances. In the real world, the choice between these

323

P Examples

Init

Deferred:
Action:

Elevator = new Elevator();
raise(unit)

start

Loop

Deferred:
Action:

if ⇤ then

send(Elevator ,OpenDoor);
else if ⇤ then

send(Elevator ,CloseDoor);

raise(unit)

unit
unit

(a) User ghost machine

Init

Deferred:
Action: (SendCmdToStop, Ignore),

(SendCmdToReset , Ignore)

skip

start

OpenDoor

Deferred:
Action:

send(Elevator ,DoorOpened);
raise(unit)

ObjectEncountered

Deferred:
Action:

send(Elevator ,ObjectDetected);
raise(unit)

CloseDoor

Deferred:
Action:

send(Elevator ,DoorClosed);
raise(unit)

StopDoor

Deferred:
Action:

send(Elevator ,DoorStopped);
raise(unit)

Reset

Deferred:
Action: (SendCmdToOpen, Ignore),

(SendCmdToClose, Ignore),
(SendCmdToStop, Ignore)

skip

ConsiderClosingDoor

Deferred:
Action:

if ⇤ then

raise(unit)
else if ⇤ then

raise(ObjectEncountered)

SendCmdToOpen

unit

SendCmdToClose

unit

ObjectEncountered

SendCmdToStop

unit

unit

unit

SendCmdToReset

(b) Door ghost machine

Init

Deferred:
Action:
(StopTimer , Ignore)

skip

start

TimerStarted

Deferred: StartTimer

Action:

if ⇤ then

raise(unit)

SendTimerFired

Deferred: StartTimer

Action:

send(Elevator ,TimerFired);
raise(unit)

ConsiderStopping

Deferred: StartTimer

Action:

if ⇤ then

send(Elevator ,OperationFailure);
send(Elevator ,TimerFired)

else

send(Elevator ,OperationSuccess);

raise(unit)

StartTimer

unit

StopTimer

unit

unit

(c) Timer ghost machine

Figure 2: Environment for elevator

variables Timer and Door. Ghost variables are used only during
verification and are used to hold references to ghost machines.

Each state description consists of a 4-tuple (n, d, a, s), where
(1) n is a state name, (2) d is a set of events (called deferred

set), (3) a is a set of (event, action) pairs (called action handlers),
and (4) s is a statement (called entry statement), which gets exe-
cuted when the state is entered. For instance, the Init state in Fig-
ure 1 has an empty deferred set, no action handlers, and an en-
try statement that creates an instance of the Timer and Door ma-
chines and raises the event unit. As another example, the Open-
ing state has {CloseDoor} as the deferred set, a single action han-
dler (OpenDoor, Ignore), and send(Door, SendCmdToOpen)
as the entry statement. If the state machine enters the Opening
state, the following things happen: on entry to the state, the state-
ment send(Door, SendCmdToOpen) is executed, which results
in the event SendCmdToOpen being sent to the Door machine. On
finishing the execution of the entry statement, the machine waits
for events on the input buffer. The initial state of the Elevator
machine is Init. Whenever an instance of the Elevator machine

is created (using the new statement), the state of this machine in-
stance is initialized to Init.

Deferred events and action handlers. Events sent to a machine
are stored in a FIFO queue. However, it is possible to influence
the order in which the events are delivered. In a given state, some
events can be deferred. When trying to receive an event a machine
scans its event queue, starting from the front dequeuing the first
event that is not in the deferred set. A dequeued event is either
processed by executing an action handler or executing an outgoing
transition. An action is simply a named piece of code. The Elevator

machine has a single action called Ignore that does nothing. For
instance, in the Opening state, the event CloseDoor is deferred
and therefore never dequeued. If the event OpenDoor is dequeued,
the Ignore action is executed (which just drops the event on the
floor) and control stays in Opening. If the event DoorOpened is
dequeued, the outgoing transition labeled by DoorOpened is taken
and control moves to state Opened.

Step and call transitions. The edges in Figure 1 specify how the
state of the Elevator machine transitions on events. There are two
types of transitions: (1) step transitions, and (2) call transitions.
Both these transition types have the form (n1, e, n2), where n1

is the source state of the transition, e is an event name, and n2

is the target state of the transition. Step transitions are shown by
simple edges and call transitions by double edges. For instance,
when the machine is in the Init state, if an unit event arrives the
machine transitions to the Closed state. On the other hand, call
transitions have the semantics of pushing the new state on the top of
the call stack. Call transitions are used to provide a subroutine-like
abstraction for machines. For instance, there is a call transition to
the StoppingTimer state from the Opened state on the OpenDoor

event, and a similar call transition to the StoppingTimer state
from the OkToClose state on the CloseDoor event. One can think
about the StoppingTimer state as the starting point of a subroutine
that needs to be executed in both these contexts. This subroutine
has 3 states: StoppingTimer, WaitingForTimer and ReturnState.
The “return” from the call happens when ReturnState raises the
StopTimerReturned event. This event gets handled by the callers of
the subroutine Opened and OkToClose respectively.

Unhandled events. The P language has been designed to aid the
implementation of responsive systems. Responsiveness is under-
stood as follows. If an event e arrives in a state n, and there is
no transition defined for e, then the verifier flags an “unhandled
event” violation. There are certain circumstances under which the
programmer may choose to delay handling of specific events or
ignore the events by dropping them. These need to be specified ex-
plicitly by marking such events in the associated deferred set, so
that they are not flagged by the verifier as unhandled. The verifier
also implements a liveness check that prevents deferring events in-
definitely. This check avoids trivial ways to silence the verifier by
making every event deferred in every state.

Environment modeling. Figure 2 shows the environment ma-
chines (which are ghost machines) and initialization statement
for the elevator. There are 3 ghost machines: User, Door and
Timer. These machines are used to model the environment dur-
ing verification, but no code is generated for these machines. For
the purpose of modeling, the entry statements in the states of
these machines are allowed to include nondeterminism. For ex-
ample, the entry statement of the TimerStarted state is specified
as “if ⇤ then raise(unit)”. The ⇤ expression evaluates nondeter-
ministically to true or false. Thus, when the Timer machine enters
this state, it can nondeterministically raise the unit event. The ver-
ifier considers both possibilities and ensures absence of errors in
both circumstances. In the real world, the choice between these

323

P Examples
Init

Deferred:
Action:

Elevator = new Elevator();
raise(unit)

start

Loop

Deferred:
Action:

if ⇤ then

send(Elevator ,OpenDoor);
else if ⇤ then

send(Elevator ,CloseDoor);

raise(unit)

unit
unit

(a) User ghost machine

Init

Deferred:
Action: (SendCmdToStop, Ignore),

(SendCmdToReset , Ignore)

skip

start

OpenDoor

Deferred:
Action:

send(Elevator ,DoorOpened);
raise(unit)

ObjectEncountered

Deferred:
Action:

send(Elevator ,ObjectDetected);
raise(unit)

CloseDoor

Deferred:
Action:

send(Elevator ,DoorClosed);
raise(unit)

StopDoor

Deferred:
Action:

send(Elevator ,DoorStopped);
raise(unit)

Reset

Deferred:
Action: (SendCmdToOpen, Ignore),

(SendCmdToClose, Ignore),
(SendCmdToStop, Ignore)

skip

ConsiderClosingDoor

Deferred:
Action:

if ⇤ then

raise(unit)
else if ⇤ then

raise(ObjectEncountered)

SendCmdToOpen

unit

SendCmdToClose

unit

ObjectEncountered

SendCmdToStop

unit

unit

unit

SendCmdToReset

(b) Door ghost machine

Init

Deferred:
Action:
(StopTimer , Ignore)

skip

start

TimerStarted

Deferred: StartTimer

Action:

if ⇤ then

raise(unit)

SendTimerFired

Deferred: StartTimer

Action:

send(Elevator ,TimerFired);
raise(unit)

ConsiderStopping

Deferred: StartTimer

Action:

if ⇤ then

send(Elevator ,OperationFailure);
send(Elevator ,TimerFired)

else

send(Elevator ,OperationSuccess);

raise(unit)

StartTimer

unit

StopTimer

unit

unit

(c) Timer ghost machine

Figure 2: Environment for elevator

variables Timer and Door. Ghost variables are used only during
verification and are used to hold references to ghost machines.

Each state description consists of a 4-tuple (n, d, a, s), where
(1) n is a state name, (2) d is a set of events (called deferred

set), (3) a is a set of (event, action) pairs (called action handlers),
and (4) s is a statement (called entry statement), which gets exe-
cuted when the state is entered. For instance, the Init state in Fig-
ure 1 has an empty deferred set, no action handlers, and an en-
try statement that creates an instance of the Timer and Door ma-
chines and raises the event unit. As another example, the Open-
ing state has {CloseDoor} as the deferred set, a single action han-
dler (OpenDoor, Ignore), and send(Door, SendCmdToOpen)
as the entry statement. If the state machine enters the Opening
state, the following things happen: on entry to the state, the state-
ment send(Door, SendCmdToOpen) is executed, which results
in the event SendCmdToOpen being sent to the Door machine. On
finishing the execution of the entry statement, the machine waits
for events on the input buffer. The initial state of the Elevator
machine is Init. Whenever an instance of the Elevator machine

is created (using the new statement), the state of this machine in-
stance is initialized to Init.

Deferred events and action handlers. Events sent to a machine
are stored in a FIFO queue. However, it is possible to influence
the order in which the events are delivered. In a given state, some
events can be deferred. When trying to receive an event a machine
scans its event queue, starting from the front dequeuing the first
event that is not in the deferred set. A dequeued event is either
processed by executing an action handler or executing an outgoing
transition. An action is simply a named piece of code. The Elevator

machine has a single action called Ignore that does nothing. For
instance, in the Opening state, the event CloseDoor is deferred
and therefore never dequeued. If the event OpenDoor is dequeued,
the Ignore action is executed (which just drops the event on the
floor) and control stays in Opening. If the event DoorOpened is
dequeued, the outgoing transition labeled by DoorOpened is taken
and control moves to state Opened.

Step and call transitions. The edges in Figure 1 specify how the
state of the Elevator machine transitions on events. There are two
types of transitions: (1) step transitions, and (2) call transitions.
Both these transition types have the form (n1, e, n2), where n1

is the source state of the transition, e is an event name, and n2

is the target state of the transition. Step transitions are shown by
simple edges and call transitions by double edges. For instance,
when the machine is in the Init state, if an unit event arrives the
machine transitions to the Closed state. On the other hand, call
transitions have the semantics of pushing the new state on the top of
the call stack. Call transitions are used to provide a subroutine-like
abstraction for machines. For instance, there is a call transition to
the StoppingTimer state from the Opened state on the OpenDoor

event, and a similar call transition to the StoppingTimer state
from the OkToClose state on the CloseDoor event. One can think
about the StoppingTimer state as the starting point of a subroutine
that needs to be executed in both these contexts. This subroutine
has 3 states: StoppingTimer, WaitingForTimer and ReturnState.
The “return” from the call happens when ReturnState raises the
StopTimerReturned event. This event gets handled by the callers of
the subroutine Opened and OkToClose respectively.

Unhandled events. The P language has been designed to aid the
implementation of responsive systems. Responsiveness is under-
stood as follows. If an event e arrives in a state n, and there is
no transition defined for e, then the verifier flags an “unhandled
event” violation. There are certain circumstances under which the
programmer may choose to delay handling of specific events or
ignore the events by dropping them. These need to be specified ex-
plicitly by marking such events in the associated deferred set, so
that they are not flagged by the verifier as unhandled. The verifier
also implements a liveness check that prevents deferring events in-
definitely. This check avoids trivial ways to silence the verifier by
making every event deferred in every state.

Environment modeling. Figure 2 shows the environment ma-
chines (which are ghost machines) and initialization statement
for the elevator. There are 3 ghost machines: User, Door and
Timer. These machines are used to model the environment dur-
ing verification, but no code is generated for these machines. For
the purpose of modeling, the entry statements in the states of
these machines are allowed to include nondeterminism. For ex-
ample, the entry statement of the TimerStarted state is specified
as “if ⇤ then raise(unit)”. The ⇤ expression evaluates nondeter-
ministically to true or false. Thus, when the Timer machine enters
this state, it can nondeterministically raise the unit event. The ver-
ifier considers both possibilities and ensures absence of errors in
both circumstances. In the real world, the choice between these

323

7

state would lead to combinatorial explosion in the number of con-
trol states, and is hence impractical. The language provides a notion
of deferred events to handle such situations and allow a program-
mer to explicitly specify that it is acceptable to delay processing of
certain events in certain states.

Reactive systems, such as device drivers, typically interact with
their environment, both synchonously via function calls and asyn-
chronously via events. The reliability of the system depends crit-
ically on the correct handling of all interactions via stateful pro-
tocols. To allow reasoning about such interactions, we allow pro-
grammers to model the environment of a P program using ghost

machines and variables. These ghost elements are used only during
modeling and verification and elided during compilation. The type
system of P ensures that the ghost machines can be erased dur-
ing compilation without changing the semantics of the program. It
is worth noting that both the real and ghost parts of a P program
are based on the computational model of communicating state ma-
chines. This aspect of the P language effectively blurs the distinc-
tion between modeling and programming and makes the specifica-
tion capabilities in the language more accessible to programmers.

A P program is validated via systematic testing [9, 17] of its in-
herent nondeterminism. Systematic testing is accomplished by in-
terpreting the operational semantics of a P program (closed using
ghost machines) in the explicit-state model checker Zing [2]. All
aspects of the operational semantics of the program are interpreted
including the code statements labeling the states and actions of a
P machine. The model checker takes care of systematically enu-
merating all implicit scheduling and explicit modeling choices in
the program. The number of states and executions of a P program
is unbounded in general (in fact, reachability analysis of P pro-
grams is undecidable). Therefore, in practice, the enumeration is
controlled by bounding techniques.

The simplest approach to bounding the exploration of nonde-
terministic transition systems is depth-bounding [19]. We have im-
plemented this approach and found it useful for discovering errors
witnessed by short executions. However, the complexity of depth-
bounded search increases exponentially with execution depth, and
consequently does not scale for systematic testing of large P pro-
grams, in which errors may be lurking in long executions. We use
delay-bounded scheduling [6] to overcome this problem. A delay-
ing scheduler is a deterministic scheduler with a “delay” opera-
tion, whose invocation causes the scheduler to change its default
scheduling strategy. Given a delay budget d, a delaying scheduler
naturally defines a set of schedules obtained by nondeterministi-
cally invoking the “delay” operation at most d times; the number
of generated schedules (under the assumption that scheduling is the
only source of nondeterminism) is independent of execution length
and exponential in d; thus arbitrarily long executions can be gen-
erated even with a delay bound of 0. We expect most bugs that
occur in practice to be found using low values of the delay bound.
We have developed a new delaying scheduler for P programs; our
scheduler prioritizes schedules that follow the causal sequence of
events in the program. We provide empirical evidence to demon-
strate that our scheduler indeed finds common errors with a small
delay bound.

In summary, our contributions are the following:

• We design a DSL P to program asynchronous interacting state
machines at a higher level of abstraction than detailed event
handlers that lose the state machine structure.

• We present formal operational semantics and a compiler and
runtime that enables P programs to run as KMDF (Kernel Mode
Driver Framework) device drivers.

• We show how to validate P programs using delay-bounded
scheduling and provide a novel delaying scheduler that, by

default, attempts to schedule events according to their causal
order.

• We report on the use of P in a production environment; our case
study is the USB stack in Windows 8.

2. Overview
Init

Deferred:
Action:

Timer = new Timer(Elevator = this);
Door = new Door(Elevator = this);
raise(unit)

start

Closed

Deferred:
Action: (CloseDoor , Ignore)

send(Door ,SendCmdToReset)

Opening

Deferred: CloseDoor

Action: (OpenDoor , Ignore)

send(Door ,SendCmdToOpen)

Opened

Deferred: CloseDoor

Action:

send(Door ,SendCmdToReset);
send(Timer ,StartTimer)

OkToClose

Deferred: OpenDoor

Action:

send(Timer ,StartTimer)

Closing

Deferred: CloseDoor

Action:

send(Door ,SendCmdToClose)

StoppingDoor

Deferred: CloseDoor

Action:
(OpenDoor , Ignore),
(ObjectDetected , Ignore),
(DoorClosed , Ignore)

send(Door ,SendCmdToStop)

StoppingTimer

Deferred: OpenDoor ,
ObjectDetected ,
CloseDoor

Action:

send(Timer ,StopTimer)

WaitingForTimer

Deferred: OpenDoor ,
ObjectDetected ,
CloseDoor

Action:

skip

ReturnState

Deferred:
Action:

raise(StopTimerReturned)

unit

OpenDoor

DoorOpened

TimerFired
StopTimerReturned

StopTimerReturned

TimerFired

OpenDoor

DoorClosed

ObjectDetected

DoorOpened

DoorClosed

DoorStopped

OperationSuccess

OperationFailure

TimerFired

OpenDoor
CloseDoor

Figure 1: Elevator example

P is a domain-specific language for writing asynchronous event-
driven programs. Protocols governing the interaction among con-
currently executing components are essential for safe execution of
such programs. The P language is designed to clearly explicate
these control protocols; to process data and perform other func-
tions irrelevant to control flow, P machines have the capability to
call external functions written in C. We call those functions foreign

functions.
A P program is a collection of machines. Machines commu-

nicate with each other asynchronously through events. Events are
queued, but machines are required to handle them in a responsive
manner (defined precisely later)—failure to handle events is de-
tected by automatic verification.

We illustrate the features of P using the example of an elevator,
together with a model of its environment. The elevator machine
is shown in Figure 1 and the environment machines in Figure 2.
The environment is composed of ghost machines which are used
only during verification, and elided during compilation and actual
execution. Machines that are not ghost are called real machines.
We use the term machine in situations where it is not necessary to
distinguish between real and ghost machines.

Machines communicate with each other using events. An event
can be sent from one machine to another and or raised within a
machine. Each machine is composed of control states, transitions,
actions, and variables. The elevator machine has events unit and
StopTimerReturned (which are used for communication locally in-
side the elevator machine), an action called Ignore, and two ghost

322

P Language Syntax

program ::= evdecl machine+ m(init⇤)
machine ::= optghost machinem

vrdecl⇤ actdecl⇤ stdecl⇤

spdecl⇤ cldecl⇤ acdecl⇤

optghost ::= ✏ | ghost
evdecl ::= event edecl+

vrdecl ::= optghost var vdecl+

actdecl ::= action (a, stmt)+

stdecl ::= state (n, {e1, e2, . . . , ek}, stmt, stmt)+

spdecl ::= step (n, e, n)+

cldecl ::= call (n, e, n)+

acdecl ::= act (n, e, a)+

edecl ::= e(type)
vdecl ::= x : type

type ::= void | bool | int | event | id

stmt ::= skip
| x := expr
| x := new m(init⇤)
| delete
| send(expr, e, expr)
| raise (e, expr)
| leave
| return
| assert(expr)
| stmt; stmt
| if expr then stmt else stmt
| while expr stmt

init ::= x = expr
expr ::= this | msg | arg | b | c |?| x | ⇤

| uop expr | expr bop expr

c 2 int b 2 bool
¬,� 2 uop +,�,^,_ 2 bop
r 2 expr a, e,m, x 2 name

Figure 3: Syntax

possibilities depends on environmental factors (such as timing),
which we choose to ignore during modeling.

In this example, the initial machine is the User machine, and
this is the starting point for a model checker to perform verification.
Note that the initial state of the User machine creates an instance of
Elevator, and the Elevator instance in turn creates instances of
Timer and Door (in Figure 1). During execution, the external code
is responsible for creating an instance of the Elevator machine.

3. P Syntax and Semantics
Figure 3 shows the syntax of the core of P. Some of the features
presented in the examples of Section 2 can be compiled using a pre-
processor into this core language. In particular, state descriptions in
the core language are triples of the from (n, d, s1, s2), where n is
a state name, d is a set of deferred events, s1 is an entry statement,
and s2 is an exit statement.

A program in the core language consists of declaration of
events, a nonempty list of machines, and one machine creation
statement. Each event declaration also specifies a list of types,
which are types of data arguments that are sent along with the
event (can be thought of as “payload” of the event).

A machine declaration consists of (1) a machine name, (2) a list
of events, (3) a list of variables, (4) a list of actions, (5) a list of
states, (6) a list of transitions, and (7) a list of action bindings. Each
variable has a declared type, which can be int, byte, bool, event or
machine identifier type (denoted id). Actions associate an action

name with a statement. Transitions are one of two types: steps or
calls, and action bindings associate state-event pairs with actions.

A machine can optionally be declared as ghost by prefixing its
declaration by the keyword ghost. Variables can be also declared
as ghost. Events sent to ghost machines are (implicitly) ghost
events. Ghost machines, events and ghost variables are used only
during verification, and are elided during compilation and execu-
tion of the P program.

As mentioned in Section 2, a state declaration consists of a name
n, a set of events (called deferred set), and two statements: (1) an
entry statement and (2) an exit statement. Each state declaration
must have a distinct name. Thus, we can use the name n to denote
the state. The entry statement associated with a state n is executed
whenever control enters n, and the exit statement associated with
state n is executed whenever control leaves n. Given a machine
name m and a state n in m, let Deferred(m,n) denote the associ-
ated set of deferred events and let Action(m,n, e) be an that action
a is associated with event e in state n, if such a binding exists or ?
otherwise. Let Entry(m,n) denote the associated entry statement,
and let Exit(m,n) denote the associated exit statement. The ini-
tial state of the machine m is the first state in the state list and is
denoted by Init(m).

Each action declaration consists of an action name and a state-
ment. Let Stmt(m, a) denote the statement associated with action
a in machine m.

Transition declarations describe how a state responds to events.
The list of transitions is partitioned into step transitions, and call
transitions. A step transition from state n to another state n1 in-
volves executing the exit statement of n and the entry statement of
n1. A call transition is similar to function calls in programming lan-
guages and is implemented using a stack (more details below). The
set of transitions of m must be deterministic, that is, if (n, e, n1)
and (n, e, n2) are two transitions then n1 = n2.

An action binding does not change the state, but merely executes
the statement associated with the action.

A statement (be it an entry statement or exit statement associ-
ated with a state, or associated with an action) is obtained by com-
posing primitive statements using standard control flow constructs
such as sequential composition, conditionals, and loops. Primitive
statements are described below. The skip statement does nothing.
The assignment x := r evaluates an expression r and writes the
result into x. The statement x := new m(init⇤) creates a new
machine and stores the identifier of the created machine into x.
The initializers give the initial values of the variables in the cre-
ated machine. The delete statement terminates the current ma-
chine (which is executing the statement) and release its resources.
The statement send(r1, e, r2) sends event e to the target machine
identified by evaluating the expression r1, together with arguments
obtained by evaluating r2. When e does not have any argument
null is expected. In the examples, we use send(r1, e) as syntactic
sugar for send(r1, e, null). The statement raise(e, r) terminates
the evaluation of the statement raising an event e with arguments
obtained by evaluating r. The event e must be a local event. The
leave statement jumps control to end of the entry function to wait
for an event to be dequeued. The return statement terminates the
evaluation of the statement and returns to the caller (see below for
more details). The statement assert(r) moves the machine to an
error state of the expression r evaluates to false, and behaves like
skip otherwise.

Expressions and evaluation. The expressions in the language, in
addition to the declared variables, can also refer to three special
variables—this, msg and arg. While this is a constant contain-
ing the identifier of the executing machine, msg contains the event
that is last received from the input buffer of the machine, and arg
contains the payload from the last event. Expressions also include

324

program ::= evdecl machine+ m(init⇤)
machine ::= optghost machinem

vrdecl⇤ actdecl⇤ stdecl⇤

spdecl⇤ cldecl⇤ acdecl⇤

optghost ::= ✏ | ghost
evdecl ::= event edecl+

vrdecl ::= optghost var vdecl+

actdecl ::= action (a, stmt)+

stdecl ::= state (n, {e1, e2, . . . , ek}, stmt, stmt)+

spdecl ::= step (n, e, n)+

cldecl ::= call (n, e, n)+

acdecl ::= act (n, e, a)+

edecl ::= e(type)
vdecl ::= x : type

type ::= void | bool | int | event | id

stmt ::= skip
| x := expr
| x := new m(init⇤)
| delete
| send(expr, e, expr)
| raise (e, expr)
| leave
| return
| assert(expr)
| stmt; stmt
| if expr then stmt else stmt
| while expr stmt

init ::= x = expr
expr ::= this | msg | arg | b | c |?| x | ⇤

| uop expr | expr bop expr

c 2 int b 2 bool
¬,� 2 uop +,�,^,_ 2 bop
r 2 expr a, e,m, x 2 name

Figure 3: Syntax

possibilities depends on environmental factors (such as timing),
which we choose to ignore during modeling.

In this example, the initial machine is the User machine, and
this is the starting point for a model checker to perform verification.
Note that the initial state of the User machine creates an instance of
Elevator, and the Elevator instance in turn creates instances of
Timer and Door (in Figure 1). During execution, the external code
is responsible for creating an instance of the Elevator machine.

3. P Syntax and Semantics
Figure 3 shows the syntax of the core of P. Some of the features
presented in the examples of Section 2 can be compiled using a pre-
processor into this core language. In particular, state descriptions in
the core language are triples of the from (n, d, s1, s2), where n is
a state name, d is a set of deferred events, s1 is an entry statement,
and s2 is an exit statement.

A program in the core language consists of declaration of
events, a nonempty list of machines, and one machine creation
statement. Each event declaration also specifies a list of types,
which are types of data arguments that are sent along with the
event (can be thought of as “payload” of the event).

A machine declaration consists of (1) a machine name, (2) a list
of events, (3) a list of variables, (4) a list of actions, (5) a list of
states, (6) a list of transitions, and (7) a list of action bindings. Each
variable has a declared type, which can be int, byte, bool, event or
machine identifier type (denoted id). Actions associate an action

name with a statement. Transitions are one of two types: steps or
calls, and action bindings associate state-event pairs with actions.

A machine can optionally be declared as ghost by prefixing its
declaration by the keyword ghost. Variables can be also declared
as ghost. Events sent to ghost machines are (implicitly) ghost
events. Ghost machines, events and ghost variables are used only
during verification, and are elided during compilation and execu-
tion of the P program.

As mentioned in Section 2, a state declaration consists of a name
n, a set of events (called deferred set), and two statements: (1) an
entry statement and (2) an exit statement. Each state declaration
must have a distinct name. Thus, we can use the name n to denote
the state. The entry statement associated with a state n is executed
whenever control enters n, and the exit statement associated with
state n is executed whenever control leaves n. Given a machine
name m and a state n in m, let Deferred(m,n) denote the associ-
ated set of deferred events and let Action(m,n, e) be an that action
a is associated with event e in state n, if such a binding exists or ?
otherwise. Let Entry(m,n) denote the associated entry statement,
and let Exit(m,n) denote the associated exit statement. The ini-
tial state of the machine m is the first state in the state list and is
denoted by Init(m).

Each action declaration consists of an action name and a state-
ment. Let Stmt(m, a) denote the statement associated with action
a in machine m.

Transition declarations describe how a state responds to events.
The list of transitions is partitioned into step transitions, and call
transitions. A step transition from state n to another state n1 in-
volves executing the exit statement of n and the entry statement of
n1. A call transition is similar to function calls in programming lan-
guages and is implemented using a stack (more details below). The
set of transitions of m must be deterministic, that is, if (n, e, n1)
and (n, e, n2) are two transitions then n1 = n2.

An action binding does not change the state, but merely executes
the statement associated with the action.

A statement (be it an entry statement or exit statement associ-
ated with a state, or associated with an action) is obtained by com-
posing primitive statements using standard control flow constructs
such as sequential composition, conditionals, and loops. Primitive
statements are described below. The skip statement does nothing.
The assignment x := r evaluates an expression r and writes the
result into x. The statement x := new m(init⇤) creates a new
machine and stores the identifier of the created machine into x.
The initializers give the initial values of the variables in the cre-
ated machine. The delete statement terminates the current ma-
chine (which is executing the statement) and release its resources.
The statement send(r1, e, r2) sends event e to the target machine
identified by evaluating the expression r1, together with arguments
obtained by evaluating r2. When e does not have any argument
null is expected. In the examples, we use send(r1, e) as syntactic
sugar for send(r1, e, null). The statement raise(e, r) terminates
the evaluation of the statement raising an event e with arguments
obtained by evaluating r. The event e must be a local event. The
leave statement jumps control to end of the entry function to wait
for an event to be dequeued. The return statement terminates the
evaluation of the statement and returns to the caller (see below for
more details). The statement assert(r) moves the machine to an
error state of the expression r evaluates to false, and behaves like
skip otherwise.

Expressions and evaluation. The expressions in the language, in
addition to the declared variables, can also refer to three special
variables—this, msg and arg. While this is a constant contain-
ing the identifier of the executing machine, msg contains the event
that is last received from the input buffer of the machine, and arg
contains the payload from the last event. Expressions also include

324

P Language Semantics

constants c, the special constant ?, variables, and compound ex-
pressions constructed from unary and binary operations on primi-
tive expressions. Binary and unary operators evaluate to ? if any
of the operand expressions evaluate to ?. The value ? arises ei-
ther as a constant, or if an expression reads a variable whose value
is uninitialized, and propagate through operators in an expression.
The expression ⇤ represents nondeterministic choice of a Boolean
value. Nondeterministic expressions are allowed only in ghost ma-
chines to conveniently model the environment.

Memory management. P programs manage memory manually
by using the new and delete commands. The new command
allocates a new instance of a machine and returns its reference, and
the delete command terminates the machine which executes the
command and frees its resources. It is the responsibility of the P
programmer to perform cleanup and ensure absence of dangling
references, or pending message exchanges before calling delete.
Manually managing the memory add some complexity in order to
retain a precise control over the footprint of the program.

3.1 Operational semantics
The role played by the environment is different during execution
and verification of a P program. During execution, the environ-
ment is responsible for creating initial machines in the P program,
sending some initial messages to it, and responding to events sent
by the P machines. During verification, the environment is speci-
fied using ghost machines, and the program starts execution with a
single machine instance of the machine specified by the initializa-
tion statement at the end of the program, and this machine begins
execution in its initial state with an empty input queue. However,
once the initial configuration is specified (which is different during
execution and verification), the transition rules are the same for ex-
ecution as well as verification. We formally specify the transition
semantics using a single set of transition rules below.

Since our language allows dynamic creation of machines, a
global configuration would contain, in general, a collection of
machines. A machine identifier id represents a reference to a
dynamically-created machine; we denote by Name(id) the name
of the machine with identifier id . A global configuration M is a
map from a machine identifier to a tuple representing the machine
configuration. A machine configuration corresponding to identifier
id is of the form (�,�, s, q) with components defined as follows:
• � is a sequence of pairs (n,↵), where n is a state name, and ↵ is

map from events to A[{>,?}, where A is the set of all actions
declared in machine Name(id). This sequence functions as
a call stack, to implement call and return, and the ↵ values
are used to inherit deferred events and actions from caller to
callee. For an event e, ↵(e) can be an action a, or the value
> indicating that the event is deferred, or the value ? which
indicates that the event does not have an associated action and
it is not deferred.

• � is a map from variables declared in machine Name(id) to
their values; this map contains an entry for the local variables
this, msg and arg.

• s is the statement remaining to be executed in machine id .
• q is a sequence of pairs of a event-argument pairs representing

the input buffer of machine id .

Our type checker verifies that for any event e and state n, there is at
most one outgoing transition labeled with e out of n and at most one
action bound to e in s. We define Step(m,n, e) to be equal to n

0 if
there is a step transition labeled e between n and n

0 in machine m

and ? otherwise. Similarly, we define Call(m,n, e) to be equal to
n
0 if there is a call transition labeled e between n and n

0 in machine
m and ? otherwise. We define Trans(m,n, e) to be the union

M [id] = (�,�, S[x := r], q) �(r) # v

M �! M [id := (�,�[x := v], S[skip], q)]
(ASSIGN)

M [id] = (�,�, S[x := new m0(x1 = r1, x2 = r2, . . . , xn = rn)], q)
id0 = fresh(m0) n0 = Init(m0)

↵o = �e. ? �(r1) # v1 �(r2) # v2 · · · �(rn) # vn

�0 = �x. ? [this := id0][x1 := v1][x2 := v2] · · · [xn := vn]

M �! M [id := (�,�[x := id0], S[skip], q)]
[id0 := ((n0,↵o),�

0,Entry(m0, n0), ✏)]

(NEW)

M [id] = (�,�, S[delete], q)

M �! M [id :=?]
(DELETE)

M [id] = (�,�, S[assert(r)], q) �(r) # true

M �! M [id := (�,�, S[skip], q)]
(ASSERT-PASS)

M [id] = (�,�, S[skip; s], q)

M �! M [id := (�,�, S[s], q)]
(SEQ)

M [id] = (�,�, S[if r then s1 else s2], q) �(r) # true

M �! M [id := (�,�, S[s1], q)]
(IF-THEN)

M [id] = (�,�, S[if r then s1 else s2], q) �(r) # false

M �! M [id := (�,�, S[s2], q)]
(IF-ELSE)

M [id] = (�,�, S[while r s], q) �(r) # true

M �! M [id := (�,�, S[s;while r s], q)]
(WHILE-ITERATE)

M [id] = (�,�, S[while r s], q) �(r) # false

M �! M [id := (�,�, S[skip], q)]
(WHILE-DONE)

M [id] = (�,�, S[send(r1, e, r2)], q)
�(r1) # id0 �(r2) # v M [id0] = (�0,�0, C0, q0)

M �! M [id := (�,�, S[skip], q)][id0 := (�0,�0, C0, q0 � (e, v))]
(SEND)

Figure 4: Operational semantics: statement execution

of Step(m,n, e) and Call(m,n, e). Note that Trans(m,n, e) is
the static transition in state s on event e, Action(m,n, e) is the
static action bound with state n and event e, and Deferred(m,n)
is the static set of events deferred in state n. During execution, both
deferred events and actions associated with a state can be inherited
from callers, and these are modeled in the second component of the
call stack, which is a sequence of pairs (n,↵).

Let S be constructed according to the following grammar:

S ::= 2 | S; stmt

The leftmost position in S is a hole denoted by 2; there is exactly
one 2 in any derivation for S. We denote by S[s] the substitution
of statement s 2 stmt for the unique hole in S. Finally, we have
|q| =

S
(e,v)2q{e}.

The rules in Figures 4, 5, and 6 give the operational semantics of
our programming language. The program starts execution in a con-
figuration M defined at a single id0 such that Name(id0) = m,
where m is the machine name specified in the program’s ini-
tialization statement (at the end of the program). and M [id0] =
((Init(m),�e. ?),�x. ?,Entry(m, Init(m)), ✏). The semantics
is defined as a collection of rules for determining transitions of the
form M �! M

0. All existing state machines are running concur-
rently retrieving events from their input queue, performing local
computation, and possibly sending events to other machines. Each
rule picks an existing machine with identifier id and executes it for
a step. To simplify the rule we use small steps (�!) for statements
and big steps (#) for the expression. The rules for expressions are
as expected and therefore omitted.

Figure 4 gives the rules for executing code statements inside a
state. These rules execute small steps performed during the com-
putation of the entry function of a state. During this computation,

325

P Language Semantics

program ::= evdecl machine+ m(init⇤)
machine ::= optghost machinem

vrdecl⇤ actdecl⇤ stdecl⇤

spdecl⇤ cldecl⇤ acdecl⇤

optghost ::= ✏ | ghost
evdecl ::= event edecl+

vrdecl ::= optghost var vdecl+

actdecl ::= action (a, stmt)+

stdecl ::= state (n, {e1, e2, . . . , ek}, stmt, stmt)+

spdecl ::= step (n, e, n)+

cldecl ::= call (n, e, n)+

acdecl ::= act (n, e, a)+

edecl ::= e(type)
vdecl ::= x : type

type ::= void | bool | int | event | id

stmt ::= skip
| x := expr
| x := new m(init⇤)
| delete
| send(expr, e, expr)
| raise (e, expr)
| leave
| return
| assert(expr)
| stmt; stmt
| if expr then stmt else stmt
| while expr stmt

init ::= x = expr
expr ::= this | msg | arg | b | c |?| x | ⇤

| uop expr | expr bop expr

c 2 int b 2 bool
¬,� 2 uop +,�,^,_ 2 bop
r 2 expr a, e,m, x 2 name

Figure 3: Syntax

possibilities depends on environmental factors (such as timing),
which we choose to ignore during modeling.

In this example, the initial machine is the User machine, and
this is the starting point for a model checker to perform verification.
Note that the initial state of the User machine creates an instance of
Elevator, and the Elevator instance in turn creates instances of
Timer and Door (in Figure 1). During execution, the external code
is responsible for creating an instance of the Elevator machine.

3. P Syntax and Semantics
Figure 3 shows the syntax of the core of P. Some of the features
presented in the examples of Section 2 can be compiled using a pre-
processor into this core language. In particular, state descriptions in
the core language are triples of the from (n, d, s1, s2), where n is
a state name, d is a set of deferred events, s1 is an entry statement,
and s2 is an exit statement.

A program in the core language consists of declaration of
events, a nonempty list of machines, and one machine creation
statement. Each event declaration also specifies a list of types,
which are types of data arguments that are sent along with the
event (can be thought of as “payload” of the event).

A machine declaration consists of (1) a machine name, (2) a list
of events, (3) a list of variables, (4) a list of actions, (5) a list of
states, (6) a list of transitions, and (7) a list of action bindings. Each
variable has a declared type, which can be int, byte, bool, event or
machine identifier type (denoted id). Actions associate an action

name with a statement. Transitions are one of two types: steps or
calls, and action bindings associate state-event pairs with actions.

A machine can optionally be declared as ghost by prefixing its
declaration by the keyword ghost. Variables can be also declared
as ghost. Events sent to ghost machines are (implicitly) ghost
events. Ghost machines, events and ghost variables are used only
during verification, and are elided during compilation and execu-
tion of the P program.

As mentioned in Section 2, a state declaration consists of a name
n, a set of events (called deferred set), and two statements: (1) an
entry statement and (2) an exit statement. Each state declaration
must have a distinct name. Thus, we can use the name n to denote
the state. The entry statement associated with a state n is executed
whenever control enters n, and the exit statement associated with
state n is executed whenever control leaves n. Given a machine
name m and a state n in m, let Deferred(m,n) denote the associ-
ated set of deferred events and let Action(m,n, e) be an that action
a is associated with event e in state n, if such a binding exists or ?
otherwise. Let Entry(m,n) denote the associated entry statement,
and let Exit(m,n) denote the associated exit statement. The ini-
tial state of the machine m is the first state in the state list and is
denoted by Init(m).

Each action declaration consists of an action name and a state-
ment. Let Stmt(m, a) denote the statement associated with action
a in machine m.

Transition declarations describe how a state responds to events.
The list of transitions is partitioned into step transitions, and call
transitions. A step transition from state n to another state n1 in-
volves executing the exit statement of n and the entry statement of
n1. A call transition is similar to function calls in programming lan-
guages and is implemented using a stack (more details below). The
set of transitions of m must be deterministic, that is, if (n, e, n1)
and (n, e, n2) are two transitions then n1 = n2.

An action binding does not change the state, but merely executes
the statement associated with the action.

A statement (be it an entry statement or exit statement associ-
ated with a state, or associated with an action) is obtained by com-
posing primitive statements using standard control flow constructs
such as sequential composition, conditionals, and loops. Primitive
statements are described below. The skip statement does nothing.
The assignment x := r evaluates an expression r and writes the
result into x. The statement x := new m(init⇤) creates a new
machine and stores the identifier of the created machine into x.
The initializers give the initial values of the variables in the cre-
ated machine. The delete statement terminates the current ma-
chine (which is executing the statement) and release its resources.
The statement send(r1, e, r2) sends event e to the target machine
identified by evaluating the expression r1, together with arguments
obtained by evaluating r2. When e does not have any argument
null is expected. In the examples, we use send(r1, e) as syntactic
sugar for send(r1, e, null). The statement raise(e, r) terminates
the evaluation of the statement raising an event e with arguments
obtained by evaluating r. The event e must be a local event. The
leave statement jumps control to end of the entry function to wait
for an event to be dequeued. The return statement terminates the
evaluation of the statement and returns to the caller (see below for
more details). The statement assert(r) moves the machine to an
error state of the expression r evaluates to false, and behaves like
skip otherwise.

Expressions and evaluation. The expressions in the language, in
addition to the declared variables, can also refer to three special
variables—this, msg and arg. While this is a constant contain-
ing the identifier of the executing machine, msg contains the event
that is last received from the input buffer of the machine, and arg
contains the payload from the last event. Expressions also include

324

P Language Semantics

constants c, the special constant ?, variables, and compound ex-
pressions constructed from unary and binary operations on primi-
tive expressions. Binary and unary operators evaluate to ? if any
of the operand expressions evaluate to ?. The value ? arises ei-
ther as a constant, or if an expression reads a variable whose value
is uninitialized, and propagate through operators in an expression.
The expression ⇤ represents nondeterministic choice of a Boolean
value. Nondeterministic expressions are allowed only in ghost ma-
chines to conveniently model the environment.

Memory management. P programs manage memory manually
by using the new and delete commands. The new command
allocates a new instance of a machine and returns its reference, and
the delete command terminates the machine which executes the
command and frees its resources. It is the responsibility of the P
programmer to perform cleanup and ensure absence of dangling
references, or pending message exchanges before calling delete.
Manually managing the memory add some complexity in order to
retain a precise control over the footprint of the program.

3.1 Operational semantics
The role played by the environment is different during execution
and verification of a P program. During execution, the environ-
ment is responsible for creating initial machines in the P program,
sending some initial messages to it, and responding to events sent
by the P machines. During verification, the environment is speci-
fied using ghost machines, and the program starts execution with a
single machine instance of the machine specified by the initializa-
tion statement at the end of the program, and this machine begins
execution in its initial state with an empty input queue. However,
once the initial configuration is specified (which is different during
execution and verification), the transition rules are the same for ex-
ecution as well as verification. We formally specify the transition
semantics using a single set of transition rules below.

Since our language allows dynamic creation of machines, a
global configuration would contain, in general, a collection of
machines. A machine identifier id represents a reference to a
dynamically-created machine; we denote by Name(id) the name
of the machine with identifier id . A global configuration M is a
map from a machine identifier to a tuple representing the machine
configuration. A machine configuration corresponding to identifier
id is of the form (�,�, s, q) with components defined as follows:
• � is a sequence of pairs (n,↵), where n is a state name, and ↵ is

map from events to A[{>,?}, where A is the set of all actions
declared in machine Name(id). This sequence functions as
a call stack, to implement call and return, and the ↵ values
are used to inherit deferred events and actions from caller to
callee. For an event e, ↵(e) can be an action a, or the value
> indicating that the event is deferred, or the value ? which
indicates that the event does not have an associated action and
it is not deferred.

• � is a map from variables declared in machine Name(id) to
their values; this map contains an entry for the local variables
this, msg and arg.

• s is the statement remaining to be executed in machine id .
• q is a sequence of pairs of a event-argument pairs representing

the input buffer of machine id .

Our type checker verifies that for any event e and state n, there is at
most one outgoing transition labeled with e out of n and at most one
action bound to e in s. We define Step(m,n, e) to be equal to n

0 if
there is a step transition labeled e between n and n

0 in machine m

and ? otherwise. Similarly, we define Call(m,n, e) to be equal to
n
0 if there is a call transition labeled e between n and n

0 in machine
m and ? otherwise. We define Trans(m,n, e) to be the union

M [id] = (�,�, S[x := r], q) �(r) # v

M �! M [id := (�,�[x := v], S[skip], q)]
(ASSIGN)

M [id] = (�,�, S[x := new m0(x1 = r1, x2 = r2, . . . , xn = rn)], q)
id0 = fresh(m0) n0 = Init(m0)

↵o = �e. ? �(r1) # v1 �(r2) # v2 · · · �(rn) # vn

�0 = �x. ? [this := id0][x1 := v1][x2 := v2] · · · [xn := vn]

M �! M [id := (�,�[x := id0], S[skip], q)]
[id0 := ((n0,↵o),�

0,Entry(m0, n0), ✏)]

(NEW)

M [id] = (�,�, S[delete], q)

M �! M [id :=?]
(DELETE)

M [id] = (�,�, S[assert(r)], q) �(r) # true

M �! M [id := (�,�, S[skip], q)]
(ASSERT-PASS)

M [id] = (�,�, S[skip; s], q)

M �! M [id := (�,�, S[s], q)]
(SEQ)

M [id] = (�,�, S[if r then s1 else s2], q) �(r) # true

M �! M [id := (�,�, S[s1], q)]
(IF-THEN)

M [id] = (�,�, S[if r then s1 else s2], q) �(r) # false

M �! M [id := (�,�, S[s2], q)]
(IF-ELSE)

M [id] = (�,�, S[while r s], q) �(r) # true

M �! M [id := (�,�, S[s;while r s], q)]
(WHILE-ITERATE)

M [id] = (�,�, S[while r s], q) �(r) # false

M �! M [id := (�,�, S[skip], q)]
(WHILE-DONE)

M [id] = (�,�, S[send(r1, e, r2)], q)
�(r1) # id0 �(r2) # v M [id0] = (�0,�0, C0, q0)

M �! M [id := (�,�, S[skip], q)][id0 := (�0,�0, C0, q0 � (e, v))]
(SEND)

Figure 4: Operational semantics: statement execution

of Step(m,n, e) and Call(m,n, e). Note that Trans(m,n, e) is
the static transition in state s on event e, Action(m,n, e) is the
static action bound with state n and event e, and Deferred(m,n)
is the static set of events deferred in state n. During execution, both
deferred events and actions associated with a state can be inherited
from callers, and these are modeled in the second component of the
call stack, which is a sequence of pairs (n,↵).

Let S be constructed according to the following grammar:

S ::= 2 | S; stmt

The leftmost position in S is a hole denoted by 2; there is exactly
one 2 in any derivation for S. We denote by S[s] the substitution
of statement s 2 stmt for the unique hole in S. Finally, we have
|q| =

S
(e,v)2q{e}.

The rules in Figures 4, 5, and 6 give the operational semantics of
our programming language. The program starts execution in a con-
figuration M defined at a single id0 such that Name(id0) = m,
where m is the machine name specified in the program’s ini-
tialization statement (at the end of the program). and M [id0] =
((Init(m),�e. ?),�x. ?,Entry(m, Init(m)), ✏). The semantics
is defined as a collection of rules for determining transitions of the
form M �! M

0. All existing state machines are running concur-
rently retrieving events from their input queue, performing local
computation, and possibly sending events to other machines. Each
rule picks an existing machine with identifier id and executes it for
a step. To simplify the rule we use small steps (�!) for statements
and big steps (#) for the expression. The rules for expressions are
as expected and therefore omitted.

Figure 4 gives the rules for executing code statements inside a
state. These rules execute small steps performed during the com-
putation of the entry function of a state. During this computation,

325

P Language Semantics

constants c, the special constant ?, variables, and compound ex-
pressions constructed from unary and binary operations on primi-
tive expressions. Binary and unary operators evaluate to ? if any
of the operand expressions evaluate to ?. The value ? arises ei-
ther as a constant, or if an expression reads a variable whose value
is uninitialized, and propagate through operators in an expression.
The expression ⇤ represents nondeterministic choice of a Boolean
value. Nondeterministic expressions are allowed only in ghost ma-
chines to conveniently model the environment.

Memory management. P programs manage memory manually
by using the new and delete commands. The new command
allocates a new instance of a machine and returns its reference, and
the delete command terminates the machine which executes the
command and frees its resources. It is the responsibility of the P
programmer to perform cleanup and ensure absence of dangling
references, or pending message exchanges before calling delete.
Manually managing the memory add some complexity in order to
retain a precise control over the footprint of the program.

3.1 Operational semantics
The role played by the environment is different during execution
and verification of a P program. During execution, the environ-
ment is responsible for creating initial machines in the P program,
sending some initial messages to it, and responding to events sent
by the P machines. During verification, the environment is speci-
fied using ghost machines, and the program starts execution with a
single machine instance of the machine specified by the initializa-
tion statement at the end of the program, and this machine begins
execution in its initial state with an empty input queue. However,
once the initial configuration is specified (which is different during
execution and verification), the transition rules are the same for ex-
ecution as well as verification. We formally specify the transition
semantics using a single set of transition rules below.

Since our language allows dynamic creation of machines, a
global configuration would contain, in general, a collection of
machines. A machine identifier id represents a reference to a
dynamically-created machine; we denote by Name(id) the name
of the machine with identifier id . A global configuration M is a
map from a machine identifier to a tuple representing the machine
configuration. A machine configuration corresponding to identifier
id is of the form (�,�, s, q) with components defined as follows:
• � is a sequence of pairs (n,↵), where n is a state name, and ↵ is

map from events to A[{>,?}, where A is the set of all actions
declared in machine Name(id). This sequence functions as
a call stack, to implement call and return, and the ↵ values
are used to inherit deferred events and actions from caller to
callee. For an event e, ↵(e) can be an action a, or the value
> indicating that the event is deferred, or the value ? which
indicates that the event does not have an associated action and
it is not deferred.

• � is a map from variables declared in machine Name(id) to
their values; this map contains an entry for the local variables
this, msg and arg.

• s is the statement remaining to be executed in machine id .
• q is a sequence of pairs of a event-argument pairs representing

the input buffer of machine id .

Our type checker verifies that for any event e and state n, there is at
most one outgoing transition labeled with e out of n and at most one
action bound to e in s. We define Step(m,n, e) to be equal to n

0 if
there is a step transition labeled e between n and n

0 in machine m

and ? otherwise. Similarly, we define Call(m,n, e) to be equal to
n
0 if there is a call transition labeled e between n and n

0 in machine
m and ? otherwise. We define Trans(m,n, e) to be the union

M [id] = (�,�, S[x := r], q) �(r) # v

M �! M [id := (�,�[x := v], S[skip], q)]
(ASSIGN)

M [id] = (�,�, S[x := new m0(x1 = r1, x2 = r2, . . . , xn = rn)], q)
id0 = fresh(m0) n0 = Init(m0)

↵o = �e. ? �(r1) # v1 �(r2) # v2 · · · �(rn) # vn

�0 = �x. ? [this := id0][x1 := v1][x2 := v2] · · · [xn := vn]

M �! M [id := (�,�[x := id0], S[skip], q)]
[id0 := ((n0,↵o),�

0,Entry(m0, n0), ✏)]

(NEW)

M [id] = (�,�, S[delete], q)

M �! M [id :=?]
(DELETE)

M [id] = (�,�, S[assert(r)], q) �(r) # true

M �! M [id := (�,�, S[skip], q)]
(ASSERT-PASS)

M [id] = (�,�, S[skip; s], q)

M �! M [id := (�,�, S[s], q)]
(SEQ)

M [id] = (�,�, S[if r then s1 else s2], q) �(r) # true

M �! M [id := (�,�, S[s1], q)]
(IF-THEN)

M [id] = (�,�, S[if r then s1 else s2], q) �(r) # false

M �! M [id := (�,�, S[s2], q)]
(IF-ELSE)

M [id] = (�,�, S[while r s], q) �(r) # true

M �! M [id := (�,�, S[s;while r s], q)]
(WHILE-ITERATE)

M [id] = (�,�, S[while r s], q) �(r) # false

M �! M [id := (�,�, S[skip], q)]
(WHILE-DONE)

M [id] = (�,�, S[send(r1, e, r2)], q)
�(r1) # id0 �(r2) # v M [id0] = (�0,�0, C0, q0)

M �! M [id := (�,�, S[skip], q)][id0 := (�0,�0, C0, q0 � (e, v))]
(SEND)

Figure 4: Operational semantics: statement execution

of Step(m,n, e) and Call(m,n, e). Note that Trans(m,n, e) is
the static transition in state s on event e, Action(m,n, e) is the
static action bound with state n and event e, and Deferred(m,n)
is the static set of events deferred in state n. During execution, both
deferred events and actions associated with a state can be inherited
from callers, and these are modeled in the second component of the
call stack, which is a sequence of pairs (n,↵).

Let S be constructed according to the following grammar:

S ::= 2 | S; stmt

The leftmost position in S is a hole denoted by 2; there is exactly
one 2 in any derivation for S. We denote by S[s] the substitution
of statement s 2 stmt for the unique hole in S. Finally, we have
|q| =

S
(e,v)2q{e}.

The rules in Figures 4, 5, and 6 give the operational semantics of
our programming language. The program starts execution in a con-
figuration M defined at a single id0 such that Name(id0) = m,
where m is the machine name specified in the program’s ini-
tialization statement (at the end of the program). and M [id0] =
((Init(m),�e. ?),�x. ?,Entry(m, Init(m)), ✏). The semantics
is defined as a collection of rules for determining transitions of the
form M �! M

0. All existing state machines are running concur-
rently retrieving events from their input queue, performing local
computation, and possibly sending events to other machines. Each
rule picks an existing machine with identifier id and executes it for
a step. To simplify the rule we use small steps (�!) for statements
and big steps (#) for the expression. The rules for expressions are
as expected and therefore omitted.

Figure 4 gives the rules for executing code statements inside a
state. These rules execute small steps performed during the com-
putation of the entry function of a state. During this computation,

325

P Language Semantics

M [id] = ((n,↵) · �,�, S[raise (e, r)], q)
�(r) # v �0 = �[msg := e][arg := v] m = Name(id)

s = if Pop(m,n,↵, e) _ Step(m,n, e) 6=?
then Exit(m,n)
else skip

M �! M [id := ((n,↵) · �,�0, s; raise (e, v), q)]
(RAISE)

M [id] = (�,�, S[leave], q)

M �! M [id := (�,�, skip, q)]
(LEAVE)

M [id] = (�,�, S[return], q)

M �! M [id := (�,�,Exit(m,n); return, q)]
(RETURN)

M [id] = ((n,↵) · �,�, skip, q1 · (e, v) · q2) m = Name(id)
t = {e | Trans(m,n, e) 6=? _Action(m,n, e) 6=?}

d = {e | ↵(e) = >} d0 = (d [Deferred(m,n)) � t
|q1| ✓ d0 e 62 d0 �0 = �[msg := e][arg := v]

s = if Pop(m,n,↵, e) _ Step(m,n, e) 6=?
then Exit(m,n)
else skip

M �! M [id := ((n,↵) · �,�0, s; raise (e, v), q1 · q2)]
(DEQUEUE)

M [id] = ((n,↵) · �,�, raise (e, v), q)
m = Name(id) Step(m,n, e) = n0

M �! M [id := ((n0,↵) · �,�,Entry(m,n0), q)]
(STEP)

M [id] = ((n,↵) · �,�, raise (e, v), q)
m = Name(id) Trans(m,n, e) =?

(↵(e) = a ^ Action(m,n, e) =?) _ Action(m,n, e) = a
a 62 {?,>}

M �! M [id := ((n,↵) · �,�,Stmt(m, a), q)]
(ACTION)

M [id] = ((n,↵) · �,�, raise (e, v), q)
m = Name(id) Call(m,n, e) = n0

↵0 = �e. if (Trans(m,n, e) 6=?) then ?
else if (Action(m,n, e) 6=?) then Action(m,n, e)
else if (e 2 Deferred(m,n)) then >
else ↵(e)

M �! M [id := ((n0,↵0) · (n,↵) · �,�,Entry(m,n0), q)]
(CALL)

M [id] = ((n,↵) · �,�, raise (e, v), q)
m = Name(id) Pop(m,n,↵, e)

M �! M [id := (�,�, raise (e, v), q)]
(POP1)

M [id] = ((n,↵) · �,�, return, q) m = Name(id)

M �! M [id := (�,�, skip, q)]
(POP2)

Figure 5: Operational semantics: event handling

M [id] = (�,�, S[assert(r)], q) �(r) # false

M �! error
(ASSERT-FAIL)

M [id] = (�,�, S[send(r1, e, r2)], q) �(r1) #?
M �! error

(SEND-FAIL1)

M [id] = (�,�, S[send(r1, e, r2)], q)
�(r1) # id0 M [id0] =?

M �! error
(SEND-FAIL2)

M [id] = (✏,�, s, q)

M �! error
(POP-FAIL)

Figure 6: Operational semantics: error transitions

local variables could be modified and events could be sent to other
state machines.

The rule SEND shows the semantics of the statement send(r1, e, r2).
First, the target of the send id

0 = �(r1), and the payload of the
event v = �(r2) are evaluated and the event (e, v) is appended
to the queue of the target machine identified by id

0 using the spe-
cial append operator �. The operator � is defined as follows. If
(e, v) 62 q, then q � (e, v) = q · (e, v). Otherwise, q � (e, v) =
q. Thus, event-value pairs in event queues are unique, and if the
same event-value pair is sent more than once to a machine, only
one instance of it is added to the queue, avoiding flooding of the
queue due to events generated by hardware, for instance. In some
cases, the programmer may want multiple events to be queued, and
they can enable this by differentiating the instances of these events
using a counter value in the payload.

Figure 5 gives the rules for how events are generated and pro-
cessed. These rules use raise and return, which are dynamic in-
stances of raise and return statements respectively. The compu-
tation terminates either normally via completion of all statements
in the entry statement, execution of leave to jump control to the
end of the entry function, execution of a return statement (which
results in popping from the call stack), or by raising an event e. In
the first two cases, the machine attempts to remove an event from
the input queue via the rule DEQUEUE prior to raising the retrieved
event.

Each state in a state machine can opt to defer a set of events
received from the outside world. The logic for dequeuing an event
from the input buffer is cognizant of the current set of deferred
events and skips over all deferred events from the front of the
queue. The deferred set of a stack of states is the union of the
deferred set at the top of the call stack with the value resulting
from evaluating the deferred set expression declared with that state.
In case an event e is both in the deferred set and has a defined
transition from a state, the defined transition overrides, and the
event e is not deferred (see rule DEQUEUE).

Once an event is raised, using either dequeuing or a raise state-
ment, it is handled using one of the three transition rules STEP, AC-
TION or CALL. The STEP transition results in leaving the current
state n and entering a target state n

0. The ACTION transition picks
an appropriate action a either from Action(m,n, e) or from the
partial map ↵ on the call stack, with the caveat that an action bound
on the current state using Action(m,n, e) overrides the action in-
herited in the call stack using ↵. Once a suitable action ↵ is picked,
the statement Stmt(m, a) is executed. Also, if Step(m,n, e) or
Call(m,n, e) is defined, it takes higher priority over actions. The
CALL transition computes new values for the map ↵

0 in terms of
the existing value of the map ↵ on the top of the stack and the set
of transitions and actions defined on the current state n. The map
↵
0(e) is defined as follows: if a transition is defined for e then it is

bound to ?, otherwise if the event e is bound to an action in n then
that binding is used, otherwise if event e is deferred in n then it is
mapped to >, and all the other events are mapped to the old value
↵(e). As a result of the transition, the machine enters the target
state n

0 by pushing the pair (n0
,↵

0) on the stack.
If these transition rules are not applicable due to the unavail-

ability of a suitable transition, then the top most state on the ma-
chine stack is popped via the rules POP1 and POP2 to allow the
next state to continue processing. These rules use the predicate
Pop(m,n,↵, e) to represent the condition under which a state is
popped.

Pop(m,n,↵, e) = Step(m,n, e) =? ^
Call(m,n, e) =? ^
Action(m,n, e) =? ^
↵(e) 2 {?,>}

326

P Language Semantics

M [id] = ((n,↵) · �,�, S[raise (e, r)], q)
�(r) # v �0 = �[msg := e][arg := v] m = Name(id)

s = if Pop(m,n,↵, e) _ Step(m,n, e) 6=?
then Exit(m,n)
else skip

M �! M [id := ((n,↵) · �,�0, s; raise (e, v), q)]
(RAISE)

M [id] = (�,�, S[leave], q)

M �! M [id := (�,�, skip, q)]
(LEAVE)

M [id] = (�,�, S[return], q)

M �! M [id := (�,�,Exit(m,n); return, q)]
(RETURN)

M [id] = ((n,↵) · �,�, skip, q1 · (e, v) · q2) m = Name(id)
t = {e | Trans(m,n, e) 6=? _Action(m,n, e) 6=?}

d = {e | ↵(e) = >} d0 = (d [Deferred(m,n)) � t
|q1| ✓ d0 e 62 d0 �0 = �[msg := e][arg := v]

s = if Pop(m,n,↵, e) _ Step(m,n, e) 6=?
then Exit(m,n)
else skip

M �! M [id := ((n,↵) · �,�0, s; raise (e, v), q1 · q2)]
(DEQUEUE)

M [id] = ((n,↵) · �,�, raise (e, v), q)
m = Name(id) Step(m,n, e) = n0

M �! M [id := ((n0,↵) · �,�,Entry(m,n0), q)]
(STEP)

M [id] = ((n,↵) · �,�, raise (e, v), q)
m = Name(id) Trans(m,n, e) =?

(↵(e) = a ^ Action(m,n, e) =?) _ Action(m,n, e) = a
a 62 {?,>}

M �! M [id := ((n,↵) · �,�,Stmt(m, a), q)]
(ACTION)

M [id] = ((n,↵) · �,�, raise (e, v), q)
m = Name(id) Call(m,n, e) = n0

↵0 = �e. if (Trans(m,n, e) 6=?) then ?
else if (Action(m,n, e) 6=?) then Action(m,n, e)
else if (e 2 Deferred(m,n)) then >
else ↵(e)

M �! M [id := ((n0,↵0) · (n,↵) · �,�,Entry(m,n0), q)]
(CALL)

M [id] = ((n,↵) · �,�, raise (e, v), q)
m = Name(id) Pop(m,n,↵, e)

M �! M [id := (�,�, raise (e, v), q)]
(POP1)

M [id] = ((n,↵) · �,�, return, q) m = Name(id)

M �! M [id := (�,�, skip, q)]
(POP2)

Figure 5: Operational semantics: event handling

M [id] = (�,�, S[assert(r)], q) �(r) # false

M �! error
(ASSERT-FAIL)

M [id] = (�,�, S[send(r1, e, r2)], q) �(r1) #?
M �! error

(SEND-FAIL1)

M [id] = (�,�, S[send(r1, e, r2)], q)
�(r1) # id0 M [id0] =?

M �! error
(SEND-FAIL2)

M [id] = (✏,�, s, q)

M �! error
(POP-FAIL)

Figure 6: Operational semantics: error transitions

local variables could be modified and events could be sent to other
state machines.

The rule SEND shows the semantics of the statement send(r1, e, r2).
First, the target of the send id

0 = �(r1), and the payload of the
event v = �(r2) are evaluated and the event (e, v) is appended
to the queue of the target machine identified by id

0 using the spe-
cial append operator �. The operator � is defined as follows. If
(e, v) 62 q, then q � (e, v) = q · (e, v). Otherwise, q � (e, v) =
q. Thus, event-value pairs in event queues are unique, and if the
same event-value pair is sent more than once to a machine, only
one instance of it is added to the queue, avoiding flooding of the
queue due to events generated by hardware, for instance. In some
cases, the programmer may want multiple events to be queued, and
they can enable this by differentiating the instances of these events
using a counter value in the payload.

Figure 5 gives the rules for how events are generated and pro-
cessed. These rules use raise and return, which are dynamic in-
stances of raise and return statements respectively. The compu-
tation terminates either normally via completion of all statements
in the entry statement, execution of leave to jump control to the
end of the entry function, execution of a return statement (which
results in popping from the call stack), or by raising an event e. In
the first two cases, the machine attempts to remove an event from
the input queue via the rule DEQUEUE prior to raising the retrieved
event.

Each state in a state machine can opt to defer a set of events
received from the outside world. The logic for dequeuing an event
from the input buffer is cognizant of the current set of deferred
events and skips over all deferred events from the front of the
queue. The deferred set of a stack of states is the union of the
deferred set at the top of the call stack with the value resulting
from evaluating the deferred set expression declared with that state.
In case an event e is both in the deferred set and has a defined
transition from a state, the defined transition overrides, and the
event e is not deferred (see rule DEQUEUE).

Once an event is raised, using either dequeuing or a raise state-
ment, it is handled using one of the three transition rules STEP, AC-
TION or CALL. The STEP transition results in leaving the current
state n and entering a target state n

0. The ACTION transition picks
an appropriate action a either from Action(m,n, e) or from the
partial map ↵ on the call stack, with the caveat that an action bound
on the current state using Action(m,n, e) overrides the action in-
herited in the call stack using ↵. Once a suitable action ↵ is picked,
the statement Stmt(m, a) is executed. Also, if Step(m,n, e) or
Call(m,n, e) is defined, it takes higher priority over actions. The
CALL transition computes new values for the map ↵

0 in terms of
the existing value of the map ↵ on the top of the stack and the set
of transitions and actions defined on the current state n. The map
↵
0(e) is defined as follows: if a transition is defined for e then it is

bound to ?, otherwise if the event e is bound to an action in n then
that binding is used, otherwise if event e is deferred in n then it is
mapped to >, and all the other events are mapped to the old value
↵(e). As a result of the transition, the machine enters the target
state n

0 by pushing the pair (n0
,↵

0) on the stack.
If these transition rules are not applicable due to the unavail-

ability of a suitable transition, then the top most state on the ma-
chine stack is popped via the rules POP1 and POP2 to allow the
next state to continue processing. These rules use the predicate
Pop(m,n,↵, e) to represent the condition under which a state is
popped.

Pop(m,n,↵, e) = Step(m,n, e) =? ^
Call(m,n, e) =? ^
Action(m,n, e) =? ^
↵(e) 2 {?,>}

326

M [id] = ((n,↵) · �,�, S[raise (e, r)], q)
�(r) # v �0 = �[msg := e][arg := v] m = Name(id)

s = if Pop(m,n,↵, e) _ Step(m,n, e) 6=?
then Exit(m,n)
else skip

M �! M [id := ((n,↵) · �,�0, s; raise (e, v), q)]
(RAISE)

M [id] = (�,�, S[leave], q)

M �! M [id := (�,�, skip, q)]
(LEAVE)

M [id] = (�,�, S[return], q)

M �! M [id := (�,�,Exit(m,n); return, q)]
(RETURN)

M [id] = ((n,↵) · �,�, skip, q1 · (e, v) · q2) m = Name(id)
t = {e | Trans(m,n, e) 6=? _Action(m,n, e) 6=?}

d = {e | ↵(e) = >} d0 = (d [Deferred(m,n)) � t
|q1| ✓ d0 e 62 d0 �0 = �[msg := e][arg := v]

s = if Pop(m,n,↵, e) _ Step(m,n, e) 6=?
then Exit(m,n)
else skip

M �! M [id := ((n,↵) · �,�0, s; raise (e, v), q1 · q2)]
(DEQUEUE)

M [id] = ((n,↵) · �,�, raise (e, v), q)
m = Name(id) Step(m,n, e) = n0

M �! M [id := ((n0,↵) · �,�,Entry(m,n0), q)]
(STEP)

M [id] = ((n,↵) · �,�, raise (e, v), q)
m = Name(id) Trans(m,n, e) =?

(↵(e) = a ^ Action(m,n, e) =?) _ Action(m,n, e) = a
a 62 {?,>}

M �! M [id := ((n,↵) · �,�,Stmt(m, a), q)]
(ACTION)

M [id] = ((n,↵) · �,�, raise (e, v), q)
m = Name(id) Call(m,n, e) = n0

↵0 = �e. if (Trans(m,n, e) 6=?) then ?
else if (Action(m,n, e) 6=?) then Action(m,n, e)
else if (e 2 Deferred(m,n)) then >
else ↵(e)

M �! M [id := ((n0,↵0) · (n,↵) · �,�,Entry(m,n0), q)]
(CALL)

M [id] = ((n,↵) · �,�, raise (e, v), q)
m = Name(id) Pop(m,n,↵, e)

M �! M [id := (�,�, raise (e, v), q)]
(POP1)

M [id] = ((n,↵) · �,�, return, q) m = Name(id)

M �! M [id := (�,�, skip, q)]
(POP2)

Figure 5: Operational semantics: event handling

M [id] = (�,�, S[assert(r)], q) �(r) # false

M �! error
(ASSERT-FAIL)

M [id] = (�,�, S[send(r1, e, r2)], q) �(r1) #?
M �! error

(SEND-FAIL1)

M [id] = (�,�, S[send(r1, e, r2)], q)
�(r1) # id0 M [id0] =?

M �! error
(SEND-FAIL2)

M [id] = (✏,�, s, q)

M �! error
(POP-FAIL)

Figure 6: Operational semantics: error transitions

local variables could be modified and events could be sent to other
state machines.

The rule SEND shows the semantics of the statement send(r1, e, r2).
First, the target of the send id

0 = �(r1), and the payload of the
event v = �(r2) are evaluated and the event (e, v) is appended
to the queue of the target machine identified by id

0 using the spe-
cial append operator �. The operator � is defined as follows. If
(e, v) 62 q, then q � (e, v) = q · (e, v). Otherwise, q � (e, v) =
q. Thus, event-value pairs in event queues are unique, and if the
same event-value pair is sent more than once to a machine, only
one instance of it is added to the queue, avoiding flooding of the
queue due to events generated by hardware, for instance. In some
cases, the programmer may want multiple events to be queued, and
they can enable this by differentiating the instances of these events
using a counter value in the payload.

Figure 5 gives the rules for how events are generated and pro-
cessed. These rules use raise and return, which are dynamic in-
stances of raise and return statements respectively. The compu-
tation terminates either normally via completion of all statements
in the entry statement, execution of leave to jump control to the
end of the entry function, execution of a return statement (which
results in popping from the call stack), or by raising an event e. In
the first two cases, the machine attempts to remove an event from
the input queue via the rule DEQUEUE prior to raising the retrieved
event.

Each state in a state machine can opt to defer a set of events
received from the outside world. The logic for dequeuing an event
from the input buffer is cognizant of the current set of deferred
events and skips over all deferred events from the front of the
queue. The deferred set of a stack of states is the union of the
deferred set at the top of the call stack with the value resulting
from evaluating the deferred set expression declared with that state.
In case an event e is both in the deferred set and has a defined
transition from a state, the defined transition overrides, and the
event e is not deferred (see rule DEQUEUE).

Once an event is raised, using either dequeuing or a raise state-
ment, it is handled using one of the three transition rules STEP, AC-
TION or CALL. The STEP transition results in leaving the current
state n and entering a target state n

0. The ACTION transition picks
an appropriate action a either from Action(m,n, e) or from the
partial map ↵ on the call stack, with the caveat that an action bound
on the current state using Action(m,n, e) overrides the action in-
herited in the call stack using ↵. Once a suitable action ↵ is picked,
the statement Stmt(m, a) is executed. Also, if Step(m,n, e) or
Call(m,n, e) is defined, it takes higher priority over actions. The
CALL transition computes new values for the map ↵

0 in terms of
the existing value of the map ↵ on the top of the stack and the set
of transitions and actions defined on the current state n. The map
↵
0(e) is defined as follows: if a transition is defined for e then it is

bound to ?, otherwise if the event e is bound to an action in n then
that binding is used, otherwise if event e is deferred in n then it is
mapped to >, and all the other events are mapped to the old value
↵(e). As a result of the transition, the machine enters the target
state n

0 by pushing the pair (n0
,↵

0) on the stack.
If these transition rules are not applicable due to the unavail-

ability of a suitable transition, then the top most state on the ma-
chine stack is popped via the rules POP1 and POP2 to allow the
next state to continue processing. These rules use the predicate
Pop(m,n,↵, e) to represent the condition under which a state is
popped.

Pop(m,n,↵, e) = Step(m,n, e) =? ^
Call(m,n, e) =? ^
Action(m,n, e) =? ^
↵(e) 2 {?,>}

326

P Language Semantics

M [id] = ((n,↵) · �,�, S[raise (e, r)], q)
�(r) # v �0 = �[msg := e][arg := v] m = Name(id)

s = if Pop(m,n,↵, e) _ Step(m,n, e) 6=?
then Exit(m,n)
else skip

M �! M [id := ((n,↵) · �,�0, s; raise (e, v), q)]
(RAISE)

M [id] = (�,�, S[leave], q)

M �! M [id := (�,�, skip, q)]
(LEAVE)

M [id] = (�,�, S[return], q)

M �! M [id := (�,�,Exit(m,n); return, q)]
(RETURN)

M [id] = ((n,↵) · �,�, skip, q1 · (e, v) · q2) m = Name(id)
t = {e | Trans(m,n, e) 6=? _Action(m,n, e) 6=?}

d = {e | ↵(e) = >} d0 = (d [Deferred(m,n)) � t
|q1| ✓ d0 e 62 d0 �0 = �[msg := e][arg := v]

s = if Pop(m,n,↵, e) _ Step(m,n, e) 6=?
then Exit(m,n)
else skip

M �! M [id := ((n,↵) · �,�0, s; raise (e, v), q1 · q2)]
(DEQUEUE)

M [id] = ((n,↵) · �,�, raise (e, v), q)
m = Name(id) Step(m,n, e) = n0

M �! M [id := ((n0,↵) · �,�,Entry(m,n0), q)]
(STEP)

M [id] = ((n,↵) · �,�, raise (e, v), q)
m = Name(id) Trans(m,n, e) =?

(↵(e) = a ^ Action(m,n, e) =?) _ Action(m,n, e) = a
a 62 {?,>}

M �! M [id := ((n,↵) · �,�,Stmt(m, a), q)]
(ACTION)

M [id] = ((n,↵) · �,�, raise (e, v), q)
m = Name(id) Call(m,n, e) = n0

↵0 = �e. if (Trans(m,n, e) 6=?) then ?
else if (Action(m,n, e) 6=?) then Action(m,n, e)
else if (e 2 Deferred(m,n)) then >
else ↵(e)

M �! M [id := ((n0,↵0) · (n,↵) · �,�,Entry(m,n0), q)]
(CALL)

M [id] = ((n,↵) · �,�, raise (e, v), q)
m = Name(id) Pop(m,n,↵, e)

M �! M [id := (�,�, raise (e, v), q)]
(POP1)

M [id] = ((n,↵) · �,�, return, q) m = Name(id)

M �! M [id := (�,�, skip, q)]
(POP2)

Figure 5: Operational semantics: event handling

M [id] = (�,�, S[assert(r)], q) �(r) # false

M �! error
(ASSERT-FAIL)

M [id] = (�,�, S[send(r1, e, r2)], q) �(r1) #?
M �! error

(SEND-FAIL1)

M [id] = (�,�, S[send(r1, e, r2)], q)
�(r1) # id0 M [id0] =?

M �! error
(SEND-FAIL2)

M [id] = (✏,�, s, q)

M �! error
(POP-FAIL)

Figure 6: Operational semantics: error transitions

local variables could be modified and events could be sent to other
state machines.

The rule SEND shows the semantics of the statement send(r1, e, r2).
First, the target of the send id

0 = �(r1), and the payload of the
event v = �(r2) are evaluated and the event (e, v) is appended
to the queue of the target machine identified by id

0 using the spe-
cial append operator �. The operator � is defined as follows. If
(e, v) 62 q, then q � (e, v) = q · (e, v). Otherwise, q � (e, v) =
q. Thus, event-value pairs in event queues are unique, and if the
same event-value pair is sent more than once to a machine, only
one instance of it is added to the queue, avoiding flooding of the
queue due to events generated by hardware, for instance. In some
cases, the programmer may want multiple events to be queued, and
they can enable this by differentiating the instances of these events
using a counter value in the payload.

Figure 5 gives the rules for how events are generated and pro-
cessed. These rules use raise and return, which are dynamic in-
stances of raise and return statements respectively. The compu-
tation terminates either normally via completion of all statements
in the entry statement, execution of leave to jump control to the
end of the entry function, execution of a return statement (which
results in popping from the call stack), or by raising an event e. In
the first two cases, the machine attempts to remove an event from
the input queue via the rule DEQUEUE prior to raising the retrieved
event.

Each state in a state machine can opt to defer a set of events
received from the outside world. The logic for dequeuing an event
from the input buffer is cognizant of the current set of deferred
events and skips over all deferred events from the front of the
queue. The deferred set of a stack of states is the union of the
deferred set at the top of the call stack with the value resulting
from evaluating the deferred set expression declared with that state.
In case an event e is both in the deferred set and has a defined
transition from a state, the defined transition overrides, and the
event e is not deferred (see rule DEQUEUE).

Once an event is raised, using either dequeuing or a raise state-
ment, it is handled using one of the three transition rules STEP, AC-
TION or CALL. The STEP transition results in leaving the current
state n and entering a target state n

0. The ACTION transition picks
an appropriate action a either from Action(m,n, e) or from the
partial map ↵ on the call stack, with the caveat that an action bound
on the current state using Action(m,n, e) overrides the action in-
herited in the call stack using ↵. Once a suitable action ↵ is picked,
the statement Stmt(m, a) is executed. Also, if Step(m,n, e) or
Call(m,n, e) is defined, it takes higher priority over actions. The
CALL transition computes new values for the map ↵

0 in terms of
the existing value of the map ↵ on the top of the stack and the set
of transitions and actions defined on the current state n. The map
↵
0(e) is defined as follows: if a transition is defined for e then it is

bound to ?, otherwise if the event e is bound to an action in n then
that binding is used, otherwise if event e is deferred in n then it is
mapped to >, and all the other events are mapped to the old value
↵(e). As a result of the transition, the machine enters the target
state n

0 by pushing the pair (n0
,↵

0) on the stack.
If these transition rules are not applicable due to the unavail-

ability of a suitable transition, then the top most state on the ma-
chine stack is popped via the rules POP1 and POP2 to allow the
next state to continue processing. These rules use the predicate
Pop(m,n,↵, e) to represent the condition under which a state is
popped.

Pop(m,n,↵, e) = Step(m,n, e) =? ^
Call(m,n, e) =? ^
Action(m,n, e) =? ^
↵(e) 2 {?,>}

326

