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Limitations of State Machines

» They are too flat (no depth, hierarchy, or 
modularity; no support for stepwise, top-
down, or bottom-up development) 

» They are uneconomical when modeling 
transitions (e.g., high-level interrupt) 

» Infeasible because of too many states 
» No support for concurrency
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Statecharts

» Statecharts = state-diagrams + depth + 
orthogonality + broadcast communications
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Depth + Stepwise Refinement
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The semantics of D is then the exclusive-or (XOR) of A and C; i.e., to be in state 
D one must be either in A or in C, and not in both. Thus, D is really an abstraction 
of A and C. The state D and its outgoing /I arrows thus-capture a common property 
of A and C, namely, that p leads from them to B. The decision to let transitions 
that leave a super-state, such as the p in Fig. 2, stand for transitions leaving all 
substates turns out to be highly important, and is the main way statecharts economize 
in the number of arrows. Figure 2 might also be approached from a different angle: 
first we might have decided upon the simple situation of Fig. 3, and then state D 

could have been reJined to consist of A and C, yielding Fig. 4. Having made this 
refinement, however, the incoming cy and /I arrows become underspecified, as they 
do not say which of A or C is to be entered. Extending them to point directly to 
A and C, respectively, does the job, and if the y transition within D is added, one 
indeed obtains Fig. 2. Thus, clustering, or abstraction, is a bottom-up concept and 
refinement is a top-down one; both give rise to the or-relationship between a state’s 
substates. 

Fig. 3. 
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Fig. 4. Fig. 5. 

Both zooming-in and zooming-out can be illustrated using this simple example. 
The first is achieved by looking ‘inside’ D (disregarding external interface for the 
time being) and finding simply Fig. 5, and the latter is done by eliminating the 
inside of D and abstracting Fig. 2 to Fig. 3. These notions will acquire more 
significance later on. 

Suppose now that as far as the ‘outside’ world is concerned A is the default state 
among A, B and C, in the sense that if asked to enter the A, B, C group of states 
the system is to enter A unless otherwise specified. In the description given by Fig. 
1 this can be captured by a small arrow as in Fig. 6(i). For Fig. 2 one can use the 
direct notation of Fig. 6(ii), or alternatively, the two-step one of Fig. 6(iii), which 
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The running example used throughout these sections concerns the author’s Citizen 
Quartz Multi-Alarm III wristwatch*, the example being sufficiently simple to be 
contained here (almost) in its entirety, but sufficiently complex to serve as an 
illustration of the method. 

Section 6 discusses a number of advanced features that are under investigation 
as possible additions to the basic formalism, including the integration of statecharts 
with temporal logic and the introduction of probabilism. Section 7 contains a brief 
account of the formal semantics of statecharts; a more complete treatment, however, 
is deferred to a separate paper. Section 8, as mentioned, discusses related work and 
compares the statechart formalism with some alternative notations suggested for 
the specification of reactive systems. Section 9 reports briefly on the experience 
accumulated with the language and on an implementation that is in the workings. 

2. State-levels: Clustering and refinement 

In deciding upon a graphical representation for capturing depth and hierarchy, 
there is a real disadvantage in drawing trees or other line-graphs. These media make 
no use whatsoever of the area of the diagram: lines and points are of no width, 
and no advantage is taken of location. We shall use rounded rectangles (boxes in 
the sequel) to denote states at any level, using encapsulation to express the hierarchy 
relation. Arrows will be allowed to originate and terminate at any level. The graphics 
is actually based on a more general concept, the higraph, which combines notions 
from Euler circles, Venn diagrams and hypergraphs, and which seems to have a 
wide variety of applications. See [13]. 

An arrow will be labelled with an euent (or an abbreviation of one) and optionally 
also with a parenthesized condition. (In Section 5 it will be allowed to be labelled 
also with Mealy-like outputs, or actions.) Thus, in Fig. 1 there are three states A, 
B, and C and, for example, event y occurring in state A transfers the system to 
state C, but only if condition P holds at the instant of occurrence. 

Now, since event /3 takes the system to B from either A or C we can cluster the 
latter into a new super-state D and replace the two /3 arrows by one, as in Fig. 2. 

0 

A a 

P 0 LB+ y(P) 

C 6 

Fig. 2. 

’ This is a product of the Citizen Watch Company of America, Inc. 
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Fig. 18 

3. Orthogonality: Independence and concurrency 

The capabilities described in the previous section represent only one part of the 
story, namely, the XOR (exclusive or) decomposition of states, and some related 
concepts and notations. In this section we introduce AND decomposition, capturing 
the property that, being in a state, the system must be in all of its AND components. 
The notation used in statecharts is the physical splitting of a box into components 
using dashed lines. 

Figure 19 shows a state Y consisting of AND components A and D, with the 
property that being in Y entails being in some combination of B or C with E, F 
or G. We say that Y is the orthogonal product of A and D. The components A and 
D are no different conceptually from any other superstates; they have defaults, 
internal transitions, etc. Entering Y from the outside, in the absence of any additional 
information, is actually entering the combination (B, F) by the default arrows. If 

Y 

A 

Fig. 19. 
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event (Y then occurs, it transfers B to C and F to G simultaneously, resulting in the 
new combined state (C, G). This illustrates a certain kind of synchronization: a 
single event causing two simultaneous happenings. If, on the other hand, /.L occurs 
at (B, F) it affects only the D component, resulting in (B, E). This, in turn, illustrates 
a certain kind of independence, since the transition is the same whether the system 
is in B or in C in its A component. Both behaviors are part of the orthogonality of 
A and 0, which is the term we use to describe the AND decomposition. 

Figure 20 is the conventional AND-free equivalent of Fig. 19. The reader will no 
doubt realize that Fig. 20 contains six states because the components of Fig. 19 
contained two and three. Clearly, two components with one thousand states each 
would result in one million states in the product. This, of course, is root of the 
exponential blow-up in the number of states, which occurs when classical finite-state 
automata or state diagrams are used, and orthogonality is our way of avoiding it. 

Note that the p-transition from C to B has the condition “in G” attached to it, 
with the obvious consequences, shown explicitly in Fig. 20. Thus, while Y has 
indeed been split into two orthogonal components, there will in general be some 
dependence. The “in G” condition causes A to depend somewhat on D, and indeed 
to ‘know’ something about the inner states of D. Formally, orthogonal product is 
a generalization of the usual product of automata, the difference being that the 
latter is usually required to be a disjoint product, whereas here some dependence 
between components can be introduced, by common events or “in G”-like condi- 
tions. 

Fig. 20. 

One slightly bothersome notational problem is the lack of an appropriate location 
for the name “Y”. The product state Y will, in general, lie within some superstate 
2, to which the area outside the borderline of the (A, D) box ‘belongs’. Of course, 
it is possible to use an additional box as in Fig. 21(a). We prefer to try managing 
without the name Y or simply to attach it to the outside as in Fig. 21(b). 
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(0) 

Fig. 21. 

(b) 

An obvious application of orthogonality is in splitting a state in accordance with 
its physical subsystems. This typically occurs on a very high level of the specification. 
In an avionics system, for example, one might have a general-mode component, 
and orthogonal components for subsystems, such as the radar. An overly simplified 
first attempt might look like Fig. 22. 

AVIONICS SYSTEM 

-general - mode radar abc-system 

Fig. 22. 

subsystems 

Before showing where orthogonality occurs in the watch example, let us complicate 
matters slightly by discussing exits and entrances to orthogonal states. Observe Fig. 
23, which is a possible interface description of the state Y of Fig. 19 (internal 
transitions have been omitted for simplicity). The split 6 exit from J illustrates a 
simple explicit indication that upon occurrence of 6 the combination (B, E) is 
entered. An a-event in K causes the system to enter (C, F); C by the arrow and 
F by default, and a v-event from J causes entrance to the default (B, F). A p-event 
at L causes entrance to the combination of C with the most recently visited state 
in 0, and an w-event in combination (B, G) causes transfer to K. An alternative to 
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: . : 

Fig. 23. 

thjs last possibility is to replace one of the outgoing branches of the merging arrows 
by a condition, as in the q-arrow from F, applicable actually only in (B, F). The 
O-arrow from C, on the other hand, is a typical ‘exit independently’ transition: it 
states that the product state Ax D is left and K entered, depending only on the 
fact that the A component is actually C. The most general kind of exit is the c-arrow 
causing control to leave Ax D unconditionally. It is perhaps worth following up 
Fig. 23 with its zoom-out, in which stubbed entrance arrows are used when the 
entrance crosses the state boundary (that is, when it does not rely on the default). 
See F i g . 2 4 . 

: : 
Fig. 24. 
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says that D is default among D and B, and A is the default among A and C. Of 
course, for zooming in and out the latter has obvious advantages. Default arrows 
are thus analogous to the start states of finite-state automata. 

Let us now introduce our running example. The Citizen Quartz Multi-Alarm III 
watch has a main display area and four smaller ones, a two-tone beeper, and four 
control buttons denoted here a, b, c and d. See Fig. 7. It can display the time (with 

ymf : 
Fig. 7. 

am/pm or 24 hour time modes) or the date (day of month, month, day of week), 
it has a chime (beeps on the hour if enabled), two independent alarms, a stopwatch 
(with lap and regular display modes, and a l/100 s display), a light for illumination, 
a weak battery blinking indication, and a beeper test. We shall assume throughout 
that the main functions of these are known, and will use liberal terminology, such 
as ‘power weakens’ to denote certain events of obvious meaning, though, of course, 
to make things complete one would have to tie these events up with actual happenings 
in the physical parts of the system, or to specify them as output events produced 
in other, separately specified, components. 

The main external events will be the depressing and releasing of buttons (e.g., 
event “a” denotes button a being depressed, and “6” denotes it being released), 
and there will be certain internal ones too. The distinction is sharpened in Section 
5. We remark here that while the description of the watch presented herein is 
intended to be as faithful to its actual workings as possible, there are some very 
minor differences that are not worth dwelling upon here, and that most likely will 
not be detected in normal use of the watch. The point is, however, that the statechart 
of the watch (cf. Fig. 3 1) was obtained by the author using the obviously inappropri- 
ate method of observation from the final product; had it been the basis for the 
initial specification and design of that final product, in the spirit of the gradual 
development presented below, the undescribed anomalies might have been avoided. 

Figure 8 shows the transitions between the normal dispZays mode and the various 
beeping states. Here Tl and T2 stand for the respective internal time settings of 
the alarms, and T for the current time. Also, Pl abbreviates “alarm1 enabled A 
(alarm2 disabled v Tl # T2)“, and similarly for P2, while P abbreviates “alarm1 
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Fig. 8. 

enabled A alarm2 enabled A Tl = T2”. These conditions will take on a more 
precise form when more of the description of the watch is available. Notice the 
clustering, which replaces six arrows by two. Actually, the displays do not change 
while the alarm is beeping, but this information should be specified under the topic 
of activities discussed in Section 5. 

A refinement of the displays state yields Fig. 9 in which it has been decided that 
there will be a cycle of displays linked by repeated depressings of a; that the time 
and date displays are linked by d’s but that the time display will resume after -2 
minutes in date. Also, the time display is the default, meaning, among other things, 
that the entrances from alarms-beep in Fig. 8 will actually be entrances to time. This 
will later be changed, but for the time being it is good enough. 

displays 
4 

Fig. 9. 
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Fig. 15. 

\ J L J  

(a) (b) 
Fig. 16. 

We allow for an economical representation of arrows with common sources, 
targets or events, as in Fig. 17. Note that the variant of Fig. 17(c), in which the 
arrows are reversed, is a contradiction to the desired determinism of the system. 
Clearly, more subtle contradictions can occur as a result of the ‘deep’ character of 
statecharts, and should be carefully avoided. For example, Fig. 18 shows an (Y 
contradiction from A, resulting from the fact that the possible transitions leading 
out of a state are those emanating from its periphery, as well as those emanating 
from any of its ancestors’ peripheries. Figure 18 also contains a default contradiction 
upon entering B via p. Had the default arrow entering D been entirely contained 
within the area of C, there would have been no problem; it would only have 
influenced the entrance to C via y. This fact is a consequence of our area-dominated 
graphical representation. (As it is, y is underspecified, since C contains no default.) 

i 
a . &by . .i 

(a) (b) 

Fig. 17. 
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Figure 25 contains a refinement of the stopwatch display state of Figs. 9 and 13 
using orthogonality, and should be self-explanatory. In it, regular and lap are two 
kinds of displays and zero is the special state in which the stopwatch is off but in 
its initial position. This description could have been the outcome of a separate 
person or group dedicated to specifying the behavior of the stopwatch. 
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I run on 
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8 
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I off 

Fig. 25. 

Orthogonality appears in the Citizen watch on the high levels too. One might 
start a top-down behavioral specification of the watch, accounting for battery 
insertion and removal, as in Fig. 26, and then decide (see Fig. 27) that the alioe 
state is to consist of six orthogonal components: a main component containing 
displays and alarm-beep modes, one component for the enabled/disabled status of 
each of the alarms and the chime (the latter containing the chime-beeping state 
too), one for the power status, and one for the light. The resulting levels of the 
statechart are given in Fig. 28, where the main component of the alioe state has 
been described in detail earlier. 

Citizen quartz multi-alarm III 

batt. inserted 

Fig. 26. 
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Although the two-state light component looks rather innocent, it is actually quite 
subtle because of its scope. Orthogonality of the component on this level prescribes 
that depressing b, say, in the update state of Figs. 13 and 14 wiU simultaneously 
turn on the light and cause the system to exit the updating state. We shall see even 
more interesting combinations later. 

Note that the disabled/enabled status of the alarms and the chime are directly 
linked to the corresponding of/on substates of displays; this is one way of modeling 
a display change and its ‘hidden’ consequences. Of course, there are other ways, 
and constructing statecharts, like writing programs, should encourage many 
possibilities, depending, among other things, also on personal style. 

At this point, the situation permits the conditions Pl and P2 for the beeping 
alarms to be made more precise. For example “alarm1 enabled” is to be replaced 
by “in alarm 1 -status.enabled”. 

Note that our previous H-entrances (e.g. in Figs. 13 and 25) can no longer be 
interpreted without reservation, as “enter most recently visited”. Now that we have 
catered for battery removal and death within the specification, these attain a more 
sophisticated meaning whereby history is to be ‘forgotten’ if dead has been entered 
in the meantime. To deal with this more complex historical criterion we use the 
special actions clear-history(state) and clear-history(state*), which cause the forget- 
ting of recently visited states on the first level, or all levels, respectively, of state. 
(The combination clear-history is abbreviated as clh.) Once forgotten, H-entrances 
do not apply, and defaults are employed. We have chosen to attach the action to 
the transitions entering dead, to the right of a “/“, as discussed in Section 5 below. 

Here are two final features of the Citizen watch that seem to nicely illustrate the 
painless way certain kinds of changes can be made to statecharts. We can think of 
these features as being handed down to the team of specifiers/designers from above 
at a late stage in the process of specification. The first is a beep-testing feature, and 
the second involves a 2-minute automatic return to time from all displays other 
than the stopwatch, on condition that no button has been depressed in the interim. 

As to the beeper test, depressing both b and d causes a healthy beeper to beep. 
Clearly, this test, modeled in detached form in Fig. 29 (assuming, for simplicity, 
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Fig. 29. 

that 6 and d cannot be depressed simultaneously), is applicable in some states of 
the watch and not in others. For example, it is obvious that it should not be relevant 
in the dead state and probably not in the other beeping states either. The claim 
now is that a behavioral designer of the watch can attach this piece of the description 
as an orthogonal component to whichever portion desired. One reasonable choice 
might be the time display mode, as in Fig. 30. The significance of this kind of 

time 
I 
beep-test 0 f 

1 
I 

Fig. 30. 

decision should be clear: the test will work only when the system is in time, in this 
case. As it happens, the beep-test of the author’s actual watch is applicable precisely 
in both the time and date states and, curiously enough, also throughout the general 
update sequence. It is not applicable (though it took the author quite a while, and 
required some strenuous finger-twisting, to discover the fact) in the 2-second wait 
period. A new box was therefore drawn around the relevant portions, their common 
property being the applicability of the beep-test, and the test itself was attached 
properly to it. See Fig. 31. We might add here that Citizen’s documentation of the 
watch lists both the light feature and the beep-test in the same way: if you press 
so-and-so this-and-that will happen; no indication of the scope is provided, despite 
the major difference between the two. 

As to the second feature, here life is even easier: the addition involves merely 
drawing another box around the relevant displays, with the appropriate event and 
condition on the outgoing arrow. Figure 31 (see fold-out) contains the full statechart 
of the watch so far. 
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It is instructive to work through certain linear (or branching) sequences of events, 
called scenarios, and observe their effects as prescribed by the statechart. For 
example, assume the system is in the man updating state (see Fig. 31), and that, 
for some reason, the user has an urge to try out his beeper. Suppose he depresses 
d and b in that order without releasing either of them. The regular component says 
we shall end up in time (with the month updated one step, although this fact does 
not show up in Fig. 31), the beep-test component says we shall end up in the beep 

state, and, finally, the light component (orthogonal on a higher level to the other 
two) says we shall end up with the light on. This is in fact quite the case; we shall 
end up in time, one month ahead, with the beeper beeping and the light on! 

As a small example of a subtle anomaly of the Citizen watch, it so happens that 
the continuous beeping during a beep test stops upon depressing a and resumes 
upon letting go. Figure 32 shows a refinement of the beep state capturing this fact, 
but it is not included in Fig. 31. 

Fig. 32. 

It should be noted that neither the time elapsing activity itself nor the internal 
values of the time, date, and alarm settings are included in Fig. 31. These parts can 
be modelled appropriately, the first as an additional component orthogonal to the 
alioe state and the latter in the form of one extra level of states within the three 
update states (cf. Figs. 38 and 39 and the accompanying text in Section 6.1). 
Alternatively, one can regard these as involving variables that change values, and 
postpone their specification to the activity part of the system; see Section 5. Also, 
no mention is made of the contents of displays, though some of the state names 
are suggestive; this also is taken up in Section 5. 

4. Additional statechart features 

Here are a number of features that are part of the basic statechart formalism, but 
did not show up in the watch example. 
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