CS 428/528 Lecture 17: Linear Logic

March 26, 2024

Based on Abramsky's TCS93 paper, Curien’s
2018 tutorial, and Orchard et al. ICFP19 paper

Computational Interpretation of Linear LogIiCAE

TCS 1993]

Computational interpretations of
linear logic

Samson Abramsky

Department of Computing, Imperial College of Science, Technology and Medicine, 180 Queen’s Gate,
London SW7 2BZ, UK

Abstract

Abramsky, S., Computational interpretations of linear logic, Theoretical Computer Science 111
(1993) 3-57.

We study Girard’s linear logic from the point of view of giving a concrete computational interpreta-
tion of the logic, based on the Curry-Howard isomorphism. In the case of Intuitionistic linear logic,
this leads to 4 refinement of the lambda calculus, giving finer control over order of evaluation and
storage allocation, while maintaining the logical content of programs as proofs, and computation as
cut-elimination. In the classical case, it leads to a concurrent process paradigm with an operational
semantics in the style of Berry and Boudol's chemical abstract machine. This opens up a promising
new approach to the parallel implementation of functional programming languages; and offers the
prospect of typed concurrent programming in which correctness is guaranteed by the typing.

Review: Natural Deduction

sequent calculus, we present “natural deduction in sequent form”, in which the objects
being derived are sequents

Ay,..., A, F A

(We use I', 4 to range over sequences of formulas, including the empty sequence; and
write I', A4 for concatenation of sequences.) What distinguishes the system as natural
deduction is the form of the rules for each connective: these are structured into
introduction rules and elimination rules.

Review: Natural Deduction for Intuitions

Axiom:

(id) AFA

Structural rules:

(Exchange) I'A, B, AF-C
XNaNEY 1B, 4, AF C
Contract;)F,A,Al—B (Weakening) I'—B
(Contraction I ACB eakening FAFB
Logical rules:
I'—=A I'—B I''-AANB I'ANANB
(AT) (AE)
I'-AAB I'—A I'—B
I'A—B I'-A>oB I'—A
(=) === (>F)
I'-4A>B I'—B
I'—A I'—B I'-AvVvB I''A-C TI',BEC
(VI (VE)
I'HAVB I'AVB r-cC

Review: Curry-Howard Correspe

their proofs: a proof of a conjunction is a pair of proofs of the conjuncts; a proof of an
implication 4 = B is a (constructive) function mapping proofs of A to proofs of B;
a proof of a disjunction 4 V B is either a proof of A or a proof of B, together with the
information as to which disjunct was actually proved. Thus, propositions are viewed
as data types:

ANB = AxB (Cartesian product),
A> B = A=-B, (function space),

AV B = A+ B (disjoint union).

We present the term assignment as a version of natural deduction in which the
objects being derived now have the form

X A, x A A

Review: Curry-Howard Corresp@

/ Axiom: \

(Id)

x:AFx:A
Structural rules:

I',x:A,y:B, A t:C

Exchange
(Ex g)F,y:B,x:A,Al—t:C
: I'x:A,y:A+t:B : I'—t:B
Weak
(Contraction) I'z:A+-t[{z/x,z/y]:B (Weakening) I'zzAF1t:B

. /

Review: Curry-Howard Corresp@

Logical rules:

(/\I)FI—I:A I'u:B (AE)F}—t:A/\B I'—t:ANANB
I'=<{t,uy:ANB I'+—fst(t):A I Fsnd(r):B
I' x:A+1t:B ITHFt:A>B T'tHu:A
(=1) - (o E)
I'/xt:A> B I'—tu:B
't A I'-u:B
(V1) -

r'~inl(t))AV B TFinr(u):4V B

I't:AVB I''scAFu:C I',y:BFou:C
I't—case t of inl(x) = ulinr(y) = v:C

(VE)

Review: Operational Semanti€

Canonical torms:

ix.t <Gud> o inl@) inr(w)

Evaluation relation:
This is defined inductively, as the least satisfying the following clauses:

ty<u, vy ulc tlu, vy vlc

uyldt, uy fst(t){c snd(t)|c
tix.v v[u/x]lc
Ax.tAx.t tulc

inl(¢t) Y inl(t) inr(u) | inr(u)
tlinliw) u[w/x]1|c

case t of inl(x) = ulinr(y) = vlc

thinr(w) ofw/yllc

case t of inl(x) = ulinr(y) = vlc

Review: Operational Semanticss

Canonical forms:
AX.t {c,d) inl(c) inr(d)

where ¢, d are canonical forms.

Evaluation relation:

tle uld t<c, d> t|<c,d>
{tuyl<Le, d) fst(t)|c snd(t){d
tix.v ule v[c/x]ld

Ax.t|Ax.t tu\d

tc uld
inl(¢)inl(c) inr(u)linr(d)
tlinl(c) ulc/x]ld

case t of inl(x) = ulinr(y) = vid

tlinr(c) vle/ylid
case t of inl{(x) = ulinr(y) = v|d

Review: Sequent Calculus

2.4. Sequent calculus

We now review the sequent calculus presentation of intuitionistic logic. The objects
derived in this calculus are exactly the same sequents I'— A4 as in (our version of)
natural deduction. The difference appears in the form of the rules. Firstly, the Cut rule

I'FA A, A-B
I'd4+-B

Logical rules:

I'A AFB I''A=C I'B-C

AR AL
()F,AF—A/\B ()F,A/\B}—C I'Nd ANBFC

I''A-B I'A B, AFC

R L
CRrass ©Y FasBarc

I'=A4 I'—B I'A-C T,
(VR) (VL) B¢
I'FAVB I'AV B I''AV BEC

Review: Sequent Calculus (Curry=H

Cut rule:

I't:A x:A,A+Hu:B
I',A-uft/x]:B

Logical rules:

I'—t2:A Av-u:B
AE<{t,uy:ANB

(AR)

I'x:AFt.C I y:BFu:C

(AL) I.z2:A N BEt[fst(z)/x]:C TI,z:A A BFu[snd(z)/y]:C

I'x:AFt:B L) '=t:A x:B,Aru:C
]
'=Jxt:A>B I fiA>B, A+ ul(ft)/x]:C

(=R)

I'Ht:A I'+~u:B
'inl(t) AVB TI'Finr(u):AV B

(VR)

I'xAFu.C TI,y:BFuv:C
I,z:AV Bkcase z of inl(x) = ulinr(y) = v:C

(VL)

AT ctn tle s bcnn i mmanmaecntad lass arnt Funn smvnnfo nwn 1a 1rannmaal favnse 14 martim

Intuitionistic Linear Logic (IEER

-~

.

Fyxvdsa A=t B

(Contraction)

Axiom:

W T4

Structural rule:

I'A,B,A+C
B, A, AEC

(Exchange)

Cut rule:

'A4 A, A+B
IA+=B

zzA-t{z/x,z/y]:B

(Weakening)

I'=t:B
' z:A—t:B

~

Intuitionistic Linear Logic (IEE)

e If we wish to use both components of the pair, on the unique occasion when we use
the input, then we lose the ability to project. This leads to the multiplicative version
of conjunction, the tensor product 4 ® B.

e If we wish to project, then on the unique occasion when we use the input, we must
choose to take either the first or the second projection, and this is the only part of
the input we will ever see. So the additive conjunction A& B appears as a kind of
choice — an “external” choice in the terminology of CSP [19], since it is made by the
consumer of the datum.

e The disjoint sum (additive disjunction) A @ B appears as an internal choice, since it
is at the discretion of the producer of the datum whether the choice i1s made from
A — a value of the form inl(t), or from B — a value of the form inr(u).

e The linear implication 4 — B is the type of functions which use their argument
exactly once, internalizing linear inference.

Intuitionistic Linear Logic (IEER

/ Logical rules:

aR) (L -2
~1 I''1+-A
(®R) 1;*}_ AAI— AA(>I9_ 1133 (®L) Fl,ﬂ;lAc’@BBiCC
R G D e
@R) Tt el i
(®R) I'HA I'—B (@LanFC I ,B-C

\ I'-A®B TTHFA®B MA@ BEC

Intuitionistic Linear Logic (IEE)

Menu (price 17 Euros)

[(Q&S)
Quiche or Salad ®
Chicken or Fish 17E F < (C&F)
Banana or “Surprise du Chef*” ®
| (B&(PoT))

(*) either “Profiteroles” or “Tarte Tatin”

We can recognize here some of the meanings that we already discussed. The right of the sequent is
what you can get for 17 Euros. The tensor tells that for this price you get one “entrée”, one dish
and one dessert. The difference between & and @ is a bit more subtle, and the game interpretation
is helpful here. So let us start again from the beginning, considering a play between the restaurant
manager (the Player) and the customer (the Opponent). It is the Player’s responsibility to split the
17FE into three parts, corresponding to the cost of the three parts of the meal. May be, this is done

as follows:
S5EF Q&S 8EFC&F AEF B&(PaT)

17TEF (Q&S) @ (C&F) @ (B&(P & T))

Intuitionistic Linear Logic (IEE)

Now let the Opponent challenge 5F F Q&S:
5EFQ bHEES

5E F Q&S

which reads as: both Quiche and Salad are available to the customer, but he can get only one, and it is
his choice of picking one of the antecedents and to order, say, a Quiche. Thus the additive conjunction
can be understood as a ... disjunction embodying a notion of external choice (remember that in our
example the customer is the Opponent, or the context, or the environment). Let us now analyse a

proof of AE + B&(P @ T):
4E+-T

4E-B 4EFP®T

AE+ B&(P&T)

Suppose that the Opponent chooses the Surprise. Then it is the Player’s turn, who justifies 4E - P®T
using the right & rule. So, the Opponent will get a Tarte Tatin, but the choice was in the Player’s
hands. Thus @ has an associated meaning of internal choice. In summary, two forms of choice,
external and internal, are modelled by & and @, respectively. In the case of @, whether A or B is
chosen is controlled by the rule, that is, by the Player. In the case of &, the choice between A or B
is a choice of one of the antecedents of the rule, and is in the hands of the Opponent.

Intuitionistic Linear Logic (IEER

/ Logical rules:

aR) (L -2
~1 I''1+-A
(®R) 1;*}_ AAI— AA(>I9_ 1133 (®L) Fl,ﬂ;lAc’@BBiCC
R G D e
@R) Tt el i
(®R) I'HA I'—B (@LanFC I ,B-C

\ I'-A®B TTHFA®B MA@ BEC

Intuitionistic Linear Logic (IEE)

These connectives by themselves are far too weak to provide useful expressive
power. This is regained by reintroducing weakening and contraction in a controlled
form, not as omnipresent structural rules, but reflected into a datatype, the exponen-
tial '4 (“Of course A™). The effect is to make as many copies of a value of type
A available as may be needed.

That we have recovered adequate expressive power 1s witnessed by the fact that
intuitionistic logic can be interpreted in linear logic with the above connectives. In
particular, intuitionistic implication is recovered by

A>B='4—B.

'‘'= A - I'yA+-B
(Dereliction)

IR) —— RN
(R Trei4 I,'A-B

('I" means a sequence of the form 'A4,,...,14,.)

, I'''A,'A+-B . I'+B
(Contraction) T IAEB (Weakening) m

Bounded Linear Logic (BLL)

'=A4 I'A-B

('R) TSy (Dereliction) m
('I" means a sequence of the form '4,,...,14;.)
Ir’'A,'A+-B I'+B
ion) AT 2 Weakening) —— — —
(Contraction) T IAFB (Weakening) F1A-B

in Sections 3 and 4. If I'is A,,..., A, we write !;I" for !, A|,..., !, A,.
The rules for storage naturally induce polynomials:

S 1A Woakenino L7 B
torage ————!xﬁr}_ A eakening _—“F, "AL B
Conraction oA LA B Derelicrion A B
onitraction - ereiicrion —— .
r'.A-B " T LA-B

We may interpret these rules in second-order RLL, by translating !, A as

IQA®: - ®A

~—
x ®’s

Intuitionistic LL (Curry-Howares

patterns. We use X, Y, Z to range over finite sets of variables. Now Zy, the set of
patterns with variables in X, is defined as follows:

*,_€P, (o0, {yx), IxeP X@y, x@ye?

We can now define 7y, the linear terms with free variables in X, inductively as

follows:

® xeJ

® x€7,

o teTy,ueTy, XNnY=0 = t@u,tue Ty y
o tLuegy = {t,uyeJy

® (€7 = inl(1t),inr(t),!te Ty

® teTy 1, X¢X = Ax.teTy

o teTy, pePy, ueT vy, 72, XNZ=YNZ=0

= Iet t be P |n ueg—xuz
o teTy,ued 7,0, V677,10, XNZ={x,y} nZ=0
= case t of inl(x) = ulinr(y) = veJx._;

Intuitionistic LL (Curry-Howares

We now present the assignment of linear terms to proofs in intuitionistic linear
logic, in the same style as the term assignment for sequent calculus given in the
previous section. Our sequents now have the form

XAy, X A A

where the A, are linear formulae (built from the connectives 1, ®, —, &, @, !), the x;
are distinct variables, and te 7y, X = {x,, ..., x;}. Note that the rules presented below
are subject to the implicit constraint that the linearity conditions for well-formedness
of terms are satisfied. This constraint can always be met, e.g. by using distinct
variables for all instances of the Axiom.

Axiom: Logical rules:
I'—t:4
S — 1R) —— 1L
(Id) x:AFx:A (IR) 1 (L) I'zz1+let z bexint:4
Structural rule: I'~t:A A+ u:B I' x:A,y:BHt:C
(®R) , (®L) — Y —
INAFt®uA®B I'zzA® Bklet z be x®yin t:C

I'x:A,y:B,AFt.C
Iy:B,x:A, A+1t:C (<R I''x:A+1t:B (L) I't:A x:B,A+u:C
I-ix.t:A—B I ffA— B, A u[(ft)/x]:C

(Exchange)

Cut rule:

I'Ht:A x:A, A+ u:B
I',Ault/x]:B

Intuitionistic LL (Curry-Howares

I't:A TI'ku:B
I'=<{t,uy:A&B

(&R)

'x:A-t:C

&L
(&L) I'zzA&BFHlet z be {(x,_> in t:C

I'y:BFt:.C
I''zz:A&BFlet z be {_,y) in t:.C

reea r'—u:B
T=inl(t)A®B T'+inrw):A® B

(®R)

I''x:Aru:C I,y:BFuv:C
I'z:A® Btcase z of inl(x) = ulinr(y) = v:C

(®L)

Tt A
'R) —————
('R) 'FE=telA
(Dereliction) I'x:A+1t:B
ereliction
I'z'Alet z be 'x in t:B
, I x!'A, y:!A+t:B
Contract : .
(Contraction) Iz!A-let z be x@y in t:B
: I'—t:B
(Weakening)

Iz'A-let z be _ in t:B

Intuitionistic LL (Curry-Howarté

Operational semantics

We now give an operational semantics for the linear term calculus in exactly the
same style, and with the same supporting intuitions as the semantics of the A-calculus
given in the previous section. However, one notable difference emerges, as immediate
evidence of the more refined computational content of the linear types. Whereas
intuitionistic logic was perfectly neutral as to which evaluation strategy to adopt for
the A-calculus, in linear logic the logical structure of the types gives a clear indication
as to which form of evaluation to employ:

e For a term of tensor type A ® B we know that any consumer (e.g. a destructor
context let ['] be x ® y in u) will evaluate this term to a pair, and use both
components. This clearly indicates eager evaluation. Similarly, a term of type A — B
must evaluate to an abstraction, which when applied to any argument will evaluate
it exactly once. Evaluation of the argument exactly once is the slogan of call-
by-value [37]. Finally, any consumer of a term of type 4 @ B will evaluate it to
a term of the form inl(t) or inr(¢), and then use t in evaluating the appropriate arm
of a case statement; so once again, eager evaluation 1s indicated.

e On the other hand, a value of type A&B will evaluate to a pair, exactly one
component of which will be used in any given context. Since we cannot predict which
component will be used, it is clear that evaluating either component in advance of
their actual use will lead in general to redundant computation. Thus lazy evalu-
ation is indicated here. Again, a value of type ! 4 may be discarded altogether, so
evaluation in advance of actual use may lead to redundant computation, and lazy
evaluation is indicated.

Thus, we get a classification:

o ®, —, @ (cager evaluation)

o &, ! (lazy evaluation).

Intuitionistic LL (Curry-Howares

=

Canonical forms:

{toudy 't
* c®d £X. 1 inl(c) inr(d)

where ¢, d are canonical.
Evaluation relation:

tl= ulc

* | % let + besxin ulc

tle uld tle®d ulc/x,d/y]le
tR@ulc®d let t be x®y in ule

tl/sx.v ule vle/x]id
Ax.t|ix.t tulld

t§lv,w) vlc ul[c/x]|d

(tud e ud let t be <x,_Yin ulld

ty<v,wy wlce ulc/y]lld
let t be {_,y> in uld

the ulld

inl(t)4inl(c) inr(w){inr(d)
thinl(c) ulc/x]ld

case t of inl(x) = ulinr(y) = v|d

thinr(c) wvlc/y1d

case t of inl(x}) = ulinr(y) = v{d

t'v vlic wulc/x]id
Me!e let t be 'x in uld

thtv ulc tyle ullv/x,v/y}c

let t be _ in ulc let t be x@y in ulc

Classical Linear Logic (CLL)

The basic step in the extenston from intuitionistic to classical linear logic is the
introduction of the linear negation A*. The idea is that this will obey the same kind of
laws as classical negation, while constructive content is retained through linearity.
This requires the introduction of a number of new connectives, as duals to the existing
ones: L asdualto 1,® (“par”)as dual to ®, ? (“why not”) as dual to !, and 3 as dual to
V. (The two additive constructs & and @ will be dual to each other in CLL.) Linear
negation is then characterized by the following laws:

Att=4

1t=1

(A® B)*=A*PB*

(A&B)'=A+ @ B* (18)
(1A)-=24"~

(Vo. A =Fa. A+

A—oB=A*®B.

The syntax of linear formulas in CLL is then defined as follows. Formulas are built
from propositional variables «, f, y and their linear negations «-, f*, y* by the
following connectives and quantifiers:

Units | I

Multiplicatives & ¥®

Additives & @
9

Exponentials !
Quantifiers v o3

Classical Linear Logic (CLL)

The proof system for CLL is a fully symmetric sequent calculus, in which sequents

have the form

I'= A,

with the intended meaning that the formula ® I'—<% 4 is valid. However, a consider-
able economy is gained by observing that a sequent I" - 4 is equivalent, by (18), to the
sequent = I'*, 4; so it is sufficient to consider right-sided sequents only. The sequent
calculus presentation of CLL can then be given as follows:

rxiom b FrABA R4 4
X1 — XC c — u
oM T 4 ANEE B A A =T, 4
Unit P st
M P
b FTA 4B —T. A B
S —_
FT.A.A®B T . APB
' A -T.B —I A - B
With : Plus (i) — 2 Plus (i) ——2
: —T.A&B ws O TS B us) = e B

e —I,A . 21, A
Dereliction CT.04 Of Course Yy
=r . FTI,74,74
Weakening =) > Contraction m}:W
=1, A . I, A[B/
All () Exists 2B
HI,Va. A I, 3x. A

6.1. Syntax of proof expressions

Firstly, a point of terminology: we shall use /ist to mean finite sequence. We define
a number of syntactic categories:
e Aset 4" of names, ranged over by x, y, z. We use X, ¥, Z to range over lists of names.
e Terms have one of the forms

X

¢ @®
t®u tPu
inl(t) inr(u) X(P0Q)

ia; — ta@u x(P)

where t, u are terms, and P, Q are proof expressions.

e Coequations have the form t L u, where t, u are terms. We use @, £ to range over
lists of coequations.

® Proof expressions have the form ©;t, where @ is a list of coequations, and 7 is a list
of terms. We use P, Q to range over proof expressions.

CLL Computational Interpretat

Notation. The occurrences of x;,..., x; in a term of the form x,,..., x,(P0Q) or
X1,.--, Xx(P) are said to be passive; all other occurrences are active. If e is some
syntactic expression (term, coequation, proof expression, etc.), we write .4 (e) for the
set of names occurring in e, and A.4"(e) (P.4"(e)) for the set of names occurring
actively (passively) in e.

We shall now define an assignment of proof expressions to sequent proofs in CLL.
The 1dea 1s that, to each proof IT of a sequent - A,,..., 4;, we will assign a proof
expression @;t,, ..., t,, where @ corresponds to the uses of the Cut rule in I7.

To ensure that suitable linearity constraints are satisfied, we shall adopt the
following name convention (cf. the variable convention in [3]): different names are
introduced for each instance of the Axiom, With and Of Course rules.

CLL Computational Interpretati

Proof expression assignment for CLL

@, t:A,u:B, A

Axi Exch
MO AL x4 O e T B 4, 4
eI t:A FE: A u: At
Cut -
FO,z, tLul, A
Unit p ;I
ni er
%1 Pror®: L
Ti I, t:A FZE:4,u:B Par FE&;[,t:A, u:B
1mes
FO,E T A4,tQu:ARB FO:IL,tPu:A¥B
et t:A FEZ:ul, uB
With — oo B e B
H:x: I, x(@;f,t0=Z;u,u). A& B
eIt A . =& u.B
Plus (i) Plus (1i)

F@:I,inl(t):A® B @I, inr(u):A® B

CLL Computational Interpretati

/ O A =@ I

Dereliction O T A Weakening O A
. e t:74A, u7A
Contraction
eI t@u:?A
@170, t: A
Of Course —
x:?20, X(@5t, 1)1 A
@I, t:A , eI t:AB
All (%) Exists ' B/e]
e, t:Va. A eI, t:3a. A

.

CLL Computational Interpretat

6.2. Operational semantics. the linear CHAM

We now complete our computational interpretation of classical linear logic by
giving an operational semantics for proof expressions. Rather than directly defining
the relation of evaluation to canonical form, we shall define a one-step transition
relation on proof expressions, and define canonical forms as certain normal forms with
respect to this relation. This is because the notion of computation for proof expres-
sions is inherently parallel; the model is that the coequations form a pool of concur-
rent processes. In fact, our presentation of the operational semantics fits very nicely
into the framework of the chemical abstract machine proposed recently by Berry and
Boudol [5] as a paradigm for concurrent abstract machines. They describe the basic
ideas thus:

Most available concurrency models are based on architectural concepts, e.g.
networks of processes communicating by means of ports or channels. Such concepts
convey a rigid geometrical vision of concurrency. Our chemical abstract machine
model is based on a radically different paradigm ... where the concurrent compon-
ents are freely “moving” in the system and communicate when they come into
contact. ...

CLL Computational Interpretati

Structural rules

There are two basic structural rules:
e tlu=ult
o tlut'lu =t Lu,tlu

The first says that each coequation can be regarded as a multiset of exactly two
terms, the second that lists of coequations can be regarded as multisets.

These rules can be applied in any context:

=5
— -

C[O]1=C[Z]

The basic metarule for the CHAM refers to the transition relation —— to be
defined below.
Magical mixing rule: _ -
Reaction context rule:
P=*P P—Q Q=*Q O—=
P—0Q 0,,0,0,;;t—0,, %, 0,1

CLL Computational Interpretati

Reaction rules
These rules describe how lists of adjacent coequations react, giving rise to new lists.

Notation. Given X=Xx(,..., Xg, [=1,...,t;, we write x L to denote the list
X1 L[l,...,katk.
Communication:

tlx,xlu — tlu

Unit:
* | ®——
Pair:
tQult'Pu — rLt,ulu
Case Left:
j(@;t—’ t0zsd, u) L inl(v) — O, x Lt tlv Reaction cont-ext rule:
Case Right: O—=

(0L, (0 i, u) Linr(r) — Z,% Liulo 01,0, 8:1——6,, 5 83t

CLL Computational Interpretat

From the computational aspect, the most interesting rules are those for the
additives and exponentials. In both cases we have lazy types — & and !—which in the
concurrent framework must be implemented by some form of explicit synchronization.
This 1s the role of the forms x(P Q) and x(P). In both cases, proof expressions are
suspended from execution, and only resumed when sufficient information is available
(or, in more computational terms, when sufficient demand has been generated). In the
case of the additives, the With rule (which under the classical dualities is equivalent to
the intuitionistic rule (@ L)) corresponds to a case statement, i.e. a choice between two
alternatives. Clearly, we only want to evaluate that expression corresponding to the
alternative actually chosen; so we must wait until the choice is made. This is done
when the term x(P[Q) is cut against a term denoting a proof of the dual
(A& B): = A+ @® B*, of the form inl(t), where 1 is a proof of A*, or inr(u), where u is
a proof of B*; hence the Case Left and Case Right rules. So we must defer any
evaluation of the proofs of the side formulas I' of the With rule until this choice is
made. (Indeed, we don’t even know till then whether these proofs should be taken as

Read:

(O,)L — O, xLt,t Lu

Discard:
X(PyL —— x; 4 _,....x L
Copy:
XP)Llu@v — x L (x'@x"), x(P) Lu, x(PYy Lv

Similar considerations apply to the rules for the exponentials. The idea here is that
the term of type ? A+ specifies how many copies of the term of type ! 4 are required;
each of the terms for the side formulas ?I" of the Of Course rule which generated the
'A term x(P) must then be directed to ask for a corresponding multiple of copies from
its “input”.

CLL Computational Interpretat

Notational interlude: variants
We shall need to consider variants of terms ¢ occurring in a proof expression P, i.e.

copies of ¢ in which all names have been replaced by “fresh” names not already
occurring in P. In order to implement this global condition in a local way, we need
a little extra structure. We fix a bijection A4 =N, x {I, r}*, and extend the name
convention so that when a name x«>{x,, s is introduced in a proof expression, the

xo component is distinct from that of any name already occurring in the expression.
Now given a term t, we define t', " to be the result of replacing each occurrence of
a name x<»>{xq, sy int by y—{xq, s>, ze<{xq, sr), respectively. The idea is that the
following invariant is established by the proof expression assignment and maintained
by the transition relation to be defined below:

For all distinct names x—<{xq, s>, y<{¥yo, t » occurring in P, x, =y, implies that
s is incompatible with r (i.e. they have no upper bound in the prefix ordering).

Cleanup rule

Finally, we have a rule which tidies up a computation by consolidating information
back into the main body ¢ of a proof expression @;t. This is somewhat analogous to
collecting the answer substitution from a PROLOG computation.

Cleanup:
x1lt ®:t

» @:f[t/x] (xe AN (D).

We can now define the result of a computation. A proof expression P=0; 1t is
canonical if it 1s a —— -normal form, and each coequation in ©® has the form x L t or
t L x for some name x. P is cut-free if @ is empty.

Definition 6.1. We define P Q— P evaluates to canonical form Q —by:

def

PlQ <= P—>*(Q, Q canonical.

Quantitative Program Reasoning with Graded Modal Types

DOMINIC ORCHARD, University of Kent, UK
VILEM-BENJAMIN LIEPELT, University of Kent, UK
HARLEY EADES Ill, Augusta University, USA

In programming, some data acts as a resource (e.g., file handles, channels) subject to usage constraints.
This poses a challenge to software correctness as most languages are agnostic to constraints on data. The
approach of linear types provides a partial remedy, delineating data into resources to be used but never
copied or discarded, and unconstrained values. Bounded Linear Logic provides a more fine-grained approach,
quantifying non-linear use via an indexed-family of modalities. Recent work on coeffect types generalises
this idea to graded comonads, providing type systems which can capture various program properties. Here,
we propose the umbrella notion of graded modal types, encompassing coeffect types and dual notions of
type-based effect reasoning via graded monads. In combination with linear and indexed types, we show that
graded modal types provide an expressive type theory for quantitative program reasoning, advancing the
reach of type systems to capture and verify a broader set of program properties. We demonstrate this approach
via a type system embodied in a fully-fledged functional language called Granule, exploring various examples.

CCS Concepts: » Theory of computation — Modal and temporal logics; Program specifications; Pro-
gram verification; Linear logic; Type theory.

Additional Key Words and Phrases: graded modal types, linear types, coeffects, implementation

ACM Reference Format:

Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. 2019. Quantitative Program Reasoning
with Graded Modal Types. Proc. ACM Program. Lang. 3, ICFP, Article 110 (August 2019), 30 pages. https:
//doi.org/10.1145/3341714

Bounded Linear Logic (BLL)

'=A4 I'A-B

('R) TSy (Dereliction) m
('I" means a sequence of the form '4,,...,14;.)
Ir’'A,'A+-B I'+B
ion) AT 2 Weakening) —— — —
(Contraction) T IAFB (Weakening) F1A-B

in Sections 3 and 4. If I'is A,,..., A, we write !;I" for !, A|,..., !, A,.
The rules for storage naturally induce polynomials:

S 1A Woakenino L7 B
torage ————!xﬁr}_ A eakening _—“F, "AL B
Conraction oA LA B Derelicrion A B
onitraction - ereiicrion —— .
r'.A-B " T LA-B

We may interpret these rules in second-order RLL, by translating !, A as

IQA®: - ®A

~—
x ®’s

Graded Modal Types: GrMini

Types and terms of GRMINI are those of the linear A-calculus with two additional pieces of
syntax for introducing and eliminating values of the graded necessity type O,A:

tu= x| tity | Ax.t|[t] | let[x] = tint A, B:=A - B|0OA (terms and types)

The usual syntax of the A-calculus, with variables x, is extended with the term-former [¢] which
promotes a term to a graded modality, typed by O, A, as shall be seen in the typing rules. The term
let [x] = t; in #, dually provides elimination for graded modal types. The graded modality 00, A is an
indexed family of type constructors whose indices r range over the elements of a resource algebra—
in this case, a semlrlng (R, +,0, -, 1)—whose operatlons echo the structure of the proof/typmg

[DU S) DU DS S L Lt MMV N _ SUR I DRI NI (SUR R T 4 P S R 11

Graded Modal Types: GrMini

Typing judgments are of the form I + ¢ : A with typing contexts I' of the form:
Fa:=0|T,x:A|T,x:[A], (contexts)

Contexts are either empty 0, or can be extended with a linear variable assumption x : A or a
graded assumption x : [A],. For a graded assumption, x can behave non-linearly, with substructural
behaviour captured by the semiring element r, which describes x’s use in a term. We will denote
the domain of a context I, the set of variables assigned a type in the context, by |T|.
Typing for the linear A-calculus fragment is then given by the rules:
I''x:A+t:B INrFtH4:A—oB Ihrth: A I'rt:A

VAR ABS APP WEAK
x:Arx: A F'tAx.t: A—oB I+ -t B F,[A]Ol—t:A

Definition 3.1. [Context concatenation] Two contexts can be concatenated if they contain disjoint
sets of linear assumptions. Furthermore, graded assumptions appearing in both contexts are
combined using the additive operation of the semiring +. Concatenation + is specified as follows:

Cx: A+ =T+I"),x: A iff x ¢ || 0+T=T
T+T,x:A)=T+T"),x:A iff x¢|T| T+0=T
(T, x: [A],) + (T, x : [A]) = (T +T7), x : [A] 14

Graded Modal Types: GrMini

The next three rules employ the remaining semiring structure, typing the additional syntax as
well as connecting linear assumptions to graded assumptions:

Ix:Avrt:B [[]rt:A irt:0A In,x:[A],Ft:B
DER PR
[,x:[Aly+t:B r-|[T] v [t]:O0A I+ rlet[x] =tint, : B

LET

Dereliction (DER) converts a linear assumption to be graded, marked with 1. Subsequently, the
semiring element 1 relates to linearity, though in Gr (§4) it does not exactly denote linear use as
x : [A]; + t : Bdoes not imply x : A + t : B for all semirings once ordering is added to allow
approximation. Promotion (PR) introduces graded necessity with grade r, propagating this grade to
the assumptions via scalar multiplication of the context by r. For tracking number of uses, the rule
states that to produce the capability to reuse t of type A exactly r times requires that all the input
requirements for ¢ are provided r times over, hence we multiply the context by .

Definition 3.2. [Scalar context multiplication] Assuming that a context contains only graded
assumptions, denoted [I'] in typing rules, then I' can be multiplied by a semiring element r € R:

r-0=10 r-(T,x:[Als) = (r-T),x: [A]r.5

Graded Modal Types: Granulé

4.1 Syntax
A core subset of the surface-level syntax for Granule is given by the following grammar:
to=x|tit | Ap.t] [t] | n|Ct...t,|let(p) <t int, | () (terms)
—_——— ~——
A-calculus box constructors monadic metalanguage
pe= x | _ | [pl [n|Cpo...pn (patterns)
~—— ~_—— O — —
variables wildcard unbox constructors

The “boxing” (promotion) construct [¢] is dualised by the unboxing pattern [p], replacing the
specialised let-binding syntax of GRMINI, which is now syntactic sugar:

let[p] =tint, = (A[p]l.t2) 1 (syntactic sugar)

The syntax of GRMINI types is extended and a syntactic category of kinds is also now included:

ABRE:=A—B|K|a| AB| AopB | 0.A | ¢.A (types)
k ::= Type | Coeffect | Effect | Predicate | k;y >k, | TA (kinds)
opu=+ | x| — | <|<|=|>|=|#| U | M (type operators)

K :=Int | Char | () | X | IO | Nat | Level | Ext | Interval (type constructors)

Graded Modal Types: Granulé

GRMINI was parameterised at the meta-level by a semiring, providing a system with one graded
necessity modality. Granule instead allows various graded modalities, with different index domains,
to be used simultaneously within the same program. The type O.A captures different graded
necessity modalities identified by the type of the grade ¢ which is an element of a resource algebra:
a pre-ordered semiring (R, +,0, -, 1, C) with monotonic multiplication and addition which may be
partial. We colour in blue general resource algebra operations, and necessity grades in typing rules.
Within types, necessity grade terms ¢ (which we call coeffects) have the following syntax:

co=aleag+e|lag-c|0]|1]cUc]|cMe|flatten(c, R, ¢z, S) (coeffects)
| n | Private | Public | ¢;..co | o0 | (¢1, ¢2)

Definition 4.1. [Exact usage] The coeffect type Nat has the resource algebra given by the usual
natural numbers semiring (N, +, 0, -, 1, =), but notably with discrete ordering = giving exact usage
analysis in Granule (see §2). Thus, meet and join are only defined on matching inputs.

Graded Modal Types: Granulé

Definition 4.2. [Security levels] The coeffect type Level provides a way of capturing confiden-
tiality requirements and enforcing noninterference, with a three-point lattice of security levels
{Irrelevant C Private T Public} with 0 = Irrelevant, 1 = Private, + = LI (join of the induced
lattice), and if » = Irrelevant or s = Irrelevant then r - s = Irrelevant otherwise r-s = r U s.
Multiplication - is such that if a value is used publicly, all of its dependencies must also be public;
a private value can depend on public and private values. Recall that + represents contraction (i.e.,
a split in the dataflow of a value). Therefore, a dependency used publicly must be permitted for
public use even if it used elsewhere privately, thus Public+Private = Public. Since 0 = Irrelevant
(bottom element), we can weaken at any level by approximation. Similarly, since 1 = Private, we
can essentially derelict at either Private or Public by approximation. The appendix (Lemma A.1)

gives the proof that this resource algebra is a preordered semiring.

Graded Modal Types: Granulé

Definition 4.3. [Intervals] The Interval constructor is unary, of kind Coeffect — Coeffect, where
Interval R is inhabited by pairs of R elements, giving lower and upper bounds. Thus, Interval R
is the semiring over {c..d | c € RAd € R A cCrd}, i.e., pairs written with the Granule syntax
c..d, where the first component is less than the second (according to the preorder on R). Units are
0 = 0g..0gr and 1 = 1..1r and the operations and pre-order are defined as in interval arithmetic:

cj..cy +dp..dy, = (c;+rdp)..(cy +rdy)
cj..cy ~dj..dy, =(c;-djMre;-dyMpey-diMpey-dy).(cp-diUgcer-dy Ug ey -dy Ug cy - dy)
cj..c, =dp..dy, =(d;Crep) A (cy Trdy)
For Interval Nat (used in Section 2 to capture lower and upper bounds on usage), multiplication
simplifies to ¢;..cy, - dj..dy, = (¢c; - dj)..(cy - d,). Whilst Nat is discrete, the implementation uses the <

natural number ordering to form the Interval Nat resource algebra so that it can properly capture
lower and upper bounds on use.

Graded Modal Types: Granulé

Definition 4.4. [Extended coeffects] For a resource algebra R, applying the unary constructor
Ext R extends the resource algebra with an element co (i.e., Ext R = RU {co}) with operations:
Or (r=0g)V(s=0g)
r-s=q00 ((r=00)A(s#0r)V((s=00)A(r#0g))
r-gs otherwise

r+s= .
r+rs otherwise

{oo (r =) V (s = oo)
The pre-order for Ext R is that of R, but with » T oo for all 7. Some Section 2 examples used coeffects
of kind Interval (Ext Nat), where 0..c0 captures arbitrary (“Cartesian” usage), providing a type
analysis akin to the ! modality of linear logic. In Granule, the type “A [1” is an alias for “A [0..00]”.

Definition 4.5. [Products] Given two resource algebras R and S, we can form a product resource
algebra R X S whose operations are the pairwise application of the operations for R and S, e.g.,
(r,s)+(r’',s") = (r+rr’,s+ss’). This is useful for composing grades together to capture multiple
properties at once. We treat products as commutative and associative.

Graded Modal Types: Granulé

Finally, an inter-resource algebra operation “flatten” describes how to sequentially compose
two levels of grading, which occurs when we have nested pattern matching on nested graded
modalities—a novel feature. Consider the following example, which takes a value inside two layers
of graded modalities, pattern matches on both simultaneously, and then uses the value:

unpack : (Int [2]) [3] — Int
unpack [[x]] = x + x + x + x + x + X

Here, double unboxing computes the multiplication of the two grades, capturing that x is used six
times. What if we have two different graded modalities (i.e., graded by different coeffect types)?
The flatten operation is used here, taking two coeffect terms and their types (i.e., 7 : Rand r’" : R'),
computing a coeffect term describing composition of r and r’, resolved to a particular (possibly
different) coeffect type. If flatten(r, R, ¥’, R’) = s : S then we can type the following:

MIx]].[x] : V{a :Type,r: TR, ¥ : TR ,s: 1S} . 0-(0,a) — Osa

Currently, flatten is defined in Granule as follows (but can be easily extended at a later date):

Definition 4.6. For the built-in resource algebras, flatten is the symmetric congruence closure of:

flatten(r, Ext Nat, s, Ext Nat) = r - s : Ext Nat flatten(r, Nat, s, Ext Nat)=r - s : Ext Nat
flatten(r, R, ry..ro, Interval R)= (r- ry)..(r - r;) : Interval R flatten(r, Nat, s, Nat) =r-s: Nat
flatten(r, R, (r,s1),RXS) = (r-r,s)):RxS flatten(r, Level, s, Level) = rMs : Level
flatten(s, S, (r1, $1), RXS) =(r;,s-81):RXS flatten(r,R,s,S) |R#S=(r,s): RXS

Thus for Nat we flatten using multiplication, and similarly when combining Nat with an Ext Nat
(resolving to the larger type Ext Nat). For levels, we take the meet, i.e., Opyplic(Oprivate@) is flattened
to Opyivate®, avoiding leakage. For two different resource algebras, flatten forms a product, giving a
composite analysis. Note, flatten is a homomorphism with respect to the resource algebra operations.
The next section shows how flatten is used in typing.

