
CS 428/528 Lecture 17: Linear Logic

March 26, 2024

Based on Abramsky's TCS93 paper, Curien’s
2018 tutorial, and Orchard et al. ICFP19 paper

Computational Interpretation of Linear Logic [Abramsky
TCS 1993]

Theoretical Computer Science 111 (1993) 3-57
Elsevier

Computational interpretations of
linear logic

Samson Abramsky
Deprrrmwnt of Compuring. lnywriul College qf’Science, Technolog~~ md Medicine. 180 Queen’.c Gate.
London SW7 2BZ. CiK

Abramsky, S., Computational interpretations of linear logic, Theorettcal Computer Science 111
(1993) 3-57.

We study Guard’s linear logic from the point of view of giving a concrete computational interpreta-
tion of the logic, based on the Curry-Howard isomorphism. In the case of Intuitionistic linear logic,
this leads to a refinement of the lambda calculus, giving finer control over order of evaluation and
storage allocation, while maintaining the logical content of programs as proofs, and computation as
cut-elimination. In the classical case, it leads to a concurrent process paradigm with an operational
semantics in the style of Berry and Boudol’s chemical abstract machine. This opens up a promising
new approach to the parallel implementation of functional programming languages; and offers the
prospect of typed concurrent programming in which correctness is guaranteed by the typing.

1. Introduction

Since its inception, linear logic [12] has offered great promise, as a formalism
particularly well-suited to serve at the interface between logic and computer science.
l From the logical side, linear logic combines the symmetries of classical logic, as

made manifest in Gentzen’s sequent calculus, with the constructive content of
intuitionistic logic.

l From the computational side, linear logic offers a logical perspective on computa-
tional issues such as control of resources and order of evaluation. By contrast,
extant declarative languages either adulterate their logical content in the search for
efficiency, or require an elaborate infrastructure of implementation techniques,
which do not themselves draw inspiration from the mathematical structure of the
language.

Correspondence to: S. Abramsky, Department of Computing, Imperial College of Science, Technology and
Medicine, 180 Queen’s Gate, London SW7 282, UK. Email: sa(n doc.ic.ac.uk.

0304-3975/93/$06.00 I$? 1993-Elsevier Science Publishers B.V. All rights reserved

Review: Natural Deduction
6 S. Ahramsk)

sequent calculus, we present “natural deduction in sequent form”, in which the objects
being derived are sequents

AI,...,A,kA.

(We use r, d to range over sequences of formulas, including the empty sequence; and
write r, d for concatenation of sequences.) What distinguishes the system as natural
deduction is the form of the rules for each connective: these are structured into
introduction rules and elimination rules.

Axiom:

Structural rules:

(Exchange)
l-, A, B, d t C
1-, B, A, d k C

(Contraction)
l-, A, AF B rFB

r,AkB
(Weakening) ~

r,At-B

Logical rules:

(AI)
1-FA rEB

(AE)
rFAAB rFAAB

rt-AAB TEA TFB

(11)
r,AtB

(1E)
rt-A3B TEA

I-EAIB rtB

(V 1)
l-t-A TFB

(VE)
rt-AVB r,AFC r,BFC

rkAVB Tt-AVB rkc

Note that all the “action” in the natural-deduction-style logical rules is on the
right-hand side of the turnstile. Also notice the asymmetry between the rules for
conjunction and disjunction.

Using the structural rules, it is easy to derive the following variant of (3 E):

and hence the cut rule

which is not a basic rule of natural deduction.

Review: Natural Deduction for Intuitionistic Logic

6 S. Ahramsk)

sequent calculus, we present “natural deduction in sequent form”, in which the objects
being derived are sequents

AI,...,A,kA.

(We use r, d to range over sequences of formulas, including the empty sequence; and
write r, d for concatenation of sequences.) What distinguishes the system as natural
deduction is the form of the rules for each connective: these are structured into
introduction rules and elimination rules.

Axiom:

Structural rules:

(Exchange)
l-, A, B, d t C
1-, B, A, d k C

(Contraction)
l-, A, AF B rFB

r,AkB
(Weakening) ~

r,At-B

Logical rules:

(AI)
1-FA rEB

(AE)
rFAAB rFAAB

rt-AAB TEA TFB

(11)
r,AtB

(1E)
rt-A3B TEA

I-EAIB rtB

(V 1)
l-t-A TFB

(VE)
rt-AVB r,AFC r,BFC

rkAVB Tt-AVB rkc

Note that all the “action” in the natural-deduction-style logical rules is on the
right-hand side of the turnstile. Also notice the asymmetry between the rules for
conjunction and disjunction.

Using the structural rules, it is easy to derive the following variant of (3 E):

and hence the cut rule

which is not a basic rule of natural deduction.

Review: Curry-Howard Correspondance

Computational interpretations of linear logic I

2.2. Term assignment .for natural deduction

We now assign terms of the typed 3.-calculus to natural deduction proofs. From the
proof-theoretic point of view, the signfiicance of this is to give a “functional interpreta-
tion” of intuitionistic proofs; this is an embodiment of the Heyting semantics for
intuitionistic logic, in which formulas (or “propositions”) are interpreted by means of
their proofs: a proof of a conjunction is a pair of proofs of the conjuncts; a proof of an
implication A 2 B is a (constructive) function mapping proofs of A to proofs of B;
a proof of a disjunction A V B is either a proof of A or a proof of B, together with the
information as to which disjunct was actually proved. Thus, propositions are viewed
as data types:

A A B = A x B (Cartesian product),

A 2 B = A=sB, (function space),

A V B = A+ B (disjoint union).

From the functional programming point of view, the programs (terms) have
a primary interest of their own. From this perspective, what we have is a type inference
system for functional programs, which assigns types to terms, rather than a logical
system assigning terms to proofs. Of course, the advantage of an isomorphism is that
both views can coexist harmoniously.

We present the term assignment as a version of natural deduction in which the
objects being derived now have the form

xl:A 1, . . . , x,:A, I- t:A

where the xi are distinct variables, and b is a term. We present this system (and all
others in this paper) in the style of Curry rather than that of Church [4]; i.e. terms
have no embedded types, and can have many types assigned to them. This choice is
made for technical convenience rather than necessity, and certainly does not reflect
any ideological commitment.

Axiom:

(14 x:At-x:A

Structural rules:

(Exchange)
I-, x:A, y:B, A t- t:C
I-, y:B, x:A, d I- t:C

(Contraction)
I-,x:A,y:Ak t:B

(Weakening)
l-t t:B

1-, z:A F t[z/x, z/y]:B I-, z: A k t:B

Computational interpretations of linear logic I

2.2. Term assignment .for natural deduction

We now assign terms of the typed 3.-calculus to natural deduction proofs. From the
proof-theoretic point of view, the signfiicance of this is to give a “functional interpreta-
tion” of intuitionistic proofs; this is an embodiment of the Heyting semantics for
intuitionistic logic, in which formulas (or “propositions”) are interpreted by means of
their proofs: a proof of a conjunction is a pair of proofs of the conjuncts; a proof of an
implication A 2 B is a (constructive) function mapping proofs of A to proofs of B;
a proof of a disjunction A V B is either a proof of A or a proof of B, together with the
information as to which disjunct was actually proved. Thus, propositions are viewed
as data types:

A A B = A x B (Cartesian product),

A 2 B = A=sB, (function space),

A V B = A+ B (disjoint union).

From the functional programming point of view, the programs (terms) have
a primary interest of their own. From this perspective, what we have is a type inference
system for functional programs, which assigns types to terms, rather than a logical
system assigning terms to proofs. Of course, the advantage of an isomorphism is that
both views can coexist harmoniously.

We present the term assignment as a version of natural deduction in which the
objects being derived now have the form

xl:A 1, . . . , x,:A, I- t:A

where the xi are distinct variables, and b is a term. We present this system (and all
others in this paper) in the style of Curry rather than that of Church [4]; i.e. terms
have no embedded types, and can have many types assigned to them. This choice is
made for technical convenience rather than necessity, and certainly does not reflect
any ideological commitment.

Axiom:

(14 x:At-x:A

Structural rules:

(Exchange)
I-, x:A, y:B, A t- t:C
I-, y:B, x:A, d I- t:C

(Contraction)
I-,x:A,y:Ak t:B

(Weakening)
l-t t:B

1-, z:A F t[z/x, z/y]:B I-, z: A k t:B

Review: Curry-Howard Correspondance

Computational interpretations of linear logic I

2.2. Term assignment .for natural deduction

We now assign terms of the typed 3.-calculus to natural deduction proofs. From the
proof-theoretic point of view, the signfiicance of this is to give a “functional interpreta-
tion” of intuitionistic proofs; this is an embodiment of the Heyting semantics for
intuitionistic logic, in which formulas (or “propositions”) are interpreted by means of
their proofs: a proof of a conjunction is a pair of proofs of the conjuncts; a proof of an
implication A 2 B is a (constructive) function mapping proofs of A to proofs of B;
a proof of a disjunction A V B is either a proof of A or a proof of B, together with the
information as to which disjunct was actually proved. Thus, propositions are viewed
as data types:

A A B = A x B (Cartesian product),

A 2 B = A=sB, (function space),

A V B = A+ B (disjoint union).

From the functional programming point of view, the programs (terms) have
a primary interest of their own. From this perspective, what we have is a type inference
system for functional programs, which assigns types to terms, rather than a logical
system assigning terms to proofs. Of course, the advantage of an isomorphism is that
both views can coexist harmoniously.

We present the term assignment as a version of natural deduction in which the
objects being derived now have the form

xl:A 1, . . . , x,:A, I- t:A

where the xi are distinct variables, and b is a term. We present this system (and all
others in this paper) in the style of Curry rather than that of Church [4]; i.e. terms
have no embedded types, and can have many types assigned to them. This choice is
made for technical convenience rather than necessity, and certainly does not reflect
any ideological commitment.

Axiom:

(14 x:At-x:A

Structural rules:

(Exchange)
I-, x:A, y:B, A t- t:C
I-, y:B, x:A, d I- t:C

(Contraction)
I-,x:A,y:Ak t:B

(Weakening)
l-t t:B

1-, z:A F t[z/x, z/y]:B I-, z: A k t:B

Review: Curry-Howard Correspondance
8 S. Ahramsk,~

Logical rules:

(AI)
Tkt:A rtu:B l-l--r:AAB rtt:AAB

f k(t,u):A A B
(AE)

rt-fst(t):A rtsnd(t):B

(11)
I-, .u:A k t:B

(3E)
l-I-t:AzB f ku:A

rFix.t:A 3B r F tu:B

(v 1)
rFrt:A l-tU:B

I-t- inl(t):A V B Tt inr(u):A V B

(V E)
I-kt:A V B L’s:AFu:C I-,y:Btv:C
r Fcase t of inl(x) - ulinr(y) * v:C

2.3. Operational semmtics

From the proof-theoretic point of view, the next step would be to set up an
equational theory for terms, reflecting the intended notion of equivalence of proofs;
and to use this to translate normalization of proofs into reduction of terms to normal
forms. However, we shall proceed in a different fashion, following a method of
presenting operational semantics inspired by Martin-Lof [29], and currently widely
used under the name of natural or relational semantics [24, 351. There are a number of
reasons for this choice:

This style of formalization of operational semantics is much better suited to
specifying realistic programming languages, in which the evaluation strategy is an
intrinsic part of the language, than an equational theory or term-rewriting system.
The style is also more robust, since it extends smoothly to languages incorporating
such features as lazy evaluation and general recursion, in which it is no longer the
case that every program has a normal form.
There are technical advantages, as witnessed by our work in Sections 5 and 8. The
main results are considerably easier to prove. While it may be objected that they are
weaker than the corresponding results for reduction to normal form, they have
a wider range of applicability, to situations where the stronger results may actually
fail.

l The most telling point is that the Martin-Liif style of operational semantics has
what the theory of reductions for proofs significantly lacks: the evaluation rules are
formally inevitable, and write themselves. By contrast, the “commutative conver-
sions” e.g. for disjunction are unmemorable and awkward. Moreover, the evalu-
ation rules capture what is actually done in a computation.
Before presenting the operational semantics for typed i-calculus, we shall explain

the general concepts underlying this approach. Firstly, there is a classification of
constructions on terms into two groups: constructors (corresponding to introduction

Review: Operational Semantics (Lazy)

Computational interpretations of’ linear logic 9

rules) and destructors (corresponding to elimination rules). (This classification, of
course, goes right back to the pioneers McCarthy [30] and Landin [26], although
they lacked the proof-theoretic perspective.) Constructors produce information (pieces
of structured data); destructors coMsulne it. The basic unit of computation (reduction
step) is when a destructor meets a corresponding constructor; the author has found it
suggestive to think of particles of information and anti-information colliding and
annihilating each other, possibly generating some new particles ~ a communication
event. Note that the operational significance of type checking is precisely to ensure
that a constructor of one type never collides with a destructor of a different type ~
i.e. that the consumer can always plug in to the producer, and communication
occur.

We think of computation as applying only to programs, i.e. closed terms. The
overall effect of a computation is to reduce a program to a canonical form, in which
some quantity of information has been made explicit, by being put into constructor
form. At this point, a bifurcation occurs, between lazy (including call-by-name)
evaluation ~ the principle of producing as little information as possible at each stage
of evaluation - and eager (including call-by-value) evaluation, in which as much as
possible is produced. Each of these determines an evaluation strategy, and hence an
operational semantics. The proof system in itself does not enforce a strategy on us.
This is not too surprising, since exterzsional differences between these strategies only
show up in the J-calculus in the presence of nonterminating programs (see e.g. [39]),
and under the strict correspondence of typed programs with proofs, we have strong
normalization, so that all programs ~ and indeed all strategies - terminate.

(However, it is one of the most notable features of linear logic that a clear
perspective on lazy vs. eager evaluation is provided there, even at the pure logical
level, and in the absence of divergence. See Section 3.)

For each of the lazy and eager strategies we shall specify a set of canonical forms
and present the operational semantics in terms of an evaluation relation tuc, to be read
as “1 evaluates (or converges) to canonical form c”.

Lazy evaluution

Here the canonical forms are all programs (closed terms) with a constructor at the
top.

Canonical forms:

ix.t (f> u> inl(t) inr(u)

Evaluation relation:
This is defined inductively, as the least satisfying the following clauses:

tU(u, v) uuc tlj(u, v) vuc
(t3 u>u cc u> fst(t)ljc snd(t)Jc 10 S. Abramsky

tlJ/lx.u u[u/x]Uc

ix.tu2x.t tul,lc

inl(t)Uinl(t) inr(u)Uinr(u)

tl,Iinl(w) u[w/x]lJc

case t of inl(x) * ulinr(y) 3 z;Ijc

tUinr(w) uCw/~lUc
case t of inl(x) * ulinr(y) * vI,Ic

Eager ez;aluation

Canonical forms:

2x.t CC? d) inl(c) inr(d)

where c, d are canonical forms.
Note that any abstraction ix.t is canonical, since we only evaluate programs, and

t may not be closed. This exactly mirrors what is done in actual eager evaluation
languages, e.g. ML [35].

Evaluation relation:

tUc ul,ld tU<c, d> tU<c, d)
(t, u>U(c, d) fst(t)Uc snd(t)ud

tU1.x.c uuc u[c/x]lJd

ix.tu2x.r tuljd

tUc uUd
inl(t)Uinl(c) inr(u)Uinr(d)

tUinl(c) u[c/x]Ud

case t of inl(x) S- ujinr(y) + vl,ld

tUinr(c) c[c/y]Ud

case t of inl(x) + ulinr(y) * cl,ld

2.4. Sequent calculus

We now review the sequent calculus presentation of intuitionistic logic. The objects
derived in this calculus are exactly the same sequents r t- A as in (our version of)
natural deduction. The difference appears in the form of the rules. Firstly, the Cut rule

is taken as primitive in sequent calculus. The Axiom and structural rules are as before.
The logical rules are different: they are structured into lef and right rules rather
than into introduction and elimination rules. The right rules are the same as the

Review: Operational Semantics (Eager)

10 S. Abramsky

tlJ/lx.u u[u/x]Uc

ix.tu2x.t tul,lc

inl(t)Uinl(t) inr(u)Uinr(u)

tl,Iinl(w) u[w/x]lJc

case t of inl(x) * ulinr(y) 3 z;Ijc

tUinr(w) uCw/~lUc
case t of inl(x) * ulinr(y) * vI,Ic

Eager ez;aluation

Canonical forms:

2x.t CC? d) inl(c) inr(d)

where c, d are canonical forms.
Note that any abstraction ix.t is canonical, since we only evaluate programs, and

t may not be closed. This exactly mirrors what is done in actual eager evaluation
languages, e.g. ML [35].

Evaluation relation:

tUc ul,ld tU<c, d> tU<c, d)
(t, u>U(c, d) fst(t)Uc snd(t)ud

tU1.x.c uuc u[c/x]lJd

ix.tu2x.r tuljd

tUc uUd
inl(t)Uinl(c) inr(u)Uinr(d)

tUinl(c) u[c/x]Ud

case t of inl(x) S- ujinr(y) + vl,ld

tUinr(c) c[c/y]Ud

case t of inl(x) + ulinr(y) * cl,ld

2.4. Sequent calculus

We now review the sequent calculus presentation of intuitionistic logic. The objects
derived in this calculus are exactly the same sequents r t- A as in (our version of)
natural deduction. The difference appears in the form of the rules. Firstly, the Cut rule

is taken as primitive in sequent calculus. The Axiom and structural rules are as before.
The logical rules are different: they are structured into lef and right rules rather
than into introduction and elimination rules. The right rules are the same as the

10 S. Abramsky

tlJ/lx.u u[u/x]Uc

ix.tu2x.t tul,lc

inl(t)Uinl(t) inr(u)Uinr(u)

tl,Iinl(w) u[w/x]lJc

case t of inl(x) * ulinr(y) 3 z;Ijc

tUinr(w) uCw/~lUc
case t of inl(x) * ulinr(y) * vI,Ic

Eager ez;aluation

Canonical forms:

2x.t CC? d) inl(c) inr(d)

where c, d are canonical forms.
Note that any abstraction ix.t is canonical, since we only evaluate programs, and

t may not be closed. This exactly mirrors what is done in actual eager evaluation
languages, e.g. ML [35].

Evaluation relation:

tUc ul,ld tU<c, d> tU<c, d)
(t, u>U(c, d) fst(t)Uc snd(t)ud

tU1.x.c uuc u[c/x]lJd

ix.tu2x.r tuljd

tUc uUd
inl(t)Uinl(c) inr(u)Uinr(d)

tUinl(c) u[c/x]Ud

case t of inl(x) S- ujinr(y) + vl,ld

tUinr(c) c[c/y]Ud

case t of inl(x) + ulinr(y) * cl,ld

2.4. Sequent calculus

We now review the sequent calculus presentation of intuitionistic logic. The objects
derived in this calculus are exactly the same sequents r t- A as in (our version of)
natural deduction. The difference appears in the form of the rules. Firstly, the Cut rule

is taken as primitive in sequent calculus. The Axiom and structural rules are as before.
The logical rules are different: they are structured into lef and right rules rather
than into introduction and elimination rules. The right rules are the same as the

Review: Sequent Calculus

10 S. Abramsky

tlJ/lx.u u[u/x]Uc

ix.tu2x.t tul,lc

inl(t)Uinl(t) inr(u)Uinr(u)

tl,Iinl(w) u[w/x]lJc

case t of inl(x) * ulinr(y) 3 z;Ijc

tUinr(w) uCw/~lUc
case t of inl(x) * ulinr(y) * vI,Ic

Eager ez;aluation

Canonical forms:

2x.t CC? d) inl(c) inr(d)

where c, d are canonical forms.
Note that any abstraction ix.t is canonical, since we only evaluate programs, and

t may not be closed. This exactly mirrors what is done in actual eager evaluation
languages, e.g. ML [35].

Evaluation relation:

tUc ul,ld tU<c, d> tU<c, d)
(t, u>U(c, d) fst(t)Uc snd(t)ud

tU1.x.c uuc u[c/x]lJd

ix.tu2x.r tuljd

tUc uUd
inl(t)Uinl(c) inr(u)Uinr(d)

tUinl(c) u[c/x]Ud

case t of inl(x) S- ujinr(y) + vl,ld

tUinr(c) c[c/y]Ud

case t of inl(x) + ulinr(y) * cl,ld

2.4. Sequent calculus

We now review the sequent calculus presentation of intuitionistic logic. The objects
derived in this calculus are exactly the same sequents r t- A as in (our version of)
natural deduction. The difference appears in the form of the rules. Firstly, the Cut rule

is taken as primitive in sequent calculus. The Axiom and structural rules are as before.
The logical rules are different: they are structured into lef and right rules rather
than into introduction and elimination rules. The right rules are the same as the

Computtrtional interpretations of linear loyic 11

introduction rules of natural deduction. The left rules introduce the principal connect-
ive on the left of the turnstile.

Logical rules:

(AR)
I-t-A At-B

f,AtAA B (ALI
f,AtC r,Bl-C

I-,AABtC T,AABtC

(V RI
I-I-A l-l--B

(V L)
I-,AtC I-,BtC

TkAVB I-I-AVB l-,AVBtC

The importance of sequent calculus and the symmetries it brings to light has been
forcefully argued by Girard [lS]. These symmetries are only partially on view in the
intuitionistic sequent calculus, which incorporates an important asymmetry, in that
only a single formula can appear on the right-hand side of the turnstile. This is
intimately linked with the possibility of a functional interpretation for intuitionistic
logic, since it corresponds to the asymmetric nature of functions with respect to inputs
(premises) and outputs (conclusions).

However, the symmetry that does exist between the left and right rules can be nicely
related to our earlier discussion of constructors and destructors. Constructors (gener-
ated by right rules) build structure on the output

while destructors (generated by left rules) decompose structure on the input

The most familiar instance of this latter pattern is the conditional, which is general-
ized to the case statement in typed i.-calculus; more generally yet, destructors corre-
spond to pattern-matching, which has become an important feature of functional
programming languages [6,9,45]. For function types, the destructor is application,
which decomposes a function into its graph.

Term assignment ,for sequent calculus

We now show how terms can be assigned to proofs in the sequent calculus. The
terms being assigned and the form of the sequents are, of course, exactly the same as
for natural deduction. The point is to show the actual assignments corresponding to
the sequent calculus rules. Although in principle these follow automatically from the
known translations of sequent calculus into natural deduction (see e.g. [15]), they do
not seem to be as well known as they might be.

Review: Sequent Calculus (Curry-Howard)
12

Cut rule:

r F t:A x:A, A F u:B

S. Ahrmshy

r, ‘4 t u[t/x]:B

Logical rules:

(AR)
rtt:A Lltu:Il

r,At(t,u):A AB

(ALI
I-, x:A t t:C 1-, y:B t u:C

T,z:A A Btt[fst(z)/x]:C T,z:A A BFu[snd(z)/y]:C

(3R)
r,x:Att:B rt-t:A x:B,dFu:C

l-kix.t:A3B
(IL) r,f:A3B,d tu[(ft)/x]:c

i-t t:A rFu:B
(‘JR) r t inl(t):A V B r F inr(u): A V B

(VL)
r,.v:AFu:C r,y:BFc:C

T,z:A V Bt-case z of inl(x) + ulinr(y) a c:C

Note that terms generated by cut-free proofs are in normul,form; in particular, terms
generated by the left rules have variables in the head position, so no redexes are
created. Redexes only arise as a result of the substitutions performed by applications
of the cut rule. Thus all computation is concentrated into the process of cut
elimination.

3. Intuitionistic linear logic

The basic idea of linear logic [123 is to control the use of resources. In the functional
framework, a resource may be taken to be a piece of information ~ of data ~ supplied
as an input to a computation. The structural rules of intuitionistic logic (excluding the
trivial exchange rule) allow us to copy resources (Contraction) and to discard them
(Weakening):

I-, x:A, y:A t t:B I-Ft:B
(Contraction)

i-,z:Att[z/x,z/y]:B (Weakening) r z. A t t: B
> .

Specifically, Contraction allows multiple occurrences of a variable to appear in the
proof term, while Weakening allows variables to be introduced as premises which do
not appear in the proof term at all.

Linear logic arises by dropping these two structural rules. This means that each
input must be used exactly once in producing the output. This has immediate

Intuitionistic Linear Logic (ILL)

12

Cut rule:

r F t:A x:A, A F u:B

S. Ahrmshy

r, ‘4 t u[t/x]:B

Logical rules:

(AR)
rtt:A Lltu:Il

r,At(t,u):A AB

(ALI
I-, x:A t t:C 1-, y:B t u:C

T,z:A A Btt[fst(z)/x]:C T,z:A A BFu[snd(z)/y]:C

(3R)
r,x:Att:B rt-t:A x:B,dFu:C

l-kix.t:A3B
(IL) r,f:A3B,d tu[(ft)/x]:c

i-t t:A rFu:B
(‘JR) r t inl(t):A V B r F inr(u): A V B

(VL)
r,.v:AFu:C r,y:BFc:C

T,z:A V Bt-case z of inl(x) + ulinr(y) a c:C

Note that terms generated by cut-free proofs are in normul,form; in particular, terms
generated by the left rules have variables in the head position, so no redexes are
created. Redexes only arise as a result of the substitutions performed by applications
of the cut rule. Thus all computation is concentrated into the process of cut
elimination.

3. Intuitionistic linear logic

The basic idea of linear logic [123 is to control the use of resources. In the functional
framework, a resource may be taken to be a piece of information ~ of data ~ supplied
as an input to a computation. The structural rules of intuitionistic logic (excluding the
trivial exchange rule) allow us to copy resources (Contraction) and to discard them
(Weakening):

I-, x:A, y:A t t:B I-Ft:B
(Contraction)

i-,z:Att[z/x,z/y]:B (Weakening) r z. A t t: B
> .

Specifically, Contraction allows multiple occurrences of a variable to appear in the
proof term, while Weakening allows variables to be introduced as premises which do
not appear in the proof term at all.

Linear logic arises by dropping these two structural rules. This means that each
input must be used exactly once in producing the output. This has immediate

Computational intrrprrtations of linear logic 13

implications for the interpretation of the logical connectives. Firstly, we find that two
distinct interpretations of conjunction, or in programming terms a type of pairs of
values, arise:

If we wish to use both components of the pair, on the unique occasion when we use
the input, then we lose the ability to project. This leads to the multiplicative version
of conjunction, the tensor product A 0 B.
If we wish to project, then on the unique occasion when we use the input, we must
choose to take either the first OY the second projection, and this is the only part of
the input we will ever see. So the additive conjunction A&B appears as a kind of
choice - an “external” choice in the terminology of CSP [191, since it is made by the
consumer of the datum.
The disjoint sum (additive disjunction) A @ B appears as an internal choice, since it
is at the discretion of the producer of the datum whether the choice is made from
A ~ a value of the form inl(t), or from B ~ a value of the form inr(u).
The linear implication A + B is the type of functions which use their argument
exactly once, internalizing linear inference.
These connectives by themselves are far too weak to provide useful expressive

power. This is regained by reintroducing weakening and contraction in a controlled
form, not as omnipresent structural rules, but reflected into a datatype, the exponen-
tial !A (“Of course A”). The effect is to make as many copies of a value of type
A available as may be needed.

That we have recovered adequate expressive power is witnessed by the fact that
intuitionistic logic can be interpreted in linear logic with the above connectives. In
particular, intuitionistic implication is recovered by

AxB=!A-B.

This decomposition of implication (in programming terms, of the function type) is
one of the most interesting aspects of linear logic.

We now flesh out these intuitive ideas by giving the sequent calculus formalization
of intuitionistic linear logic.

Axiom:

(Id) - AFA

Structural rule:

(Exchange)
r, A, B, A t C

I-,B,A,AFC

Cut rule:

Intuitionistic Linear Logic (ILL)Computational intrrprrtations of linear logic 13

implications for the interpretation of the logical connectives. Firstly, we find that two
distinct interpretations of conjunction, or in programming terms a type of pairs of
values, arise:

If we wish to use both components of the pair, on the unique occasion when we use
the input, then we lose the ability to project. This leads to the multiplicative version
of conjunction, the tensor product A 0 B.
If we wish to project, then on the unique occasion when we use the input, we must
choose to take either the first OY the second projection, and this is the only part of
the input we will ever see. So the additive conjunction A&B appears as a kind of
choice - an “external” choice in the terminology of CSP [191, since it is made by the
consumer of the datum.
The disjoint sum (additive disjunction) A @ B appears as an internal choice, since it
is at the discretion of the producer of the datum whether the choice is made from
A ~ a value of the form inl(t), or from B ~ a value of the form inr(u).
The linear implication A + B is the type of functions which use their argument
exactly once, internalizing linear inference.
These connectives by themselves are far too weak to provide useful expressive

power. This is regained by reintroducing weakening and contraction in a controlled
form, not as omnipresent structural rules, but reflected into a datatype, the exponen-
tial !A (“Of course A”). The effect is to make as many copies of a value of type
A available as may be needed.

That we have recovered adequate expressive power is witnessed by the fact that
intuitionistic logic can be interpreted in linear logic with the above connectives. In
particular, intuitionistic implication is recovered by

AxB=!A-B.

This decomposition of implication (in programming terms, of the function type) is
one of the most interesting aspects of linear logic.

We now flesh out these intuitive ideas by giving the sequent calculus formalization
of intuitionistic linear logic.

Axiom:

(Id) - AFA

Structural rule:

(Exchange)
r, A, B, A t C

I-,B,A,AFC

Cut rule:

Intuitionistic Linear Logic (ILL)
14 S. Ahramsk~

Logical rules:

I-FA
(1R) tr (IL) ~ r,lFA

t--R) r;;‘pB

(AR)
rtA I-t-B

rkA&B

(OL)
I-, A, B t C

r,A@BFC

t--L)
TEA B,dtC
r A) -B,dFC

(AL)
1-,AtC r,Btc

r,A&BFC r,A&BtC

TEA I-FB
(ORI (0 L)

r,AFC I-,BkC

rkA@B rtA@B r,A@BFC

!TFA
(!R) ~

r,AFB

!TI-!A
(Dereliction)

r,!AtB

(!r means a sequence of the form ! AI,. . , ! Ak.)

r,!A,!AtB rFB
(Contraction)

1-,!AkB
(Weakening)

r,!AkB

The essence of the distinction between the additive and multiplicative connectives is
conveyed by the fact that d@rent contexts are combined, without interaction, in
(0 R), (- L), while the fame contexts are used in (&R) and (0 L). This reflects the fact
that in the additives a choice is made, between one of the components of a pair for &,
or one of the guards in a case for 0; so the Qume inputs must be used in both
alternatives, to ensure that each input is used exactly once in producing the output.
Note also the key role of the left rules in defining the !-type; the proper treatment of
these rules is the technical crux in our computational interpretation of intuitionistic
linear logic.

The linear term calculus

We now give an assignment of terms to proofs in intuitionistic linear logic. The
calculus from which these terms are drawn is a refinement of the i.-calculus. A key role
is played by pattern-matching constructs, corresponding to left rules of the logic. One
_ minor ~ complication is that the syntax of terms is not context-free, but must reflect
linearity construints, i.e. syntactic constraints on occurrences of variables correspond-
ing to the semantic constraint that inputs are used exactly once.

To formalize these notions, it is convenient to use an auxiliary syntactic category of
patterns. We use X, Y, Z to range over finite sets of variables. Now PX, the set of
patterns with variables in X, is defined as follows:

+

Intuitionistic Linear Logic (ILL)

Menu (price 17 Euros)

Quiche or Salad
Chicken or Fish

Banana or “Surprise du Chef∗”

(*) either “Profiteroles” or “Tarte Tatin”

17E !























(Q&S)
⊗

(C&F)
⊗

(B&(P ⊕ T))

We can recognize here some of the meanings that we already discussed. The right of the sequent is
what you can get for 17 Euros. The tensor tells that for this price you get one “entrée”, one dish
and one dessert. The difference between & and ⊕ is a bit more subtle, and the game interpretation
is helpful here. So let us start again from the beginning, considering a play between the restaurant
manager (the Player) and the customer (the Opponent). It is the Player’s responsibility to split the
17E into three parts, corresponding to the cost of the three parts of the meal. May be, this is done
as follows:

5E ! Q&S 8E ! C&F 4E ! B&(P ⊕ T)

17E ! (Q&S)⊗ (C&F)⊗ (B&(P ⊕ T))

Now let the Opponent challenge 5E ! Q&S:

5E ! Q 5E ! S

5E ! Q&S

which reads as: both Quiche and Salad are available to the customer, but he can get only one, and it is
his choice of picking one of the antecedents and to order, say, a Quiche. Thus the additive conjunction
can be understood as a ... disjunction embodying a notion of external choice (remember that in our
example the customer is the Opponent, or the context, or the environment). Let us now analyse a
proof of 4E ! B&(P ⊕ T):

4E ! B

4E ! T

4E ! P ⊕ T

4E ! B&(P ⊕ T)

Suppose that the Opponent chooses the Surprise. Then it is the Player’s turn, who justifies 4E ! P⊕T
using the right ⊕ rule. So, the Opponent will get a Tarte Tatin, but the choice was in the Player’s
hands. Thus ⊕ has an associated meaning of internal choice. In summary, two forms of choice,
external and internal, are modelled by & and ⊕, respectively. In the case of ⊕, whether A or B is
chosen is controlled by the rule, that is, by the Player. In the case of &, the choice between A or B
is a choice of one of the antecedents of the rule, and is in the hands of the Opponent.

Actually, our image becomes even more acurate if we replace the customer with an inspector (in
summer, many restaurants propose unreasonable prices to the tourists...). The inspector will not
consume the whole menu, he will just check (his choice!) whether what is offered, say for the entrée, is
correct (not over-priced, fresh enough...). Another inspector, or the same inspector, may want to do
another experiment later, checking this time on dessert: using this sharper personification, the game
as explained above is more fully reflected.

All these oppositions confirm a fundamental polarity: by convention, we shall term & and ! as
negative, and ⊗ and ⊕ as positive.

8

Intuitionistic Linear Logic (ILL)

Menu (price 17 Euros)

Quiche or Salad
Chicken or Fish

Banana or “Surprise du Chef∗”

(*) either “Profiteroles” or “Tarte Tatin”

17E !























(Q&S)
⊗

(C&F)
⊗

(B&(P ⊕ T))

We can recognize here some of the meanings that we already discussed. The right of the sequent is
what you can get for 17 Euros. The tensor tells that for this price you get one “entrée”, one dish
and one dessert. The difference between & and ⊕ is a bit more subtle, and the game interpretation
is helpful here. So let us start again from the beginning, considering a play between the restaurant
manager (the Player) and the customer (the Opponent). It is the Player’s responsibility to split the
17E into three parts, corresponding to the cost of the three parts of the meal. May be, this is done
as follows:

5E ! Q&S 8E ! C&F 4E ! B&(P ⊕ T)

17E ! (Q&S)⊗ (C&F)⊗ (B&(P ⊕ T))

Now let the Opponent challenge 5E ! Q&S:

5E ! Q 5E ! S

5E ! Q&S

which reads as: both Quiche and Salad are available to the customer, but he can get only one, and it is
his choice of picking one of the antecedents and to order, say, a Quiche. Thus the additive conjunction
can be understood as a ... disjunction embodying a notion of external choice (remember that in our
example the customer is the Opponent, or the context, or the environment). Let us now analyse a
proof of 4E ! B&(P ⊕ T):

4E ! B

4E ! T

4E ! P ⊕ T

4E ! B&(P ⊕ T)

Suppose that the Opponent chooses the Surprise. Then it is the Player’s turn, who justifies 4E ! P⊕T
using the right ⊕ rule. So, the Opponent will get a Tarte Tatin, but the choice was in the Player’s
hands. Thus ⊕ has an associated meaning of internal choice. In summary, two forms of choice,
external and internal, are modelled by & and ⊕, respectively. In the case of ⊕, whether A or B is
chosen is controlled by the rule, that is, by the Player. In the case of &, the choice between A or B
is a choice of one of the antecedents of the rule, and is in the hands of the Opponent.

Actually, our image becomes even more acurate if we replace the customer with an inspector (in
summer, many restaurants propose unreasonable prices to the tourists...). The inspector will not
consume the whole menu, he will just check (his choice!) whether what is offered, say for the entrée, is
correct (not over-priced, fresh enough...). Another inspector, or the same inspector, may want to do
another experiment later, checking this time on dessert: using this sharper personification, the game
as explained above is more fully reflected.

All these oppositions confirm a fundamental polarity: by convention, we shall term & and ! as
negative, and ⊗ and ⊕ as positive.

8

Intuitionistic Linear Logic (ILL)
14 S. Ahramsk~

Logical rules:

I-FA
(1R) tr (IL) ~ r,lFA

t--R) r;;‘pB

(AR)
rtA I-t-B

rkA&B

(OL)
I-, A, B t C

r,A@BFC

t--L)
TEA B,dtC
r A) -B,dFC

(AL)
1-,AtC r,Btc

r,A&BFC r,A&BtC

TEA I-FB
(ORI (0 L)

r,AFC I-,BkC

rkA@B rtA@B r,A@BFC

!TFA
(!R) ~

r,AFB

!TI-!A
(Dereliction)

r,!AtB

(!r means a sequence of the form ! AI,. . , ! Ak.)

r,!A,!AtB rFB
(Contraction)

1-,!AkB
(Weakening)

r,!AkB

The essence of the distinction between the additive and multiplicative connectives is
conveyed by the fact that d@rent contexts are combined, without interaction, in
(0 R), (- L), while the fame contexts are used in (&R) and (0 L). This reflects the fact
that in the additives a choice is made, between one of the components of a pair for &,
or one of the guards in a case for 0; so the Qume inputs must be used in both
alternatives, to ensure that each input is used exactly once in producing the output.
Note also the key role of the left rules in defining the !-type; the proper treatment of
these rules is the technical crux in our computational interpretation of intuitionistic
linear logic.

The linear term calculus

We now give an assignment of terms to proofs in intuitionistic linear logic. The
calculus from which these terms are drawn is a refinement of the i.-calculus. A key role
is played by pattern-matching constructs, corresponding to left rules of the logic. One
_ minor ~ complication is that the syntax of terms is not context-free, but must reflect
linearity construints, i.e. syntactic constraints on occurrences of variables correspond-
ing to the semantic constraint that inputs are used exactly once.

To formalize these notions, it is convenient to use an auxiliary syntactic category of
patterns. We use X, Y, Z to range over finite sets of variables. Now PX, the set of
patterns with variables in X, is defined as follows:

+

Intuitionistic Linear Logic (ILL)

Computational intrrprrtations of linear logic 13

implications for the interpretation of the logical connectives. Firstly, we find that two
distinct interpretations of conjunction, or in programming terms a type of pairs of
values, arise:

If we wish to use both components of the pair, on the unique occasion when we use
the input, then we lose the ability to project. This leads to the multiplicative version
of conjunction, the tensor product A 0 B.
If we wish to project, then on the unique occasion when we use the input, we must
choose to take either the first OY the second projection, and this is the only part of
the input we will ever see. So the additive conjunction A&B appears as a kind of
choice - an “external” choice in the terminology of CSP [191, since it is made by the
consumer of the datum.
The disjoint sum (additive disjunction) A @ B appears as an internal choice, since it
is at the discretion of the producer of the datum whether the choice is made from
A ~ a value of the form inl(t), or from B ~ a value of the form inr(u).
The linear implication A + B is the type of functions which use their argument
exactly once, internalizing linear inference.
These connectives by themselves are far too weak to provide useful expressive

power. This is regained by reintroducing weakening and contraction in a controlled
form, not as omnipresent structural rules, but reflected into a datatype, the exponen-
tial !A (“Of course A”). The effect is to make as many copies of a value of type
A available as may be needed.

That we have recovered adequate expressive power is witnessed by the fact that
intuitionistic logic can be interpreted in linear logic with the above connectives. In
particular, intuitionistic implication is recovered by

AxB=!A-B.

This decomposition of implication (in programming terms, of the function type) is
one of the most interesting aspects of linear logic.

We now flesh out these intuitive ideas by giving the sequent calculus formalization
of intuitionistic linear logic.

Axiom:

(Id) - AFA

Structural rule:

(Exchange)
r, A, B, A t C

I-,B,A,AFC

Cut rule:

14 S. Ahramsk~

Logical rules:

I-FA
(1R) tr (IL) ~ r,lFA

t--R) r;;‘pB

(AR)
rtA I-t-B

rkA&B

(OL)
I-, A, B t C

r,A@BFC

t--L)
TEA B,dtC
r A) -B,dFC

(AL)
1-,AtC r,Btc

r,A&BFC r,A&BtC

TEA I-FB
(ORI (0 L)

r,AFC I-,BkC

rkA@B rtA@B r,A@BFC

!TFA
(!R) ~

r,AFB

!TI-!A
(Dereliction)

r,!AtB

(!r means a sequence of the form ! AI,. . , ! Ak.)

r,!A,!AtB rFB
(Contraction)

1-,!AkB
(Weakening)

r,!AkB

The essence of the distinction between the additive and multiplicative connectives is
conveyed by the fact that d@rent contexts are combined, without interaction, in
(0 R), (- L), while the fame contexts are used in (&R) and (0 L). This reflects the fact
that in the additives a choice is made, between one of the components of a pair for &,
or one of the guards in a case for 0; so the Qume inputs must be used in both
alternatives, to ensure that each input is used exactly once in producing the output.
Note also the key role of the left rules in defining the !-type; the proper treatment of
these rules is the technical crux in our computational interpretation of intuitionistic
linear logic.

The linear term calculus

We now give an assignment of terms to proofs in intuitionistic linear logic. The
calculus from which these terms are drawn is a refinement of the i.-calculus. A key role
is played by pattern-matching constructs, corresponding to left rules of the logic. One
_ minor ~ complication is that the syntax of terms is not context-free, but must reflect
linearity construints, i.e. syntactic constraints on occurrences of variables correspond-
ing to the semantic constraint that inputs are used exactly once.

To formalize these notions, it is convenient to use an auxiliary syntactic category of
patterns. We use X, Y, Z to range over finite sets of variables. Now PX, the set of
patterns with variables in X, is defined as follows:

Bounded Linear Logic (BLL)

14 S. Ahramsk~

Logical rules:

I-FA
(1R) tr (IL) ~ r,lFA

t--R) r;;‘pB

(AR)
rtA I-t-B

rkA&B

(OL)
I-, A, B t C

r,A@BFC

t--L)
TEA B,dtC
r A) -B,dFC

(AL)
1-,AtC r,Btc

r,A&BFC r,A&BtC

TEA I-FB
(ORI (0 L)

r,AFC I-,BkC

rkA@B rtA@B r,A@BFC

!TFA
(!R) ~

r,AFB

!TI-!A
(Dereliction)

r,!AtB

(!r means a sequence of the form ! AI,. . , ! Ak.)

r,!A,!AtB rFB
(Contraction)

1-,!AkB
(Weakening)

r,!AkB

The essence of the distinction between the additive and multiplicative connectives is
conveyed by the fact that d@rent contexts are combined, without interaction, in
(0 R), (- L), while the fame contexts are used in (&R) and (0 L). This reflects the fact
that in the additives a choice is made, between one of the components of a pair for &,
or one of the guards in a case for 0; so the Qume inputs must be used in both
alternatives, to ensure that each input is used exactly once in producing the output.
Note also the key role of the left rules in defining the !-type; the proper treatment of
these rules is the technical crux in our computational interpretation of intuitionistic
linear logic.

The linear term calculus

We now give an assignment of terms to proofs in intuitionistic linear logic. The
calculus from which these terms are drawn is a refinement of the i.-calculus. A key role
is played by pattern-matching constructs, corresponding to left rules of the logic. One
_ minor ~ complication is that the syntax of terms is not context-free, but must reflect
linearity construints, i.e. syntactic constraints on occurrences of variables correspond-
ing to the semantic constraint that inputs are used exactly once.

To formalize these notions, it is convenient to use an auxiliary syntactic category of
patterns. We use X, Y, Z to range over finite sets of variables. Now PX, the set of
patterns with variables in X, is defined as follows:

18 J.-Y. Girard et al.

type 0 and define higher types n + I := n+ n. Now define the analog of Church
numerals p of type n + 2, Y,P+* as A$fp, where the variable f is of type n + 1. One
easily verifies that modulo p-conversion,

Y,P+*(f) o Yn4+2cf) = Y,PXfL

and Y,C+,(Y,“+z> = YZ’;, .

y,p+* o YZ+2 = y,““,,,

Therefore YitzYi+, . . . Y: = Yi, where c =222 is a tower of 2’s.
Furthermore, adding full impredicative second order quantification (V) yields a

system of LL2 as strong as system 9(=second-order polymorphic lambda calculus).
In particular, every provably total recursive function of second order arithmetic is
representable in the system. In other words, in order to produce a total numerical
function which is not representable in LL*, one has to go beyond most current
mathematics.

2.4. Towards bounded linear logic

We seek a system intermediate between second order RLL and full second-order
linear logic, which would enjoy feasible normalization and would yet be powerful
enough to express all feasible functions. To this end we consider bounded reuse,
roughly !,A with the intuitive meaning that datum A may only be reused less than
x times. Let us first present just a simplified version of the desired intermediate
system and the basic intuition behind it; the precise consideration will be taken up
in Sections 3 and 4. If r is A,, . . . , A,, we write !,r for !,,, A,, . . . , !,,,,A,.

The rules for storage naturally induce polynomials:

Storage Weakening
TFB

r , A~ B
I .o

Contraction
l-, !,A, !,At B

Dereliction
T,AtB

l-, !x+yAt B r, !,AFB’

We may interpret these rules in second-order RLL, by translating !,A as

where there are exactly x tensor signs and where 1 may be thought of as Va(cu - (.y).
This translation is logically sound only if we add to RLL the unrestricted weakening
rules (see Section 2.2.6). A consequence of the latter is that from (n + l)-ary
tensorization one can obtain the n-ary one. The addition of the unstricted weakening
rules to RLL is of course not problematic. As observed at the end of Section 2.2.6,
proofs still shrink under normalization. The weight (measure) associated to a proof

Intuitionistic LL (Curry-Howard)

14 S. Ahramsk~

Logical rules:

I-FA
(1R) tr (IL) ~ r,lFA

t--R) r;;‘pB

(AR)
rtA I-t-B

rkA&B

(OL)
I-, A, B t C

r,A@BFC

t--L)
TEA B,dtC
r A) -B,dFC

(AL)
1-,AtC r,Btc

r,A&BFC r,A&BtC

TEA I-FB
(ORI (0 L)

r,AFC I-,BkC

rkA@B rtA@B r,A@BFC

!TFA
(!R) ~

r,AFB

!TI-!A
(Dereliction)

r,!AtB

(!r means a sequence of the form ! AI,. . , ! Ak.)

r,!A,!AtB rFB
(Contraction)

1-,!AkB
(Weakening)

r,!AkB

The essence of the distinction between the additive and multiplicative connectives is
conveyed by the fact that d@rent contexts are combined, without interaction, in
(0 R), (- L), while the fame contexts are used in (&R) and (0 L). This reflects the fact
that in the additives a choice is made, between one of the components of a pair for &,
or one of the guards in a case for 0; so the Qume inputs must be used in both
alternatives, to ensure that each input is used exactly once in producing the output.
Note also the key role of the left rules in defining the !-type; the proper treatment of
these rules is the technical crux in our computational interpretation of intuitionistic
linear logic.

The linear term calculus

We now give an assignment of terms to proofs in intuitionistic linear logic. The
calculus from which these terms are drawn is a refinement of the i.-calculus. A key role
is played by pattern-matching constructs, corresponding to left rules of the logic. One
_ minor ~ complication is that the syntax of terms is not context-free, but must reflect
linearity construints, i.e. syntactic constraints on occurrences of variables correspond-
ing to the semantic constraint that inputs are used exactly once.

To formalize these notions, it is convenient to use an auxiliary syntactic category of
patterns. We use X, Y, Z to range over finite sets of variables. Now PX, the set of
patterns with variables in X, is defined as follows:

Computational interpretations of linear logic 15

We can now define TX, the linear terms with free variables in X, inductively as
follows:

tE9-x, LIE?*, Xn Y=@ * t 0 u, tuE.‘T~“,
t, UEFx =a (t, U)Ec&
tEY-x a inl(t), inr(t), !tE.FX
tEFxvl,;, xgx =a lX.&Fx
tEFx, PEPp,, UEFY”Z, XnZ= YnZ=Q)
a let t be p in UE&~~
t~~~,u~~~=,(,:,v~~~,,(,.:,XnZ={x,y}nZ=~

a case t of inl(x) * ulinr(y) * vE&_~
We now present the assignment of linear terms to proofs in intuitionistic linear

logic, in the same style as the term assignment for sequent calculus given in the
previous section. Our sequents now have the form

x,:A ,,...,xk:Aktt:A

where the Ai are linear formulae (built from the connectives 1, 0, +, &, 0, !), the Xi
are distinct variables, and tEF_,, X = (x1, . . . , xk}. Note that the rules presented below
are subject to the implicit constraint that the linearity conditions for well-formedness
of terms are satisfied. This constraint can always be met, e.g. by using distinct
variables for all instances of the Axiom.

Axiom:

(W
x:A I- x:A

Structural rule:

(Exchange)
I-,x:A,y:B,Akt:C
I-,y:B,x:A,Akt:C

Cut rule:

Tt-t:A x:A,d Fu:B

I-, A t- u[t/x]:B

Logical rules:

(1R) ~ (IL)
l-l-t:A

F*:l r,z:lt-let z be*int:A

(OR)
Tkt:A dFu:B r,x:A,y:Bkt:C

r,Att@u:A@B (OL) r,z:A@Btlet z be x@yin t:C

(-R)
r,x:A+t:B Tkt:A x:B, AFu:C

l-t ix.t:A- B (- L) T,f:A+ B, A k u[(ft)/x]:C

Intuitionistic LL (Curry-Howard)

Computational interpretations of linear logic 15

We can now define TX, the linear terms with free variables in X, inductively as
follows:

tE9-x, LIE?*, Xn Y=@ * t 0 u, tuE.‘T~“,
t, UEFx =a (t, U)Ec&
tEY-x a inl(t), inr(t), !tE.FX
tEFxvl,;, xgx =a lX.&Fx
tEFx, PEPp,, UEFY”Z, XnZ= YnZ=Q)
a let t be p in UE&~~
t~~~,u~~~=,(,:,v~~~,,(,.:,XnZ={x,y}nZ=~

a case t of inl(x) * ulinr(y) * vE&_~
We now present the assignment of linear terms to proofs in intuitionistic linear

logic, in the same style as the term assignment for sequent calculus given in the
previous section. Our sequents now have the form

x,:A ,,...,xk:Aktt:A

where the Ai are linear formulae (built from the connectives 1, 0, +, &, 0, !), the Xi
are distinct variables, and tEF_,, X = (x1, . . . , xk}. Note that the rules presented below
are subject to the implicit constraint that the linearity conditions for well-formedness
of terms are satisfied. This constraint can always be met, e.g. by using distinct
variables for all instances of the Axiom.

Axiom:

(W
x:A I- x:A

Structural rule:

(Exchange)
I-,x:A,y:B,Akt:C
I-,y:B,x:A,Akt:C

Cut rule:

Tt-t:A x:A,d Fu:B

I-, A t- u[t/x]:B

Logical rules:

(1R) ~ (IL)
l-l-t:A

F*:l r,z:lt-let z be*int:A

(OR)
Tkt:A dFu:B r,x:A,y:Bkt:C

r,Att@u:A@B (OL) r,z:A@Btlet z be x@yin t:C

(-R)
r,x:A+t:B Tkt:A x:B, AFu:C

l-t ix.t:A- B (- L) T,f:A+ B, A k u[(ft)/x]:C

Computational interpretations of linear logic 15

We can now define TX, the linear terms with free variables in X, inductively as
follows:

tE9-x, LIE?*, Xn Y=@ * t 0 u, tuE.‘T~“,
t, UEFx =a (t, U)Ec&
tEY-x a inl(t), inr(t), !tE.FX
tEFxvl,;, xgx =a lX.&Fx
tEFx, PEPp,, UEFY”Z, XnZ= YnZ=Q)
a let t be p in UE&~~
t~~~,u~~~=,(,:,v~~~,,(,.:,XnZ={x,y}nZ=~

a case t of inl(x) * ulinr(y) * vE&_~
We now present the assignment of linear terms to proofs in intuitionistic linear

logic, in the same style as the term assignment for sequent calculus given in the
previous section. Our sequents now have the form

x,:A ,,...,xk:Aktt:A

where the Ai are linear formulae (built from the connectives 1, 0, +, &, 0, !), the Xi
are distinct variables, and tEF_,, X = (x1, . . . , xk}. Note that the rules presented below
are subject to the implicit constraint that the linearity conditions for well-formedness
of terms are satisfied. This constraint can always be met, e.g. by using distinct
variables for all instances of the Axiom.

Axiom:

(W
x:A I- x:A

Structural rule:

(Exchange)
I-,x:A,y:B,Akt:C
I-,y:B,x:A,Akt:C

Cut rule:

Tt-t:A x:A,d Fu:B

I-, A t- u[t/x]:B

Logical rules:

(1R) ~ (IL)
l-l-t:A

F*:l r,z:lt-let z be*int:A

(OR)
Tkt:A dFu:B r,x:A,y:Bkt:C

r,Att@u:A@B (OL) r,z:A@Btlet z be x@yin t:C

(-R)
r,x:A+t:B Tkt:A x:B, AFu:C

l-t ix.t:A- B (- L) T,f:A+ B, A k u[(ft)/x]:C

Computational interpretations of linear logic 15

We can now define TX, the linear terms with free variables in X, inductively as
follows:

tE9-x, LIE?*, Xn Y=@ * t 0 u, tuE.‘T~“,
t, UEFx =a (t, U)Ec&
tEY-x a inl(t), inr(t), !tE.FX
tEFxvl,;, xgx =a lX.&Fx
tEFx, PEPp,, UEFY”Z, XnZ= YnZ=Q)
a let t be p in UE&~~
t~~~,u~~~=,(,:,v~~~,,(,.:,XnZ={x,y}nZ=~

a case t of inl(x) * ulinr(y) * vE&_~
We now present the assignment of linear terms to proofs in intuitionistic linear

logic, in the same style as the term assignment for sequent calculus given in the
previous section. Our sequents now have the form

x,:A ,,...,xk:Aktt:A

where the Ai are linear formulae (built from the connectives 1, 0, +, &, 0, !), the Xi
are distinct variables, and tEF_,, X = (x1, . . . , xk}. Note that the rules presented below
are subject to the implicit constraint that the linearity conditions for well-formedness
of terms are satisfied. This constraint can always be met, e.g. by using distinct
variables for all instances of the Axiom.

Axiom:

(W
x:A I- x:A

Structural rule:

(Exchange)
I-,x:A,y:B,Akt:C
I-,y:B,x:A,Akt:C

Cut rule:

Tt-t:A x:A,d Fu:B

I-, A t- u[t/x]:B

Logical rules:

(1R) ~ (IL)
l-l-t:A

F*:l r,z:lt-let z be*int:A

(OR)
Tkt:A dFu:B r,x:A,y:Bkt:C

r,Att@u:A@B (OL) r,z:A@Btlet z be x@yin t:C

(-R)
r,x:A+t:B Tkt:A x:B, AFu:C

l-t ix.t:A- B (- L) T,f:A+ B, A k u[(ft)/x]:C

Intuitionistic LL (Curry-Howard)
16 S. Abram&)

C&R)
l-Et:.4 TFu:B

I-F (t, u):A&B

(AL)
f, x:.4 F t:C

r,z:A&Bk let z be (x,-) in t:C

r, y:B k t:C
r,z:A&Bt-let z be (-,y) in t:C

(OR)
l-tt:A l- F u:B

rt-inl(t):A@B rt-inr(u):A@B

(OL)
r,x:Aku:C r,y:Bkv:C

r,z:A@Bt-case z of inl(x) =S ulinr(y) * v:C

(!R)
!TFt:A

!Tk!t:!A

(Dereliction)
I-,x:AFt:B

r.z:!At- let z be !x in t:B

T,x:!A,y:!Ak t:B

(Contraction) r, z:!A F let z be x(a;y in t:B

(Weakening)
Tl-t:B

r, z:!A k let z be ~ in t:B

Operational semantics

We now give an operational semantics for the linear term calculus in exactly the
same style, and with the same supporting intuitions as the semantics of the j_-calculus
given in the previous section. However, one notable difference emerges, as immediate
evidence of the more refined computational content of the linear types. Whereas
intuitionistic logic was perfectly neutral as to which evaluation strategy to adopt for
the i.-calculus, in linear logic the logical structure of the types gives a clear indication
as to which form of evaluation to employ:

For a term of tensor type A 0 B we know that any consumer (e.g. a destructor
context let [.I be x @ y in U) will evaluate this term to a pair, and use both
components. This clearly indicates eager evaluation. Similarly, a term of type A - B
must evaluate to an abstraction, which when applied to any argument will evaluate
it exactly once. Evaluation of the argument exactly once is the slogan of call-
by-value [37]. Finally, any consumer of a term of type A @ B will evaluate it to
a term of the form inl(t) or inr(t), and then use t in evaluating the appropriate arm
of a case statement; so once again, eager evaluation is indicated.
On the other hand, a value of type A&B will evaluate to a pair, exactly one
component of tvhich will be used in any given context. Since we cannot predict which

16 S. Abram&)

C&R)
l-Et:.4 TFu:B

I-F (t, u):A&B

(AL)
f, x:.4 F t:C

r,z:A&Bk let z be (x,-) in t:C

r, y:B k t:C
r,z:A&Bt-let z be (-,y) in t:C

(OR)
l-tt:A l- F u:B

rt-inl(t):A@B rt-inr(u):A@B

(OL)
r,x:Aku:C r,y:Bkv:C

r,z:A@Bt-case z of inl(x) =S ulinr(y) * v:C

(!R)
!TFt:A

!Tk!t:!A

(Dereliction)
I-,x:AFt:B

r.z:!At- let z be !x in t:B

T,x:!A,y:!Ak t:B

(Contraction) r, z:!A F let z be x(a;y in t:B

(Weakening)
Tl-t:B

r, z:!A k let z be ~ in t:B

Operational semantics

We now give an operational semantics for the linear term calculus in exactly the
same style, and with the same supporting intuitions as the semantics of the j_-calculus
given in the previous section. However, one notable difference emerges, as immediate
evidence of the more refined computational content of the linear types. Whereas
intuitionistic logic was perfectly neutral as to which evaluation strategy to adopt for
the i.-calculus, in linear logic the logical structure of the types gives a clear indication
as to which form of evaluation to employ:

For a term of tensor type A 0 B we know that any consumer (e.g. a destructor
context let [.I be x @ y in U) will evaluate this term to a pair, and use both
components. This clearly indicates eager evaluation. Similarly, a term of type A - B
must evaluate to an abstraction, which when applied to any argument will evaluate
it exactly once. Evaluation of the argument exactly once is the slogan of call-
by-value [37]. Finally, any consumer of a term of type A @ B will evaluate it to
a term of the form inl(t) or inr(t), and then use t in evaluating the appropriate arm
of a case statement; so once again, eager evaluation is indicated.
On the other hand, a value of type A&B will evaluate to a pair, exactly one
component of tvhich will be used in any given context. Since we cannot predict which

Intuitionistic LL (Curry-Howard)

16 S. Abram&)

C&R)
l-Et:.4 TFu:B

I-F (t, u):A&B

(AL)
f, x:.4 F t:C

r,z:A&Bk let z be (x,-) in t:C

r, y:B k t:C
r,z:A&Bt-let z be (-,y) in t:C

(OR)
l-tt:A l- F u:B

rt-inl(t):A@B rt-inr(u):A@B

(OL)
r,x:Aku:C r,y:Bkv:C

r,z:A@Bt-case z of inl(x) =S ulinr(y) * v:C

(!R)
!TFt:A

!Tk!t:!A

(Dereliction)
I-,x:AFt:B

r.z:!At- let z be !x in t:B

T,x:!A,y:!Ak t:B

(Contraction) r, z:!A F let z be x(a;y in t:B

(Weakening)
Tl-t:B

r, z:!A k let z be ~ in t:B

Operational semantics

We now give an operational semantics for the linear term calculus in exactly the
same style, and with the same supporting intuitions as the semantics of the j_-calculus
given in the previous section. However, one notable difference emerges, as immediate
evidence of the more refined computational content of the linear types. Whereas
intuitionistic logic was perfectly neutral as to which evaluation strategy to adopt for
the i.-calculus, in linear logic the logical structure of the types gives a clear indication
as to which form of evaluation to employ:

For a term of tensor type A 0 B we know that any consumer (e.g. a destructor
context let [.I be x @ y in U) will evaluate this term to a pair, and use both
components. This clearly indicates eager evaluation. Similarly, a term of type A - B
must evaluate to an abstraction, which when applied to any argument will evaluate
it exactly once. Evaluation of the argument exactly once is the slogan of call-
by-value [37]. Finally, any consumer of a term of type A @ B will evaluate it to
a term of the form inl(t) or inr(t), and then use t in evaluating the appropriate arm
of a case statement; so once again, eager evaluation is indicated.
On the other hand, a value of type A&B will evaluate to a pair, exactly one
component of tvhich will be used in any given context. Since we cannot predict which
component will be used, it is clear that evaluating either component in advance of
their actual use will lead in general to redundant computation. Thus lazy evalu-
ation is indicated here. Again, a value of type ! A may be discarded altogether, so
evaluation in advance of actual use may lead to redundant computation, and lazy
evaluation is indicated.
Thus, we get a classification:

. 0, --3 @ (eager evaluation)
0 &,! (lazy evaluation).

What is particularly interesting is that when we interpret the intuitionistic types

AxB = A&B

we see that the intuitionistic function type will be operationally call-by-name (lazy),
since its argument is “frozen” by the lazy evaluation of the !A type. So the mixed
evaluation strategy of the linear types, incorporating a high degree of eager evalu-
ation, supports lazy evaluation at the higher level of the intuitionistic types. One
might say that this gives a rational reconstruction, in logical terms, of the standard
method for implementing lazy evaluation on top of an eager evaluation strategy, as
introduced by Landin [27], and used in the SECD and CAM machines [lS, 221. This
idea is standardly modelled in denotational semantics by /iftiny [40], i.e.

A*B = A,-B

where A-B is the type of pcrrtial (or alternatively strict) functions. This account
requires the presence of divergent programs; the linear decomposition

A*B = !A-‘B

does not.
With these motivating remarks, we now present the operational semantics.
Canonical forms:

(t, U) !t

* c@d ix. t inl(c) inr(d)

where c, d are canonical
Evaluation relation:

tU* uuc
u let f be*in true

tuc uud rUc 0 d uCc/x, d/ylUe
t@ul,lc@d let t be x @y in uUe

tu2x.c uuc v[c/x]Ud
ix. t u ix. t tuljd

Intuitionistic LL (Curry-Howard)

component will be used, it is clear that evaluating either component in advance of
their actual use will lead in general to redundant computation. Thus lazy evalu-
ation is indicated here. Again, a value of type ! A may be discarded altogether, so
evaluation in advance of actual use may lead to redundant computation, and lazy
evaluation is indicated.
Thus, we get a classification:

. 0, --3 @ (eager evaluation)
0 &,! (lazy evaluation).

What is particularly interesting is that when we interpret the intuitionistic types

AxB = A&B

we see that the intuitionistic function type will be operationally call-by-name (lazy),
since its argument is “frozen” by the lazy evaluation of the !A type. So the mixed
evaluation strategy of the linear types, incorporating a high degree of eager evalu-
ation, supports lazy evaluation at the higher level of the intuitionistic types. One
might say that this gives a rational reconstruction, in logical terms, of the standard
method for implementing lazy evaluation on top of an eager evaluation strategy, as
introduced by Landin [27], and used in the SECD and CAM machines [lS, 221. This
idea is standardly modelled in denotational semantics by /iftiny [40], i.e.

A*B = A,-B

where A-B is the type of pcrrtial (or alternatively strict) functions. This account
requires the presence of divergent programs; the linear decomposition

A*B = !A-‘B

does not.
With these motivating remarks, we now present the operational semantics.
Canonical forms:

(t, U) !t

* c@d ix. t inl(c) inr(d)

where c, d are canonical
Evaluation relation:

tU* uuc
u let f be*in true

tuc uud rUc 0 d uCc/x, d/ylUe
t@ul,lc@d let t be x @y in uUe

tu2x.c uuc v[c/x]Ud
ix. t u ix. t tuljd

18 S. Abramsky

tU<u, w> vuc uCc/xlUd
(t, u>U(4 u> let t be (x,_) in uljd

tU(Q w> wuc uCc/ylUd
let t be (-,y) in uUd

tuc UUd
inl(t)Uinl(c) inr(u)Uinr(d)

tUinl(c) u[c/x]lJd

case t of inl(x) * ulinr(y) = vljd

tlJinr(c) u[c/y]lJd

case t of inl(x) + ulinr(y) => vljd

tU!v vuc u[c/x]ljd

!tU!t let t be !x in uljd

tU!u uuc tU!v u[!u/x, !u/y]Uc

let r be _ in uuc let t be x&y in uuc

These rules codify the previous discussion in a very direct fashion. Note that the
rules corresponding to Contraction and Weakening, respectively copy and discard
their inputs.

4. Pragmatics and implementation

In this section, we sketch some of the promising applications to program analysis
and optimization opened up by the computational interpretation of intuitionistic
linear logic presented in the previous section. We also describe an SECD machine
implementation of the linear calculus.

Logical compilation
We have already mentioned the translation of intuitionistic logic into intuitionistic

linear logic. The full translation of formulas is as follows:

(A3B)c = !A”-B”

(A A B)” = X&B”

(A v B)” = !A” 0 !B”

It is important to note that the translation works not just at the level of theorems, or
even provable sequents, but of proofs. That is, every proof of a sequent rF A in
intuitionistic sequent calculus can be translated into a proof of !F F A” in intuitionis-
tic linear logic. This in turn induces a translation from A-terms into linear terms. This

Classical Linear Logic (CLL)

Computational interpretations of linrar logic 21

By induction hypothesis, rl= t: A, i.e.

Because r does not occur free in r, this is equivalent to

i.e. to rI= t:Vsr.A. 0

As a simple consequence of the realizability theorem, we have the following
theorem.

Theorem 5.3. System LF satisfies Convergence.

Proof. Suppose that E t: A is derivable in system LF. We can apply (VR) freely here,
so, without loss of generality, we can assume that A is closed. By the realizability
theorem, + t:A, i.e. tc[A]. Write A as V?.B, where B does not have a quantifier
outermost. If B=xi, then [A] =8, contradicting tE[A]. In any other case, the realiz-
ability semantics of the outermost connective in B immediately implies that tu. 0

6. Classical linear logic

Intuitionistic linear logic is essentially a refinement of ordinary intuitionistic logic,
and its computational interpretation is a refinement of the i,-calculus. The full system
of linear logic, which for emphasis we refer to as classical linear logic (CLL), represents
a much more radical departure from the tradition of constructive logic, and its
computational interpretation requires a corresponding departure from the functional
framework.

The basic step in the extension from intuitionistic to classical linear logic is the
introduction of the linear negation A ‘. The idea is that this will obey the same kind of
laws as classical negation, while constructive content is retained through linearity.
This requires the introduction of a number of new connectives, as duals to the existing
ones: -L as dual to 1, ‘B (“par”) as dual to 0, ? (“why not”) as dual to !, and 3 as dual to
V. (The two additive constructs & and @ will be dual to each other in CLL.) Linear
negation is then characterized by the following laws:

(A @ B)l= A’ P.B’

(18)
28

(!A)‘=?A-

(kkA)‘=3c(.AL

A-‘lB=A1’BB.

The syntax of linear formulas in CLL is then defined as follows. Formulas are built
from propositional variables a, p, ;’ and their linear negations X-, /j’, ‘I” by the
following connectives and quantifiers:

Units I I

Multiplicatives @ -5’

Additives & 0

Exponentials ! ?

Quantifiers v 3.

Linear negation is definifiorzull~ extended to general formulas by the equations (18),
while linear implication is treated as a derived operator, defined by the last equation
in (1X).

The proof system for CLL is a fully symmetric sequent calculus, in which sequents
have the form

with the intended meaning that the formula @ f -.. P A is valid. However, a consider-
able economy is gained by observing that a sequent r t- A is equivalent, by (1 S), to the
sequent k I”, 3; so it is sufficient to consider right-sided sequents only. The sequent
calculus presentation of CLL can then be given as follows:

Axiom -__
t- r, A, B, A

cut
I-f,A tA,A’

t-AAL,A
Exchange ---

k l-, B, A, A t- 1-, A

Unit K Perp &$

Times
t-r,A kA,B

Par
t r, A, B

FI-,A,A@B FI-, APB

With flk: AL:!f Plus (i)
t l-. A

W,A@B
Plus (ii)

t r, B
t-r,A@B

b I., A
Dereliction ~

kr,?A
t- ? I‘, A

Of Course __--
F?l-, !A

Weakening &$!A
t i-, ?A, ?A

Contraction --Km

I- r, A
All -~

kf,V%.A (*I Exists
tT, A[B,‘z]

t- I-, 3%. A

Classical Linear Logic (CLL)

28

(!A)‘=?A-

(kkA)‘=3c(.AL

A-‘lB=A1’BB.

The syntax of linear formulas in CLL is then defined as follows. Formulas are built
from propositional variables a, p, ;’ and their linear negations X-, /j’, ‘I” by the
following connectives and quantifiers:

Units I I

Multiplicatives @ -5’

Additives & 0

Exponentials ! ?

Quantifiers v 3.

Linear negation is definifiorzull~ extended to general formulas by the equations (18),
while linear implication is treated as a derived operator, defined by the last equation
in (1X).

The proof system for CLL is a fully symmetric sequent calculus, in which sequents
have the form

with the intended meaning that the formula @ f -.. P A is valid. However, a consider-
able economy is gained by observing that a sequent r t- A is equivalent, by (1 S), to the
sequent k I”, 3; so it is sufficient to consider right-sided sequents only. The sequent
calculus presentation of CLL can then be given as follows:

Axiom -__
t- r, A, B, A

cut
I-f,A tA,A’

t-AAL,A
Exchange ---

k l-, B, A, A t- 1-, A

Unit K Perp &$

Times
t-r,A kA,B

Par
t r, A, B

FI-,A,A@B FI-, APB

With flk: AL:!f Plus (i)
t l-. A

W,A@B
Plus (ii)

t r, B
t-r,A@B

b I., A
Dereliction ~

kr,?A
t- ? I‘, A

Of Course __--
F?l-, !A

Weakening &$!A
t i-, ?A, ?A

Contraction --Km

I- r, A
All -~

kf,V%.A (*I Exists
tT, A[B,‘z]

t- I-, 3%. A

28

(!A)‘=?A-

(kkA)‘=3c(.AL

A-‘lB=A1’BB.

The syntax of linear formulas in CLL is then defined as follows. Formulas are built
from propositional variables a, p, ;’ and their linear negations X-, /j’, ‘I” by the
following connectives and quantifiers:

Units I I

Multiplicatives @ -5’

Additives & 0

Exponentials ! ?

Quantifiers v 3.

Linear negation is definifiorzull~ extended to general formulas by the equations (18),
while linear implication is treated as a derived operator, defined by the last equation
in (1X).

The proof system for CLL is a fully symmetric sequent calculus, in which sequents
have the form

with the intended meaning that the formula @ f -.. P A is valid. However, a consider-
able economy is gained by observing that a sequent r t- A is equivalent, by (1 S), to the
sequent k I”, 3; so it is sufficient to consider right-sided sequents only. The sequent
calculus presentation of CLL can then be given as follows:

Axiom -__
t- r, A, B, A

cut
I-f,A tA,A’

t-AAL,A
Exchange ---

k l-, B, A, A t- 1-, A

Unit K Perp &$

Times
t-r,A kA,B

Par
t r, A, B

FI-,A,A@B FI-, APB

With flk: AL:!f Plus (i)
t l-. A

W,A@B
Plus (ii)

t r, B
t-r,A@B

b I., A
Dereliction ~

kr,?A
t- ? I‘, A

Of Course __--
F?l-, !A

Weakening &$!A
t i-, ?A, ?A

Contraction --Km

I- r, A
All -~

kf,V%.A (*I Exists
tT, A[B,‘z]

t- I-, 3%. A

28

(!A)‘=?A-

(kkA)‘=3c(.AL

A-‘lB=A1’BB.

The syntax of linear formulas in CLL is then defined as follows. Formulas are built
from propositional variables a, p, ;’ and their linear negations X-, /j’, ‘I” by the
following connectives and quantifiers:

Units I I

Multiplicatives @ -5’

Additives & 0

Exponentials ! ?

Quantifiers v 3.

Linear negation is definifiorzull~ extended to general formulas by the equations (18),
while linear implication is treated as a derived operator, defined by the last equation
in (1X).

The proof system for CLL is a fully symmetric sequent calculus, in which sequents
have the form

with the intended meaning that the formula @ f -.. P A is valid. However, a consider-
able economy is gained by observing that a sequent r t- A is equivalent, by (1 S), to the
sequent k I”, 3; so it is sufficient to consider right-sided sequents only. The sequent
calculus presentation of CLL can then be given as follows:

Axiom -__
t- r, A, B, A

cut
I-f,A tA,A’

t-AAL,A
Exchange ---

k l-, B, A, A t- 1-, A

Unit K Perp &$

Times
t-r,A kA,B

Par
t r, A, B

FI-,A,A@B FI-, APB

With flk: AL:!f Plus (i)
t l-. A

W,A@B
Plus (ii)

t r, B
t-r,A@B

b I., A
Dereliction ~

kr,?A
t- ? I‘, A

Of Course __--
F?l-, !A

Weakening &$!A
t i-, ?A, ?A

Contraction --Km

I- r, A
All -~

kf,V%.A (*I Exists
tT, A[B,‘z]

t- I-, 3%. A

CLL Computational Interpretation

30 S. Ahramskbs

We shall now present a computational interpretation of CLL which seeks to
embody these ideas in a simple and elegant form, in the general framework we have
established in the preceding sections. Thus, we will define a syntax for proqf expres-
sions, and give an assignment of proof expressions to sequent proofs in CLL, and an
operational semantics for proof expressions.

6. I. Syntux of procf expressions

Firstly, a point of terminology: we shall use list to mean finite sequence. We define
a number of syntactic categories:

- - _
l A set _ 1” of names, ranged over by x, y, z. We use x, J-, z to range over lists of names.
l Terms have one of the forms

X

* 0
fOZ.4 tPu

inl(t) inr(u) X(PO Q)

?t t@ u X(P)

where t, u are terms, and P, Q are proof expressions.
l Coequations have the form t _L u, where t, u are terms. We use 0, E to range over

lists of coequations.
l Proof‘expressions have the form 0; t, where 0 is a list of coequations, and F is a list

of terms. We use P, Q to range over proof expressions.

Notation. The occurrences of .x1, . . . , xk in a term of the form x1, . . . , xk(P[l Q) or
x1, . ..) xk(P) are said to be passbe; all other occurrences are active. If e is some
syntactic expression (term, coequation, proof expression, etc.), we write ~ +‘(e) for the
set of names occurring in e, and A, $“(e) (PC 1 ‘(e)) for the set of names occurring
actively (passively) in e.

We shall now define an assignment of proof expressions to sequent proofs in CLL.
The idea is that, to each proof IT of a sequent t- Al, . . . , Ak, we will assign a proof
expression 0; tl, , fk, where 0 corresponds to the uses of the Cut rule in Il.

To ensure that suitable linearity constraints are satisfied, we shall adopt the
following name convention (cf. the variable convention in [3]): dzferent names are
introduced for each instance of the Axiom, With and Of Course rules.

Proof expression assignment for CLL

Axiom Exchange
t- 0; 1-, t:A,u:B, A

k; x:A’, x:A k 0; r, u:B, t:A, A

tO;r,t:A kZ;A,u:A’
cut -

t 0, 8, t I u;T, A

CLL Computational Interpretation

30 S. Ahramskbs

We shall now present a computational interpretation of CLL which seeks to
embody these ideas in a simple and elegant form, in the general framework we have
established in the preceding sections. Thus, we will define a syntax for proqf expres-
sions, and give an assignment of proof expressions to sequent proofs in CLL, and an
operational semantics for proof expressions.

6. I. Syntux of procf expressions

Firstly, a point of terminology: we shall use list to mean finite sequence. We define
a number of syntactic categories:

- - _
l A set _ 1” of names, ranged over by x, y, z. We use x, J-, z to range over lists of names.
l Terms have one of the forms

X

* 0
fOZ.4 tPu

inl(t) inr(u) X(PO Q)

?t t@ u X(P)

where t, u are terms, and P, Q are proof expressions.
l Coequations have the form t _L u, where t, u are terms. We use 0, E to range over

lists of coequations.
l Proof‘expressions have the form 0; t, where 0 is a list of coequations, and F is a list

of terms. We use P, Q to range over proof expressions.

Notation. The occurrences of .x1, . . . , xk in a term of the form x1, . . . , xk(P[l Q) or
x1, . ..) xk(P) are said to be passbe; all other occurrences are active. If e is some
syntactic expression (term, coequation, proof expression, etc.), we write ~ +‘(e) for the
set of names occurring in e, and A, $“(e) (PC 1 ‘(e)) for the set of names occurring
actively (passively) in e.

We shall now define an assignment of proof expressions to sequent proofs in CLL.
The idea is that, to each proof IT of a sequent t- Al, . . . , Ak, we will assign a proof
expression 0; tl, , fk, where 0 corresponds to the uses of the Cut rule in Il.

To ensure that suitable linearity constraints are satisfied, we shall adopt the
following name convention (cf. the variable convention in [3]): dzferent names are
introduced for each instance of the Axiom, With and Of Course rules.

Proof expression assignment for CLL

Axiom Exchange
t- 0; 1-, t:A,u:B, A

k; x:A’, x:A k 0; r, u:B, t:A, A

tO;r,t:A kZ;A,u:A’
cut -

t 0, 8, t I u;T, A

CLL Computational Interpretation

30 S. Ahramskbs

We shall now present a computational interpretation of CLL which seeks to
embody these ideas in a simple and elegant form, in the general framework we have
established in the preceding sections. Thus, we will define a syntax for proqf expres-
sions, and give an assignment of proof expressions to sequent proofs in CLL, and an
operational semantics for proof expressions.

6. I. Syntux of procf expressions

Firstly, a point of terminology: we shall use list to mean finite sequence. We define
a number of syntactic categories:

- - _
l A set _ 1” of names, ranged over by x, y, z. We use x, J-, z to range over lists of names.
l Terms have one of the forms

X

* 0
fOZ.4 tPu

inl(t) inr(u) X(PO Q)

?t t@ u X(P)

where t, u are terms, and P, Q are proof expressions.
l Coequations have the form t _L u, where t, u are terms. We use 0, E to range over

lists of coequations.
l Proof‘expressions have the form 0; t, where 0 is a list of coequations, and F is a list

of terms. We use P, Q to range over proof expressions.

Notation. The occurrences of .x1, . . . , xk in a term of the form x1, . . . , xk(P[l Q) or
x1, . ..) xk(P) are said to be passbe; all other occurrences are active. If e is some
syntactic expression (term, coequation, proof expression, etc.), we write ~ +‘(e) for the
set of names occurring in e, and A, $“(e) (PC 1 ‘(e)) for the set of names occurring
actively (passively) in e.

We shall now define an assignment of proof expressions to sequent proofs in CLL.
The idea is that, to each proof IT of a sequent t- Al, . . . , Ak, we will assign a proof
expression 0; tl, , fk, where 0 corresponds to the uses of the Cut rule in Il.

To ensure that suitable linearity constraints are satisfied, we shall adopt the
following name convention (cf. the variable convention in [3]): dzferent names are
introduced for each instance of the Axiom, With and Of Course rules.

Proof expression assignment for CLL

Axiom Exchange
t- 0; 1-, t:A,u:B, A

k; x:A’, x:A k 0; r, u:B, t:A, A

tO;r,t:A kZ;A,u:A’
cut -

t 0, 8, t I u;T, A Cotnpuiational interpretations of‘ linear logic 31

Unit ~ Perp
t- 0;r

t-;*:l l-0;r, @:I

Times
t e;r, t:A t E;A, u:B

Par
F 0; 1-, t: A, u:B

F 0, E; r, A, t @ u:A 0 B F O;l-, t3’u:APB

With
t o;i:r, t:A t E;ii:r, u:B

F; .u:T, X(O;t, t [Z;U, u):A&B

Plus (i)
t- o;r, t:A

Plus (ii)
F o;r, u:B

F O;r, inl(t):A 0 B I- O;r, inr(u):A 0 B

Dereliction
k- O;l-,t:A

Weakening
t o;r

b- O;r,?t:?A t-@$_:?A

Contraction
t O;l-, t:?A, u:?A
t o;r, t (d u:?A

Of Course
t o;cr, t:A

t-;x:?T, X(O;f, t):! A

All
t o;r, t:A

(*) Exists
t O;l-, t:A[B/a]

t o;r, t:V’z.A t o;r, t:h.A

6.2. Operational semantics: the linear CHAM

We now complete our computational interpretation of classical linear logic by
giving an operational semantics for proof expressions. Rather than directly defining
the relation of evaluation to canonical form, we shall define a one-step transition
relation on proof expressions, and define canonical forms as certain norma/,forms with
respect to this relation. This is because the notion of computation for proof expres-
sions is inherently parallel; the model is that the coequations form a pool of concur-
rent processes. In fact, our presentation of the operational semantics fits very nicely
into the framework of the chemical abstract machine proposed recently by Berry and
Boudol [S] as a paradigm for concurrent abstract machines. They describe the basic
ideas thus:

Most available concurrency models are based on architectural concepts, e.g.
networks of processes communicating by means of ports or channels. Such concepts
convey a rigid geometrical vision of concurrency. Our chemical abstract machine
model is based on a radically different paradigm . where the concurrent compon-
ents are freely “moving” in the system and communicate when they come into
contact. .

Intuitively, the state of a system is like a chemical solution in which floating
molecules can interact with each other according to reaction rules; a magical
mechanism stirs the solution, allowing for possible contacts between molecules ~ in
chemistry, this is the result of Brownian motion, but we do not insist on any

CLL Computational Interpretation

Cotnpuiational interpretations of‘ linear logic 31

Unit ~ Perp
t- 0;r

t-;*:l l-0;r, @:I

Times
t e;r, t:A t E;A, u:B

Par
F 0; 1-, t: A, u:B

F 0, E; r, A, t @ u:A 0 B F O;l-, t3’u:APB

With
t o;i:r, t:A t E;ii:r, u:B

F; .u:T, X(O;t, t [Z;U, u):A&B

Plus (i)
t- o;r, t:A

Plus (ii)
F o;r, u:B

F O;r, inl(t):A 0 B I- O;r, inr(u):A 0 B

Dereliction
k- O;l-,t:A

Weakening
t o;r

b- O;r,?t:?A t-@$_:?A

Contraction
t O;l-, t:?A, u:?A
t o;r, t (d u:?A

Of Course
t o;cr, t:A

t-;x:?T, X(O;f, t):! A

All
t o;r, t:A

(*) Exists
t O;l-, t:A[B/a]

t o;r, t:V’z.A t o;r, t:h.A

6.2. Operational semantics: the linear CHAM

We now complete our computational interpretation of classical linear logic by
giving an operational semantics for proof expressions. Rather than directly defining
the relation of evaluation to canonical form, we shall define a one-step transition
relation on proof expressions, and define canonical forms as certain norma/,forms with
respect to this relation. This is because the notion of computation for proof expres-
sions is inherently parallel; the model is that the coequations form a pool of concur-
rent processes. In fact, our presentation of the operational semantics fits very nicely
into the framework of the chemical abstract machine proposed recently by Berry and
Boudol [S] as a paradigm for concurrent abstract machines. They describe the basic
ideas thus:

Most available concurrency models are based on architectural concepts, e.g.
networks of processes communicating by means of ports or channels. Such concepts
convey a rigid geometrical vision of concurrency. Our chemical abstract machine
model is based on a radically different paradigm . where the concurrent compon-
ents are freely “moving” in the system and communicate when they come into
contact. .

Intuitively, the state of a system is like a chemical solution in which floating
molecules can interact with each other according to reaction rules; a magical
mechanism stirs the solution, allowing for possible contacts between molecules ~ in
chemistry, this is the result of Brownian motion, but we do not insist on any

CLL Computational Interpretation

Cotnpuiational interpretations of‘ linear logic 31

Unit ~ Perp
t- 0;r

t-;*:l l-0;r, @:I

Times
t e;r, t:A t E;A, u:B

Par
F 0; 1-, t: A, u:B

F 0, E; r, A, t @ u:A 0 B F O;l-, t3’u:APB

With
t o;i:r, t:A t E;ii:r, u:B

F; .u:T, X(O;t, t [Z;U, u):A&B

Plus (i)
t- o;r, t:A

Plus (ii)
F o;r, u:B

F O;r, inl(t):A 0 B I- O;r, inr(u):A 0 B

Dereliction
k- O;l-,t:A

Weakening
t o;r

b- O;r,?t:?A t-@$_:?A

Contraction
t O;l-, t:?A, u:?A
t o;r, t (d u:?A

Of Course
t o;cr, t:A

t-;x:?T, X(O;f, t):! A

All
t o;r, t:A

(*) Exists
t O;l-, t:A[B/a]

t o;r, t:V’z.A t o;r, t:h.A

6.2. Operational semantics: the linear CHAM

We now complete our computational interpretation of classical linear logic by
giving an operational semantics for proof expressions. Rather than directly defining
the relation of evaluation to canonical form, we shall define a one-step transition
relation on proof expressions, and define canonical forms as certain norma/,forms with
respect to this relation. This is because the notion of computation for proof expres-
sions is inherently parallel; the model is that the coequations form a pool of concur-
rent processes. In fact, our presentation of the operational semantics fits very nicely
into the framework of the chemical abstract machine proposed recently by Berry and
Boudol [S] as a paradigm for concurrent abstract machines. They describe the basic
ideas thus:

Most available concurrency models are based on architectural concepts, e.g.
networks of processes communicating by means of ports or channels. Such concepts
convey a rigid geometrical vision of concurrency. Our chemical abstract machine
model is based on a radically different paradigm . where the concurrent compon-
ents are freely “moving” in the system and communicate when they come into
contact. .

Intuitively, the state of a system is like a chemical solution in which floating
molecules can interact with each other according to reaction rules; a magical
mechanism stirs the solution, allowing for possible contacts between molecules ~ in
chemistry, this is the result of Brownian motion, but we do not insist on any

CLL Computational Interpretation

particular mechanism, this being an implementation matter. The solution trans-
formation process is obviously truly parallel; any number of reactions can be
performed in parallel, provided that they involve disjoint sets of molecules.

The “molecules” of the linear CHAM are the coequations. We refer to 0 in O;tas the
“solution”, and to las the “main body”. The idea is that the computation is done in the
solution, with the result recorded in the main body. One can think of each coequation
either as a single sequential process, or as a tightly coupled synchronous parallel
composition of two processes, proceeding in lockstep. (So coequations could be
modelled by “membranes” in Berry and Boudol’s terminology; but we shall not
pursue this idea.)

We distinguish between two kinds of rule for the CHAM (cf. [34]): structural rules,

which describe the “magical mixing” of the solution; and reaction rules, which describe
the actual computation steps.

Structural rules

There are two basic structural rules:
0 tJ_u * u_Lt
0 t I u, t’ I u’ % t’ I li’, t I u

The first says that each coequation can be regarded as a multiset of exactly two
terms, the second that lists of coequations can be regarded as multisets.

These rules can be applied in any context:

The basic metarule for the CHAM refers to the transition relation __f to be
defined below.

Magical mixing rule:

P+“p’ P'---fQ' Q'+*Q
P-Q

We regard this as a metarule, since it is really part of the specification of the
machine, rather than a description of an actual computation step.

Notational interlude: mriants

We shall need to consider variants of terms t occurring in a proof expression P, i.e.
copies of t in which all names have been replaced by “fresh” names not already
occurring in P. In order to implement this global condition in a local way, we need
a little extra structure. We fix a bijection &t“z No x (1, r}*, and extend the name
convention so that when a name .xH(x~, s) is introduced in a proof expression, the

,x0 component is distinct from that of any name already occurring in the expression.
Now given a term t, we define t’. t’ to be the result of replacing each occurrence of
a name .x+-+(x0, s) in t by J~++(.x~, sl), z-(.x,,, sr), respectively. The idea is that the
following invariant is established by the proof expression assignment and maintained
by the transition relation to be defined below:

For all distinct names .xH(.x,,, s), ytr (JJ~, t) occurring in P, xO=yo implies that
s is incompatible with t (i.e. they have no upper bound in the prefix ordering).

Reaction rules

These rules describe how lists of adjacent coequations react, giving rise to new lists.

Notation. Given X=.x1, . , .yk, t= tI , . . . , tkr we write XI I to denote the list
xr 1 tr, , xk ,_ tk.

Communication:

t_Lx,.ulu - tlu

Unit:

t @ u I t’Pu’ - t I t’, u I u’

Case Left:

X(O;t, t [IE;U, u) I inl(c) __f 0, x I t, t J_ u

Case Right:

X(O;i, t) l?u - 0, x I i, t I_ u

Discard:

X(P)I- d x1 ,__, . , .xk I_

copy:

X(P) _L u (8 u -+ x I (2 (a; X’), W(P)’ I u, X(P)* i 2’

The reaction rules contribute to the global transition relation on proof expressions
via the following metarule:

Reaction context rule:

CLL Computational Interpretation

,x0 component is distinct from that of any name already occurring in the expression.
Now given a term t, we define t’. t’ to be the result of replacing each occurrence of
a name .x+-+(x0, s) in t by J~++(.x~, sl), z-(.x,,, sr), respectively. The idea is that the
following invariant is established by the proof expression assignment and maintained
by the transition relation to be defined below:

For all distinct names .xH(.x,,, s), ytr (JJ~, t) occurring in P, xO=yo implies that
s is incompatible with t (i.e. they have no upper bound in the prefix ordering).

Reaction rules

These rules describe how lists of adjacent coequations react, giving rise to new lists.

Notation. Given X=.x1, . , .yk, t= tI , . . . , tkr we write XI I to denote the list
xr 1 tr, , xk ,_ tk.

Communication:

t_Lx,.ulu - tlu

Unit:

t @ u I t’Pu’ - t I t’, u I u’

Case Left:

X(O;t, t [IE;U, u) I inl(c) __f 0, x I t, t J_ u

Case Right:

X(O;i, t) l?u - 0, x I i, t I_ u

Discard:

X(P)I- d x1 ,__, . , .xk I_

copy:

X(P) _L u (8 u -+ x I (2 (a; X’), W(P)’ I u, X(P)* i 2’

The reaction rules contribute to the global transition relation on proof expressions
via the following metarule:

Reaction context rule:

,x0 component is distinct from that of any name already occurring in the expression.
Now given a term t, we define t’. t’ to be the result of replacing each occurrence of
a name .x+-+(x0, s) in t by J~++(.x~, sl), z-(.x,,, sr), respectively. The idea is that the
following invariant is established by the proof expression assignment and maintained
by the transition relation to be defined below:

For all distinct names .xH(.x,,, s), ytr (JJ~, t) occurring in P, xO=yo implies that
s is incompatible with t (i.e. they have no upper bound in the prefix ordering).

Reaction rules

These rules describe how lists of adjacent coequations react, giving rise to new lists.

Notation. Given X=.x1, . , .yk, t= tI , . . . , tkr we write XI I to denote the list
xr 1 tr, , xk ,_ tk.

Communication:

t_Lx,.ulu - tlu

Unit:

t @ u I t’Pu’ - t I t’, u I u’

Case Left:

X(O;t, t [IE;U, u) I inl(c) __f 0, x I t, t J_ u

Case Right:

X(O;i, t) l?u - 0, x I i, t I_ u

Discard:

X(P)I- d x1 ,__, . , .xk I_

copy:

X(P) _L u (8 u -+ x I (2 (a; X’), W(P)’ I u, X(P)* i 2’

The reaction rules contribute to the global transition relation on proof expressions
via the following metarule:

Reaction context rule:

CLL Computational Interpretation

34 S. Ah,arnsk\

Cleanup rule

Finally, we have a rule which tidies up a computation by consolidating information
back into the main body i of a proof expression O;t. This is somewhat analogous to
collecting the answer substitution from a PROLOG computation.

Cleanup:

x I t, O;t ---f @;i[r/x] (xcA,Y‘(t)).

We can now define the result of a computation. A proof expression P= 0; i is
canonical if it is a +-normal form, and each coequation in 0 has the form x I t or
t I x for some name x. P is cut-@ee if 0 is empty.

def

PUQ o P-w* Q, Q canonical

6.3. Discussion

Firstly, we consider the computational intuitions behind these rules. The key rule is
Communication, which is the only one which involves interaction between coequa-
tions. In ILL, as in i-calculus, variables are place-holders for substitution. In CLL, the
two occurrences of a name can be thought of as the two ends of a channel; the
Communication rule uses this channel to connect two processes (terms) together.
Linearity amounts to the restriction that channels are used only once.

From the computational aspect, the most interesting rules are those for the
additives and exponentials. In both cases we have lazy types - & and !-which in the
concurrent framework must be implemented by some form of explicit synchronization.

This is the role of the forms X(P 0 Q) and -W(P). In both cases, proof expressions are
suspended from execution, and only resumed when sufficient information is available
(or, in more computational terms, when sufficient demand has been generated). In the
case of the additives, the With rule (which under the classical dualities is equivalent to
the intuitionistic rule (@L)) corresponds to a case statement, i.e. a choice between two
alternatives. Clearly, we only want to evaluate that expression corresponding to the
alternative actually chosen; so we must wait until the choice is made. This is done
when the term X(P[Q) is cut against a term denoting a proof of the dual
(A&B)l =A’ 0 B’, of the form inl(t), where t is a proof of A’, or inr(u), where u is
a proof of B’; hence the Case Left and Case Right rules. So we must defer any
evaluation of the proofs of the side formulas r of the With rule until this choice is
made. (Indeed, we don’t even know till then whether these proofs should be taken as
tar U.) This is accomplished by replacing the proof terms by the names X. These can in
turn be embedded in complex proof terms and cut against other terms. However,
when one of these names “rises to the surface” in a coequation Xi -L w, the computation
with that coequation will not be able to proceed until the choice associated

CLL Computational Interpretation

,x0 component is distinct from that of any name already occurring in the expression.
Now given a term t, we define t’. t’ to be the result of replacing each occurrence of
a name .x+-+(x0, s) in t by J~++(.x~, sl), z-(.x,,, sr), respectively. The idea is that the
following invariant is established by the proof expression assignment and maintained
by the transition relation to be defined below:

For all distinct names .xH(.x,,, s), ytr (JJ~, t) occurring in P, xO=yo implies that
s is incompatible with t (i.e. they have no upper bound in the prefix ordering).

Reaction rules

These rules describe how lists of adjacent coequations react, giving rise to new lists.

Notation. Given X=.x1, . , .yk, t= tI , . . . , tkr we write XI I to denote the list
xr 1 tr, , xk ,_ tk.

Communication:

t_Lx,.ulu - tlu

Unit:

t @ u I t’Pu’ - t I t’, u I u’

Case Left:

X(O;t, t [IE;U, u) I inl(c) __f 0, x I t, t J_ u

Case Right:

X(O;i, t) l?u - 0, x I i, t I_ u

Discard:

X(P)I- d x1 ,__, . , .xk I_

copy:

X(P) _L u (8 u -+ x I (2 (a; X’), W(P)’ I u, X(P)* i 2’

The reaction rules contribute to the global transition relation on proof expressions
via the following metarule:

Reaction context rule:

with the With rule which generated the name Xi is resolved, by the application
of a Case Left or Case Right rule. Suppose the Case Left rule is applied. At that
point, the coequation xi I ti is released into the solution, and by the Communication
rule, this can “bond” with xi 112: to form the coequation ti J_ ~1, which can now
proceed.

Similar considerations apply to the rules for the exponentials. The idea here is that
the term of type ?AL specifies how many copies of the term of type !A are required;
each of the terms for the side formulas ?I- of the Of Course rule which generated the
!A term Z(P) must then be directed to ask for a corresponding multiple of copies from
its “input”.

From the logical side, the reaction rules correspond exuctly to the key steps in Cut
Elimination, or more precisely of evaluation to canonical form. This is spelled out in
detail in the proof of the realizability theorem (Theorem 7.17), and the reader is
strongly encouraged to work out some of the transitions described there in detail. So
each rule has a clear logical content.

Finally, some brief remarks about the relationship between our proof-expressions
and Girard’s proof nets [121. (A detailed comparison must be left to future work.)
Roughly speaking, proof expressions correspond to proof nets, the lazy forms
.q(Po Q) and X(P) to proof boxes, and the reaction rules to the symmetric contrac-
tions, as described in [12]. A more precise comparison would require some care; for
example, the use of channels for both axiom contraction and the synchronization
associated with the lazy types in our calculus does not appear in the proof net
formalism. The author’s impression is that both representations have their merits and
uses:
l Proof nets are visually appealing and support geometric insights into the structure

of proofs. They work very well for the multiplicative fragment, but the use of boxes
is cumbersome and negates many of their advantages.

l Proof expressions are an efficient syntactic vehicle for making precise definitions
and carrying out detailed proofs; and also as a linear notation for writing down
linear proofs!
The reader must be left to form his or her own opinion of the relative merits of proof

expressions vs. proof nets as a syntactic medium, and, more importantly, whether we
have succeeded in making the computational reading of linear logic, and particularly
the connections with concurrent computation, more substantial and convincing. (A
full evaluation should include the material to be presented in Sections 7 and 8.) We
will briefly indicate a significant difference in the present approach as compared to
Girard’s, that should not be overlooked. This is that, in keeping with the general
philosophy on operational semantics set out in Section 2, our operational semantics is
based on evaluation to canonicalform rather than normal jbrm. We feel that this choice
is amply justified by the general arguments given in Section 2, the evidence of our
definitions in this section, and the detailed results in Section 7. To recapitulate:
l Our operational definitions are much more compact, elegant, and memorable than

the calculus presented in [12].

CLL Computational Interpretation

particular mechanism, this being an implementation matter. The solution trans-
formation process is obviously truly parallel; any number of reactions can be
performed in parallel, provided that they involve disjoint sets of molecules.

The “molecules” of the linear CHAM are the coequations. We refer to 0 in O;tas the
“solution”, and to las the “main body”. The idea is that the computation is done in the
solution, with the result recorded in the main body. One can think of each coequation
either as a single sequential process, or as a tightly coupled synchronous parallel
composition of two processes, proceeding in lockstep. (So coequations could be
modelled by “membranes” in Berry and Boudol’s terminology; but we shall not
pursue this idea.)

We distinguish between two kinds of rule for the CHAM (cf. [34]): structural rules,

which describe the “magical mixing” of the solution; and reaction rules, which describe
the actual computation steps.

Structural rules

There are two basic structural rules:
0 tJ_u * u_Lt
0 t I u, t’ I u’ % t’ I li’, t I u

The first says that each coequation can be regarded as a multiset of exactly two
terms, the second that lists of coequations can be regarded as multisets.

These rules can be applied in any context:

The basic metarule for the CHAM refers to the transition relation __f to be
defined below.

Magical mixing rule:

P+“p’ P'---fQ' Q'+*Q
P-Q

We regard this as a metarule, since it is really part of the specification of the
machine, rather than a description of an actual computation step.

Notational interlude: mriants

We shall need to consider variants of terms t occurring in a proof expression P, i.e.
copies of t in which all names have been replaced by “fresh” names not already
occurring in P. In order to implement this global condition in a local way, we need
a little extra structure. We fix a bijection &t“z No x (1, r}*, and extend the name
convention so that when a name .xH(x~, s) is introduced in a proof expression, the

,x0 component is distinct from that of any name already occurring in the expression.
Now given a term t, we define t’. t’ to be the result of replacing each occurrence of
a name .x+-+(x0, s) in t by J~++(.x~, sl), z-(.x,,, sr), respectively. The idea is that the
following invariant is established by the proof expression assignment and maintained
by the transition relation to be defined below:

For all distinct names .xH(.x,,, s), ytr (JJ~, t) occurring in P, xO=yo implies that
s is incompatible with t (i.e. they have no upper bound in the prefix ordering).

Reaction rules

These rules describe how lists of adjacent coequations react, giving rise to new lists.

Notation. Given X=.x1, . , .yk, t= tI , . . . , tkr we write XI I to denote the list
xr 1 tr, , xk ,_ tk.

Communication:

t_Lx,.ulu - tlu

Unit:

t @ u I t’Pu’ - t I t’, u I u’

Case Left:

X(O;t, t [IE;U, u) I inl(c) __f 0, x I t, t J_ u

Case Right:

X(O;i, t) l?u - 0, x I i, t I_ u

Discard:

X(P)I- d x1 ,__, . , .xk I_

copy:

X(P) _L u (8 u -+ x I (2 (a; X’), W(P)’ I u, X(P)* i 2’

The reaction rules contribute to the global transition relation on proof expressions
via the following metarule:

Reaction context rule:

CLL Computational Interpretation
34 S. Ah,arnsk\

Cleanup rule

Finally, we have a rule which tidies up a computation by consolidating information
back into the main body i of a proof expression O;t. This is somewhat analogous to
collecting the answer substitution from a PROLOG computation.

Cleanup:

x I t, O;t ---f @;i[r/x] (xcA,Y‘(t)).

We can now define the result of a computation. A proof expression P= 0; i is
canonical if it is a +-normal form, and each coequation in 0 has the form x I t or
t I x for some name x. P is cut-@ee if 0 is empty.

def

PUQ o P-w* Q, Q canonical

6.3. Discussion

Firstly, we consider the computational intuitions behind these rules. The key rule is
Communication, which is the only one which involves interaction between coequa-
tions. In ILL, as in i-calculus, variables are place-holders for substitution. In CLL, the
two occurrences of a name can be thought of as the two ends of a channel; the
Communication rule uses this channel to connect two processes (terms) together.
Linearity amounts to the restriction that channels are used only once.

From the computational aspect, the most interesting rules are those for the
additives and exponentials. In both cases we have lazy types - & and !-which in the
concurrent framework must be implemented by some form of explicit synchronization.

This is the role of the forms X(P 0 Q) and -W(P). In both cases, proof expressions are
suspended from execution, and only resumed when sufficient information is available
(or, in more computational terms, when sufficient demand has been generated). In the
case of the additives, the With rule (which under the classical dualities is equivalent to
the intuitionistic rule (@L)) corresponds to a case statement, i.e. a choice between two
alternatives. Clearly, we only want to evaluate that expression corresponding to the
alternative actually chosen; so we must wait until the choice is made. This is done
when the term X(P[Q) is cut against a term denoting a proof of the dual
(A&B)l =A’ 0 B’, of the form inl(t), where t is a proof of A’, or inr(u), where u is
a proof of B’; hence the Case Left and Case Right rules. So we must defer any
evaluation of the proofs of the side formulas r of the With rule until this choice is
made. (Indeed, we don’t even know till then whether these proofs should be taken as
tar U.) This is accomplished by replacing the proof terms by the names X. These can in
turn be embedded in complex proof terms and cut against other terms. However,
when one of these names “rises to the surface” in a coequation Xi -L w, the computation
with that coequation will not be able to proceed until the choice associated

Graded Modal Types & Coeffects

38

110

!antitative Program Reasoning with Graded Modal Types

DOMINIC ORCHARD, University of Kent, UK

VILEM-BENJAMIN LIEPELT, University of Kent, UK

HARLEY EADES III, Augusta University, USA

In programming, some data acts as a resource (e.g., !le handles, channels) subject to usage constraints.
This poses a challenge to software correctness as most languages are agnostic to constraints on data. The
approach of linear types provides a partial remedy, delineating data into resources to be used but never
copied or discarded, and unconstrained values. Bounded Linear Logic provides a more !ne-grained approach,
quantifying non-linear use via an indexed-family of modalities. Recent work on coe!ect types generalises
this idea to graded comonads, providing type systems which can capture various program properties. Here,
we propose the umbrella notion of graded modal types, encompassing coe"ect types and dual notions of
type-based e"ect reasoning via graded monads. In combination with linear and indexed types, we show that
graded modal types provide an expressive type theory for quantitative program reasoning, advancing the
reach of type systems to capture and verify a broader set of program properties. We demonstrate this approach
via a type system embodied in a fully-#edged functional language called Granule, exploring various examples.

CCS Concepts: • Theory of computation→Modal and temporal logics; Program speci!cations; Pro-
gram veri!cation; Linear logic; Type theory.

Additional Key Words and Phrases: graded modal types, linear types, coe"ects, implementation

ACM Reference Format:
Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. 2019. Quantitative Program Reasoning
with Graded Modal Types. Proc. ACM Program. Lang. 3, ICFP, Article 110 (August 2019), 30 pages. https:
//doi.org/10.1145/3341714

1 INTRODUCTION

Most programming languages treat data as in!nitely copiable, arbitrarily discardable, and univer-
sally unconstrained. However, this overly abstract view is naïve and can lead to software errors. For
example, some data encapsulates resources subject to protocols (e.g., !le and device handles, chan-
nels); some data has con!dentiality requirements and thus should not be copied or communicated
arbitrarily. Dually, some programs have non-functional properties (e.g., execution time) dependent
on data (e.g., on its size). Thus, the reality is that some data acts as a resource, subject to constraints.

In this paper we present Granule, a typed functional language that embeds a notion of data as a
resource into the type system in a way that can be specialised to di"erent resource and data#ow
properties. Granule’s type system combines linear types, indexed types (lightweight dependent
types), and graded modal types to enable novel quantitative reasoning.
Linear types treat data like a physical resource which must be used once, and then never

again [Girard 1987; Wadler 1990]. For example, the identity function is linearly typed as it binds a

Authors’ addresses: Dominic Orchard, School of Computing, University of Kent, UK; Vilem-Benjamin Liepelt, School of
Computing, University of Kent, UK; Harley Eades III, School of Computer and Cyber Sciences, Augusta University, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro!t or commercial advantage and that copies bear this notice and
the full citation on the !rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).
2475-1421/2019/8-ART110
https://doi.org/10.1145/3341714

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 110. Publication date: August 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Bounded Linear Logic (BLL)

14 S. Ahramsk~

Logical rules:

I-FA
(1R) tr (IL) ~ r,lFA

t--R) r;;‘pB

(AR)
rtA I-t-B

rkA&B

(OL)
I-, A, B t C

r,A@BFC

t--L)
TEA B,dtC
r A) -B,dFC

(AL)
1-,AtC r,Btc

r,A&BFC r,A&BtC

TEA I-FB
(ORI (0 L)

r,AFC I-,BkC

rkA@B rtA@B r,A@BFC

!TFA
(!R) ~

r,AFB

!TI-!A
(Dereliction)

r,!AtB

(!r means a sequence of the form ! AI,. . , ! Ak.)

r,!A,!AtB rFB
(Contraction)

1-,!AkB
(Weakening)

r,!AkB

The essence of the distinction between the additive and multiplicative connectives is
conveyed by the fact that d@rent contexts are combined, without interaction, in
(0 R), (- L), while the fame contexts are used in (&R) and (0 L). This reflects the fact
that in the additives a choice is made, between one of the components of a pair for &,
or one of the guards in a case for 0; so the Qume inputs must be used in both
alternatives, to ensure that each input is used exactly once in producing the output.
Note also the key role of the left rules in defining the !-type; the proper treatment of
these rules is the technical crux in our computational interpretation of intuitionistic
linear logic.

The linear term calculus

We now give an assignment of terms to proofs in intuitionistic linear logic. The
calculus from which these terms are drawn is a refinement of the i.-calculus. A key role
is played by pattern-matching constructs, corresponding to left rules of the logic. One
_ minor ~ complication is that the syntax of terms is not context-free, but must reflect
linearity construints, i.e. syntactic constraints on occurrences of variables correspond-
ing to the semantic constraint that inputs are used exactly once.

To formalize these notions, it is convenient to use an auxiliary syntactic category of
patterns. We use X, Y, Z to range over finite sets of variables. Now PX, the set of
patterns with variables in X, is defined as follows:

18 J.-Y. Girard et al.

type 0 and define higher types n + I := n+ n. Now define the analog of Church
numerals p of type n + 2, Y,P+* as A$fp, where the variable f is of type n + 1. One
easily verifies that modulo p-conversion,

Y,P+*(f) o Yn4+2cf) = Y,PXfL

and Y,C+,(Y,“+z> = YZ’;, .

y,p+* o YZ+2 = y,““,,,

Therefore YitzYi+, . . . Y: = Yi, where c =222 is a tower of 2’s.
Furthermore, adding full impredicative second order quantification (V) yields a

system of LL2 as strong as system 9(=second-order polymorphic lambda calculus).
In particular, every provably total recursive function of second order arithmetic is
representable in the system. In other words, in order to produce a total numerical
function which is not representable in LL*, one has to go beyond most current
mathematics.

2.4. Towards bounded linear logic

We seek a system intermediate between second order RLL and full second-order
linear logic, which would enjoy feasible normalization and would yet be powerful
enough to express all feasible functions. To this end we consider bounded reuse,
roughly !,A with the intuitive meaning that datum A may only be reused less than
x times. Let us first present just a simplified version of the desired intermediate
system and the basic intuition behind it; the precise consideration will be taken up
in Sections 3 and 4. If r is A,, . . . , A,, we write !,r for !,,, A,, . . . , !,,,,A,.

The rules for storage naturally induce polynomials:

Storage Weakening
TFB

r , A~ B
I .o

Contraction
l-, !,A, !,At B

Dereliction
T,AtB

l-, !x+yAt B r, !,AFB’

We may interpret these rules in second-order RLL, by translating !,A as

where there are exactly x tensor signs and where 1 may be thought of as Va(cu - (.y).
This translation is logically sound only if we add to RLL the unrestricted weakening
rules (see Section 2.2.6). A consequence of the latter is that from (n + l)-ary
tensorization one can obtain the n-ary one. The addition of the unstricted weakening
rules to RLL is of course not problematic. As observed at the end of Section 2.2.6,
proofs still shrink under normalization. The weight (measure) associated to a proof

Graded Modal Types: GrMini

!antitative Program Reasoning with Graded Modal Types 110:7

Assuming totality, this type alone implies the correct implementation modulo reordering, via:

(1) Parametric polymorphism: ensuring that the implementation cannot depend on the concrete
padding items provided or the items of the input vector (hence we use vectors instead of strings);

(2) Indexed types: ensuring correct sizes and enabling speci!cation of the padding element’s usage;
(3) Linear and graded modal types: ensuring that every item in the input vector appears exactly

once in the output and that the padding element is used to pad the vector exactly m - n times.

The type of leftPad is super!cially similar to what we could write in GHC Haskell or a dependently-
typed language, modulo the graded modality [m - n], a minor syntactic addition here. However the
extra guarantees give us properties for free which we would otherwise have to prove separately.

2.5 Other Graded Modalities

We return to the <IO> type constructor, which is an e"ect-capturing modality (the “diamond” syntax
alluding to modal possibility), in the spirit of Haskell’s IOmonad. More precise reasoning is possible
in Granule via a graded possibility modality providing a graded monad [Katsumata 2014]. The indices
of this graded modality capture side e"ects via sets of e"ect labels, forming a lattice (by subset
inclusion), for which IO aliases the top element. We can give a more precise type for twoChars from
the end of Section 2.1: (Char, Char) <{Open,Read,IOExcept,Close}> which enforces that running
it cannot cause any write e"ects. Note that currently exceptions (IOExcept) cannot be caught and
will terminate the program, relying on the runtime/OS to reclaim the program’s resources.

So far we have seen variations of the Nat coe"ect for tracking variable reuse. Another analysis is
available via the Level coe"ect, representing a lattice of security levels for enforcing noninterference:

secret : Int [Private]

secret = [1234]
!

main : Int [Public]

main = hash secret

hash : ∀ {l : Level} . Int [l] → Int [l]

hash [x] = [x*x*x]
"

main : Int [Private]

main = hash secret

Section 8 shows more examples, including combining analyses (variable reuse and security levels).
Now that we have a taste for Granule, we set out the type system that enables all of these examples.
Section 3 describes a core simply-typed calculus !rst before Section 4 de!nes the full system.

3 A CORE SIMPLY-TYPED LINEAR CALCULUS WITH A GRADED MODALITY

To aid understanding, we !rst establish a subset of Granule, called GrMini, which comprises the
linear λ-calculus extended with a graded necessity modality (graded exponential comonad), resem-
bling coe"ect calculi of Brunel et al. [2014] and Gaboardi et al. [2016]. Section 4 extends GrMini to
Granule core (Gr) with polymorphism, indexed types, multiple di"erent graded modalities, and
pattern matching. The typing rules of GrMini are shown later to be specialisations of Gr’s rules.
Types and terms of GrMini are those of the linear λ-calculus with two additional pieces of

syntax for introducing and eliminating values of the graded necessity type !rA:

t ::= x | t1 t2 | λx .t | [t] | let [x] = t1 in t2 A,B ::= A " B | !rA (terms and types)

The usual syntax of the λ-calculus, with variables x , is extended with the term-former [t] which
promotes a term to a graded modality, typed by !rA, as shall be seen in the typing rules. The term
let [x] = t1 in t2 dually provides elimination for graded modal types. The graded modality !rA is an
indexed family of type constructors whose indices r range over the elements of a resource algebra—
in this case, a semiring (R,+, 0, · , 1)—whose operations echo the structure of the proof/typing
rules. This semiring parameterises GrMini as a meta-level entity. In contrast, Gr can internally
select di"erent resource algebras and thus modalities. We consider here the usual natural numbers
semiring for counting exact number of uses as a running example to aid understanding.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 110. Publication date: August 2019.

Graded Modal Types: GrMini
110:8 Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III

Typing judgments are of the form Γ ! t : A with typing contexts Γ of the form:

Γ ::= ∅ | Γ, x : A | Γ, x : [A]r (contexts)

Contexts are either empty ∅, or can be extended with a linear variable assumption x : A or a
graded assumption x : [A]r . For a graded assumption, x can behave non-linearly, with substructural
behaviour captured by the semiring element r , which describes x ’s use in a term. We will denote
the domain of a context Γ, the set of variables assigned a type in the context, by |Γ |.
Typing for the linear λ-calculus fragment is then given by the rules:

x : A ! x : A
var

Γ, x : A ! t : B

Γ ! λx .t : A ! B
abs

Γ1 ! t1 : A ! B Γ2 ! t2 : A

Γ1 + Γ2 ! t1 t2 : B
app

Γ ! t : A

Γ, [∆]0 ! t : A
weak

Linear variables are typed in a singleton context, which enforces the behaviour that linear variables
cannot be weakened. Abstraction and application are as expected, though application employs a
partial context concatenation operation + de!ned as follows:

De!nition 3.1. [Context concatenation] Two contexts can be concatenated if they contain disjoint
sets of linear assumptions. Furthermore, graded assumptions appearing in both contexts are
combined using the additive operation of the semiring +. Concatenation + is speci!ed as follows:

(Γ, x : A) + Γ′ = (Γ + Γ′), x : A i" x ! |Γ′ |
Γ + (Γ′, x : A) = (Γ + Γ′), x : A i" x ! |Γ |

(Γ, x : [A]r) + (Γ′, x : [A]s) = (Γ + Γ′), x : [A](r+s)

∅ + Γ = Γ

Γ + ∅ = Γ

Note that this is a declarative speci!cation of + rather than an algorithmic de!nition, since graded
assumptions for the same variable may appear in di"erent positions within the two contexts.

The weak rule provides weakening only for graded assumptions, where [∆]0 denotes a context
containing only assumptions graded by 0. Context concatenation and weak thus provide contrac-
tion and weakening for graded assumptions using + and 0 to witness substructural behaviour
corresponding to a split in a data#ow path for a value or the end of a data#ow path. The exchange
rule, allowing contexts to be re-ordered, is implicit here (though Section 10 discusses alternatives).
The next three rules employ the remaining semiring structure, typing the additional syntax as

well as connecting linear assumptions to graded assumptions:

Γ, x : A ! t : B

Γ, x : [A]1 ! t : B
der

[Γ] ! t : A

r · [Γ] ! [t] : "rA
pr

Γ1 ! t1 : "rA Γ2, x : [A]r ! t2 : B

Γ1 + Γ2 ! let [x] = t1 in t2 : B
let

Dereliction (der) converts a linear assumption to be graded, marked with 1. Subsequently, the
semiring element 1 relates to linearity, though in Gr (§4) it does not exactly denote linear use as
x : [A]1 ! t : B does not imply x : A ! t : B for all semirings once ordering is added to allow
approximation. Promotion (pr) introduces graded necessity with grade r , propagating this grade to
the assumptions via scalar multiplication of the context by r . For tracking number of uses, the rule
states that to produce the capability to reuse t of type A exactly r times requires that all the input
requirements for t are provided r times over, hence we multiply the context by r .

De!nition 3.2. [Scalar context multiplication] Assuming that a context contains only graded
assumptions, denoted [Γ] in typing rules, then Γ can be multiplied by a semiring element r ∈ R:

r · ∅ = ∅ r · (Γ, x : [A]s) = (r · Γ), x : [A](r · s)

The (let) rule provides elimination for the graded modality via a kind of substitution, where a
graded value is “unboxed” and substituted into a graded assumption with matching grades. In the
context of reuse, let plugs the capability to reuse a value r times into the requirement of using a
variable r times. Since (let) has two subterms, context addition is also employed in the conclusion.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 110. Publication date: August 2019.

110:8 Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III

Typing judgments are of the form Γ ! t : A with typing contexts Γ of the form:

Γ ::= ∅ | Γ, x : A | Γ, x : [A]r (contexts)

Contexts are either empty ∅, or can be extended with a linear variable assumption x : A or a
graded assumption x : [A]r . For a graded assumption, x can behave non-linearly, with substructural
behaviour captured by the semiring element r , which describes x ’s use in a term. We will denote
the domain of a context Γ, the set of variables assigned a type in the context, by |Γ |.
Typing for the linear λ-calculus fragment is then given by the rules:

x : A ! x : A
var

Γ, x : A ! t : B

Γ ! λx .t : A ! B
abs

Γ1 ! t1 : A ! B Γ2 ! t2 : A

Γ1 + Γ2 ! t1 t2 : B
app

Γ ! t : A

Γ, [∆]0 ! t : A
weak

Linear variables are typed in a singleton context, which enforces the behaviour that linear variables
cannot be weakened. Abstraction and application are as expected, though application employs a
partial context concatenation operation + de!ned as follows:

De!nition 3.1. [Context concatenation] Two contexts can be concatenated if they contain disjoint
sets of linear assumptions. Furthermore, graded assumptions appearing in both contexts are
combined using the additive operation of the semiring +. Concatenation + is speci!ed as follows:

(Γ, x : A) + Γ′ = (Γ + Γ′), x : A i" x ! |Γ′ |
Γ + (Γ′, x : A) = (Γ + Γ′), x : A i" x ! |Γ |

(Γ, x : [A]r) + (Γ′, x : [A]s) = (Γ + Γ′), x : [A](r+s)

∅ + Γ = Γ

Γ + ∅ = Γ

Note that this is a declarative speci!cation of + rather than an algorithmic de!nition, since graded
assumptions for the same variable may appear in di"erent positions within the two contexts.

The weak rule provides weakening only for graded assumptions, where [∆]0 denotes a context
containing only assumptions graded by 0. Context concatenation and weak thus provide contrac-
tion and weakening for graded assumptions using + and 0 to witness substructural behaviour
corresponding to a split in a data#ow path for a value or the end of a data#ow path. The exchange
rule, allowing contexts to be re-ordered, is implicit here (though Section 10 discusses alternatives).
The next three rules employ the remaining semiring structure, typing the additional syntax as

well as connecting linear assumptions to graded assumptions:

Γ, x : A ! t : B

Γ, x : [A]1 ! t : B
der

[Γ] ! t : A

r · [Γ] ! [t] : "rA
pr

Γ1 ! t1 : "rA Γ2, x : [A]r ! t2 : B

Γ1 + Γ2 ! let [x] = t1 in t2 : B
let

Dereliction (der) converts a linear assumption to be graded, marked with 1. Subsequently, the
semiring element 1 relates to linearity, though in Gr (§4) it does not exactly denote linear use as
x : [A]1 ! t : B does not imply x : A ! t : B for all semirings once ordering is added to allow
approximation. Promotion (pr) introduces graded necessity with grade r , propagating this grade to
the assumptions via scalar multiplication of the context by r . For tracking number of uses, the rule
states that to produce the capability to reuse t of type A exactly r times requires that all the input
requirements for t are provided r times over, hence we multiply the context by r .

De!nition 3.2. [Scalar context multiplication] Assuming that a context contains only graded
assumptions, denoted [Γ] in typing rules, then Γ can be multiplied by a semiring element r ∈ R:

r · ∅ = ∅ r · (Γ, x : [A]s) = (r · Γ), x : [A](r · s)

The (let) rule provides elimination for the graded modality via a kind of substitution, where a
graded value is “unboxed” and substituted into a graded assumption with matching grades. In the
context of reuse, let plugs the capability to reuse a value r times into the requirement of using a
variable r times. Since (let) has two subterms, context addition is also employed in the conclusion.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 110. Publication date: August 2019.

Graded Modal Types: GrMini

110:8 Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III

Typing judgments are of the form Γ ! t : A with typing contexts Γ of the form:

Γ ::= ∅ | Γ, x : A | Γ, x : [A]r (contexts)

Contexts are either empty ∅, or can be extended with a linear variable assumption x : A or a
graded assumption x : [A]r . For a graded assumption, x can behave non-linearly, with substructural
behaviour captured by the semiring element r , which describes x ’s use in a term. We will denote
the domain of a context Γ, the set of variables assigned a type in the context, by |Γ |.
Typing for the linear λ-calculus fragment is then given by the rules:

x : A ! x : A
var

Γ, x : A ! t : B

Γ ! λx .t : A ! B
abs

Γ1 ! t1 : A ! B Γ2 ! t2 : A

Γ1 + Γ2 ! t1 t2 : B
app

Γ ! t : A

Γ, [∆]0 ! t : A
weak

Linear variables are typed in a singleton context, which enforces the behaviour that linear variables
cannot be weakened. Abstraction and application are as expected, though application employs a
partial context concatenation operation + de!ned as follows:

De!nition 3.1. [Context concatenation] Two contexts can be concatenated if they contain disjoint
sets of linear assumptions. Furthermore, graded assumptions appearing in both contexts are
combined using the additive operation of the semiring +. Concatenation + is speci!ed as follows:

(Γ, x : A) + Γ′ = (Γ + Γ′), x : A i" x ! |Γ′ |
Γ + (Γ′, x : A) = (Γ + Γ′), x : A i" x ! |Γ |

(Γ, x : [A]r) + (Γ′, x : [A]s) = (Γ + Γ′), x : [A](r+s)

∅ + Γ = Γ

Γ + ∅ = Γ

Note that this is a declarative speci!cation of + rather than an algorithmic de!nition, since graded
assumptions for the same variable may appear in di"erent positions within the two contexts.

The weak rule provides weakening only for graded assumptions, where [∆]0 denotes a context
containing only assumptions graded by 0. Context concatenation and weak thus provide contrac-
tion and weakening for graded assumptions using + and 0 to witness substructural behaviour
corresponding to a split in a data#ow path for a value or the end of a data#ow path. The exchange
rule, allowing contexts to be re-ordered, is implicit here (though Section 10 discusses alternatives).
The next three rules employ the remaining semiring structure, typing the additional syntax as

well as connecting linear assumptions to graded assumptions:

Γ, x : A ! t : B

Γ, x : [A]1 ! t : B
der

[Γ] ! t : A

r · [Γ] ! [t] : "rA
pr

Γ1 ! t1 : "rA Γ2, x : [A]r ! t2 : B

Γ1 + Γ2 ! let [x] = t1 in t2 : B
let

Dereliction (der) converts a linear assumption to be graded, marked with 1. Subsequently, the
semiring element 1 relates to linearity, though in Gr (§4) it does not exactly denote linear use as
x : [A]1 ! t : B does not imply x : A ! t : B for all semirings once ordering is added to allow
approximation. Promotion (pr) introduces graded necessity with grade r , propagating this grade to
the assumptions via scalar multiplication of the context by r . For tracking number of uses, the rule
states that to produce the capability to reuse t of type A exactly r times requires that all the input
requirements for t are provided r times over, hence we multiply the context by r .

De!nition 3.2. [Scalar context multiplication] Assuming that a context contains only graded
assumptions, denoted [Γ] in typing rules, then Γ can be multiplied by a semiring element r ∈ R:

r · ∅ = ∅ r · (Γ, x : [A]s) = (r · Γ), x : [A](r · s)

The (let) rule provides elimination for the graded modality via a kind of substitution, where a
graded value is “unboxed” and substituted into a graded assumption with matching grades. In the
context of reuse, let plugs the capability to reuse a value r times into the requirement of using a
variable r times. Since (let) has two subterms, context addition is also employed in the conclusion.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 110. Publication date: August 2019.

Graded Modal Types: Granule

!antitative Program Reasoning with Graded Modal Types 110:9

If grades are removed, or collapsed via the singleton semiring, then this system is essentially
intuitionistic natural deduction for S4 necessity [Bierman and de Paiva 2000; Pfenning and Davies
2001], but using Terui’s technique of delineating modal assumptions via “discharged” (in our case
“graded”) assumptions [Terui 2001]. This technique avoids issues with substitution underneath
promotion, providing cut admissibility. See Section 7 for further discussion.

Any term and type derivation in the simply-typed λ-calculus can be translated into GrMini based
on Girard’s translation of the simply-typed λ-calculus into an intuitionistic linear calculus [Girard
1987]. The idea is to replace every intuitionistic arrow A → B with !ωA " B for the singleton
semiring {ω} and subsequently unbox via let in abstraction and promote when applying, e.g.

!λ f .λx . f (f x) : (A→ A)→ A→ A" = λ f ′.λx ′.let [f] = f ′ in (let [x] = x ′ in f [f [x]])

: !ω (!ωA " A) " !ωA " A

From GrMini to Granule. Granule incorporates the GrMini syntax and rules. The graded modal
operator is written post!x in Granule with the grade inside the box: i.e., !rA is written as A [r].
The following are then some simple Granule examples using just the GrMini subset:

k : Int → Int [0] → Int

k = λx → λy' → let [y] = y' in x

foo : Int [3] → Int [6] → Int [3]

foo = λx' → λy' → let [x] = x' in let [y] = y' in [x+y+y]

In foo, the promoted term uses x once and y twice. Thus, if we promote and require three uses
of the result, as speci!ed by the type signature, then we require 3 uses of x and 6 uses of y by
application of the promotion rule, which propagates to the types shown for x' and y'.
GrMini provides linearity with graded necessity modalities for Granule, capturing data"ow

properties of variables (and thus values) via the information of a semiring. Gr develops this idea
further (next section) to allow multiple di#erent graded modalities within the language, as well as
indexed data types, pattern matching, polymorphism, and graded possibility.

4 THE GRANULE TYPE SYSTEM

We extend GrMini to Gr, which models Granule with some simpli!cations. The implementation
of Granule has the following structure:

Source
lexer/parser

!! AST
freshener

!! AST
bidirectional type checking

!! Predicate
SMT solver

!! Result
""

Type checking, if successful, outputs a predicate capturing theorems about grading, which is
compiled to the SMT-LIB format [Barrett et al. 2010] and passed to any compatible solver (we
use Z3 [De Moura and Bjørner 2008]). Type checking and predicate solving is performed for each
top-level de!nition independently, assuming all other de!nitions are well-typed by their signatures.
We !rst de!ne the syntax (§4.1), excluding user-de!ned data types, then resource algebras and

their instances (§4.2), before de!ning typing declaratively (§4.3) as an expansion of GrMini.

4.1 Syntax

A core subset of the surface-level syntax for Granule is given by the following grammar:

t ::= x | t1 t2 | λp.t
︸!!!!!!!!!!︷︷!!!!!!!!!!︸

λ-calculus

| [t]
︸︷︷︸
box

| n | C t0 ... tn
︸!!!!!!!!︷︷!!!!!!!!︸
constructors

| let 〈p〉# t1 in t2 | 〈t〉
︸!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!︸
monadic metalanguage

(terms)

p ::= x
︸︷︷︸
variables

| _
︸︷︷︸
wildcard

| [p]
︸︷︷︸
unbox

| n | C p0 ... pn
︸!!!!!!!!!︷︷!!!!!!!!!︸
constructors

(patterns)

where 〈t〉 corresponds to pure t. Unlike the λ-calculus and GrMini, λ-abstraction is over a pattern
p rather than just a variable. We include integer constructors n and their corresponding patterns as

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 110. Publication date: August 2019.

110:10 Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III

well as data constructors C with zero or more arguments. A built-in library provides operations on
integers and other primitives, but we elide the details since they are routine.
The “boxing” (promotion) construct [t] is dualised by the unboxing pattern [p], replacing the

specialised let-binding syntax of GrMini, which is now syntactic sugar:

let [p] = t1 in t2 ! (λ[p].t2) t1 (syntactic sugar)

The syntax of GrMini types is extended and a syntactic category of kinds is also now included:

A,B, R, E ::= A→ B | K | α | AB | A opB | "cA | ♦εA (types)

κ ::= Type | Coe!ect | E!ect | Predicate | κ1 → κ2 | ↑A (kinds)

op ::= + | ∗ | − | ≤ | < | ≥ | > | = | ! | ' | ((type operators)

K ::= Int | Char | () | × | IO | Nat | Level | Ext | Interval (type constructors)

Types comprise function types, type constructors K , variables α (and β), application AB, binary
operators A opB, graded necessity types "cA, graded possibility types ♦εA where c and ε are
coe!ect and e!ect grades de"ned in Section 4.2, and the unit type (). Functions in Gr are linear,
though we use the Cartesian function space notation→ rather than the traditional$ since we use
-> (or→) as a more familiar concrete syntax. Kinds comprise several constants categorising types,
grade kinds (coe!ect and e!ect) and predicates, along with a function space for higher-kinded
types and a syntactic construct to denote a type A lifted to a kind, written ↑A.
Type constructors K comprise various built-in types (with more in the actual implementation,

e.g., "le handles) and which is extended by user-de"ned types (§4.3.3). These built-in constructors
are grouped above by their kind (de"ned via the kinding rules, §4.3) with the "rst three of kind
Type, products × as kind-polymorphic, I/O e!ect labels of kind E!ect, and the last four of kind
Coe!ect or higher-kinded, producing types of kind Coe!ect.

Similarly to ML, we provide polymorphism via type schemes allowing type quanti"cation only at
the outer level of a type rather than higher-rank quanti"cation (see future work, §10):

T ::= ∀{−−−→α : κ} . A | ∀−−−→α : κ . {A1, .. ,An}⇒ B (type schemes)

where −−−→α : κ represents a comma-separated sequence of type variables and their kinds. The second
syntactic form additionally includes a set of one or more predicates (types of the kind Predicate)
that can be used to express theorems which need to be solved implicitly by the type checker (a
kind of re"nement), as seen in the sub example earlier (§2.4).
Finally, top-level de"nitions provide a type-scheme signature for a de"nition along with a

non-empty sequence of equations headed by patterns:

Def ::= x : T ;
−−−−−−−−−−−−−−−→
x pi1 . . .pin = ti (de!nitions)

4.2 Grading and Resource Algebras

GrMini was parameterised at the meta-level by a semiring, providing a system with one graded
necessity modality. Granule instead allows various graded modalities, with di!erent index domains,
to be used simultaneously within the same program. The type "cA captures di!erent graded
necessity modalities identi"ed by the type of the grade c which is an element of a resource algebra:
a pre-ordered semiring (R, + , 0, · , 1,+) with monotonic multiplication and addition which may be
partial. We colour in blue general resource algebra operations, and necessity grades in typing rules.
Within types, necessity grade terms c (which we call coe"ects) have the following syntax:

c ::= α | c1 + c2 | c1 · c2 | 0 | 1 | c1 ' c2 | c1 (c2 | fla"en(c1, R, c2, S) (coe"ects)

| n | Private | Public | c1..c2 | ∞ | (c1, c2)

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 110. Publication date: August 2019.

Graded Modal Types: Granule

110:10 Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III

well as data constructors C with zero or more arguments. A built-in library provides operations on
integers and other primitives, but we elide the details since they are routine.
The “boxing” (promotion) construct [t] is dualised by the unboxing pattern [p], replacing the

specialised let-binding syntax of GrMini, which is now syntactic sugar:

let [p] = t1 in t2 ! (λ[p].t2) t1 (syntactic sugar)

The syntax of GrMini types is extended and a syntactic category of kinds is also now included:

A,B, R, E ::= A→ B | K | α | AB | A opB | "cA | ♦εA (types)

κ ::= Type | Coe!ect | E!ect | Predicate | κ1 → κ2 | ↑A (kinds)

op ::= + | ∗ | − | ≤ | < | ≥ | > | = | ! | ' | ((type operators)

K ::= Int | Char | () | × | IO | Nat | Level | Ext | Interval (type constructors)

Types comprise function types, type constructors K , variables α (and β), application AB, binary
operators A opB, graded necessity types "cA, graded possibility types ♦εA where c and ε are
coe!ect and e!ect grades de"ned in Section 4.2, and the unit type (). Functions in Gr are linear,
though we use the Cartesian function space notation→ rather than the traditional$ since we use
-> (or→) as a more familiar concrete syntax. Kinds comprise several constants categorising types,
grade kinds (coe!ect and e!ect) and predicates, along with a function space for higher-kinded
types and a syntactic construct to denote a type A lifted to a kind, written ↑A.
Type constructors K comprise various built-in types (with more in the actual implementation,

e.g., "le handles) and which is extended by user-de"ned types (§4.3.3). These built-in constructors
are grouped above by their kind (de"ned via the kinding rules, §4.3) with the "rst three of kind
Type, products × as kind-polymorphic, I/O e!ect labels of kind E!ect, and the last four of kind
Coe!ect or higher-kinded, producing types of kind Coe!ect.

Similarly to ML, we provide polymorphism via type schemes allowing type quanti"cation only at
the outer level of a type rather than higher-rank quanti"cation (see future work, §10):

T ::= ∀{−−−→α : κ} . A | ∀−−−→α : κ . {A1, .. ,An}⇒ B (type schemes)

where −−−→α : κ represents a comma-separated sequence of type variables and their kinds. The second
syntactic form additionally includes a set of one or more predicates (types of the kind Predicate)
that can be used to express theorems which need to be solved implicitly by the type checker (a
kind of re"nement), as seen in the sub example earlier (§2.4).
Finally, top-level de"nitions provide a type-scheme signature for a de"nition along with a

non-empty sequence of equations headed by patterns:

Def ::= x : T ;
−−−−−−−−−−−−−−−→
x pi1 . . .pin = ti (de!nitions)

4.2 Grading and Resource Algebras

GrMini was parameterised at the meta-level by a semiring, providing a system with one graded
necessity modality. Granule instead allows various graded modalities, with di!erent index domains,
to be used simultaneously within the same program. The type "cA captures di!erent graded
necessity modalities identi"ed by the type of the grade c which is an element of a resource algebra:
a pre-ordered semiring (R, + , 0, · , 1,+) with monotonic multiplication and addition which may be
partial. We colour in blue general resource algebra operations, and necessity grades in typing rules.
Within types, necessity grade terms c (which we call coe"ects) have the following syntax:

c ::= α | c1 + c2 | c1 · c2 | 0 | 1 | c1 ' c2 | c1 (c2 | fla"en(c1, R, c2, S) (coe"ects)

| n | Private | Public | c1..c2 | ∞ | (c1, c2)

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 110. Publication date: August 2019.

!antitative Program Reasoning with Graded Modal Types 110:11

The !rst line of syntax exposes the resource algebra operations, including syntax for (possibly
unde!ned) least-upper bounds (!) and greatest-lower bounds (") derived from the pre-order.
Grades can include variables α , enabling grade-polymorphic functions shown later and in Section 8.
Our long-term goal is to allow !rst-class user-de!ned resource algebras, with varying axioma-

tisations (see §10). For now we provide several built-in resource algebras, with syntax provided
above in the second line for naturals n, security levels, intervals, in!nity, and products of coe"ects.

De!nition 4.1. [Exact usage] The coe"ect type Nat has the resource algebra given by the usual
natural numbers semiring (N,+, 0, · , 1,≡), but notably with discrete ordering ≡ giving exact usage
analysis in Granule (see §2). Thus, meet and join are only de!ned on matching inputs.

De!nition 4.2. [Security levels] The coe"ect type Level provides a way of capturing con!den-
tiality requirements and enforcing noninterference, with a three-point lattice of security levels
{Irrelevant $ Private $ Public} with 0 = Irrelevant, 1 = Private, + = ! (join of the induced
lattice), and if r = Irrelevant or s = Irrelevant then r · s = Irrelevant otherwise r · s = r ! s .

Multiplication · is such that if a value is used publicly, all of its dependencies must also be public;
a private value can depend on public and private values. Recall that + represents contraction (i.e.,
a split in the data#ow of a value). Therefore, a dependency used publicly must be permitted for
public use even if it used elsewhere privately, thus Public+Private = Public. Since 0 = Irrelevant
(bottom element), we can weaken at any level by approximation. Similarly, since 1 = Private, we
can essentially derelict at either Private or Public by approximation. The appendix (Lemma A.1)
gives the proof that this resource algebra is a preordered semiring.

De!nition 4.3. [Intervals] The Interval constructor is unary, of kind Coe"ect→ Coe"ect, where
IntervalR is inhabited by pairs of R elements, giving lower and upper bounds. Thus, IntervalR
is the semiring over {c ..d | c ∈ R ∧ d ∈ R ∧ c $R d}, i.e., pairs written with the Granule syntax
c ..d , where the !rst component is less than the second (according to the preorder on R). Units are
0 = 0R ..0R and 1 = 1R ..1R and the operations and pre-order are de!ned as in interval arithmetic:

cl ..cu +dl ..du = (cl +R dl)..(cu +R du)

cl ..cu · dl ..du = (cl ·dl "R cl ·du "R cu ·dl "R cu ·du)..(cl ·dl !R cl ·du !R cu ·dl !R cu ·du)

cl ..cu $dl ..du = (dl $R cl) ∧ (cu $R du)

For Interval Nat (used in Section 2 to capture lower and upper bounds on usage), multiplication
simpli!es to cl ..cu ·dl ..du = (cl ·dl)..(cu ·du). Whilst Nat is discrete, the implementation uses the ≤
natural number ordering to form the Interval Nat resource algebra so that it can properly capture
lower and upper bounds on use.

De!nition 4.4. [Extended coe"ects] For a resource algebra R, applying the unary constructor
Ext R extends the resource algebra with an element∞ (i.e., Ext R = R ∪ {∞}) with operations:

r + s =

{
∞ (r = ∞) ∨ (s = ∞)

r +R s otherwise
r · s =






0R (r = 0R) ∨ (s = 0R)

∞ ((r = ∞) ∧ (s ! 0R)) ∨ ((s = ∞) ∧ (r ! 0R))

r ·R s otherwise

The pre-order for Ext R is that of R, but with r $ ∞ for all r . Some Section 2 examples used coe"ects
of kind Interval (ExtNat), where 0..∞ captures arbitrary (“Cartesian” usage), providing a type
analysis akin to the ! modality of linear logic. In Granule, the type “A []” is an alias for “A [0..∞]”.

De!nition 4.5. [Products] Given two resource algebras R and S , we can form a product resource
algebra R × S whose operations are the pairwise application of the operations for R and S , e.g.,
(r , s)+(r ′, s ′) = (r +R r

′, s +S s
′). This is useful for composing grades together to capture multiple

properties at once. We treat products as commutative and associative.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 110. Publication date: August 2019.

Graded Modal Types: Granule

!antitative Program Reasoning with Graded Modal Types 110:11

The !rst line of syntax exposes the resource algebra operations, including syntax for (possibly
unde!ned) least-upper bounds (!) and greatest-lower bounds (") derived from the pre-order.
Grades can include variables α , enabling grade-polymorphic functions shown later and in Section 8.
Our long-term goal is to allow !rst-class user-de!ned resource algebras, with varying axioma-

tisations (see §10). For now we provide several built-in resource algebras, with syntax provided
above in the second line for naturals n, security levels, intervals, in!nity, and products of coe"ects.

De!nition 4.1. [Exact usage] The coe"ect type Nat has the resource algebra given by the usual
natural numbers semiring (N,+, 0, · , 1,≡), but notably with discrete ordering ≡ giving exact usage
analysis in Granule (see §2). Thus, meet and join are only de!ned on matching inputs.

De!nition 4.2. [Security levels] The coe"ect type Level provides a way of capturing con!den-
tiality requirements and enforcing noninterference, with a three-point lattice of security levels
{Irrelevant $ Private $ Public} with 0 = Irrelevant, 1 = Private, + = ! (join of the induced
lattice), and if r = Irrelevant or s = Irrelevant then r · s = Irrelevant otherwise r · s = r ! s .

Multiplication · is such that if a value is used publicly, all of its dependencies must also be public;
a private value can depend on public and private values. Recall that + represents contraction (i.e.,
a split in the data#ow of a value). Therefore, a dependency used publicly must be permitted for
public use even if it used elsewhere privately, thus Public+Private = Public. Since 0 = Irrelevant
(bottom element), we can weaken at any level by approximation. Similarly, since 1 = Private, we
can essentially derelict at either Private or Public by approximation. The appendix (Lemma A.1)
gives the proof that this resource algebra is a preordered semiring.

De!nition 4.3. [Intervals] The Interval constructor is unary, of kind Coe"ect→ Coe"ect, where
IntervalR is inhabited by pairs of R elements, giving lower and upper bounds. Thus, IntervalR
is the semiring over {c ..d | c ∈ R ∧ d ∈ R ∧ c $R d}, i.e., pairs written with the Granule syntax
c ..d , where the !rst component is less than the second (according to the preorder on R). Units are
0 = 0R ..0R and 1 = 1R ..1R and the operations and pre-order are de!ned as in interval arithmetic:

cl ..cu +dl ..du = (cl +R dl)..(cu +R du)

cl ..cu · dl ..du = (cl ·dl "R cl ·du "R cu ·dl "R cu ·du)..(cl ·dl !R cl ·du !R cu ·dl !R cu ·du)

cl ..cu $dl ..du = (dl $R cl) ∧ (cu $R du)

For Interval Nat (used in Section 2 to capture lower and upper bounds on usage), multiplication
simpli!es to cl ..cu ·dl ..du = (cl ·dl)..(cu ·du). Whilst Nat is discrete, the implementation uses the ≤
natural number ordering to form the Interval Nat resource algebra so that it can properly capture
lower and upper bounds on use.

De!nition 4.4. [Extended coe"ects] For a resource algebra R, applying the unary constructor
Ext R extends the resource algebra with an element∞ (i.e., Ext R = R ∪ {∞}) with operations:

r + s =

{
∞ (r = ∞) ∨ (s = ∞)

r +R s otherwise
r · s =






0R (r = 0R) ∨ (s = 0R)

∞ ((r = ∞) ∧ (s ! 0R)) ∨ ((s = ∞) ∧ (r ! 0R))

r ·R s otherwise

The pre-order for Ext R is that of R, but with r $ ∞ for all r . Some Section 2 examples used coe"ects
of kind Interval (ExtNat), where 0..∞ captures arbitrary (“Cartesian” usage), providing a type
analysis akin to the ! modality of linear logic. In Granule, the type “A []” is an alias for “A [0..∞]”.

De!nition 4.5. [Products] Given two resource algebras R and S , we can form a product resource
algebra R × S whose operations are the pairwise application of the operations for R and S , e.g.,
(r , s)+(r ′, s ′) = (r +R r

′, s +S s
′). This is useful for composing grades together to capture multiple

properties at once. We treat products as commutative and associative.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 110. Publication date: August 2019.

Graded Modal Types: Granule

!antitative Program Reasoning with Graded Modal Types 110:11

The !rst line of syntax exposes the resource algebra operations, including syntax for (possibly
unde!ned) least-upper bounds (!) and greatest-lower bounds (") derived from the pre-order.
Grades can include variables α , enabling grade-polymorphic functions shown later and in Section 8.
Our long-term goal is to allow !rst-class user-de!ned resource algebras, with varying axioma-

tisations (see §10). For now we provide several built-in resource algebras, with syntax provided
above in the second line for naturals n, security levels, intervals, in!nity, and products of coe"ects.

De!nition 4.1. [Exact usage] The coe"ect type Nat has the resource algebra given by the usual
natural numbers semiring (N,+, 0, · , 1,≡), but notably with discrete ordering ≡ giving exact usage
analysis in Granule (see §2). Thus, meet and join are only de!ned on matching inputs.

De!nition 4.2. [Security levels] The coe"ect type Level provides a way of capturing con!den-
tiality requirements and enforcing noninterference, with a three-point lattice of security levels
{Irrelevant $ Private $ Public} with 0 = Irrelevant, 1 = Private, + = ! (join of the induced
lattice), and if r = Irrelevant or s = Irrelevant then r · s = Irrelevant otherwise r · s = r ! s .

Multiplication · is such that if a value is used publicly, all of its dependencies must also be public;
a private value can depend on public and private values. Recall that + represents contraction (i.e.,
a split in the data#ow of a value). Therefore, a dependency used publicly must be permitted for
public use even if it used elsewhere privately, thus Public+Private = Public. Since 0 = Irrelevant
(bottom element), we can weaken at any level by approximation. Similarly, since 1 = Private, we
can essentially derelict at either Private or Public by approximation. The appendix (Lemma A.1)
gives the proof that this resource algebra is a preordered semiring.

De!nition 4.3. [Intervals] The Interval constructor is unary, of kind Coe"ect→ Coe"ect, where
IntervalR is inhabited by pairs of R elements, giving lower and upper bounds. Thus, IntervalR
is the semiring over {c ..d | c ∈ R ∧ d ∈ R ∧ c $R d}, i.e., pairs written with the Granule syntax
c ..d , where the !rst component is less than the second (according to the preorder on R). Units are
0 = 0R ..0R and 1 = 1R ..1R and the operations and pre-order are de!ned as in interval arithmetic:

cl ..cu +dl ..du = (cl +R dl)..(cu +R du)

cl ..cu · dl ..du = (cl ·dl "R cl ·du "R cu ·dl "R cu ·du)..(cl ·dl !R cl ·du !R cu ·dl !R cu ·du)

cl ..cu $dl ..du = (dl $R cl) ∧ (cu $R du)

For Interval Nat (used in Section 2 to capture lower and upper bounds on usage), multiplication
simpli!es to cl ..cu ·dl ..du = (cl ·dl)..(cu ·du). Whilst Nat is discrete, the implementation uses the ≤
natural number ordering to form the Interval Nat resource algebra so that it can properly capture
lower and upper bounds on use.

De!nition 4.4. [Extended coe"ects] For a resource algebra R, applying the unary constructor
Ext R extends the resource algebra with an element∞ (i.e., Ext R = R ∪ {∞}) with operations:

r + s =

{
∞ (r = ∞) ∨ (s = ∞)

r +R s otherwise
r · s =






0R (r = 0R) ∨ (s = 0R)

∞ ((r = ∞) ∧ (s ! 0R)) ∨ ((s = ∞) ∧ (r ! 0R))

r ·R s otherwise

The pre-order for Ext R is that of R, but with r $ ∞ for all r . Some Section 2 examples used coe"ects
of kind Interval (ExtNat), where 0..∞ captures arbitrary (“Cartesian” usage), providing a type
analysis akin to the ! modality of linear logic. In Granule, the type “A []” is an alias for “A [0..∞]”.

De!nition 4.5. [Products] Given two resource algebras R and S , we can form a product resource
algebra R × S whose operations are the pairwise application of the operations for R and S , e.g.,
(r , s)+(r ′, s ′) = (r +R r

′, s +S s
′). This is useful for composing grades together to capture multiple

properties at once. We treat products as commutative and associative.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 110. Publication date: August 2019.

Graded Modal Types: Granule

!antitative Program Reasoning with Graded Modal Types 110:11

The !rst line of syntax exposes the resource algebra operations, including syntax for (possibly
unde!ned) least-upper bounds (!) and greatest-lower bounds (") derived from the pre-order.
Grades can include variables α , enabling grade-polymorphic functions shown later and in Section 8.
Our long-term goal is to allow !rst-class user-de!ned resource algebras, with varying axioma-

tisations (see §10). For now we provide several built-in resource algebras, with syntax provided
above in the second line for naturals n, security levels, intervals, in!nity, and products of coe"ects.

De!nition 4.1. [Exact usage] The coe"ect type Nat has the resource algebra given by the usual
natural numbers semiring (N,+, 0, · , 1,≡), but notably with discrete ordering ≡ giving exact usage
analysis in Granule (see §2). Thus, meet and join are only de!ned on matching inputs.

De!nition 4.2. [Security levels] The coe"ect type Level provides a way of capturing con!den-
tiality requirements and enforcing noninterference, with a three-point lattice of security levels
{Irrelevant $ Private $ Public} with 0 = Irrelevant, 1 = Private, + = ! (join of the induced
lattice), and if r = Irrelevant or s = Irrelevant then r · s = Irrelevant otherwise r · s = r ! s .

Multiplication · is such that if a value is used publicly, all of its dependencies must also be public;
a private value can depend on public and private values. Recall that + represents contraction (i.e.,
a split in the data#ow of a value). Therefore, a dependency used publicly must be permitted for
public use even if it used elsewhere privately, thus Public+Private = Public. Since 0 = Irrelevant
(bottom element), we can weaken at any level by approximation. Similarly, since 1 = Private, we
can essentially derelict at either Private or Public by approximation. The appendix (Lemma A.1)
gives the proof that this resource algebra is a preordered semiring.

De!nition 4.3. [Intervals] The Interval constructor is unary, of kind Coe"ect→ Coe"ect, where
IntervalR is inhabited by pairs of R elements, giving lower and upper bounds. Thus, IntervalR
is the semiring over {c ..d | c ∈ R ∧ d ∈ R ∧ c $R d}, i.e., pairs written with the Granule syntax
c ..d , where the !rst component is less than the second (according to the preorder on R). Units are
0 = 0R ..0R and 1 = 1R ..1R and the operations and pre-order are de!ned as in interval arithmetic:

cl ..cu +dl ..du = (cl +R dl)..(cu +R du)

cl ..cu · dl ..du = (cl ·dl "R cl ·du "R cu ·dl "R cu ·du)..(cl ·dl !R cl ·du !R cu ·dl !R cu ·du)

cl ..cu $dl ..du = (dl $R cl) ∧ (cu $R du)

For Interval Nat (used in Section 2 to capture lower and upper bounds on usage), multiplication
simpli!es to cl ..cu ·dl ..du = (cl ·dl)..(cu ·du). Whilst Nat is discrete, the implementation uses the ≤
natural number ordering to form the Interval Nat resource algebra so that it can properly capture
lower and upper bounds on use.

De!nition 4.4. [Extended coe"ects] For a resource algebra R, applying the unary constructor
Ext R extends the resource algebra with an element∞ (i.e., Ext R = R ∪ {∞}) with operations:

r + s =

{
∞ (r = ∞) ∨ (s = ∞)

r +R s otherwise
r · s =






0R (r = 0R) ∨ (s = 0R)

∞ ((r = ∞) ∧ (s ! 0R)) ∨ ((s = ∞) ∧ (r ! 0R))

r ·R s otherwise

The pre-order for Ext R is that of R, but with r $ ∞ for all r . Some Section 2 examples used coe"ects
of kind Interval (ExtNat), where 0..∞ captures arbitrary (“Cartesian” usage), providing a type
analysis akin to the ! modality of linear logic. In Granule, the type “A []” is an alias for “A [0..∞]”.

De!nition 4.5. [Products] Given two resource algebras R and S , we can form a product resource
algebra R × S whose operations are the pairwise application of the operations for R and S , e.g.,
(r , s)+(r ′, s ′) = (r +R r

′, s +S s
′). This is useful for composing grades together to capture multiple

properties at once. We treat products as commutative and associative.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 110. Publication date: August 2019.

Graded Modal Types: Granule
110:12 Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III

Other interesting possible coe!ect systems are described in the literature, including hardware
schedules [Ghica and Smith 2014], monotonicity information [Arntzenius and Krishnaswami 2016;
Atkey and Wood 2018], deconstructor usage [Petricek et al. 2013], and sensitivity [de Amorim
et al. 2017]. Future work is to make our system user extensible, but it is already straightforward to
extend the implementation with further graded modalities that match the structure here.
Finally, an inter-resource algebra operation “fla!en” describes how to sequentially compose

two levels of grading, which occurs when we have nested pattern matching on nested graded
modalities—a novel feature. Consider the following example, which takes a value inside two layers
of graded modalities, pattern matches on both simultaneously, and then uses the value:

unpack : (Int [2]) [3] → Int

unpack [[x]] = x + x + x + x + x + x

Here, double unboxing computes the multiplication of the two grades, capturing that x is used six
times. What if we have two di!erent graded modalities (i.e., graded by di!erent coe!ect types)?
The fla!en operation is used here, taking two coe!ect terms and their types (i.e., r : R and r ′ : R′),
computing a coe!ect term describing composition of r and r ′, resolved to a particular (possibly
di!erent) coe!ect type. If fla!en(r, R, r ′, R′) = s : S then we can type the following:

λ[[x]].[x] : ∀{α : Type, r : ↑R, r ′ : ↑R′, s : ↑S} . !r′(!rα)→ !sα

Currently, "atten is de#ned in Granule as follows (but can be easily extended at a later date):

De!nition 4.6. For the built-in resource algebras, fla!en is the symmetric congruence closure of:

fla!en(r, ExtNat, s, ExtNat) = r · s : ExtNat
fla!en(r, R, r1..r2, Interval R)= (r · r1)..(r · r2) : Interval R
fla!en(r, R, (r1, s1), R × S) = (r · r1, s1) : R × S
fla!en(s, S, (r1, s1), R × S) = (r1, s · s1) : R × S

fla!en(r,Nat, s, ExtNat)= r · s : ExtNat
fla!en(r,Nat, s,Nat) = r · s : Nat
fla!en(r, Level, s, Level) = r % s : Level
fla!en(r, R, s, S) | R ! S = (r , s) : R × S

Thus for Nat we "atten using multiplication, and similarly when combining Nat with an ExtNat
(resolving to the larger type ExtNat). For levels, we take the meet, i.e., !Public(!Privateα) is "attened
to !Privateα , avoiding leakage. For two di!erent resource algebras, fla!en forms a product, giving a
composite analysis. Note, fla!en is a homomorphismwith respect to the resource algebra operations.
The next section shows how fla!en is used in typing.

Whilst the above resource algebras are for graded necessity, Granule also has another "avour
of graded modality: graded possibility, written ♦εA. Following the literature on graded monads
(§9), we provide graded possibility indexed by pre-ordered monoids (E,!, 1, ≤) with 1≤e for all
e ∈ E and monotonic !. Grade terms ε have syntax capturing these operations. A built-in graded
modality for I/O has a lattice of subsets of e!ect labels IO = P({Open, Read, IOExcept, Close, Write})
as used in Section 2.5, with (IO,∪, ∅, ⊆). Other possible graded monads include indexing by natural
numbers for cost analysis (as in Danielsson [2008], with (N,+, 0, ≤)). We focus mainly on graded
necessity, though the system is easily extended with further graded modalities of both "avours.

4.3 Typing (Declaratively)

The declarative speci#cation of the type system has judgments of the form:

(typing) D; Σ; Γ + t : A (kinding) Σ + A : κ

where D ranges over contexts of top-level de#nitions (including data constructors), Σ ranges over
contexts of type variables and Γ ranges over contexts of term variables. Term contexts Γ are de#ned
as in GrMini but we now include an optional type signature on graded assumptions, written
x : [A]r :R (where R is of kind Coe"ect), since Granule allows various graded modalities.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 110. Publication date: August 2019.

