CS 430: Formal Semantics Assignment 1 Sample Solution

Prepared by: Shu-Chun Weng

A.2

 $S_0 \times S_1$ and $S_1 \times S_0$

Define ρ to be a function from $S_0 \times S_1$ to $S_1 \times \S_0$:

$$\rho = \{ [\langle s_0, s_1 \rangle, \langle s_1, s_0 \rangle] \mid s_0 \in S_0 \text{ and } s_1 \in S_1 \}$$

Then

$$\rho^{\dagger} = \{ [\langle s_1, s_0 \rangle, \langle s_0, s_1 \rangle] \mid s_0 \in S_0 \text{ and } s_1 \in S_1 \}$$

is a well defined function from $S_1 \times S_0$ to $S_0 \times S_1$, so ρ is an isomorphism.

 $(S_0 \times S_1) \times S_2$ and $S_0 \times (S_1 \times S_2)$

Define ρ to be a function from $(S_0 \times S_1) \times S_2$ to $S_0 \times (S_1 \times S_2)$:

$$\rho = \{ [\langle \langle s_0, s_1 \rangle, s_2 \rangle, \langle s_0, \langle s_1, s_2 \rangle \rangle] \mid s_0 \in S_0, s_1 \in S_1 \text{ and } s_2 \in S_2 \}$$

Then

$$\rho^{\dagger} = \{ [\langle s_0, \langle s_1, s_2 \rangle \rangle, \langle \langle s_0, s_1 \rangle, s_2 \rangle] \mid s_0 \in S_0, s_1 \in S_1 \text{ and } s_2 \in S_2 \}$$

is a well defined function from $S_0 \times (S_1 \times S_2)$ to $(S_0 \times S_1) \times S_2$, so ρ is an isomorphism.

$S_0 + S_1$ and $S_1 + S_0$

Define ρ to be a function from $S_0 + S_1$ to $S_1 + S_0$:

$$\rho = \{ [\langle 0, x \rangle, \langle 1, x \rangle] \mid x \in S_0 \} \cup \{ [\langle 1, x \rangle, \langle 0, x \rangle] \mid x \in S_1 \}$$

Then

$$\rho^{\dagger} = \{ [\langle 1, x \rangle, \langle 0, x \rangle] \mid x \in S_0 \} \cup \{ [\langle 0, x \rangle, \langle 1, x \rangle] \mid x \in S_1 \}$$

is a well defined function from $S_1 + S_0$ to $S_0 + S_1$, so ρ is an isomorphism.

 $(S_0 + S_1) + S_2$ and $S_0 + (S_1 + S_2)$:

Define ρ to be a function from $(S_0 + S_1) + S_2$ to $S_0 + (S_1 + S_2)$: $\rho = \{ [\langle 0, \langle 0, x \rangle \rangle, \langle 0, x \rangle] \mid x \in S_0 \} \cup \{ [\langle 0, \langle 1, x \rangle \rangle, \langle 1, \langle 0, x \rangle \rangle] \mid x \in S_1 \} \cup \{ [\langle 1, x \rangle, \langle 1, \langle 1, x \rangle \rangle] \mid x \in S_2 \}$ Then

 $\rho^{\dagger} = \{ [\langle 0, x \rangle, \langle 0, \langle 0, x \rangle \rangle] \mid x \in S_0 \} \cup \{ [\langle 1, \langle 0, x \rangle \rangle, \langle 0, \langle 1, x \rangle \rangle] \mid x \in S_1 \} \cup \{ [\langle 1, \langle 1, x \rangle \rangle, \langle 1, x \rangle] \mid x \in S_2 \}$ is a well defined function from $S_0 + (S_1 + S_2)$ to $(S_0 + S_1) + S_2$, so ρ is an isomorphism.

A.3(b)

Define

$$R = \{[0:0], [0:1]\}$$

$$R' = \{[0:1 \mid 1:1]\}$$

Then

$$(\cap R) \cdot (\cap R') = \{\} \cdot R' = \{\}$$

but

$$\cap \{ \rho \cdot \rho' \mid \rho \in R \text{ and } \rho' \in R \} = \cap \{ [0:1], [0:1] \} = [0:1] \neq (\cap R) \cdot (\cap R')$$

A.5

Let

$$\rho_{1} = \{ [n, 2n] \mid n \in \mathbf{N} \}
\rho_{2} = \{ [n, 2n] \mid n \in \mathbf{N} \} \cup \{ [n, 2n+1] \mid n \in \mathbf{N} \}
\rho_{3} = \{ [2n, 2n] \mid n \in \mathbf{N} \} \cup \{ [2n, 2n+1] \mid n \in \mathbf{N} \}
\rho_{4} = \{ [2n, 2n+1] \mid n \in \mathbf{N} \} \cup \{ [2n+1, 2n] \mid n \in \mathbf{N} \}$$

	ρ_1	ρ_2	ρ_3	ρ_4
Total	Y	Y	N	Y
Partial function	Y	Ν	Ν	Υ
Function	Y	Ν	Ν	Υ
Surjection	Ν			Y
Injection	Y			Υ
Bijection	Ν			Υ
Transitive	Ν	Ν	Y	Ν
Symmetric	Ν	Ν	Ν	Υ
Antisymmetric	Y	Υ	Υ	Ν
Reflexive	Ν	Ν	Ν	Ν
Preorder	Ν	Ν	Ν	Ν
Partial order	Ν	Ν	Ν	Ν
Equivalence	Ν	Ν	Ν	Ν
Partial equivalence	Ν	Ν	Ν	Ν
ρ^{\dagger} total	Ν	Y	Y	Y
ρ^{\dagger} partial function	Y	Υ	Υ	Υ
ρ^{\dagger} function	Ν	Υ	Υ	Υ
ρ^{\dagger} surjection		Υ	Ν	Y
ρ^{\dagger} injection		Ν	Ν	Υ
ρ^{\dagger} bijection		Ν	Ν	Υ

 $\rho_1 \cdot \rho_1 = \{ [n, 4n] \mid n \in \mathbf{N} \}$

$$\begin{array}{rcl} \rho_{2} \cdot \rho_{2} &=& \{[n,4n] \mid n \in \mathbf{N}\} \cup \{[n,4n+1] \mid n \in \mathbf{N}\} \cup \{[n,4n+2] \mid n \in \mathbf{N}\} \cup \{[n,4n+3] \mid n \in \mathbf{N}\} \\ \rho_{3} \cdot \rho_{3} &=& \rho_{3} \\ \hline \rho_{4} \cdot \rho_{4} &=& I_{\mathbf{N}} \\ \hline \rho_{1}^{\dagger} &=& \{[2n,n] \mid n \in \mathbf{N}\} \\ \rho_{2}^{\dagger} &=& \{[2n,n] \mid n \in \mathbf{N}\} \cup \{[2n+1,n] \mid n \in \mathbf{N}\} \\ \rho_{3}^{\dagger} &=& \{[2n,2n] \mid n \in \mathbf{N}\} \cup \{[2n+1,2n] \mid n \in \mathbf{N}\} \\ \hline \rho_{4}^{\dagger} &=& \rho_{4} \\ \hline \rho_{1}(x) &=& 2x \\ \hline \rho_{4}(x) &=& \text{if even } x \text{ then } x+1 \text{ else } x-1 \\ \rho_{2}^{\dagger}(x) &=& \text{if even } x \text{ then } x+2 \text{ else } (x-1)/2 \\ \hline \rho_{3}^{\dagger}(x) &=& \text{if even } x \text{ then } x+1 \text{ else } x-1 \\ \hline \rho_{4}^{\dagger}(x) &=& \text{if even } x \text{ then } x+1 \text{ else } x-1 \\ \hline \rho_{4}^{\dagger}(x) &=& \text{if even } x \text{ then } x+1 \text{ else } x-1 \\ \hline \rho_{4}^{\dagger}(x) &=& \text{if even } x \text{ then } x+1 \text{ else } x-1 \\ \hline \rho_{4}^{\dagger}(x) &=& \text{if even } x \text{ then } x+1 \text{ else } x-1 \\ \hline \rho_{4}^{\dagger}(x) &=& \text{if even } x \text{ then } x+1 \text{ else } x-1 \\ \hline \end{array}$$

A.6(b)

- "⇒" By definition, for any pair $[x, y] \in \rho \cdot \rho^{\dagger}$, there should exists an x such that $[x, x'] \in \rho^{\dagger}$, which implies $[x', x] \in \rho$, and $[x', y] \in \rho$. Given that ρ is a partial function, $[x', y] \in \rho$ and $[x', x] \in \rho$ means y = x. So all the pairs in $\rho \cdot \rho^{\dagger}$ are of the form $[x, x], \rho \cdot \rho^{\dagger} \subseteq I_{S'}$.
- "⇐" Suppose that ρ is not a partial function, i.e. exists $x \in S$ and $y_1, y_2 \in S', y_1 \neq y_2$, such that both $[x, y_1]$ and $[x, y_2]$ are in ρ . Since $[y_1, x] \in \rho^{\dagger}$ and $[x, y_2] \in \rho$, $[y_1, y_2] \in \rho \cdot \rho^{\dagger} \nsubseteq I_{S'}$.

A.7

- (a) Since z is an upper bound of $\{x, y\}$ and z' is a least upper bound, by definition, $z' \sqsubseteq z$. Similarly, z' being an upper bound and z being a least upper bound, $z \sqsubseteq z'$. But since \sqsubseteq is a partial order, it's antisymmetric, and the only possibility for both of the relations hold is z = z'.
- (b) Since x is the least upper bound of X, for all the upper bounds y ∈ Y, x ⊑ y, thus x is a lower bound of Y. To prove that it's the greatest one, consider a z which is a lower bound of Y. Observe that x itself is also a upper bound of X, so x ∈ Y, which means that z ⊑ x holds since z is a lower bound of Y. Because that z ⊑ x holds for arbitrary lower bound z, x is the greatest lower bound of Y.
- (c) Firstly assume

$$u = \bigsqcup \{ \sqcup X \mid X \in \mathcal{X} \}$$

exists. Then for every $x \in \bigcup \mathcal{X}$, there exists $X \in \mathcal{X}$ such that $x \in X$. But

$$x \sqsubseteq \sqcup X \sqsubseteq u$$

which means x is also an upper bound of $\cup \mathcal{X}$. To prove that it's the least one, suppose there is a u' which is a upper bound of $\cup \mathcal{X}$. Then it is also upper bounds of all the $X \in \mathcal{X}$, so $\sqcup X \sqsubseteq u'$. Again, it means that u' is a upper bound of $\{\sqcup X \mid X \in \mathcal{X}\}$, which means $u \sqsubseteq u'$ as u being the least upper bound of it.

On the other hand, assume

$$u' = \bigsqcup \cup \mathcal{X}$$

exists. By the same reason in the previous paragraph, u' is also an upper bound of $\{ \sqcup X \mid X \in \mathcal{X} \}$. Suppose there is a u which is an upper bound of $\{ \sqcup X \mid X \in \mathcal{X} \}$, we can show, as in the previous paragraph, that u is also an upper bound of $\sqcup \cup \mathcal{X}$ and by the leastness concludes that $u' \sqsubseteq u$ and u' is the least upper bound of $\{ \sqcup X \mid X \in \mathcal{X} \}$.

1.2

- (a) $\exists c.a \times c = b$
- (b) $\exists b' . \exists c' . \mathbf{a} \times b' = \mathbf{b} \land \mathbf{a} \times c' = \mathbf{c}$
- (c) $\exists b'. \exists c'. \mathbf{a} \times b' = \mathbf{b} \land \mathbf{a} \times c' = \mathbf{c} \land \forall a'. (\exists b''. \exists c''. a' \times b'' = \mathbf{b} \land a' \times b'' = \mathbf{b}) \Rightarrow a' \leq \mathbf{a}$
- (d) $\forall a.\forall b.a \times b = p \Rightarrow (a = 1 \lor b = 1)$ or $\neg p = 1 \land \forall a.(\exists b.a \times b = p) \Rightarrow (a = 1 \lor a = p)$