CS 430/530
Formal Semantics

Zhong Shao

Yale University
Department of Computer Science

Confrol Flow
April 3, 2025

System PCF Dynamics

Zval (19.22) [S(S — Z/(e’)] (19.3a)
S[(Z;/?’Ia]" (19:26) ifz{eo;x.el}(ei : i/fz{eo;x.el}(e/) (19.3b)
Tam{z}(x.¢) val (19:2¢) o Py o e (19.3¢)

e ee) e/ 1930
ap(el;e?) : 23(6/1; e-) (19.3e)
| :
B 1930
aP(lam{T}(xFZ;\ZI)]H [e2/x]e (19.3¢2)
(19.3h)

fix{rt}(x.e) —> [fix{t}(x.e)/x]e

Problems w. PCF Dynamics

Problems w. small-step structural
dynamics (transition semantics)

» Jtuses rules fo decide where fo apply the
next instruction

 [Does not say where the instruction lies
within an expression

Abstract Machine K for PCF

A state s of the stack machine K for PCF consists of a control stack k and a closed
expression e. States take one of two forms:

1. Anevaluation state of the form k > e corresponds to the evaluation of a closed expression
e on a control stack k.

2. A return state of the form k& < 2, where ¢ val, corresponds to the evaluation of a stack k&
on a closed value e.

Abstract Machine K

The control stack represents the context of evaluation. It records the “current location™ of
evaluation, the context into which the value of the current expression is returned. Formally,

a control stack is a list of frames:

e stack (28.1a)
f frame k stack
28.1b
k; f stack ()
The frames of the K machine are inductively defined by the following rules:
(28.2a)
s(—) frame
(28.2b)
ifz{egp; x.e1}(—) frame
(28.2¢)

ap(—;ep) frame

Abstract Machine K

The transition judgment between states of the PCF machine is inductively defined by a
set of inference rules. We begin with the rules for natural numbers, using an eager semantics
for the successor.

(28.3a)
k>z+—— k<z
(28.3b)
k>s(e)— k;s(—)>e
(28.3¢)

k;s(—) <er— k <s(e)

Abstract Machine K

Next, we consider the rules for case analysis.

(28.4a)
k> ifz{ey; x.e1}(e) —> k;ifz{ep; x.e;}(—) > e
(28.4b)
k;ifz{ep; x.e;}(—) <zr— k> ¢
(28.4¢)

k;ifz{eg; x.e1}(—) <s(e) —> k> [e/x]e;

Abstract Machine K

Finally, we give the rules for functions, which are evaluated by-name,

general recursion.

k> lam{t}(x.e) —> k < lam{t}(x.e)

k > ap(er; ey) —> k;ap(—;ep) > e

ki;ap(—;ep) < lam{t}(x.e) —> k> [ey/x]e

k> fix{r}(x.e) —> k> [fix{t}(x.€)/x]e

and the rule for

(28.5a)

(28.5b)

(28.5¢)

(28.5d)

Abstract Machine K

The initial and final states of the K machine are defined by the following rules:

(28.6a)

€ > e initial

e val (28.6b)

€ < e final

Abstract Machine K: Type Safety

To define and prove safety for the PCF machine requires that we introduce a new typing
judgment, k£ <i: 7, which states that the stack & expects a value of type . This judgment is
inductively defined by the following rules:

(28.7a)

€ELT

k<t fit~1

kif <t
This definition makes use of an auxiliary judgment, f : 7 ~» ¢/, stating that a frame f
transforms a value of type t to a value of type t'.

(28.7b)

(28.8a)
s(—) : nat ~» nat
ep:T Xx:nathej:t
ifz{ep;x.e1}(—) :nat ~ 1 (28.8b)
e T
— (28.8¢)

ap(—;ez) : parr(;7) ~ 7T

Abstract Machine K: Type Safety

The states of the PCF machine are well-formed if their stack and expression components

match:
k<t e:t
28.
k > e ok (28.92)
k<t e:1 eval
28.9b
k < e ok (28.9b)

We leave the proof of safety of the PCF machine as an exercise.

Theorem 28.1 (Safety). 1. Ifs ok and s — s', then s" ok.

2. If s ok, then either s final or there exists s’ such that s —— s’.

Abstract Machine K: Correctness

Completeness If e —>* ¢’, where ¢’ val, thene > e —* € < €.
Soundness Ife>e—* € <€, then e —* ¢’ with ¢’ val.

Abstract Machine K: Completeness

To prove completeness a plausible first step is to consider a proof by induction on the
definition of multi-step transition, which reduces the theorem to the following two lemmas:

1. Ifeval,thene > e —"* € < e.

2. If e — €/, then, forevery v val,ife > ¢/ —>* € < v,thene > e —>" € < v.

We therefore consider the value of each sub-expression of an expression. This information
is given by the evaluation dynamics described in Chapter 7, which has the property that
el ¢ iff e —>* ¢ and €’ val.

Lemma 28.2. Ife || v, then for every k stack, k> e —" k < v.

The desired result follows by the analog of Theorem 7.2 for PCF, which states thate || v
iff e —>"* v.

Abstract Machine K: Completeness

Lemma 28.2. Ife || v, then for every k stack, k > e —>™* k < v.

Proof of Lemma 28.2 The proof is by induction on an evaluation dynamics for PCF.
Consider the evaluation rule

e | lam{nr}(x.e) [ex/x]le Y v
ap(er;er) J v

(28.10)

For an arbitrary control stack k, we are to show that k > ap(ey;e;) —>* k < v. Applying
both of the inductive hypotheses in succession, interleaved with steps of the K machine,
we obtain

k > ap(ey;ey) —> kiap(—;ep) > e
—>" k;ap(—; ey) < lam{m }(x.e)
— k> [er/x]e

—* k <.

The other cases of the proof are handled similarly. []

Abstract Machine K: Soundness

Soundness If € > ¢ ——* € <« ¢/, then e —* ¢’ with ¢’ val.

To do so, we define a judgment, s % e, stating that state s “unravels to” expression
e. It will turn out that for initial states, s = € > e, and final states, s = € < e, we have
s & e. Then we show that if s —* s’, where s’ final, s & e, and s’ & ¢/, then ¢’ val and
e —>* ¢’. For this, it is enough to show the following two facts:

1. If s & e and s final, then e val.
2. Ifs— s/, s e, 5" & €, and ¢ —* v, where v val, then e —* v.

Lemma 28.3. Ifs —— s',5s & e, and s’ & €, then e —>* €',

Abstract Machine K: Soundness

The judgment s & ¢’, where s is either k > e or k < e, is defined in terms of the auxiliary
judgment k >< e = ¢’ by the following rules:

i?:: ¢ (28.11a)
Y,
Z?:; < (28.11b)

In words, to unravel a state, we wrap the stack around the expression to form a complete
program. The unraveling relation is inductively defined by the following rules:

- (28.12a)
eEpe =e
k< s(e) = ¢
k.s(_)(w)e - (28.12b)
k< ifz{eg;x.ei}(e) =€ (28.12¢)
k;ifz{eg;x.e;}(—)p<e = ¢ |
k Jey) =
> ap(er;er) =e (28.12d)

kiap(—;ex)p<e; = e

Abstract Machine K: Soundness

Lemma 28.5. The judgment s & e relates every state s to a unique expression e, and the
Jjudgment k <1 e = ¢’ relates every stack k and expression e to a unique expression ée'.

Lemma 28.6. I[fe+—— ¢, kr<xe=d, kr<e' =d/, thend — d'.

Proof The proof is by rule induction on the transition e —> ¢’. The inductive cases,
where the transition rule has a premise, follow easily by induction. The base cases, where
the transition is an axiom, are proved by an inductive analysis of the stack k.

For an example of an inductive case, suppose that e = ap(e;;ez), ' = ap(e];e2), and
e; —> €. We have k<e = d and k< e’ = d'. It follows from rules (28.12) that
k;ap(—;ex)><te; = d and k;ap(—;ez) p<e] = d’. So by induction d — d’, as desired.

For an example of a base case, suppose that e = ap(lam{r;}(x.e);e,) and ¢’ = [e;/x]e
with e — ¢’ directly. Assume that k< e = d and k< e’ = d’; we are to show
that d — d’. We proceed by an inner induction on the structure of k. If k = ¢, the
result follows immediately. Consider, say, the stack k = k’;ap(—;c;). It follows from
rules (28.12) that k' >< ap(e;c;) = d and k' < ap(e’;c;) = d’. But by the structural
dynamics ap(e; ¢;) —> ap(e’; ¢2), so by the inner inductive hypothesis we have d — d’,
as desired.]

Abstract Machine K: Soundness

Lemma 28.3. Ifs —— s, s & ¢, and s’ & €', then e —>* ¢'.

Proof of Lemma 28.3 The proof is by case analysis on the transitions of the K machine.
In each case, after unraveling, the transition will correspond to zero or one transitions of
the PCF structural dynamics.

Suppose that s = k > s(e) and s" = k;s(—) > e. Note that k<s(e) = €' iff k;s(—)<e =
e¢’, from which the result follows immediately.

Suppose that s = k;ap(lam{t}(x.e;); —) < ey and s’ = k > [ex/x]e;. Let ¢’ be such that
k;ap(lam{t}(x.e); —) < e, = €’ and let ¢” be such that k < [e;/x]e; = €”. Observe that
k >< ap(lam{t}(x.e1); e2) = €. The result follows from Lemma 28.6.

]

FPCF: PCF with Failures

The syntax of FPCF is defined by the following extension of the grammar of PCF:

Exp e 1= fail fail signal a failure
catch(e;;ey) catchejowe, catch afailure

The expression fail aborts the current evaluation, and the expression catch(e;; e») catches
any failure in e; by evaluating e; instead. Either e or e; may themselves abort, or they may
diverge or return a value as usual in PCF.

The statics of FPCF is given by these rules:

(29.1a)

' fail: T

I'key:t T'kFey:t
I' - catch(e;er) i T

(29.1b)

A failure can have any type, because it never returns. The two expressions in a catch
expression must have the same type, because either might determine the value of that
expression.

FPCF Dynamics: Stack Unwinding

The dynamics of FPCF is given using a technique called stack unwinding. Evaluation
of a catch pushes a frame of the form catch(—;e) onto the control stack that awaits the
arrival of a failure. Evaluation of a fail expression pops frames from the control stack
until it reaches a frame of the form catch(—; e), at which point the frame is removed from
the stack and the expression e 1s evaluated. Failure propagation is expressed by a state of
the form k& <« , which extends the two forms of state considered in Chapter 28 to express
failure propagation.

FPCF Dynamics: Stack Unwinding

The FPCF machine extends the PCF machine with the following additional rules:

k> fail — k «

k > catch(eq;er) —> k;catch(—;er) > e

k;catch(—;ey) <vi— k<v

k;catch(—;e;) 4 —> k> e

(f # catch(—;e))
k;f 4 — k <

(29.2a)

(29.2b)

(29.2¢)

(29.2d)

(29.2¢)

FPCF Type Safety

The initial and final states of the FPCF machine are defined by the following rules:

(29.3a)
€ initial
e val (29.3b)
€ < e final
D (29.3¢)
€ «q final

The definition of stack typing given in Chapter 28 can be extended to account for the new
forms of frame so that safety can be proved in the same way as before. The only difference
is that the statement of progress must be weakened to take account of failure: a well-typed
expression is either a value, or may take a step, or may signal failure.

Theorem 29.1 (Safety for FPCF). I. If s ok and s — s/, then s’ ok.

2. If s ok, then either s final or there exists s’ such that s — s’.

XPCF: PCF with Exceptions

The language XPCF enriches FPCF with exceptions, failures to which a value is attached.
The syntax of XPCF extends that of PCF with the following forms of expression:

Exp e := raise(e) raise(e) raise an exception
try(e;;x.ep) tryejowx < e, handle an exception

The argument to raise is evaluated to determine the value passed to the handler. The
expression try(e;; x.ep) binds a variable x in the handler e,. The associated value of the
exception is bound to that variable within e,, should an exception be raised when e; is
evaluated.

The statics of exceptions extends the statics of failures to account for the type of the
value carried with the exception:

' e: Texn
' Hraise(e): T

(29.4a)

I'Fe:t I''x:tenber:t
I' - try(el;x.ez) T

(29.4b)

XPCF: PCF with Exceptions

The stack frames of the PCF machine are extended to include raise(—) and
try(—;x.ey). These are used in the following rules:

(29.5a)

k > raise(e) —> k;raise(—) > e
(29.5b)

ki;raise(—)<er— k d ¢
(29.5¢)
k> try(er;x.ep) —> k;try(—;x.ep) > e
(29.5d)
kitry(—;x.ep)<er— k<e

(29.5¢e)

kitry(—;x.e;) det— k> [e/x]e;
(f #try(—;x.e)) (29.56)

k,f €er—"k<«e

XPCF: PCF with Exceptions

The initial and final states of the XPCF machine are defined by the following rules:

(29.6a)

€ > e initial
e val (29.6b)

€ < e final
(29.6¢)

€ « e final

Theorem 29.2 (Safety for XPCF). 1. Ifs ok and s — s’, then s’ ok.

2. If's ok, then either s final or there exists s’ such that s —> s'.

Exception Values

This fact suggests that 7.,, should be a finite sum. The classes of the sum identify the
sources of exceptions, and the classified value carries information about the particular
instance. For example, 7., might be a sum type of the form

[div <> unit, fnf < string, ...].

Here the class div might represent an arithmetic fault, with no associated data, and the
class £nf might represent a “file not found” error, with associated data being the name of
the file that was not found.

Using a sum means that an exception handler can dispatch on the class of the exception
value to identify its source and cause. For example, we might write

handle ¢; ow x —
match x {
div () = ediv
| fnf s < ems }

to handle the exceptions specified by the above sum type. Because the exception and its
associated data are coupled in a sum type, there is no possibility of misinterpreting the data
associated to one exception as being that of another.

KPCF: PCF with Continuations

The semantics of many control constructs (such as exceptions and coroutines) can be
expressed in terms of reified control stacks, a representation of a control stack as a value
that can be reactivated at any time, even if control has long since returned past the point
of reification. Reified control stacks of this kind are called continuations; they are values
that can be passed and returned at will in a computation. Continuations never “expire”,
and it is always sensible to reinstate a continuation without compromising safety. Thus
continuations support unlimited “time travel” — we can go back to a previous step of the
computation, then return to some point in its future.

We will consider the extension KPCF of PCF with the type cont(r) of continuations
accepting values of type t. The introduction form for cont(t) is letcc{zr}(x.e), which
binds the current continuation (that is, the current control stack) to the variable x, and
evaluates the expression e. The corresponding elimination form is throw{z }(e;; e>), which
restores the value given by e to the control stack given by e,.

Motivating Example in PCF

To illustrate the use of these primitives, consider the problem of multiplying the first »
elements of an infinite sequence g of natural numbers, where g is represented by a function
of type nat — nat. If zero occurs among the first n elements, we would like to effect
an “early return” with the value zero, without further multiplication. This problem can be
solved using exceptions, but we will solve it with continuations to show how they are used.

fix ms is
A q : nat — nat.
A n : nat.
case n {
z — s(z)

| s(n’) < (q z) X (ms (q o succ) n’)

}

Motivating Example in KPCF w.
Short-Cutting

A q : nat — nat.
A n : nat.
letcc ret : nat cont in
let m be
fix ms is
A q : nat — nat.
A n : nat.
case n {
z — s(z)
| s(n’) —
case q z {
Z “> throw z to ret
| s(n’’) < (q z) X (ms (q o succ) n’)

t
| }
m gqn

Motivating Example in KPCF

To take another example, given that k£ has type 7 cont and f has type t" — t, return
a continuation £’ of type ' cont such that throwing a value v’ of type 7’ to
k' throws the value of f(v’) to k. Thus, we seek to define a function compose of type

(t' =~ 1) — T cont — 7’ cont.

The continuation we seek 1s the one in effect at the point of the ellipsis in the expression
throw f(...) to k.Itis the continuation that, when given a value v’, applies f to it,
and throws the result to k. We can seize this continuation using letcc by writing

throw f(letcc x:7'cont in ...) to k

The desired continuation is bound to x, but how can we return it as the result of compose?
We use the same idea as for short-circuit multiplication, writing

letcc ret:t’ cont cont in
throw (f (letcc r in throw r to ret)) to k

as the body of compose. Note that the type of ret is t'cont cont, that of a continuation
that expects to be thrown a continuation!

KPCF Syntax & Statics

The syntax of KPCF is as follows:

Type T 1= cont(r) T cont continuation

Expr e 1= 1letcc{t}(x.e) letccxine mark
throw{t}(e;;e,) throwe,toe, goto
cont(k) cont(k) continuation

The expression cont(k) is a reified control stack, which arises during evaluation.
The statics of KPCF is defined by the following rules:

I'x :cont(t)Fe:t

- letccf{tl(x.e): T (30.1a)

I'Fey:1y I'kFer:cont(r))
I' - throw{t}(e;;e) : T

(30.1b)

The result type of a throw expression is arbitrary because it does not return to the point of
the call.
The statics of continuation values is given by the following rule:

k.t
I' = cont(k) : cont(t)

(30.2)

KPCF Dynamics

To define the dynamics of KPCF, we extend the PCF machine with two forms of stack
frame:

(30.3a)
throw{r}(—;ey) frame
e val
.3b
throw{r}(e;; —) frame (30.3b)
Every reified control stack is a value:
k stack (30.4)

cont(k) val

KPCF Dynamics

The transition rules of the PCF machine governing continuations are as follows:

k > cont(k) —> k < cont(k) (5052

k> letcc{t}(x.e) —> k > [cont(k)/x]e (30.5b)

k > throw{t}(e;;er) —> k;throw{t}(—;e)) > e; (30.5¢)
k;throw{t}(—;e) < elelflk;throw{r}(el; —) > e (30.50)
¢ val (30.5¢)

k;throw{t}(e; —) < cont(k') —> k' < e

KPCF Type Safety

We need only add typing rules for the two new forms of frame, which are as follows:

ey 1 cont(T)

throw{t'}(—;e)) : T ~ 1’ (30.6a)

e . Tt € val

throw{t'}(e;; —) : cont(r) ~ 7’ (30.6b)

The rest of the definitions remain as in Chapter 28.

Lemma 30.1 (Canonical Forms). If e : cont(t) and e val, then e = cont(k) for some k
such that k : t.

Theorem 30.2 (Safety). 1. Ifs okand s — s', then s’ ok.

2. If s ok, then either s final or there exists s’ such that s —> s'.

