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163 19.2 Dynamics

The expression fix{τ }(x.e) is general recursion; it is discussed in more detail below. The
expression ifz{e0; x.e1}(e) branches according to whether e evaluates to z, binding the
predecessor to x in the case that it is not.

The statics of PCF is inductively defined by the following rules:

", x : τ ! x : τ
(19.1a)

" ! z : nat
(19.1b)

" ! e : nat
" ! s(e) : nat (19.1c)

" ! e : nat " ! e0 : τ ", x : nat ! e1 : τ

" ! ifz{e0; x.e1}(e) : τ
(19.1d)

", x : τ1 ! e : τ2

" ! lam{τ1}(x.e) : parr(τ1; τ2) (19.1e)

" ! e1 : parr(τ2; τ ) " ! e2 : τ2

" ! ap(e1; e2) : τ
(19.1f)

", x : τ ! e : τ

" ! fix{τ }(x.e) : τ
(19.1g)

Rule (19.1g) reflects the self-referential nature of general recursion. To show that
fix{τ }(x.e) has type τ , we assume that it is the case by assigning that type to the variable
x, which stands for the recursive expression itself, and checking that the body, e, has type
τ under this very assumption.

The structural rules, including in particular substitution, are admissible for the static
semantics.

Lemma 19.1. If ", x : τ ! e′ : τ ′, " ! e : τ , then " ! [e/x]e′ : τ ′.

19.2 Dynamics

The dynamic semantics of PCF is defined by the judgments e val, specifying the closed
values, and e #−→ e′, specifying the steps of evaluation.

The judgment e val is defined by the following rules:

z val
(19.2a)

[e val]
s(e) val

(19.2b)
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lam{τ }(x.e) val
(19.2c)

The bracketed premise on rule (19.2b) is included for the eager interpretation of the
successor operation, and omitted for the lazy interpretation. (See Chapter 36 for a further
discussion of laziness.)

The transition judgment e !−→ e′ is defined by the following rules:
[

e !−→ e′

s(e) !−→ s(e′)

]
(19.3a)

e !−→ e′

ifz{e0; x.e1}(e) !−→ ifz{e0; x.e1}(e′) (19.3b)

ifz{e0; x.e1}(z) !−→ e0
(19.3c)

s(e) val
ifz{e0; x.e1}(s(e)) !−→ [e/x]e1

(19.3d)

e1 !−→ e′
1

ap(e1; e2) !−→ ap(e′
1; e2)

(19.3e)

[
e1 val e2 !−→ e′

2

ap(e1; e2) !−→ ap(e1; e′
2)

]
(19.3f)

[e2 val]
ap(lam{τ }(x.e); e2) !−→ [e2/x]e (19.3g)

fix{τ }(x.e) !−→ [fix{τ }(x.e)/x]e
(19.3h)

The bracketed rule (19.3a) is included for an eager interpretation of the successor and
omitted otherwise. Bracketed rule (19.3f) and the bracketed premise on rule (19.3g) are
included for a call-by-value interpretation, and omitted for a call-by-name interpretation, of
function application. Rule (19.3h) implements self-reference by substituting the recursive
expression itself for the variable x in its body; this is called unwinding the recursion.

Theorem 19.2 (Safety).

1. If e : τ and e !−→ e′, then e′ : τ .
2. If e : τ , then either e val or there exists e′ such that e !−→ e′.

Proof The proof of preservation is by induction on the derivation of the transition judg-
ment. Consider rule (19.3h). Suppose that fix{τ }(x.e) : τ . By inversion and substitution
we have [fix{τ }(x.e)/x]e : τ , as required. The proof of progress proceeds by induction
on the derivation of the typing judgment. For example, for rule (19.1g) the result follows
because we may make progress by unwinding the recursion.
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Problems w. PCF Dynamics

Problems w. small-step structural 
dynamics (transition semantics)

• It uses rules to decide where to apply the 
next instruction

• Does not say where the instruction lies 
within an expression



Abstract Machine K for PCF

28 Control Stacks

Structural dynamics is convenient for proving properties of languages, such as a type
safety theorem, but is less convenient as a guide for implementation. A structural dynamics
defines a transition relation using rules that determine where to apply the next instruction
without spelling out how to find where the instruction lies within an expression. To make
this process explicit, we introduce a mechanism, called a control stack, that records the
work that remains to be done after an instruction is executed. Using a stack eliminates the
need for premises on the transition rules so that the transition system defines an abstract
machine whose steps are determined by information explicit in its state, much as a concrete
computer does.

In this chapter, we develop an abstract machine K for evaluating expressions in PCF.
The machine makes explicit the context in which primitive instruction steps are executed,
and the process by which the results are propagated to determine the next step of execution.
We prove that K and PCF are equivalent in the sense that both achieve the same outcomes
for the same expressions.

28.1 Machine Definition

A state s of the stack machine K for PCF consists of a control stack k and a closed
expression e. States take one of two forms:

1. An evaluation state of the form k ! e corresponds to the evaluation of a closed expression
e on a control stack k.

2. A return state of the form k " e, where e val, corresponds to the evaluation of a stack k

on a closed value e.

As an aid to memory, note that the separator “points to” the focal entity of the state, the
expression in an evaluation state and the stack in a return state.

The control stack represents the context of evaluation. It records the “current location” of
evaluation, the context into which the value of the current expression is returned. Formally,
a control stack is a list of frames:

ε stack (28.1a)

f frame k stack
k;f stack

(28.1b)
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The frames of the K machine are inductively defined by the following rules:

s(−) frame
(28.2a)

ifz{e0; x.e1}(−) frame
(28.2b)

ap(−; e2) frame
(28.2c)

The frames correspond to search rules in the dynamics of PCF. Thus, instead of relying
on the structure of the transition derivation to keep a record of pending computations, we
make an explicit record of them in the form of a frame on the control stack.

The transition judgment between states of the PCF machine is inductively defined by a
set of inference rules. We begin with the rules for natural numbers, using an eager semantics
for the successor.

k " z #−→ k % z
(28.3a)

k " s(e) #−→ k;s(−) " e
(28.3b)

k;s(−) % e #−→ k % s(e)
(28.3c)

To evaluate z, we simply return it. To evaluate s(e), we push a frame on the stack to record
the pending successor and evaluate e; when that returns with e′, we return s(e′) to the stack.

Next, we consider the rules for case analysis.

k " ifz{e0; x.e1}(e) #−→ k;ifz{e0; x.e1}(−) " e
(28.4a)

k;ifz{e0; x.e1}(−) % z #−→ k " e0
(28.4b)

k;ifz{e0; x.e1}(−) % s(e) #−→ k " [e/x]e1
(28.4c)

The test expression is evaluated, recording the pending case analysis on the stack. Once the
value of the test expression is determined, the zero or non-zero branch of the condition is
evaluated, substituting the predecessor in the latter case.

Finally, we give the rules for functions, which are evaluated by-name, and the rule for
general recursion.

k " lam{τ }(x.e) #−→ k % lam{τ }(x.e)
(28.5a)

k " ap(e1; e2) #−→ k;ap(−; e2) " e1
(28.5b)
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k;ap(−; e2) " lam{τ }(x.e) #−→ k % [e2/x]e
(28.5c)

k % fix{τ }(x.e) #−→ k % [fix{τ }(x.e)/x]e
(28.5d)

It is important that evaluation of a general recursion requires no stack space.
The initial and final states of the K machine are defined by the following rules:

ε % e initial
(28.6a)

e val
ε " e final

(28.6b)

28.2 Safety

To define and prove safety for the PCF machine requires that we introduce a new typing
judgment, k ": τ , which states that the stack k expects a value of type τ . This judgment is
inductively defined by the following rules:

ε ": τ
(28.7a)

k ": τ ′ f : τ ! τ ′

k;f ": τ
(28.7b)

This definition makes use of an auxiliary judgment, f : τ ! τ ′, stating that a frame f

transforms a value of type τ to a value of type τ ′.

s(−) : nat! nat
(28.8a)

e0 : τ x : nat ' e1 : τ

ifz{e0; x.e1}(−) : nat! τ
(28.8b)

e2 : τ2

ap(−; e2) : parr(τ2; τ )! τ
(28.8c)

The states of the PCF machine are well-formed if their stack and expression components
match:

k ": τ e : τ
k % e ok

(28.9a)

k ": τ e : τ e val
k " e ok

(28.9b)

We leave the proof of safety of the PCF machine as an exercise.

Theorem 28.1 (Safety). 1. If s ok and s #−→ s ′, then s ′ ok.
2. If s ok, then either s final or there exists s ′ such that s #−→ s ′.
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match:

k ": τ e : τ
k % e ok

(28.9a)

k ": τ e : τ e val
k " e ok

(28.9b)

We leave the proof of safety of the PCF machine as an exercise.

Theorem 28.1 (Safety). 1. If s ok and s #−→ s ′, then s ′ ok.
2. If s ok, then either s final or there exists s ′ such that s #−→ s ′.
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k;ap(−; e2) " lam{τ }(x.e) #−→ k % [e2/x]e
(28.5c)
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(28.5d)
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inductively defined by the following rules:

ε ": τ
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transforms a value of type τ to a value of type τ ′.

s(−) : nat! nat
(28.8a)

e0 : τ x : nat ' e1 : τ

ifz{e0; x.e1}(−) : nat! τ
(28.8b)

e2 : τ2

ap(−; e2) : parr(τ2; τ )! τ
(28.8c)

The states of the PCF machine are well-formed if their stack and expression components
match:

k ": τ e : τ
k % e ok

(28.9a)

k ": τ e : τ e val
k " e ok

(28.9b)

We leave the proof of safety of the PCF machine as an exercise.

Theorem 28.1 (Safety). 1. If s ok and s #−→ s ′, then s ′ ok.
2. If s ok, then either s final or there exists s ′ such that s #−→ s ′.
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28.3 Correctness of the K Machine

Does evaluation of an expression e using the K machine yield the same result as does the
structural dynamics of PCF? The answer to this question can be derived from the following
facts.

Completeness If e !−→∗ e′, where e′ val, then ε & e !−→∗ ε ' e′.
Soundness If ε & e !−→∗ ε ' e′, then e !−→∗ e′ with e′ val.

To prove completeness a plausible first step is to consider a proof by induction on the
definition of multi-step transition, which reduces the theorem to the following two lemmas:

1. If e val, then ε & e !−→∗ ε ' e.
2. If e !−→ e′, then, for every v val, if ε & e′ !−→∗ ε ' v, then ε & e !−→∗ ε ' v.

The first can be proved easily by induction on the structure of e. The second requires an
inductive analysis of the derivation of e !−→ e′ that gives rise to two complications. The
first complication is that we cannot restrict attention to the empty stack, for if e is, say,
ap(e1; e2), then the first step of the K machine is

ε & ap(e1; e2) !−→ ε;ap(−; e2) & e1.

To handle such situations, we consider the evaluation of e1 on any stack, not just the empty
stack.

Specifically, we prove that if e !−→ e′ and k & e′ !−→∗ k ' v, then k & e !−→∗ k ' v.
Reconsider the case e = ap(e1; e2), e′ = ap(e′

1; e2), with e1 !−→ e′
1. We are given that

k & ap(e′
1; e2) !−→∗ k ' v, and we are to show that k & ap(e1; e2) !−→∗ k ' v. It is easy to

show that the first step of the former derivation is

k & ap(e′
1; e2) !−→ k;ap(−; e2) & e′

1.

We would like to apply induction to the derivation of e1 !−→ e′
1, but to do so, we need a

value v1 such that e′
1 !−→∗ v1, which is not at hand.

We therefore consider the value of each sub-expression of an expression. This information
is given by the evaluation dynamics described in Chapter 7, which has the property that
e ⇓ e′ iff e !−→∗ e′ and e′ val.

Lemma 28.2. If e ⇓ v, then for every k stack, k & e !−→∗ k ' v.

The desired result follows by the analog of Theorem 7.2 for PCF, which states that e ⇓ v

iff e !−→∗ v.
To prove soundness, we note that it is awkward to reason inductively about a multi-

step transition from ε & e !−→∗ ε ' v. The intermediate steps could involve alternations
of evaluation and return states. Instead, we consider a K machine state to encode an
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28.3 Correctness of the K Machine

Does evaluation of an expression e using the K machine yield the same result as does the
structural dynamics of PCF? The answer to this question can be derived from the following
facts.

Completeness If e !−→∗ e′, where e′ val, then ε & e !−→∗ ε ' e′.
Soundness If ε & e !−→∗ ε ' e′, then e !−→∗ e′ with e′ val.

To prove completeness a plausible first step is to consider a proof by induction on the
definition of multi-step transition, which reduces the theorem to the following two lemmas:

1. If e val, then ε & e !−→∗ ε ' e.
2. If e !−→ e′, then, for every v val, if ε & e′ !−→∗ ε ' v, then ε & e !−→∗ ε ' v.

The first can be proved easily by induction on the structure of e. The second requires an
inductive analysis of the derivation of e !−→ e′ that gives rise to two complications. The
first complication is that we cannot restrict attention to the empty stack, for if e is, say,
ap(e1; e2), then the first step of the K machine is

ε & ap(e1; e2) !−→ ε;ap(−; e2) & e1.

To handle such situations, we consider the evaluation of e1 on any stack, not just the empty
stack.

Specifically, we prove that if e !−→ e′ and k & e′ !−→∗ k ' v, then k & e !−→∗ k ' v.
Reconsider the case e = ap(e1; e2), e′ = ap(e′

1; e2), with e1 !−→ e′
1. We are given that

k & ap(e′
1; e2) !−→∗ k ' v, and we are to show that k & ap(e1; e2) !−→∗ k ' v. It is easy to

show that the first step of the former derivation is

k & ap(e′
1; e2) !−→ k;ap(−; e2) & e′

1.

We would like to apply induction to the derivation of e1 !−→ e′
1, but to do so, we need a

value v1 such that e′
1 !−→∗ v1, which is not at hand.

We therefore consider the value of each sub-expression of an expression. This information
is given by the evaluation dynamics described in Chapter 7, which has the property that
e ⇓ e′ iff e !−→∗ e′ and e′ val.

Lemma 28.2. If e ⇓ v, then for every k stack, k & e !−→∗ k ' v.

The desired result follows by the analog of Theorem 7.2 for PCF, which states that e ⇓ v

iff e !−→∗ v.
To prove soundness, we note that it is awkward to reason inductively about a multi-

step transition from ε & e !−→∗ ε ' v. The intermediate steps could involve alternations
of evaluation and return states. Instead, we consider a K machine state to encode an
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28.3 Correctness of the K Machine

Does evaluation of an expression e using the K machine yield the same result as does the
structural dynamics of PCF? The answer to this question can be derived from the following
facts.

Completeness If e !−→∗ e′, where e′ val, then ε & e !−→∗ ε ' e′.
Soundness If ε & e !−→∗ ε ' e′, then e !−→∗ e′ with e′ val.

To prove completeness a plausible first step is to consider a proof by induction on the
definition of multi-step transition, which reduces the theorem to the following two lemmas:

1. If e val, then ε & e !−→∗ ε ' e.
2. If e !−→ e′, then, for every v val, if ε & e′ !−→∗ ε ' v, then ε & e !−→∗ ε ' v.

The first can be proved easily by induction on the structure of e. The second requires an
inductive analysis of the derivation of e !−→ e′ that gives rise to two complications. The
first complication is that we cannot restrict attention to the empty stack, for if e is, say,
ap(e1; e2), then the first step of the K machine is

ε & ap(e1; e2) !−→ ε;ap(−; e2) & e1.

To handle such situations, we consider the evaluation of e1 on any stack, not just the empty
stack.

Specifically, we prove that if e !−→ e′ and k & e′ !−→∗ k ' v, then k & e !−→∗ k ' v.
Reconsider the case e = ap(e1; e2), e′ = ap(e′

1; e2), with e1 !−→ e′
1. We are given that

k & ap(e′
1; e2) !−→∗ k ' v, and we are to show that k & ap(e1; e2) !−→∗ k ' v. It is easy to

show that the first step of the former derivation is

k & ap(e′
1; e2) !−→ k;ap(−; e2) & e′

1.

We would like to apply induction to the derivation of e1 !−→ e′
1, but to do so, we need a

value v1 such that e′
1 !−→∗ v1, which is not at hand.

We therefore consider the value of each sub-expression of an expression. This information
is given by the evaluation dynamics described in Chapter 7, which has the property that
e ⇓ e′ iff e !−→∗ e′ and e′ val.

Lemma 28.2. If e ⇓ v, then for every k stack, k & e !−→∗ k ' v.

The desired result follows by the analog of Theorem 7.2 for PCF, which states that e ⇓ v

iff e !−→∗ v.
To prove soundness, we note that it is awkward to reason inductively about a multi-

step transition from ε & e !−→∗ ε ' v. The intermediate steps could involve alternations
of evaluation and return states. Instead, we consider a K machine state to encode an
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28.3 Correctness of the K Machine

Does evaluation of an expression e using the K machine yield the same result as does the
structural dynamics of PCF? The answer to this question can be derived from the following
facts.

Completeness If e !−→∗ e′, where e′ val, then ε & e !−→∗ ε ' e′.
Soundness If ε & e !−→∗ ε ' e′, then e !−→∗ e′ with e′ val.

To prove completeness a plausible first step is to consider a proof by induction on the
definition of multi-step transition, which reduces the theorem to the following two lemmas:

1. If e val, then ε & e !−→∗ ε ' e.
2. If e !−→ e′, then, for every v val, if ε & e′ !−→∗ ε ' v, then ε & e !−→∗ ε ' v.

The first can be proved easily by induction on the structure of e. The second requires an
inductive analysis of the derivation of e !−→ e′ that gives rise to two complications. The
first complication is that we cannot restrict attention to the empty stack, for if e is, say,
ap(e1; e2), then the first step of the K machine is

ε & ap(e1; e2) !−→ ε;ap(−; e2) & e1.

To handle such situations, we consider the evaluation of e1 on any stack, not just the empty
stack.

Specifically, we prove that if e !−→ e′ and k & e′ !−→∗ k ' v, then k & e !−→∗ k ' v.
Reconsider the case e = ap(e1; e2), e′ = ap(e′

1; e2), with e1 !−→ e′
1. We are given that

k & ap(e′
1; e2) !−→∗ k ' v, and we are to show that k & ap(e1; e2) !−→∗ k ' v. It is easy to

show that the first step of the former derivation is

k & ap(e′
1; e2) !−→ k;ap(−; e2) & e′

1.

We would like to apply induction to the derivation of e1 !−→ e′
1, but to do so, we need a

value v1 such that e′
1 !−→∗ v1, which is not at hand.

We therefore consider the value of each sub-expression of an expression. This information
is given by the evaluation dynamics described in Chapter 7, which has the property that
e ⇓ e′ iff e !−→∗ e′ and e′ val.

Lemma 28.2. If e ⇓ v, then for every k stack, k & e !−→∗ k ' v.

The desired result follows by the analog of Theorem 7.2 for PCF, which states that e ⇓ v

iff e !−→∗ v.
To prove soundness, we note that it is awkward to reason inductively about a multi-

step transition from ε & e !−→∗ ε ' v. The intermediate steps could involve alternations
of evaluation and return states. Instead, we consider a K machine state to encode an
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expression, and show that the machine transitions are simulated by the transitions of the
structural dynamics.

To do so, we define a judgment, s ! e, stating that state s “unravels to” expression
e. It will turn out that for initial states, s = ε ! e, and final states, s = ε " e, we have
s ! e. Then we show that if s #−→∗ s ′, where s ′ final, s ! e, and s ′ ! e′, then e′ val and
e #−→∗ e′. For this, it is enough to show the following two facts:

1. If s ! e and s final, then e val.
2. If s #−→ s ′, s ! e, s ′ ! e′, and e′ #−→∗ v, where v val, then e #−→∗ v.

The first is quite simple, we need only note that the unraveling of a final state is a value.
For the second, it is enough to prove the following lemma.

Lemma 28.3. If s #−→ s ′, s ! e, and s ′ ! e′, then e #−→∗ e′.

Corollary 28.4. e #−→∗ n iff ε ! e #−→∗ ε " n.

28.3.1 Completeness

Proof of Lemma 28.2 The proof is by induction on an evaluation dynamics for PCF.
Consider the evaluation rule

e1 ⇓ lam{τ2}(x.e) [e2/x]e ⇓ v

ap(e1; e2) ⇓ v
(28.10)

For an arbitrary control stack k, we are to show that k ! ap(e1; e2) #−→∗ k " v. Applying
both of the inductive hypotheses in succession, interleaved with steps of the K machine,
we obtain

k ! ap(e1; e2) #−→ k;ap(−; e2) ! e1

#−→∗ k;ap(−; e2) " lam{τ2}(x.e)

#−→ k ! [e2/x]e

#−→∗ k " v.

The other cases of the proof are handled similarly.

28.3.2 Soundness

The judgment s ! e′, where s is either k ! e or k " e, is defined in terms of the auxiliary
judgment k !" e = e′ by the following rules:

k !" e = e′

k ! e! e′ (28.11a)

k !" e = e′

k " e! e′ (28.11b)
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expression, and show that the machine transitions are simulated by the transitions of the
structural dynamics.

To do so, we define a judgment, s ! e, stating that state s “unravels to” expression
e. It will turn out that for initial states, s = ε ! e, and final states, s = ε " e, we have
s ! e. Then we show that if s #−→∗ s ′, where s ′ final, s ! e, and s ′ ! e′, then e′ val and
e #−→∗ e′. For this, it is enough to show the following two facts:

1. If s ! e and s final, then e val.
2. If s #−→ s ′, s ! e, s ′ ! e′, and e′ #−→∗ v, where v val, then e #−→∗ v.

The first is quite simple, we need only note that the unraveling of a final state is a value.
For the second, it is enough to prove the following lemma.

Lemma 28.3. If s #−→ s ′, s ! e, and s ′ ! e′, then e #−→∗ e′.

Corollary 28.4. e #−→∗ n iff ε ! e #−→∗ ε " n.

28.3.1 Completeness

Proof of Lemma 28.2 The proof is by induction on an evaluation dynamics for PCF.
Consider the evaluation rule

e1 ⇓ lam{τ2}(x.e) [e2/x]e ⇓ v

ap(e1; e2) ⇓ v
(28.10)

For an arbitrary control stack k, we are to show that k ! ap(e1; e2) #−→∗ k " v. Applying
both of the inductive hypotheses in succession, interleaved with steps of the K machine,
we obtain

k ! ap(e1; e2) #−→ k;ap(−; e2) ! e1

#−→∗ k;ap(−; e2) " lam{τ2}(x.e)

#−→ k ! [e2/x]e

#−→∗ k " v.

The other cases of the proof are handled similarly.

28.3.2 Soundness

The judgment s ! e′, where s is either k ! e or k " e, is defined in terms of the auxiliary
judgment k !" e = e′ by the following rules:

k !" e = e′

k ! e! e′ (28.11a)

k !" e = e′

k " e! e′ (28.11b)
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28.3 Correctness of the K Machine

Does evaluation of an expression e using the K machine yield the same result as does the
structural dynamics of PCF? The answer to this question can be derived from the following
facts.

Completeness If e !−→∗ e′, where e′ val, then ε & e !−→∗ ε ' e′.
Soundness If ε & e !−→∗ ε ' e′, then e !−→∗ e′ with e′ val.

To prove completeness a plausible first step is to consider a proof by induction on the
definition of multi-step transition, which reduces the theorem to the following two lemmas:

1. If e val, then ε & e !−→∗ ε ' e.
2. If e !−→ e′, then, for every v val, if ε & e′ !−→∗ ε ' v, then ε & e !−→∗ ε ' v.

The first can be proved easily by induction on the structure of e. The second requires an
inductive analysis of the derivation of e !−→ e′ that gives rise to two complications. The
first complication is that we cannot restrict attention to the empty stack, for if e is, say,
ap(e1; e2), then the first step of the K machine is

ε & ap(e1; e2) !−→ ε;ap(−; e2) & e1.

To handle such situations, we consider the evaluation of e1 on any stack, not just the empty
stack.

Specifically, we prove that if e !−→ e′ and k & e′ !−→∗ k ' v, then k & e !−→∗ k ' v.
Reconsider the case e = ap(e1; e2), e′ = ap(e′

1; e2), with e1 !−→ e′
1. We are given that

k & ap(e′
1; e2) !−→∗ k ' v, and we are to show that k & ap(e1; e2) !−→∗ k ' v. It is easy to

show that the first step of the former derivation is

k & ap(e′
1; e2) !−→ k;ap(−; e2) & e′

1.

We would like to apply induction to the derivation of e1 !−→ e′
1, but to do so, we need a

value v1 such that e′
1 !−→∗ v1, which is not at hand.

We therefore consider the value of each sub-expression of an expression. This information
is given by the evaluation dynamics described in Chapter 7, which has the property that
e ⇓ e′ iff e !−→∗ e′ and e′ val.

Lemma 28.2. If e ⇓ v, then for every k stack, k & e !−→∗ k ' v.

The desired result follows by the analog of Theorem 7.2 for PCF, which states that e ⇓ v

iff e !−→∗ v.
To prove soundness, we note that it is awkward to reason inductively about a multi-

step transition from ε & e !−→∗ ε ' v. The intermediate steps could involve alternations
of evaluation and return states. Instead, we consider a K machine state to encode an
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expression, and show that the machine transitions are simulated by the transitions of the
structural dynamics.

To do so, we define a judgment, s ! e, stating that state s “unravels to” expression
e. It will turn out that for initial states, s = ε ! e, and final states, s = ε " e, we have
s ! e. Then we show that if s #−→∗ s ′, where s ′ final, s ! e, and s ′ ! e′, then e′ val and
e #−→∗ e′. For this, it is enough to show the following two facts:

1. If s ! e and s final, then e val.
2. If s #−→ s ′, s ! e, s ′ ! e′, and e′ #−→∗ v, where v val, then e #−→∗ v.

The first is quite simple, we need only note that the unraveling of a final state is a value.
For the second, it is enough to prove the following lemma.

Lemma 28.3. If s #−→ s ′, s ! e, and s ′ ! e′, then e #−→∗ e′.

Corollary 28.4. e #−→∗ n iff ε ! e #−→∗ ε " n.

28.3.1 Completeness

Proof of Lemma 28.2 The proof is by induction on an evaluation dynamics for PCF.
Consider the evaluation rule

e1 ⇓ lam{τ2}(x.e) [e2/x]e ⇓ v

ap(e1; e2) ⇓ v
(28.10)

For an arbitrary control stack k, we are to show that k ! ap(e1; e2) #−→∗ k " v. Applying
both of the inductive hypotheses in succession, interleaved with steps of the K machine,
we obtain

k ! ap(e1; e2) #−→ k;ap(−; e2) ! e1

#−→∗ k;ap(−; e2) " lam{τ2}(x.e)

#−→ k ! [e2/x]e

#−→∗ k " v.

The other cases of the proof are handled similarly.

28.3.2 Soundness

The judgment s ! e′, where s is either k ! e or k " e, is defined in terms of the auxiliary
judgment k !" e = e′ by the following rules:

k !" e = e′

k ! e! e′ (28.11a)

k !" e = e′

k " e! e′ (28.11b)
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expression, and show that the machine transitions are simulated by the transitions of the
structural dynamics.

To do so, we define a judgment, s ! e, stating that state s “unravels to” expression
e. It will turn out that for initial states, s = ε ! e, and final states, s = ε " e, we have
s ! e. Then we show that if s #−→∗ s ′, where s ′ final, s ! e, and s ′ ! e′, then e′ val and
e #−→∗ e′. For this, it is enough to show the following two facts:

1. If s ! e and s final, then e val.
2. If s #−→ s ′, s ! e, s ′ ! e′, and e′ #−→∗ v, where v val, then e #−→∗ v.

The first is quite simple, we need only note that the unraveling of a final state is a value.
For the second, it is enough to prove the following lemma.

Lemma 28.3. If s #−→ s ′, s ! e, and s ′ ! e′, then e #−→∗ e′.

Corollary 28.4. e #−→∗ n iff ε ! e #−→∗ ε " n.

28.3.1 Completeness

Proof of Lemma 28.2 The proof is by induction on an evaluation dynamics for PCF.
Consider the evaluation rule

e1 ⇓ lam{τ2}(x.e) [e2/x]e ⇓ v

ap(e1; e2) ⇓ v
(28.10)

For an arbitrary control stack k, we are to show that k ! ap(e1; e2) #−→∗ k " v. Applying
both of the inductive hypotheses in succession, interleaved with steps of the K machine,
we obtain

k ! ap(e1; e2) #−→ k;ap(−; e2) ! e1

#−→∗ k;ap(−; e2) " lam{τ2}(x.e)

#−→ k ! [e2/x]e

#−→∗ k " v.

The other cases of the proof are handled similarly.

28.3.2 Soundness

The judgment s ! e′, where s is either k ! e or k " e, is defined in terms of the auxiliary
judgment k !" e = e′ by the following rules:

k !" e = e′

k ! e! e′ (28.11a)

k !" e = e′

k " e! e′ (28.11b)
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In words, to unravel a state, we wrap the stack around the expression to form a complete
program. The unraveling relation is inductively defined by the following rules:

ε !" e = e
(28.12a)

k !" s(e) = e′

k;s(−) !" e = e′ (28.12b)

k !" ifz{e0; x.e1}(e) = e′

k;ifz{e0; x.e1}(−) !" e = e′ (28.12c)

k !" ap(e1; e2) = e

k;ap(−; e2) !" e1 = e
(28.12d)

These judgments both define total functions.

Lemma 28.5. The judgment s ! e relates every state s to a unique expression e, and the
judgment k !" e = e′ relates every stack k and expression e to a unique expression e′.

We are therefore justified in writing k !" e for the unique e′ such that k !" e = e′.
The following lemma is crucial. It states that unraveling preserves the transition relation.

Lemma 28.6. If e %−→ e′, k !" e = d, k !" e′ = d ′, then d %−→ d ′.

Proof The proof is by rule induction on the transition e %−→ e′. The inductive cases,
where the transition rule has a premise, follow easily by induction. The base cases, where
the transition is an axiom, are proved by an inductive analysis of the stack k.

For an example of an inductive case, suppose that e = ap(e1; e2), e′ = ap(e′
1; e2), and

e1 %−→ e′
1. We have k !" e = d and k !" e′ = d ′. It follows from rules (28.12) that

k;ap(−; e2) !" e1 = d and k;ap(−; e2) !" e′
1 = d ′. So by induction d %−→ d ′, as desired.

For an example of a base case, suppose that e = ap(lam{τ2}(x.e); e2) and e′ = [e2/x]e
with e %−→ e′ directly. Assume that k !" e = d and k !" e′ = d ′; we are to show
that d %−→ d ′. We proceed by an inner induction on the structure of k. If k = ε, the
result follows immediately. Consider, say, the stack k = k′;ap(−; c2). It follows from
rules (28.12) that k′ !" ap(e; c2) = d and k′ !" ap(e′; c2) = d ′. But by the structural
dynamics ap(e; c2) %−→ ap(e′; c2), so by the inner inductive hypothesis we have d %−→ d ′,
as desired.

We may now complete the proof of Lemma 28.3.

Proof of Lemma 28.3 The proof is by case analysis on the transitions of the K machine.
In each case, after unraveling, the transition will correspond to zero or one transitions of
the PCF structural dynamics.

Suppose that s = k ! s(e) and s ′ = k;s(−) ! e. Note that k !"s(e) = e′ iff k;s(−)!"e =
e′, from which the result follows immediately.
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In words, to unravel a state, we wrap the stack around the expression to form a complete
program. The unraveling relation is inductively defined by the following rules:

ε !" e = e
(28.12a)

k !" s(e) = e′
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(28.12d)

These judgments both define total functions.

Lemma 28.5. The judgment s ! e relates every state s to a unique expression e, and the
judgment k !" e = e′ relates every stack k and expression e to a unique expression e′.

We are therefore justified in writing k !" e for the unique e′ such that k !" e = e′.
The following lemma is crucial. It states that unraveling preserves the transition relation.

Lemma 28.6. If e %−→ e′, k !" e = d, k !" e′ = d ′, then d %−→ d ′.

Proof The proof is by rule induction on the transition e %−→ e′. The inductive cases,
where the transition rule has a premise, follow easily by induction. The base cases, where
the transition is an axiom, are proved by an inductive analysis of the stack k.
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1. We have k !" e = d and k !" e′ = d ′. It follows from rules (28.12) that
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1 = d ′. So by induction d %−→ d ′, as desired.

For an example of a base case, suppose that e = ap(lam{τ2}(x.e); e2) and e′ = [e2/x]e
with e %−→ e′ directly. Assume that k !" e = d and k !" e′ = d ′; we are to show
that d %−→ d ′. We proceed by an inner induction on the structure of k. If k = ε, the
result follows immediately. Consider, say, the stack k = k′;ap(−; c2). It follows from
rules (28.12) that k′ !" ap(e; c2) = d and k′ !" ap(e′; c2) = d ′. But by the structural
dynamics ap(e; c2) %−→ ap(e′; c2), so by the inner inductive hypothesis we have d %−→ d ′,
as desired.

We may now complete the proof of Lemma 28.3.

Proof of Lemma 28.3 The proof is by case analysis on the transitions of the K machine.
In each case, after unraveling, the transition will correspond to zero or one transitions of
the PCF structural dynamics.

Suppose that s = k ! s(e) and s ′ = k;s(−) ! e. Note that k !"s(e) = e′ iff k;s(−)!"e =
e′, from which the result follows immediately.
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In words, to unravel a state, we wrap the stack around the expression to form a complete
program. The unraveling relation is inductively defined by the following rules:

ε !" e = e
(28.12a)

k !" s(e) = e′

k;s(−) !" e = e′ (28.12b)

k !" ifz{e0; x.e1}(e) = e′

k;ifz{e0; x.e1}(−) !" e = e′ (28.12c)
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These judgments both define total functions.

Lemma 28.5. The judgment s ! e relates every state s to a unique expression e, and the
judgment k !" e = e′ relates every stack k and expression e to a unique expression e′.

We are therefore justified in writing k !" e for the unique e′ such that k !" e = e′.
The following lemma is crucial. It states that unraveling preserves the transition relation.

Lemma 28.6. If e %−→ e′, k !" e = d, k !" e′ = d ′, then d %−→ d ′.

Proof The proof is by rule induction on the transition e %−→ e′. The inductive cases,
where the transition rule has a premise, follow easily by induction. The base cases, where
the transition is an axiom, are proved by an inductive analysis of the stack k.

For an example of an inductive case, suppose that e = ap(e1; e2), e′ = ap(e′
1; e2), and

e1 %−→ e′
1. We have k !" e = d and k !" e′ = d ′. It follows from rules (28.12) that

k;ap(−; e2) !" e1 = d and k;ap(−; e2) !" e′
1 = d ′. So by induction d %−→ d ′, as desired.

For an example of a base case, suppose that e = ap(lam{τ2}(x.e); e2) and e′ = [e2/x]e
with e %−→ e′ directly. Assume that k !" e = d and k !" e′ = d ′; we are to show
that d %−→ d ′. We proceed by an inner induction on the structure of k. If k = ε, the
result follows immediately. Consider, say, the stack k = k′;ap(−; c2). It follows from
rules (28.12) that k′ !" ap(e; c2) = d and k′ !" ap(e′; c2) = d ′. But by the structural
dynamics ap(e; c2) %−→ ap(e′; c2), so by the inner inductive hypothesis we have d %−→ d ′,
as desired.

We may now complete the proof of Lemma 28.3.

Proof of Lemma 28.3 The proof is by case analysis on the transitions of the K machine.
In each case, after unraveling, the transition will correspond to zero or one transitions of
the PCF structural dynamics.

Suppose that s = k ! s(e) and s ′ = k;s(−) ! e. Note that k !"s(e) = e′ iff k;s(−)!"e =
e′, from which the result follows immediately.
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expression, and show that the machine transitions are simulated by the transitions of the
structural dynamics.

To do so, we define a judgment, s ! e, stating that state s “unravels to” expression
e. It will turn out that for initial states, s = ε ! e, and final states, s = ε " e, we have
s ! e. Then we show that if s #−→∗ s ′, where s ′ final, s ! e, and s ′ ! e′, then e′ val and
e #−→∗ e′. For this, it is enough to show the following two facts:

1. If s ! e and s final, then e val.
2. If s #−→ s ′, s ! e, s ′ ! e′, and e′ #−→∗ v, where v val, then e #−→∗ v.

The first is quite simple, we need only note that the unraveling of a final state is a value.
For the second, it is enough to prove the following lemma.

Lemma 28.3. If s #−→ s ′, s ! e, and s ′ ! e′, then e #−→∗ e′.

Corollary 28.4. e #−→∗ n iff ε ! e #−→∗ ε " n.

28.3.1 Completeness

Proof of Lemma 28.2 The proof is by induction on an evaluation dynamics for PCF.
Consider the evaluation rule

e1 ⇓ lam{τ2}(x.e) [e2/x]e ⇓ v

ap(e1; e2) ⇓ v
(28.10)

For an arbitrary control stack k, we are to show that k ! ap(e1; e2) #−→∗ k " v. Applying
both of the inductive hypotheses in succession, interleaved with steps of the K machine,
we obtain

k ! ap(e1; e2) #−→ k;ap(−; e2) ! e1

#−→∗ k;ap(−; e2) " lam{τ2}(x.e)

#−→ k ! [e2/x]e

#−→∗ k " v.

The other cases of the proof are handled similarly.

28.3.2 Soundness

The judgment s ! e′, where s is either k ! e or k " e, is defined in terms of the auxiliary
judgment k !" e = e′ by the following rules:

k !" e = e′

k ! e! e′ (28.11a)

k !" e = e′

k " e! e′ (28.11b)
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In words, to unravel a state, we wrap the stack around the expression to form a complete
program. The unraveling relation is inductively defined by the following rules:

ε !" e = e
(28.12a)

k !" s(e) = e′

k;s(−) !" e = e′ (28.12b)

k !" ifz{e0; x.e1}(e) = e′

k;ifz{e0; x.e1}(−) !" e = e′ (28.12c)

k !" ap(e1; e2) = e

k;ap(−; e2) !" e1 = e
(28.12d)

These judgments both define total functions.

Lemma 28.5. The judgment s ! e relates every state s to a unique expression e, and the
judgment k !" e = e′ relates every stack k and expression e to a unique expression e′.

We are therefore justified in writing k !" e for the unique e′ such that k !" e = e′.
The following lemma is crucial. It states that unraveling preserves the transition relation.

Lemma 28.6. If e %−→ e′, k !" e = d, k !" e′ = d ′, then d %−→ d ′.

Proof The proof is by rule induction on the transition e %−→ e′. The inductive cases,
where the transition rule has a premise, follow easily by induction. The base cases, where
the transition is an axiom, are proved by an inductive analysis of the stack k.

For an example of an inductive case, suppose that e = ap(e1; e2), e′ = ap(e′
1; e2), and

e1 %−→ e′
1. We have k !" e = d and k !" e′ = d ′. It follows from rules (28.12) that

k;ap(−; e2) !" e1 = d and k;ap(−; e2) !" e′
1 = d ′. So by induction d %−→ d ′, as desired.

For an example of a base case, suppose that e = ap(lam{τ2}(x.e); e2) and e′ = [e2/x]e
with e %−→ e′ directly. Assume that k !" e = d and k !" e′ = d ′; we are to show
that d %−→ d ′. We proceed by an inner induction on the structure of k. If k = ε, the
result follows immediately. Consider, say, the stack k = k′;ap(−; c2). It follows from
rules (28.12) that k′ !" ap(e; c2) = d and k′ !" ap(e′; c2) = d ′. But by the structural
dynamics ap(e; c2) %−→ ap(e′; c2), so by the inner inductive hypothesis we have d %−→ d ′,
as desired.

We may now complete the proof of Lemma 28.3.

Proof of Lemma 28.3 The proof is by case analysis on the transitions of the K machine.
In each case, after unraveling, the transition will correspond to zero or one transitions of
the PCF structural dynamics.

Suppose that s = k ! s(e) and s ′ = k;s(−) ! e. Note that k !"s(e) = e′ iff k;s(−)!"e =
e′, from which the result follows immediately.
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Suppose that s = k;ap(lam{τ }(x.e1); −) " e2 and s ′ = k $ [e2/x]e1. Let e′ be such that
k;ap(lam{τ }(x.e1); −) $" e2 = e′ and let e′′ be such that k $" [e2/x]e1 = e′′. Observe that
k $" ap(lam{τ }(x.e1); e2) = e′. The result follows from Lemma 28.6.

28.4 Notes

The abstract machine considered here is typical of a wide class of machines that make
control flow explicit in the state. The prototype is the SECD machine (Landin, 1965), which
is a linearization of a structural operational semantics (Plotkin, 1981). The advantage of a
machine model is that the explicit treatment of control is needed for languages that allow
the control state to be manipulated (see Chapter 30 for a prime example). The disadvantage
is that the control state of the computation must be made explicit, necessitating rules for
manipulating it that are left implicit in a structural dynamics.

Exercises

28.1. Give the proof of Theorem 28.1 for conditional expressions.
28.2. Formulate a call-by-value variant of the PCF machine.
28.3. Analyze the worst-case asymptotic complexity of executing each instruction of the

K machine.
28.4. Refine the proof of Lemma 28.2 by bounding the number of machine steps taken for

each step of the PCF dynamics.
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29 Exceptions

Exceptions effect a non-local transfer of control from the point at which the exception is
raised to an enclosing handler for that exception. This transfer interrupts the normal flow
of control in a program in response to unusual conditions. For example, exceptions can
be used to signal an error condition, or to signal the need for special handling in unusual
circumstances. We could use conditionals to check for and process errors or unusual
conditions, but using exceptions is often more convenient, particularly because the transfer
to the handler is conceptually direct and immediate, rather than indirect via explicit checks.

In this chapter, we will consider two extensions of PCF with exceptions. The first, FPCF,
enriches PCF with the simplest form of exception, called a failure, with no associated data.
A failure can be intercepted and turned into a success (or another failure!) by transferring
control to another expression. The second, XPCF, enriches PCF with exceptions, with
associated data that is passed to an exception handler that intercepts it. The handler may
analyze the associated data to determine how to recover from the exceptional condition. A
key choice is to decide on the type of the data associated to an exception.

29.1 Failures

The syntax of FPCF is defined by the following extension of the grammar of PCF:

Exp e ::= fail fail signal a failure
catch(e1; e2) catch e1 ow e2 catch a failure

The expression fail aborts the current evaluation, and the expression catch(e1; e2) catches
any failure in e1 by evaluating e2 instead. Either e1 or e2 may themselves abort, or they may
diverge or return a value as usual in PCF.

The statics of FPCF is given by these rules:

! ! fail : τ
(29.1a)

! ! e1 : τ ! ! e2 : τ

! ! catch(e1; e2) : τ
(29.1b)

A failure can have any type, because it never returns. The two expressions in a catch
expression must have the same type, because either might determine the value of that
expression.
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261 29.1 Failures

The dynamics of FPCF is given using a technique called stack unwinding. Evaluation
of a catch pushes a frame of the form catch(−; e) onto the control stack that awaits the
arrival of a failure. Evaluation of a fail expression pops frames from the control stack
until it reaches a frame of the form catch(−; e), at which point the frame is removed from
the stack and the expression e is evaluated. Failure propagation is expressed by a state of
the form k ! , which extends the two forms of state considered in Chapter 28 to express
failure propagation.

The FPCF machine extends the PCF machine with the following additional rules:

k " fail #−→ k !
(29.2a)

k " catch(e1; e2) #−→ k;catch(−; e2) " e1
(29.2b)

k;catch(−; e2) % v #−→ k % v
(29.2c)

k;catch(−; e2) ! #−→ k " e2
(29.2d)

(f &= catch(−; e))
k;f ! #−→ k ! (29.2e)

Evaluating fail propagates a failure up the stack. The act of failing itself, fail, will, of
course, give rise to a failure. Evaluating catch(e1; e2) consists of pushing the handler on
the control stack and evaluating e1. If a value reaches to the handler, the handler is removed
and the value is passed to the surrounding frame. If a failure reaches the handler, the stored
expression is evaluated with the handler removed from the control stack. Failures propagate
through all frames other than the catch frame.

The initial and final states of the FPCF machine are defined by the following rules:

ε initial
(29.3a)

e val
ε % e final

(29.3b)

ε ! final
(29.3c)

The definition of stack typing given in Chapter 28 can be extended to account for the new
forms of frame so that safety can be proved in the same way as before. The only difference
is that the statement of progress must be weakened to take account of failure: a well-typed
expression is either a value, or may take a step, or may signal failure.

Theorem 29.1 (Safety for FPCF). 1. If s ok and s #−→ s ′, then s ′ ok.
2. If s ok, then either s final or there exists s ′ such that s #−→ s ′.
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261 29.1 Failures

The dynamics of FPCF is given using a technique called stack unwinding. Evaluation
of a catch pushes a frame of the form catch(−; e) onto the control stack that awaits the
arrival of a failure. Evaluation of a fail expression pops frames from the control stack
until it reaches a frame of the form catch(−; e), at which point the frame is removed from
the stack and the expression e is evaluated. Failure propagation is expressed by a state of
the form k ! , which extends the two forms of state considered in Chapter 28 to express
failure propagation.

The FPCF machine extends the PCF machine with the following additional rules:

k " fail #−→ k !
(29.2a)

k " catch(e1; e2) #−→ k;catch(−; e2) " e1
(29.2b)

k;catch(−; e2) % v #−→ k % v
(29.2c)

k;catch(−; e2) ! #−→ k " e2
(29.2d)

(f &= catch(−; e))
k;f ! #−→ k ! (29.2e)

Evaluating fail propagates a failure up the stack. The act of failing itself, fail, will, of
course, give rise to a failure. Evaluating catch(e1; e2) consists of pushing the handler on
the control stack and evaluating e1. If a value reaches to the handler, the handler is removed
and the value is passed to the surrounding frame. If a failure reaches the handler, the stored
expression is evaluated with the handler removed from the control stack. Failures propagate
through all frames other than the catch frame.

The initial and final states of the FPCF machine are defined by the following rules:

ε initial
(29.3a)

e val
ε % e final

(29.3b)

ε ! final
(29.3c)

The definition of stack typing given in Chapter 28 can be extended to account for the new
forms of frame so that safety can be proved in the same way as before. The only difference
is that the statement of progress must be weakened to take account of failure: a well-typed
expression is either a value, or may take a step, or may signal failure.

Theorem 29.1 (Safety for FPCF). 1. If s ok and s #−→ s ′, then s ′ ok.
2. If s ok, then either s final or there exists s ′ such that s #−→ s ′.

5!!� 
  2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3  



FPCF Type Safety

261 29.1 Failures

The dynamics of FPCF is given using a technique called stack unwinding. Evaluation
of a catch pushes a frame of the form catch(−; e) onto the control stack that awaits the
arrival of a failure. Evaluation of a fail expression pops frames from the control stack
until it reaches a frame of the form catch(−; e), at which point the frame is removed from
the stack and the expression e is evaluated. Failure propagation is expressed by a state of
the form k ! , which extends the two forms of state considered in Chapter 28 to express
failure propagation.

The FPCF machine extends the PCF machine with the following additional rules:

k " fail #−→ k !
(29.2a)

k " catch(e1; e2) #−→ k;catch(−; e2) " e1
(29.2b)

k;catch(−; e2) % v #−→ k % v
(29.2c)

k;catch(−; e2) ! #−→ k " e2
(29.2d)

(f &= catch(−; e))
k;f ! #−→ k ! (29.2e)

Evaluating fail propagates a failure up the stack. The act of failing itself, fail, will, of
course, give rise to a failure. Evaluating catch(e1; e2) consists of pushing the handler on
the control stack and evaluating e1. If a value reaches to the handler, the handler is removed
and the value is passed to the surrounding frame. If a failure reaches the handler, the stored
expression is evaluated with the handler removed from the control stack. Failures propagate
through all frames other than the catch frame.

The initial and final states of the FPCF machine are defined by the following rules:

ε initial
(29.3a)

e val
ε % e final

(29.3b)

ε ! final
(29.3c)

The definition of stack typing given in Chapter 28 can be extended to account for the new
forms of frame so that safety can be proved in the same way as before. The only difference
is that the statement of progress must be weakened to take account of failure: a well-typed
expression is either a value, or may take a step, or may signal failure.

Theorem 29.1 (Safety for FPCF). 1. If s ok and s #−→ s ′, then s ′ ok.
2. If s ok, then either s final or there exists s ′ such that s #−→ s ′.
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262 Exceptions

29.2 Exceptions

The language XPCF enriches FPCF with exceptions, failures to which a value is attached.
The syntax of XPCF extends that of PCF with the following forms of expression:

Exp e ::= raise(e) raise(e) raise an exception
try(e1; x.e2) try e1 ow x ↪→ e2 handle an exception

The argument to raise is evaluated to determine the value passed to the handler. The
expression try(e1; x.e2) binds a variable x in the handler e2. The associated value of the
exception is bound to that variable within e2, should an exception be raised when e1 is
evaluated.

The statics of exceptions extends the statics of failures to account for the type of the
value carried with the exception:

" " e : τexn

" " raise(e) : τ
(29.4a)

" " e1 : τ ", x : τexn " e2 : τ

" " try(e1; x.e2) : τ
(29.4b)

The type τexn is some fixed, but as yet unspecified, type of exception values. (The choice
of τexn is discussed in Section 29.3.)

The dynamics of XPCF is similar to that of FPCF, except that the failure state k ! is
replaced by the exception state k ! e which passes an exception value e to the stack k.
There is only one notion of exception, but the associated value can be used to identify the
source of the exception. We use a by-value interpretation to avoid the problem of imprecise
exceptions that arises under a by-name interpretation.

The stack frames of the PCF machine are extended to include raise(−) and
try(−; x.e2). These are used in the following rules:

k $ raise(e) %−→ k;raise(−) $ e
(29.5a)

k;raise(−) & e %−→ k ! e
(29.5b)

k $ try(e1; x.e2) %−→ k;try(−; x.e2) $ e1
(29.5c)

k;try(−; x.e2) & e %−→ k & e
(29.5d)

k;try(−; x.e2) ! e %−→ k $ [e/x]e2
(29.5e)

(f '= try(−; x.e2))
k;f ! e %−→ k ! e

(29.5f)

5!!� 
  2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3  



XPCF: PCF with Exceptions

262 Exceptions

29.2 Exceptions

The language XPCF enriches FPCF with exceptions, failures to which a value is attached.
The syntax of XPCF extends that of PCF with the following forms of expression:

Exp e ::= raise(e) raise(e) raise an exception
try(e1; x.e2) try e1 ow x ↪→ e2 handle an exception

The argument to raise is evaluated to determine the value passed to the handler. The
expression try(e1; x.e2) binds a variable x in the handler e2. The associated value of the
exception is bound to that variable within e2, should an exception be raised when e1 is
evaluated.

The statics of exceptions extends the statics of failures to account for the type of the
value carried with the exception:

" " e : τexn

" " raise(e) : τ
(29.4a)

" " e1 : τ ", x : τexn " e2 : τ

" " try(e1; x.e2) : τ
(29.4b)

The type τexn is some fixed, but as yet unspecified, type of exception values. (The choice
of τexn is discussed in Section 29.3.)

The dynamics of XPCF is similar to that of FPCF, except that the failure state k ! is
replaced by the exception state k ! e which passes an exception value e to the stack k.
There is only one notion of exception, but the associated value can be used to identify the
source of the exception. We use a by-value interpretation to avoid the problem of imprecise
exceptions that arises under a by-name interpretation.

The stack frames of the PCF machine are extended to include raise(−) and
try(−; x.e2). These are used in the following rules:

k $ raise(e) %−→ k;raise(−) $ e
(29.5a)

k;raise(−) & e %−→ k ! e
(29.5b)

k $ try(e1; x.e2) %−→ k;try(−; x.e2) $ e1
(29.5c)

k;try(−; x.e2) & e %−→ k & e
(29.5d)

k;try(−; x.e2) ! e %−→ k $ [e/x]e2
(29.5e)

(f '= try(−; x.e2))
k;f ! e %−→ k ! e

(29.5f)
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XPCF: PCF with Exceptions
263 29.3 Exception Values

The main difference compared to rules (29.2) is that an exception passes a values to the
stack, whereas a failure does not.

The initial and final states of the XPCF machine are defined by the following rules:

ε ! e initial
(29.6a)

e val
ε " e final

(29.6b)

ε ! e final
(29.6c)

Theorem 29.2 (Safety for XPCF). 1. If s ok and s #−→ s ′, then s ′ ok.
2. If s ok, then either s final or there exists s ′ such that s #−→ s ′.

29.3 Exception Values

The statics of XPCF is parameterized by the type τexn of values associated to exceptions.
The choice of τexn is important because it determines how the source of an exception is
identified in a program. If τexn is the one-element type unit, then exceptions degenerate
to failures, which are unable to identify their source. Thus, τexn must have more than one
value to be useful.

This fact suggests that τexn should be a finite sum. The classes of the sum identify the
sources of exceptions, and the classified value carries information about the particular
instance. For example, τexn might be a sum type of the form

[div ↪→ unit, fnf ↪→ string, . . .].

Here the class div might represent an arithmetic fault, with no associated data, and the
class fnf might represent a “file not found” error, with associated data being the name of
the file that was not found.

Using a sum means that an exception handler can dispatch on the class of the exception
value to identify its source and cause. For example, we might write

handle e1 ow x ↪→
match x {
div 〈〉 ↪→ ediv

| fnf s ↪→ efnf }

to handle the exceptions specified by the above sum type. Because the exception and its
associated data are coupled in a sum type, there is no possibility of misinterpreting the data
associated to one exception as being that of another.
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Exception Values
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KPCF: PCF with Continuations

30 Continuations

The semantics of many control constructs (such as exceptions and coroutines) can be
expressed in terms of reified control stacks, a representation of a control stack as a value
that can be reactivated at any time, even if control has long since returned past the point
of reification. Reified control stacks of this kind are called continuations; they are values
that can be passed and returned at will in a computation. Continuations never “expire”,
and it is always sensible to reinstate a continuation without compromising safety. Thus
continuations support unlimited “time travel” — we can go back to a previous step of the
computation, then return to some point in its future.

Why are continuations useful? Fundamentally, they are representations of the control
state of a computation at a given time. Using continuations we can “checkpoint” the control
state of a program, save it in a data structure, and return to it later. In fact this is precisely
what is necessary to implement threads (concurrently executing programs) — the thread
scheduler suspends a program for later execution from where it left off.

30.1 Overview

We will consider the extension KPCF of PCF with the type cont(τ ) of continuations
accepting values of type τ . The introduction form for cont(τ ) is letcc{τ }(x.e), which
binds the current continuation (that is, the current control stack) to the variable x, and
evaluates the expression e. The corresponding elimination form is throw{τ }(e1; e2), which
restores the value given by e1 to the control stack given by e2.

To illustrate the use of these primitives, consider the problem of multiplying the first n

elements of an infinite sequence q of natural numbers, where q is represented by a function
of type nat ⇀ nat. If zero occurs among the first n elements, we would like to effect
an “early return” with the value zero, without further multiplication. This problem can be
solved using exceptions, but we will solve it with continuations to show how they are used.

Here is the solution in PCF, without short-cutting:

fix ms is

λ q : nat ⇀ nat.

λ n : nat.

case n {
z ↪→ s(z)

| s(n’) ↪→ (q z) × (ms (q ◦ succ) n’)

}
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Motivating Example in PCF

30 Continuations
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of type nat ⇀ nat. If zero occurs among the first n elements, we would like to effect
an “early return” with the value zero, without further multiplication. This problem can be
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λ q : nat ⇀ nat.

λ n : nat.
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z ↪→ s(z)

| s(n’) ↪→ (q z) × (ms (q ◦ succ) n’)

}

5!!� 
  2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3  

30 Continuations

The semantics of many control constructs (such as exceptions and coroutines) can be
expressed in terms of reified control stacks, a representation of a control stack as a value
that can be reactivated at any time, even if control has long since returned past the point
of reification. Reified control stacks of this kind are called continuations; they are values
that can be passed and returned at will in a computation. Continuations never “expire”,
and it is always sensible to reinstate a continuation without compromising safety. Thus
continuations support unlimited “time travel” — we can go back to a previous step of the
computation, then return to some point in its future.

Why are continuations useful? Fundamentally, they are representations of the control
state of a computation at a given time. Using continuations we can “checkpoint” the control
state of a program, save it in a data structure, and return to it later. In fact this is precisely
what is necessary to implement threads (concurrently executing programs) — the thread
scheduler suspends a program for later execution from where it left off.

30.1 Overview

We will consider the extension KPCF of PCF with the type cont(τ ) of continuations
accepting values of type τ . The introduction form for cont(τ ) is letcc{τ }(x.e), which
binds the current continuation (that is, the current control stack) to the variable x, and
evaluates the expression e. The corresponding elimination form is throw{τ }(e1; e2), which
restores the value given by e1 to the control stack given by e2.

To illustrate the use of these primitives, consider the problem of multiplying the first n

elements of an infinite sequence q of natural numbers, where q is represented by a function
of type nat ⇀ nat. If zero occurs among the first n elements, we would like to effect
an “early return” with the value zero, without further multiplication. This problem can be
solved using exceptions, but we will solve it with continuations to show how they are used.

Here is the solution in PCF, without short-cutting:

fix ms is

λ q : nat ⇀ nat.

λ n : nat.

case n {
z ↪→ s(z)

| s(n’) ↪→ (q z) × (ms (q ◦ succ) n’)

}

5!!� 
  2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3  



Motivating Example in KPCF w. 
Short-Cutting

267 30.1 Overview

The recursive call composes q with the successor function to shift the sequence by one
step.

Here is the solution in KPCF, with short-cutting:

λ q : nat ⇀ nat.

λ n : nat.

letcc ret : nat cont in

let ms be

fix ms is

λ q : nat ⇀ nat.

λ n : nat.

case n {
z ↪→ s(z)

| s(n’) ↪→
case q z {
z ↪→ throw z to ret

| s(n’’) ↪→ (q z) × (ms (q ◦ succ) n’)

}
}

in

ms q n

The letcc binds the return point of the function to the variable ret for use within the main
loop of the computation. If an element is zero, control is thrown to ret, effecting an early
return with the value zero.

To take another example, given that k has type τ cont and f has type τ ′ ⇀ τ , return k′

of type return a continuation k′ of type τ ′ cont such that throwing a value v′ of type τ ′ to
k′ throws the value of f (v′) to k. Thus, we seek to define a function compose of type

(τ ′ ⇀ τ ) ⇀ τ cont ⇀ τ ′ cont.

The continuation we seek is the one in effect at the point of the ellipsis in the expression
throw f (...) to k. It is the continuation that, when given a value v′, applies f to it,
and throws the result to k. We can seize this continuation using letcc by writing

throw f(letcc x:τ ′ cont in ...) to k

The desired continuation is bound to x, but how can we return it as the result of compose?
We use the same idea as for short-circuit multiplication, writing

letcc ret:τ ′ cont cont in

throw (f (letcc r in throw r to ret)) to k

as the body of compose. Note that the type of ret is τ cont cont, that of a continuation
that expects to be thrown a continuation!
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267 30.1 Overview
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throw f(letcc x:τ ′ cont in ...) to k

The desired continuation is bound to x, but how can we return it as the result of compose?
We use the same idea as for short-circuit multiplication, writing
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KPCF Syntax & Statics

268 Continuations

30.2 Continuation Dynamics

The syntax of KPCF is as follows:

Type τ ::= cont(τ ) τ cont continuation
Expr e ::= letcc{τ }(x.e) letcc x in e mark

throw{τ }(e1; e2) throw e1 to e2 goto
cont(k) cont(k) continuation

The expression cont(k) is a reified control stack, which arises during evaluation.
The statics of KPCF is defined by the following rules:

", x : cont(τ ) ! e : τ

" ! letcc{τ }(x.e) : τ
(30.1a)

" ! e1 : τ1 " ! e2 : cont(τ1)
" ! throw{τ }(e1; e2) : τ

(30.1b)

The result type of a throw expression is arbitrary because it does not return to the point of
the call.

The statics of continuation values is given by the following rule:

k : τ
" ! cont(k) : cont(τ ) (30.2)

A continuation value cont(k) has type cont(τ ) exactly if it is a stack accepting values of
type τ .

To define the dynamics of KPCF, we extend the PCF machine with two forms of stack
frame:

throw{τ }(−; e2) frame
(30.3a)

e1 val
throw{τ }(e1; −) frame

(30.3b)

Every reified control stack is a value:

k stack
cont(k) val

(30.4)

The transition rules of the PCF machine governing continuations are as follows:

k # cont(k) $−→ k & cont(k)
(30.5a)

k # letcc{τ }(x.e) $−→ k # [cont(k)/x]e (30.5b)

k # throw{τ }(e1; e2) $−→ k;throw{τ }(−; e2) # e1 (30.5c)
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KPCF Dynamics

268 Continuations

30.2 Continuation Dynamics
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KPCF Dynamics

268 Continuations

30.2 Continuation Dynamics
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269 30.3 Coroutines from Continuations

e1 val
k;throw{τ }(−; e2) " e1 #−→ k;throw{τ }(e1; −) % e2

(30.5d)

e val
k;throw{τ }(e; −) " cont(k′) #−→ k′ " e

(30.5e)

Evaluation of a letcc expression duplicates the control stack; evaluation of a throw
expression destroys the current control stack.

The safety of KPCF is proved by extending the safety proof for the K machine given in
Chapter 28.

We need only add typing rules for the two new forms of frame, which are as follows:

e2 : cont(τ )
throw{τ ′}(−; e2) : τ ! τ ′ (30.6a)

e1 : τ e1 val
throw{τ ′}(e1; −) : cont(τ )! τ ′ (30.6b)

The rest of the definitions remain as in Chapter 28.

Lemma 30.1 (Canonical Forms). If e : cont(τ ) and e val, then e = cont(k) for some k

such that k : τ .

Theorem 30.2 (Safety). 1. If s ok and s #−→ s ′, then s ′ ok.
2. If s ok, then either s final or there exists s ′ such that s #−→ s ′.

30.3 Coroutines from Continuations

The distinction between a routine and a subroutine is the distinction between a manager and
a worker. The routine calls the subroutine to do some work, and the subroutine returns to the
routine when its work is done. The relationship is asymmetric in that there is a distinction
between the caller, the main routine, and the callee, the subroutine. It is useful to consider
a symmetric situation in which two routines each call the other to do some work. Such a
pair of routines are called coroutines; their relationship to one another is symmetric, not
hierarchical.

A subroutine is implemented by having the caller pass to the callee a continuation
representing the work to be done once the subroutine finishes. When it does, it throws
the return value to that continuation, without the possibility of return. A coroutine is
implemented by having two routines each call each other as subroutines by providing a
continuation when control is ceded from one to the other. The only tricky part is how the
entire process gets started.

Consider the type of each routine of the pair. A routine is a continuation accepting
two arguments, data to be passed to the routine when it is resumed and a continuation to
be resumed when the routine has finished its task. The datum represents the state of the
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KPCF Type Safety

269 30.3 Coroutines from Continuations

e1 val
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e2 : cont(τ )
throw{τ ′}(−; e2) : τ ! τ ′ (30.6a)

e1 : τ e1 val
throw{τ ′}(e1; −) : cont(τ )! τ ′ (30.6b)

The rest of the definitions remain as in Chapter 28.

Lemma 30.1 (Canonical Forms). If e : cont(τ ) and e val, then e = cont(k) for some k

such that k : τ .

Theorem 30.2 (Safety). 1. If s ok and s #−→ s ′, then s ′ ok.
2. If s ok, then either s final or there exists s ′ such that s #−→ s ′.

30.3 Coroutines from Continuations

The distinction between a routine and a subroutine is the distinction between a manager and
a worker. The routine calls the subroutine to do some work, and the subroutine returns to the
routine when its work is done. The relationship is asymmetric in that there is a distinction
between the caller, the main routine, and the callee, the subroutine. It is useful to consider
a symmetric situation in which two routines each call the other to do some work. Such a
pair of routines are called coroutines; their relationship to one another is symmetric, not
hierarchical.

A subroutine is implemented by having the caller pass to the callee a continuation
representing the work to be done once the subroutine finishes. When it does, it throws
the return value to that continuation, without the possibility of return. A coroutine is
implemented by having two routines each call each other as subroutines by providing a
continuation when control is ceded from one to the other. The only tricky part is how the
entire process gets started.

Consider the type of each routine of the pair. A routine is a continuation accepting
two arguments, data to be passed to the routine when it is resumed and a continuation to
be resumed when the routine has finished its task. The datum represents the state of the

5!!� 
  2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3  


