CS 430/530
Formal Semantics

Zhong Shao

Yale University
Department of Computer Science

Lambda Calculus; Dynamic Types
April 10, 2025

The Untyped Lambda Calculus

The abstract syntax of the untyped A-calculus, called A, is given by the following grammar:

Exp u = x X variable
Mx.u) A(x)u A-abstraction
ap(ui;uz) u1(up) application

The statics of A is defined by general hypothetical judgments of the form
x1 ok, ..., x, ok - u ok, stating that u is a well-formed expression involving the vari-
ables xi, ..., x,. (As usual, we omit explicit mention of the variables when they can be
determined from the form of the hypotheses.) This relation is inductively defined by the
following rules:

(21.1a)
I, x ok = x ok
Fl—u1 ok F|_I/t20k
I', x ok = u ok (21.1¢)

I' =) (x)u ok

The Untyped Lambda Calculus

The dynamics of A is given equationally, rather than via a transition system. Definitional
equality for A is a judgment of the form I" - u = u’, where I' = x; ok, ..., x,, ok for some
n > 0, and 4 and u’ are terms having at most the variables x, ..., x, free. It is inductively
defined by the following rules:

(21.2a)
[NuokbFu=u
I'Fu=u (21.2b)
F'Fu' =u
F'tu=u TR =u (21.20)
Fr'ru=u" '
Fr'Fur=u, Thru =u
L T (21.2d)
' ui(uo) = ui(u,)
[Lxoktu=u (21.2¢)
FFixu=r()u’ '
[',x oku,ok TI'F upok (21.26)

F'E Q) u)(ur) = [ur/x]u;

The Lambda Calculus: Definability

It is a Turing-complete language --- it can express computations
on natural numbers as in any other programming language

It is as powerful as PCF

The first task is to represent the natural numbers as certain A-terms, called the Church
numerals.

02 A(b)A(s)b (21.3a)
n+12) (b)xr(s)s@b)s)) (21.3b)
It follows that
n(uy)(uz) = us(. .. (u2(u1))),

The Lambda Calculus: Definability

Using this definition, it is not difficult to define the basic functions of arithmetic. For
example, successor, addition, and multiplication are defined by the following untyped

A-terms:
succ 2 A () A (D) A (S)s(x(D)(s)) (21.4)
plus = A (x) A (y) y(x)(succ) (21.5)
times = A (x) A (y) y(0)(plus(x)) (21.6)

It is easy to check that succ(77) = n + 1, and that similar correctness conditions hold for
the representations of addition and multiplication.

To define ifz{ug; x.u; (1) requires a bit of ingenuity. The key is to define the “cut-off
predecessor,” pred, such that

0)=0 (21.7)
= 7. (21.8)

The Lambda Calculus: Definability

To make this precise, we must first define a Church-style representation of ordered pairs.

(ur, uz) = A (f) fQur)(u2) (21.9)
u-1=u(h(@)A(y)x) (21.10)
u-r=u(h(@)A)y) (21.11)

It is easy to check that under this encoding (u, u,) - 1 = u, and that a similar equivalence
holds for the second projection. We may now define the required representation, u ,, of the
predecessor function:

uh, 2 A (x)x((0,00)((») (y - T, succ (y - 1)) (21.12)
up = A(x)u(x)-1 (21.13)

The Lambda Calculus: Definability

This definition gives us all the apparatus of PCF, apart from general recursion. But
general recursion is also definable in A using a fixed point combinator. There are many
choices of fixed point combinator, of which the best known 1s the Y combinator:

Y= A (F) () FUEMO) FOFH)).
It 1s easy to check that

Y(F) = F(Y(F)).

Using the Y combinator, we may define general recursion by writing Y(A (x) u#), where x
stands for the recursive expression itself.

The Lambda Calculus: Definability

If a function is recursive, it is given an extra first argument, which is arranged at
call sites to be the function itself. Whenever we wish to call a self-referential
function with an argument, we apply the function first to itself and then to its
argument; this protocol is imposed on both the “external” calls to the function
and on the “internal” calls that the function may make to itself. For this reason,
the first argument is often called this or self, to remind you that it will be, by
convention, bound to the function itself.

With this in mind, it 1s easy to see how to derive the definition of Y. If F' 1s the function
whose fixed point we seek, then the function F’ = A (f) F(f(f)) is a variant of F in
which the self-application convention has been imposed internally by substituting for each
occurrence of f in F(f) the self-application f(f). Now check that F'(F') = F(F'(F")), so
that F'(F"’) is the desired fixed point of F. Expanding the definition of F’, we have derived
that the desired fixed point of F is

A FSODNS) F))).

Scott’s Theorem

Scott’s Theorem states that definitional equality for the untyped A-calculus is undecidable:
there is no algorithm to determine whether two untyped terms are definitionally equal. The
proof uses the concept of inseparability. Any two properties, Ay and A, of A-terms are
inseparable if there is no decidable property, BB, such that Ay u implies that 5 u holds,
and A; u implies that B u does not hold. We say that a property, A, of untyped terms is
behavioral iff whenever u = u’, then A u iff A u'.

The proof of Scott’s Theorem decomposes into two parts:

1. For any untyped A-term u, we may find an untyped term v such that u("v™") = v, where
"v '1is the Godel number of v, and " v "1s its representation as a Church numeral. (See
Chapter 9 for a discussion of Godel-numbering.)

2. Any two non-trivial® behavioral properties Ay and A; of untyped terms are inseparable.

Scott’s Theorem

Lemma 21.1. For any u, there exists v such that u("v?) = v.

Proof Sketch 'The proof relies on the definability of the following two operations in the
untyped A-calculus:

1.oap("uy D(Tuz) = "ui(uz) .

2. nm(@) = "7 .

Intuitively, the first takes the representations of two untyped terms and builds the represen-
tation of the application of one to the other. The second takes a numeral for n, and yields
the representation of the Church numeral 7. Given these, we may find the required term v
by defining v = w("w), where w £) (x) u(ap(x)(mm(x))). We have

v=w(w")
= u(ap("w H(am("w ™))
= u("w(w)7)
= u(Tv7).
The definition is very similar to that of Y(u), except that u takes as input the representation

of a term, and we find a v such that, when applied to the representation of v, the term u
yields v itself. [

Scott’s Theorem

Lemma 21.2. Suppose that Ay and A, are two non-trivial behavioral properties of untyped
terms. Then there is no untyped term w such that

1. For every u, either wCuN=0o0rw(u)= 1.
2. If Ao u, then w(u ') = 0.
3. If A, u, thenw(u) = 1.

Proof Suppose there is such an untyped term w. Let v be the untyped term

A (x) ifz{ug; —uo}(w(x)),

where uy and u; are chosen such that Ay ug and A; u;. (Such a choice must exist by non-
triviality of the properties.) By Lemma 21.1 there is an untyped term ¢ such that v(" ¢) = 7.
If w(r") =0,thens = v("t') = u,, and so A, t, because A; is behavioral and A, u;.

But then w(" 7 ') = 1 by the defining properties of w, which is a contradiction. Similarly, if
w("t") = 1, then Ay ¢, and hence w("¢ ") = 0, again a contradiction. L]

Corollary 21.3. There is no algorithm to decide whether u = u’.

Proof For fixed u, the property £, u’ defined by u’ = u is a non-trivial behavioral property
of untyped terms. So it is inseparable from its negation, and hence is undecidable. []

Untyped = Uni-Typed

The key observation is that the untyped A-calculus is really the uni-typed A-calculus. It
1s not the absence of types that gives it its power, but rather that it has only one type, the
recursive type

D2 rectist —1t.

A value of type D is of the form fold(e) where e is a value of type D — D—a function
whose domain and range are both D. Any such function can be regarded as a value of type
D by “folding”, and any value of type D can be turned into a function by “unfolding”.
As usual, a recursive type is a solution to a type equation, which in the present case is the
equation

D=D—D.

This 1somorphism specifies that D 1s a type that is 1somorphic to the space of partial
functions on D itself, which is impossible if types are just sets.

Untyped = Uni-Typed

This isomorphism leads to the following translation, of A into FPC:

x £ x (21.14a)
A u" £ fold(n(x: D)ub) (21.14b)
w1 (uz)" 2 unfold(u!)(ul) (21.14c¢)

we have
A () u1(uz)’ = unfold(fold((x : D)ul))(ub)
=). (x : D)ul(ub)
= [ul/x]u!
= ([ua/x]u)'.

The last step, stating that the embedding commutes with substitution, is proved by induction
on the structure of u;. Thus B-reduction is implemented by evaluation of the embedded
terms.

Dynamic Typing

An untyped language is a uni-typed language in which “untyped” terms are just
terms of single recursive type.

No application can get stuck, because every value is a function that may be
applied to an argument.

This safety property breaks down once more than one class of value is
admitted. For example, if the natural numbers are added as a primitive, it is
possible to incur a run-time error by attempting to apply a number to an
argument.

One way to manage this is to embrace the possibility, treating class mismatches
as checked errors.

Such languages are called dynamic languages because an error such as the one
described is postponed to run-time, rather than precluded at compile time by
type checking.

Dynamically Typed PCF

To illustrate dynamic typing, we formulate a dynamically typed version of PCF, called
DPCF. The abstract syntax of DPCF is given by the following grammar:

Exp d = «x X variable
num|7 | n numeral
Zero Zero Zero
succ(d) succ(d) successor
ifz{dy;x.di}(d) ifzd{zero < dj|succ(x)— d;}
zero test
fun(x.d) A(x)d abstraction
ap(d; dr) dy(d») application
fix(x.d) fixxisd recursion

There are two classes of values in DPCF, the numbers, which have the form num[z], and
the functions, which have the form fun(x.d). The expressions zero and succ(d) are not
themselves values, but rather are constructors that evaluate to values.

DPCF Statics

The statics of DPCF is like that of A; it merely checks that there are no free variables in
the expression. The judgment

x1 ok, ...x, ok = d ok

states that d is a well-formed expression with free variables among those in the hypotheses.

If the assumptions are empty, then we write just d ok to mean that d is a closed expression
of DPCF.

DPCF Dynamics

d val
dvr—d

d err

d is_.num n
d 1snt_num
d is_fun x.d
d isnt_fun

d 1s a (closed) value

d evaluates in one step to d’

d 1ncurs a run-time error

d 1s of class num with value n
d 1s not of class num

d 1s of class fun with body x.d
d 1s not of class fun

The value judgment d val states that d is a evaluated (closed) expression:

num[n] val (22.1a)

fun(x.d) val (22.1b)

DPCF Dynamics

The affirmative class-checking judgments are defined by the following rules:

num|[zn] is.num n (22.2a)

fun(x.d) is_fun x.d (22.2b)

The negative class-checking judgments are correspondingly defined by these rules:

num|[n] isnt_fun (22.3a)

fun(x.d) isnt_num (22.3b)

The transition judgment d — d’ and the error judgment d err are defined simultane-
ously by the following rules:

zero —> num|[z] (22.4a)
succ(da; : csi;lcc(d’) (22.4b)
#i;)rerr (22.4¢)
succ(ccll)irs_—nfrrrl]u,:n[s(n)] (22.4d)
disnum (22.4¢)

succ(d) err

DPCF Dynamics

dr+—d

ifz{d(); X.d] }(d) > ifZ{d(); X.d] }(d/)

d err
ifz{dy; x.d1}(d) err

dis_.num 0
ifz{dy; x.d }(d) —> d

disnumn+1
ifz{dy; x.d\}(d) — [num[n]/x]d;

d isnt_num
ifz{dy; x.d1}(d) err

dl > d{
ap(dy; dy) — ap(dy; d>)

d, err
ap(d;; dy) err

dy is_fun x.d
ap(dy;dr) — [dy/x]d

(22.4f)

(22.4g)

(22.4h)

(22.41)

(22.4y)

(22.4K)

(22.41)

(22.4m)

dy isnt_fun
ap(d;; dy) err

fix(x.d) —> [fix(x.d)/x]d

(22.4n)

(22.40)

DPCF Safety

Lemma 22.1 (Class Checking). If d val, then

1. either d is_num n for some n, or d isnt_num;

2. either d is_fun x.d’ for some x and d’, or d isnt_fun.
Proof By inspection of the rules defining the class-checking judgments.]

Theorem 22.2 (Progress). If d ok, then either d val, or d err, or there exists d' such that
dvr+—d'.

Proof By induction on the structure of d. For example, if d = succ(d’), then we have
by induction either d’ val, or d’ err, or d —— d” for some d”. In the last case, we
have by rule (22.4b) that succ(d’) — succ(d”), and in the second-to-last case, we have
by rule (22.4¢) that succ(d’) err. If d’ val, then by Lemma 22.1, either d’ is_.num n or
d’ isnt_num. In the former case succ(d’) —— num[s(n)], and in the latter succ(d’) err.
The other cases are handled similarly. []

Lemma 22.3 (Exclusivity). For any d in DPCF, exactly one of the following holds: d val,
ord err, ord — d' for some d’.

DPCF Variations and Extensions

One could instead treat zero and succ(d) as values of separate classes and introduce
the obvious class-checking judgments for them. When written 1in this style, the dynamics
of the conditional branch is given as follows:

dr—d
if2{dy; x.di }(d) —> ifz{do;x.di}(d') (22.52)
d i1s_zero
ifz{dy; x.d\}(d) —> dy (22.5b)
d is_succ d’
ifz{dy; x.d1}(d) — [d'/x]d; (22.5¢)
d isnt_zero d isnt_succ (22.50)

ifz{dy; x.di}(d) err

DPCF Variations and Extensions

DPCEF can be extended with structured data similarly. A classic example is to consider
a class nil, consisting of a “null” value, and a class cons, consisting of pairs of values.

Exp d ::= nil nil null
cons(d;;d») cons(dy;d,) pair
ifnil(d;dy; x, y.di) ifnild{nil < dy| cons(x;y) — d}
conditional

The expression ifnil(d;dy; x, y.d;) distinguishes the null value from a pair, and signals
an error on any other class of value.

Lists (finite sequences) can be encoded using null and pairing. For example, the list
consisting of three zeros can berepresented by the value

cons(zero; cons(zero; cons(zero;nil))).
But what to make of the following value?
cons(zero; cons(zero; cons(zero; A (x) x)))

It is not a list, because it does not end with nil, but it is a permissible value in the enriched
language.

DPCF Variations and Extensions

It might be argued that the conditional branch that distinguishes null from a pair is
inappropriate in DPCF, because there are more than just these two classes in the language.
One approach that avoids this criticism is to abandon pattern matching on the class of data,
replacing it by a general conditional branch that distinguishes null from all other values,
and adding to the language predicates’ that test the class of a value and destructors that
invert the constructors of each class.

We could instead reformulate null and and pairing as follows:

Exp d := cond(d;dy;dy) cond(d;dy;d;) conditional
nil?(d) nil?(d) nil test
cons?(d) cons?(d) pair test
car(d) car(d) first projection
cdr(d) cdr(d) second projection

Written 1n this form, the function append 1s given by the expression

fixais A (x)A(y)cond(x; cons(car(x);a(cdr(x))(y));y).

Critique of Dynamic Typing

Consider, for example, the addition function in DPCF, whose specification is that, when

passed two values of class num, returns their sum, which is also of class num:>

fun(x.fix(p.fun(y.ifz{x; y .succ(p(y"))H)))).

The addition function may, deceptively, be written in concrete syntax as follows:
A(x)fix pisA(y)ifzy{zero — x | succ(y’) = succ(p(y"))}.

First, note that the body of the fixed point expression is labeled with class fun. The
dynamics of the fixed point construct binds p to this function. Consequently, the dynamic
class check incurred by the application of p in the recursive call is guaranteed to succeed.
But DPCF offers no means of suppressing the redundant check, because it cannot express
the invariant that p is always bound to a value of class fun.

Critique of Dynamic Typing

Second, note that the result of applying the inner A-abstraction is either x, the argument
of the outer A-abstraction, or the successor of a recursive call to the function itself. The
successor operation checks that its argument is of class num, even though this condition
1s guaranteed to hold for all but the base case, which returns the given x, which can be
of any class at all. In principle, we can check that x 1s of class num once, and note that it
1s otherwise a loop invariant that the result of applying the inner function 1s of this class.
However, DPCF gives us no way to express this invariant; the repeated, redundant tag
checks imposed by the successor operation cannot be avoided.

Third, the argument y to the inner function is either the original argument to the addition
function, or 1s the predecessor of some earlier recursive call. But as long as the original call
1s to a value of class num, then the dynamics of the conditional will ensure that all recursive
calls have this class. And again there is no way to express this invariant in DPCF, and
hence, there is no way to avoid the class check imposed by the conditional branch.

Hybrid Typing

A hybrid language is one that combines static and dynamic typing by
enriching a statically typed language with a distinguished type dyn of
dynamic values.

The dynamically typed language can be embedded into the hybrid
language by viewing a dynamically typed program as a statically typed
program of type dyn.

Static and dynamic types are not opposed to one another but may coexist
harmoniously.

The ad hoc device of adding the type dyn to a static language is
unnecessary in a language with recursive types, wherein it is definable as
a particular recursive type.

Thus, dynamic typing is a mode of use of static typing, reconciling an
apparent opposition between them.

Hybrid PCF (HPCF)

Consider the language HPCF, which extends PCF with the following constructs:

Typ 7 == dyn dyn dynamic
Exp e = new[l](e) [!e construct
cast[l](e) e @[destruct
inst[/](e) [?e discriminate
Cls [= num num number

fun fun function

The type dyn is the type of dynamically classified values. The constructor attaches a
classifier to a value of a type associated to that classifer, the destructor recovers the value
classified with the given classifier, and the discriminator tests the class of a classified value.

HPCF Statics

The statics of HPCF extends that of PCF with the following rules:
I" - e :nat

I' = new[num](e) : dyn (23.1a)
I'Fe:dyn—d
€ R 8 (23.1b)
[' - new[fun](e) : dyn
I'Fe:d
i (23.1¢)
I' + cast[num](e) : nat
I'Fe:d
c- B (23.1d)
[' = cast[fun](e) : dyn — dyn
['Fe:dyn
23.1
I' - inst[num](e) : bool (2
['Fe:d
€- (23.1f)

I' = inst[fun](e) : bool

HPCF Dynamics

e val
new([/](e) val

er— ¢
new[/](e) —> new[l](¢’)

er— ¢
cast[l](e) —> cast[/](¢)

new([/](e) val
cast[/](new[l](e)) —> e

new[l'](e) val [# 1
cast[/](new[l'](e)) err

er— ¢
inst[l](e) — inst[l](e’)

new[/](e) val
inst[/](new[/](e)) —> true

new[l](e) val [#1

inst[!'](new[/](e)) —> false

(23.2a)

(23.2b)

(23.2¢)

(23.2d)

(23.2¢)

(23.2f)

(23.29)

(23.2h)

HPCF Safety

Lemma 23.1 (Canonical Forms). If e : dyn and e val, then e = newl(l|(e") for some class [
and some €' val. If| = num, then €' : nat, and if | = fun, then ¢’ : dyn — dyn.

Proof By rule induction on the statics of HPCF. L]
Theorem 23.2 (Safety). The language HPCF is safe:

1. Ife:tande+— €, thene' : .

2. If e : 1, then either e val, or e err, or e —> ¢’ for some ¢’

Proof Preservation is proved by rule induction on the dynamics, and progress is proved by
rule induction on the statics, making use of the canonical forms lemma. The opportunities
for run-time errors are the same as those for DP CF—a well-typed cast might fail at run-time
if the class of the cast does not match the class of the value. L]

HPCF in FPC

In a language such as FPC (Chapter 20) with recursive types, there is no need to add
dyn as a primitive type. Instead, it is defined to be type

rect is [num <> nat, fun < t — t]. (23.3)

The introduction and elimination forms for this definition of dyn are definable as follows:?

new[num](e) = fold(num - e) (23.4)
new[fun](e) £ fold(fun - ¢) (23.5)
cast[num](e) £ caseunfold(e){num-x < x | fun - x <> error) (23.6)
cast[fun](e) £ caseunfold(e){num- x < error | fun - x — x}. (23.7)

These definition simply decompose the class operations for dyn into recursive unfoldings
and case analyses on values of a sum type.

Dynamic as Static Typing

The language DPCF of Chapter 22 can be embedded into HPCF by a simple translation
that makes explicit the class checking in the dynamics of DPCF. Specifically, we may

define a translation d' of expressions of DPCF into expressions of HPCF according to the
following static correctness criterion:

Theorem 23.3. If x| ok,...,x, ok &= d ok according to the statics of DPCF, then
xi:dyn,...,x, :dynF d': dynin HPCF.

The proof of Theorem 23.3 is given by induction on the structure of d based on the
following translation:

xT 2 x
num[n]Jr £ new[num](n)
zero! new[num](z)
succ(d)’ £ new[num](s(cast[num](d")))
ifz{dy; x.d }(d) = ifz{dT;x.[new[num](x)/x]d;[}(cast[num](dT))
(fun(x.d))! £ new[fun](x (x : dyn) dh
(ap(di; o)) £ cast[fun](d])(d])
fix(x.d) £ fix{dyn}(x.d")

Optimization of Dynamic Typing in HPCF

Consider the addition function in DPCF given in Section 22.3, which we transcribe here
for convenience:

A(x)fix pisi(y)ifz y{zero < x | succ(y’) < succ(p(y"))}.
It is a value of type dyn in HPCF given as follows:
fun!A(x:dyn)fixp:dynisfun!A(y:dyn)es , y, (23.8)
within which the fragment
Xx:dyn,p:dyn,y:dynt e, ,,:dyn
stands for the expression
ifz(y @ num) {zero < x | succ(y’) = num ! (s((p @ fun)(num ! y") @ num))}.

The embedding into HPCF makes explicit the run-time checks that are implicit in the
dynamics of DPCF.

Optimization of Dynamic Typing in HPCF

The first redundancy arises from the use of recursion in a dynamic language. In the above
example, we use recursion to define the inner loop p of the computation. The value p is, by
definition, a A-abstraction, which is explicitly tagged as a function. Yet the call to p within
the loop checks at run-time whether p 1s in fact a function before applying it. Because p
is an internally defined function, all of its call sites are under the control of the addition
function, which means that there is no need for such pessimism at calls to p, provided that
we change its type to dyn — dyn, which directly expresses the invariant that p is a function
acting on dynamic values.

Performing this transformation, we obtain the following reformulation of the addition
function that eliminates this redundancy:

/

fun!A(x:dyn)fun!fixp:dyn —dynisi(y:dyn)e, ,,,

/ . .
where e, , | 18 the expression

ifz (y @ num) {zero < x | succ(y’) = num ! (s(p(num ! y') @ num))}.

We have “hoisted” the function class label out of the loop and suppressed the cast inside
the loop. Correspondingly, the type of p has changed to dyn — dyn.

Optimization of Dynamic Typing in HPCF

Two observations:
« Variable y of type dyn can be made into nat

« The result of the recursive call can be made to nat as well

Combining these optimizations we obtain the inner loop e/ defined as follows:
fix p :nat — natisA(y:nat)ifzy{zero < x @ num | succ(y’) = s(p(y"))}.

It has the type nat — nat, and runs without class checks when applied to a natural number.

Finally, recall that the goal is to define a version of addition that works on values of type
dyn. Thus, we need a value of type dyn — dyn, but what we have at hand is a function of
type nat — nat. It can be converted to the needed form by pre-composing with a cast to
num and post-composing with a coercion to num:

fun! A (x :dyn)fun! i (y:dyn)num ! (e/(y @ num)).

The innermost A-abstraction converts the function e from type nat—nat to type dyn—dyn
by composing it with a class check that ensures that y is a natural number at the initial call
site, and applies a label to the result to restore it to type dyn.

Static vs. Dynamic Typing

The seeming opposition btw static & dynamic typing is an illusion.

 Dynamic lang. associate types with values, whereas static lang. associate types to
variables?

 Dynamic lang. check types at run-time, whereas static lang. check types at compile
time?

 Dynamic lang. support heterogeneous collections, whereas static lang. support

homogeneous collections?

The question is not whether to have static typing, but rather how
best to embrace it.

