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The Untyped Lambda Calculus

21 The Untyped λ-Calculus

In this chapter, we study the premier example of a uni-typed programming language, the
(untyped) λ-calculus. This formalism was introduced by Church in the 1930s as a universal
language of computable functions. It is distinctive for its austere elegance. The λ-calculus
has but one “feature,” the higher-order function. Everything is a function, hence every
expression may be applied to an argument, which must itself be a function, with the result
also being a function. To borrow a turn of phrase, in the λ-calculus it’s functions all the
way down.

21.1 The λ-Calculus

The abstract syntax of the untyped λ-calculus, called !, is given by the following grammar:

Exp u ::= x x variable
λ(x.u) λ (x) u λ-abstraction
ap(u1; u2) u1(u2) application

The statics of ! is defined by general hypothetical judgments of the form
x1 ok, . . . , xn ok ! u ok, stating that u is a well-formed expression involving the vari-
ables x1, . . . , xn. (As usual, we omit explicit mention of the variables when they can be
determined from the form of the hypotheses.) This relation is inductively defined by the
following rules:

", x ok ! x ok
(21.1a)

" ! u1 ok " ! u2 ok
" ! u1(u2) ok

(21.1b)

", x ok ! u ok
" ! λ (x) u ok

(21.1c)

The dynamics of ! is given equationally, rather than via a transition system. Definitional
equality for ! is a judgment of the form " ! u ≡ u′, where " = x1 ok, . . . , xn ok for some
n ≥ 0, and u and u′ are terms having at most the variables x1, . . . , xn free. It is inductively
defined by the following rules:

", u ok ! u ≡ u
(21.2a)
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182 The Untyped λ-Calculus

" ! u ≡ u′

" ! u′ ≡ u
(21.2b)

" ! u ≡ u′ " ! u′ ≡ u′′

" ! u ≡ u′′ (21.2c)

" ! u1 ≡ u′
1 " ! u2 ≡ u′

2

" ! u1(u2) ≡ u′
1(u′

2)
(21.2d)

", x ok ! u ≡ u′

" ! λ (x) u ≡ λ (x) u′ (21.2e)

", x ok ! u2 ok " ! u1 ok
" ! (λ (x) u2)(u1) ≡ [u1/x]u2

(21.2f)

We often write just u ≡ u′ when the variables involved need not be emphasized or are clear
from context.

21.2 Definability

Interest in the untyped λ-calculus stems from its surprising expressiveness. It is a Turing-
complete language in the sense that it has the same capability to express computations on
the natural numbers as does any other known programming language. Church’s Law states
that any conceivable notion of computable function on the natural numbers is equivalent to
the λ-calculus. This assertion is true for all known means of defining computable functions
on the natural numbers. The force of Church’s Law is that it postulates that all future
notions of computation will be equivalent in expressive power (measured by definability of
functions on the natural numbers) to the λ-calculus. Church’s Law is therefore a scientific
law in the same sense as, say, Newton’s Law of Universal Gravitation, which predicts the
outcome of all future measurements of the acceleration in a gravitational field.1

We will sketch a proof that the untyped λ-calculus is as powerful as the language PCF
described in Chapter 19. The main idea is to show that the PCF primitives for manipulating
the natural numbers are definable in the untyped λ-calculus. In particular, we must show
that the natural numbers are definable as λ-terms in such a way that case analysis, which
discriminates between zero and non-zero numbers, is definable. The principal difficulty is
with computing the predecessor of a number, which requires a bit of cleverness. Finally,
we show how to represent general recursion, completing the proof.

The first task is to represent the natural numbers as certain λ-terms, called the Church
numerals.

0 ! λ (b) λ (s) b (21.3a)

n + 1 ! λ (b) λ (s) s(n(b)(s)) (21.3b)

It follows that

n(u1)(u2) ≡ u2(. . . (u2(u1))),

5!!� 
  2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3  



The Lambda Calculus: Definability
It is a Turing-complete language --- it can express computations 
on natural numbers as in any other programming language

It is as powerful as PCF

182 The Untyped λ-Calculus

" ! u ≡ u′

" ! u′ ≡ u
(21.2b)

" ! u ≡ u′ " ! u′ ≡ u′′

" ! u ≡ u′′ (21.2c)

" ! u1 ≡ u′
1 " ! u2 ≡ u′

2

" ! u1(u2) ≡ u′
1(u′

2)
(21.2d)

", x ok ! u ≡ u′

" ! λ (x) u ≡ λ (x) u′ (21.2e)

", x ok ! u2 ok " ! u1 ok
" ! (λ (x) u2)(u1) ≡ [u1/x]u2

(21.2f)

We often write just u ≡ u′ when the variables involved need not be emphasized or are clear
from context.

21.2 Definability

Interest in the untyped λ-calculus stems from its surprising expressiveness. It is a Turing-
complete language in the sense that it has the same capability to express computations on
the natural numbers as does any other known programming language. Church’s Law states
that any conceivable notion of computable function on the natural numbers is equivalent to
the λ-calculus. This assertion is true for all known means of defining computable functions
on the natural numbers. The force of Church’s Law is that it postulates that all future
notions of computation will be equivalent in expressive power (measured by definability of
functions on the natural numbers) to the λ-calculus. Church’s Law is therefore a scientific
law in the same sense as, say, Newton’s Law of Universal Gravitation, which predicts the
outcome of all future measurements of the acceleration in a gravitational field.1

We will sketch a proof that the untyped λ-calculus is as powerful as the language PCF
described in Chapter 19. The main idea is to show that the PCF primitives for manipulating
the natural numbers are definable in the untyped λ-calculus. In particular, we must show
that the natural numbers are definable as λ-terms in such a way that case analysis, which
discriminates between zero and non-zero numbers, is definable. The principal difficulty is
with computing the predecessor of a number, which requires a bit of cleverness. Finally,
we show how to represent general recursion, completing the proof.

The first task is to represent the natural numbers as certain λ-terms, called the Church
numerals.

0 ! λ (b) λ (s) b (21.3a)

n + 1 ! λ (b) λ (s) s(n(b)(s)) (21.3b)

It follows that

n(u1)(u2) ≡ u2(. . . (u2(u1))),

5!!� 
  2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3  



The Lambda Calculus: Definability
183 21.2 Definability

the n-fold application of u2 to u1. That is, n iterates its second argument (the induction
step) n times, starting with its first argument (the basis).

Using this definition, it is not difficult to define the basic functions of arithmetic. For
example, successor, addition, and multiplication are defined by the following untyped
λ-terms:

succ ! λ (x) λ (b) λ (s) s(x(b)(s)) (21.4)

plus ! λ (x) λ (y) y(x)(succ) (21.5)

times ! λ (x) λ (y) y(0)(plus(x)) (21.6)

It is easy to check that succ(n) ≡ n + 1, and that similar correctness conditions hold for
the representations of addition and multiplication.

To define ifz{u0; x.u1}(u) requires a bit of ingenuity. The key is to define the “cut-off
predecessor,” pred, such that

pred(0) ≡ 0 (21.7)

pred(n + 1) ≡ n. (21.8)

To compute the predecessor using Church numerals, we must show how to compute the
result for n + 1 in terms of its value for n. At first glance, this seems simple—just take the
successor—until we consider the base case, in which we define the predecessor of 0 to be
0. This formulation invalidates the obvious strategy of taking successors at inductive steps,
and necessitates some other approach.

What to do? A useful intuition is to think of the computation in terms of a pair of
“shift registers” satisfying the invariant that on the nth iteration the registers contain the
predecessor of n and n itself, respectively. Given the result for n, namely the pair (n−1, n),
we pass to the result for n + 1 by shifting left and incrementing to obtain (n, n + 1).
For the base case, we initialize the registers with (0, 0), reflecting the stipulation that the
predecessor of zero be zero. To compute the predecessor of n, we compute the pair (n−1, n)
by this method, and return the first component.

To make this precise, we must first define a Church-style representation of ordered pairs.

〈u1, u2〉 ! λ (f ) f (u1)(u2) (21.9)

u · l ! u(λ (x) λ (y) x) (21.10)

u · r ! u(λ (x) λ (y) y) (21.11)

It is easy to check that under this encoding 〈u1, u2〉 · l ≡ u1, and that a similar equivalence
holds for the second projection. We may now define the required representation, up, of the
predecessor function:

u′
p ! λ (x) x(〈0, 0〉)(λ (y) 〈y · r, succ (y · r)〉) (21.12)

up ! λ (x) u′
p(x) · l (21.13)

It is easy to check that this gives us the required behavior. Finally, define ifz{u0; x.u1}(u)
to be the untyped term

u(u0)(λ ( ) [up(u)/x]u1).
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This definition gives us all the apparatus of PCF, apart from general recursion. But
general recursion is also definable in ! using a fixed point combinator. There are many
choices of fixed point combinator, of which the best known is the Y combinator:

Y ! λ (F ) (λ (f ) F (f (f )))(λ (f ) F (f (f ))).

It is easy to check that

Y(F ) ≡ F (Y(F )).

Using the Y combinator, we may define general recursion by writing Y(λ (x) u), where x

stands for the recursive expression itself.
Although it is clear that Y as just defined computes a fixed point of its argument, it is

probably less clear why it works or how we might have invented it in the first place. The
main idea is quite simple. If a function is recursive, it is given an extra first argument, which
is arranged at call sites to be the function itself. Whenever we wish to call a self-referential
function with an argument, we apply the function first to itself and then to its argument;
this protocol is imposed on both the “external” calls to the function and on the “internal”
calls that the function may make to itself. For this reason, the first argument is often called
this or self, to remind you that it will be, by convention, bound to the function itself.

With this in mind, it is easy to see how to derive the definition of Y. If F is the function
whose fixed point we seek, then the function F ′ = λ (f ) F (f (f )) is a variant of F in
which the self-application convention has been imposed internally by substituting for each
occurrence of f in F (f ) the self-application f (f ). Now check that F ′(F ′) ≡ F (F ′(F ′)), so
that F ′(F ′) is the desired fixed point of F . Expanding the definition of F ′, we have derived
that the desired fixed point of F is

λ (f ) F (f (f ))(λ (f ) F (f (f ))).

To finish the derivation, we need only note that nothing depends on the particular choice
of F , which means that we can compute a fixed point for F uniformly in F . That is, we
may define a single function, the term Y as defined above, that computes the fixed point of
any F .

21.3 Scott’s Theorem

Scott’s Theorem states that definitional equality for the untyped λ-calculus is undecidable:
there is no algorithm to determine whether two untyped terms are definitionally equal. The
proof uses the concept of inseparability. Any two properties, A0 and A1, of λ-terms are
inseparable if there is no decidable property, B, such that A0 u implies that B u holds,
and A1 u implies that B u does not hold. We say that a property, A, of untyped terms is
behavioral iff whenever u ≡ u′, then A u iff A u′.
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The proof of Scott’s Theorem decomposes into two parts:

1. For any untyped λ-term u, we may find an untyped term v such that u(!v") ≡ v, where
!v" is the Gödel number of v, and !v" is its representation as a Church numeral. (See
Chapter 9 for a discussion of Gödel-numbering.)

2. Any two non-trivial2 behavioral properties A0 and A1 of untyped terms are inseparable.

Lemma 21.1. For any u, there exists v such that u(!v") ≡ v.

Proof Sketch The proof relies on the definability of the following two operations in the
untyped λ-calculus:

1. ap(!u1")(!u2") ≡ !u1(u2)".
2. nm(n) ≡ !n".

Intuitively, the first takes the representations of two untyped terms and builds the represen-
tation of the application of one to the other. The second takes a numeral for n, and yields
the representation of the Church numeral n. Given these, we may find the required term v

by defining v # w(!w"), where w # λ (x) u(ap(x)(nm(x))). We have

v = w(!w")
≡ u(ap(!w")(nm(!w")))

≡ u(!w(!w")")
≡ u(!v").

The definition is very similar to that of Y(u), except that u takes as input the representation
of a term, and we find a v such that, when applied to the representation of v, the term u

yields v itself.

Lemma 21.2. Suppose thatA0 andA1 are two non-trivial behavioral properties of untyped
terms. Then there is no untyped term w such that

1. For every u, either w(!u") ≡ 0 or w(!u") ≡ 1.
2. If A0 u, then w(!u") ≡ 0.
3. If A1 u, then w(!u") ≡ 1.

Proof Suppose there is such an untyped term w. Let v be the untyped term

λ (x) ifz{u1; .u0}(w(x)),

where u0 and u1 are chosen such that A0 u0 and A1 u1. (Such a choice must exist by non-
triviality of the properties.) By Lemma 21.1 there is an untyped term t such that v(!t") ≡ t .
If w(!t") ≡ 0, then t ≡ v(!t") ≡ u1, and so A1 t , because A1 is behavioral and A1 u1.
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terms. Then there is no untyped term w such that

1. For every u, either w(!u") ≡ 0 or w(!u") ≡ 1.
2. If A0 u, then w(!u") ≡ 0.
3. If A1 u, then w(!u") ≡ 1.

Proof Suppose there is such an untyped term w. Let v be the untyped term

λ (x) ifz{u1; .u0}(w(x)),

where u0 and u1 are chosen such that A0 u0 and A1 u1. (Such a choice must exist by non-
triviality of the properties.) By Lemma 21.1 there is an untyped term t such that v(!t") ≡ t .
If w(!t") ≡ 0, then t ≡ v(!t") ≡ u1, and so A1 t , because A1 is behavioral and A1 u1.
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But then w(!t") ≡ 1 by the defining properties of w, which is a contradiction. Similarly, if
w(!t") ≡ 1, then A0 t , and hence w(!t") ≡ 0, again a contradiction.

Corollary 21.3. There is no algorithm to decide whether u ≡ u′.

Proof For fixed u, the property Eu u′ defined by u′ ≡ u is a non-trivial behavioral property
of untyped terms. So it is inseparable from its negation, and hence is undecidable.

21.4 Untyped Means Uni-Typed

The untyped λ-calculus can be faithfully embedded in a typed language with recursive
types. Thus, every untyped λ-term has a representation as a typed expression in such a way
that execution of the representation of a λ-term corresponds to execution of the term itself.
This embedding is not a matter of writing an interpreter for the λ-calculus in FPC, but
rather a direct representation of untyped λ-terms as typed expressions in a language with
recursive types.

The key observation is that the untyped λ-calculus is really the uni-typed λ-calculus. It
is not the absence of types that gives it its power, but rather that it has only one type, the
recursive type

D # rec t is t ⇀ t .

A value of type D is of the form fold(e) where e is a value of type D ⇀ D—a function
whose domain and range are both D. Any such function can be regarded as a value of type
D by “folding”, and any value of type D can be turned into a function by “unfolding”.
As usual, a recursive type is a solution to a type equation, which in the present case is the
equation

D ∼= D ⇀ D.

This isomorphism specifies that D is a type that is isomorphic to the space of partial
functions on D itself, which is impossible if types are just sets.

This isomorphism leads to the following translation, of ! into FPC:

x† # x (21.14a)

λ (x) u† # fold(λ (x : D) u†) (21.14b)

u1(u2)† # unfold(u†
1)(u†

2) (21.14c)

Note that the embedding of a λ-abstraction is a value, and that the embedding of an
application exposes the function being applied by unfolding the recursive type. And so
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we have

λ (x) u1(u2)† = unfold(fold(λ (x : D) u
†
1))(u†

2)

≡ λ (x : D) u
†
1(u†

2)

≡ [u†
2/x]u†

1

= ([u2/x]u1)†.

The last step, stating that the embedding commutes with substitution, is proved by induction
on the structure of u1. Thus β-reduction is implemented by evaluation of the embedded
terms.

Thus, we see that the canonical untyped language, !, which by dint of terminology
stands in opposition to typed languages, turns out to be but a typed language after all.
Rather than eliminating types, an untyped language consolidates an infinite collection of
types into a single recursive type. Doing so renders static type checking trivial, at the cost of
incurring dynamic overhead to coerce values to and from the recursive type. In Chapter 22,
we will take this a step further by admitting many different types of data values (not just
functions), each of which is a component of a “master” recursive type. This generalization
shows that so-called dynamically typed languages are, in fact, statically typed. Thus, this
traditional distinction cannot be considered an opposition, because dynamic languages are
but particular forms of static languages in which undue emphasis is placed on a single
recursive type.

21.5 Notes

The untyped λ-calculus was introduced by Church (1941) as a formalization of the informal
concept of a computable function. Unlike the well-known machine models, such as the
Turing machine or the random access machine, the λ-calculus codifies mathematical and
programming practice. Barendregt (1984) is the definitive reference for all aspects of the
untyped λ-calculus; the proof of Scott’s theorem is adapted from Barendregt’s account.
Scott (1980a) gave the first model of the untyped λ-calculus in terms of an elegant theory
of recursive types. This construction underlies Scott’s apt description of the λ-calculus
as “uni-typed,” rather than “untyped.” The idea to characterize Church’s Law as such was
communicated to the author, independently of each other, by Robert L. Constable and Mark
Lillibridge.

Exercises

21.1. Define an encoding of finite products as defined in Chapter 10 in !.
21.2. Define the factorial function in ! two ways, one without using Y, and one using Y.

In both cases, show that your solution, u, has the property that u(n) ≡ n!.
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An untyped language is a uni-typed language in which “untyped” terms are just 
terms of single recursive type. 

No application can get stuck, because every value is a function that may be 
applied to an argument. 

This safety property breaks down once more than one class of value is 
admitted. For example, if the natural numbers are added as a primitive, it is 
possible to incur a run-time error by attempting to apply a number to an 
argument. 

One way to manage this is to embrace the possibility, treating class mismatches 
as checked errors. 

Such languages are called dynamic languages because an error such as the one 
described is postponed to run-time, rather than precluded at compile time by 
type checking. 
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22 Dynamic Typing

We saw in Chapter 21 that an untyped language is a uni-typed language in which “untyped”
terms are just terms of single recursive type. Because all expressions of ! are well-typed,
type safety ensures that no misinterpretation of a value is possible. When spelled out for
!, type safety follows from there being exactly one class of values, that of functions on
values. No application can get stuck, because every value is a function that may be applied
to an argument.

This safety property breaks down once more than one class of value is admitted. For
example, if the natural numbers are added as a primitive to !, then it is possible to incur a
run-time error by attempting to apply a number to an argument. One way to manage this is
to embrace the possibility, treating class mismatches as checked errors, and weakening the
progress theorem as outlined in Chapter 6. Such languages are called dynamic languages
because an error such as the one described is postponed to run-time, rather than precluded
at compile time by type checking. Languages of the latter sort are called static languages.

Dynamic languages are often considered in opposition to static languages, but the op-
position is illusory. Just as the untyped λ-calculus is uni-typed, so dynamic languages are
but special cases of static languages in which there is only one recursive type (albeit with
multiple classes of value).

22.1 Dynamically Typed PCF

To illustrate dynamic typing, we formulate a dynamically typed version of PCF, called
DPCF. The abstract syntax of DPCF is given by the following grammar:

Exp d ::= x x variable
num[n] n numeral
zero zero zero
succ(d) succ(d) successor
ifz{d0; x.d1}(d) ifz d {zero ↪→ d0 | succ(x) ↪→ d1}

zero test
fun(x.d) λ (x) d abstraction
ap(d1; d2) d1(d2) application
fix(x.d) fix x is d recursion
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There are two classes of values in DPCF, the numbers, which have the form num[n], and
the functions, which have the form fun(x.d). The expressions zero and succ(d) are not
themselves values, but rather are constructors that evaluate to values. General recursion
is definable using a fixed point combinator but is taken as primitive here to simplify the
analysis of the dynamics in Section 22.3.

As usual, the abstract syntax of DPCF is what matters, but we use the concrete syntax
to improve readability. However, notational conveniences can obscure important details,
such as the tagging of values with their class and the checking of these tags at run-time.
For example, the concrete syntax for a number, n, suggests a “bare” representation, the
abstract syntax reveals that the number is labeled with the class num to distinguish it from
a function. Correspondingly, the concrete syntax for a function is λ (x) d, but its abstract
syntax, fun(x.d), shows that it also sports a class label. The class labels are required to
ensure safety by run-time checking, and must not be overlooked when comparing static
with dynamic languages.

The statics of DPCF is like that of !; it merely checks that there are no free variables in
the expression. The judgment

x1 ok, . . . xn ok ! d ok

states that d is a well-formed expression with free variables among those in the hypotheses.
If the assumptions are empty, then we write just d ok to mean that d is a closed expression
of DPCF.

The dynamics of DPCF must check for errors that would never arise in a language such
as PCF. For example, evaluation of a function application must ensure that the value being
applied is indeed a function, signaling an error if it is not. Similarly, the conditional branch
must ensure that its principal argument is a number, signaling an error if it is not. To account
for these possibilities, the dynamics is given by several judgment forms, as summarized in
the following chart:

d val d is a (closed) value
d "−→ d ′ d evaluates in one step to d ′

d err d incurs a run-time error
d is num n d is of class num with value n

d isnt num d is not of class num
d is fun x.d d is of class fun with body x.d

d isnt fun d is not of class fun

The last four judgment forms implement dynamic class checking. They are only relevant
when d is already a value. The affirmative class-checking judgments have a second argument
that represents the underlying structure of a value; this argument is not itself an expression
of DPCF.

The value judgment d val states that d is a evaluated (closed) expression:

num[n] val (22.1a)

fun(x.d) val (22.1b)
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that represents the underlying structure of a value; this argument is not itself an expression
of DPCF.

The value judgment d val states that d is a evaluated (closed) expression:

num[n] val (22.1a)

fun(x.d) val (22.1b)

6""�!�  3�7�� 5 ������� ��.
�����
	�
�
������/#287!643��:87:4�2B��192 7354�0:7$4 !7"B�/ 4!!

190 Dynamic Typing

There are two classes of values in DPCF, the numbers, which have the form num[n], and
the functions, which have the form fun(x.d). The expressions zero and succ(d) are not
themselves values, but rather are constructors that evaluate to values. General recursion
is definable using a fixed point combinator but is taken as primitive here to simplify the
analysis of the dynamics in Section 22.3.

As usual, the abstract syntax of DPCF is what matters, but we use the concrete syntax
to improve readability. However, notational conveniences can obscure important details,
such as the tagging of values with their class and the checking of these tags at run-time.
For example, the concrete syntax for a number, n, suggests a “bare” representation, the
abstract syntax reveals that the number is labeled with the class num to distinguish it from
a function. Correspondingly, the concrete syntax for a function is λ (x) d, but its abstract
syntax, fun(x.d), shows that it also sports a class label. The class labels are required to
ensure safety by run-time checking, and must not be overlooked when comparing static
with dynamic languages.

The statics of DPCF is like that of !; it merely checks that there are no free variables in
the expression. The judgment

x1 ok, . . . xn ok ! d ok

states that d is a well-formed expression with free variables among those in the hypotheses.
If the assumptions are empty, then we write just d ok to mean that d is a closed expression
of DPCF.

The dynamics of DPCF must check for errors that would never arise in a language such
as PCF. For example, evaluation of a function application must ensure that the value being
applied is indeed a function, signaling an error if it is not. Similarly, the conditional branch
must ensure that its principal argument is a number, signaling an error if it is not. To account
for these possibilities, the dynamics is given by several judgment forms, as summarized in
the following chart:

d val d is a (closed) value
d "−→ d ′ d evaluates in one step to d ′

d err d incurs a run-time error
d is num n d is of class num with value n

d isnt num d is not of class num
d is fun x.d d is of class fun with body x.d

d isnt fun d is not of class fun

The last four judgment forms implement dynamic class checking. They are only relevant
when d is already a value. The affirmative class-checking judgments have a second argument
that represents the underlying structure of a value; this argument is not itself an expression
of DPCF.

The value judgment d val states that d is a evaluated (closed) expression:

num[n] val (22.1a)

fun(x.d) val (22.1b)

6""�!�  3�7�� 5 ������� ��.
�����
	�
�
������/#287!643��:87:4�2B��192 7354�0:7$4 !7"B�/ 4!!



DPCF Dynamics191 22.1 Dynamically Typed PCF

The affirmative class-checking judgments are defined by the following rules:

num[n] is num n (22.2a)

fun(x.d) is fun x.d (22.2b)

The negative class-checking judgments are correspondingly defined by these rules:

num[n] isnt fun (22.3a)

fun(x.d) isnt num (22.3b)

The transition judgment d !−→ d ′ and the error judgment d err are defined simultane-
ously by the following rules:

zero !−→ num[z] (22.4a)

d !−→ d ′

succ(d) !−→ succ(d ′) (22.4b)

d err
succ(d) err

(22.4c)

d is num n
succ(d) !−→ num[s(n)] (22.4d)

d isnt num
succ(d) err

(22.4e)

d !−→ d ′

ifz{d0; x.d1}(d) !−→ ifz{d0; x.d1}(d ′) (22.4f)

d err
ifz{d0; x.d1}(d) err

(22.4g)

d is num 0
ifz{d0; x.d1}(d) !−→ d0

(22.4h)

d is num n + 1
ifz{d0; x.d1}(d) !−→ [num[n]/x]d1

(22.4i)

d isnt num
ifz{d0; x.d1}(d) err

(22.4j)

d1 !−→ d ′
1

ap(d1; d2) !−→ ap(d ′
1; d2)

(22.4k)

d1 err
ap(d1; d2) err

(22.4l)

d1 is fun x.d

ap(d1; d2) !−→ [d2/x]d (22.4m)
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d1 isnt fun
ap(d1; d2) err

(22.4n)

fix(x.d) !−→ [fix(x.d)/x]d (22.4o)

Rule (22.4i) labels the predecessor with the class num to maintain the invariant that variables
are bound to expressions of DPCF.

Lemma 22.1 (Class Checking). If d val, then

1. either d is num n for some n, or d isnt num;
2. either d is fun x.d ′ for some x and d ′, or d isnt fun.

Proof By inspection of the rules defining the class-checking judgments.

Theorem 22.2 (Progress). If d ok, then either d val, or d err, or there exists d ′ such that
d !−→ d ′.

Proof By induction on the structure of d. For example, if d = succ(d ′), then we have
by induction either d ′ val, or d ′ err, or d ′ !−→ d ′′ for some d ′′. In the last case, we
have by rule (22.4b) that succ(d ′) !−→ succ(d ′′), and in the second-to-last case, we have
by rule (22.4c) that succ(d ′) err. If d ′ val, then by Lemma 22.1, either d ′ is num n or
d ′ isnt num. In the former case succ(d ′) !−→ num[s(n)], and in the latter succ(d ′) err.
The other cases are handled similarly.

Lemma 22.3 (Exclusivity). For any d in DPCF, exactly one of the following holds: d val,
or d err, or d !−→ d ′ for some d ′.

Proof By induction on the structure of d, making reference to rules (22.4).

22.2 Variations and Extensions

The dynamic language DPCF defined in Section 22.1 parallels the static language PCF
defined in Chapter 19. One discrepancy, however, is in the treatment of natural numbers.
Whereas in PCF the zero and successor operations are introduction forms for the type nat,
in DPCF they are elimination forms that act on specially defined numerals. The present
formulation uses only a single class of numbers.

One could instead treat zero and succ(d) as values of separate classes and introduce
the obvious class-checking judgments for them. When written in this style, the dynamics
of the conditional branch is given as follows:

d !−→ d ′

ifz{d0; x.d1}(d) !−→ ifz{d0; x.d1}(d ′) (22.5a)
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Proof By induction on the structure of d. For example, if d = succ(d ′), then we have
by induction either d ′ val, or d ′ err, or d ′ !−→ d ′′ for some d ′′. In the last case, we
have by rule (22.4b) that succ(d ′) !−→ succ(d ′′), and in the second-to-last case, we have
by rule (22.4c) that succ(d ′) err. If d ′ val, then by Lemma 22.1, either d ′ is num n or
d ′ isnt num. In the former case succ(d ′) !−→ num[s(n)], and in the latter succ(d ′) err.
The other cases are handled similarly.

Lemma 22.3 (Exclusivity). For any d in DPCF, exactly one of the following holds: d val,
or d err, or d !−→ d ′ for some d ′.

Proof By induction on the structure of d, making reference to rules (22.4).

22.2 Variations and Extensions

The dynamic language DPCF defined in Section 22.1 parallels the static language PCF
defined in Chapter 19. One discrepancy, however, is in the treatment of natural numbers.
Whereas in PCF the zero and successor operations are introduction forms for the type nat,
in DPCF they are elimination forms that act on specially defined numerals. The present
formulation uses only a single class of numbers.

One could instead treat zero and succ(d) as values of separate classes and introduce
the obvious class-checking judgments for them. When written in this style, the dynamics
of the conditional branch is given as follows:

d !−→ d ′

ifz{d0; x.d1}(d) !−→ ifz{d0; x.d1}(d ′) (22.5a)
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d is zero
ifz{d0; x.d1}(d) !−→ d0

(22.5b)

d is succ d ′

ifz{d0; x.d1}(d) !−→ [d ′/x]d1
(22.5c)

d isnt zero d isnt succ
ifz{d0; x.d1}(d) err

(22.5d)

Notice that the predecessor of a value of the successor class need not be a number, whereas
in the previous formulation this possibility does not arise.

DPCF can be extended with structured data similarly. A classic example is to consider
a class nil, consisting of a “null” value, and a class cons, consisting of pairs of values.

Exp d ::= nil nil null
cons(d1; d2) cons(d1; d2) pair
ifnil(d; d0; x, y.d1) ifnil d {nil ↪→ d0 | cons(x; y) ↪→ d1}

conditional

The expression ifnil(d; d0; x, y.d1) distinguishes the null value from a pair, and signals
an error on any other class of value.

Lists (finite sequences) can be encoded using null and pairing. For example, the list
consisting of three zeros can berepresented by the value

cons(zero; cons(zero; cons(zero; nil))).

But what to make of the following value?

cons(zero; cons(zero; cons(zero; λ (x) x)))

It is not a list, because it does not end with nil, but it is a permissible value in the enriched
language.

A difficulty with encoding lists using null and pair emerges when defining functions on
them. For example, here is a definition of the function append that concatenates two lists:

fix a is λ (x) λ (y) ifnil(x; y; x1, x2.cons(x1; a(x2)(y)))

Nothing prevents us from applying this function to any two values, regardless of whether
they are lists. If the first argument is not a list, then execution aborts with an error. But
because the function does not traverse its second argument, it can be any value at all. For
example, we may apply append with a list and a function to obtain the “list” that ends with
a λ given above.

It might be argued that the conditional branch that distinguishes null from a pair is
inappropriate in DPCF, because there are more than just these two classes in the language.
One approach that avoids this criticism is to abandon pattern matching on the class of data,
replacing it by a general conditional branch that distinguishes null from all other values,
and adding to the language predicates1 that test the class of a value and destructors that
invert the constructors of each class.
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We could instead reformulate null and and pairing as follows:

Exp d ::= cond(d; d0; d1) cond(d; d0; d1) conditional
nil?(d) nil?(d) nil test
cons?(d) cons?(d) pair test
car(d) car(d) first projection
cdr(d) cdr(d) second projection

The conditional cond(d; d0; d1) distinguishes d between nil and all other values. If d is
not nil, the conditional evaluates to d0, and otherwise evaluates to d1. In other words,
the value nil represents boolean falsehood, and all other values represent boolean truth.
The predicates nil?(d) and cons?(d) test the class of their argument, yielding nil if the
argument is not of the specified class, and yielding some non-nil if so. The destructors
car(d) and cdr(d) decompose cons(d1; d2) into d1 and d2, respectively.2

Written in this form, the function append is given by the expression

fix a is λ (x) λ (y) cond(x; cons(car(x); a(cdr(x))(y)); y).

The behavior of this formulation of append is no different from the earlier one; the only
difference is that instead of dispatching on whether a value is either null or a pair, we instead
allow discrimination on any predicate of the value, which includes such checks as special
cases.

An alternative, which is not widely used, is to enhance, and not restrict, the conditional
branch so that it includes cases for each possible class of value in the language. So in
a language with numbers, functions, null, and pairing, the conditional would have four
branches. The fourth branch, for pairing, would deconstruct the pair into its constituent
parts. The difficulty with this approach is that in realistic languages there are many classes
of data, and such a conditional would be rather unwieldy. Moreover, even once we have
dispatched on the class of a value, it is nevertheless necessary for the primitive operations
associated with that class to admit run-time checks. For example, we may determine that a
value d is of the numeric class, but there is no way to propagate this information into the
branch of the conditional that then adds d to some other number. The addition operation
must still check the class of d, recover the underlying number, and create a new value
of numeric class. It is an inherent limitation of dynamic languages that they do not allow
values other than classified values.

22.3 Critique of Dynamic Typing

The safety theorem for DPCF is an advantage of dynamic over static typing. Unlike static
languages, which rule out some candidate programs as ill-typed, every piece of abstract
syntax in DPCF is well-formed, and hence, by Theorem 22.2, has a well-defined dynamics
(albeit one with checked errors). But this convenience is also a disadvantage, because errors
that could be ruled out at compile time by type checking are not signaled until run-time.
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195 22.4 Notes

Consider, for example, the addition function in DPCF, whose specification is that, when
passed two values of class num, returns their sum, which is also of class num:3

fun(x.fix(p.fun(y.ifz{x; y ′.succ(p(y ′))}))).

The addition function may, deceptively, be written in concrete syntax as follows:

λ (x) fixp is λ (y) ifz y {zero ↪→ x | succ(y ′) ↪→ succ(p(y ′))}.

It is deceptive, because it obscures the class tags on values, and the operations that check
the validity of those tags. Let us now examine the costs of these operations in a bit more
detail.

First, note that the body of the fixed point expression is labeled with class fun. The
dynamics of the fixed point construct binds p to this function. Consequently, the dynamic
class check incurred by the application of p in the recursive call is guaranteed to succeed.
But DPCF offers no means of suppressing the redundant check, because it cannot express
the invariant that p is always bound to a value of class fun.

Second, note that the result of applying the inner λ-abstraction is either x, the argument
of the outer λ-abstraction, or the successor of a recursive call to the function itself. The
successor operation checks that its argument is of class num, even though this condition
is guaranteed to hold for all but the base case, which returns the given x, which can be
of any class at all. In principle, we can check that x is of class num once, and note that it
is otherwise a loop invariant that the result of applying the inner function is of this class.
However, DPCF gives us no way to express this invariant; the repeated, redundant tag
checks imposed by the successor operation cannot be avoided.

Third, the argument y to the inner function is either the original argument to the addition
function, or is the predecessor of some earlier recursive call. But as long as the original call
is to a value of class num, then the dynamics of the conditional will ensure that all recursive
calls have this class. And again there is no way to express this invariant in DPCF, and
hence, there is no way to avoid the class check imposed by the conditional branch.

Classification is not free—storage is required for the class label, and it takes time to
detach the class from a value each time it is used and to attach a class to a value when
it is created. Although the overhead of classification is not asymptotically significant (it
slows down the program only by a constant factor), it is nevertheless non-negligible, and
should be eliminated when possible. But this is impossible within DPCF, because it cannot
enforce the restrictions required to express the required invariants. For that we need a static
type system.

22.4 Notes

The earliest dynamically typed language is Lisp (McCarthy, 1965), which continues to
influence language design a half century after its invention. Dynamic PCF is the core of
Lisp, but with a proper treatment of variable binding, correcting what McCarthy himself
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195 22.4 Notes

Consider, for example, the addition function in DPCF, whose specification is that, when
passed two values of class num, returns their sum, which is also of class num:3

fun(x.fix(p.fun(y.ifz{x; y ′.succ(p(y ′))}))).

The addition function may, deceptively, be written in concrete syntax as follows:

λ (x) fixp is λ (y) ifz y {zero ↪→ x | succ(y ′) ↪→ succ(p(y ′))}.

It is deceptive, because it obscures the class tags on values, and the operations that check
the validity of those tags. Let us now examine the costs of these operations in a bit more
detail.

First, note that the body of the fixed point expression is labeled with class fun. The
dynamics of the fixed point construct binds p to this function. Consequently, the dynamic
class check incurred by the application of p in the recursive call is guaranteed to succeed.
But DPCF offers no means of suppressing the redundant check, because it cannot express
the invariant that p is always bound to a value of class fun.

Second, note that the result of applying the inner λ-abstraction is either x, the argument
of the outer λ-abstraction, or the successor of a recursive call to the function itself. The
successor operation checks that its argument is of class num, even though this condition
is guaranteed to hold for all but the base case, which returns the given x, which can be
of any class at all. In principle, we can check that x is of class num once, and note that it
is otherwise a loop invariant that the result of applying the inner function is of this class.
However, DPCF gives us no way to express this invariant; the repeated, redundant tag
checks imposed by the successor operation cannot be avoided.

Third, the argument y to the inner function is either the original argument to the addition
function, or is the predecessor of some earlier recursive call. But as long as the original call
is to a value of class num, then the dynamics of the conditional will ensure that all recursive
calls have this class. And again there is no way to express this invariant in DPCF, and
hence, there is no way to avoid the class check imposed by the conditional branch.

Classification is not free—storage is required for the class label, and it takes time to
detach the class from a value each time it is used and to attach a class to a value when
it is created. Although the overhead of classification is not asymptotically significant (it
slows down the program only by a constant factor), it is nevertheless non-negligible, and
should be eliminated when possible. But this is impossible within DPCF, because it cannot
enforce the restrictions required to express the required invariants. For that we need a static
type system.

22.4 Notes

The earliest dynamically typed language is Lisp (McCarthy, 1965), which continues to
influence language design a half century after its invention. Dynamic PCF is the core of
Lisp, but with a proper treatment of variable binding, correcting what McCarthy himself
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the validity of those tags. Let us now examine the costs of these operations in a bit more
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dynamics of the fixed point construct binds p to this function. Consequently, the dynamic
class check incurred by the application of p in the recursive call is guaranteed to succeed.
But DPCF offers no means of suppressing the redundant check, because it cannot express
the invariant that p is always bound to a value of class fun.

Second, note that the result of applying the inner λ-abstraction is either x, the argument
of the outer λ-abstraction, or the successor of a recursive call to the function itself. The
successor operation checks that its argument is of class num, even though this condition
is guaranteed to hold for all but the base case, which returns the given x, which can be
of any class at all. In principle, we can check that x is of class num once, and note that it
is otherwise a loop invariant that the result of applying the inner function is of this class.
However, DPCF gives us no way to express this invariant; the repeated, redundant tag
checks imposed by the successor operation cannot be avoided.

Third, the argument y to the inner function is either the original argument to the addition
function, or is the predecessor of some earlier recursive call. But as long as the original call
is to a value of class num, then the dynamics of the conditional will ensure that all recursive
calls have this class. And again there is no way to express this invariant in DPCF, and
hence, there is no way to avoid the class check imposed by the conditional branch.

Classification is not free—storage is required for the class label, and it takes time to
detach the class from a value each time it is used and to attach a class to a value when
it is created. Although the overhead of classification is not asymptotically significant (it
slows down the program only by a constant factor), it is nevertheless non-negligible, and
should be eliminated when possible. But this is impossible within DPCF, because it cannot
enforce the restrictions required to express the required invariants. For that we need a static
type system.

22.4 Notes

The earliest dynamically typed language is Lisp (McCarthy, 1965), which continues to
influence language design a half century after its invention. Dynamic PCF is the core of
Lisp, but with a proper treatment of variable binding, correcting what McCarthy himself
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Hybrid Typing

A hybrid language is one that combines static and dynamic typing by 
enriching a statically typed language with a distinguished type dyn of 
dynamic values. 

The dynamically typed language can be embedded into the hybrid 
language by viewing a dynamically typed program as a statically typed 
program of type dyn. 

Static and dynamic types are not opposed to one another but may coexist 
harmoniously. 

The ad hoc device of adding the type dyn to a static language is 
unnecessary in a language with recursive types, wherein it is definable as 
a particular recursive type.

 Thus, dynamic typing is a mode of use of static typing, reconciling an 
apparent opposition between them. 



Hybrid PCF (HPCF)

23 Hybrid Typing

A hybrid language is one that combines static and dynamic typing by enriching a statically
typed language with a distinguished type dyn of dynamic values. The dynamically typed
language considered in Chapter 22 can be embedded into the hybrid language by viewing a
dynamically typed program as a statically typed program of type dyn. Static and dynamic
types are not opposed to one another, but may coexist harmoniously. The ad hoc device of
adding the type dyn to a static language is unnecessary in a language with recursive types,
wherein it is definable as a particular recursive type. Thus, one may say that dynamic typing
is a mode of use of static typing, reconciling an apparent opposition between them.

23.1 A Hybrid Language

Consider the language HPCF, which extends PCF with the following constructs:

Typ τ ::= dyn dyn dynamic
Exp e ::= new[l](e) l ! e construct

cast[l](e) e @ l destruct
inst[l](e) l ? e discriminate

Cls l ::= num num number
fun fun function

The type dyn is the type of dynamically classified values. The constructor attaches a
classifier to a value of a type associated to that classifer, the destructor recovers the value
classified with the given classifier, and the discriminator tests the class of a classified value.

The statics of HPCF extends that of PCF with the following rules:
" ! e : nat

" ! new[num](e) : dyn (23.1a)

" ! e : dyn ⇀ dyn
" ! new[fun](e) : dyn

(23.1b)

" ! e : dyn
" ! cast[num](e) : nat

(23.1c)

" ! e : dyn
" ! cast[fun](e) : dyn ⇀ dyn

(23.1d)
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23 Hybrid Typing

A hybrid language is one that combines static and dynamic typing by enriching a statically
typed language with a distinguished type dyn of dynamic values. The dynamically typed
language considered in Chapter 22 can be embedded into the hybrid language by viewing a
dynamically typed program as a statically typed program of type dyn. Static and dynamic
types are not opposed to one another, but may coexist harmoniously. The ad hoc device of
adding the type dyn to a static language is unnecessary in a language with recursive types,
wherein it is definable as a particular recursive type. Thus, one may say that dynamic typing
is a mode of use of static typing, reconciling an apparent opposition between them.

23.1 A Hybrid Language

Consider the language HPCF, which extends PCF with the following constructs:

Typ τ ::= dyn dyn dynamic
Exp e ::= new[l](e) l ! e construct

cast[l](e) e @ l destruct
inst[l](e) l ? e discriminate

Cls l ::= num num number
fun fun function

The type dyn is the type of dynamically classified values. The constructor attaches a
classifier to a value of a type associated to that classifer, the destructor recovers the value
classified with the given classifier, and the discriminator tests the class of a classified value.

The statics of HPCF extends that of PCF with the following rules:
" ! e : nat

" ! new[num](e) : dyn (23.1a)

" ! e : dyn ⇀ dyn
" ! new[fun](e) : dyn

(23.1b)

" ! e : dyn
" ! cast[num](e) : nat

(23.1c)

" ! e : dyn
" ! cast[fun](e) : dyn ⇀ dyn

(23.1d)
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199 23.1 A Hybrid Language

! ! e : dyn
! ! inst[num](e) : bool

(23.1e)

! ! e : dyn
! ! inst[fun](e) : bool

(23.1f)

The statics ensures that classifiers are attached to values of the right type, namely natural
numbers for num, and functions on classified values for fun.

The dynamics of HPCF extends that of PCF with the following rules:

e val
new[l](e) val

(23.2a)

e "−→ e′

new[l](e) "−→ new[l](e′) (23.2b)

e "−→ e′

cast[l](e) "−→ cast[l](e′) (23.2c)

new[l](e) val
cast[l](new[l](e)) "−→ e

(23.2d)

new[l′](e) val l &= l′

cast[l](new[l′](e)) err
(23.2e)

e "−→ e′

inst[l](e) "−→ inst[l](e′) (23.2f)

new[l](e) val
inst[l](new[l](e)) "−→ true

(23.2g)

new[l](e) val l &= l′

inst[l′](new[l](e)) "−→ false
(23.2h)

Casting compares the class of the object to the required class, returning the underlying
object if these coincide, and signaling an error otherwise.1

Lemma 23.1 (Canonical Forms). If e : dyn and e val, then e = new[l](e′) for some class l

and some e′ val. If l = num, then e′ : nat, and if l = fun, then e′ : dyn ⇀ dyn.

Proof By rule induction on the statics of HPCF.

Theorem 23.2 (Safety). The language HPCF is safe:

1. If e : τ and e "−→ e′, then e′ : τ .
2. If e : τ , then either e val, or e err, or e "−→ e′ for some e′.
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199 23.1 A Hybrid Language

! ! e : dyn
! ! inst[num](e) : bool

(23.1e)

! ! e : dyn
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(23.1f)

The statics ensures that classifiers are attached to values of the right type, namely natural
numbers for num, and functions on classified values for fun.

The dynamics of HPCF extends that of PCF with the following rules:
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(23.2g)

new[l](e) val l &= l′

inst[l′](new[l](e)) "−→ false
(23.2h)

Casting compares the class of the object to the required class, returning the underlying
object if these coincide, and signaling an error otherwise.1

Lemma 23.1 (Canonical Forms). If e : dyn and e val, then e = new[l](e′) for some class l

and some e′ val. If l = num, then e′ : nat, and if l = fun, then e′ : dyn ⇀ dyn.

Proof By rule induction on the statics of HPCF.

Theorem 23.2 (Safety). The language HPCF is safe:

1. If e : τ and e "−→ e′, then e′ : τ .
2. If e : τ , then either e val, or e err, or e "−→ e′ for some e′.
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! ! e : dyn
! ! inst[num](e) : bool

(23.1e)
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(23.1f)

The statics ensures that classifiers are attached to values of the right type, namely natural
numbers for num, and functions on classified values for fun.

The dynamics of HPCF extends that of PCF with the following rules:
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new[l](e) val l &= l′
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(23.2h)

Casting compares the class of the object to the required class, returning the underlying
object if these coincide, and signaling an error otherwise.1

Lemma 23.1 (Canonical Forms). If e : dyn and e val, then e = new[l](e′) for some class l

and some e′ val. If l = num, then e′ : nat, and if l = fun, then e′ : dyn ⇀ dyn.

Proof By rule induction on the statics of HPCF.

Theorem 23.2 (Safety). The language HPCF is safe:
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Proof Preservation is proved by rule induction on the dynamics, and progress is proved by
rule induction on the statics, making use of the canonical forms lemma. The opportunities
for run-time errors are the same as those for DPCF—a well-typed cast might fail at run-time
if the class of the cast does not match the class of the value.

In a language such as FPC (Chapter 20) with recursive types, there is no need to add
dyn as a primitive type. Instead, it is defined to be type

rec t is [num ↪→ nat, fun ↪→ t ⇀ t]. (23.3)

The introduction and elimination forms for this definition of dyn are definable as follows:2

new[num](e) ! fold(num · e) (23.4)

new[fun](e) ! fold(fun · e) (23.5)

cast[num](e) ! case unfold(e) {num · x ↪→ x | fun · x ↪→ error} (23.6)

cast[fun](e) ! case unfold(e) {num · x ↪→ error | fun · x ↪→ x}. (23.7)

These definition simply decompose the class operations for dyn into recursive unfoldings
and case analyses on values of a sum type.

23.2 Dynamic as Static Typing

The language DPCF of Chapter 22 can be embedded into HPCF by a simple translation
that makes explicit the class checking in the dynamics of DPCF. Specifically, we may
define a translation d† of expressions of DPCF into expressions of HPCF according to the
following static correctness criterion:

Theorem 23.3. If x1 ok, . . . , xn ok " d ok according to the statics of DPCF, then
x1 : dyn, . . . , xn : dyn " d† : dyn in HPCF.

The proof of Theorem 23.3 is given by induction on the structure of d based on the
following translation:

x† ! x

num[n]† ! new[num](n)

zero† ! new[num](z)

succ(d)† ! new[num](s(cast[num](d†)))

ifz{d0; x.d1}(d) ! ifz{d†
0; x.[new[num](x)/x]d†

1}(cast[num](d†))

(fun(x.d))† ! new[fun](λ (x : dyn) d†)

(ap(d1; d2))† ! cast[fun](d†
1)(d†

2)

fix(x.d) ! fix{dyn}(x.d†)

A rigorous proof of correctness of this translation requires methods like those in Chapter 47.
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Proof Preservation is proved by rule induction on the dynamics, and progress is proved by
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A rigorous proof of correctness of this translation requires methods like those in Chapter 47.
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200 Hybrid Typing

Proof Preservation is proved by rule induction on the dynamics, and progress is proved by
rule induction on the statics, making use of the canonical forms lemma. The opportunities
for run-time errors are the same as those for DPCF—a well-typed cast might fail at run-time
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5!!� 
  2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3  



Optimization of Dynamic Typing in HPCF

201 23.3 Optimization of Dynamic Typing

23.3 Optimization of Dynamic Typing

The language HPCF combines static and dynamic typing by enriching PCF with the type
dyn of classified values. It is, for this reason, called a hybrid language. Unlike a purely
dynamic type system, a hybrid type system can express invariants that are crucial to the
optimization of programs in HPCF.

Consider the addition function in DPCF given in Section 22.3, which we transcribe here
for convenience:

λ (x) fixp is λ (y) ifz y {zero ↪→ x | succ(y ′) ↪→ succ(p(y ′))}.

It is a value of type dyn in HPCF given as follows:

fun ! λ (x : dyn) fixp : dyn is fun ! λ (y : dyn) ex,p,y, (23.8)

within which the fragment

x : dyn, p : dyn, y : dyn # ex,p,y : dyn

stands for the expression

ifz (y @ num) {zero ↪→ x | succ(y ′) ↪→ num ! (s((p @ fun)(num ! y ′) @ num))}.

The embedding into HPCF makes explicit the run-time checks that are implicit in the
dynamics of DPCF.

Careful examination of the embedded formulation of addition reveals a great deal of
redundancy and overhead that can be eliminated in the statically typed version. Eliminating
this redundancy requires a static type discipline, because the intermediate computations
involve values of a type other than dyn. This transformation shows that the freedoms offered
by dynamic languages accruing from the absence of types are, instead, limitations on their
expressive power arising from the restriction to a single type.

The first redundancy arises from the use of recursion in a dynamic language. In the above
example, we use recursion to define the inner loop p of the computation. The value p is, by
definition, a λ-abstraction, which is explicitly tagged as a function. Yet the call to p within
the loop checks at run-time whether p is in fact a function before applying it. Because p

is an internally defined function, all of its call sites are under the control of the addition
function, which means that there is no need for such pessimism at calls to p, provided that
we change its type to dyn⇀dyn, which directly expresses the invariant that p is a function
acting on dynamic values.

Performing this transformation, we obtain the following reformulation of the addition
function that eliminates this redundancy:

fun ! λ (x : dyn) fun ! fixp : dyn ⇀ dyn is λ (y : dyn) e′
x,p,y,

where e′
x,p,y is the expression

ifz (y @ num) {zero ↪→ x | succ(y ′) ↪→ num ! (s(p(num ! y ′) @ num))}.

We have “hoisted” the function class label out of the loop and suppressed the cast inside
the loop. Correspondingly, the type of p has changed to dyn ⇀ dyn.
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involve values of a type other than dyn. This transformation shows that the freedoms offered
by dynamic languages accruing from the absence of types are, instead, limitations on their
expressive power arising from the restriction to a single type.

The first redundancy arises from the use of recursion in a dynamic language. In the above
example, we use recursion to define the inner loop p of the computation. The value p is, by
definition, a λ-abstraction, which is explicitly tagged as a function. Yet the call to p within
the loop checks at run-time whether p is in fact a function before applying it. Because p

is an internally defined function, all of its call sites are under the control of the addition
function, which means that there is no need for such pessimism at calls to p, provided that
we change its type to dyn⇀dyn, which directly expresses the invariant that p is a function
acting on dynamic values.

Performing this transformation, we obtain the following reformulation of the addition
function that eliminates this redundancy:

fun ! λ (x : dyn) fun ! fixp : dyn ⇀ dyn is λ (y : dyn) e′
x,p,y,

where e′
x,p,y is the expression

ifz (y @ num) {zero ↪→ x | succ(y ′) ↪→ num ! (s(p(num ! y ′) @ num))}.

We have “hoisted” the function class label out of the loop and suppressed the cast inside
the loop. Correspondingly, the type of p has changed to dyn ⇀ dyn.
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Optimization of Dynamic Typing in HPCF

202 Hybrid Typing

Next, note that the variable y of type dyn is cast to a number on each iteration of the
loop before it is tested for zero. Because this function is recursive, the bindings of y arise
in one of two ways: at the initial call to the addition function, and on each recursive call.
But the recursive call is made on the predecessor of y, which is a true natural number that
is labeled with num at the call site, only to be removed by the class check at the conditional
on the next iteration. This observation suggests that we hoist the check on y outside of the
loop, and avoid labeling the argument to the recursive call. Doing so changes the type of
the function, however, from dyn ⇀ dyn to nat ⇀ dyn. Consequently, further changes are
required to ensure that the entire function remains well-typed.

Before doing so, let us make another observation. The result of the recursive call is
checked to ensure that it has class num, and, if so, the underlying value is incremented
and labeled with class num. If the result of the recursive call came from an earlier use of
this branch of the conditional, then obviously the class check is redundant, because we
know that it must have class num. But what if the result came from the other branch of the
conditional? In that case, the function returns x, which need not be of class num because
it is provided by the caller of the function. However, we may reasonably insist that it is
an error to call addition with a non-numeric argument. This restriction can be enforced by
replacing x in the zero branch of the conditional by x @ num.

Combining these optimizations we obtain the inner loop e′′
x defined as follows:

fixp : nat ⇀ nat is λ (y : nat) ifz y {zero ↪→ x @ num | succ(y ′) ↪→ s(p(y ′))}.

It has the type nat⇀nat, and runs without class checks when applied to a natural number.
Finally, recall that the goal is to define a version of addition that works on values of type

dyn. Thus, we need a value of type dyn ⇀ dyn, but what we have at hand is a function of
type nat ⇀ nat. It can be converted to the needed form by pre-composing with a cast to
num and post-composing with a coercion to num:

fun ! λ (x : dyn) fun ! λ (y : dyn) num ! (e′′
x(y @ num)).

The innermost λ-abstraction converts the function e′′
x from typenat⇀nat to typedyn⇀dyn

by composing it with a class check that ensures that y is a natural number at the initial call
site, and applies a label to the result to restore it to type dyn.

The outcome of these transformations is that the inner loop of the computation runs at
“full speed,” without any manipulation of tags on functions or numbers. But the outermost
form of addition remains; it is a value of type dyn encapsulating a curried function that takes
two arguments of type dyn. Doing so preserves the correctness of all calls to addition, which
pass and return values of type dyn, while optimizing its execution during the computation.
Of course, we could strip the class tags from the addition function, changing its type from
dyn to the more descriptive dyn⇀dyn ⇀ dyn, but this imposes the obligation on the caller
to treat addition not as a value of type dyn, but rather as a function that must be applied to
two successive values of type dyn whose class is num. As long as the call sites to addition
are under programmer control, there is no obstacle to effecting this transformation. It is only
when there are external call sites, not directly under programmer control, that there is any
need to package addition as a value of type dyn. Applying this principle generally, we see
that dynamic typing is only of marginal utility—it is used only at the margins of a system
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Two observations:

• Variable y of type dyn can be made into nat

• The result of the recursive call can be made to nat as well



Static vs. Dynamic Typing

The seeming opposition btw static & dynamic typing is an illusion. 
• Dynamic lang. associate types with values, whereas static lang. associate types to 

variables?

• Dynamic lang. check types at run-time, whereas static lang. check types at compile 

time?

• Dynamic lang. support heterogeneous collections, whereas static lang. support 

homogeneous collections? 

The question is not whether to have static typing, but rather how 
best to embrace it. 


