CS 430/530
Formal Semantics

Zhong Shao

Yale University
Department of Computer Science

Infinite Data Types
March 25, 2025

Type-Generic Programming

Consider a function f of type p = p’, which transforms values of type p into
values of type p’'. For example, f might be the doubling function on natural
numbers.

Extend f to a transformation from type [p/t]t to type [p’/t]t by applying f to
various spots in the input, where a value of type p occurs to obtain a value of

type p’, leaving the rest of the data structure alone.

For example, t might be bool X t, in which case f could be extended to a
function of type bool X p = bool X p’that sends the pairs (a, b) to the pair

(a, f (b)).

We need a template that marks the occurrences of t in Tt at which f is applied.
Such a template is known as a type operator, t.t, which is an abstractor
binding a type variable t within a type t.

Polynomial Type Operators

A type operator is a type equipped with a designated variable whose occurrences mark the
spots in the type where a transformation 1s applied. A type operator is an abstractor 7.t
such that 7 type = 7 type. An example of a type operator is the abstractor

t.unit + (bool X t)

The polynomial type operators are those constructed from the type variable ¢ the types
void and unit, and the product and sum type constructors ; X 7, and t; + 7. More
precisely, the judgment 7.t poly 1s inductively defined by the following rules:

(14.1a)
t.t poly
(14.1b)
t.unit poly
t.t; poly t.1; poly (14.1¢)
t.T1 X T poly |
(14.1d)
t.void poly
t.t; poly t.17; poly (14.1e)

t.71 + 1 poly

Type-Generic Extension

The generic extension of a polynomial type operator is a form of expression with the
following syntax

Exp e 1= map{t.t}(x.¢')(e) map{t.t}(x.e')(e) generic extension.

Its statics is given as follows:

ttpoly Ix:pke:p T'ke:[p/tlt
[- map{r.t}(x.¢')(e) : [p'/t]T

The abstractor x.e" specifies a mapping that sends x : p to ¢’ : p’. The generic extension

(14.2)

of t.7 along x.e’ specifies a mapping from [p/t]t to [p’/t]t. The latter mapping replaces
values v of type p occurring at spots corresponding to occurrences of ¢ in t by the
transformed value [v/x]e’ of type p’ at the same spot. The type operator .7 is a template in
which certain spots, marked by occurrences of ¢, show where to apply the transformation
x.e’ to a value of type [p/t]t to obtain a value of type [po’/t]T.

Type-Generic Extension

The following dynamics makes precise the concept of the generic extension of a poly-
nomial type operator.

(14.3a)

map{r.t}(x.e')(e) —> [e/x]e
(14.3b)

map{t.unit}(x.e¢')(e) —> e
map{z.7; X T}(x.e")(e) (14.3¢)

H
(map{t.71}(x.¢')(e - 1), map{t.7r}(x.€¢')(e - 1))
(14.3d)
map{r.void}(x.e')(e) —> abort(e)

map{z.7; + T} (x.€)(e) (14.3¢)

—>

casee{l-x; — 1 -map{t.ti}(x.€")(x1) | T xp <> r-map{r.1r}(x.¢)(x»)}

Type-Generic Extension

Theorem 14.1 (Preservation). Ifmap{t.t}(x.e')(e) : T/ and map{t.t}(x.¢')(e) —> €”, then

e’ 1

Proof By inversion of rule (14.2), we have

1. t type - 7 type;
2. x : pké€':p' for some p and p’;

3. e:[p/t]t;
4. t'is [p'/t]T.

The proof proceeds by cases on rules (14.3). For example, consider rule (14.3c).
It follows from inversion that map{z.7;}(x.¢’)(e-1) : [p'/t]t;, and similarly that
map{r.7o}(x.¢')(e - r) : [p'/t]1,. It is easy to check that

(map{z.71}(x.¢)(e - 1), map{r.mr}(x.¢)(e - r))

has type [p'/t](t1 X T2), as required. []

Positive Type Operators

We define the judgment 7.7 pos, which states that the abstractor 7.7 is a positive type
operator by the following rules:

(14.4a)
f.t pos
(14.4b)
f.unit pos
t.T] pOs t.Tp pOS
(14.4¢)
[.T1 X Tp pOS
(14.4d)
t.void pos
t.T] pOS t.Tp pOS 144
t.T1 + T pOS (14.4¢)
t l.
L O (14.4f)

t.T) = Tp pPOS

Positive Type Operators

The generic extension of a positive type operator is defined similarly to that of a polyno-
mial type operator, with the following dynamics on function types:

(14.5)

map ' {r.7) = D}(x.€)(e) —> A (x1:T)map {r.12}(x.¢)(e(x1))

Because ¢ 1s not allowed to occur within the domain type, the type of the result is 7; —
[0’ /t]T>, assuming that e is of type 11 — [p/t]1,. It is easy to verify preservation for the
generic extension of a positive type operator.

Inductive & Coinductive Types

Two important forms of recursive type

* Inductive types: least, or initial, solutions of certain type equations
* coinductive types: greatest, or final, solutions of certain type equations

The elements of an inductive type

* afinite composition of its introduction forms.

* |If we specify the behavior of a function on each of the introduction forms of an
inductive type, then its behavior is defined for all values of that type. Such a
function is a recursor, or catamorphism.

The elements of a coinductive type

* afinite composition of its elimination forms.

* |If we specify the behavior of an element on each elimination form, then we
have fully specified a value of that type. Such an element is a generator, or
anamorphism.

Nullary and Binary Products

The abstract syntax of products is given by the following grammar:

Typ T = unit unit nullary product
prod(t;T2) 7T X T, binary product

Exp e 1= triv () null tuple
pair(ej;e;) (ej,er) ordered pair
pr[l](e) e-1 left projection
prlr](e) e-r right projection

The statics of product types is given by the following rules.

(10.1a)
I'F():unit
F'ke:ty The:n
['FEo(er,e) 11 X1 (10.1b)
FFe:tyx1n
F'kFe-1:17 (10.1¢)
I'Fe:1yx1m o1,

ke -r:nm

Nullary and Binary Sums

The abstract syntax of sums is given by the following grammar:

Typ © == woid void nullary sum
sum(ty; 72) 1+ 1 binary sum

Exp e 1= abort{r}(e) abort(e) abort
in[1{t;; 2} (e) l-e left injection
in[r|{t;; 2} (e) r-e right injection

case(e; xj.e1;xp.ep) casee{l -x; <> e |r- x> ey} caseanalysis

The nullary sum represents a choice of zero alternatives, and hence admits no introduction
form. The elimination form, abort(e), aborts the computation in the event that e evaluates
to a value, which it cannot do. The elements of the binary sum type are labeled to show
whether they are drawn from the left or the right summand, either 1 - e or r - e. A value of
the sum type is eliminated by case analysis.

The statics of sum types is given by the following rules.

['Fe:void

I' - abort(e) : t (112
'Fe:1n
11.1
'Fl-e:ti+1m ()
'Fe:n
11.1
'Fr-e:t1+1m (©
I'Fe: Ixp:tker: Ixy:mber:
e+ Lxi:nhe 7t 1L mre: T (11.1d)

['Fcasee{l -xj— e |r-xpx—e}:1

Inductive Type Example: Nat

With a view towards deriving the type nat as a special case of an inductive type, it 1s
useful to combine zero and successor into a single introduction form, and to correspondingly
combine the basis and inductive step of the iterator. The following rules specify the statics
of this reformulation:

['-e:unit 4+ nat
I' - foldpat(e) : nat

(15.1a)

I'Cx:unit+thke:t ©I'Fer:nat
I' - recpat(x.ei;e) i 1

(15.1b)

The expression foldpat(e) is the unique introduction form of the type nat. Using this, the
expressionzis foldnat(1 - (), and s(e)i1s foldpat(r - €). Therecursor, recpat(x.€1;ez),
takes as argument the abstractor x.e; that combines the basis and inductive step into a single
computation that, given a value of type unit + 7, yields a value of type t. Intuitively, if
x 1s replaced by the value 1 - (), then e; computes the base case of the recursion, and if x

is replaced by the value r e, then e; computes the inductive step from the result e of the
recursive call.

Inductive Type Example: Nat

(15.2a)
fOldnat(e) Val
ey —> €
2 2 : (15.2b)
recpat(x.ej;ex) —> recpat(x.ep;e;)
recnat(x.e1;foldnat(ez)) (15.2¢)

—
[map{f.unit + t}(y.recpnat(x.e1; y))(er)/x]e;

Rule (15.2¢) uses (polynomial) generic extension (see Chapter 14) to apply the recursor
to the predecessor, if any, of a natural number. If we expand the definition of the generic
extension in place, we obtain this rule:

recpat(x.e;;foldpat(er))

—>

[caseey{l1-_—=1-()|r y— r-recpat(x.e;;y)}/xle;

Coinductive Type Example: Stream of Nat

A stream is given by its behavior under the elimination forms for the stream type: hd(e)
returns the next, or head, element of the stream, and t1(e) returns the tail of the stream, the
stream resulting when the head element is removed. A stream is introduced by a generator,
the dual of a recursor, that defines the head and the tail of the stream in terms of the current

state of the stream, which is represented by a value of some type. The statics of streams is
given by the following rules:

' e: stream

I - hd(e) : nat (15.3a)
'~ e: stream
' tl(e): stream (15.3b)
I'Fe:7 Ix:thke tnat Ix:they:t (15.30)

[' - strgenxisein <hd < e;,t1 <> e;> : stream

Coinductive Type Example: Stream of Nat

The dynamics of streams is given by the following rules:

(15.4a)
strgenx ise in <hd < e;,t1 < ep> val
er— ¢
hd(e) — hd(e’) (15.40)
(15.4¢)
hd(strgenx ise in <hd < e,t1 < e,>) — [e/x]e;
er— ¢
tl(e) — tl(e) (15:4d)
tl(st]] hd < ¢,tl — er>
(strgenx isein < el €r>) (15.4¢)

—>

strgenx is[e/x]e; in <hd < e,t1 — e;>

Coinductive Type Example: Stream of Nat

To derive streams as a special case of a coinductive type, we combine the head and the
tail into a single elimination form, and reorganize the generator correspondingly. Thus, we
consider the following statics:

['+e:stream (15.50)
I' Funfoldgsirean(€) : nat X stream '

I''x:thFey :natxt I'kFe:7
[' - gen (x.e1;e) : stream

(15.5b)

stream

The dynamics of streams is given by the following rules:

(15.6a)

gen (x.eq;ey) val

stream

Coinductive Type Example: Stream of Nat

e— ¢
unfoldstrean(€) — unfoldgsirean(€’) (15.6b)
unfoldsirean(8€N i rean(X-€15€
t (g t (1 2)) (156C)

—>
map{r.nat X 1}(y.8eNyyyean(¥-€15 Y))(le2/x1er)

Rule (15.6¢) uses generic extension to generate a new stream whose state is the second com-
ponent of [e;/x]e;. Expanding the generic extension we obtain the following reformulation
of this rule:

unfoldgstrean(8€N gty (X-€15€2))

—>

(([e2/x]e1) - 1, gengy ean(x.€15([e2/x]er) - 1))

M: T with Inductive/Coinductive Types

Typ © = t t self-reference
ind(z.t) w(t.t) 1nductive
coi(t.t) v(t.t) coinductive

Type formation judgments have the form

t type, ..., 1, type - 1 type,

A 1 type A F 1) type
A F sum(t; 10) type

A, t type -t type

A F unit type A1 type AF 1) type

A F arr(t;; 1) type

A1y type A& 1 type A,ttypet T type A t.T pos

A = prod(t; 72) type A F ind(t.7) type

A void type A,t typel 7 type Ak t.T pos
A = coi(z.7) type

Language M: Syntax & Statics

The abstract syntax of M is given by the following grammar:

Exp e = fold{r.t}(e) fold,; . (e) constructor
rec{t.t}(x.e1;e2) rec(x.ej;ex) recursor
unfold{r.t}(e) unfold, .(e) destructor
gen{r.t}(x.e1;e;) gen(x.e;;e;) generator

The statics for M is given by the following typing rules:
[I'e:[ind(t.7)/t]T

[fold{t.t}(e) : ind(r.7) (15.82)

C,x:[t//t]lt e : 1t/ T'Fey:ind(f.7) (15.8b)
' = rec{t.t}(x.e1;e2) : T’

- unfogdz.er:}(Z(;i:([t;)i(t.r)/t]r (15.8¢)

I'Fe:mn Nx:mphke :[n/tlt (15.84)

I' - gen{t.t}(x.e1;ep) : coi(t.T)

Language M: Dynamics

(15.9a)
fold{r.t}(e) val
ey —>)
(15.9b)
rec{t.t}(x.e;;ez) —> rec{t.t}(x.e;;e5)
rec{t.t}(x.e;; fold{r.t}(er)) (15.9¢)
H
map* {£.T}(y.rec{t.T}(x.c1; y))(e2)/x]e,
(15.9d)
gen{t.t}(x.e;;ey) val
er—¢é
unfold{r.z}(e) —> unfold{r.z}(e) (15.9¢)
unfold{s.7}(gen{r.t}(x.e1;er)) (15.9¢)

b

map” {r.7}(y.gen{r.t}(x.e1;y))([e2/x]er)

Language M

Lemma 15.1. Ife:tande+—— ¢, thene' : t.

Proof By rule induction on rules (15.9). []

Lemma 15.2. Ife : t, then either e val or there exists e’ such that e — ¢€'.

Proof By rule induction on rules (15.8). []
Although a proof of this fact lies beyond our current reach, all programs in M terminate.

Theorem 15.3 (Termination for M). If e : t, then there exists ¢’ val such that e —>* €.

Solving Type Equations

For a positive type operator ¢.7, we may say that the inductive type w(¢.7) and the coinduc-
tive type v(z.t) are both solutions (up to isomorphism) of the type equation t = t:

pu(t.t) = [u(.t)/tlT
v(t.t) = [v(t.T)/t]r.

Whereas both are solutions to the same type equation, they are not isomorphic to each
other. To see why, consider the inductive type nat = p(f.unit 4+ ¢) and the coinductive type
conat = v(t.unit + ¢). Informally, nat is the smallest (most restrictive) type containing
zero, given by fold(1 - ()), and closed under formation of the successor of any other e
of type nat, given by fold(r - ¢). Dually, conat is the largest (most permissive) type of
expressions e for which the unfolding, unfold (e), is either zero, given by 1 - (), or to the
successor of some other ¢’ of type conat, given by r - ¢’.

Solving Type Equations

Because nat is defined by the composition of its introduction forms and sum injections,
it is clear that only finite natural numbers can be constructed in finite time. Because conat
1s defined by the composition of its elimination forms (unfoldings plus case analyses), it is
clear that a co-natural number can only be explored to finite depth in finite time—essentially
we can only examine some finite number of predecessors of a given co-natural number in
a terminating program. Consequently,

1. there is a function i : nat — conat embedding every finite natural number into the
type of possibly infinite natural numbers; and

2. there 1s an “actually infinite” co-natural number w that is essentially an infinite compo-
sition of successors.

Defining the embedding of nat into conat is the subject of Exercise 15.1. The infinite
co-natural number w is defined as follows:

w = gen(x.r - x;()).

