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Type-Generic Programming
Consider a function f of type ρ → ρʹ, which transforms values of type ρ into 
values of type ρʹ. For example, f might be the doubling function on natural 
numbers. 

Extend f to a transformation from type [ρ/t]τ to type [ρʹ/t]τ by applying f to 
various spots in the input, where a value of type ρ occurs to obtain a value of 
type ρʹ, leaving the rest of the data structure alone.

For example, τ might be bool×t, in which case f could be extended to a 
function of type bool × ρ → bool × ρʹ that sends the pairs ⟨a, b⟩ to the pair 
⟨a, f (b)⟩.
 
We need a template that marks the occurrences of t in τ at which f is applied. 
Such a template is known as a type operator, t.τ, which is an abstractor 
binding a type variable t within a type τ. 



Polynomial Type Operators

14 Generic Programming

14.1 Introduction

Many programs are instances of a pattern in a particular situation. Sometimes types de-
termine the pattern by a technique called (type) generic programming. For example, in
Chapter 9, recursion over the natural numbers is introduced in an ad hoc way. As we shall
see, the pattern of recursion on values of an inductive type is expressed as a generic program.

To get a flavor of the concept, consider a function f of type ρ → ρ ′, which transforms
values of type ρ into values of type ρ ′. For example, f might be the doubling function on
natural numbers. We wish to extend f to a transformation from type [ρ/t]τ to type [ρ ′/t]τ
by applying f to various spots in the input, where a value of type ρ occurs to obtain a value
of type ρ ′, leaving the rest of the data structure alone. For example, τ might be bool× t , in
which case f could be extended to a function of type bool × ρ → bool × ρ ′ that sends
the pairs 〈a, b〉 to the pair 〈a, f (b)〉.

The foregoing example glosses over an ambiguity arising from the many-one nature of
substitution. A type can have the form [ρ/t]τ in many different ways, according to how
many occurrences of t there are within τ . Given f as above, it is not clear how to extend it
to a function from [ρ/t]τ to [ρ ′/t]τ . To resolve the ambiguity, we must be given a template
that marks the occurrences of t in τ at which f is applied. Such a template is known as a
type operator, t.τ , which is an abstractor binding a type variable t within a type τ . Given
such an abstractor, we may unambiguously extend f to instances of τ given by substitution
for t in τ .

The power of generic programming depends on the type operators that are allowed. The
simplest case is that of a polynomial type operator, one constructed from sum and product
of types, including their nullary forms. These are extended to positive type operators, which
also allow certain forms of function types.

14.2 Polynomial Type Operators

A type operator is a type equipped with a designated variable whose occurrences mark the
spots in the type where a transformation is applied. A type operator is an abstractor t.τ

such that t type & τ type. An example of a type operator is the abstractor

t.unit + (bool × t)
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120 Generic Programming

in which occurrences of t mark the spots in which a transformation is applied. An instance
of the type operator t.τ is obtained by substituting a type ρ for the variable t within the
type τ .

The polynomial type operators are those constructed from the type variable t the types
void and unit, and the product and sum type constructors τ1 × τ2 and τ1 + τ2. More
precisely, the judgment t.τ poly is inductively defined by the following rules:

t.t poly
(14.1a)

t.unit poly
(14.1b)

t.τ1 poly t.τ2 poly
t.τ1 × τ2 poly

(14.1c)

t.void poly
(14.1d)

t.τ1 poly t.τ2 poly
t.τ1 + τ2 poly

(14.1e)

Exercise 14.1 asks for a proof that polynomial type operators are closed under substitution.
Polynomial type operators are templates describing the structure of a data structure

with slots for values of a particular type. For example, the type operator t.t × (nat + t)
specifies all types ρ × (nat + ρ) for any choice of type ρ. Thus a polynomial type operator
designates points of interest in a data structure that have a common type. As we shall see
shortly, this allows us to specify a program that applies a given function to all values lying
at points of interest in a compound data structure to obtain a new one with the results of the
applications at those points. Because substitution is not injective, one cannot recover the
type operator from its instances. For example, if ρ were nat, then the instance would be
nat × (nat + nat); it is impossible to know which occurrences of nat are in designated
spots unless we are given the pattern by the type operator.

The generic extension of a polynomial type operator is a form of expression with the
following syntax

Exp e ::= map{t.τ }(x.e′)(e) map{t.τ }(x.e′)(e) generic extension.

Its statics is given as follows:

t.τ poly #, x : ρ # e′ : ρ ′ # # e : [ρ/t]τ
# # map{t.τ }(x.e′)(e) : [ρ ′/t]τ

(14.2)

The abstractor x.e′ specifies a mapping that sends x : ρ to e′ : ρ ′. The generic extension
of t.τ along x.e′ specifies a mapping from [ρ/t]τ to [ρ ′/t]τ . The latter mapping replaces
values v of type ρ occurring at spots corresponding to occurrences of t in τ by the
transformed value [v/x]e′ of type ρ ′ at the same spot. The type operator t.τ is a template in
which certain spots, marked by occurrences of t , show where to apply the transformation
x.e′ to a value of type [ρ/t]τ to obtain a value of type [ρ ′/t]τ .
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The abstractor x.e′ specifies a mapping that sends x : ρ to e′ : ρ ′. The generic extension
of t.τ along x.e′ specifies a mapping from [ρ/t]τ to [ρ ′/t]τ . The latter mapping replaces
values v of type ρ occurring at spots corresponding to occurrences of t in τ by the
transformed value [v/x]e′ of type ρ ′ at the same spot. The type operator t.τ is a template in
which certain spots, marked by occurrences of t , show where to apply the transformation
x.e′ to a value of type [ρ/t]τ to obtain a value of type [ρ ′/t]τ .
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Type-Generic Extension121 14.2 Polynomial Type Operators

The following dynamics makes precise the concept of the generic extension of a poly-
nomial type operator.

map{t.t}(x.e′)(e) "−→ [e/x]e′
(14.3a)

map{t.unit}(x.e′)(e) "−→ e
(14.3b)

map{t.τ1 × τ2}(x.e′)(e)

"−→
〈map{t.τ1}(x.e′)(e · l), map{t.τ2}(x.e′)(e · r)〉

(14.3c)

map{t.void}(x.e′)(e) "−→ abort(e)
(14.3d)

map{t.τ1 + τ2}(x.e′)(e)

"−→
case e {l · x1 ↪→ l · map{t.τ1}(x.e′)(x1) | r · x2 ↪→ r · map{t.τ2}(x.e′)(x2)}

(14.3e)

Rule (14.3a) applies the transformation x.e′ to e itself, because the operator t.t specifies
that the transformation is performed directly. Rule (14.3b) states that the empty tuple
is transformed to itself. Rule (14.3c) states that to transform e according to the operator
t.τ1 × τ2, the first component of e is transformed according to t.τ1 and the second component
of e is transformed according to t.τ2. Rule (14.3d) states that the transformation of a value
of type void aborts, because there are no such values. Rule (14.3e) states that to transform
e according to t.τ1 + τ2, case analyze e and reconstruct it after transforming the injected
value according to t.τ1 or t.τ2.

Consider the type operator t.τ given by t.unit + (bool × t). Let x.e be the abstractor
x.s(x), which increments a natural number. Using rules (14.3) we may derive that

map{t.τ }(x.e)(r · 〈true, n〉) "−→∗ r · 〈true, n + 1〉.

The natural number in the second component of the pair is incremented, because the type
variable t occurs in that spot in the type operator t.τ .

Theorem 14.1 (Preservation). If map{t.τ }(x.e′)(e) : τ ′ and map{t.τ }(x.e′)(e) "−→ e′′, then
e′′ : τ ′.

Proof By inversion of rule (14.2), we have

1. t type ) τ type;
2. x : ρ ) e′ : ρ ′ for some ρ and ρ ′;
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3. e : [ρ/t]τ ;
4. τ ′ is [ρ ′/t]τ .

The proof proceeds by cases on rules (14.3). For example, consider rule (14.3c).
It follows from inversion that map{t.τ1}(x.e′)(e · l) : [ρ ′/t]τ1, and similarly that
map{t.τ2}(x.e′)(e · r) : [ρ ′/t]τ2. It is easy to check that

〈map{t.τ1}(x.e′)(e · l), map{t.τ2}(x.e′)(e · r)〉

has type [ρ ′/t](τ1 × τ2), as required.

14.3 Positive Type Operators

The positive type operators extend the polynomial type operators to admit restricted forms
of function type. Specifically, t.τ1 → τ2 is a positive type operator, if (1) t does not occur in
τ1, and (2) t.τ2 is a positive type operator. In general, any occurrences of a type variable t in
the domain of a function type are negative occurrences, whereas any occurrences of t within
the range of a function type, or within a product or sum type, are positive occurrences.1

A positive type operator is one for which only positive occurrences of the type variable
t are allowed. Positive type operators, like polynomial type operators, are closed under
substitution.

We define the judgment t.τ pos, which states that the abstractor t.τ is a positive type
operator by the following rules:

t.t pos
(14.4a)

t.unit pos
(14.4b)

t.τ1 pos t.τ2 pos
t.τ1 × τ2 pos

(14.4c)

t.void pos
(14.4d)

t.τ1 pos t.τ2 pos
t.τ1 + τ2 pos

(14.4e)

τ1 type t.τ2 pos
t.τ1 → τ2 pos (14.4f)

In rule (14.4f), the type variable t is excluded from the domain of the function type by
demanding that it be well-formed without regard to t .
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The generic extension of a positive type operator is defined similarly to that of a polyno-
mial type operator, with the following dynamics on function types:

map+{t.τ1 → τ2}(x.e′)(e) #−→ λ (x1 : τ1) map+{t.τ2}(x.e′)(e(x1))
(14.5)

Because t is not allowed to occur within the domain type, the type of the result is τ1 →
[ρ ′/t]τ2, assuming that e is of type τ1 → [ρ/t]τ2. It is easy to verify preservation for the
generic extension of a positive type operator.

It is instructive to consider what goes wrong if we try to extend the generic extension
to an arbitrary type operator, without any positivity restriction. Consider the type operator
t.τ1 → τ2, without restriction on t , and suppose that x : ρ % e′ : ρ ′. The generic extension
map{t.τ1 → τ2}(x.e′)(e) should have type [ρ ′/t]τ1 → [ρ ′/t]τ2, given that e has type
[ρ/t]τ1 → [ρ/t]τ2. The extension should yield a function of the form

λ (x1 : [ρ ′/t]τ1) . . .(e(. . .(x1)))

in which we apply e to a transformation of x1 and then transform the result. The trouble
is that we are given, inductively, that map{t.τ1}(x.e′)(−) transforms values of type [ρ/t]τ1

into values of type [ρ ′/t]τ1, but we need to go the other way around to make x1 suitable as
an argument for e.

14.4 Notes

The generic extension of a type operator is an example of the concept of a functor in category
theory (MacLane, 1998). Generic programming is essentially functorial programming,
exploiting the functorial action of polynomial type operators (Hinze and Jeuring, 2003).

Exercises

14.1. Prove that if t.τ poly and t ′.τ ′ poly, then t.[τ/t ′]τ ′ poly.
14.2. Show that the generic extension of a constant type operator is essentially the identity

in that it sends each closed value to itself. More precisely, show that, for each value
e of type τ , the expression

map{ .τ }(x.e′)(e)

evaluates to e, regardless of the choice of e′. For simplicity, assume an eager dy-
namics for products and sums, and consider only polynomial type operators. What
complications arise when extending this observation to positive type operators?

14.3. Consider Exercises 10.1 and 11.3 in which a database schema is represented by a
finite product type indexed by the attributes of the schema, and a database with that
schema is a finite sequence of instances of tuples of that type. Show that any database
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Inductive & Coinductive Types

Two important forms of recursive type
• Inductive types: least, or initial, solutions of certain type equations
• coinductive types: greatest, or final, solutions of certain type equations 

The elements of an inductive type 
• a finite composition of its introduction forms. 
• If we specify the behavior of a function on each of the introduction forms of an 

inductive type, then its behavior is defined for all values of that type. Such a 
function is a recursor, or catamorphism. 

The elements of a coinductive type 
• a finite composition of its elimination forms. 
• If we specify the behavior of an element on each elimination form, then we 

have fully specified a value of that type. Such an element is a generator, or 
anamorphism. 



Nullary and Binary Products

10 Product Types

The binary product of two types consists of ordered pairs of values, one from each type in
the order specified. The associated elimination forms are projections, which select the first
and second component of a pair. The nullary product, or unit, type consists solely of the
unique “null tuple” of no values and has no associated elimination form. The product type
admits both a lazy and an eager dynamics. According to the lazy dynamics, a pair is a value
without regard to whether its components are values; they are not evaluated until (if ever)
they are accessed and used in another computation. According to the eager dynamics, a pair
is a value only if its components are values; they are evaluated when the pair is created.

More generally, we may consider the finite product, 〈τi〉i∈I , indexed by a finite set of
indices I . The elements of the finite product type are I -indexed tuples whose ith component
is an element of the type τi , for each i ∈ I . The components are accessed by I -indexed
projection operations, generalizing the binary case. Special cases of the finite product
include n-tuples, indexed by sets of the form I = { 0, . . . , n − 1 }, and labeled tuples, or
records, indexed by finite sets of symbols. Similarly to binary products, finite products
admit both an eager and a lazy interpretation.

10.1 Nullary and Binary Products

The abstract syntax of products is given by the following grammar:

Typ τ ::= unit unit nullary product
prod(τ1; τ2) τ1 × τ2 binary product

Exp e ::= triv 〈〉 null tuple
pair(e1; e2) 〈e1, e2〉 ordered pair
pr[l](e) e · l left projection
pr[r](e) e · r right projection

There is no elimination form for the unit type, there being nothing to extract from the null
tuple.

The statics of product types is given by the following rules.

" & 〈〉 : unit
(10.1a)
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! ! e1 : τ1 ! ! e2 : τ2
! ! 〈e1, e2〉 : τ1 × τ2

(10.1b)

! ! e : τ1 × τ2
! ! e · l : τ1

(10.1c)

! ! e : τ1 × τ2
! ! e · r : τ2

(10.1d)

The dynamics of product types is defined by the following rules:

〈〉 val
(10.2a)

[e1 val] [e2 val]
〈e1, e2〉 val

(10.2b)

[
e1 %−→ e′

1

〈e1, e2〉 %−→ 〈e′
1, e2〉

]
(10.2c)

[
e1 val e2 %−→ e′

2

〈e1, e2〉 %−→ 〈e1, e
′
2〉

]
(10.2d)

e %−→ e′

e · l %−→ e′ · l (10.2e)

e %−→ e′

e · r %−→ e′ · r (10.2f)

[e1 val] [e2 val]
〈e1, e2〉 · l %−→ e1

(10.2g)

[e1 val] [e2 val]
〈e1, e2〉 · r %−→ e2

(10.2h)

The bracketed rules and premises are omitted for a lazy dynamics and included for an eager
dynamics of pairing.

The safety theorem applies to both the eager and the lazy dynamics, with the proof
proceeding along similar lines in each case.

Theorem 10.1 (Safety). 1. If e : τ and e %−→ e′, then e′ : τ .
2. If e : τ then either e val or there exists e′ such that e %−→ e′.

Proof Preservation is proved by induction on transition defined by rules (10.2). Progress
is proved by induction on typing defined by rules (10.1).
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Nullary and Binary Sums

11 Sum Types

Most data structures involve alternatives such as the distinction between a leaf and an
interior node in a tree, or a choice in the outermost form of a piece of abstract syntax.
Importantly, the choice determines the structure of the value. For example, nodes have
children, but leaves do not, and so forth. These concepts are expressed by sum types,
specifically the binary sum, which offers a choice of two things, and the nullary sum, which
offers a choice of no things. Finite sums generalize nullary and binary sums to allow an
arbitrary number of cases indexed by a finite index set. As with products, sums come in
both eager and lazy variants, differing in how values of sum type are defined.

11.1 Nullary and Binary Sums

The abstract syntax of sums is given by the following grammar:

Typ τ ::= void void nullary sum
sum(τ1; τ2) τ1 + τ2 binary sum

Exp e ::= abort{τ }(e) abort(e) abort
in[l]{τ1; τ2}(e) l · e left injection
in[r]{τ1; τ2}(e) r · e right injection
case(e; x1.e1; x2.e2) case e {l · x1 ↪→ e1 | r · x2 ↪→ e2} case analysis

The nullary sum represents a choice of zero alternatives, and hence admits no introduction
form. The elimination form, abort(e), aborts the computation in the event that e evaluates
to a value, which it cannot do. The elements of the binary sum type are labeled to show
whether they are drawn from the left or the right summand, either l · e or r · e. A value of
the sum type is eliminated by case analysis.

The statics of sum types is given by the following rules.
# " e : void

# " abort(e) : τ
(11.1a)

# " e : τ1
# " l · e : τ1 + τ2

(11.1b)

# " e : τ2
# " r · e : τ1 + τ2

(11.1c)

# " e : τ1 + τ2 #, x1 : τ1 " e1 : τ #, x2 : τ2 " e2 : τ

# " case e {l · x1 ↪→ e1 | r · x2 ↪→ e2} : τ
(11.1d)
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15 Inductive and Coinductive Types

The inductive and the coinductive types are two important forms of recursive type.
Inductive types correspond to least, or initial, solutions of certain type equations, and coin-
ductive types correspond to their greatest, or final, solutions. Intuitively, the elements of
an inductive type are those that are given by a finite composition of its introduction forms.
Consequently, if we specify the behavior of a function on each of the introduction forms of
an inductive type, then its behavior is defined for all values of that type. Such a function is a
recursor, or catamorphism. Dually, the elements of a coinductive type are those that behave
properly in response to a finite composition of its elimination forms. Consequently, if we
specify the behavior of an element on each elimination form, then we have fully specified
a value of that type. Such an element is a generator, or anamorphism.

15.1 Motivating Examples

The most important example of an inductive type is the type of natural numbers as
formalized in Chapter 9. The type nat is the least type containing z and closed
under s(−). The minimality condition is expressed by the existence of the iterator,
iter e {z ↪→ e0 | s(x) ↪→ e1}, which transforms a natural number into a value of type
τ , given its value for zero, and a transformation from its value on a number to its value on
the successor of that number. This operation is well-defined precisely because there are no
other natural numbers.

With a view towards deriving the type nat as a special case of an inductive type, it is
useful to combine zero and successor into a single introduction form, and to correspondingly
combine the basis and inductive step of the iterator. The following rules specify the statics
of this reformulation:

# # e : unit + nat
# # foldnat(e) : nat (15.1a)

#, x : unit + τ # e1 : τ # # e2 : nat
# # recnat(x.e1; e2) : τ

(15.1b)

The expression foldnat(e) is the unique introduction form of the type nat. Using this, the
expression z is foldnat(l · 〈〉), and s(e) is foldnat(r · e). The recursor, recnat(x.e1; e2),
takes as argument the abstractor x.e1 that combines the basis and inductive step into a single
computation that, given a value of type unit + τ , yields a value of type τ . Intuitively, if

5!!�   2:6�:�� ������
 ����
����	�
	������
�."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3  

126 Inductive and Coinductive Types

x is replaced by the value l · 〈〉, then e1 computes the base case of the recursion, and if x

is replaced by the value r · e, then e1 computes the inductive step from the result e of the
recursive call.

The dynamics of the combined representation of natural numbers is given by the following
rules:

foldnat(e) val
(15.2a)

e2 #−→ e′
2

recnat(x.e1; e2) #−→ recnat(x.e1; e′
2)

(15.2b)

recnat(x.e1; foldnat(e2))

#−→
[map{t.unit + t}(y.recnat(x.e1; y))(e2)/x]e1

(15.2c)

Rule (15.2c) uses (polynomial) generic extension (see Chapter 14) to apply the recursor
to the predecessor, if any, of a natural number. If we expand the definition of the generic
extension in place, we obtain this rule:

recnat(x.e1; foldnat(e2))

#−→
[case e2 {l · ↪→ l · 〈〉 | r · y ↪→ r · recnat(x.e1; y)}/x]e1

Exercise 15.2 asks for a derivation of the iterator, as defined in Chapter 9, from the recursor
just given.

An illustrative example of a coinductive type is the type of streams of natural numbers.
A stream is an infinite sequence of natural numbers such that an element of the stream
can be computed only after computing all preceding elements in that stream. That is, the
computations of successive elements of the stream are sequentially dependent in that the
computation of one element influences the computation of the next. In this sense, the
introduction form for streams is dual to the elimination form for natural numbers.

A stream is given by its behavior under the elimination forms for the stream type: hd(e)
returns the next, or head, element of the stream, and tl(e) returns the tail of the stream, the
stream resulting when the head element is removed. A stream is introduced by a generator,
the dual of a recursor, that defines the head and the tail of the stream in terms of the current
state of the stream, which is represented by a value of some type. The statics of streams is
given by the following rules:

" ' e : stream
" ' hd(e) : nat (15.3a)

" ' e : stream
" ' tl(e) : stream (15.3b)
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x is replaced by the value l · 〈〉, then e1 computes the base case of the recursion, and if x

is replaced by the value r · e, then e1 computes the inductive step from the result e of the
recursive call.

The dynamics of the combined representation of natural numbers is given by the following
rules:

foldnat(e) val
(15.2a)

e2 #−→ e′
2

recnat(x.e1; e2) #−→ recnat(x.e1; e′
2)

(15.2b)

recnat(x.e1; foldnat(e2))

#−→
[map{t.unit + t}(y.recnat(x.e1; y))(e2)/x]e1

(15.2c)

Rule (15.2c) uses (polynomial) generic extension (see Chapter 14) to apply the recursor
to the predecessor, if any, of a natural number. If we expand the definition of the generic
extension in place, we obtain this rule:

recnat(x.e1; foldnat(e2))

#−→
[case e2 {l · ↪→ l · 〈〉 | r · y ↪→ r · recnat(x.e1; y)}/x]e1

Exercise 15.2 asks for a derivation of the iterator, as defined in Chapter 9, from the recursor
just given.

An illustrative example of a coinductive type is the type of streams of natural numbers.
A stream is an infinite sequence of natural numbers such that an element of the stream
can be computed only after computing all preceding elements in that stream. That is, the
computations of successive elements of the stream are sequentially dependent in that the
computation of one element influences the computation of the next. In this sense, the
introduction form for streams is dual to the elimination form for natural numbers.

A stream is given by its behavior under the elimination forms for the stream type: hd(e)
returns the next, or head, element of the stream, and tl(e) returns the tail of the stream, the
stream resulting when the head element is removed. A stream is introduced by a generator,
the dual of a recursor, that defines the head and the tail of the stream in terms of the current
state of the stream, which is represented by a value of some type. The statics of streams is
given by the following rules:

" ' e : stream
" ' hd(e) : nat (15.3a)

" ' e : stream
" ' tl(e) : stream (15.3b)
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x is replaced by the value l · 〈〉, then e1 computes the base case of the recursion, and if x

is replaced by the value r · e, then e1 computes the inductive step from the result e of the
recursive call.

The dynamics of the combined representation of natural numbers is given by the following
rules:

foldnat(e) val
(15.2a)

e2 #−→ e′
2

recnat(x.e1; e2) #−→ recnat(x.e1; e′
2)

(15.2b)

recnat(x.e1; foldnat(e2))

#−→
[map{t.unit + t}(y.recnat(x.e1; y))(e2)/x]e1

(15.2c)

Rule (15.2c) uses (polynomial) generic extension (see Chapter 14) to apply the recursor
to the predecessor, if any, of a natural number. If we expand the definition of the generic
extension in place, we obtain this rule:

recnat(x.e1; foldnat(e2))

#−→
[case e2 {l · ↪→ l · 〈〉 | r · y ↪→ r · recnat(x.e1; y)}/x]e1

Exercise 15.2 asks for a derivation of the iterator, as defined in Chapter 9, from the recursor
just given.

An illustrative example of a coinductive type is the type of streams of natural numbers.
A stream is an infinite sequence of natural numbers such that an element of the stream
can be computed only after computing all preceding elements in that stream. That is, the
computations of successive elements of the stream are sequentially dependent in that the
computation of one element influences the computation of the next. In this sense, the
introduction form for streams is dual to the elimination form for natural numbers.

A stream is given by its behavior under the elimination forms for the stream type: hd(e)
returns the next, or head, element of the stream, and tl(e) returns the tail of the stream, the
stream resulting when the head element is removed. A stream is introduced by a generator,
the dual of a recursor, that defines the head and the tail of the stream in terms of the current
state of the stream, which is represented by a value of some type. The statics of streams is
given by the following rules:

" ' e : stream
" ' hd(e) : nat (15.3a)

" ' e : stream
" ' tl(e) : stream (15.3b)
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! ! e : τ !, x : τ ! e1 : nat !, x : τ ! e2 : τ

! ! strgen x is e in<hd ↪→ e1,tl ↪→ e2> : stream (15.3c)

In rule (15.3c), the current state of the stream is given by the expression e of some type τ ,
and the head and tail of the stream are determined by the expressions e1 and e2, respectively,
as a function of the current state. (The notation for the generator is chosen to emphasize
that every stream has both a head and a tail.)

The dynamics of streams is given by the following rules:

strgen x is e in<hd ↪→ e1,tl ↪→ e2> val
(15.4a)

e #−→ e′

hd(e) #−→ hd(e′) (15.4b)

hd(strgen x is e in<hd ↪→ e1,tl ↪→ e2>) #−→ [e/x]e1
(15.4c)

e #−→ e′

tl(e) #−→ tl(e′) (15.4d)

tl(strgen x is e in<hd ↪→ e1,tl ↪→ e2>)

#−→
strgen x is [e/x]e2 in<hd ↪→ e1,tl ↪→ e2>

(15.4e)

Rules (15.4c) and (15.4e) express the dependency of the head and tail of the stream on its
current state. Observe that the tail is obtained by applying the generator to the new state
determined by e2 from the current state.

To derive streams as a special case of a coinductive type, we combine the head and the
tail into a single elimination form, and reorganize the generator correspondingly. Thus, we
consider the following statics:

! ! e : stream
! ! unfoldstream(e) : nat × stream

(15.5a)

!, x : τ ! e1 : nat × τ ! ! e2 : τ

! ! genstream(x.e1; e2) : stream (15.5b)

Rule (15.5a) states that a stream may be unfolded into a pair consisting of its head, a natural
number, and its tail, another stream. The head hd(e) and tail tl(e) of a stream e are the
projections unfoldstream(e) · l and unfoldstream(e) · r, respectively. Rule (15.5b) states
that a stream is generated from the state element e2 by an expression e1 that yields the head
element and the next state as a function of the current state.

The dynamics of streams is given by the following rules:

genstream(x.e1; e2) val
(15.6a)
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! ! e : τ !, x : τ ! e1 : nat !, x : τ ! e2 : τ

! ! strgen x is e in<hd ↪→ e1,tl ↪→ e2> : stream (15.3c)

In rule (15.3c), the current state of the stream is given by the expression e of some type τ ,
and the head and tail of the stream are determined by the expressions e1 and e2, respectively,
as a function of the current state. (The notation for the generator is chosen to emphasize
that every stream has both a head and a tail.)

The dynamics of streams is given by the following rules:

strgen x is e in<hd ↪→ e1,tl ↪→ e2> val
(15.4a)

e #−→ e′

hd(e) #−→ hd(e′) (15.4b)

hd(strgen x is e in<hd ↪→ e1,tl ↪→ e2>) #−→ [e/x]e1
(15.4c)

e #−→ e′

tl(e) #−→ tl(e′) (15.4d)

tl(strgen x is e in<hd ↪→ e1,tl ↪→ e2>)

#−→
strgen x is [e/x]e2 in<hd ↪→ e1,tl ↪→ e2>

(15.4e)

Rules (15.4c) and (15.4e) express the dependency of the head and tail of the stream on its
current state. Observe that the tail is obtained by applying the generator to the new state
determined by e2 from the current state.

To derive streams as a special case of a coinductive type, we combine the head and the
tail into a single elimination form, and reorganize the generator correspondingly. Thus, we
consider the following statics:

! ! e : stream
! ! unfoldstream(e) : nat × stream

(15.5a)

!, x : τ ! e1 : nat × τ ! ! e2 : τ

! ! genstream(x.e1; e2) : stream (15.5b)

Rule (15.5a) states that a stream may be unfolded into a pair consisting of its head, a natural
number, and its tail, another stream. The head hd(e) and tail tl(e) of a stream e are the
projections unfoldstream(e) · l and unfoldstream(e) · r, respectively. Rule (15.5b) states
that a stream is generated from the state element e2 by an expression e1 that yields the head
element and the next state as a function of the current state.

The dynamics of streams is given by the following rules:

genstream(x.e1; e2) val
(15.6a)
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! ! e : τ !, x : τ ! e1 : nat !, x : τ ! e2 : τ

! ! strgen x is e in<hd ↪→ e1,tl ↪→ e2> : stream (15.3c)

In rule (15.3c), the current state of the stream is given by the expression e of some type τ ,
and the head and tail of the stream are determined by the expressions e1 and e2, respectively,
as a function of the current state. (The notation for the generator is chosen to emphasize
that every stream has both a head and a tail.)

The dynamics of streams is given by the following rules:

strgen x is e in<hd ↪→ e1,tl ↪→ e2> val
(15.4a)

e #−→ e′

hd(e) #−→ hd(e′) (15.4b)

hd(strgen x is e in<hd ↪→ e1,tl ↪→ e2>) #−→ [e/x]e1
(15.4c)

e #−→ e′

tl(e) #−→ tl(e′) (15.4d)

tl(strgen x is e in<hd ↪→ e1,tl ↪→ e2>)

#−→
strgen x is [e/x]e2 in<hd ↪→ e1,tl ↪→ e2>

(15.4e)

Rules (15.4c) and (15.4e) express the dependency of the head and tail of the stream on its
current state. Observe that the tail is obtained by applying the generator to the new state
determined by e2 from the current state.

To derive streams as a special case of a coinductive type, we combine the head and the
tail into a single elimination form, and reorganize the generator correspondingly. Thus, we
consider the following statics:

! ! e : stream
! ! unfoldstream(e) : nat × stream

(15.5a)

!, x : τ ! e1 : nat × τ ! ! e2 : τ

! ! genstream(x.e1; e2) : stream (15.5b)

Rule (15.5a) states that a stream may be unfolded into a pair consisting of its head, a natural
number, and its tail, another stream. The head hd(e) and tail tl(e) of a stream e are the
projections unfoldstream(e) · l and unfoldstream(e) · r, respectively. Rule (15.5b) states
that a stream is generated from the state element e2 by an expression e1 that yields the head
element and the next state as a function of the current state.

The dynamics of streams is given by the following rules:

genstream(x.e1; e2) val
(15.6a)
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! ! e : τ !, x : τ ! e1 : nat !, x : τ ! e2 : τ

! ! strgen x is e in<hd ↪→ e1,tl ↪→ e2> : stream (15.3c)

In rule (15.3c), the current state of the stream is given by the expression e of some type τ ,
and the head and tail of the stream are determined by the expressions e1 and e2, respectively,
as a function of the current state. (The notation for the generator is chosen to emphasize
that every stream has both a head and a tail.)

The dynamics of streams is given by the following rules:

strgen x is e in<hd ↪→ e1,tl ↪→ e2> val
(15.4a)

e #−→ e′

hd(e) #−→ hd(e′) (15.4b)

hd(strgen x is e in<hd ↪→ e1,tl ↪→ e2>) #−→ [e/x]e1
(15.4c)

e #−→ e′

tl(e) #−→ tl(e′) (15.4d)

tl(strgen x is e in<hd ↪→ e1,tl ↪→ e2>)

#−→
strgen x is [e/x]e2 in<hd ↪→ e1,tl ↪→ e2>

(15.4e)

Rules (15.4c) and (15.4e) express the dependency of the head and tail of the stream on its
current state. Observe that the tail is obtained by applying the generator to the new state
determined by e2 from the current state.

To derive streams as a special case of a coinductive type, we combine the head and the
tail into a single elimination form, and reorganize the generator correspondingly. Thus, we
consider the following statics:

! ! e : stream
! ! unfoldstream(e) : nat × stream

(15.5a)

!, x : τ ! e1 : nat × τ ! ! e2 : τ

! ! genstream(x.e1; e2) : stream (15.5b)

Rule (15.5a) states that a stream may be unfolded into a pair consisting of its head, a natural
number, and its tail, another stream. The head hd(e) and tail tl(e) of a stream e are the
projections unfoldstream(e) · l and unfoldstream(e) · r, respectively. Rule (15.5b) states
that a stream is generated from the state element e2 by an expression e1 that yields the head
element and the next state as a function of the current state.

The dynamics of streams is given by the following rules:

genstream(x.e1; e2) val
(15.6a)
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e !−→ e′

unfoldstream(e) !−→ unfoldstream(e′) (15.6b)

unfoldstream(genstream(x.e1; e2))

!−→
map{t.nat × t}(y.genstream(x.e1; y))([e2/x]e1)

(15.6c)

Rule (15.6c) uses generic extension to generate a new stream whose state is the second com-
ponent of [e2/x]e1. Expanding the generic extension we obtain the following reformulation
of this rule:

unfoldstream(genstream(x.e1; e2))

!−→
〈([e2/x]e1) · l, genstream(x.e1; ([e2/x]e1) · r)〉

Exercise 15.3 asks for a derivation of strgen x is e in<hd ↪→ e1,tl ↪→ e2> from the
coinductive generation form.

15.2 Statics

We may now give a general account of inductive and coinductive types, which are defined
in terms of positive type operators. We will consider a variant of T, which we will call M,
with natural numbers replaced by functions, products, sums, and a rich class of inductive
and coinductive types.

15.2.1 Types

The syntax of inductive and coinductive types involves type variables, which are, of course,
variables ranging over types. The abstract syntax of inductive and coinductive types is given
by the following grammar:

Typ τ ::= t t self-reference
ind(t.τ ) µ(t.τ ) inductive
coi(t.τ ) ν(t.τ ) coinductive

Type formation judgments have the form

t1 type, . . . , tn type ( τ type,

where t1, . . . , tn are type names. We let $ range over finite sets of hypotheses of the form
t type, where t is a type name. The type formation judgment is inductively defined by the
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e !−→ e′

unfoldstream(e) !−→ unfoldstream(e′) (15.6b)

unfoldstream(genstream(x.e1; e2))

!−→
map{t.nat × t}(y.genstream(x.e1; y))([e2/x]e1)

(15.6c)

Rule (15.6c) uses generic extension to generate a new stream whose state is the second com-
ponent of [e2/x]e1. Expanding the generic extension we obtain the following reformulation
of this rule:

unfoldstream(genstream(x.e1; e2))

!−→
〈([e2/x]e1) · l, genstream(x.e1; ([e2/x]e1) · r)〉

Exercise 15.3 asks for a derivation of strgen x is e in<hd ↪→ e1,tl ↪→ e2> from the
coinductive generation form.

15.2 Statics

We may now give a general account of inductive and coinductive types, which are defined
in terms of positive type operators. We will consider a variant of T, which we will call M,
with natural numbers replaced by functions, products, sums, and a rich class of inductive
and coinductive types.

15.2.1 Types

The syntax of inductive and coinductive types involves type variables, which are, of course,
variables ranging over types. The abstract syntax of inductive and coinductive types is given
by the following grammar:

Typ τ ::= t t self-reference
ind(t.τ ) µ(t.τ ) inductive
coi(t.τ ) ν(t.τ ) coinductive

Type formation judgments have the form

t1 type, . . . , tn type ( τ type,

where t1, . . . , tn are type names. We let $ range over finite sets of hypotheses of the form
t type, where t is a type name. The type formation judgment is inductively defined by the
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following rules:

!, t type ! t type (15.7a)

! ! unit type (15.7b)

! ! τ1 type ! ! τ2 type
! ! prod(τ1; τ2) type

(15.7c)

! ! void type (15.7d)

! ! τ1 type ! ! τ2 type
! ! sum(τ1; τ2) type

(15.7e)

! ! τ1 type ! ! τ2 type
! ! arr(τ1; τ2) type

(15.7f)

!, t type ! τ type ! ! t.τ pos
! ! ind(t.τ ) type

(15.7g)

!, t type ! τ type ! ! t.τ pos
! ! coi(t.τ ) type

(15.7h)

15.2.2 Expressions

The abstract syntax of M is given by the following grammar:

Exp e ::= fold{t.τ }(e) foldt.τ (e) constructor
rec{t.τ }(x.e1; e2) rec(x.e1; e2) recursor
unfold{t.τ }(e) unfoldt.τ (e) destructor
gen{t.τ }(x.e1; e2) gen(x.e1; e2) generator

The subscripts on the concrete syntax forms are often omitted when they are clear from
context.

The statics for M is given by the following typing rules:

# ! e : [ind(t.τ )/t]τ
# ! fold{t.τ }(e) : ind(t.τ )

(15.8a)

#, x : [τ ′/t]τ ! e1 : τ ′ # ! e2 : ind(t.τ )
# ! rec{t.τ }(x.e1; e2) : τ ′ (15.8b)

# ! e : coi(t.τ )
# ! unfold{t.τ }(e) : [coi(t.τ )/t]τ (15.8c)
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130 Inductive and Coinductive Types

15.3 Dynamics

The dynamics of M is given in terms of the positive generic extension operation described
in Chapter 14. The following rules specify a lazy dynamics for M:

fold{t.τ }(e) val
(15.9a)

e2 !−→ e′
2

rec{t.τ }(x.e1; e2) !−→ rec{t.τ }(x.e1; e′
2)

(15.9b)

rec{t.τ }(x.e1; fold{t.τ }(e2))

!−→
[map+{t.τ }(y.rec{t.τ }(x.e1; y))(e2)/x]e1

(15.9c)

gen{t.τ }(x.e1; e2) val
(15.9d)

e !−→ e′

unfold{t.τ }(e) !−→ unfold{t.τ }(e′) (15.9e)

unfold{t.τ }(gen{t.τ }(x.e1; e2))

!−→
map+{t.τ }(y.gen{t.τ }(x.e1; y))([e2/x]e1)

(15.9f)

Rule (15.9c) states that to evaluate the recursor on a value of recursive type, we inductively
apply the recursor as guided by the type operator to the value, and then apply the inductive
step to the result. Rule (15.9f) is simply the dual of this rule for coinductive types.

Lemma 15.1. If e : τ and e !−→ e′, then e′ : τ .

Proof By rule induction on rules (15.9).

Lemma 15.2. If e : τ , then either e val or there exists e′ such that e !−→ e′.

Proof By rule induction on rules (15.8).

Although a proof of this fact lies beyond our current reach, all programs in M terminate.

Theorem 15.3 (Termination for M). If e : τ , then there exists e′ val such that e !−→∗ e′.
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131 15.4 Solving Type Equations

It may, at first, seem surprising that a language with infinite data structures, such as
streams, can enjoy such a termination property. But bear in mind that infinite data structures,
such as streams, are represented as in a continuing state of creation, and not as a completed
whole.

15.4 Solving Type Equations

For a positive type operator t.τ , we may say that the inductive type µ(t.τ ) and the coinduc-
tive type ν(t.τ ) are both solutions (up to isomorphism) of the type equation t ∼= τ :

µ(t.τ ) ∼= [µ(t.τ )/t]τ

ν(t.τ ) ∼= [ν(t.τ )/t]τ.

Intuitively speaking, this means that every value of an inductive type is the folding of a
value of the unfolding of the inductive type, and that, similarly, every value of the unfolding
of a coinductive type is the unfolding of a value of the coinductive type itself. It is a good
exercise to define functions back and forth between the isomorphic types and to convince
yourself informally that they are mutually inverse to one another.

Whereas both are solutions to the same type equation, they are not isomorphic to each
other. To see why, consider the inductive type nat ! µ(t.unit + t) and the coinductive type
conat ! ν(t.unit + t). Informally, nat is the smallest (most restrictive) type containing
zero, given by fold(l · 〈〉), and closed under formation of the successor of any other e

of type nat, given by fold(r · e). Dually, conat is the largest (most permissive) type of
expressions e for which the unfolding, unfold.(e), is either zero, given by l · 〈〉, or to the
successor of some other e′ of type conat, given by r · e′.

Because nat is defined by the composition of its introduction forms and sum injections,
it is clear that only finite natural numbers can be constructed in finite time. Because conat
is defined by the composition of its elimination forms (unfoldings plus case analyses), it is
clear that a co-natural number can only be explored to finite depth in finite time—essentially
we can only examine some finite number of predecessors of a given co-natural number in
a terminating program. Consequently,

1. there is a function i : nat → conat embedding every finite natural number into the
type of possibly infinite natural numbers; and

2. there is an “actually infinite” co-natural number ω that is essentially an infinite compo-
sition of successors.

Defining the embedding of nat into conat is the subject of Exercise 15.1. The infinite
co-natural number ω is defined as follows:

ω ! gen(x.r · x; 〈〉).
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