CS 430/530
Formal Semantics

Zhong Shao

Yale University
Department of Computer Science

Symbols; Mutable Stale
April 15, 2025

Symbols vs. Variables

A symbol is an atomic datum with no internal structure.

Whereas a variable is given meaning by substitution, a symbol is given meaning by a
family of operations indexed by symbols. A symbol is just a name, or index, for a
family of operations.

Many different interpretations may be given to symbols
* fluid binding, dynamic classification, mutable storage, communication channels.

A type is associated to each symbol whose interpretation depends on the particular

application.

* For example, in the case of mutable storage, the type of a symbol constrains the
contents of the cell named by that symbol to values of that type.

SPCF: PCF with Symbol Declaration

Declaring new symbols for use within a specified scope.

 The expression new a ~ p in e introduces a “new” symbol a with associated type
p for use within e.

* The declared symbol a is “new” in that it is bound by the declaration within e
and so may be renamed at will to ensure that it differs from any finite set of
active symbols.

 Whereas the statics determines the scope of a declared symbol, its range of
significance, or extent, is determined by the dynamics.
* Scoped dynamics: a symbol can only be used within its scope
* Scope-free dynamics: a symbol can exceed its scope

SPCF: PCF with Symbol Declaration

The syntax for symbol declaration in SPCF is given by the following grammar:
Exp e := new{r}(a.e) newa~71ine generation

The statics of symbol declaration makes use of a signature, or symbol context, that associates
a type to each of a finite set of symbols. We use the letter 3 to range over signatures, which
are finite sets of pairs a ~ T, where a i1s a symbol and 7 1s a type. The typing judgment
[" =y e : 7 1s parameterized by a signature X associating types to symbols. In effect,
there is an infinite family of typing judgments, one for each choice of X. The expression
ne T in e shifts from one instance of the family to another by adding a new symbol
to 2.

SPCF Statics

The statics of symbol declaration itself 1s given by the following rule:

I'Fs4~pe:T T mobile

[5 new{p}(a.e):t (31.1)

In a scoped dynamics, mobility is defined so that the computed value of a
mobile type cannot depend on any symbol. By constraining the scope of a
declaration to have mobile type, we can, under this interpretation, ensure
that the extent of a symbol is confined to its scope.

In a scope-free dynamics, every type is deemed mobile, because the
dynamics ensures that the scope of a symbol is widened to accommodate
the possibility that the value returned from the scope of a declaration may
depend on the declared symbol.

The term “mobile” reflects the informal idea that symbols may or may not be
“moved” from the scope of their declaration according to the dynamics given
to them. A scope-free dynamics allows symbols to be moved freely, whereas
a scoped dynamics limits their range of motion.

SPCF Scoped Dynamics

The scoped dynamics of symbol declaration is given by a transition judgment of the form

er> ¢’ indexed by a signature X specifying the active symbols of the transition. Either e

or ¢’ may involve the symbols declared in X, but no others.

/

e I—N> e
— (31.2a)
new{p}(a.e) = new{p}(a.e)
e Valg
(31.2b)

new{p}(a.e) |§> e

The definition of the judgment T mobile must be chosen to ensure that the following
mobility condition is satisfied:

If T mobile, =5 4~p € : T, and e vals 4~,, then =5 e : T and e vals.

SPCF Scoped Dynamics

Theorem 31.1 (Preservation). Ifl-s e : T and e = e, thentyx e : 1.

Proof By induction on the dynamics of symbol declaration. Rule (31.2a) follows by
induction, applying rule (31.1). Rule (31.2b) follows from the condition on mobility. [

Theorem 31.2 (Progress). If by e : 1, then either e = e/, or e vals,.

Proof There is only one rule to consider, rule (31.1). By induction, we have either

e r2—> e’, in which case rule (31.2a) applies, or e valy 4~,, in Which case by the
a~p

mobility condition we have e valy, and hence rule (31.2b) applies. L]

SPCF Scope-Free Dynamics

The scope-free dynamics of symbols is defined by a transition system between states of
the form v X {e}, where X 1s a signature and e 1s an expression over this signature. The
judgment v X {e} —— v X' { e’} states that evaluation of e relative to symbols X results
in the expression ¢’ in the extension X’ of X.

(31.3)
V2 {new{pllae)}—vE,a~p{e}

Rule (31.3) specifies that symbol generation enriches the signature with the newly intro-
duced symbol by extending the signature for all future transitions.

All other rules of the dynamics are changed to account for the allocated symbols. For
example, the dynamics of function application cannot be inherited from Chapter 19 but is
reformulated as follows:

v2{e)} — vEHe}

31.4
V3 (er(er)) — VB e (e2)) G142

(31.4b)

VE{A(x:T)e(er)} —> v X {[ex/x]e}

SPCF Scope-Free Dynamics

Theorem 31.3 (Preservation). Ifv X {e} +—— vX'{e | and b5 e : T, then X' O X and
|_2/ e .

Proof There is only one rule to consider, rule (31.3), which is handled by inversion of
rule (31.1). []

Theorem 31.4 (Progress). If bx e : t, thenweithéer e valys orvX {e} —— v X'{e'} for
some X' and é’.

Proof Immediate, by rule (31.3). []

PCF with Symbol References

A symbol reference is an expression whose purpose is to refer to a particular
symbol.

Symbol references are values of a type p sym and are written ’a for some
symbol a with associated type p.

The elimination form for the type p sym is a conditional branch that determines
whether a symbol reference refers to a statically specified symbol.

The statics of the elimination form ensures that, in the positive case, the type
associated to the referenced symbol is manifested, whereas in the negative
case, no type information can be gleaned from the test.

PCF with Symbol References

Symbols are not themselves values, but they may be used to form values. One useful
example is provided by the type t sym of symbol references. A value of this type has the
form ’a, where a 1s a symbol 1n the signature. To compute with a reference, we may
branch according to whether it is a reference to a specified symbol. The syntax of symbol
references is given by the following grammar:

Typ t = sym(r) T sym symbols
Exp e quotela] ‘a reference
islal|{t.tj(e;e|;e5) ifeisathene;owe, comparison

The expression quote[a] is a reference to the symbol a, a value of type sym(z). The
expression isl[al{f.t}(e;e;;ep) compares the value of e, which is a reference to some
symbol b, with the given symbol a. If b is a, the expression evaluates to e, and otherwise
to e>.

PCF with Symbol References

The typing rules for symbol references are as follows:

(31.5a)

I' b5 4~p quotela] : sym(p)

FFsa~pe:sym(p) TI'Exsgperilp/tlt T bxa~penip'/tle
I' F5.a~p islal{t.t}(e;er;e2) : [p'/t]T

(31.5b)

PCF with Symbol References

The (scoped) dynamics of symbol references is given by the following rules:

(31.6a)
quotela] valy 4~
is[al{t.t}(quotela];e;; e2) IE—> el (31.6b)
a~p
(a #a)
islal{t.t}(quote[a’]; e;e2) ¢ %) (31.6¢)
X,a~p,a'~p
er— ¢€

X,a~p

: : p (31.6d)
isla]{t.t}(e;e1; €2) F— islal{t.t}(e’; e15€2)
a~p

Rules (31.6b) and (31.6¢) specify that is[a]{t.t}(e;e;; ey) branches according to whether
the value of e is a reference to the symbol a.

PCF with Symbol References

Theorem 31.5 (Preservation). Iftx e : T and e = e, thentx e : 1.

Proof By rule induction on rules (31.6). The most interesting case is rule (31.6b). When
the comparison is positive, the types p and p’ must be the same, because each symbol has
at most one associated type. Therefore, e;, which has type [p’/t]t, also has type [p/¢]z,
as required.]

Lemma 31.6 (Canonical Forms). If -y e : sym(p) and e valy, then e = quotela] for
some a such that X = X', a ~ p.

Proof By rule induction on rules (31.5), taking account of the definition of values. [

Theorem 31.7 (Progress). Suppose that s e : t. Then either e valy, or there exists e’
such that e = e

Proof By rule induction on rules (31.5). For example, consider rule (31.5b), in which we
have that is[a]{t.7}(e; e;; e>) has some type t and that e : sym(p) for some p. By induction
either rule (31.6d) applies, or else we have that e valy, in which case we are assured by
Lemma 31.6 that e is quote[a] for some symbol b of type p declared in X. But then
progress is assured by rules (31.6b) and (31.6¢), because equality of symbols is decidable
(either a is b or it is not). []

FSPCF: SPCF with Fluid Binding

Fluid binding associates to a symbol (and not a variable) a value of a specified type
within a specified scope. The identification principle for bound variables is retained,
type safety is not compromised, yet some of the benefits of dynamic scoping are

preserved.

To account for fluid binding, we enrich SPCF defined in Chapter 31 with these constructs
to obtain FSPCF:

Exp e 1= putlal(e;;es) pute foraine, binding
getla] geta retrieval

The expression get[a] evaluates to the value of the current binding of a, if it has one, and
1s stuck otherwise. The expression put[a](e;;e;) binds the symbol a to the value e; for
the duration of the evaluation of e, at which point the binding of a reverts to what i1t was
prior to the execution. The symbol a is not bound by the put expression but is instead a
parameter of it.

FSPCF Statics

The statics of FSPCF is defined by judgments of the form
I'Fse:r,

much as in Chapter 31, except that here the signature associates a type to each symbol,
instead of just declaring the symbol to be in scope. Thus, X is here defined to be a finite
set of declarations of the form a ~ T such that no symbol is declared more than once in the
same signature. Note that the association of a type to a symbol 1s not a typing assumption.
In particular, the signature ¥ enjoys no structural properties and cannot be considered as a
form of hypothesis as defined in Chapter 3.

The following rules govern the new expression forms:

I'Fx o getla] : T (32.1a)

I'bFyag~rer it Dhsgor €21

32.1b
I' Fx 4~r putlal(er;er) : ()

Rule (32.1b) specifies that the symbol a is a parameter of the expression that must be
declared in .

FSPCF Dynamics

The dynamics of FSPCF relies on a stack-like allocation of symbols in SPCF and maintains
an association of values to symbols that tracks this stack-like allocation discipline. To do
so, we define a family of transition judgments of the form e % ¢/, where X is as in the

statics, and p is a finite function mapping some subset of the symbols declared in ¥ to
values of the right type. If u is defined for some symbol a, then it has the form @' ® a — e
for some " and value e. If u is undefined for some symbol a, we may regard it as having
the form ' ® a < e. We will write a < _ to stand for either a <> e or a < ¢ for some
expression e.

FSPCF Dynamics

The dynamics of FSPCF is defined by the following rules:

nQa—>e (32.2a)
getla] |E—> e
,a~T

M /
e — €]

B (32.2b)
putlal(ersez) ——> putlal(e}:e2)
n®@a—e
ey valy g~ € I—E——> e,
,a~T
Y. / (32.2¢)
putlal(er; en) S putfal(er;e;)
€1 ValE,aNt €2 ValE,aNr
(32.2d)

n
putlal(er;er) —— e
Y,a~tT

FSPCF Dynamics

According to the dynamics of FSPCF given by rules (32.2), there is no transition of the
form get|a| I% e if p(a) = . The judgment e unboundy states that execution of e will

lead to such a “stuck’ state and 1s inductively defined by the following rules:

ua) = e

get[a] unbound, (32.3a)

e; unbound,, i

put[a](e;; e2) unbound,, (32.3b)
al nbound

ey valy e u und, 3230

put[a](e;; e2) unbound,,

In a larger language, it would also be necessary to include error propagation rules of the
sort discussed in Chapter 6.

FSPCF Type Safety

We first define the auxiliary judgment i : 3 by the following rules:

70 (32.4a)
Esest X
UR®a—>e: X, a~t1 (32.40)
D2
& (32.4¢)

URa—>e:X, a~T

These rules specify that, if a symbol is bound to a value, then that value must be of the type
associated to the symbol by X. No demand is made in the case that the symbol 1s unbound
(equivalently, bound to a “black hole”).

Theorem 32.1 (Preservation). If e I% e, where u : X andbx e : 7, thenbs €' : 1.

Proof By rule induction on rules (32.2). Rule (32.2a) is handled by the definition of © : .
Rule (32.2b) follows by induction. Rule (32.2d) is handled by inversion of rules (32.1).
Finally, rule (32.2¢) is handled by inversion of rules (32.1) and induction. [

Theorem 32.2 (Progress). If -5 e : T and | : %, then either e valy, or e unbound,,, or

there exists €' such that e I% e

FSPCF Subtleties

But what if the type of put e; for a in e; is a function type, so that the returned value is
a A-abstraction? The body of the returned A may refer to the binding of a, which is reverted
upon return from the put. For example, consider the expression

put 17fora in A (x : nat) x 4+ geta, (32.5)

which has type nat — nat, given that a is a symbol of type nat. Let us assume, for the
sake of discussion, that a is unbound at the point at which this expression is evaluated.
Evaluating the put binds a to the number 17 and returns the function A (x : nat) x + geta.
But because a is reverted to its unbound state upon exiting the put, applying this function
to an argument will result in an error, unless a binding for a is given. Thus, if f is bound
to the result of evaluating (32.5), then the expression

put 21 fora in f(7) (32.6)

will evaluate to 28, whereas evaluation of f(7) in the absence of a surrounding binding for
a will incur an error.

FSPCF Subtleties

One way to think about this situation is to consider that fluid-bound symbols serve as an
alternative to passing extra arguments to a function to specialize its value when it is called.
To see this, let e stand for the value of expression (32.5), a A-abstraction whose body is
dependent on the binding of the symbol a. To use this function safely, it is necessary that
the programmer provide a binding for a prior to calling it. For example, the expression

put 7 fora in (e(9))
evaluates to 16, and the expression

put 8 fora in (e(9))
evaluates to 17. Writing just e(9), without a surrounding binding for a, results in a run-time
error attempting to retrieve the binding of the unbound symbol a.
This behavior can be simulated by adding an argument to the function value that will
be bound to the current binding of the symbol a at the point where the function is called.
Instead of using fluid binding, we would provide an extra argument at each call site, writing

e'(1)(9)
and

e'(8)(9),
respectively, where ¢’ is the A-abstraction

A(y:nat)r(x:nat)x + y.

FSPCF Subtleties

Adding arguments can be cumbersome, though, especially when several call sites provide
the same binding for a. Using fluid binding, we may write

put 7fora in (e(8), e(9)),
whereas using an extra argument we must write
(€'(7)(8), €'(7)(9)).

However, such redundancy can be reduced by factoring out the common part, writing

let fbee'(7)in (£(8), F(9)).

FSPCF + Fluid References

We may extend FSPCF with fluid references by adding the following syntax:

Typ t == fluid(r) T fluid fluid
Exp e 1= £l[a] & a reference
getfl(e) getfle retrieval

putfl(e;ej;e;) putfleise;ine, binding

The statics of these constructs is given by the following rules:

(32.8a)
I' F5 g~ £1[a] : £1luid(7)
'y e: fluid(7)
['Fx getfl(e): T (32.8b)
'y e:fluid(t) I'kFge it 'k e :im (32.8¢)

I' Fx putfl(e;erser) :

FSPCF + Fluid References

The dynamics of references consists of resolving the referent and deferring to the under-

lying primitives acting on symbols.

flla] valy 4~¢

Koy
e — e
>

getfl(e) I% getfl(e’)

getfl(fla]) % get[a]

Koy
e — e
>

putflieierier) > putfl(e’ieries)

putfl(fllalieries) o> putlal(er;er)

(32.9a)

(32.9b)

(32.9¢)

(32.9d)

(32.9¢)

Modernized Algol (MA): PCF+Commands

Modernized Algol, or MA, is an imperative, block-structured programming language
based on the classic language Algol.

MA extends PCF with a new syntactic sort of commands that act on assignables by
retrieving and altering their contents. Assignables are introduced by declaring them for
use within a specified scope; this is the essence of block structure. Commands are
combined by sequencing and are iterated using recursion.

MA maintains a careful separation between pure expressions, whose meaning does not
depend on any assignables, and impure commands, whose meaning is given in terms of
assignables.

A distinctive feature of MA is that it adheres to the stack discipline, which means that
assignables are allocated on entry to the scope of their declaration, and deallocated on
exit, using a conventional stack discipline.

MA Syntax: PCF + Commands

The syntax of MA is given by the following grammar, from which we have omitted
repetition of the expression syntax of PCF for the sake of brevity.

Typ 1 = cmd cmd command
Exp e = cmd(m) cmd m encapsulation
Cmd m = ret(e) rete return

bnd(e;x.m) bndx <—e;m sequence
dcl(e;a.m) dcla:=einm _new assignable
getla] @ a fetch
setla](e) a:=e assign

The syntax of PCF is given by the following grammar:

Typ t = nat nat naturals
parr(t;; 12) I — T partial function
Exp e = x X variable
zZ Z Zero
s(e) s(e) successor
ifz{eg;x.e;}(e) ifze{z< ¢y |s(x)— e;} zero test
lam{t}(x.e) Alx:T)e abstraction
ap(er;ez) eq(er) application

fix{r}(x.e) fixx:tise recursion

MA Statics

The statics of MA consists of two forms of judgment:

1. Expression typing: I' 5 e : 7.

2. Command formation: I" 5 m ok.

r I_E m ok
I' s cmd(m) : cmd (34.12)
I' Fy e :nat
I s ret(e) ok (34.1b)
'y e:cmd T, x:natbs mok
4.1
I' s bnd(e; x.m) ok (34.1c)
| :nat I'F3x, k
re-ne - "o (34.1d)
I' s dcl(e;a.m) ok
(34.1e)
I' 5.4 getla] ok
' s, e:nat
: (34.1f)

I' 5., setlal(e) ok

MA Dynamics

The dynamics of MA is defined in terms of a memory p a finite function assigning a
numeral to each of a finite set of assignables.

The dynamics of expressions consists of these two judgment forms:

1. e valy, stating that e is a value relative to X.

2. e = e', stating that the expression e steps to the expression e’.

(34.2a)
cmd(m) vals

Rule (34.2a) states that an encapsulated command is a value.

The dynamics of commands is defined in terms of states m || @, where p 1s a memory

mapping assignables to values, and m 1s a command. There are two judgments governing
such states:

1. m || p finaly. The state m || wu is complete.

2.m || w = m' || i'. The state m || w steps to the state m’ || u'; the set of active assignables

1s given by the signature .

MA Dynamics

These judgments are inductively defined by the following rules:

e valy
ret(e) || u finals

er— e
¥

ret(e) || u k> ret(e) || 1

e— e
¥

bnd(e; x.m) || © = bnd(e’;x.m) | w

e Valz
bnd(cmd(ret(e));x.m) || u > le/x|m || n

mi ||,U«'E>m’1 |

bnd(cmd(m); x.m7) || n = bnd(cmd(m); x.my) || p'

(34.3a)

(34.3b)

(34.3¢)

(34.3d)

(34.3e)

MA Dynamics

getla] ||,u®aL>e|E—>ret(e) | u®a—e

er— e
Y,a

setlal(e) || n e setlal(e) || n

e valy 4

setlal(e) | u ®a — _ |E—> rete) | u ®a e

e e
¥

dcl(e;a.m) | u = dcl(e’;a.m) || u

e vals m||,u®aL>e|E—>m’ | W ®a— €
.a

dcl(e;a.m) || u B dcl(e;a.m’) || w

evaly e valy,

dcl(e;a.ret(e)) || u = ret(e) || u

(34.3f1)

(34.32)

(34.3h)

(34.31)

(34.3])

(34.3k)

MA Type Safety

The judgment m || u oky is defined by the rule

Femok w:X

34.4)
m | 1 ok (
where the auxiliary judgment 1 : X is defined by the rule

YVae XX de wp(a)=eandevalyand 4 e : nat (34.5)

[T

Theorem 34.1 (Preservation).

1. Ife|;> e andbx e : 1, thentx €' : 7.

2. Ifm || n > m' || w, withtx m okand u : 2, thent-s m’ okand 1’ : 2.

Theorem 34.2 (Progress).

1. IfFx e : 1, then either e vals, or there exists €' such that e |;> e

2. If s, m ok and 1 : X, then either m || u finals, or m || u = m' || u' for some u' and

m’.

MA Programming ldioms

We define the sequential composition of commands, written {x <— m ; m»}, to stand for
the command bnd x <— cmd () ; m,. Binary composition readily generalizes to an n-ary
form by defining

X1 <my ;... Xy < my_1;my},
to stand for the iterated composition
{xp <my;.. A{xpo < myu_y ympl}

We sometimes write just {m; ; m,} for the composition {_ <— m ;m>} where the returned
value from m is ignored; this generalizes in the obvious way to an n-ary form.

MA Programming ldioms

A related idiom, the command do e, executes an encapsulated command and returns its
result. By definition, do e stands for the command bnd x <— ¢ ; ret x.

The conditional command if (m)m; else m, executes either m or m, according to
whether the result of executing m is zero or not:

{x <~ m;do(ifzx {z<— cmdm; | s(L) < cmdm,})}.

The returned value of the conditional is the value returned by the selected command.
The while loop command while (m,)m, repeatedly executes the command m, while
the command m; yields a non-zero number. It is defined as follows:

do (fixloop : cmd is cmd (if (m) {ret z} else {m, ; do loop})).

A procedure is a function of type T — cmd that takes an argument of some type t and
yields an unexecuted command as result. Many procedures have the form A (x : 7) cmd m,
which we abbreviate to proc (x :) m. A procedure call is the composition of a function
application with the activation of the resulting command. If e; is a procedure and e; is its
argument, then the procedure call call e;(e;) is defined to be the command do (e;(e>)),
which immediately runs the result of applying e; to e,.

MA Programming ldioms

As an example, here is a procedure of type nat — cmd that returns the factorial of its
argument:

proc (x:nat) {
dcl r := 1 in

dcl a := x in
{ while (@ a) {
y < @r
; Zz < @ a
; ¢ o= (x-z+1)X y
; a = z-1

; X <« @ r
; ret x

MA + Typed Commands / Assignables

To admit declarations that return values other than nat and to admit assignables with
contents of types other than nat, we must rework the statics of MA to record the returned
type of a command and to record the type of the contents of each assignable. First, we
generalize the finite set X of active assignables to assign a mobile type to each active
assignable so that X has the form of a finite set of assumptions of the form a ~ 7, where a
is an assignable. Second, we replace the judgment I" =5 m ok by the more general form
[" =y m + 7, stating that m is a well-formed command returning a value of type t. Third,
the type cmd 1s generalized to cmd(7), which 1s written in examples as t cmd, to specify the
return type of the encapsulated command.

MA + Typed Commands / Assignables

The statics given in Section 34.1.1 is generalized to admit typed commands and typed
assignables as follows:

I'Fsm~1

34.6a
I' sy cmd(m) : cmd(7) ()
'Fye:t (34.6b)
[y ret(e) 1 '

Fye:cmd(t) Tox:thbym~ 1 (34.60)
.6c

[' b bnd(e; x.m) ~ 1’

F'Fye:t Tmobile TI'by,~rm~ 1t 7’ mobile

: (34.6d)

[' by del(e;a.m) ~ 1/
(34.6¢)

[' x4~ getlal ~ 1

I'Fys~re:t

za (34.6f)

[' by 4~ setlal(e) + 1

MA + Typed Commands / Assignables

Apart from the generalization to track returned types and content types, the most im-
portant change is that in rule (34.6d) both the type of a declared assignable and the return
type of the declaration is required to be mobile. The definition of the judgment T mobile is
guided by the following mobility condition:

if T mobile, Fx e : t and e valy, then Fy e : t and e valy. (34.7)

That is, a value of mobile type may not depend on any active assignables.

As long as the successor operation is evaluated eagerly, the type nat is mobile:

(34.8)

nat mobile
Similarly, a product of mobile types may safely be deemed mobile, if pairs are evaluated
eagerly:

71 mobile 1, mobile

: (34.9)
71 X T, mobile
And the same goes for sums, if the injections are evaluated eagerly:
71 mobile 1, mobile (34.10)

71 + T, mobile

MA + Typed Commands / Assignables

The mobility restriction on the statics of declarations ensures that the type associated to
an assignable is always mobile. We may therefore assume, without loss of generality, that
the types associated to the assignables in the signature ¥ are mobile.

Theorem 34.3 (Preservation for Typed Commands).

1. Ifelge’andl—ge:r, then by e’ : 1.

2. If m || ,ulgm/ | W', withts m ~tand pu: 2, thents m’ ~tand ' @ 2.
Theorem 34.4 (Progress for Typed Commands).

1. If\x e : 1, then either e vals, or there exists ¢’ such that e — ¢'.
>

2. Ifbs m ~ tand u : X, then either m || u finals orm || u = m' || u' for some u' and

m'.

MA + Assignable References

A reference to an assignable a is a value, written &a, of reference type that determines
the assignable a. A reference to an assignable provides the capability to get or set the
contents of that assignable, even if the assignable itself is not in scope when it is used.

Two references can be compared for equality to test whether they govern the same

underlying assignable. Two references that govern the same underlying assignable are
aliases.

Reference types are compatible with both a scoped and a scope-free allocation of
assignables. When assignables are scoped, the range of significance of a reference type
is limited to the scope of the assignable to which it refers. Reference types are therefore
immobile, so that they cannot be returned from the body of a declaration, nor stored in
an assignable.

Supporting mutability requires that assignables be given a scope-free dynamics, so that
their lifetime persists beyond the scope of their declaration. Consequently, all types are
mobile, so that a value of any type may be stored in an assignable or returned from a
command.

MA + Scoped Assignhable References

Typ = ref(t) Tref assignable
Exp e = refla] &a reference
Cmd m 1= getref(e) % e contents

setref(e;;e;) e;*=ep update

The statics of reference types is defined by the following rules:

(35.1a)
I' Fx g~r reflal : ref(T)
['Fy e:ref(t
z ¢ : reflr) (35.1b)
[' Fy getref(e) ¥ 1
'ty ey:ref(t) 'y et
x e : ref(r) s € (35.10)

I' by setref(ej;en) ~ 1

MA + Scoped Assignable References

The dynamics of reference types defers to the corresponding operations on assignables,
and does not alter the underlying dynamics of assignables:

(35.2a)
refla] valy 4~¢
e ¢
> : (35.2b)
getret(e) | u > getref(e) || 1
35.2
getret(reflal) || u —— getlal || (53-2¢)
e| = e
>
/ (35.2d)
setref(ej;ep) || n |E> setref(e};e) ||
(35.2¢)

setref(reflal;e) || n IE—> setla](e) || u
,a~T

MA + Scope-Free Assighable References

With immobile references it is impossible to build data structures containing
references, or to return references from procedures.

To allow this, we must arrange that the lifetime of an assignable extend beyond its
scope. In other words, we must give up stack allocation for heap allocation.

Assignables that persist beyond their scope of declaration are called scope-free, or
just free, assignables. When all assignables are free, every type is mobile and so any
value, including a reference, may be used in a data structure.

Supporting free assignables amounts to changing the dynamics so that allocation of
assignables persists across transitions. We use transition judgments of the form

vI{m || p}r—vE{m | u}.

MA + Scope-Free Assignhable References

e vals
vE {ret(e) | n} final (35.3a)
e ¢
z (35.3b)
vE{ret(e) | u} —> v E{ret(e) || n}
e ¢
z (35.3¢)
VX {bnd(e;x.m) || u} — v X {bnd(e;x.m) | n}
e valy
V 2 {bnd(cmd(ret(e));x.m) | u} — v 2 {[e/x]m || u} (35.3d)
vEI{m | p}r—vE{m| || '} (35.3¢)

v 2 {bnd(cmd(m;); x.my) || n} —> v X' {bnd(cmd(m); x.myz) || 1’}

MA + Scope-Free Assignhable References

(35.3f)
v, a~t{getlal | u®a—e}r—vi a~t{ret(e) || uQ®a—e}

e é

z (35.3g)

v {setla](e) | u} —> v X {setlal(e) || n}
e vals 4~

: 35.3h

vYX,a~t{setla]le) | u®a— _}r— v, a~1t{retle) | u ®a— e} ()
er— ¢

z (35.31)

v X {dcl(e;a.m) | u} — v E{dcl(e;a.m) || n}
¢ valy (35.3i)

v {dcl(e;am) | ulr— v, a~t{m|nu®a< e}

MA + Scope-Free Assignhable References

The language RMA extends MA with references to free assignables. Its dynamics is
similar to that of references to scoped assignables given earlier.

e ¢
>z (35.4a)
V2 {getref(e) | u} —> v X {getref(e) || u}

(35.4b)
v 2 {getref(refla]) || u} > v X {getla] || n}
e = e
> (35.4¢)
v X {setref(e;ey) || w} —> v X {setref(ej;er) | 1}
(35.44)

v X {setref(reflal;ey) | u} —— v X {setla](er) || u}

MA + Scope-Free Assignhable References

As an example of using RMA, consider the command newref[t](e) defined by
dcla :=e inret (&a). (35.5)

This command allocates a fresh assignable and returns a reference to it. Its static and
dynamics are derived from the foregoing rules as follows:

I'Fye:t

[s newref[t](e) ~ ref(7) (35.6)
e ¢
z (35.7a)
VY {newref[t](e) | u} —> v X {newref[t](e) || 1}
¢ valy (35.7b)

VXY {newref[t](e) | u} ——> v X,a~1t{ret(refla]) | u ®a — e}

Oftentimes, the command newref[7](e) is taken as primitive, and the declaration command
is omitted. In that case, all assignables are accessed by reference, and no direct access to
assignables is provided.

MA + Scope-Free Assignhable References

Although the proof of safety for references to scoped assignables presents few difficulties,
the safety for free assignables is tricky. The main difficulty is to account for cyclic depen-
dencies within data structures. The contents of one assignable may contain a reference to
itself, or a reference to another assignable that contains a reference to it, and so forth. For
example, consider the following procedure e of type nat — nat cmd:

proc(x :nat){if (x)ret(l)else{f < @a;y <« f(x —1);ret(x *x y)}}.

Let u be a memory of the form ©’ ® a < e in which the contents of a contains, via the
body of the procedure, a reference to a itself. Indeed, if the procedure e is called with a
non-zero argument, it will “call itself” by indirect reference through a.

Cyclic dependencies complicate the definition of the judgment i : X. It is defined by
the following rule:

Fsm~1t Fyu: X

(35.8)
vX{m]| un} ok

The first premise of the rule states that the command m 1s well-formed relative to . The
second premise states that the memory i conforms to X, relative to all of % so that cyclic
dependencies are permitted. The judgment -y w : X is defined as follows:

YVa~t€X de pla)=eand Fy et
'_E//LZE

(35.9)

MA + Scope-Free Assignhable References

Theorem 35.1 (Preservation).

1. Ifl—ge:tande?e’, then vy €' : .

2. Ifvi{m | ulokandvi{m | u}r— v {m' || '}, thenvZ {m | u'} ok

Theorem 35.2 (Progress).

1. If b5 e : 1, then either e vals, or there exists ¢’ such that e l§> e

2. IfvE{m | u} okthen eitherv{m | pu} finalorvi{m|u}r— v {m' | u}
for some X', 1/, and m'.

