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Symbols vs. Variables

A symbol is an atomic datum with no internal structure. 

Whereas a variable is given meaning by substitution, a symbol is given meaning by a 
family of operations indexed by symbols. A symbol is just a name, or index, for a 
family of operations. 

Many different interpretations may be given to symbols 
• fluid binding, dynamic classification, mutable storage, communication channels. 

A type is associated to each symbol whose interpretation depends on the particular 
application. 
• For example, in the case of mutable storage, the type of a symbol constrains the 

contents of the cell named by that symbol to values of that type. 



SPCF: PCF with Symbol Declaration

Declaring new symbols for use within a specified scope. 

• The expression new a ∼ ρ in e introduces a “new” symbol a with associated type 
ρ for use within e. 

• The declared symbol a is “new” in that it is bound by the declaration within e 
and so may be renamed at will to ensure that it differs from any finite set of 
active symbols. 

• Whereas the statics determines the scope of a declared symbol, its range of 
significance, or extent, is determined by the dynamics. 
• Scoped dynamics: a symbol can only be used within its scope
• Scope-free dynamics: a symbol can exceed its scope



SPCF: PCF with Symbol Declaration
278 Symbols

we will only be concerned with symbol allocation, and the introduction and elimination of
symbols as values of a type of plain symbols.

The syntax for symbol declaration in SPCF is given by the following grammar:

Exp e ::= new{τ }(a.e) new a ∼ τ in e generation

The statics of symbol declaration makes use of a signature, or symbol context, that associates
a type to each of a finite set of symbols. We use the letter " to range over signatures, which
are finite sets of pairs a ∼ τ , where a is a symbol and τ is a type. The typing judgment
# "" e : τ is parameterized by a signature " associating types to symbols. In effect,
there is an infinite family of typing judgments, one for each choice of ". The expression
new a ∼ τ in e shifts from one instance of the family to another by adding a new symbol
to ".

The statics of symbol declaration makes use of a judgment, τ mobile, whose definition
depends on whether the dynamics is scoped. In a scoped dynamics, mobility is defined so
that the computed value of a mobile type cannot depend on any symbol. By constraining
the scope of a declaration to have mobile type, we can, under this interpretation, ensure
that the extent of a symbol is confined to its scope. In a free dynamics, every type is
deemed mobile, because the dynamics ensures that the scope of a symbol is widened to
accommodate the possibility that the value returned from the scope of a declaration may
depend on the declared symbol. The term “mobile” reflects the informal idea that symbols
may or may not be “moved” from the scope of their declaration according to the dynamics
given to them. A free dynamics allows symbols to be moved freely, whereas a scoped
dynamics limits their range of motion.

The statics of symbol declaration itself is given by the following rule:

# "",a∼ρ e : τ τ mobile

# "" new{ρ}(a.e) : τ
(31.1)

As mentioned, the condition on τ ensures that the returned value does not escape its scope,
if any.

31.1.1 Scoped Dynamics

The scoped dynamics of symbol declaration is given by a transition judgment of the form
e #−→

"
e′ indexed by a signature " specifying the active symbols of the transition. Either e

or e′ may involve the symbols declared in ", but no others.

e #−−−→
",a∼ρ

e′

new{ρ}(a.e) #−→
"

new{ρ}(a.e′)
(31.2a)

e val"
new{ρ}(a.e) #−→

"
e (31.2b)
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SPCF Statics

278 Symbols

we will only be concerned with symbol allocation, and the introduction and elimination of
symbols as values of a type of plain symbols.

The syntax for symbol declaration in SPCF is given by the following grammar:

Exp e ::= new{τ }(a.e) new a ∼ τ in e generation

The statics of symbol declaration makes use of a signature, or symbol context, that associates
a type to each of a finite set of symbols. We use the letter " to range over signatures, which
are finite sets of pairs a ∼ τ , where a is a symbol and τ is a type. The typing judgment
# "" e : τ is parameterized by a signature " associating types to symbols. In effect,
there is an infinite family of typing judgments, one for each choice of ". The expression
new a ∼ τ in e shifts from one instance of the family to another by adding a new symbol
to ".

The statics of symbol declaration makes use of a judgment, τ mobile, whose definition
depends on whether the dynamics is scoped. In a scoped dynamics, mobility is defined so
that the computed value of a mobile type cannot depend on any symbol. By constraining
the scope of a declaration to have mobile type, we can, under this interpretation, ensure
that the extent of a symbol is confined to its scope. In a free dynamics, every type is
deemed mobile, because the dynamics ensures that the scope of a symbol is widened to
accommodate the possibility that the value returned from the scope of a declaration may
depend on the declared symbol. The term “mobile” reflects the informal idea that symbols
may or may not be “moved” from the scope of their declaration according to the dynamics
given to them. A free dynamics allows symbols to be moved freely, whereas a scoped
dynamics limits their range of motion.

The statics of symbol declaration itself is given by the following rule:

# "",a∼ρ e : τ τ mobile

# "" new{ρ}(a.e) : τ
(31.1)

As mentioned, the condition on τ ensures that the returned value does not escape its scope,
if any.

31.1.1 Scoped Dynamics

The scoped dynamics of symbol declaration is given by a transition judgment of the form
e #−→

"
e′ indexed by a signature " specifying the active symbols of the transition. Either e

or e′ may involve the symbols declared in ", but no others.

e #−−−→
",a∼ρ

e′

new{ρ}(a.e) #−→
"

new{ρ}(a.e′)
(31.2a)

e val"
new{ρ}(a.e) #−→

"
e (31.2b)
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• In a scoped dynamics, mobility is defined so that the computed value of a 
mobile type cannot depend on any symbol. By constraining the scope of a 
declaration to have mobile type, we can, under this interpretation, ensure 
that the extent of a symbol is confined to its scope. 

• In a scope-free dynamics, every type is deemed mobile, because the 
dynamics ensures that the scope of a symbol is widened to accommodate 
the possibility that the value returned from the scope of a declaration may 
depend on the declared symbol. 

• The term “mobile” reflects the informal idea that symbols may or may not be 
“moved” from the scope of their declaration according to the dynamics given 
to them. A scope-free dynamics allows symbols to be moved freely, whereas 
a scoped dynamics limits their range of motion. 



SPCF Scoped Dynamics

278 Symbols

we will only be concerned with symbol allocation, and the introduction and elimination of
symbols as values of a type of plain symbols.

The syntax for symbol declaration in SPCF is given by the following grammar:

Exp e ::= new{τ }(a.e) new a ∼ τ in e generation

The statics of symbol declaration makes use of a signature, or symbol context, that associates
a type to each of a finite set of symbols. We use the letter " to range over signatures, which
are finite sets of pairs a ∼ τ , where a is a symbol and τ is a type. The typing judgment
# "" e : τ is parameterized by a signature " associating types to symbols. In effect,
there is an infinite family of typing judgments, one for each choice of ". The expression
new a ∼ τ in e shifts from one instance of the family to another by adding a new symbol
to ".

The statics of symbol declaration makes use of a judgment, τ mobile, whose definition
depends on whether the dynamics is scoped. In a scoped dynamics, mobility is defined so
that the computed value of a mobile type cannot depend on any symbol. By constraining
the scope of a declaration to have mobile type, we can, under this interpretation, ensure
that the extent of a symbol is confined to its scope. In a free dynamics, every type is
deemed mobile, because the dynamics ensures that the scope of a symbol is widened to
accommodate the possibility that the value returned from the scope of a declaration may
depend on the declared symbol. The term “mobile” reflects the informal idea that symbols
may or may not be “moved” from the scope of their declaration according to the dynamics
given to them. A free dynamics allows symbols to be moved freely, whereas a scoped
dynamics limits their range of motion.

The statics of symbol declaration itself is given by the following rule:

# "",a∼ρ e : τ τ mobile

# "" new{ρ}(a.e) : τ
(31.1)

As mentioned, the condition on τ ensures that the returned value does not escape its scope,
if any.

31.1.1 Scoped Dynamics

The scoped dynamics of symbol declaration is given by a transition judgment of the form
e #−→

"
e′ indexed by a signature " specifying the active symbols of the transition. Either e

or e′ may involve the symbols declared in ", but no others.

e #−−−→
",a∼ρ

e′

new{ρ}(a.e) #−→
"

new{ρ}(a.e′)
(31.2a)

e val"
new{ρ}(a.e) #−→

"
e (31.2b)
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279 31.1 Symbol Declaration

Rule (31.2a) specifies that evaluation takes place within the scope of the declaration of a
symbol. Rule (31.2b) specifies that the declared symbol is “forgotten” once its scope has
been evaluated.

The definition of the judgment τ mobile must be chosen to ensure that the following
mobility condition is satisfied:

If τ mobile, !",a∼ρ e : τ , and e val",a∼ρ , then !" e : τ and e val" .

For example, in the presence of symbol references (see Section 31.2 below), a function
type cannot be deemed mobile, because a function may contain a reference to a local
symbol. The type nat may only be deemed mobile if the successor is evaluated eagerly,
for otherwise a symbol reference may occur within a value of this type, invalidating the
condition.

Theorem 31.1 (Preservation). If !" e : τ and e #−→
"

e′, then !" e′ : τ .

Proof By induction on the dynamics of symbol declaration. Rule (31.2a) follows by
induction, applying rule (31.1). Rule (31.2b) follows from the condition on mobility.

Theorem 31.2 (Progress). If !" e : τ , then either e #−→
"

e′, or e val" .

Proof There is only one rule to consider, rule (31.1). By induction, we have either
e #−−−→

",a∼ρ
e′, in which case rule (31.2a) applies, or e val",a∼ρ , in which case by the

mobility condition we have e val" , and hence rule (31.2b) applies.

31.1.2 Scope-Free Dynamics

The scope-free dynamics of symbols is defined by a transition system between states of
the form ν " { e }, where " is a signature and e is an expression over this signature. The
judgment ν " { e } #−→ ν "′ { e′ } states that evaluation of e relative to symbols " results
in the expression e′ in the extension "′ of ".

ν " { new{ρ}(a.e) } #−→ ν ", a ∼ ρ { e }
(31.3)

Rule (31.3) specifies that symbol generation enriches the signature with the newly intro-
duced symbol by extending the signature for all future transitions.

All other rules of the dynamics are changed to account for the allocated symbols. For
example, the dynamics of function application cannot be inherited from Chapter 19 but is
reformulated as follows:

ν " { e1 } #−→ ν "′ { e′
1 }

ν " { e1(e2) } #−→ ν "′ { e′
1(e2) }

(31.4a)

ν " { λ (x : τ ) e(e2) } #−→ ν " { [e2/x]e }
(31.4b)
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SPCF Scoped Dynamics

279 31.1 Symbol Declaration

Rule (31.2a) specifies that evaluation takes place within the scope of the declaration of a
symbol. Rule (31.2b) specifies that the declared symbol is “forgotten” once its scope has
been evaluated.

The definition of the judgment τ mobile must be chosen to ensure that the following
mobility condition is satisfied:

If τ mobile, !",a∼ρ e : τ , and e val",a∼ρ , then !" e : τ and e val" .

For example, in the presence of symbol references (see Section 31.2 below), a function
type cannot be deemed mobile, because a function may contain a reference to a local
symbol. The type nat may only be deemed mobile if the successor is evaluated eagerly,
for otherwise a symbol reference may occur within a value of this type, invalidating the
condition.

Theorem 31.1 (Preservation). If !" e : τ and e #−→
"

e′, then !" e′ : τ .

Proof By induction on the dynamics of symbol declaration. Rule (31.2a) follows by
induction, applying rule (31.1). Rule (31.2b) follows from the condition on mobility.

Theorem 31.2 (Progress). If !" e : τ , then either e #−→
"

e′, or e val" .

Proof There is only one rule to consider, rule (31.1). By induction, we have either
e #−−−→

",a∼ρ
e′, in which case rule (31.2a) applies, or e val",a∼ρ , in which case by the

mobility condition we have e val" , and hence rule (31.2b) applies.

31.1.2 Scope-Free Dynamics

The scope-free dynamics of symbols is defined by a transition system between states of
the form ν " { e }, where " is a signature and e is an expression over this signature. The
judgment ν " { e } #−→ ν "′ { e′ } states that evaluation of e relative to symbols " results
in the expression e′ in the extension "′ of ".

ν " { new{ρ}(a.e) } #−→ ν ", a ∼ ρ { e }
(31.3)

Rule (31.3) specifies that symbol generation enriches the signature with the newly intro-
duced symbol by extending the signature for all future transitions.

All other rules of the dynamics are changed to account for the allocated symbols. For
example, the dynamics of function application cannot be inherited from Chapter 19 but is
reformulated as follows:

ν " { e1 } #−→ ν "′ { e′
1 }

ν " { e1(e2) } #−→ ν "′ { e′
1(e2) }

(31.4a)

ν " { λ (x : τ ) e(e2) } #−→ ν " { [e2/x]e }
(31.4b)
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SPCF Scope-Free Dynamics

279 31.1 Symbol Declaration

Rule (31.2a) specifies that evaluation takes place within the scope of the declaration of a
symbol. Rule (31.2b) specifies that the declared symbol is “forgotten” once its scope has
been evaluated.

The definition of the judgment τ mobile must be chosen to ensure that the following
mobility condition is satisfied:

If τ mobile, !",a∼ρ e : τ , and e val",a∼ρ , then !" e : τ and e val" .

For example, in the presence of symbol references (see Section 31.2 below), a function
type cannot be deemed mobile, because a function may contain a reference to a local
symbol. The type nat may only be deemed mobile if the successor is evaluated eagerly,
for otherwise a symbol reference may occur within a value of this type, invalidating the
condition.

Theorem 31.1 (Preservation). If !" e : τ and e #−→
"

e′, then !" e′ : τ .

Proof By induction on the dynamics of symbol declaration. Rule (31.2a) follows by
induction, applying rule (31.1). Rule (31.2b) follows from the condition on mobility.

Theorem 31.2 (Progress). If !" e : τ , then either e #−→
"

e′, or e val" .

Proof There is only one rule to consider, rule (31.1). By induction, we have either
e #−−−→

",a∼ρ
e′, in which case rule (31.2a) applies, or e val",a∼ρ , in which case by the

mobility condition we have e val" , and hence rule (31.2b) applies.

31.1.2 Scope-Free Dynamics

The scope-free dynamics of symbols is defined by a transition system between states of
the form ν " { e }, where " is a signature and e is an expression over this signature. The
judgment ν " { e } #−→ ν "′ { e′ } states that evaluation of e relative to symbols " results
in the expression e′ in the extension "′ of ".

ν " { new{ρ}(a.e) } #−→ ν ", a ∼ ρ { e }
(31.3)

Rule (31.3) specifies that symbol generation enriches the signature with the newly intro-
duced symbol by extending the signature for all future transitions.

All other rules of the dynamics are changed to account for the allocated symbols. For
example, the dynamics of function application cannot be inherited from Chapter 19 but is
reformulated as follows:

ν " { e1 } #−→ ν "′ { e′
1 }

ν " { e1(e2) } #−→ ν "′ { e′
1(e2) }

(31.4a)

ν " { λ (x : τ ) e(e2) } #−→ ν " { [e2/x]e }
(31.4b)
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SPCF Scope-Free Dynamics

280 Symbols

These rules shuffle around the signature to account for symbol declarations within the
constituent expressions of the application. Similar rules are required for all other constructs
of SPCF.

Theorem 31.3 (Preservation). If ν " { e } !−→ ν "′ { e′ } and %" e : τ , then "′ ⊇ " and
%"′ e′ : τ .

Proof There is only one rule to consider, rule (31.3), which is handled by inversion of
rule (31.1).

Theorem 31.4 (Progress). If %" e : τ , then either e val" or ν " { e } !−→ ν "′ { e′ } for
some "′ and e′.

Proof Immediate, by rule (31.3).

31.2 Symbol References

Symbols are not themselves values, but they may be used to form values. One useful
example is provided by the type τ sym of symbol references. A value of this type has the
form ’a, where a is a symbol in the signature. To compute with a reference, we may
branch according to whether it is a reference to a specified symbol. The syntax of symbol
references is given by the following grammar:

Typ τ ::= sym(τ ) τ sym symbols
Exp e quote[a] ’a reference

is[a]{t.τ }(e; e1; e2) if e is a then e1 ow e2 comparison

The expression quote[a] is a reference to the symbol a, a value of type sym(τ ). The
expression is[a]{t.τ }(e; e1; e2) compares the value of e, which is a reference to some
symbol b, with the given symbol a. If b is a, the expression evaluates to e1, and otherwise
to e2.

31.2.1 Statics

The typing rules for symbol references are as follows:

$ %",a∼ρ quote[a] : sym(ρ)
(31.5a)

$ %",a∼ρ e : sym(ρ ′) $ %",a∼ρ e1 : [ρ/t]τ $ %",a∼ρ e2 : [ρ ′/t]τ
$ %",a∼ρ is[a]{t.τ }(e; e1; e2) : [ρ ′/t]τ

(31.5b)

Rule (31.5a) is the introduction rule for the type sym(ρ). It states that if a is a symbol
with associated type ρ, then quote[a] is an expression of type sym(ρ). Rule (31.5b) is the
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PCF with Symbol References
A symbol reference is an expression whose purpose is to refer to a particular 
symbol. 

Symbol references are values of a type ρ sym and are written ’a for some 
symbol a with associated type ρ. 

The elimination form for the type ρ sym is a conditional branch that determines 
whether a symbol reference refers to a statically specified symbol. 

The statics of the elimination form ensures that, in the positive case, the type 
associated to the referenced symbol is manifested, whereas in the negative 
case, no type information can be gleaned from the test. 



PCF with Symbol References

280 Symbols

These rules shuffle around the signature to account for symbol declarations within the
constituent expressions of the application. Similar rules are required for all other constructs
of SPCF.

Theorem 31.3 (Preservation). If ν " { e } !−→ ν "′ { e′ } and %" e : τ , then "′ ⊇ " and
%"′ e′ : τ .

Proof There is only one rule to consider, rule (31.3), which is handled by inversion of
rule (31.1).

Theorem 31.4 (Progress). If %" e : τ , then either e val" or ν " { e } !−→ ν "′ { e′ } for
some "′ and e′.

Proof Immediate, by rule (31.3).

31.2 Symbol References

Symbols are not themselves values, but they may be used to form values. One useful
example is provided by the type τ sym of symbol references. A value of this type has the
form ’a, where a is a symbol in the signature. To compute with a reference, we may
branch according to whether it is a reference to a specified symbol. The syntax of symbol
references is given by the following grammar:

Typ τ ::= sym(τ ) τ sym symbols
Exp e quote[a] ’a reference

is[a]{t.τ }(e; e1; e2) if e is a then e1 ow e2 comparison

The expression quote[a] is a reference to the symbol a, a value of type sym(τ ). The
expression is[a]{t.τ }(e; e1; e2) compares the value of e, which is a reference to some
symbol b, with the given symbol a. If b is a, the expression evaluates to e1, and otherwise
to e2.

31.2.1 Statics

The typing rules for symbol references are as follows:

$ %",a∼ρ quote[a] : sym(ρ)
(31.5a)

$ %",a∼ρ e : sym(ρ ′) $ %",a∼ρ e1 : [ρ/t]τ $ %",a∼ρ e2 : [ρ ′/t]τ
$ %",a∼ρ is[a]{t.τ }(e; e1; e2) : [ρ ′/t]τ

(31.5b)

Rule (31.5a) is the introduction rule for the type sym(ρ). It states that if a is a symbol
with associated type ρ, then quote[a] is an expression of type sym(ρ). Rule (31.5b) is the
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PCF with Symbol References

280 Symbols

These rules shuffle around the signature to account for symbol declarations within the
constituent expressions of the application. Similar rules are required for all other constructs
of SPCF.

Theorem 31.3 (Preservation). If ν " { e } !−→ ν "′ { e′ } and %" e : τ , then "′ ⊇ " and
%"′ e′ : τ .

Proof There is only one rule to consider, rule (31.3), which is handled by inversion of
rule (31.1).

Theorem 31.4 (Progress). If %" e : τ , then either e val" or ν " { e } !−→ ν "′ { e′ } for
some "′ and e′.

Proof Immediate, by rule (31.3).

31.2 Symbol References

Symbols are not themselves values, but they may be used to form values. One useful
example is provided by the type τ sym of symbol references. A value of this type has the
form ’a, where a is a symbol in the signature. To compute with a reference, we may
branch according to whether it is a reference to a specified symbol. The syntax of symbol
references is given by the following grammar:

Typ τ ::= sym(τ ) τ sym symbols
Exp e quote[a] ’a reference

is[a]{t.τ }(e; e1; e2) if e is a then e1 ow e2 comparison

The expression quote[a] is a reference to the symbol a, a value of type sym(τ ). The
expression is[a]{t.τ }(e; e1; e2) compares the value of e, which is a reference to some
symbol b, with the given symbol a. If b is a, the expression evaluates to e1, and otherwise
to e2.

31.2.1 Statics

The typing rules for symbol references are as follows:

$ %",a∼ρ quote[a] : sym(ρ)
(31.5a)

$ %",a∼ρ e : sym(ρ ′) $ %",a∼ρ e1 : [ρ/t]τ $ %",a∼ρ e2 : [ρ ′/t]τ
$ %",a∼ρ is[a]{t.τ }(e; e1; e2) : [ρ ′/t]τ

(31.5b)

Rule (31.5a) is the introduction rule for the type sym(ρ). It states that if a is a symbol
with associated type ρ, then quote[a] is an expression of type sym(ρ). Rule (31.5b) is the
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PCF with Symbol References

281 31.2 Symbol References

elimination rule for the type sym(ρ). The type associated to the given symbol a need not
be the same as the type of the symbol referred to by the expression e. If e evaluates to a
reference to a, then these types will coincide, but if it refers to another symbol, b != a, then
these types may well differ.

With this in mind, consider rule (31.5b). A priori there is a discrepancy between the type
ρ of a and the type ρ ′ of the symbol referred to by e. This discrepancy is mediated by
the type operator t.τ .1 Regardless of the outcome of the comparison, the overall type of
the expression is [ρ ′/t]τ . If e evaluates to the symbol a, then we “learn” that the types ρ ′

and ρ coincide, because the specified and referenced symbol coincide. This coincidence is
reflected by the type [ρ/t]τ for e1. If e evaluates to some other symbol, a′ != a, then the
comparison evaluates to e2, which is required to have type [ρ ′/t]τ ; no further information
about the type of the symbol is acquired in this branch.

31.2.2 Dynamics

The (scoped) dynamics of symbol references is given by the following rules:

quote[a] val#,a∼ρ

(31.6a)

is[a]{t.τ }(quote[a]; e1; e2) $−−−→
#,a∼ρ

e1
(31.6b)

(a != a′)
is[a]{t.τ }(quote[a′]; e1; e2) $−−−−−−−→

#,a∼ρ,a′∼ρ ′
e2

(31.6c)

e $−−−→
#,a∼ρ

e′

is[a]{t.τ }(e; e1; e2) $−−−→
#,a∼ρ

is[a]{t.τ }(e′; e1; e2)
(31.6d)

Rules (31.6b) and (31.6c) specify that is[a]{t.τ }(e; e1; e2) branches according to whether
the value of e is a reference to the symbol a.

31.2.3 Safety

To ensure that the mobility condition is satisfied, it is important that symbol reference types
not be deemed mobile.

Theorem 31.5 (Preservation). If '# e : τ and e $−→
#

e′, then '# e′ : τ .

Proof By rule induction on rules (31.6). The most interesting case is rule (31.6b). When
the comparison is positive, the types ρ and ρ ′ must be the same, because each symbol has
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PCF with Symbol References

281 31.2 Symbol References

elimination rule for the type sym(ρ). The type associated to the given symbol a need not
be the same as the type of the symbol referred to by the expression e. If e evaluates to a
reference to a, then these types will coincide, but if it refers to another symbol, b != a, then
these types may well differ.

With this in mind, consider rule (31.5b). A priori there is a discrepancy between the type
ρ of a and the type ρ ′ of the symbol referred to by e. This discrepancy is mediated by
the type operator t.τ .1 Regardless of the outcome of the comparison, the overall type of
the expression is [ρ ′/t]τ . If e evaluates to the symbol a, then we “learn” that the types ρ ′

and ρ coincide, because the specified and referenced symbol coincide. This coincidence is
reflected by the type [ρ/t]τ for e1. If e evaluates to some other symbol, a′ != a, then the
comparison evaluates to e2, which is required to have type [ρ ′/t]τ ; no further information
about the type of the symbol is acquired in this branch.

31.2.2 Dynamics

The (scoped) dynamics of symbol references is given by the following rules:

quote[a] val#,a∼ρ

(31.6a)

is[a]{t.τ }(quote[a]; e1; e2) $−−−→
#,a∼ρ

e1
(31.6b)

(a != a′)
is[a]{t.τ }(quote[a′]; e1; e2) $−−−−−−−→

#,a∼ρ,a′∼ρ ′
e2

(31.6c)

e $−−−→
#,a∼ρ

e′

is[a]{t.τ }(e; e1; e2) $−−−→
#,a∼ρ

is[a]{t.τ }(e′; e1; e2)
(31.6d)

Rules (31.6b) and (31.6c) specify that is[a]{t.τ }(e; e1; e2) branches according to whether
the value of e is a reference to the symbol a.

31.2.3 Safety

To ensure that the mobility condition is satisfied, it is important that symbol reference types
not be deemed mobile.

Theorem 31.5 (Preservation). If '# e : τ and e $−→
#

e′, then '# e′ : τ .

Proof By rule induction on rules (31.6). The most interesting case is rule (31.6b). When
the comparison is positive, the types ρ and ρ ′ must be the same, because each symbol has
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at most one associated type. Therefore, e1, which has type [ρ ′/t]τ , also has type [ρ/t]τ ,
as required.

Lemma 31.6 (Canonical Forms). If "# e : sym(ρ) and e val# , then e = quote[a] for
some a such that # = #′, a ∼ ρ.

Proof By rule induction on rules (31.5), taking account of the definition of values.

Theorem 31.7 (Progress). Suppose that "# e : τ . Then either e val# , or there exists e′

such that e $−→
#

e′.

Proof By rule induction on rules (31.5). For example, consider rule (31.5b), in which we
have that is[a]{t.τ }(e; e1; e2) has some type τ and that e : sym(ρ) for some ρ. By induction
either rule (31.6d) applies, or else we have that e val# , in which case we are assured by
Lemma 31.6 that e is quote[a] for some symbol b of type ρ declared in #. But then
progress is assured by rules (31.6b) and (31.6c), because equality of symbols is decidable
(either a is b or it is not).

31.3 Notes

The concept of a symbol in a programming language was considered by McCarthy in the
original formulation of Lisp (McCarthy, 1965). Unfortunately, symbols were not clearly
distinguished from variables, leading to unexpected behaviors (see Chapter 32). The present
account of symbols was influenced by Pitts and Stark (1993) on the declaration of names in
the π -calculus (Milner, 1999). The associated type of a symbol may be used for applications
that associate information with the symbol, such as its fluid binding (see Chapter 32) or its
string representation (its “print name” in Lisp jargon).

Exercises

31.1. The elimination form for symbol references given in Section 31.2 is “one-sided”
in the sense that one may compare a reference to an unknown symbol to a known
symbol with a known type. An alternative elimination form provides an equality test
on symbol references. Formulate such a variation.

31.2. A list of type (τ sym × τ ) list is called an association list. Using your solution to
Exercise 31.1 define a function find that sends an association list to a mapping of
type τ sym ⇀ τ opt.

31.3. It would be more efficient to represent an association list by a balanced tree associating
values to symbols, but to do so would require a total ordering on symbols (at least
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FSPCF: SPCF with Fluid Binding

Fluid binding associates to a symbol (and not a variable) a value of a specified type 
within a specified scope. The identification principle for bound variables is retained, 
type safety is not compromised, yet some of the benefits of dynamic scoping are 
preserved. 

32 Fluid Binding

In this chapter, we return to the concept of dynamic scoping of variables that was criticized
in Chapter 8. There it was observed that dynamic scoping is problematic for at least two
reasons. One is that renaming of bound variables is not respected; another is that dynamic
scope is not type safe. These violations of the expected behavior of variables is intolerable,
because they are at variance with mathematical practice and because they compromise
modularity.

It is possible, however, to recover a type-safe analog of dynamic scoping by divorcing
it from the concept of a variable, and instead introducing a new mechanism, called fluid
binding. Fluid binding associates to a symbol (and not a variable) a value of a specified
type within a specified scope. The identification principle for bound variables is retained,
type safety is not compromised, yet some of the benefits of dynamic scoping are preserved.

32.1 Statics

To account for fluid binding, we enrich SPCF defined in Chapter 31 with these constructs
to obtain FSPCF:

Exp e ::= put[a](e1; e2) put e1 for a in e2 binding
get[a] get a retrieval

The expression get[a] evaluates to the value of the current binding of a, if it has one, and
is stuck otherwise. The expression put[a](e1; e2) binds the symbol a to the value e1 for
the duration of the evaluation of e2, at which point the binding of a reverts to what it was
prior to the execution. The symbol a is not bound by the put expression but is instead a
parameter of it.

The statics of FSPCF is defined by judgments of the form

! !" e : τ,

much as in Chapter 31, except that here the signature associates a type to each symbol,
instead of just declaring the symbol to be in scope. Thus, " is here defined to be a finite
set of declarations of the form a ∼ τ such that no symbol is declared more than once in the
same signature. Note that the association of a type to a symbol is not a typing assumption.
In particular, the signature " enjoys no structural properties and cannot be considered as a
form of hypothesis as defined in Chapter 3.
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285 32.2 Dynamics

The following rules govern the new expression forms:

! !",a∼τ get[a] : τ (32.1a)

! !",a∼τ1 e1 : τ1 ! !",a∼τ1 e2 : τ2

! !",a∼τ1 put[a](e1; e2) : τ2
(32.1b)

Rule (32.1b) specifies that the symbol a is a parameter of the expression that must be
declared in ".

32.2 Dynamics

The dynamics of FSPCF relies on a stack-like allocation of symbols in SPCF and maintains
an association of values to symbols that tracks this stack-like allocation discipline. To do
so, we define a family of transition judgments of the form e

µ#−→
"

e′, where " is as in the
statics, and µ is a finite function mapping some subset of the symbols declared in " to
values of the right type. If µ is defined for some symbol a, then it has the form µ′ ⊗ a ↪→ e

for some µ′ and value e. If µ is undefined for some symbol a, we may regard it as having
the form µ′ ⊗ a ↪→ •. We will write a ↪→ to stand for either a ↪→ • or a ↪→ e for some
expression e.

The dynamics of FSPCF is defined by the following rules:

get[a]
µ⊗a↪→e#−−−−→
",a∼τ

e
(32.2a)

e1
µ#−−−→

",a∼τ
e′

1

put[a](e1; e2)
µ#−−−→

",a∼τ
put[a](e′

1; e2)
(32.2b)

e1 val",a∼τ e2
µ⊗a↪→e1#−−−−−→
",a∼τ

e′
2

put[a](e1; e2)
µ⊗a↪→#−−−−→
",a∼τ

put[a](e1; e′
2)

(32.2c)

e1 val",a∼τ e2 val",a∼τ

put[a](e1; e2)
µ#−−−→

",a∼τ
e2

(32.2d)

Rule (32.2a) specifies that get[a] evaluates to the current binding of a, if any. Rule (32.2b)
specifies that the binding for the symbol a is evaluated before the binding is created.
Rule (32.2c) evaluates e2 in an environment where the symbol a is bound to the value e1,
regardless of whether or not a is already bound in the environment. Rule (32.2d) eliminates
the fluid binding for a once evaluation of the extent of the binding has completed.
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285 32.2 Dynamics
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for some µ′ and value e. If µ is undefined for some symbol a, we may regard it as having
the form µ′ ⊗ a ↪→ •. We will write a ↪→ to stand for either a ↪→ • or a ↪→ e for some
expression e.

The dynamics of FSPCF is defined by the following rules:

get[a]
µ⊗a↪→e#−−−−→
",a∼τ

e
(32.2a)

e1
µ#−−−→

",a∼τ
e′

1

put[a](e1; e2)
µ#−−−→

",a∼τ
put[a](e′

1; e2)
(32.2b)

e1 val",a∼τ e2
µ⊗a↪→e1#−−−−−→
",a∼τ

e′
2

put[a](e1; e2)
µ⊗a↪→#−−−−→
",a∼τ

put[a](e1; e′
2)

(32.2c)

e1 val",a∼τ e2 val",a∼τ

put[a](e1; e2)
µ#−−−→

",a∼τ
e2

(32.2d)

Rule (32.2a) specifies that get[a] evaluates to the current binding of a, if any. Rule (32.2b)
specifies that the binding for the symbol a is evaluated before the binding is created.
Rule (32.2c) evaluates e2 in an environment where the symbol a is bound to the value e1,
regardless of whether or not a is already bound in the environment. Rule (32.2d) eliminates
the fluid binding for a once evaluation of the extent of the binding has completed.
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285 32.2 Dynamics
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for some µ′ and value e. If µ is undefined for some symbol a, we may regard it as having
the form µ′ ⊗ a ↪→ •. We will write a ↪→ to stand for either a ↪→ • or a ↪→ e for some
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e
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e1
µ#−−−→

",a∼τ
e′

1
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put[a](e′
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e1 val",a∼τ e2
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2
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(32.2d)

Rule (32.2a) specifies that get[a] evaluates to the current binding of a, if any. Rule (32.2b)
specifies that the binding for the symbol a is evaluated before the binding is created.
Rule (32.2c) evaluates e2 in an environment where the symbol a is bound to the value e1,
regardless of whether or not a is already bound in the environment. Rule (32.2d) eliminates
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FSPCF Dynamics286 Fluid Binding

According to the dynamics of FSPCF given by rules (32.2), there is no transition of the
form get[a]

µ!−→
!

e if µ(a) = •. The judgment e unbound! states that execution of e will
lead to such a “stuck” state and is inductively defined by the following rules:

µ(a) = •
get[a] unboundµ

(32.3a)

e1 unboundµ

put[a](e1; e2) unboundµ
(32.3b)

e1 val! e2 unboundµ

put[a](e1; e2) unboundµ
(32.3c)

In a larger language, it would also be necessary to include error propagation rules of the
sort discussed in Chapter 6.

32.3 Type Safety

We first define the auxiliary judgment µ : ! by the following rules:

∅ : ∅ (32.4a)

%! e : τ µ : !

µ ⊗ a ↪→ e : !, a ∼ τ
(32.4b)

µ : !

µ ⊗ a ↪→ • : !, a ∼ τ
(32.4c)

These rules specify that, if a symbol is bound to a value, then that value must be of the type
associated to the symbol by !. No demand is made in the case that the symbol is unbound
(equivalently, bound to a “black hole”).

Theorem 32.1 (Preservation). If e
µ!−→
!

e′, where µ : ! and %! e : τ , then %! e′ : τ .

Proof By rule induction on rules (32.2). Rule (32.2a) is handled by the definition of µ : !.
Rule (32.2b) follows by induction. Rule (32.2d) is handled by inversion of rules (32.1).
Finally, rule (32.2c) is handled by inversion of rules (32.1) and induction.

Theorem 32.2 (Progress). If %! e : τ and µ : !, then either e val! , or e unboundµ, or
there exists e′ such that e

µ!−→
!

e′.

Proof By induction on rules (32.1). For rule (32.1a), we have ! % a ∼ τ from the premise
of the rule, and hence, because µ : !, we have either µ(a) = • or µ(a) = e for some e

such that %! e : τ . In the former case, we have e unboundµ, and in the latter, we have
get[a]

µ!−→
!

e. For rule (32.1b), we have by induction that either e1 val! or e1 unboundµ, or
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286 Fluid Binding
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of the rule, and hence, because µ : !, we have either µ(a) = • or µ(a) = e for some e
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287 32.4 Some Subtleties

e1
µ!−→
!

e′
1. In the latter two cases, we may apply rule (32.2b) or rule (32.3b), respectively. If

e1 val! , we apply induction to obtain that either e2 val! , in which case rule (32.2d) applies;
e2 unboundµ, in which case rule (32.3c) applies; or e2

µ!−→
!

e′
2, in which case rule (32.2c)

applies.

32.4 Some Subtleties

The value of put e1 for a in e2 is the value of e2, calculated in a context where a is bound
to the value of e1. If e2 is of a basic type, such as nat, then the reversion of the binding of
a cannot influence the meaning of the result.1

But what if the type of put e1 for a in e2 is a function type, so that the returned value is
a λ-abstraction? The body of the returned λ may refer to the binding of a, which is reverted
upon return from the put. For example, consider the expression

put 17 for a in λ (x : nat) x + get a, (32.5)

which has type nat ⇀ nat, given that a is a symbol of type nat. Let us assume, for the
sake of discussion, that a is unbound at the point at which this expression is evaluated.
Evaluating the put binds a to the number 17 and returns the function λ (x : nat) x + get a.
But because a is reverted to its unbound state upon exiting the put, applying this function
to an argument will result in an error, unless a binding for a is given. Thus, if f is bound
to the result of evaluating (32.5), then the expression

put 21 for a in f (7) (32.6)

will evaluate to 28, whereas evaluation of f (7) in the absence of a surrounding binding for
a will incur an error.

Contrast this with the similar expression

let y be 17 in λ (x : nat) x + y, (32.7)

where we have replaced the fluid-bound symbol a by a statically bound variable y. This
expression evaluates to λ (x : nat) x + 17, which adds 17 to its argument when applied.
There is no possibility of an unbound symbol arising at execution time, because variables
are interpreted by substitution.

One way to think about this situation is to consider that fluid-bound symbols serve as an
alternative to passing extra arguments to a function to specialize its value when it is called.
To see this, let e stand for the value of expression (32.5), a λ-abstraction whose body is
dependent on the binding of the symbol a. To use this function safely, it is necessary that
the programmer provide a binding for a prior to calling it. For example, the expression

put 7 for a in (e(9))

evaluates to 16, and the expression

put 8 for a in (e(9))

6""�!�  3�7�� 5 ������� ��.
�����
	�
�
������/#287!643��:87:4�2B��192 7354�0:7$4 !7"B�/ 4!!



FSPCF Subtleties

287 32.4 Some Subtleties

e1
µ!−→
!

e′
1. In the latter two cases, we may apply rule (32.2b) or rule (32.3b), respectively. If

e1 val! , we apply induction to obtain that either e2 val! , in which case rule (32.2d) applies;
e2 unboundµ, in which case rule (32.3c) applies; or e2

µ!−→
!

e′
2, in which case rule (32.2c)

applies.

32.4 Some Subtleties

The value of put e1 for a in e2 is the value of e2, calculated in a context where a is bound
to the value of e1. If e2 is of a basic type, such as nat, then the reversion of the binding of
a cannot influence the meaning of the result.1

But what if the type of put e1 for a in e2 is a function type, so that the returned value is
a λ-abstraction? The body of the returned λ may refer to the binding of a, which is reverted
upon return from the put. For example, consider the expression

put 17 for a in λ (x : nat) x + get a, (32.5)

which has type nat ⇀ nat, given that a is a symbol of type nat. Let us assume, for the
sake of discussion, that a is unbound at the point at which this expression is evaluated.
Evaluating the put binds a to the number 17 and returns the function λ (x : nat) x + get a.
But because a is reverted to its unbound state upon exiting the put, applying this function
to an argument will result in an error, unless a binding for a is given. Thus, if f is bound
to the result of evaluating (32.5), then the expression

put 21 for a in f (7) (32.6)

will evaluate to 28, whereas evaluation of f (7) in the absence of a surrounding binding for
a will incur an error.

Contrast this with the similar expression

let y be 17 in λ (x : nat) x + y, (32.7)

where we have replaced the fluid-bound symbol a by a statically bound variable y. This
expression evaluates to λ (x : nat) x + 17, which adds 17 to its argument when applied.
There is no possibility of an unbound symbol arising at execution time, because variables
are interpreted by substitution.

One way to think about this situation is to consider that fluid-bound symbols serve as an
alternative to passing extra arguments to a function to specialize its value when it is called.
To see this, let e stand for the value of expression (32.5), a λ-abstraction whose body is
dependent on the binding of the symbol a. To use this function safely, it is necessary that
the programmer provide a binding for a prior to calling it. For example, the expression

put 7 for a in (e(9))

evaluates to 16, and the expression

put 8 for a in (e(9))

6""�!�  3�7�� 5 ������� ��.
�����
	�
�
������/#287!643��:87:4�2B��192 7354�0:7$4 !7"B�/ 4!!

288 Fluid Binding

evaluates to 17. Writing just e(9), without a surrounding binding for a, results in a run-time
error attempting to retrieve the binding of the unbound symbol a.

This behavior can be simulated by adding an argument to the function value that will
be bound to the current binding of the symbol a at the point where the function is called.
Instead of using fluid binding, we would provide an extra argument at each call site, writing

e′(7)(9)

and

e′(8)(9),

respectively, where e′ is the λ-abstraction

λ (y : nat) λ (x : nat) x + y.

Adding arguments can be cumbersome, though, especially when several call sites provide
the same binding for a. Using fluid binding, we may write

put 7 for a in 〈e(8), e(9)〉,

whereas using an extra argument we must write

〈e′(7)(8), e′(7)(9)〉.

However, such redundancy can be reduced by factoring out the common part, writing

let f be e′(7) in 〈f (8), f (9)〉.

The awkwardness of this simulation is usually taken as an argument in favor of including
fluid binding in a language. The drawback, which is often perceived as an advantage, is
that nothing in the type of a function reveals its dependency on the binding of a symbol. It
is therefore quite easy to forget that such a binding is required, leading to run-time failures
that might better be caught at compile time.

32.5 Fluid References

The get and put operations for fluid binding are indexed by a symbol that must be given as
part of the syntax of the operator. It is sometimes useful to defer until run-time the choice
of fluid on which a get or put acts. References to fluids allow the name of the fluid to be
a value. References come equipped with analogs of the get and put primitives, but for a
dynamically determined symbol.

We may extend FSPCF with fluid references by adding the following syntax:

Typ τ ::= fluid(τ ) τ fluid fluid
Exp e ::= fl[a] & a reference

getfl(e) getfl e retrieval
putfl(e; e1; e2) putfl e is e1 in e2 binding
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The expression fl[a] is the symbol a considered as a value of type fluid(τ ). The ex-
pressions getfl(e) and putfl(e; e1; e2) are analogs of the get and put operations for
fluid-bound symbols.

The statics of these constructs is given by the following rules:

" !#,a∼τ fl[a] : fluid(τ )
(32.8a)

" !# e : fluid(τ )
" !# getfl(e) : τ

(32.8b)

" !# e : fluid(τ ) " !# e1 : τ " !# e2 : τ2

" !# putfl(e; e1; e2) : τ2
(32.8c)

Because we are using a scoped dynamics, references to fluids cannot be deemed mobile.
The dynamics of references consists of resolving the referent and deferring to the under-

lying primitives acting on symbols.

fl[a] val#,a∼τ

(32.9a)

e
µ#−→
#

e′

getfl(e)
µ#−→
#

getfl(e′)
(32.9b)

getfl(fl[a])
µ#−→
#

get[a]
(32.9c)

e
µ#−→
#

e′

putfl(e; e1; e2)
µ#−→
#

putfl(e′; e1; e2)
(32.9d)

putfl(fl[a]; e1; e2)
µ#−→
#

put[a](e1; e2)
(32.9e)

32.6 Notes

Dynamic binding arose in early dialects of Lisp from not distinguishing variables from
symbols. When separated, variables retain their substitutive meaning, and symbols give
rise to a separate concept of fluid binding. Allen (1978) discusses the implementation of
fluid binding. The present formulation here draws on Nanevski (2003).
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Modernized Algol (MA): PCF+Commands 

Modernized Algol, or MA, is an imperative, block-structured programming language 
based on the classic language Algol. 

MA extends PCF with a new syntactic sort of commands that act on assignables by 
retrieving and altering their contents. Assignables are introduced by declaring them for 
use within a specified scope; this is the essence of block structure. Commands are 
combined by sequencing and are iterated using recursion. 

MA maintains a careful separation between pure expressions, whose meaning does not 
depend on any assignables, and impure commands, whose meaning is given in terms of 
assignables. 

A distinctive feature of MA is that it adheres to the stack discipline, which means that 
assignables are allocated on entry to the scope of their declaration, and deallocated on 
exit, using a conventional stack discipline. 



MA Syntax: PCF + Commands 

162 System PCF of Recursive Functions

Note well that the condition on f ′ is expressed in terms of f , the argument to the functional
F , and not in terms of f ′ itself! The function f we seek is a fixed point of F , a function
f : N → N such that f = F (f ). In other words e is defined to be fix(F ), where fix is a
higher-order operator on functionals F that computes a fixed point for it.

Why should an operator such as F have a fixed point? The key is that functions in PCF
are partial, which means that they may diverge on some (or even all) inputs. Consequently,
a fixed point of a functional F is the limit of a series of approximations of the desired
solution obtained by iterating F . Let us say that a partial function φ on the natural numbers,
is an approximation to a total function f if φ(m) = n implies that f (m) = n. Let ⊥: N ⇀ N
be the totally undefined partial function—⊥(n) is undefined for every n ∈ N. This is the
“worst” approximation to the desired solution f of the recursion equations given above.
Given any approximation φ of f , we may “improve” it to φ′ = F (φ). The partial function
φ′ is defined on 0 and on m + 1 for every m ≥ 0 on which φ is defined. Continuing,
φ′′ = F (φ′) = F (F (φ)) is an improvement on φ′, and hence a further improvement on φ.
If we start with ⊥ as the initial approximation to f , then pass to the limit

lim
i≥0

F (i)(⊥),

we will obtain the least approximation to f that is defined for every m ∈ N, and hence is
the function f itself. Turning this around, if the limit exists, it is the solution we seek.

Because this construction works for any functional F , we conclude that all such operators
have fixed points, and hence that all systems of equations such as the one given above have
solutions. The solution is given by general recursion, but there is no guarantee that it is a
total function (defined on all elements of its domain). For the above example, it happens to
be true, because we can prove by induction that this is so, but in general, the solution is a
partial function that may diverge on some inputs. It is our task as programmers to ensure
that the functions defined by general recursion are total, or at least that we have a grasp of
those inputs for which it is well-defined.

19.1 Statics

The syntax of PCF is given by the following grammar:

Typ τ ::= nat nat naturals
parr(τ1; τ2) τ1 ⇀ τ2 partial function

Exp e ::= x x variable
z z zero
s(e) s(e) successor
ifz{e0; x.e1}(e) ifz e {z ↪→ e0 | s(x) ↪→ e1} zero test
lam{τ }(x.e) λ (x : τ ) e abstraction
ap(e1; e2) e1(e2) application
fix{τ }(x.e) fix x : τ is e recursion
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302 Modernized Algol

The syntax of MA is given by the following grammar, from which we have omitted
repetition of the expression syntax of PCF for the sake of brevity.

Typ τ ::= cmd cmd command
Exp e ::= cmd(m) cmdm encapsulation
Cmd m ::= ret(e) ret e return

bnd(e; x.m) bnd x ← e ; m sequence
dcl(e; a.m) dcl a := e in m new assignable
get[a] @ a fetch
set[a](e) a := e assign

The expression cmd(m) consists of the unevaluated command m thought of as a value
of type cmd. The command ret(e) returns the value of the expression e without having
any effect on the assignables. The command bnd(e; x.m) evaluates e to an encapsulated
command, then this command is executed for its effects on assignables, with its value
substituted for x in m. The command dcl(e; a.m) introduces a new assignable, a, for use
within the command m whose initial contents is given by the expression e. The command
get[a] returns the current contents of the assignable a and the command set[a](e) changes
the contents of the assignable a to the value of e, and returns that value.

34.1.1 Statics

The statics of MA consists of two forms of judgment:

1. Expression typing: " "# e : τ .
2. Command formation: " "# m ok.

The context " specifies the types of variables, as usual, and the signature # consists of a
finite set of assignables. As with other uses of symbols, the signature cannot be interpreted
as a form of typing hypothesis (it enjoys no structural properties of entailment), but must
be considered as an index of a family of judgments, one for each choice of #.

The statics of MA is inductively defined by the following rules:

" "# m ok
" "# cmd(m) : cmd

(34.1a)

" "# e : nat
" "# ret(e) ok

(34.1b)

" "# e : cmd ", x : nat "# m ok
" "# bnd(e; x.m) ok

(34.1c)

" "# e : nat " "#,a m ok

" "# dcl(e; a.m) ok
(34.1d)
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302 Modernized Algol

The syntax of MA is given by the following grammar, from which we have omitted
repetition of the expression syntax of PCF for the sake of brevity.
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any effect on the assignables. The command bnd(e; x.m) evaluates e to an encapsulated
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! !",a get[a] ok
(34.1e)

! !",a e : nat
! !",a set[a](e) ok

(34.1f)

Rule (34.1a) is the introduction rule for the type cmd, and rule (34.1c) is the corresponding
elimination form. Rule (34.1d) introduces a new assignable for use within a specified
command. The name a of the assignable is bound by the declaration, and so may be
renamed to satisfy the implicit constraint that it not already occur in ". Rule (34.1e) states
that the command to retrieve the contents of an assignable a returns a natural number.
Rule (34.1f) states that we may assign a natural number to an assignable.

34.1.2 Dynamics

The dynamics of MA is defined in terms of a memory µ a finite function assigning a
numeral to each of a finite set of assignables.

The dynamics of expressions consists of these two judgment forms:

1. e val" , stating that e is a value relative to ".
2. e "−→

"
e′, stating that the expression e steps to the expression e′.

These judgments are inductively defined by the following rules, together with the rules
defining the dynamics of PCF (see Chapter 19). It is important, however, that the successor
operation be given an eager, instead of lazy, dynamics so that a closed value of type nat is
a numeral (for reasons that will be explained in Section 34.3).

cmd(m) val"
(34.2a)

Rule (34.2a) states that an encapsulated command is a value.
The dynamics of commands is defined in terms of states m ‖ µ, where µ is a memory

mapping assignables to values, and m is a command. There are two judgments governing
such states:

1. m ‖ µ final" . The state m ‖ µ is complete.
2. m ‖ µ "−→

"
m′ ‖ µ′. The state m ‖ µ steps to the state m′ ‖ µ′; the set of active assignables

is given by the signature ".

These judgments are inductively defined by the following rules:
e val"

ret(e) ‖ µ final"
(34.3a)

e "−→
"

e′

ret(e) ‖ µ "−→
"

ret(e′) ‖ µ
(34.3b)
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! !",a get[a] ok
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elimination form. Rule (34.1d) introduces a new assignable for use within a specified
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Rule (34.1a) is the introduction rule for the type cmd, and rule (34.1c) is the corresponding
elimination form. Rule (34.1d) introduces a new assignable for use within a specified
command. The name a of the assignable is bound by the declaration, and so may be
renamed to satisfy the implicit constraint that it not already occur in ". Rule (34.1e) states
that the command to retrieve the contents of an assignable a returns a natural number.
Rule (34.1f) states that we may assign a natural number to an assignable.

34.1.2 Dynamics

The dynamics of MA is defined in terms of a memory µ a finite function assigning a
numeral to each of a finite set of assignables.

The dynamics of expressions consists of these two judgment forms:

1. e val" , stating that e is a value relative to ".
2. e "−→
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defining the dynamics of PCF (see Chapter 19). It is important, however, that the successor
operation be given an eager, instead of lazy, dynamics so that a closed value of type nat is
a numeral (for reasons that will be explained in Section 34.3).

cmd(m) val"
(34.2a)

Rule (34.2a) states that an encapsulated command is a value.
The dynamics of commands is defined in terms of states m ‖ µ, where µ is a memory

mapping assignables to values, and m is a command. There are two judgments governing
such states:

1. m ‖ µ final" . The state m ‖ µ is complete.
2. m ‖ µ "−→

"
m′ ‖ µ′. The state m ‖ µ steps to the state m′ ‖ µ′; the set of active assignables

is given by the signature ".

These judgments are inductively defined by the following rules:
e val"

ret(e) ‖ µ final"
(34.3a)

e "−→
"

e′

ret(e) ‖ µ "−→
"

ret(e′) ‖ µ
(34.3b)
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e !−→
!

e′

bnd(e; x.m) ‖ µ !−→
!

bnd(e′; x.m) ‖ µ
(34.3c)

e val!
bnd(cmd(ret(e)); x.m) ‖ µ !−→

!
[e/x]m ‖ µ (34.3d)

m1 ‖ µ !−→
!

m′
1 ‖ µ′

bnd(cmd(m1); x.m2) ‖ µ !−→
!

bnd(cmd(m′
1); x.m2) ‖ µ′ (34.3e)

get[a] ‖ µ ⊗ a ↪→ e !−−→
!,a

ret(e) ‖ µ ⊗ a ↪→ e
(34.3f)

e !−−→
!,a

e′

set[a](e) ‖ µ !−−→
!,a

set[a](e′) ‖ µ
(34.3g)

e val!,a

set[a](e) ‖ µ ⊗ a ↪→ !−−→
!,a

ret(e) ‖ µ ⊗ a ↪→ e (34.3h)

e !−→
!

e′

dcl(e; a.m) ‖ µ !−→
!

dcl(e′; a.m) ‖ µ
(34.3i)

e val! m ‖ µ ⊗ a ↪→ e !−−→
!,a

m′ ‖ µ′ ⊗ a ↪→ e′

dcl(e; a.m) ‖ µ !−→
!

dcl(e′; a.m′) ‖ µ′ (34.3j)

e val! e′ val!,a

dcl(e; a.ret(e′)) ‖ µ !−→
!

ret(e′) ‖ µ (34.3k)

Rule (34.3a) specifies that a ret command is final if its argument is a value. Rules (34.3c) to
(34.3e) specify the dynamics of sequential composition. The expression e must, by virtue
of the type system, evaluate to an encapsulated command, which is executed to find its
return value, which is then substituted into the command m before executing it.

Rules (34.3i) to (34.3k) define the concept of block structure in a programming language.
Declarations adhere to the stack discipline in that an assignable is allocated during evaluation
of the body of the declaration, and deallocated after evaluation of the body is complete.
Therefore, the lifetime of an assignable can be identified with its scope, and hence we may
visualize the dynamic lifetimes of assignables as being nested inside one another, in the
same way as their static scopes are nested inside one another. The stack-like behavior of
assignables is a characteristic feature of what are known as Algol-like languages.
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!
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!

m′
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!

bnd(cmd(m′
1); x.m2) ‖ µ′ (34.3e)

get[a] ‖ µ ⊗ a ↪→ e !−−→
!,a

ret(e) ‖ µ ⊗ a ↪→ e
(34.3f)

e !−−→
!,a

e′

set[a](e) ‖ µ !−−→
!,a

set[a](e′) ‖ µ
(34.3g)

e val!,a

set[a](e) ‖ µ ⊗ a ↪→ !−−→
!,a
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!,a
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!
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e val! e′ val!,a
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!
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Rule (34.3a) specifies that a ret command is final if its argument is a value. Rules (34.3c) to
(34.3e) specify the dynamics of sequential composition. The expression e must, by virtue
of the type system, evaluate to an encapsulated command, which is executed to find its
return value, which is then substituted into the command m before executing it.

Rules (34.3i) to (34.3k) define the concept of block structure in a programming language.
Declarations adhere to the stack discipline in that an assignable is allocated during evaluation
of the body of the declaration, and deallocated after evaluation of the body is complete.
Therefore, the lifetime of an assignable can be identified with its scope, and hence we may
visualize the dynamic lifetimes of assignables as being nested inside one another, in the
same way as their static scopes are nested inside one another. The stack-like behavior of
assignables is a characteristic feature of what are known as Algol-like languages.
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34.1.3 Safety

The judgment m ‖ µ ok! is defined by the rule

"! m ok µ : !

m ‖ µ ok!
(34.4)

where the auxiliary judgment µ : ! is defined by the rule

∀a ∈ ! ∃e µ(a) = e and e val∅ and "∅ e : nat
µ : !

(34.5)

That is, the memory must bind a number to each assignable in !.

Theorem 34.1 (Preservation).

1. If e '−→
!

e′ and "! e : τ , then "! e′ : τ .

2. If m ‖ µ '−→
!

m′ ‖ µ′, with "! m ok and µ : !, then "! m′ ok and µ′ : !.

Proof Simultaneously, by induction on rules (34.2) and (34.3).
Consider rule (34.3j). Assume that "! dcl(e; a.m) ok and µ : !. By inversion of typing

we have "! e : nat and "!,a m ok. Because e val! and µ : !, we have µ ⊗ a ↪→ e : !, a.
By induction, we have "!,a m′ ok and µ′ ⊗ a ↪→ e′ : !, a, from which the result follows
immediately.

Consider rule (34.3k). Assume that "! dcl(e; a.ret(e′)) ok and µ : !. By inversion we
have "! e : nat, and "!,a ret(e′) ok, and so "!,a e′ : nat. But because e′ val!,a , and e′

is a numeral, and we also have "! e′ : nat, as required.

Theorem 34.2 (Progress).

1. If "! e : τ , then either e val! , or there exists e′ such that e '−→
!

e′.

2. If "! m ok and µ : !, then either m ‖ µ final! or m ‖ µ '−→
!

m′ ‖ µ′ for some µ′ and

m′.

Proof Simultaneously, by induction on rules (34.1). Consider rule (34.1d). By the first
inductive hypothesis we have either e '−→

!
e′ or e val! . In the former case, rule (34.3i)

applies. In the latter, we have by the second inductive hypothesis,

m ‖ µ ⊗ a ↪→ e final!,a or m ‖ µ ⊗ a ↪→ e '−−→
!,a

m′ ‖ µ′ ⊗ a ↪→ e′.

In the former case, we apply rule (34.3k), and in the latter, rule (34.3j).
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e′ or e val! . In the former case, rule (34.3i)
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m ‖ µ ⊗ a ↪→ e final!,a or m ‖ µ ⊗ a ↪→ e '−−→
!,a

m′ ‖ µ′ ⊗ a ↪→ e′.

In the former case, we apply rule (34.3k), and in the latter, rule (34.3j).

5!!� 
  2:6�:�� ������
 ����
����	�
	������	�."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3  

305 34.1 Basic Commands

34.1.3 Safety

The judgment m ‖ µ ok! is defined by the rule

"! m ok µ : !

m ‖ µ ok!
(34.4)

where the auxiliary judgment µ : ! is defined by the rule

∀a ∈ ! ∃e µ(a) = e and e val∅ and "∅ e : nat
µ : !

(34.5)

That is, the memory must bind a number to each assignable in !.

Theorem 34.1 (Preservation).

1. If e '−→
!

e′ and "! e : τ , then "! e′ : τ .

2. If m ‖ µ '−→
!

m′ ‖ µ′, with "! m ok and µ : !, then "! m′ ok and µ′ : !.

Proof Simultaneously, by induction on rules (34.2) and (34.3).
Consider rule (34.3j). Assume that "! dcl(e; a.m) ok and µ : !. By inversion of typing

we have "! e : nat and "!,a m ok. Because e val! and µ : !, we have µ ⊗ a ↪→ e : !, a.
By induction, we have "!,a m′ ok and µ′ ⊗ a ↪→ e′ : !, a, from which the result follows
immediately.

Consider rule (34.3k). Assume that "! dcl(e; a.ret(e′)) ok and µ : !. By inversion we
have "! e : nat, and "!,a ret(e′) ok, and so "!,a e′ : nat. But because e′ val!,a , and e′

is a numeral, and we also have "! e′ : nat, as required.

Theorem 34.2 (Progress).

1. If "! e : τ , then either e val! , or there exists e′ such that e '−→
!

e′.

2. If "! m ok and µ : !, then either m ‖ µ final! or m ‖ µ '−→
!

m′ ‖ µ′ for some µ′ and

m′.

Proof Simultaneously, by induction on rules (34.1). Consider rule (34.1d). By the first
inductive hypothesis we have either e '−→

!
e′ or e val! . In the former case, rule (34.3i)

applies. In the latter, we have by the second inductive hypothesis,

m ‖ µ ⊗ a ↪→ e final!,a or m ‖ µ ⊗ a ↪→ e '−−→
!,a

m′ ‖ µ′ ⊗ a ↪→ e′.

In the former case, we apply rule (34.3k), and in the latter, rule (34.3j).

5!!� 
  2:6�:�� ������
 ����
����	�
	������	�."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3  



MA Programming Idioms 

306 Modernized Algol

34.2 Some Programming Idioms

The language MA is designed to expose the elegant interplay between the execution of an
expression for its value and the execution of a command for its effect on assignables. In
this section we show how to derive several standard idioms of imperative programming in
MA.

We define the sequential composition of commands, written {x ← m1 ; m2}, to stand for
the command bnd x ← cmd (m1) ; m2. Binary composition readily generalizes to an n-ary
form by defining

{x1 ← m1 ; . . . xn−1 ← mn−1 ; mn},

to stand for the iterated composition

{x1 ← m1 ; . . . {xn−1 ← mn−1 ; mn}}.

We sometimes write just {m1 ; m2} for the composition { ← m1 ; m2} where the returned
value from m1 is ignored; this generalizes in the obvious way to an n-ary form.

A related idiom, the command do e, executes an encapsulated command and returns its
result. By definition, do e stands for the command bnd x ← e ; ret x.

The conditional command if (m) m1 else m2 executes either m1 or m2 according to
whether the result of executing m is zero or not:

{x ← m ; do (ifz x {z ↪→ cmdm1 | s( ) ↪→ cmdm2})}.

The returned value of the conditional is the value returned by the selected command.
The while loop command while (m1) m2 repeatedly executes the command m2 while

the command m1 yields a non-zero number. It is defined as follows:

do (fix loop : cmd is cmd (if (m1) {ret z} else {m2 ; do loop})).

This command runs the self-referential encapsulated command that, when executed, first
executes m1, branching on the result. If the result is zero, the loop returns zero (arbitrarily).
If the result is non-zero, the command m2 is executed and the loop is repeated.

A procedure is a function of type τ ⇀ cmd that takes an argument of some type τ and
yields an unexecuted command as result. Many procedures have the form λ (x : τ ) cmdm,
which we abbreviate to proc (x : τ ) m. A procedure call is the composition of a function
application with the activation of the resulting command. If e1 is a procedure and e2 is its
argument, then the procedure call call e1(e2) is defined to be the command do (e1(e2)),
which immediately runs the result of applying e1 to e2.
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As an example, here is a procedure of type nat ⇀ cmd that returns the factorial of its
argument:

proc (x:nat) {
dcl r := 1 in
dcl a := x in
{ while ( @ a ) {

y ← @ r
; z ← @ a
; r := (x-z+1)× y
; a := z-1
}
; x ← @ r
; ret x

}
}

The loop maintains the invariant that the contents of r is the factorial of x minus the contents
of a. Initialization makes this invariant true, and it is preserved by each iteration of the loop,
so that upon completion of the loop the assignable a contains 0 and r contains the factorial
of x, as required.

34.3 Typed Commands and Typed Assignables

So far we have restricted the type of the returned value of a command, and the contents
of an assignable, to be nat. Can this restriction be relaxed, while adhering to the stack
discipline?

The key to admitting returned and assignable values of other types may be uncovered by a
close examination of the proof of Theorem 34.1. For the proof to go through, it is crucial that
values of type nat, the type of assignables and return values, cannot contain an assignable,
for otherwise the embedded assignable would escape the scope of its declaration. This
property is self-evidently true for eagerly evaluated natural numbers but fails when they are
evaluated lazily. Thus, the safety of MA hinges on the evaluation order for the successor
operation, in contrast to most other situations where either interpretation is also safe.

When extending MA to admit assignables and returned values of other types, it is
necessary to pay close attention to whether assignables can be embedded in a value of
a candidate type. For example, if return values of procedure type are allowed, then the
following command violates safety:

dcl a := z in {ret (proc (x : nat) {a := x})}.

This command, when executed, allocates a new assignable a and returns a procedure that,
when called, assigns its argument to a. But this makes no sense, because the assignable a
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is deallocated when the body of the declaration returns, but the returned value still refers to
it. If the returned procedure is called, execution will get stuck in the attempt to assign to a.

A similar example shows that admitting assignables of procedure type is also unsound.
For example, suppose that b is an assignable whose contents are of type nat ⇀ cmd, and
consider the command

dcl a := z in {b := proc (x : nat) cmd(a := x) ; ret z}.

We assign to b a procedure that uses a locally declared assignable a and then leaves the
scope of the declaration. If we then call the procedure stored in b, execution will get stuck
attempting to assign to the non-existent assignable a.

To admit declarations that return values other than nat and to admit assignables with
contents of types other than nat, we must rework the statics of MA to record the returned
type of a command and to record the type of the contents of each assignable. First, we
generalize the finite set " of active assignables to assign a mobile type to each active
assignable so that " has the form of a finite set of assumptions of the form a ∼ τ , where a

is an assignable. Second, we replace the judgment $ "" m ok by the more general form
$ "" m ∼·· τ , stating that m is a well-formed command returning a value of type τ . Third,
the type cmd is generalized to cmd(τ ), which is written in examples as τ cmd, to specify the
return type of the encapsulated command.

The statics given in Section 34.1.1 is generalized to admit typed commands and typed
assignables as follows:

$ "" m ∼·· τ

$ "" cmd(m) : cmd(τ )
(34.6a)

$ "" e : τ

$ "" ret(e) ∼·· τ
(34.6b)

$ "" e : cmd(τ ) $, x : τ "" m ∼·· τ ′

$ "" bnd(e; x.m) ∼·· τ ′ (34.6c)

$ "" e : τ τ mobile $ "",a∼τ m ∼·· τ ′ τ ′ mobile

$ "" dcl(e; a.m) ∼·· τ ′ (34.6d)

$ "",a∼τ get[a] ∼·· τ
(34.6e)

$ "",a∼τ e : τ

$ "",a∼τ set[a](e) ∼·· τ
(34.6f)

Apart from the generalization to track returned types and content types, the most im-
portant change is that in rule (34.6d) both the type of a declared assignable and the return
type of the declaration is required to be mobile. The definition of the judgment τ mobile is
guided by the following mobility condition:

if τ mobile, "" e : τ and e val", then "∅ e : τ and e val∅. (34.7)

That is, a value of mobile type may not depend on any active assignables.
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contents of types other than nat, we must rework the statics of MA to record the returned
type of a command and to record the type of the contents of each assignable. First, we
generalize the finite set " of active assignables to assign a mobile type to each active
assignable so that " has the form of a finite set of assumptions of the form a ∼ τ , where a

is an assignable. Second, we replace the judgment $ "" m ok by the more general form
$ "" m ∼·· τ , stating that m is a well-formed command returning a value of type τ . Third,
the type cmd is generalized to cmd(τ ), which is written in examples as τ cmd, to specify the
return type of the encapsulated command.

The statics given in Section 34.1.1 is generalized to admit typed commands and typed
assignables as follows:

$ "" m ∼·· τ

$ "" cmd(m) : cmd(τ )
(34.6a)

$ "" e : τ

$ "" ret(e) ∼·· τ
(34.6b)

$ "" e : cmd(τ ) $, x : τ "" m ∼·· τ ′

$ "" bnd(e; x.m) ∼·· τ ′ (34.6c)

$ "" e : τ τ mobile $ "",a∼τ m ∼·· τ ′ τ ′ mobile

$ "" dcl(e; a.m) ∼·· τ ′ (34.6d)

$ "",a∼τ get[a] ∼·· τ
(34.6e)

$ "",a∼τ e : τ

$ "",a∼τ set[a](e) ∼·· τ
(34.6f)

Apart from the generalization to track returned types and content types, the most im-
portant change is that in rule (34.6d) both the type of a declared assignable and the return
type of the declaration is required to be mobile. The definition of the judgment τ mobile is
guided by the following mobility condition:

if τ mobile, "" e : τ and e val", then "∅ e : τ and e val∅. (34.7)

That is, a value of mobile type may not depend on any active assignables.
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assignables as follows:

$ "" m ∼·· τ

$ "" cmd(m) : cmd(τ )
(34.6a)

$ "" e : τ

$ "" ret(e) ∼·· τ
(34.6b)

$ "" e : cmd(τ ) $, x : τ "" m ∼·· τ ′

$ "" bnd(e; x.m) ∼·· τ ′ (34.6c)

$ "" e : τ τ mobile $ "",a∼τ m ∼·· τ ′ τ ′ mobile

$ "" dcl(e; a.m) ∼·· τ ′ (34.6d)

$ "",a∼τ get[a] ∼·· τ
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(34.6f)

Apart from the generalization to track returned types and content types, the most im-
portant change is that in rule (34.6d) both the type of a declared assignable and the return
type of the declaration is required to be mobile. The definition of the judgment τ mobile is
guided by the following mobility condition:

if τ mobile, "" e : τ and e val", then "∅ e : τ and e val∅. (34.7)

That is, a value of mobile type may not depend on any active assignables.
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As long as the successor operation is evaluated eagerly, the type nat is mobile:

nat mobile
(34.8)

Similarly, a product of mobile types may safely be deemed mobile, if pairs are evaluated
eagerly:

τ1 mobile τ2 mobile
τ1 × τ2 mobile

(34.9)

And the same goes for sums, if the injections are evaluated eagerly:

τ1 mobile τ2 mobile
τ1 + τ2 mobile

(34.10)

In each of these cases, laziness defeats mobility, because values may contain suspended
computations that depend on an assignable. For example, if the successor operation for the
natural numbers were evaluated lazily, then s(e) would be a value for any expression e

including one that refers to an assignable a.
Because the body of a procedure may involve an assignable, no procedure type is mobile,

nor is any command type. What about function types other than procedure types? We may
think they are mobile, because a pure expression cannot depend on an assignable. Although
this is the case, the mobility condition need not hold. For example, consider the following
value of type nat ⇀ nat:

λ (x : nat) (λ ( : τ cmd) z)(cmd {@ a}).

Although the assignable a is not actually needed to compute the result, it nevertheless
occurs in the value, violating the mobility condition.

The mobility restriction on the statics of declarations ensures that the type associated to
an assignable is always mobile. We may therefore assume, without loss of generality, that
the types associated to the assignables in the signature $ are mobile.

Theorem 34.3 (Preservation for Typed Commands).

1. If e "−→
$

e′ and &$ e : τ , then &$ e′ : τ .

2. If m ‖ µ "−→
$

m′ ‖ µ′, with &$ m ∼·· τ and µ : $, then &$ m′ ∼·· τ and µ′ : $.

Theorem 34.4 (Progress for Typed Commands).

1. If &$ e : τ , then either e val$ , or there exists e′ such that e "−→
$

e′.

2. If &$ m ∼·· τ and µ : $, then either m ‖ µ final$ or m ‖ µ "−→
$

m′ ‖ µ′ for some µ′ and

m′.

The proofs of Theorems 34.3 and 34.4 follows very closely the proof of Theorems 34.1
and 34.2. The main difference is that we appeal to the mobility condition to ensure that
returned values and stored values are independent of the active assignables.
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MA + Assignable References 
A reference to an assignable a is a value, written &a, of reference type that determines 
the assignable a. A reference to an assignable provides the capability to get or set the 
contents of that assignable, even if the assignable itself is not in scope when it is used. 

Two references can be compared for equality to test whether they govern the same 
underlying assignable. Two references that govern the same underlying assignable are 
aliases. 

Reference types are compatible with both a scoped and a scope-free allocation of 
assignables. When assignables are scoped, the range of significance of a reference type 
is limited to the scope of the assignable to which it refers. Reference types are therefore 
immobile, so that they cannot be returned from the body of a declaration, nor stored in 
an assignable. 

Supporting mutability requires that assignables be given a scope-free dynamics, so that 
their lifetime persists beyond the scope of their declaration. Consequently, all types are 
mobile, so that a value of any type may be stored in an assignable or returned from a 
command. 



MA + Scoped Assignable References 

314 Assignable References

the contents of a. The setter for an assignable a is a procedure that, when applied to a value
of suitable type, assigns that value to a. Thus, a capability for an assignable a containing a
value of type τ is a value of type

τ cap ! τ cmd × (nat ⇀ nat cmd).

A capability for getting and setting an assignable a containing a value of type τ is given by
the pair

〈cmd (@ a), proc (x : τ ) a := x〉

of type τ cap. Because a capability type is a product of a command type and a procedure
type, no capability type is mobile. Thus, a capability cannot be returned from a command,
nor stored into an assignable. This is as it should be, for otherwise we would violate the
stack discipline for allocating assignables.

The proposed generic doubling procedure is programmed using capabilities as follows:

proc (〈get, set〉 : nat cmd × (nat ⇀ nat cmd)) {x ← do get ; y ← do (set(x + x)) ; ret x}.

The procedure is called with the capability to access an assignable a. When executed, it
invokes the getter to obtain the contents of a, and then invokes the setter to assign to a,
returning the previous value. Observe that the assignable a need not be accessible by this
procedure; the capability given by the caller comprises the commands required to get and
set a.

35.2 Scoped Assignables

A weakness of using a capability to give indirect access to an assignable is that there is no
guarantee that a given getter/setter pair are in fact the capability for a particular assignable.
For example, we might pair the getter for a with the setter for b, leading to unexpected
behavior. There is nothing in the type system that prevents creating such mismatched pairs.

To avoid this, we introduce the concept of a reference to an assignable. A reference is
a value from which we may obtain the capability to get and set a particular assignable.
Moreover, two references can be tested for equality to see whether they act on the same
assignable.1 The reference type ref(τ ) has as values references to assignables of type τ .
The introduction and elimination forms for this type are given by the following syntax
chart:

Typ τ ::= ref(τ ) τ ref assignable
Exp e ::= ref[a] &a reference
Cmd m ::= getref(e) ∗ e contents

setref(e1; e2) e1 ∗= e2 update

The statics of reference types is defined by the following rules:

# &$,a∼τ ref[a] : ref(τ )
(35.1a)
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! !" e : ref(τ )
! !" getref(e) ∼·· τ

(35.1b)

! !" e1 : ref(τ ) ! !" e2 : τ

! !" setref(e1; e2) ∼·· τ
(35.1c)

Rule (35.1a) specifies that the name of any active assignable is an expression of type ref(τ ).
The dynamics of reference types defers to the corresponding operations on assignables,

and does not alter the underlying dynamics of assignables:

ref[a] val",a∼τ

(35.2a)

e #−→
"

e′

getref(e) ‖ µ #−→
"

getref(e′) ‖ µ
(35.2b)

getref(ref[a]) ‖ µ #−−−→
",a∼τ

get[a] ‖ µ
(35.2c)

e1 #−→
"

e′
1

setref(e1; e2) ‖ µ #−→
"

setref(e′
1; e2) ‖ µ

(35.2d)

setref(ref[a]; e) ‖ µ #−−−→
",a∼τ

set[a](e) ‖ µ
(35.2e)

A reference to an assignable is a value. The getref and setref operations on references
defer to the corresponding operations on assignables once the referent has been resolved.

Because references give rise to capabilities, the reference type is immobile. As a result,
references cannot be stored in assignables or returned from commands. The immobility of
references ensures safety, as can be seen by extending the safety proof given in Chapter 34.

As an example of using references, the generic doubling procedure discussed in the
preceding section is programmed using references as follows:

proc (r : nat ref) {x ← ∗ r ; r ∗= x + x ; ret x}.

Because the argument is a reference, rather than a capability, there is no possibility that the
getter and setter refer to different assignables.

The ability to pass references to procedures comes at a price, because any two references
might refer to the same assignable (if they have the same type). Consider a procedure that,
when given two references x and y, adds twice the contents of y to the contents of x. One
way to write this code creates no complications:

λ (x : nat ref) λ (y : nat ref) cmd {x ′ ← ∗ x ; y ′ ← ∗ y ; x ∗= x ′ + y ′ + y ′}.

Even if x and y refer to the same assignable, the effect will be to set the contents of the
assignable referenced by x to the sum of its original contents and twice the contents of the
assignable referenced by y.
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! !" e : ref(τ )
! !" getref(e) ∼·· τ

(35.1b)

! !" e1 : ref(τ ) ! !" e2 : τ

! !" setref(e1; e2) ∼·· τ
(35.1c)

Rule (35.1a) specifies that the name of any active assignable is an expression of type ref(τ ).
The dynamics of reference types defers to the corresponding operations on assignables,

and does not alter the underlying dynamics of assignables:

ref[a] val",a∼τ

(35.2a)

e #−→
"

e′

getref(e) ‖ µ #−→
"

getref(e′) ‖ µ
(35.2b)

getref(ref[a]) ‖ µ #−−−→
",a∼τ

get[a] ‖ µ
(35.2c)

e1 #−→
"

e′
1

setref(e1; e2) ‖ µ #−→
"

setref(e′
1; e2) ‖ µ

(35.2d)

setref(ref[a]; e) ‖ µ #−−−→
",a∼τ

set[a](e) ‖ µ
(35.2e)

A reference to an assignable is a value. The getref and setref operations on references
defer to the corresponding operations on assignables once the referent has been resolved.

Because references give rise to capabilities, the reference type is immobile. As a result,
references cannot be stored in assignables or returned from commands. The immobility of
references ensures safety, as can be seen by extending the safety proof given in Chapter 34.

As an example of using references, the generic doubling procedure discussed in the
preceding section is programmed using references as follows:

proc (r : nat ref) {x ← ∗ r ; r ∗= x + x ; ret x}.

Because the argument is a reference, rather than a capability, there is no possibility that the
getter and setter refer to different assignables.

The ability to pass references to procedures comes at a price, because any two references
might refer to the same assignable (if they have the same type). Consider a procedure that,
when given two references x and y, adds twice the contents of y to the contents of x. One
way to write this code creates no complications:

λ (x : nat ref) λ (y : nat ref) cmd {x ′ ← ∗ x ; y ′ ← ∗ y ; x ∗= x ′ + y ′ + y ′}.

Even if x and y refer to the same assignable, the effect will be to set the contents of the
assignable referenced by x to the sum of its original contents and twice the contents of the
assignable referenced by y.
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With immobile references it is impossible to build data structures containing 
references, or to return references from procedures. 

To allow this, we must arrange that the lifetime of an assignable extend beyond its 
scope. In other words, we must give up stack allocation for heap allocation. 

Assignables that persist beyond their scope of declaration are called scope-free, or 
just free, assignables. When all assignables are free, every type is mobile and so any 
value, including a reference, may be used in a data structure. 

316 Assignable References

But now consider the following seemingly equivalent implementation of this procedure:

λ (x : nat ref) λ (y : nat ref) cmd {x += y ; x += y},

where x += y is the command

{x ′ ← ∗ x ; y ′ ← ∗ y ; x ∗= x ′ + y ′}

that adds the contents of y to the contents of x. The second implementation works right, as
long as x and y do not refer to the same assignable. If they do refer to a common assignable
a, with contents n, the result is that a is to set 4 × n, instead of the intended 3 × n. The
second get of y is affected by the first set of x.

In this case, it is clear how to avoid the problem: use the first implementation, rather than
the second. But the difficulty is not in fixing the problem once it has been discovered, but
in noticing the problem in the first place. Wherever references (or capabilities) are used,
the problems of interference lurk. Avoiding them requires very careful consideration of all
possible aliasing relationships among all of the references in play. The problem is that the
number of possible aliasing relationships among n references grows combinatorially in n.

35.3 Free Assignables

Although it is interesting to note that references and capabilities are compatible with the
stack discipline, for references to be useful requires that this restriction be relaxed. With
immobile references it is impossible to build data structures containing references, or to
return references from procedures. To allow this, we must arrange that the lifetime of an
assignable extend beyond its scope. In other words, we must give up stack allocation for
heap allocation. Assignables that persist beyond their scope of declaration are called scope-
free, or just free, assignables. When all assignables are free, every type is mobile and so
any value, including a reference, may be used in a data structure.

Supporting free assignables amounts to changing the dynamics so that allocation of
assignables persists across transitions. We use transition judgments of the form

ν # { m ‖ µ } &−→ ν #′ { m′ ‖ µ′ }.

Execution of a command may allocate new assignables, may alter the contents of existing
assignables, and may give rise to a new command to be executed at the next step. The rules
defining the dynamics of free assignables are as follows:

e val#
ν # { ret(e) ‖ µ } final

(35.3a)

e &−→
#

e′

ν # { ret(e) ‖ µ } &−→ ν # { ret(e′) ‖ µ }
(35.3b)

e &−→
#

e′

ν # { bnd(e; x.m) ‖ µ } &−→ ν # { bnd(e′; x.m) ‖ µ }
(35.3c)
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But now consider the following seemingly equivalent implementation of this procedure:
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where x += y is the command

{x ′ ← ∗ x ; y ′ ← ∗ y ; x ∗= x ′ + y ′}

that adds the contents of y to the contents of x. The second implementation works right, as
long as x and y do not refer to the same assignable. If they do refer to a common assignable
a, with contents n, the result is that a is to set 4 × n, instead of the intended 3 × n. The
second get of y is affected by the first set of x.

In this case, it is clear how to avoid the problem: use the first implementation, rather than
the second. But the difficulty is not in fixing the problem once it has been discovered, but
in noticing the problem in the first place. Wherever references (or capabilities) are used,
the problems of interference lurk. Avoiding them requires very careful consideration of all
possible aliasing relationships among all of the references in play. The problem is that the
number of possible aliasing relationships among n references grows combinatorially in n.

35.3 Free Assignables

Although it is interesting to note that references and capabilities are compatible with the
stack discipline, for references to be useful requires that this restriction be relaxed. With
immobile references it is impossible to build data structures containing references, or to
return references from procedures. To allow this, we must arrange that the lifetime of an
assignable extend beyond its scope. In other words, we must give up stack allocation for
heap allocation. Assignables that persist beyond their scope of declaration are called scope-
free, or just free, assignables. When all assignables are free, every type is mobile and so
any value, including a reference, may be used in a data structure.

Supporting free assignables amounts to changing the dynamics so that allocation of
assignables persists across transitions. We use transition judgments of the form

ν # { m ‖ µ } &−→ ν #′ { m′ ‖ µ′ }.

Execution of a command may allocate new assignables, may alter the contents of existing
assignables, and may give rise to a new command to be executed at the next step. The rules
defining the dynamics of free assignables are as follows:

e val#
ν # { ret(e) ‖ µ } final

(35.3a)

e &−→
#

e′

ν # { ret(e) ‖ µ } &−→ ν # { ret(e′) ‖ µ }
(35.3b)

e &−→
#

e′

ν # { bnd(e; x.m) ‖ µ } &−→ ν # { bnd(e′; x.m) ‖ µ }
(35.3c)
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e val!
ν ! { bnd(cmd(ret(e)); x.m) ‖ µ } "−→ ν ! { [e/x]m ‖ µ } (35.3d)

ν ! { m1 ‖ µ } "−→ ν !′ { m′
1 ‖ µ′ }

ν ! { bnd(cmd(m1); x.m2) ‖ µ } "−→ ν !′ { bnd(cmd(m′
1); x.m2) ‖ µ′ }

(35.3e)

ν !, a ∼ τ { get[a] ‖ µ ⊗ a ↪→ e } "−→ ν !, a ∼ τ { ret(e) ‖ µ ⊗ a ↪→ e }
(35.3f)

e "−→
!

e′

ν ! { set[a](e) ‖ µ } "−→ ν ! { set[a](e′) ‖ µ }
(35.3g)

e val!,a∼τ

ν !, a ∼ τ { set[a](e) ‖ µ ⊗ a ↪→ } "−→ ν !, a ∼ τ { ret(e) ‖ µ ⊗ a ↪→ e } (35.3h)

e "−→
!

e′

ν ! { dcl(e; a.m) ‖ µ } "−→ ν ! { dcl(e′; a.m) ‖ µ }
(35.3i)

e val!
ν ! { dcl(e; a.m) ‖ µ } "−→ ν !, a ∼ τ { m ‖ µ ⊗ a ↪→ e } (35.3j)

The language RMA extends MA with references to free assignables. Its dynamics is
similar to that of references to scoped assignables given earlier.

e "−→
!

e′

ν ! { getref(e) ‖ µ } "−→ ν ! { getref(e′) ‖ µ }
(35.4a)

ν ! { getref(ref[a]) ‖ µ } "−→ ν ! { get[a] ‖ µ }
(35.4b)

e1 "−→
!

e′
1

ν ! { setref(e1; e2) ‖ µ } "−→ ν ! { setref(e′
1; e2) ‖ µ }

(35.4c)

ν ! { setref(ref[a]; e2) ‖ µ } "−→ ν ! { set[a](e2) ‖ µ }
(35.4d)

The expressions cannot alter or extend the memory, only commands may do so.
As an example of using RMA, consider the command newref[τ ](e) defined by

dcl a := e in ret (&a). (35.5)

This command allocates a fresh assignable and returns a reference to it. Its static and
dynamics are derived from the foregoing rules as follows:

% (! e : τ

% (! newref[τ ](e) ∼·· ref(τ )
(35.6)
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ν ! { set[a](e) ‖ µ } "−→ ν ! { set[a](e′) ‖ µ }
(35.3g)

e val!,a∼τ

ν !, a ∼ τ { set[a](e) ‖ µ ⊗ a ↪→ } "−→ ν !, a ∼ τ { ret(e) ‖ µ ⊗ a ↪→ e } (35.3h)

e "−→
!

e′

ν ! { dcl(e; a.m) ‖ µ } "−→ ν ! { dcl(e′; a.m) ‖ µ }
(35.3i)

e val!
ν ! { dcl(e; a.m) ‖ µ } "−→ ν !, a ∼ τ { m ‖ µ ⊗ a ↪→ e } (35.3j)

The language RMA extends MA with references to free assignables. Its dynamics is
similar to that of references to scoped assignables given earlier.

e "−→
!

e′

ν ! { getref(e) ‖ µ } "−→ ν ! { getref(e′) ‖ µ }
(35.4a)

ν ! { getref(ref[a]) ‖ µ } "−→ ν ! { get[a] ‖ µ }
(35.4b)

e1 "−→
!

e′
1

ν ! { setref(e1; e2) ‖ µ } "−→ ν ! { setref(e′
1; e2) ‖ µ }

(35.4c)

ν ! { setref(ref[a]; e2) ‖ µ } "−→ ν ! { set[a](e2) ‖ µ }
(35.4d)

The expressions cannot alter or extend the memory, only commands may do so.
As an example of using RMA, consider the command newref[τ ](e) defined by

dcl a := e in ret (&a). (35.5)

This command allocates a fresh assignable and returns a reference to it. Its static and
dynamics are derived from the foregoing rules as follows:

% (! e : τ

% (! newref[τ ](e) ∼·· ref(τ )
(35.6)
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e !−→
!

e′

ν ! { newref[τ ](e) ‖ µ } !−→ ν ! { newref[τ ](e′) ‖ µ }
(35.7a)

e val!
ν ! { newref[τ ](e) ‖ µ } !−→ ν !, a ∼ τ { ret(ref[a]) ‖ µ ⊗ a ↪→ e } (35.7b)

Oftentimes, the command newref[τ ](e) is taken as primitive, and the declaration command
is omitted. In that case, all assignables are accessed by reference, and no direct access to
assignables is provided.

35.4 Safety

Although the proof of safety for references to scoped assignables presents few difficulties,
the safety for free assignables is tricky. The main difficulty is to account for cyclic depen-
dencies within data structures. The contents of one assignable may contain a reference to
itself, or a reference to another assignable that contains a reference to it, and so forth. For
example, consider the following procedure e of type nat ⇀ nat cmd:

proc (x : nat) {if (x) ret (1) else {f ← @ a ; y ← f (x − 1) ; ret (x ∗ y)}}.

Let µ be a memory of the form µ′ ⊗ a ↪→ e in which the contents of a contains, via the
body of the procedure, a reference to a itself. Indeed, if the procedure e is called with a
non-zero argument, it will “call itself” by indirect reference through a.

Cyclic dependencies complicate the definition of the judgment µ : !. It is defined by
the following rule:

*! m ∼·· τ *! µ : !

ν ! { m ‖ µ } ok
(35.8)

The first premise of the rule states that the command m is well-formed relative to !. The
second premise states that the memory µ conforms to !, relative to all of ! so that cyclic
dependencies are permitted. The judgment *!′ µ : ! is defined as follows:

∀a ∼ τ ∈ ! ∃e µ(a) = e and *!′ e : τ

*!′ µ : !
(35.9)

Theorem 35.1 (Preservation).

1. If *! e : τ and e !−→
!

e′, then *! e′ : τ .

2. If ν ! { m ‖ µ } ok and ν ! { m ‖ µ } !−→ ν !′ { m′ ‖ µ′ }, then ν !′ { m′ ‖ µ′ } ok.

Proof Simultaneously, by induction on transition. We prove the following stronger form
of the second statement:

If ν ! {m ‖ µ } !−→ ν !′ {m′ ‖ µ′ }, where *! m ∼·· τ , *! µ : !, then !′ extends !,
and *!′ m′ ∼·· τ , and *!′ µ′ : !′.
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Consider the transition

ν " { dcl(e; a.m) ‖ µ } "−→ ν ", a ∼ ρ { m ‖ µ ⊗ a ↪→ e }

where e val" . By assumption and inversion of rule (34.6d), we have '" e : ρ, '",a∼ρ

m ∼·· τ , and '" µ : ". But because extension of " with a fresh assignable does not affect
typing, we also have '",a∼ρ µ : " and '",a∼ρ e : ρ, from which it follows by rule (35.9)
that '",a∼ρ µ ⊗ a ↪→ e : ", a ∼ ρ.

The other cases follow a similar pattern and are left as an exercise for the reader.

Theorem 35.2 (Progress).

1. If '" e : τ , then either e val" or there exists e′ such that e "−→
"

e′.

2. If ν " { m ‖ µ } ok then either ν " { m ‖ µ } final or ν " { m ‖ µ } "−→ ν "′ { m′ ‖ µ′ }
for some "′, µ′, and m′.

Proof Simultaneously, by induction on typing. For the second statement, we prove the
stronger form

If '" m ∼·· τ and '" µ : ", then either ν " {m ‖ µ } final, or ν " {m ‖ µ } "−→
ν "′ {m′ ‖ µ′ } for some "′, µ′, and m′.

Consider the typing rule

& '" e : ρ & '",a∼ρ m ∼·· τ

& '" dcl(e; a.m) ∼·· τ

We have by the first inductive hypothesis that either e val" or e "−→
"

e′ for some e′. In the
latter case, we have by rule (35.3i)

ν " { dcl(e; a.m) ‖ µ } "−→ ν " { dcl(e′; a.m) ‖ µ }.

In the former case, we have by rule (35.3j) that

ν " { dcl(e; a.m) ‖ µ } "−→ ν ", a ∼ ρ { m ‖ µ ⊗ a ↪→ e }.

Now consider the typing rule

& '",a∼τ get[a] ∼·· τ

By assumption '",a∼τ µ : ", a ∼ τ , and hence there exists e val",a∼τ such that µ =
µ′ ⊗ a ↪→ e and '",a∼τ e : τ . By rule (35.3f)

ν ", a ∼ τ { get[a] ‖ µ′ ⊗ a ↪→ e } "−→ ν ", a ∼ τ { ret(e) ‖ µ′ ⊗ a ↪→ e },

as required. The other cases are handled similarly.
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