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LPCF: PCF By-Need
Lazy variant of PCF with functions being called-by-need and the 
successor operator evaluated lazily;

Variables are bound to unevaluated expressions; 

By-need evaluation uses memoization (or thunk) to share all such 
copies of an argument so it is only evaluated at most once

162 System PCF of Recursive Functions

Note well that the condition on f ′ is expressed in terms of f , the argument to the functional
F , and not in terms of f ′ itself! The function f we seek is a fixed point of F , a function
f : N → N such that f = F (f ). In other words e is defined to be fix(F ), where fix is a
higher-order operator on functionals F that computes a fixed point for it.

Why should an operator such as F have a fixed point? The key is that functions in PCF
are partial, which means that they may diverge on some (or even all) inputs. Consequently,
a fixed point of a functional F is the limit of a series of approximations of the desired
solution obtained by iterating F . Let us say that a partial function φ on the natural numbers,
is an approximation to a total function f if φ(m) = n implies that f (m) = n. Let ⊥: N ⇀ N
be the totally undefined partial function—⊥(n) is undefined for every n ∈ N. This is the
“worst” approximation to the desired solution f of the recursion equations given above.
Given any approximation φ of f , we may “improve” it to φ′ = F (φ). The partial function
φ′ is defined on 0 and on m + 1 for every m ≥ 0 on which φ is defined. Continuing,
φ′′ = F (φ′) = F (F (φ)) is an improvement on φ′, and hence a further improvement on φ.
If we start with ⊥ as the initial approximation to f , then pass to the limit

lim
i≥0

F (i)(⊥),

we will obtain the least approximation to f that is defined for every m ∈ N, and hence is
the function f itself. Turning this around, if the limit exists, it is the solution we seek.

Because this construction works for any functional F , we conclude that all such operators
have fixed points, and hence that all systems of equations such as the one given above have
solutions. The solution is given by general recursion, but there is no guarantee that it is a
total function (defined on all elements of its domain). For the above example, it happens to
be true, because we can prove by induction that this is so, but in general, the solution is a
partial function that may diverge on some inputs. It is our task as programmers to ensure
that the functions defined by general recursion are total, or at least that we have a grasp of
those inputs for which it is well-defined.

19.1 Statics

The syntax of PCF is given by the following grammar:

Typ τ ::= nat nat naturals
parr(τ1; τ2) τ1 ⇀ τ2 partial function

Exp e ::= x x variable
z z zero
s(e) s(e) successor
ifz{e0; x.e1}(e) ifz e {z ↪→ e0 | s(x) ↪→ e1} zero test
lam{τ }(x.e) λ (x : τ ) e abstraction
ap(e1; e2) e1(e2) application
fix{τ }(x.e) fix x : τ is e recursion
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The expression fix{τ }(x.e) is general recursion; it is discussed in more detail below. The
expression ifz{e0; x.e1}(e) branches according to whether e evaluates to z, binding the
predecessor to x in the case that it is not.

The statics of PCF is inductively defined by the following rules:

", x : τ ! x : τ
(19.1a)

" ! z : nat
(19.1b)

" ! e : nat
" ! s(e) : nat (19.1c)

" ! e : nat " ! e0 : τ ", x : nat ! e1 : τ

" ! ifz{e0; x.e1}(e) : τ
(19.1d)

", x : τ1 ! e : τ2

" ! lam{τ1}(x.e) : parr(τ1; τ2) (19.1e)

" ! e1 : parr(τ2; τ ) " ! e2 : τ2

" ! ap(e1; e2) : τ
(19.1f)

", x : τ ! e : τ

" ! fix{τ }(x.e) : τ
(19.1g)

Rule (19.1g) reflects the self-referential nature of general recursion. To show that
fix{τ }(x.e) has type τ , we assume that it is the case by assigning that type to the variable
x, which stands for the recursive expression itself, and checking that the body, e, has type
τ under this very assumption.

The structural rules, including in particular substitution, are admissible for the static
semantics.

Lemma 19.1. If ", x : τ ! e′ : τ ′, " ! e : τ , then " ! [e/x]e′ : τ ′.

19.2 Dynamics

The dynamic semantics of PCF is defined by the judgments e val, specifying the closed
values, and e #−→ e′, specifying the steps of evaluation.

The judgment e val is defined by the following rules:

z val
(19.2a)

[e val]
s(e) val

(19.2b)
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are bound to unevaluated expressions, and the argument to the successor left unevaluated:
any successor is a value, regardless of whether the predecessor is or not. By-name function
application replicates the unevaluated argument by substitution, which means that there
can arise many copies of the same expression, each evaluated separately, if at all. By-need
evaluation uses a device called memoization to share all such copies of an argument and to
ensure that if it is evaluated at all, its value is stored so that all other uses of it will avoid
re-computation. Computations are named during evaluation, and are accessed by a level of
indirection using this name to index the memo table, which records the expression and, if
it is every evaluated, its value.

The dynamics of LPCF is based on a transition system with states of the form
ν " { e ‖ µ }, where " is a finite set of hypotheses a1 ∼ τ1, . . . , an ∼ τn associating types to
symbols, e is an expression that can involve the symbols in ", and µ maps each symbol
declared in " to either an expression or a special symbol, •, called the black hole. (The
role of the black hole is explained below.) As a notational convenience, we use a bit of
legerdemain with the concrete syntax similar to that used in Chapter 34. Specifically, the
concrete syntax for the expression via(a), which fetches the contents of the assignable a,
is @ a.

The dynamics of LPCF is given by he following two forms of judgment:

1. e val" , stating that e is a value that can involve the symbols in ".
2. ν " { e ‖ µ } #−→ ν "′ { e′ ‖ µ′ }, stating that one step of evaluation of the expression

e relative to memo table µ with the symbols declared in " results in the expression e′

relative to the memo table µ′ with symbols declared in "′.

The dynamics is defined so that the active symbols grow during evaluation. The memo
table may be altered destructively during execution to show progress in the evaluation of
the expression associated with a symbol.

The judgment e val" expressing that e is a closed value is defined by the following rules:

z val"
(36.1a)

s(@ a) val",a∼nat
(36.1b)

λ (x : τ ) e val"
(36.1c)

Rules (36.1a) through (36.1c) specify that z is a value, any expression of the form s(@ a),
where a is a symbol, is a value, and that any λ-abstraction, possibly containing symbols, is a
value. It is important that symbols themselves are not values, rather they stand for (possibly
unevaluated) expressions as specified by the memo table. The expression @ a, which is
short for via(a), is not a value. Rather, it is accessed to obtain, and possibly update, the
binding of the symbol a in memory.
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The initial and final states of evaluation are defined as follows:

ν ∅ { e ‖ ∅ } initial
(36.2a)

e val"
ν " { e ‖ µ } final

(36.2b)

Rule (36.2a) specifies that an initial state consists of an expression evaluated relative to
an empty memo table. Rule (36.2b) specifies that a final state has the form ν " { e ‖ µ },
where e is a value relative to ".

The transition judgment for the dynamics of LPCF is defined by the following rules:

e val",a∼τ

ν ", a ∼ τ { @ a ‖ µ ⊗ a ↪→ e } &−→ ν ", a ∼ τ { e ‖ µ ⊗ a ↪→ e } (36.3a)

ν ", a ∼ τ { e ‖ µ ⊗ a ↪→ • } &−→ ν "′, a ∼ τ { e′ ‖ µ′ ⊗ a ↪→ • }
ν ", a ∼ τ { @ a ‖ µ ⊗ a ↪→ e } &−→ ν "′, a ∼ τ { @ a ‖ µ′ ⊗ a ↪→ e′ }

(36.3b)

ν " { s(e) ‖ µ } &−→ ν ", a ∼ nat { s(@ a) ‖ µ ⊗ a ↪→ e }
(36.3c)

ν " { e ‖ µ } &−→ ν "′ { e′ ‖ µ′ }
ν " { ifz e {z ↪→ e0 | s(x) ↪→ e1} ‖ µ } &−→ ν "′ { ifz e′ {z ↪→ e0 | s(x) ↪→ e1} ‖ µ′ }

(36.3d)

ν " { ifz z {z ↪→ e0 | s(x) ↪→ e1} ‖ µ } &−→ ν " { e0 ‖ µ }
(36.3e)






ν ", a ∼ nat { ifz s(@ a) {z ↪→ e0 | s(x) ↪→ e1} ‖ µ ⊗ a ↪→ e }
&−→

ν ", a ∼ nat { [@ a/x]e1 ‖ µ ⊗ a ↪→ e }






(36.3f)

ν " { e1 ‖ µ } &−→ ν "′ { e′
1 ‖ µ′ }

ν " { e1(e2) ‖ µ } &−→ ν "′ { e′
1(e2) ‖ µ′ }

(36.3g)






ν " { (λ (x : τ ) e)(e2) ‖ µ }
&−→

ν ", a ∼ τ { [@ a/x]e ‖ µ ⊗ a ↪→ e2 }






(36.3h)

ν " { fix x : τ is e ‖ µ } &−→ ν ", a ∼ τ { @ a ‖ µ ⊗ a ↪→ [@ a/x]e }
(36.3i)
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Rule (36.3a) governs a symbol whose associated expression is a value; the value of the
symbol is the value associated to that symbol in the memo table. Rule (36.3b) specifies that
if the expression associated to a symbol is not a value, then it is evaluated “in place” until
such time as rule (36.3a) applies. This is achieved by switching the focus of evaluation to
the associated expression, while at the same time associating the black hole to that symbol.
The black hole represents the absence of a value for that symbol, so that any attempt to
use it during evaluation of its associated expression cannot make progress. The black hole
signals a circular dependency that, if not caught using a black hole, would initiate an infinite
regress.

Rule (36.3c) specifies that evaluation of s(e) allocates a fresh symbol a for the expression
e, and yields the value s(@ a). The value of e is not determined until such time as the
predecessor is required in a later computation, implementing a lazy dynamics for the
successor. Rule (36.3f), which governs a conditional branch on a successor, substitutes @ a

for the variable x when computing the predecessor of a non-zero number, ensuring that all
occurrences of x share the same predecessor computation.

Rule (36.3g) specifies that the value of the function position of an application must be
determined before the application can be executed. Rule (36.3h) specifies that to evaluate an
application of a λ-abstraction we allocate a fresh symbol a for the argument, and substitute
@ a for the argument variable of the function. The argument is evaluated only if it is
needed in the later computation, and then that value is shared among all occurrences of the
argument variable in the body of the function.

General recursion is implemented by rule (36.3i). Recall from Chapter 19 that the
expression fix x :τ is e stands for the solution of the recursion equation x = e. Rule (36.3i)
computes this solution by associating a fresh symbol a with the body e substituting @ a for x

within e to effect the self-reference. It is this substitution that permits a named expression to
depend on its own name. For example, the expression fix x :τ is x associates the expression
a to a in the memo table, and returns @ a. The next step of evaluation is stuck, because
it seeks to evaluate @ a with a bound to the black hole. In contrast, an expression such
as fix f : τ ′ ⇀ τ is λ (x : τ ′) e does not get stuck, because the self-reference is “hidden”
within the λ-abstraction, and hence need not be evaluated to determine the value of the
binding.

36.2 Safety of PCF By-Need

We write $ "% e : τ to mean that e has type τ under the assumptions $, treating symbols
declared in % as expressions of their associated type. The rules are as in Chapter 19,
extended with the following rule for symbols:

$ "%,a∼τ @ a : τ
(36.4)

This rule states that the demand for the binding of a symbol, @ a, is a form of expression.
It is a “delayed substitution” that lazily replaces a demand for a by its binding.
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The judgment ν " { e ‖ µ } ok is defined by the following rules:

"" e : τ "" µ : "

ν " { e ‖ µ } ok
(36.5a)

∀a ∼ τ ∈ " µ(a) = e &= • =⇒""′ e : τ

""′ µ : "
(36.5b)

Rule (36.5b) permits self-reference through the memo table by allowing the expression
associated to a symbol a to contain occurrences of @ a. A symbol that is bound to the
“black hole” is considered to be of any type.

Theorem 36.1 (Preservation). If ν " { e ‖ µ } )−→ ν "′ { e′ ‖ µ′ } and ν " { e ‖ µ } ok,
then ν "′ { e′ ‖ µ′ } ok.

Proof We prove by induction on rules (36.3) that if ν " { e ‖ µ } )−→ ν "′ { e′ ‖ µ′ } and
"" µ : " and "" e : τ , then "′ ⊇ " and ""′ µ′ : "′ and ""′ e′ : τ .

Consider rule (36.3b), for which we have e = e′ = @ a, µ = µ0 ⊗ a ↪→ e0, µ′ =
µ′

0 ⊗ a ↪→ e′
0, and

ν ", a ∼ τ { e0 ‖ µ0 ⊗ a ↪→ • } )−→ ν "′, a ∼ τ { e′
0 ‖ µ′

0 ⊗ a ↪→ • }.

Assume that "",a∼τ µ : ", a ∼ τ . It follows that "",a∼τ e0 : τ and "",a∼τ µ0 : ", and
hence that

"",a∼τ µ0 ⊗ a ↪→ • : ", a ∼ τ .

We have by induction that "′ ⊇ " and ""′,a∼τ e′
0 : τ ′ and

""′,a∼τ µ0 ⊗ a ↪→ • : ", a ∼ τ .

But then
""′,a∼τ µ′ : "′, a ∼ τ ,

which suffices for the result.
Consider rule (36.3g), so that e is the application e1(e2) and

ν " { e1 ‖ µ } )−→ ν "′ { e′
1 ‖ µ′ }.

Suppose that "" µ : " and "" e : τ . By inversion of typing "" e1 : τ2 ⇀ τ for some type
τ2 such that "" e2 : τ2. By induction "′ ⊇ " and ""′ µ′ : "′ and ""′ e′

1 : τ2 ⇀ τ . By
weakening we have ""′ e2 : τ2, so that ""′ e′

1(e2) : τ , which is enough for the result.

The statement of the progress theorem allows for the occurrence of a black hole, rep-
resenting a checkable form of non-termination. The judgment ν " { e ‖ µ } loops, stating
that e diverges by virtue of encountering the black hole, is defined by the following rules:

ν ", a ∼ τ { @ a ‖ µ ⊗ a ↪→ • } loops
(36.6a)

ν ", a ∼ τ { e ‖ µ ⊗ a ↪→ • } loops
ν ", a ∼ τ { @ a ‖ µ ⊗ a ↪→ e } loops

(36.6b)
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ν " { e1 ‖ µ } )−→ ν "′ { e′
1 ‖ µ′ }.

Suppose that "" µ : " and "" e : τ . By inversion of typing "" e1 : τ2 ⇀ τ for some type
τ2 such that "" e2 : τ2. By induction "′ ⊇ " and ""′ µ′ : "′ and ""′ e′

1 : τ2 ⇀ τ . By
weakening we have ""′ e2 : τ2, so that ""′ e′

1(e2) : τ , which is enough for the result.

The statement of the progress theorem allows for the occurrence of a black hole, rep-
resenting a checkable form of non-termination. The judgment ν " { e ‖ µ } loops, stating
that e diverges by virtue of encountering the black hole, is defined by the following rules:

ν ", a ∼ τ { @ a ‖ µ ⊗ a ↪→ • } loops
(36.6a)

ν ", a ∼ τ { e ‖ µ ⊗ a ↪→ • } loops
ν ", a ∼ τ { @ a ‖ µ ⊗ a ↪→ e } loops

(36.6b)
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The judgment ν " { e ‖ µ } ok is defined by the following rules:
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""′ µ : "
(36.5b)
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0 ‖ µ′
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Assume that "",a∼τ µ : ", a ∼ τ . It follows that "",a∼τ e0 : τ and "",a∼τ µ0 : ", and
hence that

"",a∼τ µ0 ⊗ a ↪→ • : ", a ∼ τ .

We have by induction that "′ ⊇ " and ""′,a∼τ e′
0 : τ ′ and

""′,a∼τ µ0 ⊗ a ↪→ • : ", a ∼ τ .

But then
""′,a∼τ µ′ : "′, a ∼ τ ,

which suffices for the result.
Consider rule (36.3g), so that e is the application e1(e2) and

ν " { e1 ‖ µ } )−→ ν "′ { e′
1 ‖ µ′ }.

Suppose that "" µ : " and "" e : τ . By inversion of typing "" e1 : τ2 ⇀ τ for some type
τ2 such that "" e2 : τ2. By induction "′ ⊇ " and ""′ µ′ : "′ and ""′ e′

1 : τ2 ⇀ τ . By
weakening we have ""′ e2 : τ2, so that ""′ e′

1(e2) : τ , which is enough for the result.

The statement of the progress theorem allows for the occurrence of a black hole, rep-
resenting a checkable form of non-termination. The judgment ν " { e ‖ µ } loops, stating
that e diverges by virtue of encountering the black hole, is defined by the following rules:

ν ", a ∼ τ { @ a ‖ µ ⊗ a ↪→ • } loops
(36.6a)

ν ", a ∼ τ { e ‖ µ ⊗ a ↪→ • } loops
ν ", a ∼ τ { @ a ‖ µ ⊗ a ↪→ e } loops

(36.6b)
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ν " { e ‖ µ } loops
ν " { ifz e {z ↪→ e0 | s(x) ↪→ e1} ‖ µ } loops

(36.6c)

ν " { e1 ‖ µ } loops
ν " { e1(e2) ‖ µ } loops

(36.6d)

There are other ways of forming an infinite loop. The looping judgment simply codifies
those cases in which the looping behavior is a self-dependency, which is mediated by a
black hole.

Theorem 36.2 (Progress). If ν " { e ‖ µ } ok, then either ν " { e ‖ µ } final, or
ν " { e ‖ µ } loops, or there exists µ′ and e′ such that ν " { e ‖ µ } $−→ ν "′ { e′ ‖ µ′ }.

Proof We proceed by induction on the derivations of &" e : τ and &" µ : " implicit in
the derivation of ν " { e ‖ µ } ok.

Consider rule (19.1a), where the symbol a is declared in ". Thus, " = "0, a ∼ τ and
&" µ : ". It follows that µ = µ0 ⊗ a ↪→ e0 with &" µ0 : "0 and &" e0 : τ . Note that
&" µ0 ⊗ a ↪→ • : ". Applying induction to the derivation of &" e0 : τ , we consider three
cases:

1. ν " { e0 ‖ µ ⊗ a ↪→ • } final. By inversion of rule (36.2b) we have e0 val" , and hence
by rule (36.3a) we obtain ν " { @ a ‖ µ } $−→ ν " { e0 ‖ µ }.

2. ν " { e0 ‖ µ0 ⊗ a ↪→ • } loops. By applying rule (36.6b) we obtain
ν " { @ a ‖ µ } loops.

3. ν " { e0 ‖ µ0 ⊗ a ↪→ • } $−→ ν "′ { e′
0 ‖ µ′

0 ⊗ a ↪→ • }. By applying rule (36.3b) we
obtain

ν " { @ a ‖ µ ⊗ a ↪→ e0 } $−→ ν "′ { @ a ‖ µ′ ⊗ a ↪→ e′
0 }.

36.3 FPC By-Need

The language LFPC is FPC but with a by-need dynamics. For example, the dynamics of
product types in LFPC is given by the following rules:

〈@ a1, @ a2〉 val",a1∼τ1,a2∼τ2

(36.7a)






ν " { 〈e1, e2〉 ‖ µ }
$−→

ν ", a1 ∼ τ1, a2 ∼ τ2 { 〈@ a1, @ a2〉 ‖ µ ⊗ a1 ↪→ e1 ⊗ a2 ↪→ e2 }






(36.7b)

ν " { e ‖ µ } $−→ ν "′ { e′ ‖ µ′ }
ν " { e · l ‖ µ } $−→ ν "′ { e′ · l ‖ µ′ }

(36.7c)
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ν " { e ‖ µ } loops
ν " { ifz e {z ↪→ e0 | s(x) ↪→ e1} ‖ µ } loops

(36.6c)

ν " { e1 ‖ µ } loops
ν " { e1(e2) ‖ µ } loops

(36.6d)

There are other ways of forming an infinite loop. The looping judgment simply codifies
those cases in which the looping behavior is a self-dependency, which is mediated by a
black hole.

Theorem 36.2 (Progress). If ν " { e ‖ µ } ok, then either ν " { e ‖ µ } final, or
ν " { e ‖ µ } loops, or there exists µ′ and e′ such that ν " { e ‖ µ } $−→ ν "′ { e′ ‖ µ′ }.

Proof We proceed by induction on the derivations of &" e : τ and &" µ : " implicit in
the derivation of ν " { e ‖ µ } ok.

Consider rule (19.1a), where the symbol a is declared in ". Thus, " = "0, a ∼ τ and
&" µ : ". It follows that µ = µ0 ⊗ a ↪→ e0 with &" µ0 : "0 and &" e0 : τ . Note that
&" µ0 ⊗ a ↪→ • : ". Applying induction to the derivation of &" e0 : τ , we consider three
cases:

1. ν " { e0 ‖ µ ⊗ a ↪→ • } final. By inversion of rule (36.2b) we have e0 val" , and hence
by rule (36.3a) we obtain ν " { @ a ‖ µ } $−→ ν " { e0 ‖ µ }.

2. ν " { e0 ‖ µ0 ⊗ a ↪→ • } loops. By applying rule (36.6b) we obtain
ν " { @ a ‖ µ } loops.

3. ν " { e0 ‖ µ0 ⊗ a ↪→ • } $−→ ν "′ { e′
0 ‖ µ′

0 ⊗ a ↪→ • }. By applying rule (36.3b) we
obtain

ν " { @ a ‖ µ ⊗ a ↪→ e0 } $−→ ν "′ { @ a ‖ µ′ ⊗ a ↪→ e′
0 }.

36.3 FPC By-Need

The language LFPC is FPC but with a by-need dynamics. For example, the dynamics of
product types in LFPC is given by the following rules:

〈@ a1, @ a2〉 val",a1∼τ1,a2∼τ2

(36.7a)






ν " { 〈e1, e2〉 ‖ µ }
$−→

ν ", a1 ∼ τ1, a2 ∼ τ2 { 〈@ a1, @ a2〉 ‖ µ ⊗ a1 ↪→ e1 ⊗ a2 ↪→ e2 }






(36.7b)

ν " { e ‖ µ } $−→ ν "′ { e′ ‖ µ′ }
ν " { e · l ‖ µ } $−→ ν "′ { e′ · l ‖ µ′ }

(36.7c)
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ν " { e ‖ µ } loops
ν " { ifz e {z ↪→ e0 | s(x) ↪→ e1} ‖ µ } loops

(36.6c)

ν " { e1 ‖ µ } loops
ν " { e1(e2) ‖ µ } loops

(36.6d)

There are other ways of forming an infinite loop. The looping judgment simply codifies
those cases in which the looping behavior is a self-dependency, which is mediated by a
black hole.

Theorem 36.2 (Progress). If ν " { e ‖ µ } ok, then either ν " { e ‖ µ } final, or
ν " { e ‖ µ } loops, or there exists µ′ and e′ such that ν " { e ‖ µ } $−→ ν "′ { e′ ‖ µ′ }.

Proof We proceed by induction on the derivations of &" e : τ and &" µ : " implicit in
the derivation of ν " { e ‖ µ } ok.

Consider rule (19.1a), where the symbol a is declared in ". Thus, " = "0, a ∼ τ and
&" µ : ". It follows that µ = µ0 ⊗ a ↪→ e0 with &" µ0 : "0 and &" e0 : τ . Note that
&" µ0 ⊗ a ↪→ • : ". Applying induction to the derivation of &" e0 : τ , we consider three
cases:

1. ν " { e0 ‖ µ ⊗ a ↪→ • } final. By inversion of rule (36.2b) we have e0 val" , and hence
by rule (36.3a) we obtain ν " { @ a ‖ µ } $−→ ν " { e0 ‖ µ }.

2. ν " { e0 ‖ µ0 ⊗ a ↪→ • } loops. By applying rule (36.6b) we obtain
ν " { @ a ‖ µ } loops.

3. ν " { e0 ‖ µ0 ⊗ a ↪→ • } $−→ ν "′ { e′
0 ‖ µ′

0 ⊗ a ↪→ • }. By applying rule (36.3b) we
obtain

ν " { @ a ‖ µ ⊗ a ↪→ e0 } $−→ ν "′ { @ a ‖ µ′ ⊗ a ↪→ e′
0 }.

36.3 FPC By-Need

The language LFPC is FPC but with a by-need dynamics. For example, the dynamics of
product types in LFPC is given by the following rules:

〈@ a1, @ a2〉 val",a1∼τ1,a2∼τ2

(36.7a)






ν " { 〈e1, e2〉 ‖ µ }
$−→

ν ", a1 ∼ τ1, a2 ∼ τ2 { 〈@ a1, @ a2〉 ‖ µ ⊗ a1 ↪→ e1 ⊗ a2 ↪→ e2 }






(36.7b)

ν " { e ‖ µ } $−→ ν "′ { e′ ‖ µ′ }
ν " { e · l ‖ µ } $−→ ν "′ { e′ · l ‖ µ′ }

(36.7c)
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ν " { e ‖ µ } loops
ν " { e · l ‖ µ } loops

(36.7d)






ν ", a1 ∼ τ1, a2 ∼ τ2 { 〈@ a1, @ a2〉 · l ‖ µ }
%−→

ν ", a1 ∼ τ1, a2 ∼ τ2 { @ a1 ‖ µ }






(36.7e)

ν " { e ‖ µ } %−→ ν "′ { e′ ‖ µ′ }
ν " { e · r ‖ µ } %−→ ν "′ { e′ · r ‖ µ′ } (36.7f)

ν " { e ‖ µ } loops
ν " { e · r ‖ µ } loops

(36.7g)






ν ", a1 ∼ τ1, a2 ∼ τ2 { 〈@ a1, @ a2〉 · r ‖ µ }
%−→

ν ", a1 ∼ τ1, a2 ∼ τ2 { @ a2 ‖ µ }






(36.7h)

A pair is considered a value only if its arguments are symbols (rule (36.7a)), which are
introduced when the pair is created (rule (36.7b)). The first and second projections evaluate
to one or the other symbol in the pair, inducing a demand for the value of that component
(rules (36.7e) and (36.7h)).

Similar ideas can be used to give a by-need dynamics to sums and recursive types.

36.4 Suspension Types

The dynamics of LFPC outlined in the previous section imposes a by-need interpretation
on every type. A more flexible approach is to isolate the machinery of by-need evaluation
by introducing a type τ susp of memoized computations, called suspensions, of a value of
type τ to an eager variant of FPC. Doing so allows the programmer to choose the extent to
which a by-need dynamics is imposed.

Informally, the type τ susp has as introduction form susp x : τ is e representing a sus-
pended, self-referential, computation, e, of type τ . It has as elimination form the operation
force(e) that evaluates the suspended computation presented by e, records the value in
a memo table, and returns that value as result. Using suspension types, we can construct
lazy types at will. For example, the type of lazy pairs with components of type τ1 and τ2 is
expressible as the type

τ1 susp × τ2 susp

and the type of by-need functions with domain τ1 and range τ2 is expressible as the type

τ1 susp ⇀ τ2.
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ν " { e ‖ µ } loops
ν " { e · l ‖ µ } loops

(36.7d)






ν ", a1 ∼ τ1, a2 ∼ τ2 { 〈@ a1, @ a2〉 · l ‖ µ }
%−→

ν ", a1 ∼ τ1, a2 ∼ τ2 { @ a1 ‖ µ }






(36.7e)

ν " { e ‖ µ } %−→ ν "′ { e′ ‖ µ′ }
ν " { e · r ‖ µ } %−→ ν "′ { e′ · r ‖ µ′ } (36.7f)

ν " { e ‖ µ } loops
ν " { e · r ‖ µ } loops

(36.7g)






ν ", a1 ∼ τ1, a2 ∼ τ2 { 〈@ a1, @ a2〉 · r ‖ µ }
%−→

ν ", a1 ∼ τ1, a2 ∼ τ2 { @ a2 ‖ µ }






(36.7h)

A pair is considered a value only if its arguments are symbols (rule (36.7a)), which are
introduced when the pair is created (rule (36.7b)). The first and second projections evaluate
to one or the other symbol in the pair, inducing a demand for the value of that component
(rules (36.7e) and (36.7h)).

Similar ideas can be used to give a by-need dynamics to sums and recursive types.

36.4 Suspension Types

The dynamics of LFPC outlined in the previous section imposes a by-need interpretation
on every type. A more flexible approach is to isolate the machinery of by-need evaluation
by introducing a type τ susp of memoized computations, called suspensions, of a value of
type τ to an eager variant of FPC. Doing so allows the programmer to choose the extent to
which a by-need dynamics is imposed.

Informally, the type τ susp has as introduction form susp x : τ is e representing a sus-
pended, self-referential, computation, e, of type τ . It has as elimination form the operation
force(e) that evaluates the suspended computation presented by e, records the value in
a memo table, and returns that value as result. Using suspension types, we can construct
lazy types at will. For example, the type of lazy pairs with components of type τ1 and τ2 is
expressible as the type

τ1 susp × τ2 susp

and the type of by-need functions with domain τ1 and range τ2 is expressible as the type

τ1 susp ⇀ τ2.
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We may also express more complex combinations of eagerness and laziness, such as the
type of “lazy lists” consisting of computations that, when forced, evaluate either to the
empty list, or a non-empty list consisting of a natural number and another lazy list:

rec t is (unit + (nat × t)) susp.

Contrast this preceding type with this one:

rec t is (unit + (nat × t susp)).

Values of the latter type are the empty list and a pair consisting of a natural number and a
computation of another such value.

The language SFPC extends FPC with a type of suspensions:

Typ τ ::= susp(τ ) τ susp suspension
Exp e ::= susp{τ }(x.e) susp x : τ is e delay

force(e) force(e) force
lcell[a] lcell[a] indirection

Suspended computations are potentially self-referential; the bound variable x refers to the
suspension itself. The expression lcell[a] is a reference to the suspension named a.

The statics of SFPC is given using a judgment of the form " "# e : τ , where # assigns
types to the names of suspensions. It is defined by the following rules:

", x : susp(τ ) "# e : τ

" "# susp{τ }(x.e) : susp(τ )
(36.8a)

" "# e : susp(τ )
" "# force(e) : τ

(36.8b)

" "#,a∼τ lcell[a] : susp(τ )
(36.8c)

Rule (36.8a) checks that the expression, e, has type τ under the assumption that x, which
stands for the suspension itself, has type susp(τ ).

The dynamics of SFPC is eager, with memoization confined to the suspension type as
described by the following rules:

lcell[a] val#,a∼τ

(36.9a)






ν # { susp{τ }(x.e) ‖ µ }
%−→

ν #, a ∼ τ { lcell[a] ‖ µ ⊗ a ↪→ [lcell[a]/x]e }






(36.9b)

ν # { e ‖ µ } %−→ ν #′ { e′ ‖ µ′ }
ν # { force(e) ‖ µ } %−→ ν #′ { force(e′) ‖ µ′ } (36.9c)
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We may also express more complex combinations of eagerness and laziness, such as the
type of “lazy lists” consisting of computations that, when forced, evaluate either to the
empty list, or a non-empty list consisting of a natural number and another lazy list:

rec t is (unit + (nat × t)) susp.

Contrast this preceding type with this one:

rec t is (unit + (nat × t susp)).

Values of the latter type are the empty list and a pair consisting of a natural number and a
computation of another such value.

The language SFPC extends FPC with a type of suspensions:

Typ τ ::= susp(τ ) τ susp suspension
Exp e ::= susp{τ }(x.e) susp x : τ is e delay

force(e) force(e) force
lcell[a] lcell[a] indirection

Suspended computations are potentially self-referential; the bound variable x refers to the
suspension itself. The expression lcell[a] is a reference to the suspension named a.

The statics of SFPC is given using a judgment of the form " "# e : τ , where # assigns
types to the names of suspensions. It is defined by the following rules:

", x : susp(τ ) "# e : τ

" "# susp{τ }(x.e) : susp(τ )
(36.8a)

" "# e : susp(τ )
" "# force(e) : τ

(36.8b)

" "#,a∼τ lcell[a] : susp(τ )
(36.8c)

Rule (36.8a) checks that the expression, e, has type τ under the assumption that x, which
stands for the suspension itself, has type susp(τ ).

The dynamics of SFPC is eager, with memoization confined to the suspension type as
described by the following rules:

lcell[a] val#,a∼τ

(36.9a)






ν # { susp{τ }(x.e) ‖ µ }
%−→

ν #, a ∼ τ { lcell[a] ‖ µ ⊗ a ↪→ [lcell[a]/x]e }






(36.9b)

ν # { e ‖ µ } %−→ ν #′ { e′ ‖ µ′ }
ν # { force(e) ‖ µ } %−→ ν #′ { force(e′) ‖ µ′ } (36.9c)

5!!� 
  2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3  

330 Lazy Evaluation

We may also express more complex combinations of eagerness and laziness, such as the
type of “lazy lists” consisting of computations that, when forced, evaluate either to the
empty list, or a non-empty list consisting of a natural number and another lazy list:

rec t is (unit + (nat × t)) susp.

Contrast this preceding type with this one:

rec t is (unit + (nat × t susp)).

Values of the latter type are the empty list and a pair consisting of a natural number and a
computation of another such value.

The language SFPC extends FPC with a type of suspensions:

Typ τ ::= susp(τ ) τ susp suspension
Exp e ::= susp{τ }(x.e) susp x : τ is e delay

force(e) force(e) force
lcell[a] lcell[a] indirection

Suspended computations are potentially self-referential; the bound variable x refers to the
suspension itself. The expression lcell[a] is a reference to the suspension named a.

The statics of SFPC is given using a judgment of the form " "# e : τ , where # assigns
types to the names of suspensions. It is defined by the following rules:

", x : susp(τ ) "# e : τ

" "# susp{τ }(x.e) : susp(τ )
(36.8a)

" "# e : susp(τ )
" "# force(e) : τ

(36.8b)

" "#,a∼τ lcell[a] : susp(τ )
(36.8c)

Rule (36.8a) checks that the expression, e, has type τ under the assumption that x, which
stands for the suspension itself, has type susp(τ ).

The dynamics of SFPC is eager, with memoization confined to the suspension type as
described by the following rules:

lcell[a] val#,a∼τ

(36.9a)






ν # { susp{τ }(x.e) ‖ µ }
%−→

ν #, a ∼ τ { lcell[a] ‖ µ ⊗ a ↪→ [lcell[a]/x]e }






(36.9b)

ν # { e ‖ µ } %−→ ν #′ { e′ ‖ µ′ }
ν # { force(e) ‖ µ } %−→ ν #′ { force(e′) ‖ µ′ } (36.9c)
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We may also express more complex combinations of eagerness and laziness, such as the
type of “lazy lists” consisting of computations that, when forced, evaluate either to the
empty list, or a non-empty list consisting of a natural number and another lazy list:

rec t is (unit + (nat × t)) susp.

Contrast this preceding type with this one:

rec t is (unit + (nat × t susp)).

Values of the latter type are the empty list and a pair consisting of a natural number and a
computation of another such value.

The language SFPC extends FPC with a type of suspensions:

Typ τ ::= susp(τ ) τ susp suspension
Exp e ::= susp{τ }(x.e) susp x : τ is e delay

force(e) force(e) force
lcell[a] lcell[a] indirection

Suspended computations are potentially self-referential; the bound variable x refers to the
suspension itself. The expression lcell[a] is a reference to the suspension named a.

The statics of SFPC is given using a judgment of the form " "# e : τ , where # assigns
types to the names of suspensions. It is defined by the following rules:

", x : susp(τ ) "# e : τ

" "# susp{τ }(x.e) : susp(τ )
(36.8a)

" "# e : susp(τ )
" "# force(e) : τ

(36.8b)

" "#,a∼τ lcell[a] : susp(τ )
(36.8c)

Rule (36.8a) checks that the expression, e, has type τ under the assumption that x, which
stands for the suspension itself, has type susp(τ ).

The dynamics of SFPC is eager, with memoization confined to the suspension type as
described by the following rules:

lcell[a] val#,a∼τ

(36.9a)






ν # { susp{τ }(x.e) ‖ µ }
%−→

ν #, a ∼ τ { lcell[a] ‖ µ ⊗ a ↪→ [lcell[a]/x]e }






(36.9b)

ν # { e ‖ µ } %−→ ν #′ { e′ ‖ µ′ }
ν # { force(e) ‖ µ } %−→ ν #′ { force(e′) ‖ µ′ } (36.9c)
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e val!,a∼τ





ν !, a ∼ τ { force(lcell[a]) ‖ µ ⊗ a ↪→ e }
%−→

ν !, a ∼ τ { e ‖ µ ⊗ a ↪→ e }





(36.9d)

ν !, a ∼ τ { e ‖ µ ⊗ a ↪→ • }
%−→

ν !′, a ∼ τ { e′ ‖ µ′ ⊗ a ↪→ • }





ν !, a ∼ τ { force(lcell[a]) ‖ µ ⊗ a ↪→ e }
%−→

ν !′, a ∼ τ { force(lcell[a]) ‖ µ′ ⊗ a ↪→ e′ }






(36.9e)

Rule (36.9a) specifies that a reference to a suspension is a value. Rule (36.9b) specifies
that evaluation of a delayed computation consists of allocating a fresh symbol for it in the
memo table, and returning a reference to that suspension. Rules (36.9c) to (36.9e) specify
that demanding the value of a suspension forces evaluation of the suspended computation,
which is then stored in the memo table and returned as the result.

36.5 Notes

The by-need dynamics given here is inspired by Ariola and Felleisen (1997) but with
the difference that by-need cells are regarded as assignables, rather than variables. Doing
so maintains the principle that variables are given meaning by substitution. In contrast,
by-need cells are a form of assignable to which at most one assignment is ever done.

Exercises

36.1. Recall from Chapter 20 that, under a lazy interpretation, the recursive type

rec t is [z ↪→ unit, s ↪→ t]

contains the “infinite number” ω ! fix x : nat is s(x). Contrast the behavior of ω

under the by-need interpretation given in this chapter with that by-name interpretation
given in Chapters 19 and 20.

36.2. In LFPC the putative recursive type of “lists” of natural numbers,

rec t is [nil ↪→ unit, cons ↪→ nat × t],

is, rather, the type of finite or infinite streams of natural numbers. To prove this,
exhibit the stream of all natural numbers as an element of this type.
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PPCF extends PCF with nested parallelism. 

Nested parallelism has a hierarchical structure arising from forking two (or 
more) parallel computations, then joining these computations to combine 
their results before proceeding. 

Nested parallelism is also known as fork-join parallelism. 

Two forms of dynamics for nested parallelism. 
• The first is a structural dynamics in which a single transition on a 

compound expression may involve multiple transitions on its constituent 
expressions. 

• The second is a cost dynamics (introduced in Chapter 7) that focuses 
attention on the sequential and parallel complexity (also known as the 
work and the depth, or span) of a parallel program by associating a 
series-parallel graph with each computation. 



PPCF with Binary Fork-Join

37 Nested Parallelism

Parallel computation seeks to reduce the running times of programs by allowing many com-
putations to be carried out simultaneously. For example, if we wish to add two numbers,
each given by a complex computation, we may consider evaluating the addends simul-
taneously, then computing their sum. The ability to exploit parallelism is limited by the
dependencies among parts of a program. Obviously, if one computation depends on the
result of another, then we have no choice but to execute them sequentially so that we may
propagate the result of the first to the second. Consequently, the fewer dependencies among
sub-computations, the greater the opportunities for parallelism.

In this chapter, we discuss the language PPCF, which is the extension of PCF with
nested parallelism. Nested parallelism has a hierarchical structure arising from forking two
(or more) parallel computations, then joining these computations to combine their results
before proceeding. Nested parallelism is also known as fork-join parallelism. We will
consider two forms of dynamics for nested parallelism. The first is a structural dynamics
in which a single transition on a compound expression may involve multiple transitions on
its constituent expressions. The second is a cost dynamics (introduced in Chapter 7) that
focuses attention on the sequential and parallel complexity (also known as the work and
the depth, or span) of a parallel program by associating a series-parallel graph with each
computation.

37.1 Binary Fork-Join

The syntax of PPCF extends that of PCF with the following construct:

Exp e ::= par(e1; e2; x1.x2.e) par x1 = e1 and x2 = e2 in e parallel let

The variables x1 and x2 are bound only within e, and not within e1 or e2, which ensures that
they are not mutually dependent and hence can be evaluated simultaneously. The variable
bindings represent a fork of two parallel computations e1 and e2, and the body e represents
their join.

The static of PPCF enriches that of PCF with the following rule for parallel let:

! ! e1 : τ1 ! ! e2 : τ2 !, x1 : τ1, x2 : τ2 ! e : τ

! ! par(e1; e2; x1.x2.e) : τ
(37.1)
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The sequential structural dynamics of PPCF is defined by a transition judgment of the
form e !→seq e′ defined by these rules:

e1 !→seq e′
1

par(e1; e2; x1.x2.e) !→seq par(e′
1; e2; x1.x2.e)

(37.2a)

e1 val e2 !→seq e′
2

par(e1; e2; x1.x2.e) !→seq par(e1; e′
2; x1.x2.e)

(37.2b)

e1 val e2 val
par(e1; e2; x1.x2.e) !→seq [e1, e2/x1, x2]e (37.2c)

The parallel structural dynamics of PPCF is given by a transition judgment of the form
e !→par e′, defined as follows:

e1 !→par e′
1 e2 !→par e′

2

par(e1; e2; x1.x2.e) !→par par(e′
1; e′

2; x1.x2.e)
(37.3a)

e1 !→par e′
1 e2 val

par(e1; e2; x1.x2.e) !→par par(e′
1; e2; x1.x2.e)

(37.3b)

e1 val e2 !→par e′
2

par(e1; e2; x1.x2.e) !→par par(e1; e′
2; x1.x2.e)

(37.3c)

e1 val e2 val
par(e1; e2; x1.x2.e) !→par [e1, e2/x1, x2]e (37.3d)

The parallel dynamics abstracts away from any limitations on processing capacity; such
limitations are considered in Section 37.4.

The implicit parallelism theorem states that the sequential and the parallel dynamics
coincide. Consequently, we need never be concerned with the semantics of a parallel pro-
gram (its meaning is given by the sequential dynamics), but only with its efficiency. As a
practical matter, this means that a program can be developed on a sequential platform, even
if it is meant to run on a parallel platform, because the behavior is not affected by whether
we execute it using a sequential or a parallel dynamics. Because the sequential dynamics
is deterministic (every expression has at most one value), the implicit parallelism theorem
implies that the parallel dynamics is also deterministic. For this reason, the implicit paral-
lelism theorem is also known as the deterministic parallelism theorem. This terminology
emphasizes the distinction between deterministic parallelism, the subject of this chapter,
from non-deterministic concurrency, the subject of Chapters 39 and 40.

A proof of the implicit parallelism theorem can be given by giving an evaluation dynamics
e ⇓ v in the style of Chapter 7, and showing that

e !→∗
par v iff e ⇓ v iff e !→∗

seq v
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The sequential structural dynamics of PPCF is defined by a transition judgment of the
form e !→seq e′ defined by these rules:

e1 !→seq e′
1

par(e1; e2; x1.x2.e) !→seq par(e′
1; e2; x1.x2.e)

(37.2a)

e1 val e2 !→seq e′
2

par(e1; e2; x1.x2.e) !→seq par(e1; e′
2; x1.x2.e)

(37.2b)

e1 val e2 val
par(e1; e2; x1.x2.e) !→seq [e1, e2/x1, x2]e (37.2c)

The parallel structural dynamics of PPCF is given by a transition judgment of the form
e !→par e′, defined as follows:

e1 !→par e′
1 e2 !→par e′

2

par(e1; e2; x1.x2.e) !→par par(e′
1; e′

2; x1.x2.e)
(37.3a)

e1 !→par e′
1 e2 val

par(e1; e2; x1.x2.e) !→par par(e′
1; e2; x1.x2.e)

(37.3b)

e1 val e2 !→par e′
2

par(e1; e2; x1.x2.e) !→par par(e1; e′
2; x1.x2.e)

(37.3c)

e1 val e2 val
par(e1; e2; x1.x2.e) !→par [e1, e2/x1, x2]e (37.3d)

The parallel dynamics abstracts away from any limitations on processing capacity; such
limitations are considered in Section 37.4.

The implicit parallelism theorem states that the sequential and the parallel dynamics
coincide. Consequently, we need never be concerned with the semantics of a parallel pro-
gram (its meaning is given by the sequential dynamics), but only with its efficiency. As a
practical matter, this means that a program can be developed on a sequential platform, even
if it is meant to run on a parallel platform, because the behavior is not affected by whether
we execute it using a sequential or a parallel dynamics. Because the sequential dynamics
is deterministic (every expression has at most one value), the implicit parallelism theorem
implies that the parallel dynamics is also deterministic. For this reason, the implicit paral-
lelism theorem is also known as the deterministic parallelism theorem. This terminology
emphasizes the distinction between deterministic parallelism, the subject of this chapter,
from non-deterministic concurrency, the subject of Chapters 39 and 40.

A proof of the implicit parallelism theorem can be given by giving an evaluation dynamics
e ⇓ v in the style of Chapter 7, and showing that

e !→∗
par v iff e ⇓ v iff e !→∗

seq v
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(where v is a closed expression such that v val). The most important rule of the evaluation
dynamics is for the evaluation of a parallel let:

e1 ⇓ v1 e2 ⇓ v2 [v1, v2/x1, x2]e ⇓ v

par(e1; e2; x1.x2.e) ⇓ v
(37.4)

The other rules are easily derived from the structural dynamics of PCF as in Chapter 7.
It is possible to show that the sequential dynamics of PPCF agrees with its evaluation

dynamics by extending the proof of Theorem 7.2.

Lemma 37.1. For all v val, e "→∗
seq v if, and only if, e ⇓ v.

Proof It suffices to show that if e "→seq e′ and e′ ⇓ v, then e ⇓ v, and that if e1 "→∗
seq v1

and e2 "→∗
seq v2 and [v1, v2/x1, x2]e "→∗

seq v, then

par x1 = e1 and x2 = e2 in e "→∗
seq v.

By a similar argument, we may show that the parallel dynamics also agrees with the
evaluation dynamics, and hence with the sequential dynamics.

Lemma 37.2. For all v val, e "→∗
par v if, and only if, e ⇓ v.

Proof It suffices to show that if e "→par e′ and e′ ⇓ v, then e ⇓ v, and that if e1 "→∗
par v1

and e2 "→∗
par v2 and [v1, v2/x1, x2]e "→∗

par v, then

par x1 = e1 and x2 = e2 in e "→∗
par v.

The proof of the first is by induction on the parallel dynamics. The proof of the second
proceeds by simultaneous induction on the derivations of e1 "→∗

par v1 and e2 "→∗
par v2. If

e1 = v1 with v1 val and e2 = v2 with v2 val, then the result follows immediately from
the third premise. If e2 = v2 but e1 "→par e′

1 "→∗
par v1, then by induction we have that

par x1 = e′
1 and x2 = v2 in e "→∗

par v, and hence the result follows by an application of
rule (37.3b). The symmetric case follows similarly by an application of rule (37.3c), and in
the case that both e1 and e2 transition, the result follows by induction and rule (37.3a).

Theorem 37.3 (Implicit Parallelism). The sequential and parallel dynamics coincide: for
all v val, e "→∗

seq v iff e "→∗
par v.

Proof By Lemmas 37.1 and 37.2.

The implicit parallelism theorem states that parallelism does not affect the semantics of
a program, only the efficiency of its execution. Correctness is not affected by parallelism,
only efficiency.
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(where v is a closed expression such that v val). The most important rule of the evaluation
dynamics is for the evaluation of a parallel let:

e1 ⇓ v1 e2 ⇓ v2 [v1, v2/x1, x2]e ⇓ v

par(e1; e2; x1.x2.e) ⇓ v
(37.4)

The other rules are easily derived from the structural dynamics of PCF as in Chapter 7.
It is possible to show that the sequential dynamics of PPCF agrees with its evaluation

dynamics by extending the proof of Theorem 7.2.

Lemma 37.1. For all v val, e "→∗
seq v if, and only if, e ⇓ v.

Proof It suffices to show that if e "→seq e′ and e′ ⇓ v, then e ⇓ v, and that if e1 "→∗
seq v1

and e2 "→∗
seq v2 and [v1, v2/x1, x2]e "→∗

seq v, then

par x1 = e1 and x2 = e2 in e "→∗
seq v.

By a similar argument, we may show that the parallel dynamics also agrees with the
evaluation dynamics, and hence with the sequential dynamics.

Lemma 37.2. For all v val, e "→∗
par v if, and only if, e ⇓ v.

Proof It suffices to show that if e "→par e′ and e′ ⇓ v, then e ⇓ v, and that if e1 "→∗
par v1

and e2 "→∗
par v2 and [v1, v2/x1, x2]e "→∗

par v, then

par x1 = e1 and x2 = e2 in e "→∗
par v.

The proof of the first is by induction on the parallel dynamics. The proof of the second
proceeds by simultaneous induction on the derivations of e1 "→∗

par v1 and e2 "→∗
par v2. If

e1 = v1 with v1 val and e2 = v2 with v2 val, then the result follows immediately from
the third premise. If e2 = v2 but e1 "→par e′

1 "→∗
par v1, then by induction we have that

par x1 = e′
1 and x2 = v2 in e "→∗

par v, and hence the result follows by an application of
rule (37.3b). The symmetric case follows similarly by an application of rule (37.3c), and in
the case that both e1 and e2 transition, the result follows by induction and rule (37.3a).

Theorem 37.3 (Implicit Parallelism). The sequential and parallel dynamics coincide: for
all v val, e "→∗

seq v iff e "→∗
par v.

Proof By Lemmas 37.1 and 37.2.

The implicit parallelism theorem states that parallelism does not affect the semantics of
a program, only the efficiency of its execution. Correctness is not affected by parallelism,
only efficiency.
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(where v is a closed expression such that v val). The most important rule of the evaluation
dynamics is for the evaluation of a parallel let:

e1 ⇓ v1 e2 ⇓ v2 [v1, v2/x1, x2]e ⇓ v

par(e1; e2; x1.x2.e) ⇓ v
(37.4)

The other rules are easily derived from the structural dynamics of PCF as in Chapter 7.
It is possible to show that the sequential dynamics of PPCF agrees with its evaluation

dynamics by extending the proof of Theorem 7.2.

Lemma 37.1. For all v val, e "→∗
seq v if, and only if, e ⇓ v.

Proof It suffices to show that if e "→seq e′ and e′ ⇓ v, then e ⇓ v, and that if e1 "→∗
seq v1

and e2 "→∗
seq v2 and [v1, v2/x1, x2]e "→∗

seq v, then

par x1 = e1 and x2 = e2 in e "→∗
seq v.

By a similar argument, we may show that the parallel dynamics also agrees with the
evaluation dynamics, and hence with the sequential dynamics.

Lemma 37.2. For all v val, e "→∗
par v if, and only if, e ⇓ v.

Proof It suffices to show that if e "→par e′ and e′ ⇓ v, then e ⇓ v, and that if e1 "→∗
par v1

and e2 "→∗
par v2 and [v1, v2/x1, x2]e "→∗

par v, then

par x1 = e1 and x2 = e2 in e "→∗
par v.

The proof of the first is by induction on the parallel dynamics. The proof of the second
proceeds by simultaneous induction on the derivations of e1 "→∗

par v1 and e2 "→∗
par v2. If

e1 = v1 with v1 val and e2 = v2 with v2 val, then the result follows immediately from
the third premise. If e2 = v2 but e1 "→par e′

1 "→∗
par v1, then by induction we have that

par x1 = e′
1 and x2 = v2 in e "→∗

par v, and hence the result follows by an application of
rule (37.3b). The symmetric case follows similarly by an application of rule (37.3c), and in
the case that both e1 and e2 transition, the result follows by induction and rule (37.3a).

Theorem 37.3 (Implicit Parallelism). The sequential and parallel dynamics coincide: for
all v val, e "→∗

seq v iff e "→∗
par v.

Proof By Lemmas 37.1 and 37.2.

The implicit parallelism theorem states that parallelism does not affect the semantics of
a program, only the efficiency of its execution. Correctness is not affected by parallelism,
only efficiency.
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37.2 Cost Dynamics

In this section, we define a parallel cost dynamics that assigns a cost graph to the evaluation
of a PPCF expression. Cost graphs are defined by the following grammar:

Cost c ::= 0 zero cost
1 unit cost
c1 ⊗ c2 parallel combination
c1 ⊕ c2 sequential combination

A cost graph is a series-parallel ordered directed acyclic graph, with a designated source
node and sink node. For 0 the graph consists of one node and no edges, with the source and
sink both being the node itself. For 1 the graph consists of two nodes and one edge directed
from the source to the sink. For c1 ⊗c2, if g1 and g2 are the graphs of c1 and c2, respectively,
then the graph has two extra nodes, a source node with two edges to the source nodes of
g1 and g2, and a sink node, with edges from the sink nodes of g1 and g2 to it. The children
of the source are ordered according to the sequential evaluation order. Finally, for c1 ⊕ c2,
where g1 and g2 are the graphs of c1 and c2, the graph has as source node the source of g1,
as sink node the sink of g2, and an edge from the sink of g1 to the source of g2.

The intuition behind a cost graph is that nodes represent subcomputations of an overall
computation, and edges represent sequentiality constraints, stating that one computation
depends on the result of another, and hence cannot be started before the one on which
it depends completes. The product of two graphs represents parallelism opportunities in
which there are no sequentiality constraints between the two computations. The assignment
of source and sink nodes reflects the overhead of forking two parallel computations and
joining them after they have both completed. At the structural level, we note that only the
root has no ancestors, and only the final node of the cost graph has no descendents. Interior
nodes may have one or two descendents, the former representing a sequential dependency,
and the latter representing a fork point. Such nodes may have one or two ancestors, the
former corresponding to a sequential dependency and the latter representing a join point.

We associate with each cost graph two numeric measures, the work, wk(c), and the depth,
dp(c). The work is defined by the following equations:

wk(c) =






0 if c = 0
1 if c = 1
wk(c1) + wk(c2) if c = c1 ⊗ c2

wk(c1) + wk(c2) if c = c1 ⊕ c2

(37.5)

The depth is defined by the following equations:

dp(c) =






0 if c = 0
1 if c = 1
max(dp(c1), dp(c2)) if c = c1 ⊗ c2

dp(c1) + dp(c2) if c = c1 ⊕ c2

(37.6)
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37.2 Cost Dynamics

In this section, we define a parallel cost dynamics that assigns a cost graph to the evaluation
of a PPCF expression. Cost graphs are defined by the following grammar:

Cost c ::= 0 zero cost
1 unit cost
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g1 and g2, and a sink node, with edges from the sink nodes of g1 and g2 to it. The children
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where g1 and g2 are the graphs of c1 and c2, the graph has as source node the source of g1,
as sink node the sink of g2, and an edge from the sink of g1 to the source of g2.

The intuition behind a cost graph is that nodes represent subcomputations of an overall
computation, and edges represent sequentiality constraints, stating that one computation
depends on the result of another, and hence cannot be started before the one on which
it depends completes. The product of two graphs represents parallelism opportunities in
which there are no sequentiality constraints between the two computations. The assignment
of source and sink nodes reflects the overhead of forking two parallel computations and
joining them after they have both completed. At the structural level, we note that only the
root has no ancestors, and only the final node of the cost graph has no descendents. Interior
nodes may have one or two descendents, the former representing a sequential dependency,
and the latter representing a fork point. Such nodes may have one or two ancestors, the
former corresponding to a sequential dependency and the latter representing a join point.

We associate with each cost graph two numeric measures, the work, wk(c), and the depth,
dp(c). The work is defined by the following equations:

wk(c) =
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0 if c = 0
1 if c = 1
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The depth is defined by the following equations:
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Informally, the work of a cost graph determines the total number of computation steps
represented by the cost graph, and thus corresponds to the sequential complexity of the
computation. The depth of the cost graph determines the critical path length, the length
of the longest dependency chain within the computation, which imposes a lower bound on
the parallel complexity of a computation. The critical path length is a lower bound on the
number of steps required to complete the computation.

In Chapter 7 we introduced cost dynamics to assign time complexity to computations.
The proof of Theorem 7.7 shows that e ⇓k v iff e "−→k v. That is, the step complexity of
an evaluation of e to a value v is just the number of transitions required to derive e "−→∗ v.
Here we use cost graphs as the measure of complexity, then relate these cost graphs to the
structural dynamics given in Section 37.1.

The judgment e ⇓c v, where e is a closed expression, v is a closed value, and c is a cost
graph specifies the cost dynamics. By definition we arrange that e ⇓0 e when e val. The
cost assignment for let is given by the following rule:

e1 ⇓c1 v1 e2 ⇓c2 v2 [v1, v2/x1, x2]e ⇓c v

par(e1; e2; x1.x2.e) ⇓(c1⊗c2)⊕1⊕c v
(37.7)

The cost assignment specifies that, under ideal conditions, e1 and e2 are evaluated in
parallel, and that their results are passed to e. The cost of fork and join is implicit in the
parallel combination of costs, and assign unit cost to the substitution because we expect it
to be implemented by a constant-time mechanism for updating an environment. The cost
dynamics of other language constructs is specified in a similar way, using only sequential
combination to isolate the source of parallelism to the let construct.

Two simple facts about the cost dynamics are important to keep in mind. First, the cost
assignment does not influence the outcome.

Lemma 37.4. e ⇓ v iff e ⇓c v for some c.

Proof From right to left, erase the cost assignments to construct an evaluation derivation.
From left to right, decorate the evaluation derivations with costs as determined by the rules
defining the cost dynamics.

Second, the cost of evaluating an expression is uniquely determined.

Lemma 37.5. If e ⇓c v and e ⇓c′
v, then c is c′.

Proof By induction on the derivation of e ⇓c v.

The link between the cost dynamics and the structural dynamics is given by the following
theorem, which states that the work cost is the sequential complexity, and the depth cost is
the parallel complexity, of the computation.

Theorem 37.6. If e ⇓c v, then e "→w
seq v and e "→d

par v, where w = wk(c) and d = dp(c).
Conversely, if e "→w

seq v, then there exists c such that e ⇓c v with wk(c) = w, and if
e "→d

par v′, then there exists c′ such that e ⇓c′
v′ with dp(c′) = d.
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Informally, the work of a cost graph determines the total number of computation steps
represented by the cost graph, and thus corresponds to the sequential complexity of the
computation. The depth of the cost graph determines the critical path length, the length
of the longest dependency chain within the computation, which imposes a lower bound on
the parallel complexity of a computation. The critical path length is a lower bound on the
number of steps required to complete the computation.

In Chapter 7 we introduced cost dynamics to assign time complexity to computations.
The proof of Theorem 7.7 shows that e ⇓k v iff e "−→k v. That is, the step complexity of
an evaluation of e to a value v is just the number of transitions required to derive e "−→∗ v.
Here we use cost graphs as the measure of complexity, then relate these cost graphs to the
structural dynamics given in Section 37.1.

The judgment e ⇓c v, where e is a closed expression, v is a closed value, and c is a cost
graph specifies the cost dynamics. By definition we arrange that e ⇓0 e when e val. The
cost assignment for let is given by the following rule:

e1 ⇓c1 v1 e2 ⇓c2 v2 [v1, v2/x1, x2]e ⇓c v

par(e1; e2; x1.x2.e) ⇓(c1⊗c2)⊕1⊕c v
(37.7)

The cost assignment specifies that, under ideal conditions, e1 and e2 are evaluated in
parallel, and that their results are passed to e. The cost of fork and join is implicit in the
parallel combination of costs, and assign unit cost to the substitution because we expect it
to be implemented by a constant-time mechanism for updating an environment. The cost
dynamics of other language constructs is specified in a similar way, using only sequential
combination to isolate the source of parallelism to the let construct.

Two simple facts about the cost dynamics are important to keep in mind. First, the cost
assignment does not influence the outcome.

Lemma 37.4. e ⇓ v iff e ⇓c v for some c.

Proof From right to left, erase the cost assignments to construct an evaluation derivation.
From left to right, decorate the evaluation derivations with costs as determined by the rules
defining the cost dynamics.

Second, the cost of evaluating an expression is uniquely determined.

Lemma 37.5. If e ⇓c v and e ⇓c′
v, then c is c′.

Proof By induction on the derivation of e ⇓c v.

The link between the cost dynamics and the structural dynamics is given by the following
theorem, which states that the work cost is the sequential complexity, and the depth cost is
the parallel complexity, of the computation.

Theorem 37.6. If e ⇓c v, then e "→w
seq v and e "→d

par v, where w = wk(c) and d = dp(c).
Conversely, if e "→w

seq v, then there exists c such that e ⇓c v with wk(c) = w, and if
e "→d

par v′, then there exists c′ such that e ⇓c′
v′ with dp(c′) = d.
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Corollary 37.7. If e !→w
seq v and e !→d

par v′, then v is v′ and e ⇓c v for some c such that
wk(c) = w and dp(c) = d.

37.3 Multiple Fork-Join

So far we have confined attention to binary fork/join parallelism induced by the parallel
let construct. A generalizaton, called data parallelism, allows the simultaneous creation
of any number of tasks that compute on the components of a data structure. The main
example is a sequence of values of a specified type. The primitive operations on sequences
are a natural source of unbounded parallelism. For example, we may consider a parallel
map construct that applies a given function to every element of a sequence simultaneously,
forming a sequence of the results.

We will consider here a simple language of sequence operations to illustrate the main
ideas.

Typ τ ::= seq(τ ) τ seq sequence
Exp e ::= seq(e0, . . . ,en−1) [e0, . . . ,en−1] sequence

len(e) |e| size
sub(e1; e2) e1[e2] element
tab(x.e1; e2) tab(x.e1; e2) tabulate
map(x.e1; e2) [e1 | x ∈ e2] map
cat(e1; e2) cat(e1; e2) concatenate

The expression seq(e0, . . . ,en−1) evaluates to an n-sequence whose elements are given by
the expressions e0, . . . , en−1. The operation len(e) returns the number of elements in the
sequence given by e. The operation sub(e1; e2) retrieves the element of the sequence given
by e1 at the index given by e2. The tabulate operation, tab(x.e1; e2), yields the sequence
of length given by e2 whose ith element is given by [i/x]e1. The operation map(x.e1; e2)
computes the sequence whose ith element is given by [e/x]e1, where e is the ith element
of the sequence given by e2. The operation cat(e1; e2) concatenates two sequences of the
same type.

The statics of these operations is given by the following typing rules:

" ' e0 : τ . . . " ' en−1 : τ

" ' seq(e0, . . . ,en−1) : seq(τ ) (37.8a)

" ' e : seq(τ )
" ' len(e) : nat

(37.8b)

" ' e1 : seq(τ ) " ' e2 : nat
" ' sub(e1; e2) : τ

(37.8c)

", x : nat ' e1 : τ " ' e2 : nat
" ' tab(x.e1; e2) : seq(τ ) (37.8d)
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Corollary 37.7. If e !→w
seq v and e !→d

par v′, then v is v′ and e ⇓c v for some c such that
wk(c) = w and dp(c) = d.

37.3 Multiple Fork-Join

So far we have confined attention to binary fork/join parallelism induced by the parallel
let construct. A generalizaton, called data parallelism, allows the simultaneous creation
of any number of tasks that compute on the components of a data structure. The main
example is a sequence of values of a specified type. The primitive operations on sequences
are a natural source of unbounded parallelism. For example, we may consider a parallel
map construct that applies a given function to every element of a sequence simultaneously,
forming a sequence of the results.

We will consider here a simple language of sequence operations to illustrate the main
ideas.

Typ τ ::= seq(τ ) τ seq sequence
Exp e ::= seq(e0, . . . ,en−1) [e0, . . . ,en−1] sequence

len(e) |e| size
sub(e1; e2) e1[e2] element
tab(x.e1; e2) tab(x.e1; e2) tabulate
map(x.e1; e2) [e1 | x ∈ e2] map
cat(e1; e2) cat(e1; e2) concatenate

The expression seq(e0, . . . ,en−1) evaluates to an n-sequence whose elements are given by
the expressions e0, . . . , en−1. The operation len(e) returns the number of elements in the
sequence given by e. The operation sub(e1; e2) retrieves the element of the sequence given
by e1 at the index given by e2. The tabulate operation, tab(x.e1; e2), yields the sequence
of length given by e2 whose ith element is given by [i/x]e1. The operation map(x.e1; e2)
computes the sequence whose ith element is given by [e/x]e1, where e is the ith element
of the sequence given by e2. The operation cat(e1; e2) concatenates two sequences of the
same type.

The statics of these operations is given by the following typing rules:

" ' e0 : τ . . . " ' en−1 : τ

" ' seq(e0, . . . ,en−1) : seq(τ ) (37.8a)

" ' e : seq(τ )
" ' len(e) : nat

(37.8b)

" ' e1 : seq(τ ) " ' e2 : nat
" ' sub(e1; e2) : τ

(37.8c)

", x : nat ' e1 : τ " ' e2 : nat
" ' tab(x.e1; e2) : seq(τ ) (37.8d)
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! ! e2 : seq(τ ) !, x : τ ! e1 : τ ′

! ! map(x.e1; e2) : seq(τ ′)
(37.8e)

! ! e1 : seq(τ ) ! ! e2 : seq(τ )
! ! cat(e1; e2) : seq(τ )

(37.8f)

The cost dynamics of these constructs is defined by the following rules:

e0 ⇓c0 v0 . . . en−1 ⇓cn−1 vn−1

seq(e0, . . . ,en−1) ⇓
⊗n−1

i=0 ci seq(v0, . . . ,vn−1)
(37.9a)

e ⇓c seq(v0, . . . ,vn−1)
len(e) ⇓c⊕1 num[n]

(37.9b)

e1 ⇓c1 seq(v0, . . . ,vn−1) e2 ⇓c2 num[i] (0 ≤ i < n)
sub(e1; e2) ⇓c1⊕c2⊕1 vi

(37.9c)

e2 ⇓c num[n] [num[0]/x]e1 ⇓c0 v0 . . . [num[n − 1]/x]e1 ⇓cn−1 vn−1

tab(x.e1; e2) ⇓c⊕
⊗n−1

i=0 ci seq(v0, . . . ,vn−1)
(37.9d)

e2 ⇓c seq(v0, . . . ,vn−1)

[v0/x]e1 ⇓c0 v′
0 . . . [vn−1/x]e1 ⇓cn−1 v′

n−1

map(x.e1; e2) ⇓c⊕
⊗n−1

i=0 ci seq(v′
0, . . . ,v

′
n−1)

(37.9e)

e1 ⇓c1 seq(v0, . . . , vm−1) e2 ⇓c2 seq(v′
0, . . . , v

′
n−1)

cat(e1; e2) ⇓c1⊕c2⊕
⊗m+n

i=0 1 seq(v0, . . . , vm−1, v
′
0, . . . , v

′
n−1)

(37.9f)

The cost dynamics for sequence operations is validated by introducing a sequential and
parallel cost dynamics and extending the proof of Theorem 37.6 to cover this extension.

37.4 Bounded Implementations

Theorem 37.6 states that the cost dynamics accurately models the dynamics of the parallel
let construct, whether executed sequentially or in parallel. The theorem validates the cost
dynamics from the point of view of the dynamics of the language, and permits us to draw
conclusions about the asymptotic complexity of a parallel program that abstracts away from
the limitations imposed by a concrete implementation. Chief among these is the restriction
to a fixed number, p > 0, of processors on which to schedule the workload. Besides
limiting the available parallelism this also imposes some synchronization overhead that
must be taken into account. A bounded implementation is one for which we may establish
an asymptotic bound on the execution time once these overheads are taken into account.

A bounded implementation must take account of the limitations and capabilities of the
hardware on which the program is run. Because we are only interested in asymptotic upper
bounds, it is convenient to formulate an abstract machine model, and to show that the
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! ! e2 : seq(τ ) !, x : τ ! e1 : τ ′

! ! map(x.e1; e2) : seq(τ ′)
(37.8e)

! ! e1 : seq(τ ) ! ! e2 : seq(τ )
! ! cat(e1; e2) : seq(τ )

(37.8f)

The cost dynamics of these constructs is defined by the following rules:

e0 ⇓c0 v0 . . . en−1 ⇓cn−1 vn−1

seq(e0, . . . ,en−1) ⇓
⊗n−1

i=0 ci seq(v0, . . . ,vn−1)
(37.9a)

e ⇓c seq(v0, . . . ,vn−1)
len(e) ⇓c⊕1 num[n]

(37.9b)

e1 ⇓c1 seq(v0, . . . ,vn−1) e2 ⇓c2 num[i] (0 ≤ i < n)
sub(e1; e2) ⇓c1⊕c2⊕1 vi

(37.9c)

e2 ⇓c num[n] [num[0]/x]e1 ⇓c0 v0 . . . [num[n − 1]/x]e1 ⇓cn−1 vn−1

tab(x.e1; e2) ⇓c⊕
⊗n−1

i=0 ci seq(v0, . . . ,vn−1)
(37.9d)

e2 ⇓c seq(v0, . . . ,vn−1)

[v0/x]e1 ⇓c0 v′
0 . . . [vn−1/x]e1 ⇓cn−1 v′

n−1

map(x.e1; e2) ⇓c⊕
⊗n−1

i=0 ci seq(v′
0, . . . ,v

′
n−1)

(37.9e)

e1 ⇓c1 seq(v0, . . . , vm−1) e2 ⇓c2 seq(v′
0, . . . , v

′
n−1)

cat(e1; e2) ⇓c1⊕c2⊕
⊗m+n

i=0 1 seq(v0, . . . , vm−1, v
′
0, . . . , v

′
n−1)

(37.9f)

The cost dynamics for sequence operations is validated by introducing a sequential and
parallel cost dynamics and extending the proof of Theorem 37.6 to cover this extension.

37.4 Bounded Implementations

Theorem 37.6 states that the cost dynamics accurately models the dynamics of the parallel
let construct, whether executed sequentially or in parallel. The theorem validates the cost
dynamics from the point of view of the dynamics of the language, and permits us to draw
conclusions about the asymptotic complexity of a parallel program that abstracts away from
the limitations imposed by a concrete implementation. Chief among these is the restriction
to a fixed number, p > 0, of processors on which to schedule the workload. Besides
limiting the available parallelism this also imposes some synchronization overhead that
must be taken into account. A bounded implementation is one for which we may establish
an asymptotic bound on the execution time once these overheads are taken into account.

A bounded implementation must take account of the limitations and capabilities of the
hardware on which the program is run. Because we are only interested in asymptotic upper
bounds, it is convenient to formulate an abstract machine model, and to show that the
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Building a bounded implementation of parallelism involves two major tasks. 
• Show that the primitives of the language can be implemented efficiently on the 

abstract machine model. 
• Show how to schedule the workload across the processors to minimize execution 

time by maximizing parallelism. 

We aim to give an asymptotic bound on the time complexity of the implementation 
that relates the abstract cost of the computation to cost of implementing the 
workload on a p-way multiprocessor. This leads to Brent’s Theorem. 

343 37.4 Bounded Implementations

primitives of the language can be implemented on this model with guaranteed time (and
space) bounds. One example of such a model is the shared-memory multiprocessor, or
SMP, model. The basic assumption of the SMP model is that there are some fixed p > 0
processors coordinated by an interconnect that permits constant-time access to any object
in memory shared by all p processors.1 An SMP is assumed to provide a constant-time
synchronization primitive with which to control simultaneous access to a memory cell.
There are a variety of such primitives, any of which are enough to provide a parallel fetch-
and-add instruction that allows each processor to get the current contents of a memory cell
and update it by adding a fixed constant in a single atomic operation—the interconnect
serializes any simultaneous accesses by more than one processor.

Building a bounded implementation of parallelism involves two major tasks. First, we
must show that the primitives of the language can be implemented efficiently on the
abstract machine model. Second, we must show how to schedule the workload across the
processors to minimize execution time by maximizing parallelism. When working with a
low-level machine model such as an SMP, both tasks involve a fair bit of technical detail to
show how to use low-level machine instructions, including a synchronization primitive, to
implement the language primitives and to schedule the workload. Collecting these together,
we may then give an asymptotic bound on the time complexity of the implementation that
relates the abstract cost of the computation to cost of implementing the workload on a
p-way multiprocessor. The prototypical result of this kind is Brent’s Theorem.

Theorem 37.8. If e ⇓c v with wk(c) = w and dp(c) = d, then e can be evaluated on a
p-processor SMP in time O(max(w/p, d)).

The theorem tells us that we can never execute a program in fewer steps than its depth d

and that, at best, we can divide the work up evenly into w/p rounds of execution by the p

processors. Note that if p = 1 then the theorem establishes an upper bound of O(w) steps,
the sequential complexity of the computation. Moreover, if the work is proportional to the
depth, then we are unable to exploit parallelism, and the overall time is proportional to the
work alone.

Theorem 37.8 motivates consideration of a useful figure of merit, the parallelizability
ratio, which is the ratio w/d of work to depth. If w/d " p, then the program is paral-
lelizable, because then w/p " d, and we may therefore reduce running time by using
p processors at each step. If the parallelizability ratio is a constant, then d will dominate
w/p, and we will have little opportunity to exploit parallelism to reduce running time. It is
not known, in general, whether a problem admits a parallelizable solution. The best we can
say, on present knowledge, is that there are algorithms for some problems that have a high
degree of parallelizability, and there are problems for which no such algorithm is known.
It is a difficult problem in complexity theory to analyze which problems are parallelizable,
and which are not.

Proving Brent’s Theorem for an SMP would take us much too far afield for the present
purposes. Instead, we shall prove a Brent-type Theorem for an abstract machine, the P
machine. The machine is unrealistic in that it is defined at a very high level of abstraction.
But it is designed to match well the cost semantics given earlier in this chapter. In particular,
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there are mechanisms that account for both sequential and parallel dependencies in a
computation.

At the highest level, the state of the P machine consists of a global task graph whose
structure corresponds to a “diagonal cut” through the cost graph of the overall computation.
Nodes immediately above the cut are eligible to be executed, higher ancestors having
already been completed, and whose immediate descendents are waiting for their ancestors
to complete. Further descendents in the full task graph are tasks yet to be created, once the
immediate descendents are finished. The P machine discards completed tasks, and future
tasks beyond the immediate dependents are only created as execution proceeds. Thus, it is
only those nodes next to the cut line through the cost graph that are represented in the P
machine state.

The global state of the P machine is a configuration of the form ν " { µ }, where " is
degenerated to just a finite set of (pairwise distinct) task names and µ is a finite mapping
the task names in " to local states, representing the state of an individual task. A local
state is either a closed PCF expression, or one of two special join points that implement
the sequential and parallel dependencies of a task on one or two ancestors, respectively.2

Thus, when expanded out, a global state has the form

ν a1, . . . , an { a1 ↪→ s1 ⊗ . . . ⊗ an ↪→ sn },

where n ≥ 1, and each si is a local state. The ordering of the tasks in a state, like the order
of declarations in the signature, is not significant.

A P machine state transition has the form ν " { µ } $−→ ν "′ { µ′ }. There are two
forms of such transitions, the global and the local. A global step selects as many tasks
as are available, up to a pre-specified parameter p > 0, which represents the number of
processors available at each round. (Such a scheduler is greedy in the sense that it never
fails to execute an available task, up to the specified limit for each round.) A task is finished
if it consists of a closed PCF value, or is a join point whose dependents are not yet finished;
otherwise, a task is available, or ready. A ready task is always capable of taking a local
step consisting of either a step of PCF, expressed in the setting of the P machine, or a
synchronization step that manages the join-point logic. Because the P machine employs a
greedy scheduler, it must complete execution in time proportional to max(w/p, d) steps
by doing up to p steps of work at a time, insofar as it is possible within the limits of the
depth of the computation. We thus get a Brent-type Theorem for the abstract machine that
illustrates more sophisticated Brent-type Theorems for other models, such as the PRAM,
that are used in the analysis of parallel algorithms.

The local transitions of the P machine corresponding to the steps of PCF itself are
illustrated by the following example rules for application; the others follow a similar
pattern.3

¬(e1 val)
ν a { a ↪→ e1(e2) } $−→loc ν a a1 { a ↪→ join[a1](x1.x1(e2)) ⊗ a1 ↪→ e1 } (37.10a)

e1 val
ν a { a ↪→ e1(e2) } $−→loc ν a a2 { a ↪→ join[a2](x2.e1(x2)) ⊗ a2 ↪→ e2 } (37.10b)

5!!� 
  2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3  

344 Nested Parallelism

there are mechanisms that account for both sequential and parallel dependencies in a
computation.

At the highest level, the state of the P machine consists of a global task graph whose
structure corresponds to a “diagonal cut” through the cost graph of the overall computation.
Nodes immediately above the cut are eligible to be executed, higher ancestors having
already been completed, and whose immediate descendents are waiting for their ancestors
to complete. Further descendents in the full task graph are tasks yet to be created, once the
immediate descendents are finished. The P machine discards completed tasks, and future
tasks beyond the immediate dependents are only created as execution proceeds. Thus, it is
only those nodes next to the cut line through the cost graph that are represented in the P
machine state.

The global state of the P machine is a configuration of the form ν " { µ }, where " is
degenerated to just a finite set of (pairwise distinct) task names and µ is a finite mapping
the task names in " to local states, representing the state of an individual task. A local
state is either a closed PCF expression, or one of two special join points that implement
the sequential and parallel dependencies of a task on one or two ancestors, respectively.2

Thus, when expanded out, a global state has the form

ν a1, . . . , an { a1 ↪→ s1 ⊗ . . . ⊗ an ↪→ sn },

where n ≥ 1, and each si is a local state. The ordering of the tasks in a state, like the order
of declarations in the signature, is not significant.

A P machine state transition has the form ν " { µ } $−→ ν "′ { µ′ }. There are two
forms of such transitions, the global and the local. A global step selects as many tasks
as are available, up to a pre-specified parameter p > 0, which represents the number of
processors available at each round. (Such a scheduler is greedy in the sense that it never
fails to execute an available task, up to the specified limit for each round.) A task is finished
if it consists of a closed PCF value, or is a join point whose dependents are not yet finished;
otherwise, a task is available, or ready. A ready task is always capable of taking a local
step consisting of either a step of PCF, expressed in the setting of the P machine, or a
synchronization step that manages the join-point logic. Because the P machine employs a
greedy scheduler, it must complete execution in time proportional to max(w/p, d) steps
by doing up to p steps of work at a time, insofar as it is possible within the limits of the
depth of the computation. We thus get a Brent-type Theorem for the abstract machine that
illustrates more sophisticated Brent-type Theorems for other models, such as the PRAM,
that are used in the analysis of parallel algorithms.

The local transitions of the P machine corresponding to the steps of PCF itself are
illustrated by the following example rules for application; the others follow a similar
pattern.3

¬(e1 val)
ν a { a ↪→ e1(e2) } $−→loc ν a a1 { a ↪→ join[a1](x1.x1(e2)) ⊗ a1 ↪→ e1 } (37.10a)

e1 val
ν a { a ↪→ e1(e2) } $−→loc ν a a2 { a ↪→ join[a2](x2.e1(x2)) ⊗ a2 ↪→ e2 } (37.10b)
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there are mechanisms that account for both sequential and parallel dependencies in a
computation.

At the highest level, the state of the P machine consists of a global task graph whose
structure corresponds to a “diagonal cut” through the cost graph of the overall computation.
Nodes immediately above the cut are eligible to be executed, higher ancestors having
already been completed, and whose immediate descendents are waiting for their ancestors
to complete. Further descendents in the full task graph are tasks yet to be created, once the
immediate descendents are finished. The P machine discards completed tasks, and future
tasks beyond the immediate dependents are only created as execution proceeds. Thus, it is
only those nodes next to the cut line through the cost graph that are represented in the P
machine state.

The global state of the P machine is a configuration of the form ν " { µ }, where " is
degenerated to just a finite set of (pairwise distinct) task names and µ is a finite mapping
the task names in " to local states, representing the state of an individual task. A local
state is either a closed PCF expression, or one of two special join points that implement
the sequential and parallel dependencies of a task on one or two ancestors, respectively.2

Thus, when expanded out, a global state has the form

ν a1, . . . , an { a1 ↪→ s1 ⊗ . . . ⊗ an ↪→ sn },

where n ≥ 1, and each si is a local state. The ordering of the tasks in a state, like the order
of declarations in the signature, is not significant.

A P machine state transition has the form ν " { µ } $−→ ν "′ { µ′ }. There are two
forms of such transitions, the global and the local. A global step selects as many tasks
as are available, up to a pre-specified parameter p > 0, which represents the number of
processors available at each round. (Such a scheduler is greedy in the sense that it never
fails to execute an available task, up to the specified limit for each round.) A task is finished
if it consists of a closed PCF value, or is a join point whose dependents are not yet finished;
otherwise, a task is available, or ready. A ready task is always capable of taking a local
step consisting of either a step of PCF, expressed in the setting of the P machine, or a
synchronization step that manages the join-point logic. Because the P machine employs a
greedy scheduler, it must complete execution in time proportional to max(w/p, d) steps
by doing up to p steps of work at a time, insofar as it is possible within the limits of the
depth of the computation. We thus get a Brent-type Theorem for the abstract machine that
illustrates more sophisticated Brent-type Theorems for other models, such as the PRAM,
that are used in the analysis of parallel algorithms.

The local transitions of the P machine corresponding to the steps of PCF itself are
illustrated by the following example rules for application; the others follow a similar
pattern.3

¬(e1 val)
ν a { a ↪→ e1(e2) } $−→loc ν a a1 { a ↪→ join[a1](x1.x1(e2)) ⊗ a1 ↪→ e1 } (37.10a)

e1 val
ν a { a ↪→ e1(e2) } $−→loc ν a a2 { a ↪→ join[a2](x2.e1(x2)) ⊗ a2 ↪→ e2 } (37.10b)
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e1 val e2 val
ν a1 a2 { a1 ↪→ join[a2](x2.e1(x2)) ⊗ a2 ↪→ e2 } #−→loc ν a1 { a1 ↪→ [e2/x2]e1 } (37.10c)

e2 val
ν a { a ↪→ (λ (x : τ2) e)(e2) } #−→loc ν a { a ↪→ [e2/x]e } (37.10d)

Rules (37.10a) and (37.10b) create create tasks for the evaluation of the function and
argument of an expression. Rule (37.10c) propagates the result of evaluation of the function
or argument of an application to the appropriate application expression. This rule mediates
between the first two rules and rule (37.10d), which effects a β-reduction in-place.

The local transitions of the P machine corresponding to binary fork and join are as
follows:






ν a { a ↪→ par(e1; e2; x1.x2.e) }
#−→loc

ν a1, a2, a { a1 ↪→ e1 ⊗ a2 ↪→ e2 ⊗ a ↪→ join[a1; a2](x1; x2.e) }






(37.11a)

e1 val e2 val





ν a1, a2, a { a1 ↪→ e1 ⊗ a2 ↪→ e2 ⊗ a ↪→ join[a1; a2](x1; x2.e) }
#−→loc

ν a { a ↪→ [e1, e2/x1, x2]e }





(37.11b)

Rule (37.11a) creates two parallel tasks on which the executing task depends. The expression
join[a1; a2](x1; x2.e) is blocked on tasks a1 and a2, so that no local step applies to it.
Rule (37.11b) synchronizes a task with the tasks on which it depends once their execution
has completed; those tasks are no longer required, and are eliminated from the state.

Each global transition is the simultaneous execution of one step of computation on as
many as p ≥ 1 processors.

ν &1 a1 { µ1 ⊗ a1 ↪→ s1 } #−→loc ν &′
1 a1 { µ′

1 ⊗ a1 ↪→ s ′
1 }

. . .

ν &n an { µn ⊗ an ↪→ sn } #−→loc ν &′
n an { µ′

n ⊗ an ↪→ s ′
n }






ν &0 &1 a1 . . . &n an { µ0 ⊗ µ1 ⊗ a1 ↪→ s1 ⊗ . . . ⊗ µn ⊗ an ↪→ sn }
#−→glo

ν &0 &′
1 a1 . . . &′

n an { µ0 ⊗ µ′
1 ⊗ a1 ↪→ s ′

1 ⊗ . . . ⊗ µ′
n ⊗ an ↪→ s ′

n }






(37.12)

At each global step, some number 1 ≤ n ≤ p of ready tasks are scheduled for execution,
where n is maximal among the number of ready tasks. Because no two distinct tasks may
depend on the same task, we may partition the n tasks so that each scheduled task is grouped
with the tasks on which it depends as necessary for any local join step. Any local fork step
adds two fresh tasks to the state resulting from the global transition; any local join step
eliminates two tasks whose execution has completed. A subtle point is that it is implicit in
our name binding conventions that the names of any created tasks are globally unique, even
though they are locally created. In implementation terms, this requires a synchronization
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e1 val e2 val
ν a1 a2 { a1 ↪→ join[a2](x2.e1(x2)) ⊗ a2 ↪→ e2 } #−→loc ν a1 { a1 ↪→ [e2/x2]e1 } (37.10c)

e2 val
ν a { a ↪→ (λ (x : τ2) e)(e2) } #−→loc ν a { a ↪→ [e2/x]e } (37.10d)

Rules (37.10a) and (37.10b) create create tasks for the evaluation of the function and
argument of an expression. Rule (37.10c) propagates the result of evaluation of the function
or argument of an application to the appropriate application expression. This rule mediates
between the first two rules and rule (37.10d), which effects a β-reduction in-place.

The local transitions of the P machine corresponding to binary fork and join are as
follows:






ν a { a ↪→ par(e1; e2; x1.x2.e) }
#−→loc

ν a1, a2, a { a1 ↪→ e1 ⊗ a2 ↪→ e2 ⊗ a ↪→ join[a1; a2](x1; x2.e) }






(37.11a)

e1 val e2 val





ν a1, a2, a { a1 ↪→ e1 ⊗ a2 ↪→ e2 ⊗ a ↪→ join[a1; a2](x1; x2.e) }
#−→loc

ν a { a ↪→ [e1, e2/x1, x2]e }





(37.11b)

Rule (37.11a) creates two parallel tasks on which the executing task depends. The expression
join[a1; a2](x1; x2.e) is blocked on tasks a1 and a2, so that no local step applies to it.
Rule (37.11b) synchronizes a task with the tasks on which it depends once their execution
has completed; those tasks are no longer required, and are eliminated from the state.

Each global transition is the simultaneous execution of one step of computation on as
many as p ≥ 1 processors.

ν &1 a1 { µ1 ⊗ a1 ↪→ s1 } #−→loc ν &′
1 a1 { µ′

1 ⊗ a1 ↪→ s ′
1 }

. . .

ν &n an { µn ⊗ an ↪→ sn } #−→loc ν &′
n an { µ′

n ⊗ an ↪→ s ′
n }






ν &0 &1 a1 . . . &n an { µ0 ⊗ µ1 ⊗ a1 ↪→ s1 ⊗ . . . ⊗ µn ⊗ an ↪→ sn }
#−→glo

ν &0 &′
1 a1 . . . &′

n an { µ0 ⊗ µ′
1 ⊗ a1 ↪→ s ′

1 ⊗ . . . ⊗ µ′
n ⊗ an ↪→ s ′

n }






(37.12)

At each global step, some number 1 ≤ n ≤ p of ready tasks are scheduled for execution,
where n is maximal among the number of ready tasks. Because no two distinct tasks may
depend on the same task, we may partition the n tasks so that each scheduled task is grouped
with the tasks on which it depends as necessary for any local join step. Any local fork step
adds two fresh tasks to the state resulting from the global transition; any local join step
eliminates two tasks whose execution has completed. A subtle point is that it is implicit in
our name binding conventions that the names of any created tasks are globally unique, even
though they are locally created. In implementation terms, this requires a synchronization
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e1 val e2 val
ν a1 a2 { a1 ↪→ join[a2](x2.e1(x2)) ⊗ a2 ↪→ e2 } #−→loc ν a1 { a1 ↪→ [e2/x2]e1 } (37.10c)

e2 val
ν a { a ↪→ (λ (x : τ2) e)(e2) } #−→loc ν a { a ↪→ [e2/x]e } (37.10d)

Rules (37.10a) and (37.10b) create create tasks for the evaluation of the function and
argument of an expression. Rule (37.10c) propagates the result of evaluation of the function
or argument of an application to the appropriate application expression. This rule mediates
between the first two rules and rule (37.10d), which effects a β-reduction in-place.

The local transitions of the P machine corresponding to binary fork and join are as
follows:






ν a { a ↪→ par(e1; e2; x1.x2.e) }
#−→loc

ν a1, a2, a { a1 ↪→ e1 ⊗ a2 ↪→ e2 ⊗ a ↪→ join[a1; a2](x1; x2.e) }






(37.11a)

e1 val e2 val





ν a1, a2, a { a1 ↪→ e1 ⊗ a2 ↪→ e2 ⊗ a ↪→ join[a1; a2](x1; x2.e) }
#−→loc

ν a { a ↪→ [e1, e2/x1, x2]e }





(37.11b)

Rule (37.11a) creates two parallel tasks on which the executing task depends. The expression
join[a1; a2](x1; x2.e) is blocked on tasks a1 and a2, so that no local step applies to it.
Rule (37.11b) synchronizes a task with the tasks on which it depends once their execution
has completed; those tasks are no longer required, and are eliminated from the state.

Each global transition is the simultaneous execution of one step of computation on as
many as p ≥ 1 processors.

ν &1 a1 { µ1 ⊗ a1 ↪→ s1 } #−→loc ν &′
1 a1 { µ′

1 ⊗ a1 ↪→ s ′
1 }

. . .

ν &n an { µn ⊗ an ↪→ sn } #−→loc ν &′
n an { µ′

n ⊗ an ↪→ s ′
n }






ν &0 &1 a1 . . . &n an { µ0 ⊗ µ1 ⊗ a1 ↪→ s1 ⊗ . . . ⊗ µn ⊗ an ↪→ sn }
#−→glo

ν &0 &′
1 a1 . . . &′

n an { µ0 ⊗ µ′
1 ⊗ a1 ↪→ s ′

1 ⊗ . . . ⊗ µ′
n ⊗ an ↪→ s ′

n }






(37.12)

At each global step, some number 1 ≤ n ≤ p of ready tasks are scheduled for execution,
where n is maximal among the number of ready tasks. Because no two distinct tasks may
depend on the same task, we may partition the n tasks so that each scheduled task is grouped
with the tasks on which it depends as necessary for any local join step. Any local fork step
adds two fresh tasks to the state resulting from the global transition; any local join step
eliminates two tasks whose execution has completed. A subtle point is that it is implicit in
our name binding conventions that the names of any created tasks are globally unique, even
though they are locally created. In implementation terms, this requires a synchronization
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Futures and Speculations
A future is a computation that is performed before it is value is needed. 
• Like a suspension, a future represents a value that is to be determined later. 
• Unlike a suspension, a future is always evaluated, regardless of whether its 

value is required. 
• In a sequential setting, futures are of little interest; a future of type τ is just an 

expression of type τ . In a parallel setting, however, futures are of interest 
because they provide a means of initiating a parallel computation whose result 
is not needed until later, by which time it will have been completed. 

A speculation is a delayed computation whose result might be needed for the 
overall computation to finish. The dynamics for speculations executes suspended 
computations in parallel with the main thread of computation, regardless 
whether the value of the speculation is needed by the main thread. If the value of 
the speculation is needed, then such a dynamics pays off, but if not, the effort to 
compute it is wasted. 



Futures: Syntax & Statics

38 Futures and Speculations

A future is a computation that is performed before it is value is needed. Like a suspension, a
future represents a value that is to be determined later. Unlike a suspension, a future is always
evaluated, regardless of whether its value is required. In a sequential setting, futures are of
little interest; a future of type τ is just an expression of type τ . In a parallel setting, however,
futures are of interest because they provide a means of initiating a parallel computation
whose result is not needed until later, by which time it will have been completed.

The prototypical example of the use of futures is to implementing pipelining, a method for
overlapping the stages of a multistage computation to the fullest extent possible. Pipelining
minimizes the latency caused by one stage waiting for a previous stage to complete by
allowing the two stages to execute in parallel until an explicit dependency arises. Ideally,
the computation of the result of an earlier stage is finished by the time a later stage needs
it. At worst, the later stage is delayed until the earlier stage completes, incurring what is
known as a pipeline stall.

A speculation is a delayed computation whose result might be needed for the overall
computation to finish. The dynamics for speculations executes suspended computations in
parallel with the main thread of computation, without regard to whether the value of the
speculation is needed by the main thread. If the value of the speculation is needed, then
such a dynamics pays off, but if not, the effort to compute it is wasted.

Futures are work efficient in that the overall work done by a computation involving
futures is no more than the work done by a sequential execution. Speculations, in contrast,
are work inefficient in that speculative execution might be in vain—the overall computation
may involve more steps than the work needed to compute the result. For this reason,
speculation is a risky strategy for exploiting parallelism. It can make use of available
resources, but perhaps only at the expense of doing more work than necessary!

38.1 Futures

The syntax of futures is given by the following grammar:

Typ τ ::= fut(τ ) τ fut future
Exp e ::= fut(e) fut(e) future

fsyn(e) fsyn(e) synchronize
fcell[a] fcell[a] indirection
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The type τ fut is the type of futures of type τ . Futures are introduced by the expression
fut(e), which schedules e for evaluation and returns a reference to it. Futures are eliminated
by the expression fsyn(e), which synchronizes with the future referred to by e, returning its
value. Indirect references to future values are represented by fcell[a], indicating a future
value to be stored at a.

38.1.1 Statics

The statics of futures is given by the following rules:
" ! e : τ

" ! fut(e) : fut(τ ) (38.1a)

" ! e : fut(τ )
" ! fsyn(e) : τ

(38.1b)

These rules are unsurprising, because futures add no new capabilities to the language
beyond providing an opportunity for parallel evaluation.

38.1.2 Sequential Dynamics

The sequential dynamics of futures is easily defined. Futures are evaluated eagerly; syn-
chronization returns the value of the future.

e val
fut(e) val

(38.2a)

e "−→ e′

fut(e) "−→ fut(e′) (38.2b)

e "−→ e′

fsyn(e) "−→ fsyn(e′) (38.2c)

e val
fsyn(fut(e)) "−→ e

(38.2d)

Under a sequential dynamics futures have little purpose: they introduce a pointless level
of indirection.

38.2 Speculations

The syntax of (non-recursive) speculations is given by the following grammar:1

Typ τ ::= spec(τ ) τ spec speculation
Exp e ::= spec(e) spec(e) speculate

ssyn(e) ssyn(e) synchronize
scell[a] scell[a] indirection
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The type τ fut is the type of futures of type τ . Futures are introduced by the expression
fut(e), which schedules e for evaluation and returns a reference to it. Futures are eliminated
by the expression fsyn(e), which synchronizes with the future referred to by e, returning its
value. Indirect references to future values are represented by fcell[a], indicating a future
value to be stored at a.

38.1.1 Statics

The statics of futures is given by the following rules:
" ! e : τ

" ! fut(e) : fut(τ ) (38.1a)

" ! e : fut(τ )
" ! fsyn(e) : τ

(38.1b)

These rules are unsurprising, because futures add no new capabilities to the language
beyond providing an opportunity for parallel evaluation.

38.1.2 Sequential Dynamics

The sequential dynamics of futures is easily defined. Futures are evaluated eagerly; syn-
chronization returns the value of the future.

e val
fut(e) val

(38.2a)

e "−→ e′

fut(e) "−→ fut(e′) (38.2b)

e "−→ e′

fsyn(e) "−→ fsyn(e′) (38.2c)

e val
fsyn(fut(e)) "−→ e

(38.2d)

Under a sequential dynamics futures have little purpose: they introduce a pointless level
of indirection.

38.2 Speculations

The syntax of (non-recursive) speculations is given by the following grammar:1

Typ τ ::= spec(τ ) τ spec speculation
Exp e ::= spec(e) spec(e) speculate

ssyn(e) ssyn(e) synchronize
scell[a] scell[a] indirection
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The type τ fut is the type of futures of type τ . Futures are introduced by the expression
fut(e), which schedules e for evaluation and returns a reference to it. Futures are eliminated
by the expression fsyn(e), which synchronizes with the future referred to by e, returning its
value. Indirect references to future values are represented by fcell[a], indicating a future
value to be stored at a.

38.1.1 Statics

The statics of futures is given by the following rules:
" ! e : τ

" ! fut(e) : fut(τ ) (38.1a)

" ! e : fut(τ )
" ! fsyn(e) : τ

(38.1b)

These rules are unsurprising, because futures add no new capabilities to the language
beyond providing an opportunity for parallel evaluation.

38.1.2 Sequential Dynamics

The sequential dynamics of futures is easily defined. Futures are evaluated eagerly; syn-
chronization returns the value of the future.

e val
fut(e) val

(38.2a)

e "−→ e′

fut(e) "−→ fut(e′) (38.2b)

e "−→ e′

fsyn(e) "−→ fsyn(e′) (38.2c)

e val
fsyn(fut(e)) "−→ e

(38.2d)

Under a sequential dynamics futures have little purpose: they introduce a pointless level
of indirection.

38.2 Speculations

The syntax of (non-recursive) speculations is given by the following grammar:1

Typ τ ::= spec(τ ) τ spec speculation
Exp e ::= spec(e) spec(e) speculate

ssyn(e) ssyn(e) synchronize
scell[a] scell[a] indirection
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The type τ spec is the type of speculations of type τ . The introduction form spec(e)
creates a computation that can be speculatively evaluated, and the elimination form ssyn(e)
synchronizes with a speculation. A reference to the result of a speculative computation
stored at a is written scell[a].

38.2.1 Statics

The statics of speculations is given by the following rules:

" ! e : τ
" ! spec(e) : spec(τ ) (38.3a)

" ! e : spec(τ )
" ! ssyn(e) : τ

(38.3b)

Thus, the statics for speculations as given by rules (38.3) is equivalent to the statics for
futures given by rules (38.1).

38.2.2 Sequential Dynamics

The definition of the sequential dynamics of speculations is like that of futures, except that
speculations are values.

spec(e) val
(38.4a)

e "−→ e′

ssyn(e) "−→ ssyn(e′) (38.4b)

ssyn(spec(e)) "−→ e
(38.4c)

Under a sequential dynamics speculations are simply a re-formulation of suspensions.

38.3 Parallel Dynamics

Futures are only interesting insofar as they admit a parallel dynamics that allows the
computation of the future to go ahead concurrently with some other computation. In this
section, we give a parallel dynamics of futures and speculation in which the creation,
execution, and synchronization of tasks is made explicit. The parallel dynamics of futures
and speculations is identical, except for the termination condition. Whereas futures require
that all tasks are completed before termination, speculations may be abandoned before they
are completed. For the sake of concision we will give the parallel dynamics of futures,
remarking only where alterations are made for the parallel dynamics of speculations.
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The type τ spec is the type of speculations of type τ . The introduction form spec(e)
creates a computation that can be speculatively evaluated, and the elimination form ssyn(e)
synchronizes with a speculation. A reference to the result of a speculative computation
stored at a is written scell[a].

38.2.1 Statics

The statics of speculations is given by the following rules:

" ! e : τ
" ! spec(e) : spec(τ ) (38.3a)

" ! e : spec(τ )
" ! ssyn(e) : τ

(38.3b)

Thus, the statics for speculations as given by rules (38.3) is equivalent to the statics for
futures given by rules (38.1).

38.2.2 Sequential Dynamics

The definition of the sequential dynamics of speculations is like that of futures, except that
speculations are values.

spec(e) val
(38.4a)

e "−→ e′

ssyn(e) "−→ ssyn(e′) (38.4b)

ssyn(spec(e)) "−→ e
(38.4c)

Under a sequential dynamics speculations are simply a re-formulation of suspensions.

38.3 Parallel Dynamics

Futures are only interesting insofar as they admit a parallel dynamics that allows the
computation of the future to go ahead concurrently with some other computation. In this
section, we give a parallel dynamics of futures and speculation in which the creation,
execution, and synchronization of tasks is made explicit. The parallel dynamics of futures
and speculations is identical, except for the termination condition. Whereas futures require
that all tasks are completed before termination, speculations may be abandoned before they
are completed. For the sake of concision we will give the parallel dynamics of futures,
remarking only where alterations are made for the parallel dynamics of speculations.
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The parallel dynamics of futures relies on a modest extension to the language given in
Section 38.1 to introduce names for tasks. Let ! be a finite mapping assigning types to
names. As mentioned earlier, the expression fcell[a] is a value referring to the outcome
of task a. The statics of this expression is given by the following rule:2

" !!,a∼τ fcell[a] : fut(τ )
(38.5)

Rules (38.1) carry over in the obvious way with ! recording the types of the task names.
States of the parallel dynamics have the form ν ! { e ‖ µ }, where e is the focus of

evaluation, and µ records the active parallel futures (or speculations). Formally, µ is a finite
mapping assigning expressions to the task names declared in !. A state is well-formed
according to the following rule:

!! e : τ (∀a ∈ dom(!)) !! µ(a) : !(a)
ν ! { e ‖ µ } ok

(38.6)

As discussed in Chapter 35, this rule admits self-referential and mutually referential futures.
A more refined condition could as well be given that avoids circularities; we leave this as
an exercise for the reader.

The parallel dynamics is divided into two phases, the local phase, which defines the basic
steps of evaluation of an expression, and the global phase, which executes all possible local
steps in parallel. The local dynamics of futures is defined by the following rules:3

fcell[a] val!,a∼τ

(38.7a)

ν ! { fut(e) ‖ µ } &−→loc ν !, a ∼ τ { fcell[a] ‖ µ ⊗ a ↪→ e }
(38.7b)

ν ! { e ‖ µ } &−→loc ν !′ { e′ ‖ µ′ }
ν ! { fsyn(e) ‖ µ } &−→loc ν !′ { fsyn(e′) ‖ µ′ } (38.7c)

e′ val!,a∼τ





ν !, a ∼ τ { fsyn(fcell[a]) ‖ µ ⊗ a ↪→ e′ }
&−→loc

ν !, a ∼ τ { e′ ‖ µ ⊗ a ↪→ e′ }





(38.7d)

Rule (38.7b) activates a future named a executing the expression e and returns a reference
to it. Rule (38.7d) synchronizes with a future whose value has been determined. Note that
a local transition always has the form

ν ! { e ‖ µ } &−→loc ν ! !′ { e′ ‖ µ ⊗ µ′ }

where !′ is either empty or declares the type of a single symbol, and µ′ is either empty or
of the form a ↪→ e′ for some expression e′.

A global step of the parallel dynamics consists of at most one local step for the focal
expression and one local step for each of up to p futures, where p > 0 is a fixed parameter
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The parallel dynamics of futures relies on a modest extension to the language given in
Section 38.1 to introduce names for tasks. Let ! be a finite mapping assigning types to
names. As mentioned earlier, the expression fcell[a] is a value referring to the outcome
of task a. The statics of this expression is given by the following rule:2

" !!,a∼τ fcell[a] : fut(τ )
(38.5)

Rules (38.1) carry over in the obvious way with ! recording the types of the task names.
States of the parallel dynamics have the form ν ! { e ‖ µ }, where e is the focus of

evaluation, and µ records the active parallel futures (or speculations). Formally, µ is a finite
mapping assigning expressions to the task names declared in !. A state is well-formed
according to the following rule:

!! e : τ (∀a ∈ dom(!)) !! µ(a) : !(a)
ν ! { e ‖ µ } ok

(38.6)

As discussed in Chapter 35, this rule admits self-referential and mutually referential futures.
A more refined condition could as well be given that avoids circularities; we leave this as
an exercise for the reader.

The parallel dynamics is divided into two phases, the local phase, which defines the basic
steps of evaluation of an expression, and the global phase, which executes all possible local
steps in parallel. The local dynamics of futures is defined by the following rules:3

fcell[a] val!,a∼τ

(38.7a)

ν ! { fut(e) ‖ µ } &−→loc ν !, a ∼ τ { fcell[a] ‖ µ ⊗ a ↪→ e }
(38.7b)

ν ! { e ‖ µ } &−→loc ν !′ { e′ ‖ µ′ }
ν ! { fsyn(e) ‖ µ } &−→loc ν !′ { fsyn(e′) ‖ µ′ } (38.7c)

e′ val!,a∼τ

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

ν !, a ∼ τ { fsyn(fcell[a]) ‖ µ ⊗ a ↪→ e′ }
&−→loc

ν !, a ∼ τ { e′ ‖ µ ⊗ a ↪→ e′ }





(38.7d)

Rule (38.7b) activates a future named a executing the expression e and returns a reference
to it. Rule (38.7d) synchronizes with a future whose value has been determined. Note that
a local transition always has the form

ν ! { e ‖ µ } &−→loc ν ! !′ { e′ ‖ µ ⊗ µ′ }

where !′ is either empty or declares the type of a single symbol, and µ′ is either empty or
of the form a ↪→ e′ for some expression e′.

A global step of the parallel dynamics consists of at most one local step for the focal
expression and one local step for each of up to p futures, where p > 0 is a fixed parameter
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353 38.3 Parallel Dynamics

The parallel dynamics of futures relies on a modest extension to the language given in
Section 38.1 to introduce names for tasks. Let ! be a finite mapping assigning types to
names. As mentioned earlier, the expression fcell[a] is a value referring to the outcome
of task a. The statics of this expression is given by the following rule:2

" !!,a∼τ fcell[a] : fut(τ )
(38.5)

Rules (38.1) carry over in the obvious way with ! recording the types of the task names.
States of the parallel dynamics have the form ν ! { e ‖ µ }, where e is the focus of

evaluation, and µ records the active parallel futures (or speculations). Formally, µ is a finite
mapping assigning expressions to the task names declared in !. A state is well-formed
according to the following rule:

!! e : τ (∀a ∈ dom(!)) !! µ(a) : !(a)
ν ! { e ‖ µ } ok

(38.6)

As discussed in Chapter 35, this rule admits self-referential and mutually referential futures.
A more refined condition could as well be given that avoids circularities; we leave this as
an exercise for the reader.

The parallel dynamics is divided into two phases, the local phase, which defines the basic
steps of evaluation of an expression, and the global phase, which executes all possible local
steps in parallel. The local dynamics of futures is defined by the following rules:3

fcell[a] val!,a∼τ

(38.7a)

ν ! { fut(e) ‖ µ } &−→loc ν !, a ∼ τ { fcell[a] ‖ µ ⊗ a ↪→ e }
(38.7b)

ν ! { e ‖ µ } &−→loc ν !′ { e′ ‖ µ′ }
ν ! { fsyn(e) ‖ µ } &−→loc ν !′ { fsyn(e′) ‖ µ′ } (38.7c)

e′ val!,a∼τ





ν !, a ∼ τ { fsyn(fcell[a]) ‖ µ ⊗ a ↪→ e′ }
&−→loc

ν !, a ∼ τ { e′ ‖ µ ⊗ a ↪→ e′ }





(38.7d)

Rule (38.7b) activates a future named a executing the expression e and returns a reference
to it. Rule (38.7d) synchronizes with a future whose value has been determined. Note that
a local transition always has the form

ν ! { e ‖ µ } &−→loc ν ! !′ { e′ ‖ µ ⊗ µ′ }

where !′ is either empty or declares the type of a single symbol, and µ′ is either empty or
of the form a ↪→ e′ for some expression e′.

A global step of the parallel dynamics consists of at most one local step for the focal
expression and one local step for each of up to p futures, where p > 0 is a fixed parameter

6""�!�  3�7�� 5 ������� ��.
�����
	�
�
������/#287!643��:87:4�2B��192 7354�0:7$4 !7"B�/ 4!!

354 Futures and Speculations

representing the number of processors.

µ = µ0 ⊗ a1 ↪→ e1 ⊗ . . . ⊗ an ↪→ en

µ′′ = µ0 ⊗ a1 ↪→ e′
1 ⊗ . . . ⊗ an ↪→ e′

n

ν # { e ‖ µ } %−→0,1
loc ν # #′ { e′ ‖ µ ⊗ µ′ }

(∀1 ≤ i ≤ n ≤ p) ν # { ei ‖ µ } %−→loc ν # #′
i { e′

i ‖ µ ⊗ µ′
i }






ν # { e ‖ µ }
%−→glo

ν # #′ #′
1 . . . #′

n { e′ ‖ µ′′ ⊗ µ′ ⊗ µ′
1 ⊗ . . . ⊗ µ′

n }






(38.8a)

Rule (38.8a) allows the focus expression to take either zero or one step because it might be
blocked awaiting the completion of evaluation of a parallel future (or synchronizing with
a speculation). The futures allocated by the local steps of execution are consolidated in
the result of the global step. We assume without loss of generality that the names of the
new futures in each local step are pairwise disjoint so that the combination makes sense.
In implementation terms, satisfying this disjointness assumption means that the processors
must synchronize their access to memory.

The initial state of a computation, for futures or speculations, is defined by the rule

ν ∅ { e ‖ ∅ } initial
(38.9)

For futures, a state is final only if the focus and all parallel futures have completed evaluation:

e val# µ val#
ν # { e ‖ µ } final

(38.10a)

(∀a ∈ dom(#)) µ(a) val#
µ val#

(38.10b)

For speculations, a state is final only if the focus is a value, regardless of whether any other
speculations have completed:

e val#
ν # { e ‖ µ } final

(38.11)

All futures must terminate to ensure that the work performed in parallel matches that
performed sequentially; no future is created whose value is not needed according to the
sequential semantics. In contrast, speculations can be abandoned when their values are not
needed.

38.4 Pipelining with Futures

Pipelining is an interesting example of the use of parallel futures. Consider a situation in
which a producer builds a list whose elements represent units of work, and a consumer
traverses the work list and acts on each element of that list. The elements of the work list
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representing the number of processors.
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n }



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(38.8a)

Rule (38.8a) allows the focus expression to take either zero or one step because it might be
blocked awaiting the completion of evaluation of a parallel future (or synchronizing with
a speculation). The futures allocated by the local steps of execution are consolidated in
the result of the global step. We assume without loss of generality that the names of the
new futures in each local step are pairwise disjoint so that the combination makes sense.
In implementation terms, satisfying this disjointness assumption means that the processors
must synchronize their access to memory.

The initial state of a computation, for futures or speculations, is defined by the rule

ν ∅ { e ‖ ∅ } initial
(38.9)

For futures, a state is final only if the focus and all parallel futures have completed evaluation:

e val# µ val#
ν # { e ‖ µ } final

(38.10a)

(∀a ∈ dom(#)) µ(a) val#
µ val#

(38.10b)

For speculations, a state is final only if the focus is a value, regardless of whether any other
speculations have completed:

e val#
ν # { e ‖ µ } final

(38.11)

All futures must terminate to ensure that the work performed in parallel matches that
performed sequentially; no future is created whose value is not needed according to the
sequential semantics. In contrast, speculations can be abandoned when their values are not
needed.

38.4 Pipelining with Futures

Pipelining is an interesting example of the use of parallel futures. Consider a situation in
which a producer builds a list whose elements represent units of work, and a consumer
traverses the work list and acts on each element of that list. The elements of the work list
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