CS 430/530
Formal Semantics

Zhong Shao

Yale University
Department of Computer Science

Lazy Evaluation,; Parallelism
April 17, 2025

LPCF: PCF By-Need

Lazy variant of PCF with functions being called-by-need and the
successor operator evaluated lazily;

Variables are bound to unevaluated expressions;

By-need evaluation uses memoization (or thunk) to share all such
copies of an argument so it is only evaluated at most once

The syntax of PCF is given by the following grammar:

Typ t© = nat nat naturals
parr(ty; 12) 11— T partial function
Exp e = x X variable
Z Z Zero
s(e) s(e) successor
ifz{eg;x.e;}(e) ifze{z<— ey|s(x)— e;} zero test
lam{t}(x.e) Alx:1)e abstraction
ap(ey; er) e1(er) application

fix{t}(x.e) fixx:tise recursion

LPCF Statics (Same as PCF)

(19.1a)
ILx:tkHx:1
(19.1b)
I' Hz:nat
I' Fe:nat
I' - s(e) : nat (19.1¢)
I'Fe:nat I'key:1 I',x:nathe :t
19.1
I' = ifz{ep; x.e1}(e) i t (19.1d)
I'x:tykhe:m
[- lam{t}(x.e) : parr(t;; 12) (19.1¢)
[I'Fe:parr(ty;r) I'kHey (19.1f)

' -ap(er;er): T

Ix:the:t
' fix{zt}(x.e): 1 (19.1g)

LPCF Dynamics

The dynamics of LPCF is based on a transition system with states of the form
V> {e | ut, where 2 is a finite set of hypotheses a; ~ 7y, .. ., a, ~ T, associating types to
symbols, e 1s an expression that can involve the symbols in 2, and p maps each symbol
declared in X to either an expression or a special symbol, e, called the black hole. (The
role of the black hole is explained below.) As a notational convenience, we use a bit of
legerdemain with the concrete syntax similar to that used in Chapter 34. Specifically, the
concrete syntax for the expression via(a), which fetches the contents of the assignable a,
is@a.

The dynamics of LPCF is given by he following two forms of judgment:

1. e valy, stating that e is a value that can involve the symbols in .

2.vi{e|lp} —> vX'{e | u'}, stating that one step of evaluation of the expression
e relative to memo table o with the symbols declared in X results in the expression e’
relative to the memo table u” with symbols declared in X’.

LPCF Dynamics

The judgment e valy, expressing that e is a closed value is defined by the following rules:

(36.1a)
Z Va|2
(36.1b)
s(@ a) valy 4~nat
(36.1¢)
A(x:T)evaly
The initial and final states of evaluation are defined as follows:
(36.2a)
vii{e || 9} initial
e valy (36.2b)

vX{el| u} final

LPCF Dynamics

e valy 4~¢
VY. a~T{@ad| p®a el — v, a~t{e| p®a—e) (36.32)
vz’aw‘(:{e||/,L®CZL>O}}—>VE/,GNT{6/||/'L/®GL>'} (363b)
v, a~1t{@a|p®a—elr— v a~t{@a| uw@a— e} '
(36.3¢)

vX{s(e)| u}— v ,a~nat{s(@a) | u @a< e}

vEi{e|pulr—vE{e | u'}

vYX{ifze{z— e |s(x) = e} || pu}— v {ifze {z— ey |s(x)— e} | 1}
(36.3d)

(36.3¢)

vi{ifzz{z—e|[s(x) = e} | u}r—vXiel pn}

LPCF Dynamics

(vVY,a~nat{ifzs(@a){z— ey |s(x) = e} | n®a— e}] (36.3f)
] —> }
vY,a~nat{[@a/xle| | ut Q@a— e}

Vz{el ||,LL}}—>VE/{€/1 ”l/L} / (363g)
vi{e(e) | wir—vE{e(e) | n'}

v (GG inee) I i) (36.31)
4 —> i
vY,a~t{[@a/xle | n®a— e}

(36.31)

vYX{fixx:tise|u}lr—via~t{@a|u®@a—|@a/xle}

LPCF Type Safety

We write I' =5 e : T to mean that e has type t under the assumptions I', treating symbols
declared in 2 as expressions of their associated type. The rules are as in Chapter 19,
extended with the following rule for symbols:

(36.4)

I'Fy o @a:t

This rule states that the demand for the binding of a symbol, @ a, is a form of expression.
It is a “delayed substitution” that lazily replaces a demand for a by its binding.

The judgment v X { e || i } ok is defined by the following rules:

Fse:t1 Fy p: X
vX{e| m} ok

(36.5a)

YVa~t1€X upula)=e£e—kyxe:t

s (36.5b)

LPCF Type Safety

Theorem 36.1 (Preservation). If v X {e || u} —> vX'{e || '} and vE{e || u} ok
thenv X' {e' || u'} ok

Proof We prove by induction on rules (36.3) thatif v ¥ {e || u} —> v ' {e’ || #’} and
Feu:XandbFse:7,then X' 2D Y and by p' : X' and 5 €' : T.

Consider rule (36.3b), for which we have e = ¢' = @a, ©t = o ® a < ey, ' =
ny ® a — e, and

vE,a~t{ep || po®@a—>elr—>vE a~1t{e, | ny®a< e}

Assume that 5 ,~; @ X, a ~ 1. It follows that Fy 4,~; €9 : T and Fx 4~ o : X, and

hence that
Foaovr Ho@a—>e: X a~T7.

We have by induction that ¥’ D ¥ and b5/ 4~ €; : T’ and
Fsia~rr Ho@a— o X, a~T.

But then
|_E’,a’\'1' /’L/ . 2/9 a~Tt,

which suffices for the result.
Consider rule (36.3g), so that e is the application e;(e;) and

vEfe [uyr—vX{e |l '}

Suppose that -3 @ : ¥ and 5 e : . By inversion of typing -y e; : 75 — t for some type
7, such that 5 e, : 7. By induction ¥’ © ¥ and by ¢/ : £ and by €] : T, = 7. By
weakening we have -5 e; : 12, so that 5/ €{(e2) : T, which is enough for the result. [

LPCF Type Safety

The statement of the progress theorem allows for the occurrence of a black hole, rep-
resenting a checkable form of non-termination. The judgment v > {e || u } loops, stating
that e diverges by virtue of encountering the black hole, is defined by the following rules:

(36.62)
v, a~t{@a| n®a— e} loops
vE,a~t{e| nu®a— e}loops (36.6b)
v¥,a~t{@a| n®a<— e} loops
vX{e| u} loops
vE{ifze{z— ey |s(x)— e} || n} loops (36:69
v {e | p}loops (36.6d)

v{e(e) || u}loops

LPCF Type Safety

Theorem 36.2 (Progress). If vX{e| nw} ok then either v > {e |l u} final or
vX{e| n} loops, orthere exists ' and €' such thatvZ{e | u}— v {e || u'}.

Proof We proceed by induction on the derivations of -y e : 7 and -y w« : X implicit in
the derivation of v X {e || u } ok.

Consider rule (19.1a), where the symbol a is declared in X. Thus, ¥ = ¥y, a ~ 7 and
Fs w @ X. It follows that © = ug ® a < ey with 5 o : X and 5 ¢y : 7. Note that
Fs 1o ® a — e : X. Applying induction to the derivation of -y e : T, we consider three
cases:

1. vX{e || # ® a— e} final. By inversion of rule (36.2b) we have ¢y valy, and hence
by rule (36.3a) weobtainv X {@a | u} —> v X {ey || 1}

2. v3{ey || o ®a— e} loops. By applying rule (36.6b) we obtain
vX{@a | u} loops.

3. vE{ey | mo®@a— e} —> vE'{¢ || uy ® a — e}. By applying rule (36.3b) we
obtain

VEX{@a|p®a—>e}r—vE{@al|p a— ¢}]

LFPC = FPC By-Need

The language LFPC is FPC but with a by-need dynamics. For example, the dynamics of
product types in LFPC is given by the following rules:

(36.7a)

<@ al? @ a2> Valz,al’\“‘[],az’\“‘[z

VX :
{{e1,e) || i} (36.7b)
—>
vEX, a1 ~T, 0~ {{(@a,@m) | t®a — e Qay — e}

E E/ / /

v i{e||utr—vXiie | u} (36.7¢)

vEfe-1lputr—vE{e 1| un'}

LFPC = FPC By-Need

vife| p}loops

36.7d
v{e-1]| u}loops ()
v¥, a1~ 1,4~ {(@a, @ay) - 1| p} (36.7e)
b
v X, ai~t, ey~ {@a; | n}
vEfellu)r— vy (| 1) (36.7f)
VE(e-Tlpt— vy (e -t)
v {el|l pu}loops
36.7
vX{e-r| n}loops 8
vYi,ai~t,a~n{{@a, @a) T pn} (36.7h)

—>

vYX,a; ~T,ap~T | @as ||/'L}

SFPC = FPC with Suspension Type

Informally, the type T susp has as introduction form susp x : T is e representing a sus-
pended, self-referential, computation, e, of type 7. It has as elimination form the operation
force(e) that evaluates the suspended computation presented by e, records the value in
a memo table, and returns that value as result. Using suspension types, we can construct

lazy types at will. For example, the type of lazy pairs with components of type 7; and 7, is
expressible as the type

T| SUSp X T, susp
and the type of by-need functions with domain 7; and range 7, is expressible as the type
T] susp — 7.

We may also express more complex combinations of eagerness and laziness, such as the
type of “lazy lists” consisting of computations that, when forced, evaluate either to the
empty list, or a non-empty list consisting of a natural number and another lazy list:

rect is (unit + (nat x t)) susp.

Contrast this preceding type with this one:

rect is (unit + (nat x ¢ susp)).

SFPC Syntax & Statics

The language SFPC extends FPC with a type of suspensions:

Typ t© = susp(r) T susp suspension

Exp e = susp{r}(x.e) suspx:tise delay
force(e) force(e) force
lcellla] lcellla] indirection

The statics of SFPC is given using a judgment of the form I" 5 e : 7, where X assigns
types to the names of suspensions. It is defined by the following rules:

I x :susp(t)Fyge:t

I' -y susp{r}(x.e) : susp(7) (36.8a)
[y e: susp(t)

I' Fx force(e) i t (36.8b)

(36.8¢)

I' Fx 4~r 1cellla] : susp(7)

SFPC Dynamics

The dynamics of SFPC is eager, with memoization confined to the suspension type as
described by the following rules:

(36.92)
lcellla] valy 4~:
v Y {suspf{t}(x.e) || u} (36.9b)
1 = [
VX, a~1{lcellld] | 4 ® a — [1cellla]/x]e}
vE{e|pu)r—vE (| 1} (36.9¢)

VY {force(e) || u} —— v ¥ {force(e) | u'}

SFPC Dynamics

e valy ;~¢
VvY,a~T1{force(lcelllal) | u ®a— e}
(36.94d)
—>
v, a~t{e| u®a— e}
v, a~t{e| u@a<— e}
—>
v a~t{e |1 @a— e}
(36.9¢)

vY,a~t{force(lcelllal) | n ®a < e}
—>

vY' a~t{force(lcellla)) | W a e}

Nested Parallelism

PPCF extends PCF with nested parallelism.

Nested parallelism has a hierarchical structure arising from forking two (or
more) parallel computations, then joining these computations to combine
their results before proceeding.

Nested parallelism is also known as fork-join parallelism.

Two forms of dynamics for nested parallelism.

* The first is a structural dynamics in which a single transition on a
compound expression may involve multiple transitions on its constituent
expressions.

 The second is a cost dynamics (introduced in Chapter 7) that focuses
attention on the sequential and parallel complexity (also known as the
work and the depth, or span) of a parallel program by associating a
series-parallel graph with each computation.

PPCF with Binary Fork-Join

The syntax of PPCF extends that of PCF with the following construct:
Exp e := par(e;;ez;x;.xp.e¢) parx; =e andx; =e;ine parallel let

The variables x; and x, are bound only within e, and not within e; or e;, which ensures that
they are not mutually dependent and hence can be evaluated simultaneously. The variable
bindings represent a fork of two parallel computations e; and e, and the body e represents
their join.

The static of PPCF enriches that of PCF with the following rule for parallel let:

I'kFe:tqy TThHey:m DIxi:it,xo et
[' - par(e;;er; x1.x3.€) 1 T

(37.1)

PPCF Structural Dynamics

The sequential structural dynamics of PPCF is defined by a transition judgment of the
form e >4 €’ defined by these rules:

/

- (37.2a)
par(ej; ex; xX1.X2.€) H>seq Par(e;;ez; xj.xz.€)
e1 val ey F>geq €
=2 (37.2b)
par(e;;ez; X1.X2.€) H>seq Par(es;es; xi.x3.€)
e val e, val
(37.2¢)

par(er; ex; x1.X2.€) H>seq [€1, €2/X1, X2]e

PPCF Structural Dynamics

The parallel structural dynamics of PPCF is given by a transition judgment of the form
e > par €, defined as follows:

/ /
€1 H>par €] | €2 Frpar €

— (37.3a)
par(ey; ez; X1.X2.€) H>par Par(e;; e, x1.x2.€)
€1 F>par €1 o val
P 1 , (37.3b)
par(ei; ez; X1.X2.€) H>par Par(e;; ex; x1.x2.€)
e1 val ey >, €
T2 (37.3¢)
par(eq; ez; X1.X2.€) H>par Par(es; e5; x1.x2.€)
e val e, val
(37.3d)

par(ey; ex; xX1.x2.€) > par [€1, €2/X1, X2]e

PPCF Implicit Parallelism Theorem

et dvi e v [v,v/x1,x0e v
par(e;;ez; x1.x3.e) J v

(37.4)

Lemma 37.1. Forall v val, e =72,

v if, and only if, e | v.

Proof 1t suffices to show that if e +>4q €' and e’ || v, then e || v, and that if e; =%, v,

seq
*
and e, F> Seq V2 and [vy, va/x1, x2]e —

*

ceq V> then

—_ —_ : *k
parx; =e¢jandx; =e; ine > geq U-]

Lemma 37.2. Forall v val, e =7,

v if, and only if, e || v.
Proof 1t suffices to show that if e > p,, €’ and ¢’ | v, then e || v, and that if e; =7, v,

par
*
and ey 7,

*

var U, then

vy and [vy, v2 /X1, x2]e —

—_ —_ . k
parx; =e;andx; =epine = par V-

The proof of the first is by induction on the parallel dynamics. The proof of the second
proceeds by simultaneous induction on the derivations of e; -, vy and e, —>7, vy If
e; = vy with v; val and e; = v, with v, val, then the result follows immediately from
the third premise. If e; = vy but e; >, €] r—>’;ar V1, then by induction we have that
var Vs and hence the result follows by an application of
rule (37.3b). The symmetric case follows similarly by an application of rule (37.3c), and in

the case that both e; and e, transition, the result follows by induction and rule (37.3a). [

parx; =ejandx; =vy;ine —

PPCF Cost Dynamics

In this section, we define a parallel cost dynamics that assigns a cost graph to the evaluation
of a PPCF expression. Cost graphs are defined by the following grammar:

Cost ¢ = 0 zero cost
1 unit cost
] ® ¢, parallel combination
c; @ ¢ sequential combination

We associate with each cost graph two numeric measures, the work, wk(c), and the depth,
dp(c). The work is defined by the following equations:

0 ifc=0

1 ifc=1

wk(c) = | _ (37.5)
wk(c1) + wk(cy) ifc=c1 Q ¢

| wk(c1) +wk(ca) ifc=c1 @

The depth is defined by the following equations:

0 ifc=0

1 ifec=1

dp(c) = ; . (37.6)
max(dp(cy),dp(cz)) ifc=c ®c

| dp(cy) + dp(cz) ifc=c ®c

PPCF Cost Dynamics

The judgment e || v, where e 1s a closed expression, v 1s a closed value, and ¢ 1s a cost
araph specifies the cost dynamics. By definition we arrange that e |1® e when e val. The
cost assignment for 1let is given by the following rule:

er v e Y2 vy [, va/x1, x0]e Y v

par(e;; ex; x1.x;.e) | 182PIDC y,

(37.7)

Theorem 37.6. Ife ||€ v, then e > seq U and e |—>ﬁar v, where w = wk(c) and d = dp(c).

Conversely, if e +— seq U then there exists ¢ such that e || v with wk(c) = w, and if

d / . / Lol s e —
e >, V', then there exists ¢ such that e 1° v with dp(c’) = d.

Multiple Fork-Join (Syntax)

We will consider here a simple language of sequence operations to illustrate the main
ideas.

Typ t = seq(r) T seq sequence

Exp e == seqlep,...,en—1) leo,...,e,—1] sequence
len(e) le] size
sub(e; er) e1len] element
tab(x.eq;er) tab(x.ej:e)) tabulate
map(x.ey;en) [e1 | x € es] map

cat(ey;er) cat(e;;er) concatenate

Multiple Fork-Join (Statics)

The statics of these operations is given by the following typing rules:

I'Fey:7 ... T'ke,_1:7
I' = seqlep, ...,e, 1) : seq(T)

I'Fe: seq(t)
I' - 1en(e) : nat

['He;:seq(r) I Fe:nat
I' - sub(e;er) : T

['yx :nattbe :t I'Feé :nat
I' = tab(x.eq;er) : seq(r)

/

['Fe:iseq(r) INx:thke 1

[- map(x.eq;er) : seq(t’)

['Fe:seq(r) I'ker:seq(r)
I' = cat(e;;er) : seq(r)

(37.82)

(37.8b)

(37.8¢)

(37.8d)

(37.8e)

(37.81)

Multiple Fork-Join (Cost Dynamics)

The cost dynamics of these constructs is defined by the following rules:

eo vy ... e Y v
1 (37.9a)
seq(e, - .- en1) $E=0 9 seq(uy, ..., Us-1)
e ¢ seq(vy,...,v,—
1 seq(vg : 1) (37.9b)
len(e) J“®" num[n]
e1 4" seq(vy, ...,v,_ e |2 numli 0<i<n
14 q(vo 1) el 1 [i] () (37.9¢)
sub(ey; ep) P2 v,
er J“numn] [num[O]/xle; 4 vy ... [num[n —1]/x]e; 4" v,_
L (37.94)
tab(x.e;; er) @0 ¢ seq(vy, ... V1)
ex I seq(vy, ..., v4-1)
[vo/x]er Y v [Va_1/x]ey U v,y (37.9¢)
map(x.e; e) lLC@@::Ol “ seq(vj, ...,V)
e 4 seq(vg, ..., Um—1) e 2 seq(vy, ..., v, ;)
m-+n 1 (37.9f)

cat(e;; er) Y9200 1 seq(vg, ..., U1, Vs -+ Ul 1)

Bounded Implementation

Building a bounded implementation of parallelism involves two major tasks.

* Show that the primitives of the language can be implemented efficiently on the
abstract machine model.

 Show how to schedule the workload across the processors to minimize execution
time by maximizing parallelism.

We aim to give an asymptotic bound on the time complexity of the implementation
that relates the abstract cost of the computation to cost of implementing the
workload on a p-way multiprocessor. This leads to Brent’s Theorem.

Theorem 37.8. If ¢ ¢ v with wk(c) = w and dp(c) = d, then e can be evaluated on a
p-processor SMP in time O(max(w/p, d)).

The theorem tells us that we can never execute a program in fewer steps than its depth d
and that, at best, we can divide the work up evenly into w/p rounds of execution by the p
processors. Note that if p = 1 then the theorem establishes an upper bound of O(w) steps,
the sequential complexity of the computation. Moreover, if the work 1s proportional to the
depth, then we are unable to exploit parallelism, and the overall time is proportional to the
work alone.

P Machine

The global state of the P machine is a configuration of the form v X { i }, where X is
degenerated to just a finite set of (pairwise distinct) fask names and p 1s a finite mapping
the task names in X to local states, representing the state of an individual task. A local
state 1s either a closed PCF expression, or one of two special join points that implement
the sequential and parallel dependencies of a task on one or two ancestors, respectively.?
Thus, when expanded out, a global state has the form

vaiy,...,a,{a;—> 51 Q...8a, < s, },

where n > 1, and each s; 1s a local state. The ordering of the tasks in a state, like the order
of declarations in the signature, 1s not significant.

A P machine state transition has the form v X {u} —— v X' { ' }. There are two
forms of such transitions, the global and the local. A global step selects as many tasks
as are available, up to a pre-specified parameter p > 0, which represents the number of
processors available at each round.

The local transitions of the P machine corresponding to the steps of PCF itself are

illustrated by the following example rules for application; the others follow a similar

pattelrn.3

P Machine Local Transitions

—(ey val) (37.10a)
-— .10a
va{a— e(@)} —>pc vaa{a— joinlai]|(x;.xi(e2)) ® a; — e }
ey val
— 37.10b
vaf{a—ei(er)} —>pc vaay{a— joinlax|(xr.e1(x2)) @ ay — e; } ()
ey val e val
vapay{a; = join[ax](x2.€1(x2)) @ ar <> €2} —>,c Vaj {a; <> [ea/x2]e; } (37.10c)
e val (37.10d)

va{a— (A(x:m)e)er))} —>c vaia —[ex/x]e}

P Machine Local Transitions

va{a — par(ei;er; x|.x>.e]
{ par(e;;es; x1.x2.€) } (37.11a)
> 1loc '
| vaj,az,a{a; = e @ a — e; ®a— joinla;;a](x1;xz.€) } |
ey val e, val
(va,ay,a{a) = ey ® ay — e; ® a — joinla;;ax](x;;x5.€) } |
(37.11b)

| > loc

va{a < |e, ex/x1, x2]e}

P Machine Global Transitions

Each global transition is the simultaneous execution of one step of computation on as
many as p > | processors.

VIja {) ®a; =81} e VE @ {p) ® ap — 5] }

VI, an {y @ an = Sy} —>10c VE an {1t @ ay — 5, }

; \ (37.12)
V2302141 ... 200, { o @ U1 a1 =851 Q...0 U, Qa, — s,)

1 I—>g10 g

vE0Zla .. R a (e ®@ U ®a =S ®...Q U, @a, > s}

Futures and Speculations

A future is a computation that is performed before it is value is needed.

* Like a suspension, a future represents a value that is to be determined later.

* Unlike a suspension, a future is always evaluated, regardless of whether its
value is required.

* In a sequential setting, futures are of little interest; a future of type tis just an
expression of type t . In a parallel setting, however, futures are of interest
because they provide a means of initiating a parallel computation whose result
is not needed until later, by which time it will have been completed.

A speculation is a delayed computation whose result might be needed for the
overall computation to finish. The dynamics for speculations executes suspended
computations in parallel with the main thread of computation, regardiess
whether the value of the speculation is needed by the main thread. If the value of
the speculation is needed, then such a dynamics pays off, but if not, the effort to
compute it is wasted.

Futures: Syntax & Statics

The syntax of futures is given by the following grammar:

Typ © = fut(r) T fut future

Exp e = fut(e) fut(e) future
fsyn(e) fsyn(e) synchronize
fcellla] fcellla] indirection

The statics of futures is given by the following rules:

I'Fe:t
I' = fut(e) : fut(r)

(38.1a)

' -e: fut(r)
' fsyn(e): t

(38.1b)

Futures: Sequential Dynamics

The sequential dynamics of futures is easily defined. Futures are evaluated eagerly; syn-
chronization returns the value of the future.
e val

fut(e) val (38.2a)
fut(ei : ;/ut(e/) (38.2b)
fsyn(ei : ’i'/syn(e’) (38.2¢)
v (38.2d)

fsyn(fut(e)) — e

Under a sequential dynamics futures have little purpose: they introduce a pointless level
of indirection.

Speculations: Syntax & Statics

The syntax of (non-recursive) speculations is given by the following grammar:

Typ v 1= spec(t) tspec speculation
Exp e :@:= spec(e) spec(e) speculate
ssyn(e) ssyn(e) synchronize
scell[a] scell[a] indirection

The statics of speculations is given by the following rules:

I'Fe:t
[' - spec(e) : spec(T)

(38.3a)

[' -e: spec(t)

' ssyn(e): T (38.3b)

Speculations: Sequential Dynamics

The definition of the sequential dynamics of speculations is like that of futures, except that
speculations are values.

(38.4a)
spec(e) val
e — ¢
ssyn(e) —> ssyn(e’) (38.4b)
(38.4¢)

ssyn(spec(e)) —> e

Under a sequential dynamics speculations are simply a re-formulation of suspensions.

Futures: Parallel Dynamics

The parallel dynamics of futures relies on a modest extension to the language given in
Section 38.1 to introduce names for tasks. Let X be a finite mapping assigning types to
names. As mentioned earlier, the expression fcell[a] is a value referring to the outcome
of task a. The statics of this expression is given by the following rule:?

(38.5)

[' g g~¢ fcellla] : fut(r)

Rules (38.1) carry over in the obvious way with X recording the types of the task names.

States of the parallel dynamics have the form v X {e || u }, where e is the focus of
evaluation, and u records the active parallel futures (or speculations). Formally, u 1s a finite
mapping assigning expressions to the task names declared in . A state is well-formed
according to the following rule:

Fye:t (VMa edom(X)) Fx u(a): X(a)

vX{e| w}ok (38.6)

Futures: Parallel Dynamics

The parallel dynamics is divided into two phases, the local phase, which defines the basic
steps of evaluation of an expression, and the global phase, which executes all possible local
steps in parallel. The local dynamics of futures is defined by the following rules:?

(38.7a)
fcellla] valy 4~;
(38.7b)
vYX{fut(e) || u}—wcvZ,a~t{fcelllal | u®a < e}
E oc Z/ / /
vi{el| n}r—y V/WHM} / (38.7¢)
v {fsyn(e) | u} > v X {fsyn(e) || 1"}
e’ valy gt
vY,a~t{fsyn(fcellla]) | u ® a — €'}
(38.7d)

> loc

v, a~t{e | n®a—e'}

Rule (38.7b) activates a future named a executing the expression e and returns a reference
to it. Rule (38.7d) synchronizes with a future whose value has been determined. Note that
a local transition always has the form

vEfe|plr—n v R (| neu}

where X’ is either empty or declares the type of a single symbol, and u’ is either empty or
of the form a < ¢’ for some expression e’.

Futures: Parallel Dynamics

A global step of the parallel dynamics consists of at most one local step for the focal
expression and one local step for each of up to p futures, where p > 0 is a fixed parameter

representing the number of processors.

Uw=uX®a —>e1Q...80a, — e,
wW=pn®a—>eQ...0a, e,
vEfellu) —p v X (e | n®u)
Vi<inzp) vElellu)—uwevE B {e | n@) (38.82)
vaie |)
—glo

VYR LB ouen®...Qu)

Futures: Parallel Dynamics

The 1nitial state of a computation, for futures or speculations, is defined by the rule

(38.9)

vih{e || ¥} initial

For futures, a state is final only if the focus and all parallel futures have completed evaluation:

e Valz M Va|2
v{e| pn} final

(38.10a)

(Va € dom(X)) u(a) vals;
W vals

(38.10b)

For speculations, a state 1s final only if the focus 1s a value, regardless of whether any other
speculations have completed:

e vals

VY {e| w} final (38.11)

All futures must terminate to ensure that the work performed in parallel matches that
performed sequentially; no future is created whose value is not needed according to the
sequential semantics. In contrast, speculations can be abandoned when their values are not
needed.

