CS 430/530
Formal Semantics

Zhong Shao

Yale University
Department of Computer Science

Polymorphism and Abstract Types
March 27, 2025

System F of Polymorphic Types

The language F is a variant of T in which we eliminate the type of natural numbers, but
add, in compensation, polymorphic types:!

Typ © = t t variable
arr(t;;7») 11 — T» function
all(z.7) Y(t.7) polymorphic

Exp e = «x X
lam{t}(x.e) XA(x:7T)e abstraction
ap(er;er) e1(er) application
Lam(?.e) A(t)e type abstraction
App{t}(e) elt] type application

The statics of F consists of two judgment forms, the type formation judgment,
A - T type,

and the typing judgment,
Al'Fe:r.

System F Statics

The rules defining the type formation judgment are as follows:

A, t type -t type (16.1a)
A F 1 type AF 1 type (16.1b)
A+ arr(t; 1) type '
A, t type - T type (16.1¢)
A Fall(t.t) type .
The rules defining the typing judgment are as follows:

Al'x:thkx:1 (16.2a)
AFtitype Alx:tikFe:n (16.2b)
AT F lam{ri}(x.e) : arr(r; 1) .

AT lFe tarr(tr) ATkFe:n (16.2¢)
AT Fap(e;er):t '
Attypel'Fe:t

16.2d
A T'F Lam(t.e) : all(t.7) (:
AT Fe:all(t.t’) Al 1T type (16.2¢)

AT F App{t}(e) : [t/t]T’

System F Statics

Lemma 16.1 (Regularity). If AT' e : t, and if A - 1; type for each assumption x; : t;
inT", then A 1 type.

Proof By induction on rules (16.2).]

The statics admits the structural rules for a general hypothetical judgment. In particular,
we have the following critical substitution property for type formation and expression
typing.

Lemma 16.2 (Substitution). /. If A,t type - t' type and A + 1 type then A +
[t/t]T’ type.

2. If At typel' ¢ : tiand A -t type then A [t/t]I F [t/t]e : [t/t]T’.
3. IfAT,x:tHe : T"and AT Fe:t,then AT F[e/x]e : T’

System F Examples

Returning to the motivating examples from the introduction, the polymorphic identity
function, 7, is written

At)r(x:1t)x;
it has the polymorphic type
Y(t.t — t).

Instances of the polymorphic identity are written /|7 |, where t is some type, and have the
type v — 7.
Similarly, the polymorphic composition function, C, is written

A ALY AL (f 1 = B)A(g 1 h = n)A(x 1 n) f(gX)).
The function C has the polymorphic type
Yt Y, Y(t3.(p = 13) = (1] = 1) — (] — 13)))).

Instances of C are obtained by applying it to a triple of types, written C[z;|[72][73]. Each
such instance has the type

(1, > 13) = (11 > 7o) — (11 = 13).

System F Dynamics

(16.3a)
lam{7}(x.e) val
Tam(t o) val (16.3b)
Lam(z.e) val
[e> val]
ap(lam{t|}(x.e);ex) —> [ez/x]e (16.3¢c)
e / (16.3d)
ap(er; e2) —> ap(e); ez)
ey val e r— ¢
16.
|:ap(€1;ez) —> ap(€1;€’2)] (16.3e)
(16.3f)
App{t}(Lam(t.e)) —> [t /t]e
s (16.3g)

App{t}(e) —> App{t}(e’)

System F Type Safety

Lemma 16.3 (Canonical Forms). Suppose that e : T and e val, then

1. If Tt = arn(t;12), then e = lam{t|}(x.ex) withx : 11 e : Ty.
2. If Tt = all(t.T'), then e = Lam(t.€') with t typet e’ : 1’

Proof By rule induction on the statics. [

Theorem 16.4 (Preservation). Ife : T and e —> €/, then e’ : t.

Proof By rule induction on the dynamics. []

Theorem 16.5 (Progress). If e : t, then either e val or there exists e’ such that e — ¢€'.

Proof By rule induction on the statics. []

System F: Polymorphic Definability

The language F is astonishingly expressive. Not only are all (lazy) finite products and
sums definable in the language, but so are all (lazy) inductive and coinductive types.
Their definability is most naturally expressed using definitional equality, which is the least
congruence containing the following two axioms:

AF,X:Tll—ezi‘L’z AF|—€12T1
AT FHFA(x:1)e)(e) =ler/x]ley: 1

(16.4a)

A,ttypel'Fe: 1t Al ptype
AT =A@ elpl=[p/tle:[p/t]T

(16.4b)

In addition, there are rules omitted here specifying that definitional equality is a congruence
relation (that is, an equivalence relation respected by all expression-forming operations).

System F Definability: Products

The nullary product, or unit, type is definable in F as follows:
unit £ Vr.r — r)
() = A(r)A(x:r)x

The 1dentity function plays the role of the null tuple, because it is the only closed value of
this type.

Binary products are definable in F by using encoding tricks similar to those described in
Chapter 21 for the untyped A-calculus:

U XT=Vr(ty = 17— r)—>r)

(e1,e2) = A(r)A(x: 11 = 12 — r)x(e)(e2)
e-1=e[t](x:T)A(y:T2)x)
e-r2e[n]O(x:T)A(y:n)y)

The statics given in Chapter 10 is derivable according to these definitions. Moreover, the
following definitional equalities are derivable in F from these definitions:

(e1,e2) - 1=e;: 1y

and

(61,€2> cr=6e€) . 7.

System F Definability: Sums

The nullary sum, or void, type is definable in F:
void £ V(r.r)
abort{p}(e) £ e[p]
Binary sums are also definable in F:
n+nEVYe(ny—>r)—> (p—>r)—>r)
l-e2 ANA(x:1 — A1y — r)x(e)
r-e2 AT =AY 1 — r)yle)
casee{l - x| > e |T-Xx) > ey} =
e[pl(n (x1 1 T) en)(A (x2 1 1) €2)

provided that the types make sense. It is easy to check that the following equivalences are
derivable in F:

casel-di{l-x;— e |r-xp—> e} =[d/xi1]le;: p

and

caser-dr{l-x;— e |r-xp = e} =[dr/x2]esr : p.

System F Definability: Natural Numbers

Because the only operation we can perform on a natural number is to iterate up to it,
we may simply identify a natural number, n, with the polymorphic iterate-up-to-n function
just described. Thus, we may define the type of natural numbers in F by the following
equations:

nat £ V(t.t —> (t > t) > t)
z2 AL (GZ: DAt — 1)z
s(e) 2 A A(Z: D A(s:t — 1)s(e[t](2)(s))

iter{er;x.ex}(ep) = ep[t](er) (A (x : T) €2)

The encodability of the natural numbers shows that F is at least as expressive as T.
But is it more expressive? Yes! It is possible to show that the evaluation function for T
is definable in F, even though it is not definable in T itself. However, the same diagonal
argument given in Chapter 9 applies here, showing that the evaluation function for F is not
definable in F. We may enrich F a bit more to define the evaluator for F, but as long as
all programs in the enriched language terminate, we will once again have an undefinable
function, the evaluation function for that extension.

System F: Parametricity Properties

A remarkable property of F is that polymorphic types severely constrain the behavior
of their elements. We may prove useful theorems about an expression knowing only its
type—that is, without ever looking at the code. For example, if i is any expression of type
Y(t.t — t), then it is the 1dentity function. Informally, when i 1s applied to a type, t, and

an argument of type t, it returns a value of type . But because 7 is not specified until i
1s called, the function has no choice but to return its argument, which 1s to say that it is
essentially the identity function. Similarly, if & 1s any expression of type Y(¢.t — t — 1),
then b 1s equivalent to either A(f) A (x :£) A (v :f)x or A(f)A(x : 1)L (v :1)y. Intuitively,
when b 1s applied to two arguments of a given type, the only value 1t can return is one of
the givens.

Parametftricity: properties of a program in system F can
be proved from only its types --- theorems for free

System F: Parametricity Properties

Any function i : Y(¢.t — t) in F enjoys the following property:

For any type Tt and any property P of the type t, then if ‘P holds of x : t, then P holds of
i[T](x).

To show that for any type 7, and any x of type 7, the expression i[7](x) is equivalent to x,
it suffices to fix xo : 7, and consider the property 7., that holds of y : 7 iff y is equivalent
to xg. Obviously, P holds of xg itself, and hence by the above-displayed property of i, it
sends any argument satisfying P,, to a result satisfying P,,, which 1s to say that it sends xg
to xo. Because xq is an arbitrary element of 7, it follows that i[t] is the identity function,
A (x :7)Xx, on the type t, and because t is itself arbitrary, i is the polymorphic identity
function, A(#/) A (x : 1) x.

System F: Parametricity Properties

A similar argument suffices to show that the function b, defined above, is either

A x:t)ra(y:t)xor A@@) A (x : 1)1 (y:t)y. By virtue of its type, the function b enjoys
the parametricity property

For any type T and any property P of T, if P holds of x : T and of y : T, then P holds of
blT](x)(y).

Choose an arbitrary type T and two arbitrary elements xo and yg of type 7. Define O, ,
to hold of z : 7 iff either z is equivalent to xq or z is equivalent to yy. Clearly Q,, ,, holds
of both x(y and yy themselves, so by the quoted parametricity property of b, it follows that
Qyxo.yo holds of b[T](x0)(yo), which is to say that it is equivalent to either x¢ or yo. Since
T, Xo, and yq are arbitrary, it follows that b is equivalent to either A(f) A (x :)L (¥ :) x or
ADrx:HHr(y:t)y.

Data Abstraction

Data abstraction introduces an interface that serves as a
contract between the client and the implementor of an
abstract type.

* The interface specifies what the client may rely on for its own work, and,
what the implementor must provide to satisfy the contract.

* The interface isolates the client from the implementor so that each may
be developed in isolation from the other.

Representation Independence:

one implementation can be replaced by another without affecting the
behavior of the client, provided that the two implementations meet the
same interface and that each simulates the other with respect to the
operations of the interface.

Abstract Types

Data abstraction = System F + existential types.

* Interfaces are existential types that provide a collection of operations acting
on an unspecified, or abstract, type.

 Implementations are packages, the introduction form for existential types,
and clients are uses of the corresponding elimination form.

Existential types are closely connected with universal types

Representation independence is an application of the
parametricity properties of polymorphic functions.

System FE = F + Existential Types

The syntax of FE extends F with the following constructs:

Typ some(?.T) A(t.7) interface

Exp e = pack{r.t}{p}(e) pack pwitheas 3(¢.7) implementation

open{t.t}{p}(e;t, x.ep) openejastwithx:tr ine, client

The statics of FE is given by these rules:

A, t type - T type

17.1
A - some(t.7) type (2)
A ptype A,ttypetttype AT Fe:[p/t]t (17.1b)
A T F pack{t.t}{p}(e) : some(t.T) '
AT'Fe :some(t.t) A,ttypel,x:tkFe:17, AF 1 type
(17.1c)

AT - open{t.t}{mr}(e1;t, x.e2) : 1o

System FE Dynamics

[e val]
pack{r.t}{p}(e) val

er— ¢
[PaCk{l‘-T}{p}(e) —> PaCk{l-T}{P}(e’)]

e —> ¢}

open{r.t}{r2}(e;; 1, x.€2) —> openfr.T}{12}(e}; 1, x.€2)

[e val]

open{r.t H{ra}(pack{t.T}{p}(e); 1, x.€2) —> [p, e/t, X]es

(17.2a)

(17.2b)

(17.2¢)

(17.2d)

System FE Type Safety

Lemma 17.1 (Regularity). Suppose that AT e : 1. If A - 1; typeforeach x; : t; in T,
then A - t type.

Proof By induction on rules (17.1), using substitution for expressions and types. [

Theorem 17.2 (Preservation). Ife : t and e — €/, then e’ : t.

Proof By rule induction on ¢ — ¢’, using substitution for both expression- and type
variables.]

Lemma 17.3 (Canonical Forms). If e : some(t.t) and e val, then e = pack{t.t}{p}(e’) for
some type p and some e’ such that e’ : [p/t]t.

Proof By rule induction on the statics, using the definition of closed values.]

Theorem 17.4 (Progress). If e : T, then either e val or there exists e’ such that e — ¢€'.

Proof By rule induction on e : 7, using the canonical forms lemma. L]

System FE: Data Abstraction Example

To illustrate the use of FE, we consider an abstract type of queues of natural numbers
supporting three operations:

1. Forming the empty queue.
2. Inserting an element at the tail of the queue.

3. Removing the head of the queue, which is assumed non-empty.

The crucial property of this description is that nowhere do we specify what queues
actually are, only what we can do with them. The behavior of a queue is expressed by the
existential type 9(7.7), which serves as the interface of the queue abstraction:

J(t.(emp <> ¢, ins <> nat X t — f,rem — ¢t — (nat x r) opt)).

System FE: Data Abstraction Example

An 1mplementation of queues consists of a package specifying the representation type,
together with the implementation of the associated operations in terms of that representation.
Internally to the implementation, the representation of queues is known and relied upon by
the operations. Here 1s a very simple implementation ¢; in which queues are represented as
lists:

packnatlist with (emp < nil, ins <> ¢;, rem < ¢,) as 3(7.7),

where

¢; :nat x natlist — natlist = A (x :nat X natlist)...,

and

e, :natlist — (natxnatlist)opt =) (x :natlist)....

System FE: Data Abstraction Example

It 1s also possible to give another implementation ¢, of the same interface 3(¢.7), but in
which queues are represented as pairs of lists, consisting of the “back half” of the queue
paired with the reversal of the “front half.” This two-part representation avoids the need for
reversals on each call and, as a result, achieves amortized constant-time behavior:

packnatlist x natlistwith (emp <> (nil, nil), ins < ¢;, rem < e,) as (¢.7).
In this case, ¢; has type

nat X (natlist x natlist) — (natlist x natlist),

and ¢, has type

(natlist x natlist) — (nat x (natlist x natlist)) opt

These operations “know” that queues are represented as values of type natlist xnatlist
and are implemented accordingly.

System FE Definable in System F

A(t.T) =V N(E.T = u) — u)
pack pwitheas3(t.7) = A(u) A (x : V(t.T — u)) x[pl(e)

openejastwithx:t ine; 2 e[l AL (x:T)er)

An existential 1s encoded as a polymorphic function taking the overall result type u as
argument, followed by a polymorphic function representing the client with result type u,
and yielding a value of type u as overall result. Consequently, the open construct simply
packages the client as such a polymorphic function, instantiates the existential at the result
type, 72, and applies it to the polymorphic client. (The translation therefore depends on
knowing the overall result type t, of the open construct.) Finally, a package consisting
of a representation type o and an implementation e is a polymorphic function that, when
given the result type u and the client x, instantiates x with p and passes to it the imple-
mentation e.

Representation Independence

An important consequence of parametricity is that it ensures that clients are
insensitive to the representations of abstract types

Bisimilarity relates two implementations of an abstract type such that the behavior of
a client is unaffected by swapping one implementation by another that is bisimilar to
it.

if R is a bisimulation relation between any two implementations of the abstract type,
then the client behaves identically on them.

A client c of an abstract type 3(t.t) has type V(t.t & 12), where t does not occur free in
12 (but may, of course, occurin t).

The fact that t does not occur in the result type ensures:

 the behavior of the client is independent of the choice of relation between the
implementations, provided that this relation R is preserved by the operations that
implement it.

Representation Independence

Explaining what is a bisimulation is best done by example. Consider the existential type
d(z.7), where t 1s the labeled tuple type

(emp <> t, ins <> nat Xt — f,rem <t — (nat X) opt).
Theorem 48.12 ensures that if p and p’ are any two closed types, and if R is a relation

between expressions of these two types, then if the implementations e¢ : [p/x]t and
e’ : [p’/x]t respect R, then c[p]e behaves the same as c[p’]e’. It remains to define when

two implementations respect the relation R. Let

A .
e = (emp <> e, ins <> ¢j, rem < e¢,)

and
A .
¢ = (emp <> e, ,ins <> ¢, rem <> ¢,).

Representation Independence

For these implementations to respect R means that the following three conditions hold:

1. The empty queues are related: R(ep, e,.,).

2. Inserting the same element on each of two related queues yields related queues: if d : ©
and R(g, ¢'), then R(ei(d)(q), €(d)(q")):

3. If two queues are related, then either they are both empty, or their front elements are the
same and their back elements are related: if R(g, ¢'), then either
(a) e/(q) = null = e/(q), or
(b) e(q) = just({(d,r)) and e/(¢’) = just({(d’, r’)), withd = d’ and R(r, r').

Representation Independence

To see how this works in practice, let us consider informally two implementations of the
abstract type of queues defined earlier. For the reference implementation, we choose p to
be the type natlist, and define the empty queue to be the empty list, define insert to add
the given element to the head of the list, and define remove to remove the last element of
the list. The code is as follows:

t = natlist
emp 2 nil
ins =) (x :nat)A (g : t)cons(x;q)
rem =) (g :t)caserev(q){nil < null | cons(f;gr) — just((f, revigr)))}.

Removing an element takes time linear in the length of the list, because of the reversal.

Representation Independence

For the candidate implementation, we choose p’ to be the type natlist X natlist of
pairs of lists (b, f) in which b 1s the “back half” of the queue, and f 1s the reversal ot the
“front half” of the queue. For this representation, we define the empty queue to be a pair
of empty lists, define insert to extend the back with that element at the head, and define
remove based on whether the front is empty. If it is non-empty, the head element is removed
from it and returned along with the pair consisting of the back and the tail of the front. If
it 1s empty, and the back is not, then we reverse the back, remove the head element, and
return the pair consisting of the empty list and the tail of the now-reversed back. The code
1s as follows:

t £ natlist x natlist

emp £ (nil, nil)

ins £) (x :nat) A ((bs, fs) :t) (cons(x;bs), fs)

rem =)\ ((bs, fs):t)case fs{nil < e | cons(f; fs') — (bs, fs')}, where
e £ caserev(bs){nil — null | cons(b; bs’) — just((b, (nil, bs’)))}.

Representation Independence

To show these two implementations are bisimilar, we specify a
relation R between the types natlist and natlist X natlist such

that the two implementations satisfy the three simulation
conditions given earlier.

R(l, (b, f)) iff 1=app(b)(rev(f))

where app is the list append function.

Higher Kinds

The concept of type quantification naturally leads to the consideration of quantification
over type constructors, such as 1ist, which are functions mapping types to types. For
example, the abstract type of queues of natural numbers considered in Section 17.4 could
be generalized to an abstract type constructor of queues that does not fix the element type.
In the notation that we shall develop in this chapter, such an abstraction 1s expressed by the
existential type 3¢ :: T — T.o, where o is the labeled tuple type

(emp <>Vt T, ins—> Vit Tt x qlt] — qlt],rem— V¢t :: T.q[t] — (t x g[t]) opt).

Language Fomega (or Fw)

The syntax of kinds of F,, is given by the following grammar:

Kind « 1= Type T types
Unit 1 nullary product
Prod(ki;k2) K1 X ko binary product
Arr(ky;k7) k1 — ko function

The syntax of constructors of F,, is defined by this grammar:

Con ¢ == u U variable
arr — function constructor
all{x} ' universal quantifier
some{x } = existential quantifier
proj[ll(c) c¢-1 first projection
projlrl(c) c¢-r second projection
app(ci;c2) cileal application
unit () null tuple

pair(ci;cz) (c1,¢2) pair
lam(u.c) A(u)c abstraction

Fw Statics: Constructors & Kinds

The statics of constructors and kinds of F,, is specified by the judgment
AlFcik

which states that the constructor ¢ is well-formed with kind «. The hypotheses A consist
of a finite set of assumptions

Ul K1y .oy Uy 20 Ky,

where n > 0, specifying the kinds of the active constructor variables.
The statics of constructors is defined by the following rules:

Auikbu:k (18.1a)
AF—- T—>T—T (18.1b)
AFY, :(k—>T)—T (18.1c¢)

AF3I ik —>T)—>T (18.1d)

Fw Statics: Constructors & Kinds

AFc:iKky XKk
AFc-1:kK

Al ciiky XK
AbFc-r:iK

AFcriikho—>k AFo ik

A Fciler] ik

AF{() 1

Al—cliil{l A|_C2::K2
A {ci,c2) i k1 X K3

A,u:ki ek
AFEAW)cr ik — K

(18.1e)

(18.1f)

(18.1g)

(18.1h)

(18.11)

(18.1j)

Fw Statics: Constructor Equality

AFc:k
18.2
AFc=c:i«k (a)
- ! oo
Abc=c ik (18.2b)
AFc =c:«k
AFc=cd 1k A=« (18.2¢)
AFc=c" 1k '
— ..
A Fc_i../xl >i/<2 (18.2d)
Abc-1=c-1: Kk
— .
Al c= i ..//q >i/<2 (18.2¢)
AFc-r=c - -riK
AFci=ciki AFc=c ik (18.26)

A {cr,02) = (c],65) k1 X K2

Fw Statics: Constructor Equality

AFciiikr AFocr ik
AF{c1,c0)-1=cy ik

AFcriikg AFcociik
A|—<Cl,02>-I‘ECQ .. Ko

AFci=ciiikr—k AFc=cdc ik

A Fciler] =cfley] ik

AutkbEc=c ik

AFAw:k)ea=AWkKk)ch ik = K

A, u.kiboiikn AbFcpiik
AFA:k)ey)le]l =lci/uler itk

(18.2¢g)

(18.2h)

(18.2i)

(18.2])

(18.2k)

Fw Statics: Expressions & Types

The statics of expressions of F, is defined using two judgment forms:

A F T type type formation
ATl Fe:t expression formation

Here, as before, [is a finite set of hypotheses of the form
X1 - Ty eeey Xk o Tk

such that A - 1; typeforeach 1 <i < k.
The types of F,, are the constructors of kind T:
AT T
A T type

(18.3)

This being the only rule for introducing types, the only types are the constructors of kind T.
Definitionally equal types classify the same expressions:

ATlFe:ty AT =1:T
1 Fe:.:D

(18.4)

Fw Statics: Expressions & Types

The language F, extends F to permit universal quantification over arbitrary kinds; the
language FE, extends F, with existential quantification over arbitrary kinds. The statics

of the quantifiers in FE,, is defined by the following rules:

Aukl'Fe:t
ATFHFAm:k)e:Yu: k.t

Al'Fe:Yui::k.t AbFc:ik
AT Felc]:[c/ult

AFciik A,u:kbttype ATl Fe:[c/ult
AT'Fpackcwitheas3Ju k.t :Ju:ik.T

AlFe:quikt Auzkl,x:they:1n AF 1 type

AT Fopenejasu::kwithx:tine : 1

(18.5a)

(18.5b)

(18.5¢)

(18.5d)

