
CS 430/530
Formal Semantics

Zhong Shao

Yale University
Department of Computer Science

Recursive Functions and Types
April 1, 2025

PCF: T + General Recursion (A Language
for Partial Recursive Functions)

19 System PCF of Recursive Functions

We introduced the language T as a basis for discussing total computations, those for which
the type system guarantees termination. The language M generalizes T to admit inductive
and coinductive types, while preserving totality. In this chapter, we introduce PCF as a
basis for discussing partial computations, those that may not terminate when evaluated,
even when they are well-typed. At first blush, this may seem like a disadvantage, but as we
shall see in Chapter 20, it admits greater expressive power than is possible in T.

The source of partiality in PCF is the concept of general recursion, which permits the
solution of equations between expressions. The price for admitting solutions to all such
equations is that computations may not terminate—the solution to some equations might
be undefined (divergent). In PCF, the programmer must make sure that a computation
terminates; the type system does not guarantee it. The advantage is that the termination
proof need not be embedded into the code itself, resulting in shorter programs.

For example, consider the equations

f (0) ! 1

f (n + 1) ! (n + 1) × f (n).

Intuitively, these equations define the factorial function. They form a system of simultaneous
equations in the unknown f , which ranges over functions on the natural numbers. The
function we seek is a solution to these equations—a specific function f : N → N such that
the above conditions are satisfied.

A solution to such a system of equations is a fixed point of an associated functional
(higher-order function). To see this, let us re-write these equations in another form:

f (n) !
{

1 if n = 0
n × f (n′) if n = n′ + 1.

Re-writing yet again, we seek f given by

n $→
{

1 if n = 0
n × f (n′) if n = n′ + 1.

Now define the functional F by the equation F (f) = f ′, where f ′ is given by

n $→
{

1 if n = 0
n × f (n′) if n = n′ + 1.

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System PCF

19 System PCF of Recursive Functions

We introduced the language T as a basis for discussing total computations, those for which
the type system guarantees termination. The language M generalizes T to admit inductive
and coinductive types, while preserving totality. In this chapter, we introduce PCF as a
basis for discussing partial computations, those that may not terminate when evaluated,
even when they are well-typed. At first blush, this may seem like a disadvantage, but as we
shall see in Chapter 20, it admits greater expressive power than is possible in T.

The source of partiality in PCF is the concept of general recursion, which permits the
solution of equations between expressions. The price for admitting solutions to all such
equations is that computations may not terminate—the solution to some equations might
be undefined (divergent). In PCF, the programmer must make sure that a computation
terminates; the type system does not guarantee it. The advantage is that the termination
proof need not be embedded into the code itself, resulting in shorter programs.

For example, consider the equations

f (0) ! 1

f (n + 1) ! (n + 1) × f (n).

Intuitively, these equations define the factorial function. They form a system of simultaneous
equations in the unknown f , which ranges over functions on the natural numbers. The
function we seek is a solution to these equations—a specific function f : N → N such that
the above conditions are satisfied.

A solution to such a system of equations is a fixed point of an associated functional
(higher-order function). To see this, let us re-write these equations in another form:

f (n) !
{

1 if n = 0
n × f (n′) if n = n′ + 1.

Re-writing yet again, we seek f given by

n $→
{

1 if n = 0
n × f (n′) if n = n′ + 1.

Now define the functional F by the equation F (f) = f ′, where f ′ is given by

n $→
{

1 if n = 0
n × f (n′) if n = n′ + 1.

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System PCF

162 System PCF of Recursive Functions

Note well that the condition on f ′ is expressed in terms of f , the argument to the functional
F , and not in terms of f ′ itself! The function f we seek is a fixed point of F , a function
f : N → N such that f = F (f). In other words e is defined to be fix(F), where fix is a
higher-order operator on functionals F that computes a fixed point for it.

Why should an operator such as F have a fixed point? The key is that functions in PCF
are partial, which means that they may diverge on some (or even all) inputs. Consequently,
a fixed point of a functional F is the limit of a series of approximations of the desired
solution obtained by iterating F . Let us say that a partial function φ on the natural numbers,
is an approximation to a total function f if φ(m) = n implies that f (m) = n. Let ⊥: N ⇀ N
be the totally undefined partial function—⊥(n) is undefined for every n ∈ N. This is the
“worst” approximation to the desired solution f of the recursion equations given above.
Given any approximation φ of f , we may “improve” it to φ′ = F (φ). The partial function
φ′ is defined on 0 and on m + 1 for every m ≥ 0 on which φ is defined. Continuing,
φ′′ = F (φ′) = F (F (φ)) is an improvement on φ′, and hence a further improvement on φ.
If we start with ⊥ as the initial approximation to f , then pass to the limit

lim
i≥0

F (i)(⊥),

we will obtain the least approximation to f that is defined for every m ∈ N, and hence is
the function f itself. Turning this around, if the limit exists, it is the solution we seek.

Because this construction works for any functional F , we conclude that all such operators
have fixed points, and hence that all systems of equations such as the one given above have
solutions. The solution is given by general recursion, but there is no guarantee that it is a
total function (defined on all elements of its domain). For the above example, it happens to
be true, because we can prove by induction that this is so, but in general, the solution is a
partial function that may diverge on some inputs. It is our task as programmers to ensure
that the functions defined by general recursion are total, or at least that we have a grasp of
those inputs for which it is well-defined.

19.1 Statics

The syntax of PCF is given by the following grammar:

Typ τ ::= nat nat naturals
parr(τ1; τ2) τ1 ⇀ τ2 partial function

Exp e ::= x x variable
z z zero
s(e) s(e) successor
ifz{e0; x.e1}(e) ifz e {z ↪→ e0 | s(x) ↪→ e1} zero test
lam{τ }(x.e) λ (x : τ) e abstraction
ap(e1; e2) e1(e2) application
fix{τ }(x.e) fix x : τ is e recursion

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System PCF Syntax

162 System PCF of Recursive Functions

Note well that the condition on f ′ is expressed in terms of f , the argument to the functional
F , and not in terms of f ′ itself! The function f we seek is a fixed point of F , a function
f : N → N such that f = F (f). In other words e is defined to be fix(F), where fix is a
higher-order operator on functionals F that computes a fixed point for it.

Why should an operator such as F have a fixed point? The key is that functions in PCF
are partial, which means that they may diverge on some (or even all) inputs. Consequently,
a fixed point of a functional F is the limit of a series of approximations of the desired
solution obtained by iterating F . Let us say that a partial function φ on the natural numbers,
is an approximation to a total function f if φ(m) = n implies that f (m) = n. Let ⊥: N ⇀ N
be the totally undefined partial function—⊥(n) is undefined for every n ∈ N. This is the
“worst” approximation to the desired solution f of the recursion equations given above.
Given any approximation φ of f , we may “improve” it to φ′ = F (φ). The partial function
φ′ is defined on 0 and on m + 1 for every m ≥ 0 on which φ is defined. Continuing,
φ′′ = F (φ′) = F (F (φ)) is an improvement on φ′, and hence a further improvement on φ.
If we start with ⊥ as the initial approximation to f , then pass to the limit

lim
i≥0

F (i)(⊥),

we will obtain the least approximation to f that is defined for every m ∈ N, and hence is
the function f itself. Turning this around, if the limit exists, it is the solution we seek.

Because this construction works for any functional F , we conclude that all such operators
have fixed points, and hence that all systems of equations such as the one given above have
solutions. The solution is given by general recursion, but there is no guarantee that it is a
total function (defined on all elements of its domain). For the above example, it happens to
be true, because we can prove by induction that this is so, but in general, the solution is a
partial function that may diverge on some inputs. It is our task as programmers to ensure
that the functions defined by general recursion are total, or at least that we have a grasp of
those inputs for which it is well-defined.

19.1 Statics

The syntax of PCF is given by the following grammar:

Typ τ ::= nat nat naturals
parr(τ1; τ2) τ1 ⇀ τ2 partial function

Exp e ::= x x variable
z z zero
s(e) s(e) successor
ifz{e0; x.e1}(e) ifz e {z ↪→ e0 | s(x) ↪→ e1} zero test
lam{τ }(x.e) λ (x : τ) e abstraction
ap(e1; e2) e1(e2) application
fix{τ }(x.e) fix x : τ is e recursion

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System PCF Statics

163 19.2 Dynamics

The expression fix{τ }(x.e) is general recursion; it is discussed in more detail below. The
expression ifz{e0; x.e1}(e) branches according to whether e evaluates to z, binding the
predecessor to x in the case that it is not.

The statics of PCF is inductively defined by the following rules:

", x : τ ! x : τ
(19.1a)

" ! z : nat
(19.1b)

" ! e : nat
" ! s(e) : nat (19.1c)

" ! e : nat " ! e0 : τ ", x : nat ! e1 : τ

" ! ifz{e0; x.e1}(e) : τ
(19.1d)

", x : τ1 ! e : τ2

" ! lam{τ1}(x.e) : parr(τ1; τ2) (19.1e)

" ! e1 : parr(τ2; τ) " ! e2 : τ2

" ! ap(e1; e2) : τ
(19.1f)

", x : τ ! e : τ

" ! fix{τ }(x.e) : τ
(19.1g)

Rule (19.1g) reflects the self-referential nature of general recursion. To show that
fix{τ }(x.e) has type τ , we assume that it is the case by assigning that type to the variable
x, which stands for the recursive expression itself, and checking that the body, e, has type
τ under this very assumption.

The structural rules, including in particular substitution, are admissible for the static
semantics.

Lemma 19.1. If ", x : τ ! e′ : τ ′, " ! e : τ , then " ! [e/x]e′ : τ ′.

19.2 Dynamics

The dynamic semantics of PCF is defined by the judgments e val, specifying the closed
values, and e #−→ e′, specifying the steps of evaluation.

The judgment e val is defined by the following rules:

z val
(19.2a)

[e val]
s(e) val

(19.2b)

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

163 19.2 Dynamics

The expression fix{τ }(x.e) is general recursion; it is discussed in more detail below. The
expression ifz{e0; x.e1}(e) branches according to whether e evaluates to z, binding the
predecessor to x in the case that it is not.

The statics of PCF is inductively defined by the following rules:

", x : τ ! x : τ
(19.1a)

" ! z : nat
(19.1b)

" ! e : nat
" ! s(e) : nat (19.1c)

" ! e : nat " ! e0 : τ ", x : nat ! e1 : τ

" ! ifz{e0; x.e1}(e) : τ
(19.1d)

", x : τ1 ! e : τ2

" ! lam{τ1}(x.e) : parr(τ1; τ2) (19.1e)

" ! e1 : parr(τ2; τ) " ! e2 : τ2

" ! ap(e1; e2) : τ
(19.1f)

", x : τ ! e : τ

" ! fix{τ }(x.e) : τ
(19.1g)

Rule (19.1g) reflects the self-referential nature of general recursion. To show that
fix{τ }(x.e) has type τ , we assume that it is the case by assigning that type to the variable
x, which stands for the recursive expression itself, and checking that the body, e, has type
τ under this very assumption.

The structural rules, including in particular substitution, are admissible for the static
semantics.

Lemma 19.1. If ", x : τ ! e′ : τ ′, " ! e : τ , then " ! [e/x]e′ : τ ′.

19.2 Dynamics

The dynamic semantics of PCF is defined by the judgments e val, specifying the closed
values, and e #−→ e′, specifying the steps of evaluation.

The judgment e val is defined by the following rules:

z val
(19.2a)

[e val]
s(e) val

(19.2b)

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System PCF Dynamics

163 19.2 Dynamics

The expression fix{τ }(x.e) is general recursion; it is discussed in more detail below. The
expression ifz{e0; x.e1}(e) branches according to whether e evaluates to z, binding the
predecessor to x in the case that it is not.

The statics of PCF is inductively defined by the following rules:

", x : τ ! x : τ
(19.1a)

" ! z : nat
(19.1b)

" ! e : nat
" ! s(e) : nat (19.1c)

" ! e : nat " ! e0 : τ ", x : nat ! e1 : τ

" ! ifz{e0; x.e1}(e) : τ
(19.1d)

", x : τ1 ! e : τ2

" ! lam{τ1}(x.e) : parr(τ1; τ2) (19.1e)

" ! e1 : parr(τ2; τ) " ! e2 : τ2

" ! ap(e1; e2) : τ
(19.1f)

", x : τ ! e : τ

" ! fix{τ }(x.e) : τ
(19.1g)

Rule (19.1g) reflects the self-referential nature of general recursion. To show that
fix{τ }(x.e) has type τ , we assume that it is the case by assigning that type to the variable
x, which stands for the recursive expression itself, and checking that the body, e, has type
τ under this very assumption.

The structural rules, including in particular substitution, are admissible for the static
semantics.

Lemma 19.1. If ", x : τ ! e′ : τ ′, " ! e : τ , then " ! [e/x]e′ : τ ′.

19.2 Dynamics

The dynamic semantics of PCF is defined by the judgments e val, specifying the closed
values, and e #−→ e′, specifying the steps of evaluation.

The judgment e val is defined by the following rules:

z val
(19.2a)

[e val]
s(e) val

(19.2b)

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

164 System PCF of Recursive Functions

lam{τ }(x.e) val
(19.2c)

The bracketed premise on rule (19.2b) is included for the eager interpretation of the
successor operation, and omitted for the lazy interpretation. (See Chapter 36 for a further
discussion of laziness.)

The transition judgment e !−→ e′ is defined by the following rules:
[

e !−→ e′

s(e) !−→ s(e′)

]
(19.3a)

e !−→ e′

ifz{e0; x.e1}(e) !−→ ifz{e0; x.e1}(e′) (19.3b)

ifz{e0; x.e1}(z) !−→ e0
(19.3c)

s(e) val
ifz{e0; x.e1}(s(e)) !−→ [e/x]e1

(19.3d)

e1 !−→ e′
1

ap(e1; e2) !−→ ap(e′
1; e2)

(19.3e)

[
e1 val e2 !−→ e′

2

ap(e1; e2) !−→ ap(e1; e′
2)

]
(19.3f)

[e2 val]
ap(lam{τ }(x.e); e2) !−→ [e2/x]e (19.3g)

fix{τ }(x.e) !−→ [fix{τ }(x.e)/x]e
(19.3h)

The bracketed rule (19.3a) is included for an eager interpretation of the successor and
omitted otherwise. Bracketed rule (19.3f) and the bracketed premise on rule (19.3g) are
included for a call-by-value interpretation, and omitted for a call-by-name interpretation, of
function application. Rule (19.3h) implements self-reference by substituting the recursive
expression itself for the variable x in its body; this is called unwinding the recursion.

Theorem 19.2 (Safety).

1. If e : τ and e !−→ e′, then e′ : τ .
2. If e : τ , then either e val or there exists e′ such that e !−→ e′.

Proof The proof of preservation is by induction on the derivation of the transition judg-
ment. Consider rule (19.3h). Suppose that fix{τ }(x.e) : τ . By inversion and substitution
we have [fix{τ }(x.e)/x]e : τ , as required. The proof of progress proceeds by induction
on the derivation of the typing judgment. For example, for rule (19.1g) the result follows
because we may make progress by unwinding the recursion.

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

164 System PCF of Recursive Functions

lam{τ }(x.e) val
(19.2c)

The bracketed premise on rule (19.2b) is included for the eager interpretation of the
successor operation, and omitted for the lazy interpretation. (See Chapter 36 for a further
discussion of laziness.)

The transition judgment e !−→ e′ is defined by the following rules:
[

e !−→ e′

s(e) !−→ s(e′)

]
(19.3a)

e !−→ e′

ifz{e0; x.e1}(e) !−→ ifz{e0; x.e1}(e′) (19.3b)

ifz{e0; x.e1}(z) !−→ e0
(19.3c)

s(e) val
ifz{e0; x.e1}(s(e)) !−→ [e/x]e1

(19.3d)

e1 !−→ e′
1

ap(e1; e2) !−→ ap(e′
1; e2)

(19.3e)

[
e1 val e2 !−→ e′

2

ap(e1; e2) !−→ ap(e1; e′
2)

]
(19.3f)

[e2 val]
ap(lam{τ }(x.e); e2) !−→ [e2/x]e (19.3g)

fix{τ }(x.e) !−→ [fix{τ }(x.e)/x]e
(19.3h)

The bracketed rule (19.3a) is included for an eager interpretation of the successor and
omitted otherwise. Bracketed rule (19.3f) and the bracketed premise on rule (19.3g) are
included for a call-by-value interpretation, and omitted for a call-by-name interpretation, of
function application. Rule (19.3h) implements self-reference by substituting the recursive
expression itself for the variable x in its body; this is called unwinding the recursion.

Theorem 19.2 (Safety).

1. If e : τ and e !−→ e′, then e′ : τ .
2. If e : τ , then either e val or there exists e′ such that e !−→ e′.

Proof The proof of preservation is by induction on the derivation of the transition judg-
ment. Consider rule (19.3h). Suppose that fix{τ }(x.e) : τ . By inversion and substitution
we have [fix{τ }(x.e)/x]e : τ , as required. The proof of progress proceeds by induction
on the derivation of the typing judgment. For example, for rule (19.1g) the result follows
because we may make progress by unwinding the recursion.

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

164 System PCF of Recursive Functions

lam{τ }(x.e) val
(19.2c)

The bracketed premise on rule (19.2b) is included for the eager interpretation of the
successor operation, and omitted for the lazy interpretation. (See Chapter 36 for a further
discussion of laziness.)

The transition judgment e !−→ e′ is defined by the following rules:
[

e !−→ e′

s(e) !−→ s(e′)

]
(19.3a)

e !−→ e′

ifz{e0; x.e1}(e) !−→ ifz{e0; x.e1}(e′) (19.3b)

ifz{e0; x.e1}(z) !−→ e0
(19.3c)

s(e) val
ifz{e0; x.e1}(s(e)) !−→ [e/x]e1

(19.3d)

e1 !−→ e′
1

ap(e1; e2) !−→ ap(e′
1; e2)

(19.3e)

[
e1 val e2 !−→ e′

2

ap(e1; e2) !−→ ap(e1; e′
2)

]
(19.3f)

[e2 val]
ap(lam{τ }(x.e); e2) !−→ [e2/x]e (19.3g)

fix{τ }(x.e) !−→ [fix{τ }(x.e)/x]e
(19.3h)

The bracketed rule (19.3a) is included for an eager interpretation of the successor and
omitted otherwise. Bracketed rule (19.3f) and the bracketed premise on rule (19.3g) are
included for a call-by-value interpretation, and omitted for a call-by-name interpretation, of
function application. Rule (19.3h) implements self-reference by substituting the recursive
expression itself for the variable x in its body; this is called unwinding the recursion.

Theorem 19.2 (Safety).

1. If e : τ and e !−→ e′, then e′ : τ .
2. If e : τ , then either e val or there exists e′ such that e !−→ e′.

Proof The proof of preservation is by induction on the derivation of the transition judg-
ment. Consider rule (19.3h). Suppose that fix{τ }(x.e) : τ . By inversion and substitution
we have [fix{τ }(x.e)/x]e : τ , as required. The proof of progress proceeds by induction
on the derivation of the typing judgment. For example, for rule (19.1g) the result follows
because we may make progress by unwinding the recursion.

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System PCF Safety

164 System PCF of Recursive Functions

lam{τ }(x.e) val
(19.2c)

The bracketed premise on rule (19.2b) is included for the eager interpretation of the
successor operation, and omitted for the lazy interpretation. (See Chapter 36 for a further
discussion of laziness.)

The transition judgment e !−→ e′ is defined by the following rules:
[

e !−→ e′

s(e) !−→ s(e′)

]
(19.3a)

e !−→ e′

ifz{e0; x.e1}(e) !−→ ifz{e0; x.e1}(e′) (19.3b)

ifz{e0; x.e1}(z) !−→ e0
(19.3c)

s(e) val
ifz{e0; x.e1}(s(e)) !−→ [e/x]e1

(19.3d)

e1 !−→ e′
1

ap(e1; e2) !−→ ap(e′
1; e2)

(19.3e)

[
e1 val e2 !−→ e′

2

ap(e1; e2) !−→ ap(e1; e′
2)

]
(19.3f)

[e2 val]
ap(lam{τ }(x.e); e2) !−→ [e2/x]e (19.3g)

fix{τ }(x.e) !−→ [fix{τ }(x.e)/x]e
(19.3h)

The bracketed rule (19.3a) is included for an eager interpretation of the successor and
omitted otherwise. Bracketed rule (19.3f) and the bracketed premise on rule (19.3g) are
included for a call-by-value interpretation, and omitted for a call-by-name interpretation, of
function application. Rule (19.3h) implements self-reference by substituting the recursive
expression itself for the variable x in its body; this is called unwinding the recursion.

Theorem 19.2 (Safety).

1. If e : τ and e !−→ e′, then e′ : τ .
2. If e : τ , then either e val or there exists e′ such that e !−→ e′.

Proof The proof of preservation is by induction on the derivation of the transition judg-
ment. Consider rule (19.3h). Suppose that fix{τ }(x.e) : τ . By inversion and substitution
we have [fix{τ }(x.e)/x]e : τ , as required. The proof of progress proceeds by induction
on the derivation of the typing judgment. For example, for rule (19.1g) the result follows
because we may make progress by unwinding the recursion.

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System PCF Definitional Equality
165 19.3 Definability

It is easy to check that if e val, then e is irreducible in that there is no e′ such that e "−→ e′.
The safety theorem implies the converse, that an irreducible expression is a value, provided
that it is closed and well-typed.

Definitional equality for the call-by-name variant of PCF, written ! % e1 ≡ e2 : τ , is
the strongest congruence containing the following axioms:

! % ifz{e0; x.e1}(z) ≡ e0 : τ
(19.4a)

! % ifz{e0; x.e1}(s(e)) ≡ [e/x]e1 : τ
(19.4b)

! % fix{τ }(x.e) ≡ [fix{τ }(x.e)/x]e : τ
(19.4c)

! % ap(lam{τ1}(x.e2); e1) ≡ [e1/x]e2 : τ
(19.4d)

These rules suffice to calculate the value of any closed expression of type nat: if e : nat,
then e ≡ n : nat iff e "−→∗ n.

19.3 Definability

Let us write fun x(y:τ1):τ2 is e for a recursive function within whose body, e : τ2, are
bound two variables, y : τ1 standing for the argument and x : τ1 ⇀ τ2 standing for the
function itself. The dynamic semantics of this construct is given by the axiom

(fun x(y:τ1):τ2 is e)(e1) "−→ [fun x(y:τ1):τ2 is e, e1/x, y]e
.

That is, to apply a recursive function, we substitute the recursive function itself for x and
the argument for y in its body.

Recursive functions are defined in PCF using recursive functions, writing

fix x : τ1 ⇀ τ2 is λ (y : τ1) e

for fun x(y:τ1):τ2 is e. We may easily check that the static and dynamic semantics of
recursive functions are derivable from this definition.

The primitive recursion construct of T is defined in PCF using recursive functions by
taking the expression

rec e {z ↪→ e0 | s(x) with y ↪→ e1}

to stand for the application e′(e), where e′ is the general recursive function

fun f (u:nat):τ is ifz u {z ↪→ e0 | s(x) ↪→ [f (x)/y]e1}.

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System PCF Definability

165 19.3 Definability

It is easy to check that if e val, then e is irreducible in that there is no e′ such that e "−→ e′.
The safety theorem implies the converse, that an irreducible expression is a value, provided
that it is closed and well-typed.

Definitional equality for the call-by-name variant of PCF, written ! % e1 ≡ e2 : τ , is
the strongest congruence containing the following axioms:

! % ifz{e0; x.e1}(z) ≡ e0 : τ
(19.4a)

! % ifz{e0; x.e1}(s(e)) ≡ [e/x]e1 : τ
(19.4b)

! % fix{τ }(x.e) ≡ [fix{τ }(x.e)/x]e : τ
(19.4c)

! % ap(lam{τ1}(x.e2); e1) ≡ [e1/x]e2 : τ
(19.4d)

These rules suffice to calculate the value of any closed expression of type nat: if e : nat,
then e ≡ n : nat iff e "−→∗ n.

19.3 Definability

Let us write fun x(y:τ1):τ2 is e for a recursive function within whose body, e : τ2, are
bound two variables, y : τ1 standing for the argument and x : τ1 ⇀ τ2 standing for the
function itself. The dynamic semantics of this construct is given by the axiom

(fun x(y:τ1):τ2 is e)(e1) "−→ [fun x(y:τ1):τ2 is e, e1/x, y]e
.

That is, to apply a recursive function, we substitute the recursive function itself for x and
the argument for y in its body.

Recursive functions are defined in PCF using recursive functions, writing

fix x : τ1 ⇀ τ2 is λ (y : τ1) e

for fun x(y:τ1):τ2 is e. We may easily check that the static and dynamic semantics of
recursive functions are derivable from this definition.

The primitive recursion construct of T is defined in PCF using recursive functions by
taking the expression

rec e {z ↪→ e0 | s(x) with y ↪→ e1}

to stand for the application e′(e), where e′ is the general recursive function

fun f (u:nat):τ is ifz u {z ↪→ e0 | s(x) ↪→ [f (x)/y]e1}.

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System PCF Definability

165 19.3 Definability

It is easy to check that if e val, then e is irreducible in that there is no e′ such that e "−→ e′.
The safety theorem implies the converse, that an irreducible expression is a value, provided
that it is closed and well-typed.

Definitional equality for the call-by-name variant of PCF, written ! % e1 ≡ e2 : τ , is
the strongest congruence containing the following axioms:

! % ifz{e0; x.e1}(z) ≡ e0 : τ
(19.4a)

! % ifz{e0; x.e1}(s(e)) ≡ [e/x]e1 : τ
(19.4b)

! % fix{τ }(x.e) ≡ [fix{τ }(x.e)/x]e : τ
(19.4c)

! % ap(lam{τ1}(x.e2); e1) ≡ [e1/x]e2 : τ
(19.4d)

These rules suffice to calculate the value of any closed expression of type nat: if e : nat,
then e ≡ n : nat iff e "−→∗ n.

19.3 Definability

Let us write fun x(y:τ1):τ2 is e for a recursive function within whose body, e : τ2, are
bound two variables, y : τ1 standing for the argument and x : τ1 ⇀ τ2 standing for the
function itself. The dynamic semantics of this construct is given by the axiom

(fun x(y:τ1):τ2 is e)(e1) "−→ [fun x(y:τ1):τ2 is e, e1/x, y]e
.

That is, to apply a recursive function, we substitute the recursive function itself for x and
the argument for y in its body.

Recursive functions are defined in PCF using recursive functions, writing

fix x : τ1 ⇀ τ2 is λ (y : τ1) e

for fun x(y:τ1):τ2 is e. We may easily check that the static and dynamic semantics of
recursive functions are derivable from this definition.

The primitive recursion construct of T is defined in PCF using recursive functions by
taking the expression

rec e {z ↪→ e0 | s(x) with y ↪→ e1}

to stand for the application e′(e), where e′ is the general recursive function

fun f (u:nat):τ is ifz u {z ↪→ e0 | s(x) ↪→ [f (x)/y]e1}.

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

166 System PCF of Recursive Functions

The static and dynamic semantics of primitive recursion are derivable in PCF using this
expansion.

In general, functions definable in PCF are partial in that they may be undefined for some
arguments. A partial (mathematical) function, φ : N ⇀ N, is definable in PCF iff there is
an expression eφ : nat ⇀ nat such that φ(m) = n iff eφ(m) ≡ n : nat. So, for example,
if φ is the totally undefined function, then eφ is any function that loops without returning
when it is applied.

It is informative to classify those partial functions φ that are definable in PCF. The
partial recursive functions are defined to be the primitive recursive functions extended with
the minimization operation: given φ(m, n), define ψ(n) to be the least m ≥ 0 such that
(1) for m′ < m, φ(m′, n) is defined and non-zero, and (2) φ(m, n) = 0. If no such m exists,
then ψ(n) is undefined.

Theorem 19.3. A partial function φ on the natural numbers is definable in PCF iff it is
partial recursive.

Proof sketch Minimization is definable in PCF, so it is at least as powerful as the set of
partial recursive functions. Conversely, we may, with some tedium, define an evaluator for
expressions of PCF as a partial recursive function, using Gödel-numbering to represent
expressions as numbers. Therefore, PCF does not exceed the power of the set of partial
recursive functions.

Church’s Law states that the partial recursive functions coincide with the set of effectively
computable functions on the natural numbers—those that can be carried out by a program
written in any programming language that is or will ever be defined.1 Therefore, PCF is as
powerful as any other programming language with respect to the set of definable functions
on the natural numbers.

The universal function φuniv for PCF is the partial function on the natural numbers
defined by

φuniv(!e")(m) = n iff e(m) ≡ n : nat.

In contrast to T, the universal function φuniv for PCF is partial (might be undefined for some
inputs). It is, in essence, an interpreter that, given the code !e" of a closed expression of
type nat⇀nat, simulates the dynamic semantics to calculate the result, if any, of applying
it to the m, obtaining n. Because this process may fail to terminate, the universal function
is not defined for all inputs.

By Church’s Law, the universal function is definable in PCF. In contrast, we proved
in Chapter 9 that the analogous function is not definable in T using the technique of
diagonalization. It is instructive to examine why that argument does not apply in the
present setting. As in Section 9.4, we may derive the equivalence

e$(!e$") ≡ s(e$(!e$"))

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System PCF Definability

166 System PCF of Recursive Functions

The static and dynamic semantics of primitive recursion are derivable in PCF using this
expansion.

In general, functions definable in PCF are partial in that they may be undefined for some
arguments. A partial (mathematical) function, φ : N ⇀ N, is definable in PCF iff there is
an expression eφ : nat ⇀ nat such that φ(m) = n iff eφ(m) ≡ n : nat. So, for example,
if φ is the totally undefined function, then eφ is any function that loops without returning
when it is applied.

It is informative to classify those partial functions φ that are definable in PCF. The
partial recursive functions are defined to be the primitive recursive functions extended with
the minimization operation: given φ(m, n), define ψ(n) to be the least m ≥ 0 such that
(1) for m′ < m, φ(m′, n) is defined and non-zero, and (2) φ(m, n) = 0. If no such m exists,
then ψ(n) is undefined.

Theorem 19.3. A partial function φ on the natural numbers is definable in PCF iff it is
partial recursive.

Proof sketch Minimization is definable in PCF, so it is at least as powerful as the set of
partial recursive functions. Conversely, we may, with some tedium, define an evaluator for
expressions of PCF as a partial recursive function, using Gödel-numbering to represent
expressions as numbers. Therefore, PCF does not exceed the power of the set of partial
recursive functions.

Church’s Law states that the partial recursive functions coincide with the set of effectively
computable functions on the natural numbers—those that can be carried out by a program
written in any programming language that is or will ever be defined.1 Therefore, PCF is as
powerful as any other programming language with respect to the set of definable functions
on the natural numbers.

The universal function φuniv for PCF is the partial function on the natural numbers
defined by

φuniv(!e")(m) = n iff e(m) ≡ n : nat.

In contrast to T, the universal function φuniv for PCF is partial (might be undefined for some
inputs). It is, in essence, an interpreter that, given the code !e" of a closed expression of
type nat⇀nat, simulates the dynamic semantics to calculate the result, if any, of applying
it to the m, obtaining n. Because this process may fail to terminate, the universal function
is not defined for all inputs.

By Church’s Law, the universal function is definable in PCF. In contrast, we proved
in Chapter 9 that the analogous function is not definable in T using the technique of
diagonalization. It is instructive to examine why that argument does not apply in the
present setting. As in Section 9.4, we may derive the equivalence

e$(!e$") ≡ s(e$(!e$"))

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System PCF Definability

166 System PCF of Recursive Functions

The static and dynamic semantics of primitive recursion are derivable in PCF using this
expansion.

In general, functions definable in PCF are partial in that they may be undefined for some
arguments. A partial (mathematical) function, φ : N ⇀ N, is definable in PCF iff there is
an expression eφ : nat ⇀ nat such that φ(m) = n iff eφ(m) ≡ n : nat. So, for example,
if φ is the totally undefined function, then eφ is any function that loops without returning
when it is applied.

It is informative to classify those partial functions φ that are definable in PCF. The
partial recursive functions are defined to be the primitive recursive functions extended with
the minimization operation: given φ(m, n), define ψ(n) to be the least m ≥ 0 such that
(1) for m′ < m, φ(m′, n) is defined and non-zero, and (2) φ(m, n) = 0. If no such m exists,
then ψ(n) is undefined.

Theorem 19.3. A partial function φ on the natural numbers is definable in PCF iff it is
partial recursive.

Proof sketch Minimization is definable in PCF, so it is at least as powerful as the set of
partial recursive functions. Conversely, we may, with some tedium, define an evaluator for
expressions of PCF as a partial recursive function, using Gödel-numbering to represent
expressions as numbers. Therefore, PCF does not exceed the power of the set of partial
recursive functions.

Church’s Law states that the partial recursive functions coincide with the set of effectively
computable functions on the natural numbers—those that can be carried out by a program
written in any programming language that is or will ever be defined.1 Therefore, PCF is as
powerful as any other programming language with respect to the set of definable functions
on the natural numbers.

The universal function φuniv for PCF is the partial function on the natural numbers
defined by

φuniv(!e")(m) = n iff e(m) ≡ n : nat.

In contrast to T, the universal function φuniv for PCF is partial (might be undefined for some
inputs). It is, in essence, an interpreter that, given the code !e" of a closed expression of
type nat⇀nat, simulates the dynamic semantics to calculate the result, if any, of applying
it to the m, obtaining n. Because this process may fail to terminate, the universal function
is not defined for all inputs.

By Church’s Law, the universal function is definable in PCF. In contrast, we proved
in Chapter 9 that the analogous function is not definable in T using the technique of
diagonalization. It is instructive to examine why that argument does not apply in the
present setting. As in Section 9.4, we may derive the equivalence

e$(!e$") ≡ s(e$(!e$"))

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System PCF Definability

166 System PCF of Recursive Functions

The static and dynamic semantics of primitive recursion are derivable in PCF using this
expansion.

In general, functions definable in PCF are partial in that they may be undefined for some
arguments. A partial (mathematical) function, φ : N ⇀ N, is definable in PCF iff there is
an expression eφ : nat ⇀ nat such that φ(m) = n iff eφ(m) ≡ n : nat. So, for example,
if φ is the totally undefined function, then eφ is any function that loops without returning
when it is applied.

It is informative to classify those partial functions φ that are definable in PCF. The
partial recursive functions are defined to be the primitive recursive functions extended with
the minimization operation: given φ(m, n), define ψ(n) to be the least m ≥ 0 such that
(1) for m′ < m, φ(m′, n) is defined and non-zero, and (2) φ(m, n) = 0. If no such m exists,
then ψ(n) is undefined.

Theorem 19.3. A partial function φ on the natural numbers is definable in PCF iff it is
partial recursive.

Proof sketch Minimization is definable in PCF, so it is at least as powerful as the set of
partial recursive functions. Conversely, we may, with some tedium, define an evaluator for
expressions of PCF as a partial recursive function, using Gödel-numbering to represent
expressions as numbers. Therefore, PCF does not exceed the power of the set of partial
recursive functions.

Church’s Law states that the partial recursive functions coincide with the set of effectively
computable functions on the natural numbers—those that can be carried out by a program
written in any programming language that is or will ever be defined.1 Therefore, PCF is as
powerful as any other programming language with respect to the set of definable functions
on the natural numbers.

The universal function φuniv for PCF is the partial function on the natural numbers
defined by

φuniv(!e")(m) = n iff e(m) ≡ n : nat.

In contrast to T, the universal function φuniv for PCF is partial (might be undefined for some
inputs). It is, in essence, an interpreter that, given the code !e" of a closed expression of
type nat⇀nat, simulates the dynamic semantics to calculate the result, if any, of applying
it to the m, obtaining n. Because this process may fail to terminate, the universal function
is not defined for all inputs.

By Church’s Law, the universal function is definable in PCF. In contrast, we proved
in Chapter 9 that the analogous function is not definable in T using the technique of
diagonalization. It is instructive to examine why that argument does not apply in the
present setting. As in Section 9.4, we may derive the equivalence

e$(!e$") ≡ s(e$(!e$"))

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

167 19.5 Totality and Partiality

for PCF. But now, instead of concluding that the universal function, euniv, does not exist as
we did for T, we instead conclude for PCF that euniv diverges on the code for e! applied
to its own code.

19.4 Finite and Infinite Data Structures

Finite data types (products and sums), including their use in pattern matching and generic
programming, carry over verbatim to PCF. However, the distinction between the eager
and lazy dynamics for these constructs becomes more important. Rather than being a
matter of preference, the decision to use an eager or lazy dynamics affects the meaning
of a program: the “same” types mean different things in a lazy dynamics than in an eager
dynamics. For example, the elements of a product type in an eager language are pairs of
values of the component types. In a lazy language, they are instead pairs of unevaluated,
possibly divergent, computations of the component types, a very different thing indeed.
And similarly for sums.

The situation grows more acute for infinite types such as the type nat of “natural
numbers.” The scare quotes are warranted, because the “same” type has a very different
meaning under an eager dynamics than under a lazy dynamics. In the former case, the
type nat is, indeed, the authentic type of natural numbers—the least type containing zero
and closed under successor. The principle of mathematical induction is valid for reasoning
about the type nat in an eager dynamics. It corresponds to the inductive type nat defined
in Chapter 15.

On the other hand, under a lazy dynamics the type nat is no longer the type of natural
numbers at all. For example, it includes the value

ω ! fix x : nat is s(x),

which has itself as predecessor! It is, intuitively, an “infinite stack of successors,” growing
without end. It is clearly not a natural number (it is larger than all of them), so the principle
of mathematical induction does not apply. In a lazy setting, nat could be renamed lnat to
remind us of the distinction; it corresponds to the type conat defined in Chapter 15.

19.5 Totality and Partiality

The advantage of a total programming language such as T is that it ensures, by type
checking, that every program terminates, and that every function is total. There is no way
to have a well-typed program that goes into an infinite loop. This prohibition may seem
appealing, until one considers that the upper bound on the time to termination may be
large, so large that it might as well diverge for all practical purposes. But let us grant for
the moment that it is a virtue of T that it precludes divergence. Why, then, bother with
a language such as PCF that does not rule out divergence? After all, infinite loops are

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System FPC of Recursive Types

20 System FPC of Recursive Types

In this chapter, we study FPC, a language with products, sums, partial fucntions, and
recursive types. Recursive types are solutions to type equations t ∼= τ where there is no
restriction on where t may occur in τ . Equivalently, a recursive type is a fixed point up to
isomorphism of the associated unrestricted type operator t.τ . By removing the restrictions
on the type operator, we may consider the solution of a type equation such as t ∼= t ⇀ t ,
which describes a type that is isomorphic to the type of partial functions defined on itself.
If types were sets, such an equation could not be solved, because there are more partial
functions on a set than there are elements of that set. But types are not sets: they classify
computable functions, not arbitrary functions. With types we may solve such “dubious”
type equations, even though we cannot expect to do so with sets. The penalty is that we must
admit non-termination. For one thing, type equations involving functions have solutions
only if the functions involved are partial.

A benefit of working in the setting of partial functions is that type equations have unique
solutions (up to isomorphism). Therefore, it makes sense, as we shall do in this chapter,
to speak of the solution to a type equation. But what about the distinct solutions to a type
equation given in Chapter 15? These turn out to coincide for any fixed dynamics but give
rise to different solutions according to whether the dynamics is eager or lazy (as illustrated
in Section 19.4 for the special case of the natural numbers). Under a lazy dynamics
(where all constructs are evaluated lazily), recursive types have a coinductive flavor, and
the inductive analogs are inaccessible. Under an eager dynamics (where all constructs are
evaluated eagerly), recursive types have an inductive flavor. But the coinductive analogs
are accessible as well, using function types to selectively impose laziness. It follows that
the eager dynamics is more expressive than the lazy dynamics, because it is impossible to
go the other way around (one cannot define inductive types in a lazy language).

20.1 Solving Type Equations

The language FPC has products, sums, and partial functions inherited from the preceding
development, extended with the new concept of recursive types. The syntax of recursive
types is defined as follows:

Typ τ ::= t t self-reference
rec(t.τ) rec t is τ recursive type

Exp e ::= fold{t.τ }(e) fold(e) fold
unfold(e) unfold(e) unfold

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

172 System FPC of Recursive Types

The subscript on the concrete syntax of fold is often omitted when it is clear from context.
Recursive types have the same general form as the inductive and coinductive types

discussed in Chapter 15, but without restriction on the type operator involved. Recursive
type are formed according to the rule:

!, t type ! τ type
! ! rec(t.τ) type

(20.1)

The statics of folding and unfolding is given by the following rules:

! e : [rec(t.τ)/t]τ
! fold{t.τ }(e) : rec(t.τ)

(20.2a)

! e : rec(t.τ)
! unfold(e) : [rec(t.τ)/t]τ (20.2b)

The dynamics of folding and unfolding is given by these rules:

[e val]
fold{t.τ }(e) val

(20.3a)

[
e "−→ e′

fold{t.τ }(e) "−→ fold{t.τ }(e′)

]
(20.3b)

e "−→ e′

unfold(e) "−→ unfold(e′) (20.3c)

fold{t.τ }(e) val
unfold(fold{t.τ }(e)) "−→ e

(20.3d)

The bracketed premise and rule are included for an eager interpretation of the introduction
form, and omitted for a lazy interpretation. As mentioned in the introduction, the choice of
eager or lazy dynamics affects the meaning of recursive types.

Theorem 20.1 (Safety). 1. If e : τ and e "−→ e′, then e′ : τ .
2. If e : τ , then either e val, or there exists e′ such that e "−→ e′.

20.2 Inductive and Coinductive Types

Recursive types may be used to represent inductive types such as the natural numbers.
Using an eager dynamics for FPC, the recursive type

ρ = rec t is [z ↪→ unit, s ↪→ t]

satisfies the type equation

ρ ∼= [z ↪→ unit, s ↪→ ρ],

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

System FPC of Recursive Types

172 System FPC of Recursive Types

The subscript on the concrete syntax of fold is often omitted when it is clear from context.
Recursive types have the same general form as the inductive and coinductive types

discussed in Chapter 15, but without restriction on the type operator involved. Recursive
type are formed according to the rule:

!, t type ! τ type
! ! rec(t.τ) type

(20.1)

The statics of folding and unfolding is given by the following rules:

! e : [rec(t.τ)/t]τ
! fold{t.τ }(e) : rec(t.τ)

(20.2a)

! e : rec(t.τ)
! unfold(e) : [rec(t.τ)/t]τ (20.2b)

The dynamics of folding and unfolding is given by these rules:

[e val]
fold{t.τ }(e) val

(20.3a)

[
e "−→ e′

fold{t.τ }(e) "−→ fold{t.τ }(e′)

]
(20.3b)

e "−→ e′

unfold(e) "−→ unfold(e′) (20.3c)

fold{t.τ }(e) val
unfold(fold{t.τ }(e)) "−→ e

(20.3d)

The bracketed premise and rule are included for an eager interpretation of the introduction
form, and omitted for a lazy interpretation. As mentioned in the introduction, the choice of
eager or lazy dynamics affects the meaning of recursive types.

Theorem 20.1 (Safety). 1. If e : τ and e "−→ e′, then e′ : τ .
2. If e : τ , then either e val, or there exists e′ such that e "−→ e′.

20.2 Inductive and Coinductive Types

Recursive types may be used to represent inductive types such as the natural numbers.
Using an eager dynamics for FPC, the recursive type

ρ = rec t is [z ↪→ unit, s ↪→ t]

satisfies the type equation

ρ ∼= [z ↪→ unit, s ↪→ ρ],

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

172 System FPC of Recursive Types

The subscript on the concrete syntax of fold is often omitted when it is clear from context.
Recursive types have the same general form as the inductive and coinductive types

discussed in Chapter 15, but without restriction on the type operator involved. Recursive
type are formed according to the rule:

!, t type ! τ type
! ! rec(t.τ) type

(20.1)

The statics of folding and unfolding is given by the following rules:

! e : [rec(t.τ)/t]τ
! fold{t.τ }(e) : rec(t.τ)

(20.2a)

! e : rec(t.τ)
! unfold(e) : [rec(t.τ)/t]τ (20.2b)

The dynamics of folding and unfolding is given by these rules:

[e val]
fold{t.τ }(e) val

(20.3a)

[
e "−→ e′

fold{t.τ }(e) "−→ fold{t.τ }(e′)

]
(20.3b)

e "−→ e′

unfold(e) "−→ unfold(e′) (20.3c)

fold{t.τ }(e) val
unfold(fold{t.τ }(e)) "−→ e

(20.3d)

The bracketed premise and rule are included for an eager interpretation of the introduction
form, and omitted for a lazy interpretation. As mentioned in the introduction, the choice of
eager or lazy dynamics affects the meaning of recursive types.

Theorem 20.1 (Safety). 1. If e : τ and e "−→ e′, then e′ : τ .
2. If e : τ , then either e val, or there exists e′ such that e "−→ e′.

20.2 Inductive and Coinductive Types

Recursive types may be used to represent inductive types such as the natural numbers.
Using an eager dynamics for FPC, the recursive type

ρ = rec t is [z ↪→ unit, s ↪→ t]

satisfies the type equation

ρ ∼= [z ↪→ unit, s ↪→ ρ],

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Eager FPC for Inductive Types

172 System FPC of Recursive Types

The subscript on the concrete syntax of fold is often omitted when it is clear from context.
Recursive types have the same general form as the inductive and coinductive types

discussed in Chapter 15, but without restriction on the type operator involved. Recursive
type are formed according to the rule:

!, t type ! τ type
! ! rec(t.τ) type

(20.1)

The statics of folding and unfolding is given by the following rules:

! e : [rec(t.τ)/t]τ
! fold{t.τ }(e) : rec(t.τ)

(20.2a)

! e : rec(t.τ)
! unfold(e) : [rec(t.τ)/t]τ (20.2b)

The dynamics of folding and unfolding is given by these rules:

[e val]
fold{t.τ }(e) val

(20.3a)

[
e "−→ e′

fold{t.τ }(e) "−→ fold{t.τ }(e′)

]
(20.3b)

e "−→ e′

unfold(e) "−→ unfold(e′) (20.3c)

fold{t.τ }(e) val
unfold(fold{t.τ }(e)) "−→ e

(20.3d)

The bracketed premise and rule are included for an eager interpretation of the introduction
form, and omitted for a lazy interpretation. As mentioned in the introduction, the choice of
eager or lazy dynamics affects the meaning of recursive types.

Theorem 20.1 (Safety). 1. If e : τ and e "−→ e′, then e′ : τ .
2. If e : τ , then either e val, or there exists e′ such that e "−→ e′.

20.2 Inductive and Coinductive Types

Recursive types may be used to represent inductive types such as the natural numbers.
Using an eager dynamics for FPC, the recursive type

ρ = rec t is [z ↪→ unit, s ↪→ t]

satisfies the type equation

ρ ∼= [z ↪→ unit, s ↪→ ρ],

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

173 20.2 Inductive and Coinductive Types

and is isomorphic to the type of eager natural numbers. The introduction and elimination
forms are defined on ρ by the following equations:1

z ! fold(z · 〈〉)
s(e) ! fold(s · e)

ifz e {z ↪→ e0 | s(x) ↪→ e1} ! case unfold(e) {z · ↪→ e0 | s · x ↪→ e1}.

It is a good exercise to check that the eager dynamics of natural numbers in PCF is correctly
simulated by these definitions.

On the other hand, under a lazy dynamics for FPC, the same recursive type ρ ′,

rec t is [z ↪→ unit, s ↪→ t],

satisfies the same type equation,

ρ ′ ∼= [z ↪→ unit, s ↪→ ρ ′],

but is not the type of natural numbers! Rather, it is the type lnat of lazy natural numbers
introduced in Section 19.4. As discussed there, the type ρ ′ contains the “infinite number”
ω, which is of course not a natural number.

Similarly, using an eager dynamics for FPC, the type natlist of lists of natural numbers
is defined by the recursive type

rec t is [n ↪→ unit, c ↪→ nat × t],

which satisfies the type equation

natlist ∼= [n ↪→ unit, c ↪→ nat × natlist].

The list introduction operations are given by the following equations:

nil ! fold(n · 〈〉)
cons(e1; e2) ! fold(c · 〈e1, e2〉).

A conditional list elimination form is given by the following equation:

case e {nil ↪→ e0 | cons(x; y) ↪→ e1} ! case unfold(e) {n · ↪→ e0 | c · 〈x, y〉 ↪→ e1},

where we have used pattern-matching syntax to bind the components of a pair for the sake
of clarity.

Now consider the same recursive type, but in the context of a lazy dynamics for FPC.
What type is it? If all constructs are lazy, then a value of the recursive type

rec t is [n ↪→ unit, c ↪→ nat × t],

has the form fold(e), where e is an unevaluated computation of the sum type, whose
values are injections of unevaluated computations of either the unit type or of the product
type nat × t . And the latter consists of pairs of an unevaluated computation of a (lazy!)
natural number, and an unevaluated computation of another value of this type. In particular,
this type contains infinite lists whose tails go on without end, as well as finite lists that

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Lazy FPC for Coinductive Types

173 20.2 Inductive and Coinductive Types

and is isomorphic to the type of eager natural numbers. The introduction and elimination
forms are defined on ρ by the following equations:1

z ! fold(z · 〈〉)
s(e) ! fold(s · e)

ifz e {z ↪→ e0 | s(x) ↪→ e1} ! case unfold(e) {z · ↪→ e0 | s · x ↪→ e1}.

It is a good exercise to check that the eager dynamics of natural numbers in PCF is correctly
simulated by these definitions.

On the other hand, under a lazy dynamics for FPC, the same recursive type ρ ′,

rec t is [z ↪→ unit, s ↪→ t],

satisfies the same type equation,

ρ ′ ∼= [z ↪→ unit, s ↪→ ρ ′],

but is not the type of natural numbers! Rather, it is the type lnat of lazy natural numbers
introduced in Section 19.4. As discussed there, the type ρ ′ contains the “infinite number”
ω, which is of course not a natural number.

Similarly, using an eager dynamics for FPC, the type natlist of lists of natural numbers
is defined by the recursive type

rec t is [n ↪→ unit, c ↪→ nat × t],

which satisfies the type equation

natlist ∼= [n ↪→ unit, c ↪→ nat × natlist].

The list introduction operations are given by the following equations:

nil ! fold(n · 〈〉)
cons(e1; e2) ! fold(c · 〈e1, e2〉).

A conditional list elimination form is given by the following equation:

case e {nil ↪→ e0 | cons(x; y) ↪→ e1} ! case unfold(e) {n · ↪→ e0 | c · 〈x, y〉 ↪→ e1},

where we have used pattern-matching syntax to bind the components of a pair for the sake
of clarity.

Now consider the same recursive type, but in the context of a lazy dynamics for FPC.
What type is it? If all constructs are lazy, then a value of the recursive type

rec t is [n ↪→ unit, c ↪→ nat × t],

has the form fold(e), where e is an unevaluated computation of the sum type, whose
values are injections of unevaluated computations of either the unit type or of the product
type nat × t . And the latter consists of pairs of an unevaluated computation of a (lazy!)
natural number, and an unevaluated computation of another value of this type. In particular,
this type contains infinite lists whose tails go on without end, as well as finite lists that

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Eager FPC for Inductive Types

173 20.2 Inductive and Coinductive Types

and is isomorphic to the type of eager natural numbers. The introduction and elimination
forms are defined on ρ by the following equations:1

z ! fold(z · 〈〉)
s(e) ! fold(s · e)

ifz e {z ↪→ e0 | s(x) ↪→ e1} ! case unfold(e) {z · ↪→ e0 | s · x ↪→ e1}.

It is a good exercise to check that the eager dynamics of natural numbers in PCF is correctly
simulated by these definitions.

On the other hand, under a lazy dynamics for FPC, the same recursive type ρ ′,

rec t is [z ↪→ unit, s ↪→ t],

satisfies the same type equation,

ρ ′ ∼= [z ↪→ unit, s ↪→ ρ ′],

but is not the type of natural numbers! Rather, it is the type lnat of lazy natural numbers
introduced in Section 19.4. As discussed there, the type ρ ′ contains the “infinite number”
ω, which is of course not a natural number.

Similarly, using an eager dynamics for FPC, the type natlist of lists of natural numbers
is defined by the recursive type

rec t is [n ↪→ unit, c ↪→ nat × t],

which satisfies the type equation

natlist ∼= [n ↪→ unit, c ↪→ nat × natlist].

The list introduction operations are given by the following equations:

nil ! fold(n · 〈〉)
cons(e1; e2) ! fold(c · 〈e1, e2〉).

A conditional list elimination form is given by the following equation:

case e {nil ↪→ e0 | cons(x; y) ↪→ e1} ! case unfold(e) {n · ↪→ e0 | c · 〈x, y〉 ↪→ e1},

where we have used pattern-matching syntax to bind the components of a pair for the sake
of clarity.

Now consider the same recursive type, but in the context of a lazy dynamics for FPC.
What type is it? If all constructs are lazy, then a value of the recursive type

rec t is [n ↪→ unit, c ↪→ nat × t],

has the form fold(e), where e is an unevaluated computation of the sum type, whose
values are injections of unevaluated computations of either the unit type or of the product
type nat × t . And the latter consists of pairs of an unevaluated computation of a (lazy!)
natural number, and an unevaluated computation of another value of this type. In particular,
this type contains infinite lists whose tails go on without end, as well as finite lists that

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Lazy FPC for Coinductive Types

173 20.2 Inductive and Coinductive Types

and is isomorphic to the type of eager natural numbers. The introduction and elimination
forms are defined on ρ by the following equations:1

z ! fold(z · 〈〉)
s(e) ! fold(s · e)

ifz e {z ↪→ e0 | s(x) ↪→ e1} ! case unfold(e) {z · ↪→ e0 | s · x ↪→ e1}.

It is a good exercise to check that the eager dynamics of natural numbers in PCF is correctly
simulated by these definitions.

On the other hand, under a lazy dynamics for FPC, the same recursive type ρ ′,

rec t is [z ↪→ unit, s ↪→ t],

satisfies the same type equation,

ρ ′ ∼= [z ↪→ unit, s ↪→ ρ ′],

but is not the type of natural numbers! Rather, it is the type lnat of lazy natural numbers
introduced in Section 19.4. As discussed there, the type ρ ′ contains the “infinite number”
ω, which is of course not a natural number.

Similarly, using an eager dynamics for FPC, the type natlist of lists of natural numbers
is defined by the recursive type

rec t is [n ↪→ unit, c ↪→ nat × t],

which satisfies the type equation

natlist ∼= [n ↪→ unit, c ↪→ nat × natlist].

The list introduction operations are given by the following equations:

nil ! fold(n · 〈〉)
cons(e1; e2) ! fold(c · 〈e1, e2〉).

A conditional list elimination form is given by the following equation:

case e {nil ↪→ e0 | cons(x; y) ↪→ e1} ! case unfold(e) {n · ↪→ e0 | c · 〈x, y〉 ↪→ e1},

where we have used pattern-matching syntax to bind the components of a pair for the sake
of clarity.

Now consider the same recursive type, but in the context of a lazy dynamics for FPC.
What type is it? If all constructs are lazy, then a value of the recursive type

rec t is [n ↪→ unit, c ↪→ nat × t],

has the form fold(e), where e is an unevaluated computation of the sum type, whose
values are injections of unevaluated computations of either the unit type or of the product
type nat × t . And the latter consists of pairs of an unevaluated computation of a (lazy!)
natural number, and an unevaluated computation of another value of this type. In particular,
this type contains infinite lists whose tails go on without end, as well as finite lists that

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

174 System FPC of Recursive Types

eventually reach an end. The type is, in fact, a version of the type of infinite streams defined
in Chapter 15, rather than a type of finite lists as is the case under an eager dynamics.

It is common in textbooks to depict data structures using “box-and-pointer” diagrams.
These work well in the eager setting, provided that no functions are involved. For example,
an eager list of eager natural numbers may be depicted using this notation. We may think
of fold as an abstract pointer to a tagged cell consisting of either (a) the tag n with no
associated data, or (b) the tag c attached to a pair consisting of an authentic natural number
and another list, which is an abstract pointer of the same type. But this notation does not
scale well to types involving functions, or to languages with a lazy dynamics. For example,
the recursive type of “lists” in lazy FPC cannot be depicted using boxes and pointers,
because of the unevaluated computations occurring in values of this type. It is a mistake to
limit one’s conception of data structures to those that can be drawn on the blackboard using
boxes and pointers or similar informal notations. There is no substitute for a programming
language to express data structures fully and accurately.

It is deceiving that the “same” recursive type can have two different meanings according
to whether the underlying dynamics is eager or lazy. For example, it is common for lazy
languages to use the name “list” for the recursive type of streams, or the name “nat” for
the type of lazy natural numbers. This terminology is misleading, considering that such
languages do not (and can not) have a proper type of finite lists or a type of natural numbers.
Caveat emptor!

20.3 Self-Reference

In the general recursive expression fix{τ }(x.e), the variable x stands for the expression
itself. Self-reference is effected by the unrolling transition

fix{τ }(x.e) !−→ [fix{τ }(x.e)/x]e,

which substitutes the expression itself for x in its body during execution. It is useful to
think of x as an implicit argument to e that is instantiated to itself when the expression is
used. In many well-known languages this implicit argument has a special name, such as
this or self, to emphasize its self-referential interpretation.

Using this intuition as a guide, we may derive general recursion from recursive types.
This derivation shows that general recursion may, like other language features, be seen as
a manifestation of type structure, instead of as an ad hoc language feature. The derivation
isolates a type of self-referential expressions given by the following grammar:

Typ τ ::= self(τ) τ self self-referential type
Exp e ::= self{τ }(x.e) self x is e self-referential expression

unroll(e) unroll(e) unroll self-reference

The statics of these constructs is given by the following rules:

", x : self(τ) $ e : τ

" $ self{τ }(x.e) : self(τ)
(20.4a)

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Self-Reference & Self-Referential Type

174 System FPC of Recursive Types

eventually reach an end. The type is, in fact, a version of the type of infinite streams defined
in Chapter 15, rather than a type of finite lists as is the case under an eager dynamics.

It is common in textbooks to depict data structures using “box-and-pointer” diagrams.
These work well in the eager setting, provided that no functions are involved. For example,
an eager list of eager natural numbers may be depicted using this notation. We may think
of fold as an abstract pointer to a tagged cell consisting of either (a) the tag n with no
associated data, or (b) the tag c attached to a pair consisting of an authentic natural number
and another list, which is an abstract pointer of the same type. But this notation does not
scale well to types involving functions, or to languages with a lazy dynamics. For example,
the recursive type of “lists” in lazy FPC cannot be depicted using boxes and pointers,
because of the unevaluated computations occurring in values of this type. It is a mistake to
limit one’s conception of data structures to those that can be drawn on the blackboard using
boxes and pointers or similar informal notations. There is no substitute for a programming
language to express data structures fully and accurately.

It is deceiving that the “same” recursive type can have two different meanings according
to whether the underlying dynamics is eager or lazy. For example, it is common for lazy
languages to use the name “list” for the recursive type of streams, or the name “nat” for
the type of lazy natural numbers. This terminology is misleading, considering that such
languages do not (and can not) have a proper type of finite lists or a type of natural numbers.
Caveat emptor!

20.3 Self-Reference

In the general recursive expression fix{τ }(x.e), the variable x stands for the expression
itself. Self-reference is effected by the unrolling transition

fix{τ }(x.e) !−→ [fix{τ }(x.e)/x]e,

which substitutes the expression itself for x in its body during execution. It is useful to
think of x as an implicit argument to e that is instantiated to itself when the expression is
used. In many well-known languages this implicit argument has a special name, such as
this or self, to emphasize its self-referential interpretation.

Using this intuition as a guide, we may derive general recursion from recursive types.
This derivation shows that general recursion may, like other language features, be seen as
a manifestation of type structure, instead of as an ad hoc language feature. The derivation
isolates a type of self-referential expressions given by the following grammar:

Typ τ ::= self(τ) τ self self-referential type
Exp e ::= self{τ }(x.e) self x is e self-referential expression

unroll(e) unroll(e) unroll self-reference

The statics of these constructs is given by the following rules:

", x : self(τ) $ e : τ

" $ self{τ }(x.e) : self(τ)
(20.4a)

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

175 20.3 Self-Reference

! ! e : self(τ)
! ! unroll(e) : τ

(20.4b)

The dynamics is given by the following rule for unrolling the self-reference:

self{τ }(x.e) val
(20.5a)

e "−→ e′

unroll(e) "−→ unroll(e′) (20.5b)

unroll(self{τ }(x.e)) "−→ [self{τ }(x.e)/x]e
(20.5c)

The main difference, compared to general recursion, is that we distinguish a type of self-
referential expressions, instead of having self-reference at every type. However, as we shall
see, the self-referential type suffices to implement general recursion, so the difference is a
matter of taste.

The type self(τ) is definable from recursive types. As suggested earlier, the key is to
consider a self-referential expression of type τ to depend on the expression itself. That is,
we seek to define the type self(τ) so that it satisfies the isomorphism

self(τ) ∼= self(τ) ⇀ τ.

We seek a fixed point of the type operator t.t ⇀ τ , where t /∈ τ is a type variable standing
for the type in question. The required fixed point is just the recursive type

rec(t.t ⇀ τ),

which we take as the definition of self(τ).
The self-referential expression self{τ }(x.e) is the expression

fold(λ (x : self(τ)) e).

We may check that rule (20.4a) is derivable according to this definition. The expression
unroll(e) is correspondingly the expression

unfold(e)(e).

It is easy to check that rule (20.4b) is derivable from this definition. Moreover, we may
check that

unroll(self{τ }(y.e)) "−→∗ [self{τ }(y.e)/y]e.

This completes the derivation of the type self(τ) of self-referential expressions of type τ .
The self-referential type self(τ) can be used to define general recursion for any type.

We may define fix{τ }(x.e) to stand for the expression

unroll(self{τ }(y.[unroll(y)/x]e))

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Self-Reference & Self-Referential Type175 20.3 Self-Reference

! ! e : self(τ)
! ! unroll(e) : τ

(20.4b)

The dynamics is given by the following rule for unrolling the self-reference:

self{τ }(x.e) val
(20.5a)

e "−→ e′

unroll(e) "−→ unroll(e′) (20.5b)

unroll(self{τ }(x.e)) "−→ [self{τ }(x.e)/x]e
(20.5c)

The main difference, compared to general recursion, is that we distinguish a type of self-
referential expressions, instead of having self-reference at every type. However, as we shall
see, the self-referential type suffices to implement general recursion, so the difference is a
matter of taste.

The type self(τ) is definable from recursive types. As suggested earlier, the key is to
consider a self-referential expression of type τ to depend on the expression itself. That is,
we seek to define the type self(τ) so that it satisfies the isomorphism

self(τ) ∼= self(τ) ⇀ τ.

We seek a fixed point of the type operator t.t ⇀ τ , where t /∈ τ is a type variable standing
for the type in question. The required fixed point is just the recursive type

rec(t.t ⇀ τ),

which we take as the definition of self(τ).
The self-referential expression self{τ }(x.e) is the expression

fold(λ (x : self(τ)) e).

We may check that rule (20.4a) is derivable according to this definition. The expression
unroll(e) is correspondingly the expression

unfold(e)(e).

It is easy to check that rule (20.4b) is derivable from this definition. Moreover, we may
check that

unroll(self{τ }(y.e)) "−→∗ [self{τ }(y.e)/y]e.

This completes the derivation of the type self(τ) of self-referential expressions of type τ .
The self-referential type self(τ) can be used to define general recursion for any type.

We may define fix{τ }(x.e) to stand for the expression

unroll(self{τ }(y.[unroll(y)/x]e))

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Self-Reference & Self-Referential Type

175 20.3 Self-Reference

! ! e : self(τ)
! ! unroll(e) : τ

(20.4b)

The dynamics is given by the following rule for unrolling the self-reference:

self{τ }(x.e) val
(20.5a)

e "−→ e′

unroll(e) "−→ unroll(e′) (20.5b)

unroll(self{τ }(x.e)) "−→ [self{τ }(x.e)/x]e
(20.5c)

The main difference, compared to general recursion, is that we distinguish a type of self-
referential expressions, instead of having self-reference at every type. However, as we shall
see, the self-referential type suffices to implement general recursion, so the difference is a
matter of taste.

The type self(τ) is definable from recursive types. As suggested earlier, the key is to
consider a self-referential expression of type τ to depend on the expression itself. That is,
we seek to define the type self(τ) so that it satisfies the isomorphism

self(τ) ∼= self(τ) ⇀ τ.

We seek a fixed point of the type operator t.t ⇀ τ , where t /∈ τ is a type variable standing
for the type in question. The required fixed point is just the recursive type

rec(t.t ⇀ τ),

which we take as the definition of self(τ).
The self-referential expression self{τ }(x.e) is the expression

fold(λ (x : self(τ)) e).

We may check that rule (20.4a) is derivable according to this definition. The expression
unroll(e) is correspondingly the expression

unfold(e)(e).

It is easy to check that rule (20.4b) is derivable from this definition. Moreover, we may
check that

unroll(self{τ }(y.e)) "−→∗ [self{τ }(y.e)/y]e.

This completes the derivation of the type self(τ) of self-referential expressions of type τ .
The self-referential type self(τ) can be used to define general recursion for any type.

We may define fix{τ }(x.e) to stand for the expression

unroll(self{τ }(y.[unroll(y)/x]e))

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

175 20.3 Self-Reference

! ! e : self(τ)
! ! unroll(e) : τ

(20.4b)

The dynamics is given by the following rule for unrolling the self-reference:

self{τ }(x.e) val
(20.5a)

e "−→ e′

unroll(e) "−→ unroll(e′) (20.5b)

unroll(self{τ }(x.e)) "−→ [self{τ }(x.e)/x]e
(20.5c)

The main difference, compared to general recursion, is that we distinguish a type of self-
referential expressions, instead of having self-reference at every type. However, as we shall
see, the self-referential type suffices to implement general recursion, so the difference is a
matter of taste.

The type self(τ) is definable from recursive types. As suggested earlier, the key is to
consider a self-referential expression of type τ to depend on the expression itself. That is,
we seek to define the type self(τ) so that it satisfies the isomorphism

self(τ) ∼= self(τ) ⇀ τ.

We seek a fixed point of the type operator t.t ⇀ τ , where t /∈ τ is a type variable standing
for the type in question. The required fixed point is just the recursive type

rec(t.t ⇀ τ),

which we take as the definition of self(τ).
The self-referential expression self{τ }(x.e) is the expression

fold(λ (x : self(τ)) e).

We may check that rule (20.4a) is derivable according to this definition. The expression
unroll(e) is correspondingly the expression

unfold(e)(e).

It is easy to check that rule (20.4b) is derivable from this definition. Moreover, we may
check that

unroll(self{τ }(y.e)) "−→∗ [self{τ }(y.e)/y]e.

This completes the derivation of the type self(τ) of self-referential expressions of type τ .
The self-referential type self(τ) can be used to define general recursion for any type.

We may define fix{τ }(x.e) to stand for the expression

unroll(self{τ }(y.[unroll(y)/x]e))

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Self-Reference & Self-Referential Type

175 20.3 Self-Reference

! ! e : self(τ)
! ! unroll(e) : τ

(20.4b)

The dynamics is given by the following rule for unrolling the self-reference:

self{τ }(x.e) val
(20.5a)

e "−→ e′

unroll(e) "−→ unroll(e′) (20.5b)

unroll(self{τ }(x.e)) "−→ [self{τ }(x.e)/x]e
(20.5c)

The main difference, compared to general recursion, is that we distinguish a type of self-
referential expressions, instead of having self-reference at every type. However, as we shall
see, the self-referential type suffices to implement general recursion, so the difference is a
matter of taste.

The type self(τ) is definable from recursive types. As suggested earlier, the key is to
consider a self-referential expression of type τ to depend on the expression itself. That is,
we seek to define the type self(τ) so that it satisfies the isomorphism

self(τ) ∼= self(τ) ⇀ τ.

We seek a fixed point of the type operator t.t ⇀ τ , where t /∈ τ is a type variable standing
for the type in question. The required fixed point is just the recursive type

rec(t.t ⇀ τ),

which we take as the definition of self(τ).
The self-referential expression self{τ }(x.e) is the expression

fold(λ (x : self(τ)) e).

We may check that rule (20.4a) is derivable according to this definition. The expression
unroll(e) is correspondingly the expression

unfold(e)(e).

It is easy to check that rule (20.4b) is derivable from this definition. Moreover, we may
check that

unroll(self{τ }(y.e)) "−→∗ [self{τ }(y.e)/y]e.

This completes the derivation of the type self(τ) of self-referential expressions of type τ .
The self-referential type self(τ) can be used to define general recursion for any type.

We may define fix{τ }(x.e) to stand for the expression

unroll(self{τ }(y.[unroll(y)/x]e))

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

Self-Reference & Self-Referential Type

175 20.3 Self-Reference

! ! e : self(τ)
! ! unroll(e) : τ

(20.4b)

The dynamics is given by the following rule for unrolling the self-reference:

self{τ }(x.e) val
(20.5a)

e "−→ e′

unroll(e) "−→ unroll(e′) (20.5b)

unroll(self{τ }(x.e)) "−→ [self{τ }(x.e)/x]e
(20.5c)

The main difference, compared to general recursion, is that we distinguish a type of self-
referential expressions, instead of having self-reference at every type. However, as we shall
see, the self-referential type suffices to implement general recursion, so the difference is a
matter of taste.

The type self(τ) is definable from recursive types. As suggested earlier, the key is to
consider a self-referential expression of type τ to depend on the expression itself. That is,
we seek to define the type self(τ) so that it satisfies the isomorphism

self(τ) ∼= self(τ) ⇀ τ.

We seek a fixed point of the type operator t.t ⇀ τ , where t /∈ τ is a type variable standing
for the type in question. The required fixed point is just the recursive type

rec(t.t ⇀ τ),

which we take as the definition of self(τ).
The self-referential expression self{τ }(x.e) is the expression

fold(λ (x : self(τ)) e).

We may check that rule (20.4a) is derivable according to this definition. The expression
unroll(e) is correspondingly the expression

unfold(e)(e).

It is easy to check that rule (20.4b) is derivable from this definition. Moreover, we may
check that

unroll(self{τ }(y.e)) "−→∗ [self{τ }(y.e)/y]e.

This completes the derivation of the type self(τ) of self-referential expressions of type τ .
The self-referential type self(τ) can be used to define general recursion for any type.

We may define fix{τ }(x.e) to stand for the expression

unroll(self{τ }(y.[unroll(y)/x]e))

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

176 System FPC of Recursive Types

where the recursion at each occurrence of x is unrolled within e. It is easy to check that
this verifies the statics of general recursion given in Chapter 19. Moreover, it also validates
the dynamics, as shown by the following derivation:

fix{τ }(x.e) = unroll(self{τ }(y.[unroll(y)/x]e))

!−→∗ [unroll(self{τ }(y.[unroll(y)/x]e))/x]e

= [fix{τ }(x.e)/x]e.

It follows that recursive types can be used to define a non-terminating expression of every
type, fix{τ }(x.x).

20.4 The Origin of State

The concept of state in a computation—which will be discussed in Part XIV—has its
origins in the concept of recursion, or self-reference, which, as we have just seen, arises
from the concept of recursive types. For example, the concept of a flip-flop or a latch is
a circuit built from combinational logic elements (typically, nor or nand gates) that have
the characteristic that they maintain an alterable state over time. An RS latch, for example,
maintains its output at the logical level of zero or one in response to a signal on the R or S
inputs, respectively, after a brief settling delay. This behavior is achieved using feedback,
which is just a form of self-reference, or recursion: the output of the gate feeds back into its
input so as to convey the current state of the gate to the logic that determines its next state.

We can implement an RS latch using recursive types. The idea is to use self-reference to
model the passage of time, with the current output being computed from its input and its
previous outputs. Specifically, an RS latch is a value of type τrsl given by

rec t is 〈X ↪→ bool, Q ↪→ bool, N ↪→ t〉.

The X and Q components of the latch represent its current outputs (of which Q represents
the current state of the latch), and the N component represents the next state of the latch. If
e is of type τrsl, then we define e @ X to mean unfold(e) · X, and define e @ Q and e @ N
similarly. The expressions e @ X and e @ Q evaluate to the boolean outputs of the latch e,
and e @ N evaluates to another latch representing its evolution over time based on these
inputs.

For given values r and s, a new latch is computed from an old latch by the recursive
function rsl defined as follows:2

fix rsl is λ (l : τrsl) ersl,

where ersl is the expression

fix this is fold(〈X ↪→ enor(〈s, l @ Q〉), Q ↪→ enor(〈r, l @ X〉), N ↪→ rsl(this)〉),

where enor is the obvious binary function on booleans. The outputs of the latch are computed
in terms of the r and s inputs and the outputs of the previous state of the latch. To get the

5!!�
 2:6�:�� ������
 ����
����	�
	��������."176 532�:97693�1$��081�62�3�/96#3� 6!$�.�3

