CS 430/530
Formal Semantics

Zhong Shao

Yale University
Department of Computer Science

Recursive Functions and Types
April 1, 2025

PCF: T + General Recursion (A Language
for Partial Recursive Functions)

The source of partiality in PCF is the concept of general recursion, which permits the
solution of equations between expressions. The price for admitting solutions to all such
equations 1s that computations may not terminate—the solution to some equations might
be undefined (divergent). In PCF, the programmer must make sure that a computation
terminates; the type system does not guarantee it. The advantage is that the termination
proof need not be embedded into the code itself, resulting in shorter programs.

For example, consider the equations

f(0) =1
fn+D=m+1) x f(n).

Intuitively, these equations define the factorial function. They form a system of simultaneous
equations in the unknown f, which ranges over functions on the natural numbers. The
function we seek is a solution to these equations—a specific function f : N — N such that
the above conditions are satisfied.

System PCF

A solution to such a system of equations is a fixed point of an associated functional
(higher-order function). To see this, let us re-write these equations in another form:

1 ifn=0

) = {n x f(n) ifn=n"+1.

Re-writing yet again, we seek f given by

1 ifn=0
n—
nx f(n) ifn=n"+1.

Now define the functional F by the equation /() = f', where f” is given by

t 0 =0

n
|nx fn) ifn=n'+1.

System PCF

Why should an operator such as F have a fixed point? The key is that functions in PCF
are partial, which means that they may diverge on some (or even all) inputs. Consequently,
a fixed point of a functional F' is the limit of a series of approximations of the desired
solution obtained by iterating . Let us say that a partial function ¢ on the natural numbers,
1s an approximation to a total function f if ¢(m) = n implies that f(m) =n.Let L: N — N
be the totally undefined partial function—_ (n) is undefined for every n € N. This is the
“worst” approximation to the desired solution f of the recursion equations given above.
Given any approximation ¢ of f, we may “improve” it to ¢’ = F(¢). The partial function
¢’ is defined on 0 and on m + 1 for every m > 0 on which ¢ is defined. Continuing,
¢" = F(¢') = F(F(¢)) is an improvement on ¢’, and hence a further improvement on ¢.
If we start with L as the initial approximation to f, then pass to the limit

limr PO,

i =0

we will obtain the least approximation to f that is defined for every m € N, and hence 1s
the function f itself. Turning this around, if the limit exists, it is the solution we seek.

System PCF Syntax

The syntax of PCF is given by the following grammar:

Typ T == nat nat naturals
parr(ty; 1) 1 — T partial function
Exp e = x X variable
Z Z Zero
s(e) s(e) successor
ifz{eg;x.e1}(e) ifze{z< ¢y |s(x)<— e;} zero test
lam{t}(x.e) Alx:T)e abstraction
ap(ey;er) e1(er) application

fix{t}(x.e) fixx:7rise recursion

System PCF Statics

Lx:thkx:1

'+ z:nat

I' e :nat
I' - s(e) : nat

I'Fe:nat TI'ke:7 I',x:nathe :1
I' = ifz{eg;x.e1}(e) : T

Lx:tike:m
I' = lam{7|}(x.e) : parr(r;; 12)

['Fe:parr(ry;7r) I'FHey:m

['-ap(er;er): t

Ix:thke:t
I' = fix{r}(x.e): T

(19.1a)

(19.1b)

(19.1¢)

(19.1d)

(19.1e)

(19.11)

(19.1g)

Lemma 19.1. If ', x:tk-¢e : 7, "+ e:t,thenl F[e/x]e : T'.

System PCF Dynamics

(19.2a) [e] (19.3a)

s(e) —> s(e)

z val
[e val] er— ¢
s(e) val (19.2b) ifz{eg; x.e;}(e) —> ifz{ep; x.e1}(e) (19.3b)
(19.2¢) 03
lam{z}(x.e) val ifz{eg; x.e;}(z) —> e (©)
s(e) val
ifz{eo;x.el}(s(e)) — [e/x]61 (193(1)
AT / (19.3e)
ap(e;; ex) —> ap(e};ea)
ey val e +— ¢ :|
19.3f
|:ap(€1;€2) —> ap(el;e/z) ()
[e; val]
19.3
ap(lan(t}(x.¢); €2) —> [e2/x]e (19.3g)
(19.3h)

fix{r}(x.e) — [fix{t}(x.e)/x]e

System PCF Safety

Theorem 19.2 (Safety).

I. Ife:tandevr— €, thene' : t.

2. If e : T, then either e val or there exists ¢’ such that e — ¢'.

Proof The proof of preservation is by induction on the derivation of the transition judg-
ment. Consider rule (19.3h). Suppose that fix{t}(x.e) : . By inversion and substitution
we have [fix{t}(x.e)/x]e : T, as required. The proof of progress proceeds by induction
on the derivation of the typing judgment. For example, for rule (19.1g) the result follows
because we may make progress by unwinding the recursion. []

System PCF Definitional Equality

Definitional equality for the call-by-name variant of PCF, written I' - e¢; = ¢, : 7, is
the strongest congruence containing the following axioms:

(19.4a)
I'=ifz{eg;x.e1}(z)=e¢ep: 7T
(19.4b)
I' - ifz{eg; x.e1}(s(e)) =[e/x]e; : T
(19.4¢)
I' - fix{rt}(x.e) = [fix{t}(x.e)/x]e: T
(19.4d)

I' = ap(lam{ti}(x.e2);e1) = [e1/x]ex : T

These rules suffice to calculate the value of any closed expression of type nat: if e : nat,
thene =n : nat iff e —>* 1.

System PCF Definability

Let us write fun x(y:7;):7; is e for a recursive function within whose body, e : 15, are
bound two variables, y : 7; standing for the argument and x : 7; — 7, standing for the
function itself. The dynamic semantics of this construct is given by the axiom

(funx(y:t1):ixpise)(e)) —> [funx(y:t)):Trise, e /x, v]e '

That is, to apply a recursive function, we substitute the recursive function itself for x and
the argument for y in its body.
Recursive functions are defined in PCF using recursive functions, writing

fixx:p—~1nisi(y:1)e

for fun x(y:71):12 ise. We may easily check that the static and dynamic semantics of
recursive functions are derivable from this definition.

System PCF Definability

The primitive recursion construct of T is defined in PCF using recursive functions by
taking the expression

rece{z— ¢y | s(x)withy — e}
to stand for the application ¢’(e), where ¢’ is the general recursive function

fun f(unat):itisifzu{z<— ey |sx)— [[f(x)/yv]ei}.

In general, functions definable in PCF are partial in that they may be undefined for some
arguments. A partial (mathematical) function, ¢ : N — N, is definable in PCF iff there is
an expression ey : nat — nat such that ¢(m) = n iff ey, (m) = n : nat. So, for example,
it ¢ 1s the totally undefined function, then ey is any function that loops without returning
when it 1s applied.

System PCF Definability

It is informative to classify those partial functions ¢ that are definable in PCF. The
partial recursive functions are defined to be the primitive recursive functions extended with
the | minimization operation: given ¢(m, n), define ¥ (n) to be the least m = 0 such that

(1) for m" < m, ¢(m’, n) is defined and non-zero, and (2) ¢(m, n) = 0. If no such m exists,
then ¥ (n) is undefined.

Theorem 19.3. A partial function ¢ on the natural numbers is definable in PCF iff it is
partial recursive.

Proof sketch Minimization is definable in PCF, so it is at least as powerful as the set of
partial recursive functions. Conversely, we may, with some tedium, define an evaluator for
expressions of PCF as a partial recursive function, using Godel-numbering to represent
expressions as numbers. Therefore, PCF does not exceed the power of the set of partial
recursive functions. [

System PCF Definability

Church’s Law states that the partial recursive functions coincide with the set of effectively
computable functions on the natural numbers—those that can be carried out by a program
written in any programming language that is or will ever be defined.! Therefore, PCF is as
powerful as any other programming language with respect to the set of definable functions
on the natural numbers.

The universal function ¢,,,;, for PCF is the partial function on the natural numbers
defined by

Guniv(" €)(m) = n iff e(m) = n : nat.

In contrast to T, the universal function ¢,,,,, for PCF is partial (might be undefined for some
inputs). It is, in essence, an interpreter that, given the code "¢ of a closed expression of
type nat — nat, simulates the dynamic semantics to calculate the result, if any, of applying
it to the m, obtaining 7. Because this process may fail to terminate, the universal function
1s not defined for all inputs.

System PCF Definability

By Church’s Law, the universal function is definable in PCF. In contrast, we proved
in Chapter 9 that the analogous function is nor definable in T using the technique of
diagonalization. It i1s instructive to examine why that argument does not apply in the
present setting. As in Section 9.4, we may derive the equivalence

ean("ean) =s(ea("en "))

for PCF. But now, instead of concluding that the universal function, e,,;,, does not exist as
we did for T, we instead conclude for PCF that ¢,,;, diverges on the code for e, applied
to 1ts own code.

System FPC of Recursive Types

The language FPC has products, sums, and partial functions inherited from the preceding
development, extended with the new concept of recursive types. The syntax of recursive
types 1s defined as follows:

Typ t == ¢ t self-reference
rec(t.t) rect is T recursive type
Exp e = fold{r.t}(e) fold(e) fold

unfold(e) unfold(e) unfold

A, t type - T type

A+ rec(t.7) type (20.1)
The statics of folding and unfolding is given by the following rules:
['e:[rec(t.t)/t]t
20.
[- fold{r.z)(e) : rec(r.7) (20.22)
['Fe: .
e :rec(t.7) (20.2b)

[' Funfold(e) : [rec(t.T)/t]T

System FPC of Recursive Types

The dynamics of folding and unfolding is given by these rules:

[e val]

fold{r.7}(e) val (20.3a)
er—¢é

|:fold{t.t}(e) — fold{t.r}(e/)] (20.3b)
er—¢é

unfold(e) —> unfold(e’) (20.3¢)

fold{r.7}(e) val 2034)

unfold(fold{r.t}(e)) —> ¢

Theorem 20.1 (Safety). 1. Ife: tande — €/, then e’ : t.

2. If e . T, then either e val, or there exists e’ such that e — ¢'.

Eager FPC for Inductive Types

Recursive types may be used to represent inductive types such as the natural numbers.
Using an eager dynamics for FPC, the recursive type

p =rectis [z < unit, s < {]

satisfies the type equation

0 = [z unit, s — p],

and 1s 1somorphic to the type of eager natural numbers. The introduction and elimination

forms are defined on p by the following equations:!

z = fold(z - ()
s(e) £ fold(s - e)

ifze{z < ey |s(x) — e;} £ caseunfold(e){z - ey | s-x — e;}.

Lazy FPC for Coinductive Types

On the other hand, under a lazy dynamics for FPC, the same recursive type p’,
rect is [z <> unit, s < ¢],

satisfies the same type equation,

o' = [z <> unit, s — p'],
but 1s not the type of natural numbers! Rather, it 1s the type 1nat of lazy natural numbers
introduced in Section 19.4. As discussed there, the type p’ contains the “infinite number”

@, which 1s of course not a natural number.

Eager FPC for Inductive Types

Similarly, using aneager dynamics for FPC, the type nat1ist of lists of natural numbers
1s defined by the recursive type

rect is[n <> unit, c < nat x ¢],
which satisfies the type equation
natlist = [n <> unit, c <> nat x natlist].
The list introduction operations are given by the following equations:

nil £ fold(m - ()

cons(e;; e;) = fold(c - (eg, €2)).
A conditional list elimination form is given by the following equation:
casee{nil < ¢; | cons(x;y) — e;} = caseunfold(e){n-_<>¢ep|c- (x,y) — e},

where we have used pattern-matching syntax to bind the components of a pair for the sake
of clarity.

Lazy FPC for Coinductive Types

Now consider the same recursive type, but in the context of a lazy dynamics for FPC.
What type is it? It all constructs are lazy, then a value of the recursive type

rect is [n <> unit, c <> nat Xx ¢],

has the form fold(e), where e is an unevaluated computation of the sum type, whose
values are injections of unevaluated computations of either the unit type or of the product
type nat x f. And the latter consists of pairs of an unevaluated computation of a (lazy!)
natural number, and an unevaluated computation of another value of this type. In particular,
this type contains infinite lists whose tails go on without end, as well as finite lists that
eventually reach an end. The type is, in fact, a version of the type of infinite streams defined
in Chapter 15, rather than a type of finite lists as is the case under an eager dynamics.

Self-Reference & Self-Referential Type

Typ © == 'self(r) T self self-referential type
Exp e

self{r}(x.e) selfxise self-referential expression
unroll(e) unroll(e) unroll self-reference

The statics of these constructs is given by the following rules:

I'yx :self(r)Fe: 7
[' - self{t}(x.e) : self(r)

(20.4a)

[I'e:self(r)

' Funroll(e) : T (20.4b)

Self-Reference & Self-Referential Type

The dynamics is given by the following rule for unrolling the self-reference:

(20.5a)
self{t}(x.e) val
er— e
unroll(e) —> unroll(e’) (20.5b)
(20.5¢)

unroll(self{r}(x.e)) —> [self{t}(x.e)/x]e

Self-Reference & Self-Referential Type

The type self(7) is definable from recursive types. As suggested earlier, the key is to
consider a self-referential expression of type 7 to depend on the expression itself. That is,
we seek to define the type self(t) so that it satisfies the isomorphism

self(r) = self(r) — 7.

We seek a fixed point of the type operator t.f — t, where ¢ ¢ 1 is a type variable standing
for the type in question. The required fixed point is just the recursive type

rec(t.t — 1),

which we take as the definition of self(7).
The self-referential expression self{z}(x.e) is the expression

fold(A (x : self(7))e).

We may check that rule (20.4a) is derivable according to this definition. The expression
unroll(e) is correspondingly the expression

unfold(e)(e).

Self-Reference & Self-Referential Type

It 1s easy to check that rule (20.4b) i1s derivable from this definition. Moreover, we may
check that

unroll(self{t}(y.e)) —>" [self{t}(y.e)/y]e.

Self-Reference & Self-Referential Type

The self-referential type self(t) can be used to define general recursion for any type.
We may define £ix{z }(x.e) to stand for the expression

unroll(self{r}(y.[unroll(y)/x]e))

where the recursion at each occurrence of x is unrolled within e. It is easy to check that
this verifies the statics of general recursion given in Chapter 19. Moreover, it also validates
the dynamics, as shown by the following derivation:

fix{r}(x.e) = unroll(self{r}(y.[unroll(y)/x]e))
—>"* [unroll(self{z}(y.[lunroll(y)/x]e))/x]e
= [fix{t}(x.e)/x]e.

It follows that recursive types can be used to define a non-terminating expression of every
type, fix{t}(x.x).

