CS 430/530
Formal Semantics

Zhong Shao

Yale University
Department of Computer Science

Statics and Dynamics
March 4, 2025

PL Semantics: Static & Dynamic Phases

The static phase:

e Parsing: turn concrete syntax to AST or ABT

e Type-checking to ensure the program is well-formed;
. based on a set of typing rules (known as static semantics or statics)

The dynamic phase: execution of well-formed programs;

. based on a set of evaluation rules (dynamic / operational semantics or
dynamics)

A language is safe when well-formed programs are well-behaved when
executed

A Simple Expression Language E

Syntax of E defined as Abstract Binding Trees:

Typ 1

Exp

€

num

str

X

num|n |
str[s]
plus(e;ez)
times(ey;er)
cat(er; e2)
len(e)
let(e;;x.e)

e
let xbee;ine,

numbers
strings
variable
numeral
literal
addition
multiplication
concatenation
length
definition

X|Tke:t,

An inductive
definition of
generic
hypothetical
judgments

Statics (Type System) for E

Lx:thx:1

[I' - str[s]: str

[' F num|[#z] : num

'Fey:num I'F e :num

[' = plus(ej;er) : num

I'Fey:num I'F e :num

I' - times(ej;ez) : num

['Fe :str I'Fep:str
I' - cat(eg;ep) : str

['He:str
I' - 1len(e) : num

I'Fey:ty I,x:tibFe:Dm
' - 1let(er;x.2) : 1o

(4.1a)
(4.1b)

4.1¢)

(4.1d)

(4.1e)

(4.1f)

(4.1g)

(4.1h)

Properties for Type System

Lemma 4.1 (Unicity of Typing). For every typing context I' and expression e, there exists
at most one T such thatI' =e . 7.

Proof By rule induction on rules (4.1), making use of the fact that variables have at most
one type in any typing context. []

Lemma 4.2 (Inversion for Typing). Suppose that I' = e : t. If e = plus(ey;ey), then
T =num I' - ey : num, and I I e, : num, and similarly for the other constructs of the
language.

Proof These may all be proved by induction on the derivation of the typing judgment
['Fe:T. []

Properties for Type System

Lemma 4.3 (Weakening). If ' Fe : t/, then T, x : t - ¢ : t/ for any x ¢ dom(I") and
any type T.

Proof By induction on the derivation of I' - ¢’ : 7/. We will give one case here, for
rule (4.1h). We have that ¢’ = let(e;; z.¢2), where by the conventions on variables we may
assume z 1s chosen such that z ¢ dom(I") and z # x. By induction, we have

1. F,x:tl—elztl,

2. 0x:1,2:11 ey T/,

from which the result follows by rule (4.1h). L]

Properties for Type System

Lemma 4.4 (Substitution). IfI',x :t e :t'andU' e : 1, thenT - [e/x]e : T’

Proof By induction on the derivation of I', x : © F ¢ : t/. We again consider only
rule (4.1h). As in the preceding case, ¢’ = let(e;; z.e»2), where z is chosen so that z # x
and z ¢ dom(I"). We have by induction and Lemma 4.3 that

1. '+ [e/x]el -1,
2. T, z:11 F[e/x]er : T'.

By the choice of z, we have
[e/x]1let(er;z.€2) = let([e/x]er; z.[e/x]er).

It follows by rule (4.1h) that I" - [e/x]1et(ey;z.e2) : T', as desired. []

Properties for Type System

Lemma 4.5 (Decomposition). IfT" - [e/x]e’ : T/, then for every type T suchthatT" e : T,

wehave ', x : T ¢€ : 1.

Proof The typing of [e/x]e’ depends only on the type of e wherever it occurs, if atall. [

Dynamics (aka Operational Semantics)

How are programs executed?

 Structural dynamics (transition semantics)

« Step-by-step transition system (or small-step semantics)

« Contextual dynamics

« Structural dynamics defined under a changing evaluation context

* Equational dynamics

« A set of rules for definitional equality

« Evaluation dynamics (big-step semantics)

Transition Systems

A transition system 1s specified by the following four forms of judgment:

s state, asserting that s 1s a state of the transition system.
s final, where s state, asserting that s is a final state.

s initial, where s state, asserting that s is an initial state.

il

s —> §’, where s state and s’ state, asserting that state s may transition to state s’'.

The iteration of transition judgment s —* s’ is inductively defined by the following
rules:

s —>*s (5.1a)

/ ES /!
S > § s*|7> S (5.1b)

SH—>" S

Structural Dynamics for E

A structural dynamics for the language E is given by a transition system whose states are
closed expressions. All states are initial. The final states are the (closed) values, which
represent the completed computations. The judgment e val, which states that e 1s a value,
1s inductively defined by the following rules:

num[n] val (5.3a)

str[s] val (5.3b)

The transition judgment e — ¢’ between states is inductively defined by the following

rules:
ny+n =n

plus(num[#n;]; num[n;,]) —> num|n] (5.4a)
e; —> e}
(5.4b)
plus(e;; e;) —> plus(e);e)
al —> ¢/
- (5.40)

plus(e; ex) —> plus(e;;e))

Structural Dynamics for E

s1° 8y, = § str

cat(str[s;]; str[s,]) —> str[s] (5.4d)
e| — ¢
/ (5.4e)
cat(e;;ey) —> cat(e];er)
I —> e
€1 va ér €5 (54f)

cat(e;; e2) —> cat(e; e5)

|: el —> €] :| (5.40)

let(eg; x.e2) —> let(e]; x.€2)

[e; val]
let(e;x.ex) —> [e1/x]er

(5.4h)

Structural Dynamics for E

A derivation sequence in a structural dynamics has a two-dimensional structure, with
the number of steps in the sequence being its “width” and the derivation tree for each step
being its “height.” For example, consider the following evaluation sequence:

let(plus(num[1]; num[2]); x.plus(plus(x;num[3]); num[4]))

—
—
—
>

let(num[3]; x.plus(plus(x;num[3]); num[4]))
plus(plus(num[3]; num[3]); num[4])
plus(num[6]; num[4])

num|10]

Each step in this sequence of transitions is justified by a derivation according to rules (5.4).
For example, the third transition in the preceding example is justified by the following

derivation:

plus(num[3]; num[3]) — num[6] (5.4a)

plus(plus(num[3]; num[3]); num[4]) — plus(num[6]; num[4])

(5.4b)

Structural Dynamics for E

Lemma 5.2 (Finality of Values). For no expression e do we have both e val, and e — ¢’
for some €'

Proof By rule induction on rules (5.3) and (5.4). []

Lemma 5.3 (Determinacy). If e —> e’ and e — ¢€”, then ¢’ and e are a-equivalent.

Proof By rule induction on the premises ¢ —> ¢’ and e —— ¢”, carried out either
simultaneously or in either order. The primitive operators, such as addition, are assumed to
have a unique value when applied to values. []

Contextual Dynamics for E

The instruction transition judgment e; — e, for E is defined by the following rules,
together with similar rules for multiplication of numbers and the length of a string.

m +nis p nat

(5.5a)

plus(num[m]; num[n]) — num[p]

s™t = u str
cat(str[s]; str[t]) — strlu]

(5.5b)

let(eq;x.ex) = [e1/x]es (5.5¢)

Contextual Dynamics for E

The judgment £ ectxt determines the location of the next instruction to execute in a larger
expression. The position of the next instruction step 1s specified by a “hole,” written o, into
which the next instruction is placed, as we shall detail shortly. (The rules for multiplication
and length are omitted for concision, as they are handled similarly.)

o ectxt (5.62)

& ectxt
plus(&;;e;) ectxt (5.6b)
e val &, ectxt 5.60)

plus(e;; &) ectxt

Contextual Dynamics for E

An evaluation context is a template that is instantiated by replacing the hole with an
instruction to be executed. The judgment ¢’ = £{e} states that the expression ¢’ is the result
of filling the hole in the evaluation context £ with the expression e. It is inductively defined
by the following rules:

e = ofe) (5.7a)

e1 = &ife}
plus(e;;ex) = plus(&r; en)ie}

(5.7b)

(] val e = 52{6} (5 7C)

plus(e;; e2) = plus(er; &){e}

There 1s one rule for each form of evaluation context. Filling the hole with e results in e;
otherwise, we proceed inductively over the structure of the evaluation context.
Finally, the contextual dynamics for E is defined by a single rule:

e=Eleg) ey — ey e =Eley) (5.8)

er— e

Relating Structural & Contextual Dynamics

Theorem 5.4. e —— ¢’ if, and only if, e —> €’.

Proof From left to right, proceed by rule induction on rules (5.4). It is enough in each
case to exhibit an evaluation context £ such that e = E{ep}, ' = E{ey}, and ey — ey,
For example, for rule (5.4a), take £ = o, and note that ¢ — ¢’. For rule (5.4b), we
have by induction that there exists an evaluation context £ such that e; = &{ep}, e; =
Ei{e)), and eg — ¢. Take & = plus(&;er), and note that e = plus(&y;ex){ep} and
e’ = plus(&;;ex)ley) with eg — e,

From right to left, note that if ¢ ——>. ¢’, then there exists an evaluation context £
such that e = E{ep}, ¢’ = E{e;}), and eg — e,. We prove by induction on rules (5.7)
that e —— ¢’. For example, for rule (5.7a), ey is e, ¢, is €', and e — ¢'. Hence,
e — €. For rule (5.7b), we have that £ = plus(&;;er), e = Ei{eo}, e = Eifeg),
and e; —> €. Therefore, e is plus(e;; ey), €' is plus(e;; e2), and therefore by rule (5.4b),
e —>é. []

Equational Dynamics

F'Fe=e:1
e =e:1
F'Fe=e¢€:1

F'Fe=eée:71 ThHe=¢€":1
FFe=é€":1

[Fe =e:numn It e, =¢):nun

I' - plus(e;; e2) = plus(e);e)) : num

FFe =ej:str T'he=¢e):str

I' F cat(e;;ex) = cat(e];e)) @ str

(5.10a)

(5.10b)

(5.10c)

(5.10d)

(5.10e)

F'eyr=ej:7y INx:tibFe=eé:n

I' - let(er; x.e2) = let(e];x.€5) : &

ny + n, isn nat

I' - plus(num[n;];num[n;]) = num[n] : num

518, = § str
I' - cat(str[s;]; str[sy]) = str[s]: str

I' - let(eg;x.ex) =[ei/x]ler: 1

(5.101)

(5.10g)

(5.10h)

(5.101)

Equational Dynamics

Theorem 5.5. For the expression language E, the relation e = €' . T holds iff there exists
eo val such that e —* ey and ¢’ —* e.

Proof The proof from right to left is direct, because every transition step is a valid
equation. The converse follows from the following, more general, proposition, which
is proved by induction on rules (5.10): if x; : 7y,...,x,: 7, - e=¢€" : 1, then when
el T, e 1T, ..., 8 Ty, €, Ty, if foreach 1 <i < n the expressions ¢; and e evaluate
to a common value v;, then there exists ey val such that

le1, ..., e./X1, ..., xn]e —>" ¢

and

le)s ... € /X1, ..., x,]e' —>T e.]

Type Safety for E

Theorem 6.1 (Type Safety).

I1. Ife:tande+— ¢é', thene' : .

2. If e : T, then either e val, or there exists ¢’ such that e —> ¢'.

The first part, called preservation, says that the steps of evaluation preserve typing; the
second, called progress, ensures that well-typed expressions are either values or can be
further evaluated. Safety is the conjunction of preservation and progress.

We say that an expression e is stuck iff it is not a value, yet there is no ¢’ such that
e — ¢'. It follows from the safety theorem that a stuck state is necessarily ill-typed. Or,
putting it the other way around, that well-typed states do not get stuck.

Preservation for E

Theorem 6.2 (Preservation). Ife : T and e —> €', then €' : T.

Proof We will give the proof in two cases, leaving the rest to the reader. Consider
rule (5.4b),

e —> €]

plus(ey;er) —> plus(e};er) |

Assume that plus(e;; ep) : . By inversion for typing, we have that T = num, ¢, : num, and
e : num. By induction, we have that €] : num, and hence plus(e}; ;) : num. The case for
concatenation is handled similarly.

Now consider rule (5.4h),

let(e;;x.ep) —> [e1/x]en .

Assume that let(e;; x.e2) : 72. By the inversion Lemma 4.2, e; : t; for some 7; such that
X : 71 ey : 7o. By the substitution Lemma 4.4 [e;/x]e> : 12, as desired.

It is easy to check that the primitive operations are all type-preserving; for example, if
a nat and b nat and a + b is ¢ nat, then ¢ nat. []

Progress for E

Lemma 6.3 (Canonical Forms). If e valand e : t, then

1. If T = num, then e = num[n] for some number n.

2. If Tt = str, then e = str[s] for some string s.

Proof By induction on rules (4.1) and (5.3). []

Progress is proved by rule induction on rules (4.1) defining the statics of the language.

Theorem 6.4 (Progress). If e : T, then either e val, or there exists ¢’ such that e —> ¢’

Progress for E

Theorem 6.4 (Progress). If e : T, then either e val, or there exists e’ such that e — ¢’

Proof The proof proceeds by induction on the typing derivation. We will consider only

one case, for rule (4.1d),
€] :num e, . num
9

plus(e;;ey) : num

where the context is empty because we are considering only closed terms.

By induction, we have that either e; val, or there exists €] such that e; — ¢]. In the
latter case, it follows that plus(e;;e;) — plus(e;;ez), as required. In the former, we
also have by induction that either e, val, or there exists e; such that e; — e;. In the latter
case, we have that plus(e;;e;) —> plus(e;;es), as required. In the former, we have, by
the Canonical Forms Lemma 6.3, ¢; = num[n] and e, = num[n,], and hence

plus(num[n];num[n;]) — num[n; + ny].]

E + Runtime Errors

Suppose that we wish to extend E with, say, a quotient operation that is undefined for a
zero divisor. The natural typing rule for quotients is given by the following rule:

€] :num ep : num
div(e;;ep) : num

But the expression div(num[3]; num[0]) is well-typed, yet stuck! We have two options to
correct this situation:

1. Enhance the type system, so that no well-typed program may divide by zero.

2. Add dynamic checks, so that division by zero signals an error as the outcome of evalu-
ation.

E + Runtime Errors

One approach to modeling checked errors 1s to give an inductive definition of the judg-
ment e err stating that the expression e incurs a checked run-time error, such as division by
zero. Here are some representative rules that would be present in a full inductive definition

of this judgment:
e val
div(ey;num[0]) err (6.1a)
ey err 6.1b
div(ep; en) err (6.1b)
e; val e err (6.10)

div(ep; ep) err

E + Runtime Errors

Once the error judgment is available, we may also consider an expression, error, which
forcibly induces an error, with the following static and dynamic semantics:

(6.2a)

I'error: T

(6.2b)

error err

The preservation theorem is not affected by checked errors. However, the statement (and
proof) of progress is modified to account for checked errors.

Theorem 6.5 (Progress With Error). If e : t, then either e err, or e val, or there exists e’
such that e — é'.

Evaluation Dynamics for E
(big-step operational semantics)

An evaluation dynamics consists of an inductive definition of the evaluation judgmente || v
stating that the closed expression e evaluates to the value v. The evaluation dynamics of E
is defined by the following rules:

num(n] |} num[n] (7.1a)
str(s] | str[s] (7.1b)
e1 | num[n;] e> | num[n,] n; 4+ n,isn nat 71
plus(er; ¢2) I mun[] (710
e1 | strls;] ex | strlsy] 178 = s str
cat(ey;er) | str[s] (7.10)
e || str[s] |s| =n nat
len(e) | num[n] (7.1e)
[e1/x]ex U v2
eval-by-name let(er; x.e2) § v; (7.10)

Evaluation Dynamics for E

An evaluation dynamics consists of an inductive definition of the evaluation judgmente || v
stating that the closed expression e evaluates to the value v. The evaluation dynamics of E
is defined by the following rules:

num(n] |} num[n] (7.1a)
str(s] | str[s] (7.1b)
e1 | num[n;] e> | num[n,] n; 4+ n,isn nat 71
pLus(er; ¢2) | numln] (7.1¢)
e1 | strls;] ex | strlsy] 178 = s str
cat(er;er) | str[s] (7.10)
e || str[s] |s| =n nat
len(e) | num[n] (7.1e)
er $ v [vi/x]ex Y v2 (7.2)

eval-by-value let(e;;x.ep) | vy

Relating Structural & Evaluation Dynamics

Lemma 7.3. Ife || v, then e —>* v.

Proof By induction on the definition of the evaluation judgment. For example, suppose
that plus(ey; ez) || num[n] by the rule for evaluating additions. By induction, we know that
e¢; —> " num[n] and e, ——* num|[n,]. We reason as follows:

lus(e;;er) +H—>* lus(num|[n]; er)
p p

*

—>* plus(num[n;];nun(n;])

——> num|n; + ns]

Therefore, plus(e;;e;) —* num[n; + n;], as required. The other cases are handled
similarly. [

Relating Structural & Evaluation Dynamics

Lemma74. Ifer—— ¢ and e | v, thene || v.

Proof By induction on the definition of the transition judgment. For example, suppose that
plus(e;; e;) — plus(e}; ez), where e; — €. Suppose further that plus(e};ez) | v, so
that e; | num[n,], and e, |} num[n,], and n| 4 ny isn nat, and v is num[z]. By induction
e; | num[n], and hence plus(e;;e,) || num[n], as required. [l

Cost Dynamics

Evaluation judgments have the form e ¥ v, with the meaning that e evaluates to v in k
steps.

num[z] {° num[#] (7.4a)
er 4" num[n,] 621 U* num(n,] (7.4b)
plus(er; e2) 444+ nunfn; + no]
str[s] {Y str[s] (7.4c)
ky ky
er ' s1 e I s (7.4d)
cat(er; ep) Y1t strls) s]
ka
[e1/x]es ™ v, (7.4¢)
let(er;x.ex) Y2+ vy
For a by-value interpretation of 1let, rule (7.4e) is replaced by the following rule:
ey 41 v [vi/xlez 4° v; (7.5)

let(e;; x.ep) YFithktl gy,

Theorem 7.7. For any closed expression e and closed value v of the same type, e ¥ v iff

€I—>k V.

