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PL Semantics: Static & Dynamic Phases

The static phase: 

•  Parsing: turn concrete syntax to AST or ABT
•  Type-checking to ensure the program is well-formed; 

• based on a set of typing rules (known as static semantics or statics)

The dynamic phase: execution of well-formed programs;
• based on a set of evaluation rules (dynamic / operational semantics or 
dynamics)

A language is safe when well-formed programs are well-behaved when 
executed



A Simple Expression Language E

4 Statics

Most programming languages exhibit a phase distinction between the static and dynamic
phases of processing. The static phase consists of parsing and type checking to ensure
that the program is well-formed; the dynamic phase consists of execution of well-formed
programs. A language is said to be safe exactly when well-formed programs are well-
behaved when executed.

The static phase is specified by a statics comprising a set of rules for deriving typing
judgments stating that an expression is well-formed of a certain type. Types mediate the
interaction between the constituent parts of a program by “predicting” some aspects of the
execution behavior of the parts so that we may ensure they fit together properly at run-time.
Type safety tells us that these predictions are correct; if not, the statics is considered to be
improperly defined, and the language is deemed unsafe for execution.

In this chapter, we present the statics of a simple expression language, E, as an illustration
of the method that we will employ throughout this book.

4.1 Syntax

When defining a language we shall be primarily concerned with its abstract syntax, specified
by a collection of operators and their arities. The abstract syntax provides a systematic,
unambiguous account of the hierarchical and binding structure of the language and is
considered the official presentation of the language. However, for the sake of clarity, it
is also useful to specify minimal concrete syntax conventions, without going through the
trouble to set up a fully precise grammar for it.

We will accomplish both of these purposes with a syntax chart, whose meaning is best
illustrated by example. The following chart summarizes the abstract and concrete syntax
of E.

Typ τ ::= num num numbers
str str strings

Exp e ::= x x variable
num[n] n numeral
str[s] "s" literal
plus(e1; e2) e1 + e2 addition
times(e1; e2) e1 ∗ e2 multiplication
cat(e1; e2) e1 ^ e2 concatenation
len(e) |e| length
let(e1; x.e2) let x be e1 in e2 definition
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Syntax of E defined as Abstract Binding Trees:



Statics (Type System) for E

34 Statics

This chart defines two sorts, Typ, ranged over by τ , and Exp, ranged over by e. The chart
defines a set of operators and their arities. For example, it specifies that the operator let
has arity (Exp,Exp.Exp)Exp, which specifies that it has two arguments of sort Exp, and
binds a variable of sort Exp in the second argument.

4.2 Type System

The role of a type system is to impose constraints on the formations of phrases that
are sensitive to the context in which they occur. For example, whether the expression
plus(x; num[n]) is sensible depends on whether the variable x is restricted to have type
num in the surrounding context of the expression. This example is, in fact, illustrative of
the general case, in that the only information required about the context of an expression is
the type of the variables within whose scope the expression lies. Consequently, the statics
of E consists of an inductive definition of generic hypothetical judgments of the form

!x | " " e : τ,

where !x is a finite set of variables, and " is a typing context consisting of hypotheses of the
form x : τ , one for each x ∈ !x. We rely on typographical conventions to determine the set
of variables, using the letters x and y to stand for them. We write x /∈ dom(") to say that
there is no assumption in " of the form x : τ for any type τ , in which case we say that the
variable x is fresh for ".

The rules defining the statics of E are as follows:

", x : τ " x : τ (4.1a)

" " str[s] : str (4.1b)

" " num[n] : num (4.1c)

" " e1 : num " " e2 : num
" " plus(e1; e2) : num (4.1d)

" " e1 : num " " e2 : num
" " times(e1; e2) : num (4.1e)

" " e1 : str " " e2 : str
" " cat(e1; e2) : str (4.1f)

" " e : str
" " len(e) : num (4.1g)

" " e1 : τ1 ", x : τ1 " e2 : τ2

" " let(e1; x.e2) : τ2
(4.1h)

In rule (4.1h), we tacitly assume that the variable x is not already declared in ". This
condition may always be met by choosing a suitable representative of the α-equivalence
class of the let expression.
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Properties for Type System

35 4.3 Structural Properties

It is easy to check that every expression has at most one type by induction on typing,
which is rule induction applied to rules (4.1).

Lemma 4.1 (Unicity of Typing). For every typing context ! and expression e, there exists
at most one τ such that ! ! e : τ .

Proof By rule induction on rules (4.1), making use of the fact that variables have at most
one type in any typing context.

The typing rules are syntax-directed in the sense that there is exactly one rule for
each form of expression. Consequently, it is easy to give necessary conditions for typing
an expression that invert the sufficient conditions expressed by the corresponding typing
rule.

Lemma 4.2 (Inversion for Typing). Suppose that ! ! e : τ . If e = plus(e1; e2), then
τ = num, ! ! e1 : num, and ! ! e2 : num, and similarly for the other constructs of the
language.

Proof These may all be proved by induction on the derivation of the typing judgment
! ! e : τ .

In richer languages such inversion principles are more difficult to state and to prove.

4.3 Structural Properties

The statics enjoys the structural properties of the generic hypothetical judgment.

Lemma 4.3 (Weakening). If ! ! e′ : τ ′, then !, x : τ ! e′ : τ ′ for any x /∈ dom(!) and
any type τ .

Proof By induction on the derivation of ! ! e′ : τ ′. We will give one case here, for
rule (4.1h). We have that e′ = let(e1; z.e2), where by the conventions on variables we may
assume z is chosen such that z /∈ dom(!) and z $= x. By induction, we have

1. !, x : τ ! e1 : τ1,
2. !, x : τ, z : τ1 ! e2 : τ ′,

from which the result follows by rule (4.1h).

Lemma 4.4 (Substitution). If !, x : τ ! e′ : τ ′ and ! ! e : τ , then ! ! [e/x]e′ : τ ′.
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Properties for Type System
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36 Statics

Proof By induction on the derivation of !, x : τ ! e′ : τ ′. We again consider only
rule (4.1h). As in the preceding case, e′ = let(e1; z.e2), where z is chosen so that z #= x

and z /∈ dom(!). We have by induction and Lemma 4.3 that

1. ! ! [e/x]e1 : τ1,
2. !, z : τ1 ! [e/x]e2 : τ ′.

By the choice of z, we have

[e/x]let(e1; z.e2) = let([e/x]e1; z.[e/x]e2).

It follows by rule (4.1h) that ! ! [e/x]let(e1; z.e2) : τ ′, as desired.

From a programming point of view, Lemma 4.3 allows us to use an expression in
any context that binds its free variables: if e is well-typed in a context !, then we may
“import” it into any context that includes the assumptions !. In other words, introducing
new variables beyond those required by an expression e does not invalidate e itself; it
remains well-formed, with the same type.1 More importantly, Lemma 4.4 expresses the
important concepts of modularity and linking. We may think of the expressions e and e′

as two components of a larger system in which e′ is a client of the implementation e. The
client declares a variable specifying the type of the implementation and is type checked
knowing only this information. The implementation must be of the specified type to satisfy
the assumptions of the client. If so, then we may link them to form the composite system
[e/x]e′. This implementation may itself be the client of another component, represented by
a variable y that is replaced by that component during linking. When all such variables have
been implemented, the result is a closed expression that is ready for execution (evaluation).

The converse of Lemma 4.4 is called decomposition. It states that any (large) expression
can be decomposed into a client and implementor by introducing a variable to mediate their
interaction.

Lemma 4.5 (Decomposition). If ! ! [e/x]e′ : τ ′, then for every type τ such that ! ! e : τ ,
we have !, x : τ ! e′ : τ ′.

Proof The typing of [e/x]e′ depends only on the type of e wherever it occurs, if at all.

Lemma 4.5 tells us that any sub-expression can be isolated as a separate module of a
larger system. This property is especially useful when the variable x occurs more than once
in e′, because then one copy of e suffices for all occurrences of x in e′.

The statics of E given by rules (4.1) exemplifies a recurrent pattern. The constructs of
a language are classified into one of two forms, the introduction and the elimination. The
introduction forms for a type determine the values, or canonical forms, of that type. The
elimination forms determine how to manipulate the values of a type to form a computation
of another (possibly the same) type. In the language E, the introduction forms for the type
num are the numerals, and those for the type str are the literals. The elimination forms for
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Dynamics (aka Operational Semantics)

How are programs executed?

• Structural dynamics (transition semantics)
• Step-by-step transition system (or small-step semantics)

• Contextual dynamics
• Structural dynamics defined under a changing evaluation context

• Equational dynamics
• A set of rules for definitional equality

• Evaluation dynamics (big-step semantics)



Transition Systems

5 Dynamics

The dynamics of a language describes how programs are executed. The most important
way to define the dynamics of a language is by the method of structural dynamics, which
defines a transition system that inductively specifies the step-by-step process of executing
a program. Another method for presenting dynamics, called contextual dynamics, is a
variation of structural dynamics in which the transition rules are specified in a slightly
different way. An equational dynamics presents the dynamics of a language by a collection
of rules defining when one program is definitionally equivalent to another.

5.1 Transition Systems

A transition system is specified by the following four forms of judgment:

1. s state, asserting that s is a state of the transition system.
2. s final, where s state, asserting that s is a final state.
3. s initial, where s state, asserting that s is an initial state.
4. s !−→ s ′, where s state and s ′ state, asserting that state s may transition to state s ′.

In practice, we always arrange things so that no transition is possible from a final state: if
s final, then there is no s ′ state such that s !−→ s ′. A state from which no transition is
possible is stuck. Whereas all final states are, by convention, stuck, there may be stuck states
in a transition system that are not final. A transition system is deterministic iff for every
state s there exists at most one state s ′ such that s !−→ s ′; otherwise, it is non-deterministic.

A transition sequence is a sequence of states s0, . . . , sn such that s0 initial, and si !−→ si+1

for every 0 ≤ i < n. A transition sequence is maximal iff there is no s such that sn !−→ s,
and it is complete iff it is maximal and sn final. Thus, every complete transition sequence
is maximal, but maximal sequences are not necessarily complete. The judgment s ↓ means
that there is a complete transition sequence starting from s, which is to say that there exists
s ′ final such that s !−→∗ s ′.

The iteration of transition judgment s !−→∗ s ′ is inductively defined by the following
rules:

s !−→∗ s (5.1a)

s !−→ s ′ s ′ !−→∗ s ′′

s !−→∗ s ′′ (5.1b)
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Structural Dynamics for E

40 Dynamics

When applied to the definition of iterated transition, the principle of rule induction states
that to show that P (s, s ′) holds when s "−→∗ s ′, it is enough to show these two properties
of P :

1. P (s, s).
2. if s "−→ s ′ and P (s ′, s ′′), then P (s, s ′′).

The first requirement is to show that P is reflexive. The second is to show that P is closed
under head expansion, or closed under inverse evaluation. Using this principle, it is easy
to prove that "−→∗ is reflexive and transitive.

The n-times iterated transition judgment s "−→n s ′, where n ≥ 0, is inductively defined
by the following rules:

s "−→0 s (5.2a)

s "−→ s ′ s ′ "−→n s ′′

s "−→n+1 s ′′ (5.2b)

Theorem 5.1. For all states s and s ′, s "−→∗ s ′ iff s "−→k s ′ for some k ≥ 0.

Proof From left to right, by induction on the definition of multi-step transition. From right
to left, by mathematical induction on k ≥ 0.

5.2 Structural Dynamics

A structural dynamics for the language E is given by a transition system whose states are
closed expressions. All states are initial. The final states are the (closed) values, which
represent the completed computations. The judgment e val, which states that e is a value,
is inductively defined by the following rules:

num[n] val (5.3a)

str[s] val (5.3b)

The transition judgment e "−→ e′ between states is inductively defined by the following
rules:

n1 + n2 = n

plus(num[n1]; num[n2]) "−→ num[n] (5.4a)

e1 "−→ e′
1

plus(e1; e2) "−→ plus(e′
1; e2)

(5.4b)

e1 val e2 "−→ e′
2

plus(e1; e2) "−→ plus(e1; e′
2)

(5.4c)
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When applied to the definition of iterated transition, the principle of rule induction states
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The first requirement is to show that P is reflexive. The second is to show that P is closed
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s "−→ s ′ s ′ "−→n s ′′

s "−→n+1 s ′′ (5.2b)
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s1 ˆ s2 = s str
cat(str[s1]; str[s2]) !−→ str[s] (5.4d)

e1 !−→ e′
1

cat(e1; e2) !−→ cat(e′
1; e2)

(5.4e)

e1 val e2 !−→ e′
2

cat(e1; e2) !−→ cat(e1; e′
2)

(5.4f)

[
e1 !−→ e′

1

let(e1; x.e2) !−→ let(e′
1; x.e2)

]
(5.4g)

[e1 val]
let(e1; x.e2) !−→ [e1/x]e2

(5.4h)

We have omitted rules for multiplication and computing the length of a string, which follow
a similar pattern. Rules (5.4a), (5.4d), and (5.4h) are instruction transitions, because they
correspond to the primitive steps of evaluation. The remaining rules are search transitions
that determine the order of execution of instructions.

The bracketed rule (5.4g) and bracketed premise on rule (5.4h) are included for a by-value
interpretation of let and omitted for a by-name interpretation. The by-value interpretation
evaluates an expression before binding it to the defined variable, whereas the by-name
interpretation binds it in unevaluated form. The by-value interpretation saves work if the
defined variable is used more than once but wastes work if it is not used at all. Conversely,
the by-name interpretation saves work if the defined variable is not used and wastes work
if it is used more than once.

A derivation sequence in a structural dynamics has a two-dimensional structure, with
the number of steps in the sequence being its “width” and the derivation tree for each step
being its “height.” For example, consider the following evaluation sequence:

let(plus(num[1]; num[2]); x.plus(plus(x; num[3]); num[4]))
!−→ let(num[3]; x.plus(plus(x; num[3]); num[4]))
!−→ plus(plus(num[3]; num[3]); num[4])
!−→ plus(num[6]; num[4])
!−→ num[10]

Each step in this sequence of transitions is justified by a derivation according to rules (5.4).
For example, the third transition in the preceding example is justified by the following
derivation:

plus(num[3]; num[3]) !−→ num[6] (5.4a)

plus(plus(num[3]; num[3]); num[4]) !−→ plus(num[6]; num[4]) (5.4b)

The other steps are similarly justified by composing rules.
The principle of rule induction for the structural dynamics of E states that to show

P(e !−→ e′) when e !−→ e′, it is enough to show that P is closed under rules (5.4). For
example, we may show by rule induction that the structural dynamics of E is determinate,
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which means that an expression may transition to at most one other expression. The proof
requires a simple lemma relating transition to values.

Lemma 5.2 (Finality of Values). For no expression e do we have both e val, and e !−→ e′

for some e′.

Proof By rule induction on rules (5.3) and (5.4).

Lemma 5.3 (Determinacy). If e !−→ e′ and e !−→ e′′, then e′ and e′′ are α-equivalent.

Proof By rule induction on the premises e !−→ e′ and e !−→ e′′, carried out either
simultaneously or in either order. The primitive operators, such as addition, are assumed to
have a unique value when applied to values.

Rules (5.4) exemplify the inversion principle of language design, which states that
the elimination forms are inverse to the introduction forms of a language. The search
rules determine the principal arguments of each elimination form, and the instruction
rules specify how to evaluate an elimination form when all of its principal arguments are
in introduction form. For example, rules (5.4) specify that both arguments of addition are
principal and specify how to evaluate an addition once its principal arguments are evaluated
to numerals. The inversion principle is central to ensuring that a programming language is
properly defined, the exact statement of which is given in Chapter 6.

5.3 Contextual Dynamics

A variant of structural dynamics, called contextual dynamics, is sometimes useful. There
is no fundamental difference between contextual and structural dynamics, but rather one
of style. The main idea is to isolate instruction steps as a special form of judgment, called
instruction transition, and to formalize the process of locating the next instruction using a
device called an evaluation context. The judgment e val defining whether an expression is
a value, remains unchanged.

The instruction transition judgment e1 → e2 for E is defined by the following rules,
together with similar rules for multiplication of numbers and the length of a string.

m + n is p nat
plus(num[m]; num[n]) → num[p]

(5.5a)

s ˆ t = u str
cat(str[s]; str[t]) → str[u] (5.5b)

let(e1; x.e2) → [e1/x]e2 (5.5c)
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The judgment E ectxt determines the location of the next instruction to execute in a larger
expression. The position of the next instruction step is specified by a “hole,” written ◦, into
which the next instruction is placed, as we shall detail shortly. (The rules for multiplication
and length are omitted for concision, as they are handled similarly.)

◦ ectxt (5.6a)

E1 ectxt
plus(E1; e2) ectxt

(5.6b)

e1 val E2 ectxt
plus(e1; E2) ectxt

(5.6c)

The first rule for evaluation contexts specifies that the next instruction may occur “here,” at
the occurrence of the hole. The remaining rules correspond one-for-one to the search rules
of the structural dynamics. For example, rule (5.6c) states that in an expression plus(e1; e2),
if the first argument, e1, is a value, then the next instruction step, if any, lies at or within the
second argument, e2.

An evaluation context is a template that is instantiated by replacing the hole with an
instruction to be executed. The judgment e′ = E{e} states that the expression e′ is the result
of filling the hole in the evaluation context E with the expression e. It is inductively defined
by the following rules:

e = ◦{e} (5.7a)

e1 = E1{e}
plus(e1; e2) = plus(E1; e2){e} (5.7b)

e1 val e2 = E2{e}
plus(e1; e2) = plus(e1; E2){e} (5.7c)

There is one rule for each form of evaluation context. Filling the hole with e results in e;
otherwise, we proceed inductively over the structure of the evaluation context.

Finally, the contextual dynamics for E is defined by a single rule:

e = E{e0} e0 → e′
0 e′ = E{e′

0}
e $−→ e′ (5.8)

Thus, a transition from e to e′ consists of (1) decomposing e into an evaluation context
and an instruction, (2) execution of that instruction, and (3) replacing the instruction by the
result of its execution in the same spot within e to obtain e′.

The structural and contextual dynamics define the same transition relation. For the sake
of the proof, let us write e $−→s e′ for the transition relation defined by the structural
dynamics (rules (5.4)), and e $−→c e′ for the transition relation defined by the contextual
dynamics (rules (5.8)).

Theorem 5.4. e $−→s e′ if, and only if, e $−→c e′.
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dynamics (rules (5.4)), and e $−→c e′ for the transition relation defined by the contextual
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Proof From left to right, proceed by rule induction on rules (5.4). It is enough in each
case to exhibit an evaluation context E such that e = E{e0}, e′ = E{e′

0}, and e0 → e′
0.

For example, for rule (5.4a), take E = ◦, and note that e → e′. For rule (5.4b), we
have by induction that there exists an evaluation context E1 such that e1 = E1{e0}, e′

1 =
E1{e′

0}, and e0 → e′
0. Take E = plus(E1; e2), and note that e = plus(E1; e2){e0} and

e′ = plus(E1; e2){e′
0} with e0 → e′

0.
From right to left, note that if e $−→c e′, then there exists an evaluation context E

such that e = E{e0}, e′ = E{e′
0}, and e0 → e′

0. We prove by induction on rules (5.7)
that e $−→s e′. For example, for rule (5.7a), e0 is e, e′

0 is e′, and e → e′. Hence,
e $−→s e′. For rule (5.7b), we have that E = plus(E1; e2), e1 = E1{e0}, e′

1 = E1{e′
0},

and e1 $−→s e′
1. Therefore, e is plus(e1; e2), e′ is plus(e′

1; e2), and therefore by rule (5.4b),
e $−→s e′.

Because the two transition judgments coincide, contextual dynamics can be considered
an alternative presentation of a structural dynamics. It has two advantages over structural
dynamics, one relatively superficial, one rather less so. The superficial advantage stems
from writing rule (5.8) in the simpler form

e0 → e′
0

E{e0} $−→ E{e′
0}

. (5.9)

This formulation is superficially simpler in that it does not make explicit how an expression
is decomposed into an evaluation context and a reducible expression. The deeper advantage
of contextual dynamics is that all transitions are between complete programs. One need
never consider a transition between expressions of any type other than the observable type,
which simplifies certain arguments, such as the proof of Lemma 47.16.

5.4 Equational Dynamics

Another formulation of the dynamics of a language regards computation as a form of
equational deduction, much in the style of elementary algebra. For example, in algebra, we
may show that the polynomials x2 +2 x +1 and (x +1)2 are equivalent by a simple process
of calculation and re-organization using the familiar laws of addition and multiplication.
The same laws are enough to determine the value of any polynomial, given the values of
its variables. So, for example, we may plug in 2 for x in the polynomial x2 + 2 x + 1
and calculate that 22 + 2 × 2 + 1 = 9, which is indeed (2 + 1)2. We thus obtain a model
of computation in which the value of a polynomial for a given value of its variable is
determined by substitution and simplification.

Very similar ideas give rise to the concept of definitional, or computational, equivalence
of expressions in E, which we write as X | ! ' e ≡ e′ : τ , where ! consists of one
assumption of the form x : τ for each x ∈ X . We only consider definitional equality of
well-typed expressions, so that when considering the judgment ! ' e ≡ e′ : τ , we tacitly
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assume that ! ! e : τ and ! ! e′ : τ . Here, as usual, we omit explicit mention of the
variables X when they can be determined from the forms of the assumptions !.

Definitional equality of expressions in E under the by-name interpretation of let is
inductively defined by the following rules:

! ! e ≡ e : τ (5.10a)

! ! e′ ≡ e : τ
! ! e ≡ e′ : τ

(5.10b)

! ! e ≡ e′ : τ ! ! e′ ≡ e′′ : τ
! ! e ≡ e′′ : τ

(5.10c)

! ! e1 ≡ e′
1 : num ! ! e2 ≡ e′

2 : num
! ! plus(e1; e2) ≡ plus(e′

1; e′
2) : num

(5.10d)

! ! e1 ≡ e′
1 : str ! ! e2 ≡ e′

2 : str
! ! cat(e1; e2) ≡ cat(e′

1; e′
2) : str

(5.10e)

! ! e1 ≡ e′
1 : τ1 !, x : τ1 ! e2 ≡ e′

2 : τ2

! ! let(e1; x.e2) ≡ let(e′
1; x.e′

2) : τ2
(5.10f)

n1 + n2 is n nat
! ! plus(num[n1]; num[n2]) ≡ num[n] : num (5.10g)

s1 ˆ s2 = s str
! ! cat(str[s1]; str[s2]) ≡ str[s] : str (5.10h)

! ! let(e1; x.e2) ≡ [e1/x]e2 : τ (5.10i)

Rules (5.10a) through (5.10c) state that definitional equality is an equivalence relation.
Rules (5.10d) through (5.10f) state that it is a congruence relation, which means that
it is compatible with all expression-forming constructs in the language. Rules (5.10g)
through (5.10i) specify the meanings of the primitive constructs ofE. We say that rules (5.10)
define the strongest congruence closed under rules (5.10g), (5.10h), and (5.10i).

Rules (5.10) suffice to calculate the value of an expression by a deduction similar to that
used in high school algebra. For example, we may derive the equation

let x be 1 + 2 in x + 3 + 4 ≡ 10 : num

by applying rules (5.10). Here, as in general, there may be many different ways to derive
the same equation, but we need find only one derivation in order to carry out an evaluation.

Definitional equality is rather weak in that many equivalences that we might intuitively
think are true are not derivable from rules (5.10). A prototypical example is the putative
equivalence

x1 : num, x2 : num ! x1 + x2 ≡ x2 + x1 : num, (5.11)
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1; x.e′

2) : τ2
(5.10f)

n1 + n2 is n nat
! ! plus(num[n1]; num[n2]) ≡ num[n] : num (5.10g)

s1 ˆ s2 = s str
! ! cat(str[s1]; str[s2]) ≡ str[s] : str (5.10h)

! ! let(e1; x.e2) ≡ [e1/x]e2 : τ (5.10i)

Rules (5.10a) through (5.10c) state that definitional equality is an equivalence relation.
Rules (5.10d) through (5.10f) state that it is a congruence relation, which means that
it is compatible with all expression-forming constructs in the language. Rules (5.10g)
through (5.10i) specify the meanings of the primitive constructs ofE. We say that rules (5.10)
define the strongest congruence closed under rules (5.10g), (5.10h), and (5.10i).

Rules (5.10) suffice to calculate the value of an expression by a deduction similar to that
used in high school algebra. For example, we may derive the equation

let x be 1 + 2 in x + 3 + 4 ≡ 10 : num

by applying rules (5.10). Here, as in general, there may be many different ways to derive
the same equation, but we need find only one derivation in order to carry out an evaluation.

Definitional equality is rather weak in that many equivalences that we might intuitively
think are true are not derivable from rules (5.10). A prototypical example is the putative
equivalence

x1 : num, x2 : num ! x1 + x2 ≡ x2 + x1 : num, (5.11)
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which, intuitively, expresses the commutativity of addition. Although we shall not prove
this here, this equivalence is not derivable from rules (5.10). And yet we may derive all of
its closed instances,

n1 + n2 ≡ n2 + n1 : num, (5.12)

where n1 nat and n2 nat are particular numbers.
The “gap” between a general law, such as Equation (5.11), and all of its instances,

given by Equation (5.12), may be filled by enriching the notion of equivalence to include a
principle of proof by mathematical induction. Such a notion of equivalence is sometimes
called semantic equivalence, because it expresses relationships that hold by virtue of the
dynamics of the expressions involved. (Semantic equivalence is developed rigorously for a
related language in Chapter 46.)

Theorem 5.5. For the expression language E, the relation e ≡ e′ : τ holds iff there exists
e0 val such that e #−→∗ e0 and e′ #−→∗ e0.

Proof The proof from right to left is direct, because every transition step is a valid
equation. The converse follows from the following, more general, proposition, which
is proved by induction on rules (5.10): if x1 : τ1, . . . , xn : τn ' e ≡ e′ : τ , then when
e1 : τ1, e

′
1 : τ1, . . . , en : τn, e

′
n : τn, if for each 1 ≤ i ≤ n the expressions ei and e′

i evaluate
to a common value vi , then there exists e0 val such that

[e1, . . . , en/x1, . . . , xn]e #−→∗ e0

and

[e′
1, . . . , e

′
n/x1, . . . , xn]e′ #−→∗ e0.

5.5 Notes

The use of transition systems to specify the behavior of programs goes back to the early
work of Church and Turing on computability. Turing’s approach emphasized the concept
of an abstract machine consisting of a finite program together with unbounded memory.
Computation proceeds by changing the memory in accordance with the instructions in the
program. Much early work on the operational semantics of programming languages, such
as the SECD machine (Landin, 1965), emphasized machine models. Church’s approach
emphasized the language for expressing computations and defined execution in terms of the
programs themselves, rather than in terms of auxiliary concepts such as memories or tapes.
Plotkin’s elegant formulation of structural operational semantics (Plotkin, 1981), which we
use heavily throughout this book, was inspired by Church’s and Landin’s ideas (Plotkin,
2004). Contextual semantics, which was introduced by Felleisen and Hieb (1992), may
be seen as an alternative formulation of structural semantics in which “search rules” are
replaced by “context matching.” Computation viewed as equational deduction goes back
to the early work of Herbrand, Gödel, and Church.
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6 Type Safety

Most programming languages are safe (or, type safe, or strongly typed). Informally, this
means that certain kinds of mismatches cannot arise during execution. For example, type
safety for E states that it will never arise that a number is added to a string, or that two
numbers are concatenated, neither of which is meaningful.

In general, type safety expresses the coherence between the statics and the dynamics.
The statics may be seen as predicting that the value of an expression will have a certain form
so that the dynamics of that expression is well-defined. Consequently, evaluation cannot
“get stuck” in a state for which no transition is possible, corresponding in implementation
terms to the absence of “illegal instruction” errors at execution time. Safety is proved by
showing that each step of transition preserves typability and by showing that typable states
are well-defined. Consequently, evaluation can never “go off into the weeds” and, hence,
can never encounter an illegal instruction.

Type safety for the language E is stated precisely as follows:

Theorem 6.1 (Type Safety).

1. If e : τ and e !−→ e′, then e′ : τ .
2. If e : τ , then either e val, or there exists e′ such that e !−→ e′.

The first part, called preservation, says that the steps of evaluation preserve typing; the
second, called progress, ensures that well-typed expressions are either values or can be
further evaluated. Safety is the conjunction of preservation and progress.

We say that an expression e is stuck iff it is not a value, yet there is no e′ such that
e !−→ e′. It follows from the safety theorem that a stuck state is necessarily ill-typed. Or,
putting it the other way around, that well-typed states do not get stuck.

6.1 Preservation

The preservation theorem for E defined in Chapters 4 and 5 is proved by rule induction on
the transition system (rules (5.4)).

Theorem 6.2 (Preservation). If e : τ and e !−→ e′, then e′ : τ .
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numbers are concatenated, neither of which is meaningful.
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The statics may be seen as predicting that the value of an expression will have a certain form
so that the dynamics of that expression is well-defined. Consequently, evaluation cannot
“get stuck” in a state for which no transition is possible, corresponding in implementation
terms to the absence of “illegal instruction” errors at execution time. Safety is proved by
showing that each step of transition preserves typability and by showing that typable states
are well-defined. Consequently, evaluation can never “go off into the weeds” and, hence,
can never encounter an illegal instruction.

Type safety for the language E is stated precisely as follows:

Theorem 6.1 (Type Safety).

1. If e : τ and e !−→ e′, then e′ : τ .
2. If e : τ , then either e val, or there exists e′ such that e !−→ e′.

The first part, called preservation, says that the steps of evaluation preserve typing; the
second, called progress, ensures that well-typed expressions are either values or can be
further evaluated. Safety is the conjunction of preservation and progress.

We say that an expression e is stuck iff it is not a value, yet there is no e′ such that
e !−→ e′. It follows from the safety theorem that a stuck state is necessarily ill-typed. Or,
putting it the other way around, that well-typed states do not get stuck.

6.1 Preservation

The preservation theorem for E defined in Chapters 4 and 5 is proved by rule induction on
the transition system (rules (5.4)).

Theorem 6.2 (Preservation). If e : τ and e !−→ e′, then e′ : τ .
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Proof We will give the proof in two cases, leaving the rest to the reader. Consider
rule (5.4b),

e1 !−→ e′
1

plus(e1; e2) !−→ plus(e′
1; e2)

.

Assume that plus(e1; e2) : τ . By inversion for typing, we have that τ = num, e1 : num, and
e2 : num. By induction, we have that e′

1 : num, and hence plus(e′
1; e2) : num. The case for

concatenation is handled similarly.
Now consider rule (5.4h),

let(e1; x.e2) !−→ [e1/x]e2
.

Assume that let(e1; x.e2) : τ2. By the inversion Lemma 4.2, e1 : τ1 for some τ1 such that
x : τ1 % e2 : τ2. By the substitution Lemma 4.4 [e1/x]e2 : τ2, as desired.

It is easy to check that the primitive operations are all type-preserving; for example, if
a nat and b nat and a + b is c nat, then c nat.

The proof of preservation is naturally structured as an induction on the transition judg-
ment, because the argument hinges on examining all possible transitions from a given
expression. In some cases, we may manage to carry out a proof by structural induction
on e, or by an induction on typing, but experience shows that this often leads to awkward
arguments, or, sometimes, cannot be made to work at all.

6.2 Progress

The progress theorem captures the idea that well-typed programs cannot “get stuck.” The
proof depends crucially on the following lemma, which characterizes the values of each
type.

Lemma 6.3 (Canonical Forms). If e val and e : τ , then

1. If τ = num, then e = num[n] for some number n.
2. If τ = str, then e = str[s] for some string s.

Proof By induction on rules (4.1) and (5.3).

Progress is proved by rule induction on rules (4.1) defining the statics of the language.

Theorem 6.4 (Progress). If e : τ , then either e val, or there exists e′ such that e !−→ e′.
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49 6.2 Progress

Proof We will give the proof in two cases, leaving the rest to the reader. Consider
rule (5.4b),

e1 !−→ e′
1

plus(e1; e2) !−→ plus(e′
1; e2)

.

Assume that plus(e1; e2) : τ . By inversion for typing, we have that τ = num, e1 : num, and
e2 : num. By induction, we have that e′

1 : num, and hence plus(e′
1; e2) : num. The case for

concatenation is handled similarly.
Now consider rule (5.4h),

let(e1; x.e2) !−→ [e1/x]e2
.

Assume that let(e1; x.e2) : τ2. By the inversion Lemma 4.2, e1 : τ1 for some τ1 such that
x : τ1 % e2 : τ2. By the substitution Lemma 4.4 [e1/x]e2 : τ2, as desired.

It is easy to check that the primitive operations are all type-preserving; for example, if
a nat and b nat and a + b is c nat, then c nat.

The proof of preservation is naturally structured as an induction on the transition judg-
ment, because the argument hinges on examining all possible transitions from a given
expression. In some cases, we may manage to carry out a proof by structural induction
on e, or by an induction on typing, but experience shows that this often leads to awkward
arguments, or, sometimes, cannot be made to work at all.

6.2 Progress

The progress theorem captures the idea that well-typed programs cannot “get stuck.” The
proof depends crucially on the following lemma, which characterizes the values of each
type.

Lemma 6.3 (Canonical Forms). If e val and e : τ , then

1. If τ = num, then e = num[n] for some number n.
2. If τ = str, then e = str[s] for some string s.

Proof By induction on rules (4.1) and (5.3).

Progress is proved by rule induction on rules (4.1) defining the statics of the language.

Theorem 6.4 (Progress). If e : τ , then either e val, or there exists e′ such that e !−→ e′.
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49 6.2 Progress

Proof We will give the proof in two cases, leaving the rest to the reader. Consider
rule (5.4b),

e1 !−→ e′
1

plus(e1; e2) !−→ plus(e′
1; e2)

.

Assume that plus(e1; e2) : τ . By inversion for typing, we have that τ = num, e1 : num, and
e2 : num. By induction, we have that e′

1 : num, and hence plus(e′
1; e2) : num. The case for

concatenation is handled similarly.
Now consider rule (5.4h),

let(e1; x.e2) !−→ [e1/x]e2
.

Assume that let(e1; x.e2) : τ2. By the inversion Lemma 4.2, e1 : τ1 for some τ1 such that
x : τ1 % e2 : τ2. By the substitution Lemma 4.4 [e1/x]e2 : τ2, as desired.

It is easy to check that the primitive operations are all type-preserving; for example, if
a nat and b nat and a + b is c nat, then c nat.

The proof of preservation is naturally structured as an induction on the transition judg-
ment, because the argument hinges on examining all possible transitions from a given
expression. In some cases, we may manage to carry out a proof by structural induction
on e, or by an induction on typing, but experience shows that this often leads to awkward
arguments, or, sometimes, cannot be made to work at all.

6.2 Progress

The progress theorem captures the idea that well-typed programs cannot “get stuck.” The
proof depends crucially on the following lemma, which characterizes the values of each
type.

Lemma 6.3 (Canonical Forms). If e val and e : τ , then

1. If τ = num, then e = num[n] for some number n.
2. If τ = str, then e = str[s] for some string s.

Proof By induction on rules (4.1) and (5.3).

Progress is proved by rule induction on rules (4.1) defining the statics of the language.

Theorem 6.4 (Progress). If e : τ , then either e val, or there exists e′ such that e !−→ e′.
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Proof The proof proceeds by induction on the typing derivation. We will consider only
one case, for rule (4.1d),

e1 : num e2 : num
plus(e1; e2) : num

,

where the context is empty because we are considering only closed terms.
By induction, we have that either e1 val, or there exists e′

1 such that e1 "−→ e′
1. In the

latter case, it follows that plus(e1; e2) "−→ plus(e′
1; e2), as required. In the former, we

also have by induction that either e2 val, or there exists e′
2 such that e2 "−→ e′

2. In the latter
case, we have that plus(e1; e2) "−→ plus(e1; e′

2), as required. In the former, we have, by
the Canonical Forms Lemma 6.3, e1 = num[n1] and e2 = num[n2], and hence

plus(num[n1]; num[n2]) "−→ num[n1 + n2].

Because the typing rules for expressions are syntax-directed, the progress theorem could
equally well be proved by induction on the structure of e, appealing to the inversion theorem
at each step to characterize the types of the parts of e. But this approach breaks down when
the typing rules are not syntax-directed, that is, when there is more than one rule for a
given expression form. Such rules present no difficulties, so long as the proof proceeds by
induction on the typing rules and not on the structure of the expression.

Summing up, the combination of preservation and progress together constitute the proof
of safety. The progress theorem ensures that well-typed expressions do not “get stuck” in
an ill-defined state, and the preservation theorem ensures that if a step is taken, the result
remains well-typed (with the same type). Thus, the two parts work together to ensure that
the statics and dynamics are coherent and that no ill-defined states can ever be encountered
while evaluating a well-typed expression.

6.3 Run-Time Errors

Suppose that we wish to extend E with, say, a quotient operation that is undefined for a
zero divisor. The natural typing rule for quotients is given by the following rule:

e1 : num e2 : num
div(e1; e2) : num

.

But the expression div(num[3]; num[0]) is well-typed, yet stuck! We have two options to
correct this situation:

1. Enhance the type system, so that no well-typed program may divide by zero.
2. Add dynamic checks, so that division by zero signals an error as the outcome of evalu-

ation.

Either option is, in principle, practical, but the most common approach is the second. The
first requires that the type checker prove that an expression be non-zero before permitting
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Because the typing rules for expressions are syntax-directed, the progress theorem could
equally well be proved by induction on the structure of e, appealing to the inversion theorem
at each step to characterize the types of the parts of e. But this approach breaks down when
the typing rules are not syntax-directed, that is, when there is more than one rule for a
given expression form. Such rules present no difficulties, so long as the proof proceeds by
induction on the typing rules and not on the structure of the expression.

Summing up, the combination of preservation and progress together constitute the proof
of safety. The progress theorem ensures that well-typed expressions do not “get stuck” in
an ill-defined state, and the preservation theorem ensures that if a step is taken, the result
remains well-typed (with the same type). Thus, the two parts work together to ensure that
the statics and dynamics are coherent and that no ill-defined states can ever be encountered
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6.3 Run-Time Errors

Suppose that we wish to extend E with, say, a quotient operation that is undefined for a
zero divisor. The natural typing rule for quotients is given by the following rule:

e1 : num e2 : num
div(e1; e2) : num

.

But the expression div(num[3]; num[0]) is well-typed, yet stuck! We have two options to
correct this situation:

1. Enhance the type system, so that no well-typed program may divide by zero.
2. Add dynamic checks, so that division by zero signals an error as the outcome of evalu-

ation.

Either option is, in principle, practical, but the most common approach is the second. The
first requires that the type checker prove that an expression be non-zero before permitting
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51 6.3 Run-Time Errors

it to be used in the denominator of a quotient. It is difficult to do this without ruling out too
many programs as ill-formed. We cannot predict statically whether an expression will be
non-zero when evaluated, so the second approach is most often used in practice.

The overall idea is to distinguish checked from unchecked errors. An unchecked error
is one that is ruled out by the type system. No run-time checking is performed to ensure
that such an error does not occur, because the type system rules out the possibility of it
arising. For example, the dynamics need not check, when performing an addition, that its
two arguments are, in fact, numbers, as opposed to strings, because the type system ensures
that this is the case. On the other hand, the dynamics for quotient must check for a zero
divisor, because the type system does not rule out the possibility.

One approach to modeling checked errors is to give an inductive definition of the judg-
ment e err stating that the expression e incurs a checked run-time error, such as division by
zero. Here are some representative rules that would be present in a full inductive definition
of this judgment:

e1 val
div(e1; num[0]) err

(6.1a)

e1 err
div(e1; e2) err (6.1b)

e1 val e2 err
div(e1; e2) err

(6.1c)

Rule (6.1a) signals an error condition for division by zero. The other rules propagate this
error upwards: if an evaluated sub-expression is a checked error, then so is the overall
expression.

Once the error judgment is available, we may also consider an expression, error, which
forcibly induces an error, with the following static and dynamic semantics:

! ! error : τ
(6.2a)

error err
(6.2b)

The preservation theorem is not affected by checked errors. However, the statement (and
proof) of progress is modified to account for checked errors.

Theorem 6.5 (Progress With Error). If e : τ , then either e err, or e val, or there exists e′

such that e #−→ e′.

Proof The proof is by induction on typing, and proceeds similarly to the proof given
earlier, except that there are now three cases to consider at each point in the proof.
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7 Evaluation Dynamics

In Chapter 5, we defined evaluation of expressions in E using a structural dynamics.
Structural dynamics is very useful for proving safety, but for some purposes, such as writing
a user manual, another formulation, called evaluation dynamics, is preferable. An evaluation
dynamics is a relation between a phrase and its value that is defined without detailing the
step-by-step process of evaluation. A cost dynamics enriches an evaluation dynamics with
a cost measure specifying the resource usage of evaluation. A prime example is time,
measured as the number of transition steps required to evaluate an expression according to
its structural dynamics.

7.1 Evaluation Dynamics

An evaluation dynamics consists of an inductive definition of the evaluation judgment e ⇓ v

stating that the closed expression e evaluates to the value v. The evaluation dynamics of E
is defined by the following rules:

num[n] ⇓ num[n] (7.1a)

str[s] ⇓ str[s] (7.1b)

e1 ⇓ num[n1] e2 ⇓ num[n2] n1 + n2 is n nat
plus(e1; e2) ⇓ num[n] (7.1c)

e1 ⇓ str[s1] e2 ⇓ str[s2] s1 ˆ s2 = s str
cat(e1; e2) ⇓ str[s]

(7.1d)

e ⇓ str[s] |s| = n nat
len(e) ⇓ num[n]

(7.1e)

[e1/x]e2 ⇓ v2

let(e1; x.e2) ⇓ v2
(7.1f)

The value of a let expression is determined by substitution of the binding into the body.
The rules are not syntax-directed, because the premise of rule (7.1f) is not a sub-expression
of the expression in the conclusion of that rule.
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The value of a let expression is determined by substitution of the binding into the body.
The rules are not syntax-directed, because the premise of rule (7.1f) is not a sub-expression
of the expression in the conclusion of that rule.
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Rule (7.1f) specifies a by-name interpretation of definitions. For a by-value interpretation,
the following rule should be used instead:

e1 ⇓ v1 [v1/x]e2 ⇓ v2

let(e1; x.e2) ⇓ v2
(7.2)

Because the evaluation judgment is inductively defined, we prove properties of it by rule
induction. Specifically, to show that the property P(e ⇓ v) holds, it is enough to show that
P is closed under rules (7.1):

1. Show that P(num[n] ⇓ num[n]).
2. Show that P(str[s] ⇓ str[s]).
3. Show that P(plus(e1; e2) ⇓ num[n]), if P(e1 ⇓ num[n1]), P(e2 ⇓ num[n2]), and

n1 + n2 is n nat.
4. Show that P(cat(e1; e2) ⇓ str[s]), if P(e1 ⇓ str[s1]), P(e2 ⇓ str[s2]), and

s1 ˆ s2 = s str.
5. Show that P(let(e1; x.e2) ⇓ v2), if P([e1/x]e2 ⇓ v2).

This induction principle is not the same as structural induction on e itself, because the
evaluation rules are not syntax-directed.

Lemma 7.1. If e ⇓ v, then v val.

Proof By induction on rules (7.1). All cases except rule (7.1f) are immediate. For the latter
case, the result follows directly by an appeal to the inductive hypothesis for the premise of
the evaluation rule.

7.2 Relating Structural and Evaluation Dynamics

We have given two different forms of dynamics for E. It is natural to ask whether they
are equivalent, but to do so first requires that we consider carefully what we mean by
equivalence. The structural dynamics describes a step-by-step process of execution, whereas
the evaluation dynamics suppresses the intermediate states, focusing attention on the initial
and final states alone. This remark suggests that the right correspondence is between
complete execution sequences in the structural dynamics and the evaluation judgment in
the evaluation dynamics.

Theorem 7.2. For all closed expressions e and values v, e "−→∗ v iff e ⇓ v.

How might we prove such a theorem? We will consider each direction separately. We
consider the easier case first.

Lemma 7.3. If e ⇓ v, then e "−→∗ v.
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Rule (7.1f) specifies a by-name interpretation of definitions. For a by-value interpretation,
the following rule should be used instead:

e1 ⇓ v1 [v1/x]e2 ⇓ v2

let(e1; x.e2) ⇓ v2
(7.2)

Because the evaluation judgment is inductively defined, we prove properties of it by rule
induction. Specifically, to show that the property P(e ⇓ v) holds, it is enough to show that
P is closed under rules (7.1):

1. Show that P(num[n] ⇓ num[n]).
2. Show that P(str[s] ⇓ str[s]).
3. Show that P(plus(e1; e2) ⇓ num[n]), if P(e1 ⇓ num[n1]), P(e2 ⇓ num[n2]), and

n1 + n2 is n nat.
4. Show that P(cat(e1; e2) ⇓ str[s]), if P(e1 ⇓ str[s1]), P(e2 ⇓ str[s2]), and

s1 ˆ s2 = s str.
5. Show that P(let(e1; x.e2) ⇓ v2), if P([e1/x]e2 ⇓ v2).

This induction principle is not the same as structural induction on e itself, because the
evaluation rules are not syntax-directed.

Lemma 7.1. If e ⇓ v, then v val.

Proof By induction on rules (7.1). All cases except rule (7.1f) are immediate. For the latter
case, the result follows directly by an appeal to the inductive hypothesis for the premise of
the evaluation rule.

7.2 Relating Structural and Evaluation Dynamics

We have given two different forms of dynamics for E. It is natural to ask whether they
are equivalent, but to do so first requires that we consider carefully what we mean by
equivalence. The structural dynamics describes a step-by-step process of execution, whereas
the evaluation dynamics suppresses the intermediate states, focusing attention on the initial
and final states alone. This remark suggests that the right correspondence is between
complete execution sequences in the structural dynamics and the evaluation judgment in
the evaluation dynamics.

Theorem 7.2. For all closed expressions e and values v, e "−→∗ v iff e ⇓ v.

How might we prove such a theorem? We will consider each direction separately. We
consider the easier case first.

Lemma 7.3. If e ⇓ v, then e "−→∗ v.
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Proof By induction on the definition of the evaluation judgment. For example, suppose
that plus(e1; e2) ⇓ num[n] by the rule for evaluating additions. By induction, we know that
e1 "−→∗ num[n1] and e2 "−→∗ num[n2]. We reason as follows:

plus(e1; e2) "−→∗ plus(num[n1]; e2)
"−→∗ plus(num[n1]; num[n2])
"−→ num[n1 + n2]

Therefore, plus(e1; e2) "−→∗ num[n1 + n2], as required. The other cases are handled
similarly.

For the converse, recall from Chapter 5 the definitions of multi-step evaluation and
complete evaluation. Because v ⇓ v when v val, it suffices to show that evaluation is closed
under converse evaluation:1

Lemma 7.4. If e "−→ e′ and e′ ⇓ v, then e ⇓ v.

Proof By induction on the definition of the transition judgment. For example, suppose that
plus(e1; e2) "−→ plus(e′

1; e2), where e1 "−→ e′
1. Suppose further that plus(e′

1; e2) ⇓ v, so
that e′

1 ⇓ num[n1], and e2 ⇓ num[n2], and n1 + n2 is n nat, and v is num[n]. By induction
e1 ⇓ num[n1], and hence plus(e1; e2) ⇓ num[n], as required.

7.3 Type Safety, Revisited

Type safety is defined in Chapter 6 as preservation and progress (Theorem 6.1). These
concepts are meaningful when applied to a dynamics given by a transition system, as
we shall do throughout this book. But what if we had instead given the dynamics as an
evaluation relation? How is type safety proved in that case?

The answer, unfortunately, is that we cannot. Although there is an analog of the preserva-
tion property for an evaluation dynamics, there is no clear analog of the progress property.
Preservation may be stated as saying that if e ⇓ v and e : τ , then v : τ . It can be readily
proved by induction on the evaluation rules. But what is the analog of progress? We might
be tempted to phrase progress as saying that if e : τ , then e ⇓ v for some v. Although
this property is true for E, it demands much more than just progress—it requires that every
expression evaluate to a value! If E were extended to admit operations that may result in
an error (as discussed in Section 6.3), or to admit non-terminating expressions, then this
property would fail, even though progress would remain valid.

One possible attitude towards this situation is to conclude that type safety cannot be
properly discussed in the context of an evaluation dynamics, but only by reference to a
structural dynamics. Another point of view is to instrument the dynamics with explicit
checks for dynamic type errors, and to show that any expression with a dynamic type fault
must be statically ill-typed. Re-stated in the contrapositive, this means that a statically
well-typed program cannot incur a dynamic type error. A difficulty with this point of view
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55 7.3 Type Safety, Revisited

Proof By induction on the definition of the evaluation judgment. For example, suppose
that plus(e1; e2) ⇓ num[n] by the rule for evaluating additions. By induction, we know that
e1 "−→∗ num[n1] and e2 "−→∗ num[n2]. We reason as follows:

plus(e1; e2) "−→∗ plus(num[n1]; e2)
"−→∗ plus(num[n1]; num[n2])
"−→ num[n1 + n2]

Therefore, plus(e1; e2) "−→∗ num[n1 + n2], as required. The other cases are handled
similarly.

For the converse, recall from Chapter 5 the definitions of multi-step evaluation and
complete evaluation. Because v ⇓ v when v val, it suffices to show that evaluation is closed
under converse evaluation:1

Lemma 7.4. If e "−→ e′ and e′ ⇓ v, then e ⇓ v.

Proof By induction on the definition of the transition judgment. For example, suppose that
plus(e1; e2) "−→ plus(e′

1; e2), where e1 "−→ e′
1. Suppose further that plus(e′

1; e2) ⇓ v, so
that e′

1 ⇓ num[n1], and e2 ⇓ num[n2], and n1 + n2 is n nat, and v is num[n]. By induction
e1 ⇓ num[n1], and hence plus(e1; e2) ⇓ num[n], as required.

7.3 Type Safety, Revisited

Type safety is defined in Chapter 6 as preservation and progress (Theorem 6.1). These
concepts are meaningful when applied to a dynamics given by a transition system, as
we shall do throughout this book. But what if we had instead given the dynamics as an
evaluation relation? How is type safety proved in that case?

The answer, unfortunately, is that we cannot. Although there is an analog of the preserva-
tion property for an evaluation dynamics, there is no clear analog of the progress property.
Preservation may be stated as saying that if e ⇓ v and e : τ , then v : τ . It can be readily
proved by induction on the evaluation rules. But what is the analog of progress? We might
be tempted to phrase progress as saying that if e : τ , then e ⇓ v for some v. Although
this property is true for E, it demands much more than just progress—it requires that every
expression evaluate to a value! If E were extended to admit operations that may result in
an error (as discussed in Section 6.3), or to admit non-terminating expressions, then this
property would fail, even though progress would remain valid.

One possible attitude towards this situation is to conclude that type safety cannot be
properly discussed in the context of an evaluation dynamics, but only by reference to a
structural dynamics. Another point of view is to instrument the dynamics with explicit
checks for dynamic type errors, and to show that any expression with a dynamic type fault
must be statically ill-typed. Re-stated in the contrapositive, this means that a statically
well-typed program cannot incur a dynamic type error. A difficulty with this point of view
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Evaluation judgments have the form e ⇓k v, with the meaning that e evaluates to v in k

steps.

num[n] ⇓0 num[n] (7.4a)

e1 ⇓k1 num[n1] e2 ⇓k2 num[n2]
plus(e1; e2) ⇓k1+k2+1 num[n1 + n2]

(7.4b)

str[s] ⇓0 str[s] (7.4c)

e1 ⇓k1 s1 e2 ⇓k2 s2

cat(e1; e2) ⇓k1+k2+1 str[s1 ˆ s2]
(7.4d)

[e1/x]e2 ⇓k2 v2

let(e1; x.e2) ⇓k2+1 v2
(7.4e)

For a by-value interpretation of let, rule (7.4e) is replaced by the following rule:

e1 ⇓k1 v1 [v1/x]e2 ⇓k2 v2

let(e1; x.e2) ⇓k1+k2+1 v2
(7.5)

Theorem 7.7. For any closed expression e and closed value v of the same type, e ⇓k v iff
e "−→k v.

Proof From left to right, proceed by rule induction on the definition of the cost dynamics.
From right to left, proceed by induction on k, with an inner rule induction on the definition
of the structural dynamics.

7.5 Notes

The structural similarity between evaluation dynamics and typing rules was first developed
in The Definition of Standard ML (Milner et al., 1997). The advantage of evaluation
semantics is its directness; its disadvantage is that it is not well-suited to proving properties
such as type safety. Robin Milner introduced the apt phrase “going wrong” as a description
of a type error. Cost dynamics was introduced by Blelloch and Greiner (1996) in a study
of parallel computation (see Chapter 37).

Exercises

7.1. Show that evaluation is deterministic: if e ⇓ v1 and e ⇓ v2, then v1 = v2.
7.2. Complete the proof of Lemma 7.3.
7.3. Complete the proof of Lemma 7.4. Then show that if e "−→∗ e′ with e′ val, then e ⇓ e′.
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