CS 430/530 Formal Semantics

Zhong Shao

Yale University Department of Computer Science

> Statics and Dynamics March 4, 2025

PL Semantics: Static & Dynamic Phases

The static phase:

- Parsing: turn concrete syntax to AST or ABT
- Type-checking to ensure the program is well-formed;
 - . based on a set of typing rules (known as static semantics or statics)

The dynamic phase: execution of well-formed programs;

 based on a set of evaluation rules (dynamic / operational semantics or dynamics)

A language is **safe** when well-formed programs are well-behaved when executed

A Simple Expression Language E

Syntax of E defined as Abstract Binding Trees:

Тур	τ	::=	num	num	numbers
			str	str	strings
Exp	е	::=	X	X	variable
			num[n]	п	numeral
			str[s]	" <i>s</i> "	literal
			$plus(e_1; e_2)$	$e_1 + e_2$	addition
			$\texttt{times}(e_1;e_2)$	$e_1 * e_2$	multiplication
			$\mathtt{cat}(e_1;e_2)$	$e_1 e_2$	concatenation
			len(e)	e	length
			$let(e_1; x.e_2)$	$\operatorname{let} x \operatorname{be} e_1 \operatorname{in} e_2$	definition

Statics (Type System) for E

 $\vec{x} \mid \Gamma \vdash e : \tau,$

An inductive definition of generic hypothetical judgments

$\overline{\Gamma, x: \tau \vdash x: \tau}$	(4.1a)
$\overline{\Gamma \vdash \mathtt{str}[s]: \mathtt{str}}$	(4.1b)
$\overline{\Gamma \vdash \texttt{num}[n]:\texttt{num}}$	(4.1c)
$\frac{\Gamma \vdash e_1: \texttt{num} \Gamma \vdash e_2: \texttt{num}}{\Gamma \vdash \texttt{plus}(e_1; e_2): \texttt{num}}$	(4.1d)
$\frac{\Gamma \vdash e_1: \texttt{num} \Gamma \vdash e_2: \texttt{num}}{\Gamma \vdash \texttt{times}(e_1; e_2): \texttt{num}}$	(4.1e)
$\frac{\Gamma \vdash e_1 : \texttt{str} \Gamma \vdash e_2 : \texttt{str}}{\Gamma \vdash \texttt{cat}(e_1; e_2) : \texttt{str}}$	(4.1f)
$\frac{\Gamma \vdash e:\texttt{str}}{\Gamma \vdash \texttt{len}(e):\texttt{num}}$	(4.1g)
$\frac{\Gamma \vdash e_1 : \tau_1 \Gamma, x : \tau_1 \vdash e_2 : \tau_2}{\Gamma \vdash \texttt{let}(e_1; x.e_2) : \tau_2}$	(4.1h)

Lemma 4.1 (Unicity of Typing). For every typing context Γ and expression e, there exists at most one τ such that $\Gamma \vdash e : \tau$.

Proof By rule induction on rules (4.1), making use of the fact that variables have at most one type in any typing context. \Box

Lemma 4.2 (Inversion for Typing). Suppose that $\Gamma \vdash e : \tau$. If $e = plus(e_1; e_2)$, then $\tau = \text{num}$, $\Gamma \vdash e_1 : \text{num}$, and $\Gamma \vdash e_2 : \text{num}$, and similarly for the other constructs of the language.

Proof These may all be proved by induction on the derivation of the typing judgment $\Gamma \vdash e : \tau$.

Lemma 4.3 (Weakening). If $\Gamma \vdash e' : \tau'$, then $\Gamma, x : \tau \vdash e' : \tau'$ for any $x \notin dom(\Gamma)$ and any type τ .

Proof By induction on the derivation of $\Gamma \vdash e' : \tau'$. We will give one case here, for rule (4.1h). We have that $e' = let(e_1; z.e_2)$, where by the conventions on variables we may assume z is chosen such that $z \notin dom(\Gamma)$ and $z \neq x$. By induction, we have

1. $\Gamma, x : \tau \vdash e_1 : \tau_1,$ 2. $\Gamma, x : \tau, z : \tau_1 \vdash e_2 : \tau',$

from which the result follows by rule (4.1h).

Lemma 4.4 (Substitution). If Γ , $x : \tau \vdash e' : \tau'$ and $\Gamma \vdash e : \tau$, then $\Gamma \vdash [e/x]e' : \tau'$.

Proof By induction on the derivation of $\Gamma, x : \tau \vdash e' : \tau'$. We again consider only rule (4.1h). As in the preceding case, $e' = let(e_1; z.e_2)$, where z is chosen so that $z \neq x$ and $z \notin dom(\Gamma)$. We have by induction and Lemma 4.3 that

1. $\Gamma \vdash [e/x]e_1 : \tau_1$, 2. $\Gamma, z : \tau_1 \vdash [e/x]e_2 : \tau'$.

By the choice of z, we have

[e/x]let $(e_1; z.e_2) =$ let $([e/x]e_1; z.[e/x]e_2).$

It follows by rule (4.1h) that $\Gamma \vdash [e/x] let(e_1; z.e_2) : \tau'$, as desired.

Lemma 4.5 (Decomposition). *If* $\Gamma \vdash [e/x]e' : \tau'$, *then for every type* τ *such that* $\Gamma \vdash e : \tau$, *we have* $\Gamma, x : \tau \vdash e' : \tau'$.

Proof The typing of [e/x]e' depends only on the type of *e* wherever it occurs, if at all. \Box

Dynamics (aka Operational Semantics)

How are programs executed?

- Structural dynamics (transition semantics)
 - Step-by-step transition system (or small-step semantics)
- Contextual dynamics
 - Structural dynamics defined under a changing evaluation context
- Equational dynamics
 - A set of rules for definitional equality
- Evaluation dynamics (big-step semantics)

Transition Systems

A transition system is specified by the following four forms of judgment:

1. *s* state, asserting that *s* is a *state* of the transition system.

- 2. *s* final, where *s* state, asserting that *s* is a *final* state.
- 3. *s* initial, where *s* state, asserting that *s* is an *initial* state.
- 4. $s \mapsto s'$, where s state and s' state, asserting that state s may transition to state s'.

The *iteration* of transition judgment $s \mapsto^* s'$ is inductively defined by the following rules:

$$\overline{s \longmapsto^* s} \tag{5.1a}$$

$$\frac{s \longmapsto s' \quad s' \longmapsto^* s''}{s \longmapsto^* s''} \tag{5.1b}$$

A *structural dynamics* for the language E is given by a transition system whose states are closed expressions. All states are initial. The final states are the *(closed) values*, which represent the completed computations. The judgment *e* val, which states that *e* is a value, is inductively defined by the following rules:

$$\overline{\operatorname{num}[n] \operatorname{val}} \tag{5.3a}$$

$$str[s] val$$
 (5.3b)

The transition judgment $e \mapsto e'$ between states is inductively defined by the following rules:

$$\frac{n_1 + n_2 = n}{\operatorname{plus}(\operatorname{num}[n_1]; \operatorname{num}[n_2]) \longmapsto \operatorname{num}[n]}$$
(5.4a)

$$\frac{e_1 \longmapsto e'_1}{\operatorname{plus}(e_1; e_2) \longmapsto \operatorname{plus}(e'_1; e_2)}$$
(5.4b)

$$\frac{e_1 \text{ val } e_2 \longmapsto e'_2}{\text{plus}(e_1; e_2) \longmapsto \text{plus}(e_1; e'_2)}$$
(5.4c)

$$\frac{s_1 \, s_2 = s \, \text{str}}{\operatorname{cat}(\operatorname{str}[s_1]; \operatorname{str}[s_2]) \longmapsto \operatorname{str}[s]}$$
(5.4d)
$$\frac{e_1 \longmapsto e'_1}{\operatorname{cat}(e_1; e_2) \longmapsto \operatorname{cat}(e'_1; e_2)}$$
(5.4e)
$$\frac{e_1 \, \text{val} \ e_2 \longmapsto e'_2}{\operatorname{cat}(e_1; e_2) \longmapsto \operatorname{cat}(e_1; e'_2)}$$
(5.4f)
$$\left[\frac{e_1 \longmapsto e'_1}{\operatorname{let}(e_1; x. e_2) \longmapsto \operatorname{let}(e'_1; x. e_2)}\right]$$
(5.4g)
$$\frac{[e_1 \, \text{val}]}{\operatorname{let}(e_1; x. e_2) \longmapsto [e_1/x]e_2}$$
(5.4h)

A derivation sequence in a structural dynamics has a two-dimensional structure, with the number of steps in the sequence being its "width" and the derivation tree for each step being its "height." For example, consider the following evaluation sequence:

let(plus(num[1]; num[2]); x.plus(plus(x; num[3]); num[4]))

- \mapsto let(num[3]; x.plus(plus(x; num[3]); num[4]))
- \mapsto plus(plus(num[3]; num[3]); num[4])
 - \rightarrow plus(num[6]; num[4])
- \rightarrow num[10]

Each step in this sequence of transitions is justified by a derivation according to rules (5.4). For example, the third transition in the preceding example is justified by the following derivation:

$$\frac{\overline{plus(num[3];num[3]) \mapsto num[6]}}{plus(plus(num[3];num[3]);num[4]) \mapsto plus(num[6];num[4])} (5.4b)$$

Lemma 5.2 (Finality of Values). For no expression e do we have both e val, and $e \mapsto e'$ for some e'.

Proof By rule induction on rules (5.3) and (5.4).

Lemma 5.3 (Determinacy). If $e \mapsto e'$ and $e \mapsto e''$, then e' and e'' are α -equivalent.

Proof By rule induction on the premises $e \mapsto e'$ and $e \mapsto e''$, carried out either simultaneously or in either order. The primitive operators, such as addition, are assumed to have a unique value when applied to values.

Contextual Dynamics for E

The instruction transition judgment $e_1 \rightarrow e_2$ for **E** is defined by the following rules, together with similar rules for multiplication of numbers and the length of a string.

$$\frac{m+n \text{ is } p \text{ nat}}{plus(num[m]; num[n]) \to num[p]}$$
(5.5a)

$$\frac{s^{t} = u \operatorname{str}}{\operatorname{cat}(\operatorname{str}[s]; \operatorname{str}[t]) \to \operatorname{str}[u]}$$
(5.5b)

$$let(e_1; x.e_2) \to [e_1/x]e_2$$
 (5.5c)

Contextual Dynamics for E

The judgment \mathcal{E} ectxt determines the location of the next instruction to execute in a larger expression. The position of the next instruction step is specified by a "hole," written \circ , into which the next instruction is placed, as we shall detail shortly. (The rules for multiplication and length are omitted for concision, as they are handled similarly.)

○ ectxt	(5.6a)
$\frac{\mathcal{E}_1 \text{ ectxt}}{\texttt{plus}(\mathcal{E}_1; e_2) \text{ ectxt}}$	(5.6b)
$\frac{e_1 \text{ val } \mathcal{E}_2 \text{ ectxt}}{\text{plus}(e_1; \mathcal{E}_2) \text{ ectxt}}$	(5.6c)

Contextual Dynamics for E

An evaluation context is a template that is instantiated by replacing the hole with an instruction to be executed. The judgment $e' = \mathcal{E}\{e\}$ states that the expression e' is the result of filling the hole in the evaluation context \mathcal{E} with the expression e. It is inductively defined by the following rules:

$$\overline{e = \circ\{e\}} \tag{5.7a}$$

$$\frac{e_1 = \mathcal{E}_1\{e\}}{\operatorname{plus}(e_1; e_2) = \operatorname{plus}(\mathcal{E}_1; e_2)\{e\}}$$
(5.7b)

$$\frac{e_1 \text{ val } e_2 = \mathcal{E}_2\{e\}}{\text{plus}(e_1; e_2) = \text{plus}(e_1; \mathcal{E}_2)\{e\}}$$
(5.7c)

There is one rule for each form of evaluation context. Filling the hole with e results in e; otherwise, we proceed inductively over the structure of the evaluation context.

Finally, the contextual dynamics for **E** is defined by a single rule:

$$\frac{e = \mathcal{E}\{e_0\} \quad e_0 \to e'_0 \quad e' = \mathcal{E}\{e'_0\}}{e \longmapsto e'}$$
(5.8)

Relating Structural & Contextual Dynamics

Theorem 5.4. $e \mapsto_{s} e'$ if, and only if, $e \mapsto_{c} e'$.

Proof From left to right, proceed by rule induction on rules (5.4). It is enough in each case to exhibit an evaluation context \mathcal{E} such that $e = \mathcal{E}\{e_0\}$, $e' = \mathcal{E}\{e'_0\}$, and $e_0 \to e'_0$. For example, for rule (5.4a), take $\mathcal{E} = \circ$, and note that $e \to e'$. For rule (5.4b), we have by induction that there exists an evaluation context \mathcal{E}_1 such that $e_1 = \mathcal{E}_1\{e_0\}$, $e'_1 = \mathcal{E}_1\{e'_0\}$, and $e_0 \to e'_0$. Take $\mathcal{E} = \text{plus}(\mathcal{E}_1; e_2)$, and note that $e = \text{plus}(\mathcal{E}_1; e_2)\{e_0\}$ and $e' = \text{plus}(\mathcal{E}_1; e_2)\{e'_0\}$ with $e_0 \to e'_0$.

From right to left, note that if $e \mapsto_c e'$, then there exists an evaluation context \mathcal{E} such that $e = \mathcal{E}\{e_0\}, e' = \mathcal{E}\{e'_0\}$, and $e_0 \to e'_0$. We prove by induction on rules (5.7) that $e \mapsto_s e'$. For example, for rule (5.7a), e_0 is e, e'_0 is e', and $e \to e'$. Hence, $e \mapsto_s e'$. For rule (5.7b), we have that $\mathcal{E} = \text{plus}(\mathcal{E}_1; e_2), e_1 = \mathcal{E}_1\{e_0\}, e'_1 = \mathcal{E}_1\{e'_0\},$ and $e_1 \mapsto_s e'_1$. Therefore, e is $\text{plus}(e_1; e_2), e'$ is $\text{plus}(e'_1; e_2)$, and therefore by rule (5.4b), $e \mapsto_s e'$.

Equational Dynamics

$$\overline{\Gamma \vdash e \equiv e : \tau} \tag{5.10a}$$

$$\frac{\Gamma \vdash e' \equiv e : \tau}{\Gamma \vdash e \equiv e' : \tau}$$
(5.10b)

$$\frac{\Gamma \vdash e \equiv e' : \tau \quad \Gamma \vdash e' \equiv e'' : \tau}{\Gamma \vdash e \equiv e'' : \tau}$$
(5.10c)

$$\frac{\Gamma \vdash e_1 \equiv e'_1 : \text{num} \quad \Gamma \vdash e_2 \equiv e'_2 : \text{num}}{\Gamma \vdash \text{plus}(e_1; e_2) \equiv \text{plus}(e'_1; e'_2) : \text{num}}$$
(5.10d)

$$\frac{\Gamma \vdash e_1 \equiv e'_1 : \texttt{str} \quad \Gamma \vdash e_2 \equiv e'_2 : \texttt{str}}{\Gamma \vdash \texttt{cat}(e_1; e_2) \equiv \texttt{cat}(e'_1; e'_2) : \texttt{str}}$$

(5.10e)

$$\frac{\Gamma \vdash e_1 \equiv e'_1 : \tau_1 \quad \Gamma, x : \tau_1 \vdash e_2 \equiv e'_2 : \tau_2}{\Gamma \vdash \mathsf{let}(e_1; x. e_2) \equiv \mathsf{let}(e'_1; x. e'_2) : \tau_2}$$
(5.10f)

$$\frac{n_1 + n_2 \text{ is } n \text{ nat}}{\Gamma \vdash \texttt{plus}(\texttt{num}[n_1];\texttt{num}[n_2]) \equiv \texttt{num}[n]:\texttt{num}}$$

$$\frac{s_1 \, \hat{s}_2 = s \, \text{str}}{\Gamma \vdash \text{cat}(\text{str}[s_1]; \text{str}[s_2]) \equiv \text{str}[s] : \text{str}}$$

 $\overline{\Gamma \vdash \texttt{let}(e_1; x.e_2) \equiv [e_1/x]e_2 : \tau}$

Equational Dynamics

Theorem 5.5. For the expression language \mathbf{E} , the relation $e \equiv e' : \tau$ holds iff there exists e_0 val such that $e \mapsto^* e_0$ and $e' \mapsto^* e_0$.

Proof The proof from right to left is direct, because every transition step is a valid equation. The converse follows from the following, more general, proposition, which is proved by induction on rules (5.10): if $x_1 : \tau_1, \ldots, x_n : \tau_n \vdash e \equiv e' : \tau$, then when $e_1 : \tau_1, e'_1 : \tau_1, \ldots, e_n : \tau_n, e'_n : \tau_n$, if for each $1 \le i \le n$ the expressions e_i and e'_i evaluate to a common value v_i , then there exists e_0 val such that

$$[e_1,\ldots,e_n/x_1,\ldots,x_n]e\longmapsto^* e_0$$

and

$$[e'_1,\ldots,e'_n/x_1,\ldots,x_n]e'\longmapsto^* e_0.$$

Type Safety for E

Theorem 6.1 (Type Safety).

- 1. If $e : \tau$ and $e \mapsto e'$, then $e' : \tau$.
- 2. If $e : \tau$, then either e val, or there exists e' such that $e \mapsto e'$.

The first part, called *preservation*, says that the steps of evaluation preserve typing; the second, called *progress*, ensures that well-typed expressions are either values or can be further evaluated. Safety is the conjunction of preservation and progress.

We say that an expression *e* is *stuck* iff it is not a value, yet there is no *e'* such that $e \mapsto e'$. It follows from the safety theorem that a stuck state is necessarily ill-typed. Or, putting it the other way around, that well-typed states do not get stuck.

Preservation for E

Theorem 6.2 (Preservation). *If* $e : \tau$ *and* $e \mapsto e'$ *, then* $e' : \tau$ *.*

Proof We will give the proof in two cases, leaving the rest to the reader. Consider rule (5.4b),

$$\frac{e_1 \longmapsto e_1'}{\texttt{plus}(e_1; e_2) \longmapsto \texttt{plus}(e_1'; e_2)}$$

Assume that $plus(e_1; e_2) : \tau$. By inversion for typing, we have that $\tau = \text{num}, e_1 : \text{num}$, and $e_2 : \text{num}$. By induction, we have that $e'_1 : \text{num}$, and hence $plus(e'_1; e_2) : \text{num}$. The case for concatenation is handled similarly.

Now consider rule (5.4h),

$$\boxed{\texttt{let}(e_1; x.e_2) \longmapsto [e_1/x]e_2}$$

Assume that $let(e_1; x.e_2) : \tau_2$. By the inversion Lemma 4.2, $e_1 : \tau_1$ for some τ_1 such that $x : \tau_1 \vdash e_2 : \tau_2$. By the substitution Lemma 4.4 $[e_1/x]e_2 : \tau_2$, as desired.

It is easy to check that the primitive operations are all type-preserving; for example, if a nat and b nat and a + b is c nat, then c nat.

Progress for E

Lemma 6.3 (Canonical Forms). *If* e val and e : τ , then

1. If $\tau = \text{num}$, then e = num[n] for some number n. 2. If $\tau = \text{str}$, then e = str[s] for some string s.

Proof By induction on rules (4.1) and (5.3).

Progress is proved by rule induction on rules (4.1) defining the statics of the language.

Theorem 6.4 (Progress). If $e : \tau$, then either e val, or there exists e' such that $e \mapsto e'$.

Progress for E

Theorem 6.4 (Progress). If $e : \tau$, then either e val, or there exists e' such that $e \mapsto e'$.

Proof The proof proceeds by induction on the typing derivation. We will consider only one case, for rule (4.1d),

 $\frac{e_1:\texttt{num} \quad e_2:\texttt{num}}{\texttt{plus}(e_1;e_2):\texttt{num}} ,$

where the context is empty because we are considering only closed terms.

By induction, we have that either e_1 val, or there exists e'_1 such that $e_1 \mapsto e'_1$. In the latter case, it follows that $plus(e_1; e_2) \mapsto plus(e'_1; e_2)$, as required. In the former, we also have by induction that either e_2 val, or there exists e'_2 such that $e_2 \mapsto e'_2$. In the latter case, we have that $plus(e_1; e_2) \mapsto plus(e_1; e'_2)$, as required. In the former, we have, by the Canonical Forms Lemma 6.3, $e_1 = num[n_1]$ and $e_2 = num[n_2]$, and hence

$$plus(num[n_1]; num[n_2]) \longmapsto num[n_1 + n_2].$$

E + Runtime Errors

Suppose that we wish to extend E with, say, a quotient operation that is undefined for a zero divisor. The natural typing rule for quotients is given by the following rule:

 $\frac{e_1: \texttt{num} \quad e_2: \texttt{num}}{\texttt{div}(e_1; e_2): \texttt{num}}$

But the expression div(num[3]; num[0]) is well-typed, yet stuck! We have two options to correct this situation:

- 1. Enhance the type system, so that no well-typed program may divide by zero.
- 2. Add dynamic checks, so that division by zero signals an error as the outcome of evaluation.

E + Runtime Errors

One approach to modeling checked errors is to give an inductive definition of the judgment e err stating that the expression e incurs a checked run-time error, such as division by zero. Here are some representative rules that would be present in a full inductive definition of this judgment:

$$\frac{e_1 \text{ val}}{\text{div}(e_1; \text{num}[0]) \text{ err}}$$
(6.1a)

$$\frac{e_1 \text{ err}}{\text{div}(e_1; e_2) \text{ err}}$$
(6.1b)

e_1 val e_2 er	r = (6.1c)
$\operatorname{div}(e_1; e_2)$ er	r (0.10)

E + Runtime Errors

Once the error judgment is available, we may also consider an expression, error, which forcibly induces an error, with the following static and dynamic semantics:

 $\overline{\Gamma \vdash \texttt{error} : \tau}$

(6.2b)

(6.2a)

error err

The preservation theorem is not affected by checked errors. However, the statement (and proof) of progress is modified to account for checked errors.

Theorem 6.5 (Progress With Error). If $e : \tau$, then either e err, or e val, or there exists e' such that $e \mapsto e'$.

Evaluation Dynamics for E (big-step operational semantics)

An *evaluation dynamics* consists of an inductive definition of the evaluation judgment $e \Downarrow v$ stating that the closed expression *e* evaluates to the value *v*. The evaluation dynamics of **E** is defined by the following rules:

$$\operatorname{num}[n] \Downarrow \operatorname{num}[n] \tag{7.1a}$$

$$\overline{\operatorname{str}[s] \Downarrow \operatorname{str}[s]} \tag{7.1b}$$

$$\frac{e_1 \Downarrow \operatorname{num}[n_1] \quad e_2 \Downarrow \operatorname{num}[n_2] \quad n_1 + n_2 \text{ is } n \text{ nat}}{\operatorname{plus}(e_1; e_2) \Downarrow \operatorname{num}[n]}$$
(7.1c)

$$\frac{e_1 \Downarrow \operatorname{str}[s_1] \quad e_2 \Downarrow \operatorname{str}[s_2] \quad s_1 \land s_2 = s \operatorname{str}}{\operatorname{cat}(e_1; e_2) \Downarrow \operatorname{str}[s]}$$
(7.1d)

$$\frac{e \Downarrow \operatorname{str}[s] |s| = n \operatorname{nat}}{\operatorname{len}(e) \Downarrow \operatorname{num}[n]}$$
(7.1e)

$$\frac{[e_1/x]e_2 \Downarrow v_2}{\operatorname{let}(e_1; x.e_2) \Downarrow v_2}$$
(7.1f)

Evaluation Dynamics for E

An *evaluation dynamics* consists of an inductive definition of the evaluation judgment $e \Downarrow v$ stating that the closed expression e evaluates to the value v. The evaluation dynamics of **E** is defined by the following rules:

$$\frac{1}{\operatorname{num}[n] \Downarrow \operatorname{num}[n]}
(7.1a)$$

$$\frac{1}{\operatorname{str}[s] \Downarrow \operatorname{str}[s]}
(7.1b)$$

$$\frac{e_1 \Downarrow \operatorname{num}[n_1] e_2 \Downarrow \operatorname{num}[n_2] n_1 + n_2 \operatorname{is} n \operatorname{nat}}{\operatorname{plus}(e_1; e_2) \Downarrow \operatorname{num}[n]}
(7.1c)$$

$$\frac{e_1 \Downarrow \operatorname{str}[s_1] e_2 \Downarrow \operatorname{str}[s_2] s_1 \widehat{s}_2 = s \operatorname{str}}{\operatorname{cat}(e_1; e_2) \Downarrow \operatorname{str}[s]}
(7.1d)$$

$$\frac{e \Downarrow \operatorname{str}[s] |s| = n \operatorname{nat}}{\operatorname{len}(e) \Downarrow \operatorname{num}[n]}
(7.1e)$$

$$\frac{e_1 \Downarrow v_1 [v_1/x]e_2 \Downarrow v_2}{\operatorname{let}(e_1; x.e_2) \Downarrow v_2}
(7.2)$$

eval-bv-

Relating Structural & Evaluation Dynamics

Lemma 7.3. If $e \Downarrow v$, then $e \mapsto^* v$.

Proof By induction on the definition of the evaluation judgment. For example, suppose that $plus(e_1; e_2) \Downarrow num[n]$ by the rule for evaluating additions. By induction, we know that $e_1 \mapsto^* num[n_1]$ and $e_2 \mapsto^* num[n_2]$. We reason as follows:

$$\begin{array}{rcl} \texttt{plus}(e_1;e_2) & \longmapsto^* & \texttt{plus}(\texttt{num}[n_1];e_2) \\ & \longmapsto^* & \texttt{plus}(\texttt{num}[n_1];\texttt{num}[n_2]) \\ & \longmapsto & \texttt{num}[n_1+n_2] \end{array}$$

Therefore, $plus(e_1; e_2) \mapsto^* num[n_1 + n_2]$, as required. The other cases are handled similarly.

Relating Structural & Evaluation Dynamics

Lemma 7.4. If $e \mapsto e'$ and $e' \Downarrow v$, then $e \Downarrow v$.

Proof By induction on the definition of the transition judgment. For example, suppose that $plus(e_1; e_2) \mapsto plus(e'_1; e_2)$, where $e_1 \mapsto e'_1$. Suppose further that $plus(e'_1; e_2) \Downarrow v$, so that $e'_1 \Downarrow num[n_1]$, and $e_2 \Downarrow num[n_2]$, and $n_1 + n_2$ is n nat, and v is num[n]. By induction $e_1 \Downarrow num[n_1]$, and hence $plus(e_1; e_2) \Downarrow num[n]$, as required.

Cost Dynamics

Evaluation judgments have the form $e \downarrow^k v$, with the meaning that e evaluates to v in k steps.

$$\operatorname{num}[n] \Downarrow^{0} \operatorname{num}[n] \tag{7.4a}$$

$$\frac{e_1 \Downarrow^{k_1} \operatorname{num}[n_1] \quad e_2 \Downarrow^{k_2} \operatorname{num}[n_2]}{\operatorname{plus}(e_1; e_2) \Downarrow^{k_1 + k_2 + 1} \operatorname{num}[n_1 + n_2]}$$
(7.4b)

$$\overline{\operatorname{str}[s]} \Downarrow^0 \operatorname{str}[s] \tag{7.4c}$$

$$\frac{e_1 \Downarrow^{k_1} s_1 e_2 \Downarrow^{k_2} s_2}{\operatorname{cat}(e_1; e_2) \Downarrow^{k_1 + k_2 + 1} \operatorname{str}[s_1 s_2]}$$
(7.4d)

$$\frac{[e_1/x]e_2 \Downarrow^{k_2} v_2}{\det(e_1; x.e_2) \Downarrow^{k_2+1} v_2}$$
(7.4e)

For a by-value interpretation of let, rule (7.4e) is replaced by the following rule:

$$\frac{e_1 \Downarrow^{k_1} v_1 \quad [v_1/x]e_2 \Downarrow^{k_2} v_2}{\operatorname{let}(e_1; x.e_2) \Downarrow^{k_1+k_2+1} v_2}$$
(7.5)

Theorem 7.7. For any closed expression e and closed value v of the same type, $e \Downarrow^k v$ iff $e \mapsto^k v$.