SmallstepSmall-step Operational Semantics


Require Export Imp.

Evaluation relations come in two flavors...
Big-step style: evaluation rules take an expression (or command) to a final answer "all in one step":
      2 + 2 + 3 × 4    16
Small-step style: Rules show how to "reduce" an expression by performing a single step of computation:
      2 + 2 + 3 × 4  
       2 + 2 + 12
       4 + 12
       16
Advantages of the small-step style include:
  • Finer-grained "abstract machine" is closer to real implementations
  • Extends to concurrent languages
  • Separates divergence (nontermination) from stuckness (run-time error)

Relations

A relation on a set X is a family of propositions parameterized by two elements of X — i.e., a proposition about pairs of elements of X.

Definition relation (X: Type) := XXProp.

A Toy Language

The world's simplest programming language:

Inductive tm : Type :=
  | C : nat tm (* Constant *)
  | P : tm tm tm. (* Plus *)

Big-step evaluation as a function


Fixpoint evalF (t : tm) : nat :=
  match t with
  | C nn
  | P a1 a2evalF a1 + evalF a2
  end.

Big-step evaluation as a relation

   (E_Const)  

C n  n
t1  n1
t2  n2 (E_Plus)  

P t1 t2  C (n1 + n2)

Reserved Notation " t '' n " (at level 50, left associativity).

Inductive eval : tm nat Prop :=
  | E_Const : n,
      C n n
  | E_Plus : t1 t2 n1 n2,
      t1 n1
      t2 n2
      P t1 t2 (n1 + n2)

  where " t '' n " := (eval t n).

Tactic Notation "eval_cases" tactic(first) ident(c) :=
  first;
  [ Case_aux c "E_Const" | Case_aux c "E_Plus" ].

Module SimpleArith1.

Small-step evaluation relation

   (ST_PlusConstConst)  

P (C n1) (C n2)  C (n1 + n2)
t1  t1' (ST_Plus1)  

P t1 t2  P t1' t2
t2  t2' (ST_Plus2)  

P (C n1) t2  P (C n1) t2'

Reserved Notation " t '' t' " (at level 40).

Inductive step : tm tm Prop :=
  | ST_PlusConstConst : n1 n2,
      P (C n1) (C n2) C (n1 + n2)
  | ST_Plus1 : t1 t1' t2,
      t1 t1'
      P t1 t2 P t1' t2
  | ST_Plus2 : n1 t2 t2',
      t2 t2'
      P (C n1) t2 P (C n1) t2'

  where " t '' t' " := (step t t').

Tactic Notation "step_cases" tactic(first) ident(c) :=
  first;
  [ Case_aux c "ST_PlusConstConst"
  | Case_aux c "ST_Plus1" | Case_aux c "ST_Plus2" ].

Notice:
  • each step reduces the leftmost P node that is ready to go
    • first rule tells how to rewrite this node
    • second and third rules tell where to find it
  • constants are not related to anything

Examples

If t1 can take a step to t1', then P t1 t2 steps to P t1' t2:

Example test_step_1 :
      P
        (P (C 0) (C 3))
        (P (C 2) (C 4))
      
      P
        (C (0 + 3))
        (P (C 2) (C 4)).
Proof.
  apply ST_Plus1. apply ST_PlusConstConst. Qed.

What does the following term step to?
    P (P (C 1) (C 2)) (P (C 1) (C 2))
(1) C 6
(2) P (C 3) (P (C 1) (C 2))
(3) P (P (C 1) (C 2)) (C 3)
(4) P (C 3) (C 3)
(5) None of the above

What about this one?
    C 1
(1) C 1
(2) P (C 0) (C 1)
(3) None of the above

Determinism

One simple property of the relation is that, like the evaluation relation for our language of Imp programs, it is deterministic.
Theorem: For each t, there is at most one t' such that t steps to t' (t t' is provable). Formally, this is the same as saying that is deterministic.
Formally:

Definition deterministic {X: Type} (R: relation X) :=
  x y1 y2 : X, R x y1 R x y2 y1 = y2.

Theorem step_deterministic:
  deterministic step.
Proof.
  unfold deterministic. intros x y1 y2 Hy1 Hy2.
  generalize dependent y2.
  step_cases (induction Hy1) Case; intros y2 Hy2.
    Case "ST_PlusConstConst". step_cases (inversion Hy2) SCase.
      SCase "ST_PlusConstConst". reflexivity.
      SCase "ST_Plus1". inversion H2.
      SCase "ST_Plus2". inversion H2.
    Case "ST_Plus1". step_cases (inversion Hy2) SCase.
      SCase "ST_PlusConstConst". rewrite H0 in Hy1. inversion Hy1.
      SCase "ST_Plus1".
        rewrite (IHHy1 t1'0).
        reflexivity. assumption.
      SCase "ST_Plus2". rewrite H in Hy1. inversion Hy1.
    Case "ST_Plus2". step_cases (inversion Hy2) SCase.
      SCase "ST_PlusConstConst". rewrite H1 in Hy1. inversion Hy1.
      SCase "ST_Plus1". inversion H2.
      SCase "ST_Plus2".
        rewrite (IHHy1 t2'0).
        reflexivity. assumption. Qed.

End SimpleArith1.

Values

It is useful to think of the relation as defining an abstract machine:
  • At any moment, the state of the machine is a term.
  • A step of the machine is an atomic unit of computation — here, a single "add" operation.
  • The halting states of the machine are ones where there is no more computation to be done.
We can then execute a term t as follows:
  • Take t as the starting state of the machine.
  • Repeatedly use the relation to find a sequence of machine states, starting with t, where each state steps to the next.
  • When no more reduction is possible, "read out" the final state of the machine as the result of execution.
Final states of the machine are terms of the form C n for some n. We call such terms values.

Inductive value : tm Prop :=
  v_const : n, value (C n).

This gives a more elegant way of writing the ST_Plus2 rule:
   (ST_PlusConstConst)  

P (C n1) (C n2)  C (n1 + n2)
t1  t1' (ST_Plus1)  

P t1 t2  P t1' t2
value v1
t2  t2' (ST_Plus2)  

P v1 t2  P v1 t2'
Again, variable names carry important information:
  • v1 ranges only over values
  • t1 and t2 range over arbitrary terms
So the value hypothesis in the last rule is actually redundant. We'll keep it for now, but in later chapters we'll elide it.
Here are the formal rules:

Reserved Notation " t '' t' " (at level 40).

Inductive step : tm tm Prop :=
  | ST_PlusConstConst : n1 n2,
          P (C n1) (C n2)
       C (n1 + n2)
  | ST_Plus1 : t1 t1' t2,
        t1 t1'
        P t1 t2 P t1' t2
  | ST_Plus2 : v1 t2 t2',
        value v1 (* <----- n.b. *)
        t2 t2'
        P v1 t2 P v1 t2'

  where " t '' t' " := (step t t').

Tactic Notation "step_cases" tactic(first) ident(c) :=
  first;
  [ Case_aux c "ST_PlusConstConst"
  | Case_aux c "ST_Plus1" | Case_aux c "ST_Plus2" ].

Strong Progress and Normal Forms

Theorem (Strong Progress): If t is a term, then either t is a value, or there exists a term t' such that t t'.
Or, formally:

Theorem strong_progress : t,
  value t (t', t t').
Proof.
  tm_cases (induction t) Case.
    Case "C". left. apply v_const.
    Case "P". right. inversion IHt1.
      SCase "l". inversion IHt2.
        SSCase "l". inversion H. inversion H0.
          (C (n + n0)).
          apply ST_PlusConstConst.
        SSCase "r". inversion H0 as [t' H1].
          (P t1 t').
          apply ST_Plus2. apply H. apply H1.
      SCase "r". inversion H as [t' H0].
          (P t' t2).
          apply ST_Plus1. apply H0. Qed.

Normal forms

The idea of "making progress" can be extended to tell us something interesting about values: in this language values are exactly the terms that cannot make progress in this sense.
To state this observation formally, let's begin by giving a name to terms that cannot make progress. We'll call them normal forms.

Definition normal_form {X:Type} (R:relation X) (t:X) : Prop :=
  ¬ t', R t t'.

Values vs. normal forms

In this language, normal forms and values coincide:

Lemma value_is_nf : v,
  value v normal_form step v.
Proof.
  unfold normal_form. intros v H. inversion H.
  intros contra. inversion contra. inversion H1.
Qed.

Lemma nf_is_value : t,
  normal_form step t value t.
Proof. (* a corollary of strong_progress... *)
  unfold normal_form. intros t H.
  assert (G : value t t', t t').
    SCase "Proof of assertion". apply strong_progress.
  inversion G.
    SCase "l". apply H0.
    SCase "r". apply ex_falso_quodlibet. apply H. assumption. Qed.

Corollary nf_same_as_value : t,
  normal_form step t value t.
Proof.
  split. apply nf_is_value. apply value_is_nf. Qed.

Why is this interesting?
Because value is a syntactic concept — it is defined by looking at the form of a term — while normal_form is a semantic one — it is defined by looking at how the term steps. It is not obvious that these concepts should coincide!
Indeed, we could easily have written the definitions so that they would not coincide...

We might, for example, mistakenly define value so that it includes some terms that are not finished reducing.

Module Temp1.

Inductive value : tm Prop :=
| v_const : n, value (C n)
| v_funny : t1 n2, (* <---- *)
              value (P t1 (C n2)).

Reserved Notation " t '' t' " (at level 40).

Inductive step : tm tm Prop :=
  | ST_PlusConstConst : n1 n2,
      P (C n1) (C n2) C (n1 + n2)
  | ST_Plus1 : t1 t1' t2,
      t1 t1'
      P t1 t2 P t1' t2
  | ST_Plus2 : v1 t2 t2',
      value v1
      t2 t2'
      P v1 t2 P v1 t2'

  where " t '' t' " := (step t t').

How many different terms does the following term step to?
    P (P (C 1) (C 2)) (C 3)

How many different terms does the following term step to?
    P (P (C 1) (C 2)) (P (C 3) (C 4))


Lemma value_not_same_as_normal_form :
  v, value v ¬ normal_form step v.
Proof.
  (* FILL IN HERE *) Admitted.

End Temp1.

Alternatively, we might mistakenly define step so that it permits something designated as a value to reduce further.

Module Temp2.

Inductive value : tm Prop :=
| v_const : n, value (C n).

Reserved Notation " t '' t' " (at level 40).

Inductive step : tm tm Prop :=
  | ST_Funny : n, (* <---- *)
      C n P (C n) (C 0)
  | ST_PlusConstConst : n1 n2,
      P (C n1) (C n2) C (n1 + n2)
  | ST_Plus1 : t1 t1' t2,
      t1 t1'
      P t1 t2 P t1' t2
  | ST_Plus2 : v1 t2 t2',
      value v1
      t2 t2'
      P v1 t2 P v1 t2'

  where " t '' t' " := (step t t').

How many terms does the following term step to?
    P (C 1) (C 3)


Lemma value_not_same_as_normal_form :
  v, value v ¬ normal_form step v.
Proof.
  (* FILL IN HERE *) Admitted.


End Temp2.

Finally, we might define value and step so that there is some term that is not a value but that cannot take a step in the step relation. Such terms are said to be stuck. In this case this is caused by a mistake in the semantics, but we will also see situations where, even in a correct language definition, it makes sense to allow some terms to be stuck.

Module Temp3.

Inductive value : tm Prop :=
  | v_const : n, value (C n).

Reserved Notation " t '' t' " (at level 40).

Inductive step : tm tm Prop :=
  | ST_PlusConstConst : n1 n2,
      P (C n1) (C n2) C (n1 + n2)
  | ST_Plus1 : t1 t1' t2,
      t1 t1'
      P t1 t2 P t1' t2

  where " t '' t' " := (step t t').

(Note that ST_Plus2 is missing.)

How many terms does the following term step to?
    P (C 1) (P (C 1) (C 2))


Lemma value_not_same_as_normal_form :
  t, ¬ value t normal_form step t.
Proof.
  (* FILL IN HERE *) Admitted.

End Temp3.

Multi-Step Reduction

We can now use the single-step relation and the concept of value to formalize an entire execution of an abstract machine.
First, we define a multi-step reduction relation ⇒* to capture the intermediate results of a computation.

Since we'll want to reuse the idea of multi-step reduction many times in this and future chapters, let's take a little extra trouble here and define it generically.
Given a relation R, we define a relation multi R, called the multi-step closure of R as follows:

Inductive multi {X:Type} (R: relation X) : relation X :=
  | multi_refl : (x : X), multi R x x
  | multi_step : (x y z : X),
                    R x y
                    multi R y z
                    multi R x z.

The effect of this definition is that multi R relates two elements x and y if either
  • x = y, or else
  • there is some sequence z1, z2, ..., zn such that
      R x z1
      R z1 z2
      ...
      R zn y.
Thus, if R describes a single-step of computation, z1, ... zn is the sequence of intermediate steps of computation between x and y.


We write ⇒* for the multi step relation — i.e., the relation that relates two terms t and t' if we can get from t to t' using the step relation zero or more times.

Definition multistep := multi step.
Notation " t '⇒*' t' " := (multistep t t') (at level 40).

The relation multi R has several crucial properties.
First, it is obviously reflexive (that is, x, multi R x x). In the case of the ⇒* (i.e. multi step) relation, the intuition is that a term can execute to itself by taking zero steps of execution.
Second, it contains R — that is, single-step executions are a particular case of multi-step executions. (It is this fact that justifies the word "closure" in the term "multi-step closure of R.")

Theorem multi_R : (X:Type) (R:relation X) (x y : X),
       R x y (multi R) x y.
Proof.
  intros X R x y H.
  apply multi_step with y. apply H. apply multi_refl. Qed.

Which of the following relations on numbers cannot be expressed as multi R for some R?
(1) less then or equal
(2) strictly less than
(3) equal
(4) none of the above

Third, multi R is transitive.

Theorem multi_trans :
  (X:Type) (R: relation X) (x y z : X),
      multi R x y
      multi R y z
      multi R x z.
Proof.
  intros X R x y z G H.
  multi_cases (induction G) Case.
    Case "multi_refl". assumption.
    Case "multi_step".
      apply multi_step with y. assumption.
      apply IHG. assumption. Qed.

That is, if t1⇒*t2 and t2⇒*t3, then t1⇒*t3.

Examples


Lemma test_multistep_1:
      P
        (P (C 0) (C 3))
        (P (C 2) (C 4))
   ⇒*
      C ((0 + 3) + (2 + 4)).
Proof.
  apply multi_step with
            (P
                (C (0 + 3))
                (P (C 2) (C 4))).
  apply ST_Plus1. apply ST_PlusConstConst.
  apply multi_step with
            (P
                (C (0 + 3))
                (C (2 + 4))).
  apply ST_Plus2. apply v_const.
  apply ST_PlusConstConst.
  apply multi_R.
  apply ST_PlusConstConst. Qed.

Normal Forms Again

If t reduces to t' in zero or more steps and t' is a normal form, we say that "t' is a normal form of t."

Definition step_normal_form := normal_form step.

Definition normal_form_of (t t' : tm) :=
  (t ⇒* t' step_normal_form t').

Notice:
  • single-step reduction is deterministic
  • so, if t can reach a normal form, then this normal form is unique
  • so we can pronounce normal_form t t' as "t' is the normal form of t."
Indeed, something stronger is true (for this language):
  • the reduction of any term t will eventually reach a normal form
  • i.e., normal_form_of is a total function
Formally, we say the step relation is normalizing.

Definition normalizing {X:Type} (R:relation X) :=
  t, t',
    (multi R) t t' normal_form R t'.

To prove that step is normalizing, we need a couple of lemmas.
First, we observe that, if t reduces to t' in many steps, then the same sequence of reduction steps within t is also possible when t appears as the left-hand child of a P node, and similarly when t appears as the right-hand child of a P node whose left-hand child is a value.

Lemma multistep_congr_1 : t1 t1' t2,
     t1 ⇒* t1'
     P t1 t2 ⇒* P t1' t2.
Proof.
  intros t1 t1' t2 H. multi_cases (induction H) Case.
    Case "multi_refl". apply multi_refl.
    Case "multi_step". apply multi_step with (P y t2).
        apply ST_Plus1. apply H.
        apply IHmulti. Qed.

Lemma multistep_congr_2 : t1 t2 t2',
     value t1
     t2 ⇒* t2'
     P t1 t2 ⇒* P t1 t2'.
Proof.
  (* FILL IN HERE *) Admitted.

Theorem: The step function is normalizing — i.e., for every t there exists some t' such that t steps to t' and t' is a normal form.
Proof sketch: By induction on terms. There are two cases to consider:
  • t = C n for some n. Here t doesn't take a step, and we have t' = t. We can derive the left-hand side by reflexivity and the right-hand side by observing (a) that values are normal forms (by nf_same_as_value) and (b) that t is a value (by v_const).
  • t = P t1 t2 for some t1 and t2. By the IH, t1 and t2 have normal forms t1' and t2'. Recall that normal forms are values (by nf_same_as_value); we know that t1' = C n1 and t2' = C n2, for some n1 and n2. We can combine the ⇒* derivations for t1 and t2 to prove that P t1 t2 reduces in many steps to C (n1 + n2).
    It is clear that our choice of t' = C (n1 + n2) is a value, which is in turn a normal form.

Theorem step_normalizing :
  normalizing step.
Proof.
  unfold normalizing.
  tm_cases (induction t) Case.
    Case "C".
      (C n).
      split.
      SCase "l". apply multi_refl.
      SCase "r".
        (* We can use rewrite with "iff" statements, not
           just equalities: *)

        rewrite nf_same_as_value. apply v_const.
    Case "P".
      inversion IHt1 as [t1' H1]; clear IHt1. inversion IHt2 as [t2' H2]; clear IHt2.
      inversion H1 as [H11 H12]; clear H1. inversion H2 as [H21 H22]; clear H2.
      rewrite nf_same_as_value in H12. rewrite nf_same_as_value in H22.
      inversion H12 as [n1]. inversion H22 as [n2].
      rewrite H in H11.
      rewrite H0 in H21.
      (C (n1 + n2)).
      split.
        SCase "l".
          apply multi_trans with (P (C n1) t2).
          apply multistep_congr_1. apply H11.
          apply multi_trans with
             (P (C n1) (C n2)).
          apply multistep_congr_2. apply v_const. apply H21.
          apply multi_R. apply ST_PlusConstConst.
        SCase "r".
          rewrite nf_same_as_value. apply v_const. Qed.

Equivalence of Big-Step and Small-Step Reduction

Having defined the operational semantics of our tiny programming language in two different styles, it makes sense to ask whether these definitions actually define the same thing! They do, though it takes a little work to show it. (The details are left as an exercise).

Theorem eval__multistep : t n,
  t n t ⇒* C n.

The key idea behind the proof comes from the following picture:
       P t1 t2             (by ST_Plus1
       P t1' t2            (by ST_Plus1)  
       P t1'' t2           (by ST_Plus1
       ...
       P (C n1t2         (by ST_Plus2)
       P (C n1t2'        (by ST_Plus2)
       P (C n1t2''       (by ST_Plus2)
       ...
       P (C n1) (C n2    (by ST_PlusConstConst)
       C (n1 + n2)              
That is, the multistep reduction of a term of the form P t1 t2 proceeds in three phases:
  • First, we use ST_Plus1 some number of times to reduce t1 to a normal form, which must (by nf_same_as_value) be a term of the form C n1 for some n1.
  • Next, we use ST_Plus2 some number of times to reduce t2 to a normal form, which must again be a term of the form C n2 for some n2.
  • Finally, we use ST_PlusConstConst one time to reduce P (C n1) (C n2) to C (n1 + n2).

Proof.
  (* FILL IN HERE *) Admitted.

For the other direction, we need one lemma, which establishes a relation between single-step reduction and big-step evaluation.

Lemma step__eval : t t' n,
     t t'
     t' n
     t n.
Proof.
  intros t t' n Hs. generalize dependent n.
  (* FILL IN HERE *) Admitted.

The fact that small-step reduction implies big-step is now straightforward to prove, once it is stated correctly.
The proof proceeds by induction on the multip-step reduction sequence that is buried in the hypothesis normal_form_of t t'.

Theorem multistep__eval : t t',
  normal_form_of t t' n, t' = C n t n.
Proof.
  (* FILL IN HERE *) Admitted.

Small-Step Imp

For a more serious example, here is the small-step version of the Imp operational semantics.

Inductive aval : aexp Prop :=
  av_num : n, aval (ANum n).

Reserved Notation " t '/' st 'a' t' " (at level 40, st at level 39).

Inductive astep : state aexp aexp Prop :=
  | AS_Id : st i,
      AId i / st a ANum (st i)
  | AS_Plus : st n1 n2,
      APlus (ANum n1) (ANum n2) / st a ANum (n1 + n2)
  | AS_Plus1 : st a1 a1' a2,
      a1 / st a a1'
      (APlus a1 a2) / st a (APlus a1' a2)
  | AS_Plus2 : st v1 a2 a2',
      aval v1
      a2 / st a a2'
      (APlus v1 a2) / st a (APlus v1 a2')
  | AS_Minus : st n1 n2,
      (AMinus (ANum n1) (ANum n2)) / st a (ANum (minus n1 n2))
  | AS_Minus1 : st a1 a1' a2,
      a1 / st a a1'
      (AMinus a1 a2) / st a (AMinus a1' a2)
  | AS_Minus2 : st v1 a2 a2',
      aval v1
      a2 / st a a2'
      (AMinus v1 a2) / st a (AMinus v1 a2')
  | AS_Mult : st n1 n2,
      (AMult (ANum n1) (ANum n2)) / st a (ANum (mult n1 n2))
  | AS_Mult1 : st a1 a1' a2,
      a1 / st a a1'
      (AMult (a1) (a2)) / st a (AMult (a1') (a2))
  | AS_Mult2 : st v1 a2 a2',
      aval v1
      a2 / st a a2'
      (AMult v1 a2) / st a (AMult v1 a2')

    where " t '/' st 'a' t' " := (astep st t t').

  Reserved Notation " t '/' st 'b' t' " (at level 40, st at level 39).

  Inductive bstep : state bexp bexp Prop :=
  | BS_Eq : st n1 n2,
      (BEq (ANum n1) (ANum n2)) / st b
      (if (beq_nat n1 n2) then BTrue else BFalse)
  | BS_Eq1 : st a1 a1' a2,
      a1 / st a a1'
      (BEq a1 a2) / st b (BEq a1' a2)
  | BS_Eq2 : st v1 a2 a2',
      aval v1
      a2 / st a a2'
      (BEq v1 a2) / st b (BEq v1 a2')
  | BS_LtEq : st n1 n2,
      (BLe (ANum n1) (ANum n2)) / st b
               (if (ble_nat n1 n2) then BTrue else BFalse)
  | BS_LtEq1 : st a1 a1' a2,
      a1 / st a a1'
      (BLe a1 a2) / st b (BLe a1' a2)
  | BS_LtEq2 : st v1 a2 a2',
      aval v1
      a2 / st a a2'
      (BLe v1 a2) / st b (BLe v1 (a2'))
  | BS_NotTrue : st,
      (BNot BTrue) / st b BFalse
  | BS_NotFalse : st,
      (BNot BFalse) / st b BTrue
  | BS_NotStep : st b1 b1',
      b1 / st b b1'
      (BNot b1) / st b (BNot b1')
  | BS_AndTrueTrue : st,
      (BAnd BTrue BTrue) / st b BTrue
  | BS_AndTrueFalse : st,
      (BAnd BTrue BFalse) / st b BFalse
  | BS_AndFalse : st b2,
      (BAnd BFalse b2) / st b BFalse
  | BS_AndTrueStep : st b2 b2',
      b2 / st b b2'
      (BAnd BTrue b2) / st b (BAnd BTrue b2')
  | BS_AndStep : st b1 b1' b2,
      b1 / st b b1'
      (BAnd b1 b2) / st b (BAnd b1' b2)

  where " t '/' st 'b' t' " := (bstep st t t').

The semantics of commands is the interesting part. We need two small tricks to make it work:
  • We use SKIP as a "command value" — i.e., a command that has reached a normal form.
    • An assignment command reduces to SKIP (and an updated state).
    • The sequencing command waits until its left-hand subcommand has reduced to SKIP, then throws it away so that reduction can continue with the right-hand subcommand.
  • We reduce a WHILE command by transforming it into a conditional followed by the same WHILE.

Reserved Notation " t '/' st '' t' '/' st' "
                  (at level 40, st at level 39, t' at level 39).

Inductive cstep : (com × state) (com × state) Prop :=
  | CS_AssStep : st i a a',
      a / st a a'
      (i ::= a) / st (i ::= a') / st
  | CS_Ass : st i n,
      (i ::= (ANum n)) / st SKIP / (update st i n)
  | CS_SeqStep : st c1 c1' st' c2,
      c1 / st c1' / st'
      (c1 ;; c2) / st (c1' ;; c2) / st'
  | CS_SeqFinish : st c2,
      (SKIP ;; c2) / st c2 / st
  | CS_IfTrue : st c1 c2,
      IFB BTrue THEN c1 ELSE c2 FI / st c1 / st
  | CS_IfFalse : st c1 c2,
      IFB BFalse THEN c1 ELSE c2 FI / st c2 / st
  | CS_IfStep : st b b' c1 c2,
      b / st b b'
      IFB b THEN c1 ELSE c2 FI / st (IFB b' THEN c1 ELSE c2 FI) / st
  | CS_While : st b c1,
          (WHILE b DO c1 END) / st
       (IFB b THEN (c1;; (WHILE b DO c1 END)) ELSE SKIP FI) / st

  where " t '/' st '' t' '/' st' " := (cstep (t,st) (t',st')).

Concurrent Imp

Finally, let's define a concurrent extension of Imp, to show off the power of our new tools...

Module CImp.

Inductive com : Type :=
  | CSkip : com
  | CAss : id aexp com
  | CSeq : com com com
  | CIf : bexp com com com
  | CWhile : bexp com com
  (* New: *)
  | CPar : com com com.

Tactic Notation "com_cases" tactic(first) ident(c) :=
  first;
  [ Case_aux c "SKIP" | Case_aux c "::=" | Case_aux c ";"
  | Case_aux c "IFB" | Case_aux c "WHILE" | Case_aux c "PAR" ].

Notation "'SKIP'" :=
  CSkip.
Notation "x '::=' a" :=
  (CAss x a) (at level 60).
Notation "c1 ;; c2" :=
  (CSeq c1 c2) (at level 80, right associativity).
Notation "'WHILE' b 'DO' c 'END'" :=
  (CWhile b c) (at level 80, right associativity).
Notation "'IFB' b 'THEN' c1 'ELSE' c2 'FI'" :=
  (CIf b c1 c2) (at level 80, right associativity).
Notation "'PAR' c1 'WITH' c2 'END'" :=
  (CPar c1 c2) (at level 80, right associativity).

Inductive cstep : (com × state) (com × state) Prop :=
    (* Old part *)
  | CS_AssStep : st i a a',
      a / st a a'
      (i ::= a) / st (i ::= a') / st
  | CS_Ass : st i n,
      (i ::= (ANum n)) / st SKIP / (update st i n)
  | CS_SeqStep : st c1 c1' st' c2,
      c1 / st c1' / st'
      (c1 ;; c2) / st (c1' ;; c2) / st'
  | CS_SeqFinish : st c2,
      (SKIP ;; c2) / st c2 / st
  | CS_IfTrue : st c1 c2,
      (IFB BTrue THEN c1 ELSE c2 FI) / st c1 / st
  | CS_IfFalse : st c1 c2,
      (IFB BFalse THEN c1 ELSE c2 FI) / st c2 / st
  | CS_IfStep : st b b' c1 c2,
      b /st b b'
      (IFB b THEN c1 ELSE c2 FI) / st (IFB b' THEN c1 ELSE c2 FI) / st
  | CS_While : st b c1,
      (WHILE b DO c1 END) / st
               (IFB b THEN (c1;; (WHILE b DO c1 END)) ELSE SKIP FI) / st
    (* New part: *)
  | CS_Par1 : st c1 c1' c2 st',
      c1 / st c1' / st'
      (PAR c1 WITH c2 END) / st (PAR c1' WITH c2 END) / st'
  | CS_Par2 : st c1 c2 c2' st',
      c2 / st c2' / st'
      (PAR c1 WITH c2 END) / st (PAR c1 WITH c2' END) / st'
  | CS_ParDone : st,
      (PAR SKIP WITH SKIP END) / st SKIP / st
  where " t '/' st '' t' '/' st' " := (cstep (t,st) (t',st')).

Definition cmultistep := multi cstep.

Notation " t '/' st '⇒*' t' '/' st' " :=
   (multi cstep (t,st) (t',st'))
   (at level 40, st at level 39, t' at level 39).

Which state cannot be obtained as a result of executing the following program?
  PAR
    Y ::= ANum 1;;
  WITH
    Y ::= Y+1;;
  END;
  X ::= Y.
(1) Y=1; X=1
(2) Y=0; X=1
(3) Y=n; X=n
(4) None of the above

How about this one?
  PAR
    Y ::= ANum 0;;
    X ::= Y+1
  WITH
    Y ::= Y+1;;
    X ::= ANum 1
  END.
(1) Y=0; X=1
(2) Y=1; X=1
(3) Y=0; X=0
(4) None of the above

Among the many interesting properties of this language is the fact that the following program can terminate with the variable X set to any value...

Definition par_loop : com :=
  PAR
    Y ::= ANum 1
  WITH
    WHILE BEq (AId Y) (ANum 0) DO
      X ::= APlus (AId X) (ANum 1)
    END
  END.

In particular, it can terminate with X set to 0:

Example par_loop_example_0:
  st',
       par_loop / empty_state ⇒* SKIP / st'
     st' X = 0.
Proof.
  eapply ex_intro. split.
  unfold par_loop.
  eapply multi_step. apply CS_Par1.
    apply CS_Ass.
  eapply multi_step. apply CS_Par2. apply CS_While.
  eapply multi_step. apply CS_Par2. apply CS_IfStep.
    apply BS_Eq1. apply AS_Id.
  eapply multi_step. apply CS_Par2. apply CS_IfStep.
    apply BS_Eq. simpl.
  eapply multi_step. apply CS_Par2. apply CS_IfFalse.
  eapply multi_step. apply CS_ParDone.
  eapply multi_refl.
  reflexivity. Qed.

It can also terminate with X set to 2:

Example par_loop_example_2:
  st',
       par_loop / empty_state ⇒* SKIP / st'
     st' X = 2.
Proof.
  eapply ex_intro. split.
  eapply multi_step. apply CS_Par2. apply CS_While.
  eapply multi_step. apply CS_Par2. apply CS_IfStep.
    apply BS_Eq1. apply AS_Id.
  eapply multi_step. apply CS_Par2. apply CS_IfStep.
    apply BS_Eq. simpl.
  eapply multi_step. apply CS_Par2. apply CS_IfTrue.
  eapply multi_step. apply CS_Par2. apply CS_SeqStep.
    apply CS_AssStep. apply AS_Plus1. apply AS_Id.
  eapply multi_step. apply CS_Par2. apply CS_SeqStep.
    apply CS_AssStep. apply AS_Plus.
  eapply multi_step. apply CS_Par2. apply CS_SeqStep.
    apply CS_Ass.
  eapply multi_step. apply CS_Par2. apply CS_SeqFinish.

  eapply multi_step. apply CS_Par2. apply CS_While.
  eapply multi_step. apply CS_Par2. apply CS_IfStep.
    apply BS_Eq1. apply AS_Id.
  eapply multi_step. apply CS_Par2. apply CS_IfStep.
    apply BS_Eq. simpl.
  eapply multi_step. apply CS_Par2. apply CS_IfTrue.
  eapply multi_step. apply CS_Par2. apply CS_SeqStep.
    apply CS_AssStep. apply AS_Plus1. apply AS_Id.
  eapply multi_step. apply CS_Par2. apply CS_SeqStep.
    apply CS_AssStep. apply AS_Plus.
  eapply multi_step. apply CS_Par2. apply CS_SeqStep.
    apply CS_Ass.

  eapply multi_step. apply CS_Par1. apply CS_Ass.
  eapply multi_step. apply CS_Par2. apply CS_SeqFinish.
  eapply multi_step. apply CS_Par2. apply CS_While.
  eapply multi_step. apply CS_Par2. apply CS_IfStep.
    apply BS_Eq1. apply AS_Id.
  eapply multi_step. apply CS_Par2. apply CS_IfStep.
    apply BS_Eq. simpl.
  eapply multi_step. apply CS_Par2. apply CS_IfFalse.
  eapply multi_step. apply CS_ParDone.
  eapply multi_refl.
  reflexivity. Qed.

Lemma par_body_n__Sn : n st,
  st X = n st Y = 0
  par_loop / st ⇒* par_loop / (update st X (S n)).
Proof.
  (* FILL IN HERE *) Admitted.

Lemma par_body_n : n st,
  st X = 0 st Y = 0
  st',
    par_loop / st ⇒* par_loop / st' st' X = n st' Y = 0.
Proof.
  (* FILL IN HERE *) Admitted.
... the above loop can exit with X having any value whatsoever.

Theorem par_loop_any_X:
  n, st',
    par_loop / empty_state ⇒* SKIP / st'
     st' X = n.
Proof.
  intros n.
  destruct (par_body_n n empty_state).
    split; unfold update; reflexivity.

  rename x into st.
  inversion H as [H' [HX HY]]; clear H.
  (update st Y 1). split.
  eapply multi_trans with (par_loop,st). apply H'.
  eapply multi_step. apply CS_Par1. apply CS_Ass.
  eapply multi_step. apply CS_Par2. apply CS_While.
  eapply multi_step. apply CS_Par2. apply CS_IfStep.
    apply BS_Eq1. apply AS_Id. rewrite update_eq.
  eapply multi_step. apply CS_Par2. apply CS_IfStep.
    apply BS_Eq. simpl.
  eapply multi_step. apply CS_Par2. apply CS_IfFalse.
  eapply multi_step. apply CS_ParDone.
  apply multi_refl.

  rewrite update_neq. assumption. intro X; inversion X.
Qed.

End CImp.

A Small-Step Stack Machine

Last example: a small-step semantics for the stack machine example from Imp.v.

Definition stack := list nat.
Definition prog := list sinstr.

Inductive stack_step : state prog × stack prog × stack Prop :=
  | SS_Push : st stk n p',
    stack_step st (SPush n :: p', stk) (p', n :: stk)
  | SS_Load : st stk i p',
    stack_step st (SLoad i :: p', stk) (p', st i :: stk)
  | SS_Plus : st stk n m p',
    stack_step st (SPlus :: p', n::m::stk) (p', (m+n)::stk)
  | SS_Minus : st stk n m p',
    stack_step st (SMinus :: p', n::m::stk) (p', (m-n)::stk)
  | SS_Mult : st stk n m p',
    stack_step st (SMult :: p', n::m::stk) (p', (m×n)::stk).

Theorem stack_step_deterministic : st,
  deterministic (stack_step st).
Proof.
  unfold deterministic. intros st x y1 y2 H1 H2.
  induction H1; inversion H2; reflexivity.
Qed.

Definition stack_multistep st := multi (stack_step st).

Exercise: 3 stars, advanced (compiler_is_correct)

Remember the definition of compile for aexp given in the Imp chapter. We want now to prove compile correct with respect to the stack machine.
State what it means for the compiler to be correct according to the stack machine small step semantics and then prove it.

Definition compiler_is_correct_statement : Prop :=
(* FILL IN HERE *) admit.

Theorem compiler_is_correct : compiler_is_correct_statement.
Proof.
(* FILL IN HERE *) Admitted.