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Achieving consensus is a challenging and ubiquitous problem in distributed systems that is only made harder
by the introduction of malicious byzantine servers. While significant effort has been devoted to the benign and
byzantine failure models individually, no prior work has considered the mechanized verification of both in a
generic way. We claim this is due to the lack of an appropriate abstraction that is capable of representing both
benign and byzantine consensus without either losing too much detail or becoming impractically complex.
We build on recent work on the atomic distributed object model to fill this void with a novel abstraction called
AdoB. In addition to revealing important insights into the essence of consensus, this abstraction has practical
benefits for easing distributed system verification. As a case study, we proved safety and liveness properties
for AdoB in Coq, which are the first such mechanized proofs to handle benign and byzantine consensus in a
unified manner. We also demonstrate that AdoB faithfully models real consensus protocols by proving it is
refined by standard network-level specifications of Fast Paxos and a variant of Jolteon.
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1 INTRODUCTION

Replication is a powerful tool for systems where data reliability and availability are critical, such as
databases or file systems. However, this only works if the replicas agree on the data, which is why
consensus protocols, such as Paxos [Lamport 1998] and Raft [Ongaro andOusterhout 2014], are often
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at the core of these systems [Burrows 2006; Chang et al. 2006; etcd Authors 2022; Ghemawat et al.
2003]. Unfortunately, these protocols are notoriously complex and easy to implement incorrectly.
Formal verification can provide the strongest assurance of their correctness, but this remains a
challenging problem because of the inherent complexity of coordinating concurrent, failure-prone
servers and an asynchronous network.
The situation becomes even worse when one considers other failure models. Paxos and Raft

assume a “benign” setting, such as a data center, where servers are assumed to be cooperative and, at
worst, can become unresponsive. However, as the use of consensus in less controlled environments,
such as blockchains, becomes more prevalent, so too does the need for formal verification of
byzantine consensus protocols [Lamport et al. 1982]. These tolerate a certain number of malicious
participants by adding additional rounds of communication to make up for the loss of trust between
servers. Though byzantine protocols can tolerate benign failures as well, benign protocols still have
their place as they are generally more performant.

Why a new model? In both the benign and byzantine settings, abstraction is the key to scalable
verification. The standard approach is to model a protocol as a set of servers with local state that
pass messages over an abstract network. Such network-based abstractions are faithful to real system
behaviors, but they inherit too many implementation details about network communication, which
are largely independent from the essence of the protocol.
Honoré et al. [2022] used a higher-level abstraction called the atomic distributed object (ADO)

model to disentangle these concerns and verify the safety of benign consensus extended with
a generic hot reconfiguration scheme. This is a promising approach, but it is specific to benign
consensus. In fact, nearly all prior verification work considers either just the benign [Hawblitzel
et al. 2015; Woos et al. 2016] or just the byzantine [Mazieres 2015; Rahli et al. 2018] setting.

It is not immediately clear that the gap between byzantine and benign protocols can be bridged.
The lack of trust between servers seems to demand fundamental changes, and indeed, early im-
plementations, such as PBFT [Castro and Liskov 1999], differ in many ways from their benign
predecessors. However, Lamport [2011] identified that the standard benign Paxos can be trans-
formed into a similar byzantine version through refinement, and, in more recent protocols, such
as HotStuff [Yin et al. 2019] and Jolteon [Gelashvili et al. 2022], the intuitive structural similarity
between the protocols is clearer [Abraham et al. 2021].

Until now, this connection has remained fairly informal, without a clear abstraction to highlight
exactly what the key similarities and differences are. In this paper, we present such an abstraction
based on the ADO model called AdoB (atomic distributed objects for benign/byzantine consensus).
This demonstrates that benign and byzantine consensus use the same basic mechanisms and
that, by maintaining a clear separation between network-level communication details and core
protocol-level behaviors, one can paper over the superficial differences to obtain a unified model.

Why a unified model? The primary advantage of a single high-level model that captures both
benign and byzantine consensus behaviors is that it provides valuable insights into the fundamental
nature of consensus and helps to identify and distinguish universal invariants from implementation-
specific details. This benefits programming language researchers and system designers alike by
clearly separating the concerns of reasoning about the generic class of consensus protocols and
proving a particular implementation correct, which leads to simpler and more reusable proofs.
We demonstrate this claim by implementing the AdoB model in the Coq proof assistant [Coq

Development Team 2022] and proving that it satisfies both safety and liveness. These are the first
proofs to cover both benign and byzantine consensus simultaneously, as well as one of the only
mechanized liveness results. Liveness is known to be particularly challenging because one must
show that every valid system state eventually transitions to another valid state. In a standard
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network-based model, this quickly explodes to an overwhelming number of cases due to the many
possible message interleavings and failures. For this reason, most prior consensus verification work
handles liveness either informally, under strict assumptions, or not at all. AdoB helps to mitigate
the complexity by enabling one to prove safety and liveness once and for all in a simpler atomic
model that both benign and byzantine protocols can then be proved to refine.

How general is the model? In order to succeed as a useful abstraction, a unified consensus
model must accurately reflect real network-level behaviors while also not overfitting to a particular
protocol. We show that AdoB meets both of these requirements by proving that network-based
specifications of two protocols, a novel variant of the byzantine Jolteon, and a version of benign Fast
Paxos [Lamport 2006], both refine the high-level model. Despite significant differences between
the protocols, their refinement proofs share a similar structure, and both benefit from the generic
AdoB-level safety and liveness properties.

The primary key to AdoB’s generality is how it distills the differences between benign and
byzantine consensus into a small set of adjustable parameters. For example, quorum sizes are left
unspecified, allowing them to be easily instantiated to support a variety of consensus schemes,
from a benign 𝑓 of 2𝑓 + 1 majority to a byzantine proof-of-stake [Saleh 2021] system. In general,
nearly any protocol that achieves consensus through gathering quorums of votes over 2–3 rounds
should be compatible with AdoB.
Most prior work on verified byzantine consensus does not prove as strong relation between

the high-level specification and actual implementations as our refinement, but we found it to be
essential for catching bugs in early versions of the model. For example, we discovered subtle errors
in our initial attempts to model timeouts in AdoB only after failing to prove refinement.

Our contributions are as follows:
• AdoB: A novel and generic abstraction that unifies benign and byzantine consensus. We also
provide an implementation of AdoB in Coq, as well as three instantiations of the parameters
for common failure models: benign faults with a simple majority quorum, and byzantine
faults with a 2/3 supermajority or a proof-of-stake-style weighted majority.
• Coq proofs of safety and liveness forAdoB, which are the first to handle benign and byzantine
consensus in a unified manner.
• This is the first, to our knowledge, mechanized liveness proof for byzantine consensus under
a partial synchrony [Dwork et al. 1988] assumption. See Sections 5 and 7 for a comparison
with other liveness results. AdoB is also the first variant of the ADO model [Honoré et al.
2021] to support reasoning about liveness at all.
• A novel family of Jolteon variants called GenJolteon, which can be instantiated to tolerate a
variety of failure modes.
• Proofs that low-level network-based Coq specifications of GenJolteon and Fast Paxos refine
AdoB, thereby benefiting from its safety guarantees.

The Coq and OCaml code that supports these claims is available on Zenodo [Honoré et al. 2024].

2 OVERVIEW

The goal of AdoB is to unify benign and byzantine consensus using the ADO model. Before
demonstrating how it achieves this, we briefly review some important background.

2.1 Benign Consensus

Consensus Primer. The goal of consensus is to facilitate agreement across a set of servers (or
replicas). In particular, we focus on the replicated state machine [Schneider 1990] approach where
each replica maintains a log of commands. Replicas may temporarily disagree on certain entries
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1 // Leader

2 elect() {

3 time += 1;

4 votes := bcast(Elect, time, log);

5 return isQuorum(votes); }

6 local_update() {

7 log.append(new_command(time));

8 return true; }

9 commit() {

10 votes := bcast(Commit, time, log);

11 return isQuorum(votes); }

1 // Replicas

2 handle_elect(m_ldr, m_time, m_log) {

3 if (time < m_time)

4 && (log.last.time <= m_log.last.time) {

5 time := m_time;

6 send(m_ldr, ElectAck); } }

7 handle_commit(m_ldr, m_time, m_log) {

8 if (time <= m_time)

9 && (log.last.time <= m_log.last.time) {

10 time := m_time; log := m_log;

11 send(m_ldr, CommitAck); } }

Fig. 1. Benign consensus pseudocode.
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Fig. 2. Deciding which servers can become a leader. (a) Servers have a log of timestamped commands. (b)

Logs are ordered by the timestamp of their last entries. (c) A leader may be elected by a quorum of voters

with less or equally-recent logs.

towards the tail of the log, but the key safety property is that there always exists a common prefix
of committed commands on which some quorum of replicas agree.
Most consensus protocols, such as Paxos and Raft, accomplish this by repeating three steps:

election, local update, and commit (see pseudocode in Fig. 1). The election phase selects a leader,
which communicates with external clients and coordinates the other replicas for the duration
of its term. The precise election mechanism varies by protocol, but it must guarantee that the
leader has the most “recent” log among at least a quorum of voters (see Fig. 2). This is decided by
comparing by the logical timestamps of the logs’ last entries. Once elected, the leader appends a
new command to its local log, which is then replicated in the commit phase. If the leader’s log is
still up-to-date, replicas update their logs to match, and, if a quorum do so, the new command is
committed. Note that, in practice, there are many optimizations and fast-paths that can improve
performance under normal conditions. Nevertheless, even optimized protocols, at their core, follow
this general three-phase template.

Safety and Liveness. The key to maintaining safety through all of this is the fact that elections
and commits both require a quorum of voters. Since quorums are defined such that any two
quorums have a non-empty intersections (a simple majority is common), this implies that any pair
of an election and commit has at least one common voter, which is essential for linearizing them.
Replicas only vote for election or commit requests with monotonically increasing timestamps, so
the existence of the common voter proves one event must have occurred before the other.

In practice, a safe system is not necessarily useful. Consider, for example, a vacuously safe, trivial
protocol that does nothing. Therefore, a liveness property is also necessary, which guarantees that
new commands are always committed within some finite time. This is complicated by the fact that
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1 // Leader

2 // NEW: isQuorum -> isSQuorum = super quorum

3 elect() { ... }

4 precommit() {

5 log.append(new_command(time));

6 // NEW: Include votes as evidence of

7 // successful election

8 votes :=

9 bcast(PreCommit, time, log, votes);

10 return isSQuorum(votes); }

11 commit() {

12 votes := bcast(Commit, time, log, votes);

13 ... }

1 // Replicas

2 handle_elect(m_ldr, m_time, m_log) { ... }

3 // NEW: Confirm that m_ldr has enough votes, and

4 // that m_log is safe to commit

5 handle_precommit(m_ldr, m_time, m_log, m_votes) {

6 if (self.time <= m_time)

7 && (self.log.last.time <= m_log.last.time)

8 && validate(m_votes) {

9 self.time := m_time;

10 send(m_ldr, PreCommitAck); } }

11 handle_commit(m_ldr, m_time, m_log, m_votes) {

12 // NEW: Confirm that m_ldr did precommit

13 if ... && validate(m_votes) { ... } }

Fig. 3. Byzantine consensus pseudocode. Common code from the benign case is elided.

replicas may crash (become unresponsive) and network messages may be lost or delayed arbitrarily.
In fact, in the general case, liveness is impossible to guarantee [Fischer et al. 1985].

Liveness Assumptions. Despite this impossibility result, all is not lost if we simply introduce
a few assumptions that can reasonably be expected to hold in practice. Note that none of the
following are necessary for safety.
• There exists at least a quorum of non-faulty replicas that never crash. For a typical majority
quorum, this means at most 𝑓 out of 2𝑓 + 1 replicas may crash.
• Instead of total asynchrony, we assume a partially synchronous network [Dwork et al. 1988];
i.e., after some unknown point, called the global stabilization time (GST), all messages are
delivered to non-faulty replicas within some bounded time.
• There is a fair rotating leader schedule; i.e., for every logical timestamp there is exactly one
replica that may initiate an election. Here, fairness means there is always a finite number of
rounds before some non-faulty replica has a turn.
• Non-faulty replicas follow a productive strategy; i.e., they perform operations in a timely
manner whenever they are able. For example, a non-faulty leader will attempt to commit
new log entries after creating them within some finite time.

The main challenge in proving liveness is showing that the system can reach GST without
becoming stuck waiting forever for a non-responsive replica. After that point, the rotating leader
assumption ensures that a non-faulty leader will be elected who can commit a command. To avoid
blocking forever, replicas maintain local timers that reset after elections and trigger a timeout
message on expiration. Upon observing a quorum of timeout messages, a replica knows that no
command can ever be committed in the current round (as it would also require a quorum of votes),
so it can safely advance to the next round. This ensures a steady progression through rounds that
eventually results in a successful commit.

2.2 Byzantine Consensus

Byzantine consensus has the same goal as benign consensus: to allow a collection of replicas to
eventually reach agreement on a log of commands. The critical difference is that certain replicas
may now behave maliciously, e.g., by ignoring valid requests or lying about local state.

Super Quorums. As with benign consensus, some quorum of replicas is required for both
elections and commits (Fig. 3). However, it is no longer sufficient to simply require that quorums
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overlap, as there is no guarantee the common replica is honest. If the common replica were byzantine,
then it could, for example, vote in two elections with the same timestamp, so we cannot trust it to
linearize events. Instead, operations require a super quorum of votes, which must have at least one
honest replica in common with every other super quorum. For example, if 𝑓 out of 3𝑓 + 1 replicas
are byzantine then a super quorum could be any set of 2𝑓 + 1, as at least 𝑓 + 1 must be honest.

Another important implication is that replicas can no longer trust the leader. In particular, they
cannot be sure during the commit phase that the leader proposed the same log to everyone. Since
no individual can be believed, trust is only possible through a super quorum. Therefore, the step
after an election, which is a local operation in the benign case, is now a pre-commit phase in which
replicas approve a commit, providing the leader can prove it received a super quorum of votes.

Assumptions for Byzantine Replicas. In addition to the assumptions from the benign setting,
we must introduce a few more to limit the extent to which byzantine replicas can misbehave.

• Just as a quorum of benign replicas must be non-faulty, a super quorum of replicas in a
byzantine setting must be honest at all times. Typically this means less than 1/3 of replicas
can be byzantine, though Section 4 will show that this can be generalized. As with faulty
replicas, we assume these are fixed in advance, but unknown to honest replicas.
• Byzantine replicas are computationally bounded and cannot forge cryptographic signatures.
Hence, honest replicas can trust the authenticity of the origin and contents of a message.
• We assume there exists a gossiping mechanism. If any honest replica receives a broadcast
message, then every honest replica will eventually receive that message. This is necessary
only to prove liveness, but not safety. While it is possible to remove this condition, it is
common assumption in the byzantine consensus literature [Buchman et al. 2019; Gilad et al.
2017] and doing so increases the complexity of the protocol.

HotStuff and Jolteon. In order to understand some of the design decisions in AdoB, it is helpful
to be familiar with the basic workings of the HotStuff and Jolteon byzantine consensus protocols.
Note, however, that AdoB is not specific to either of these protocols (see Section 6).
HotStuff and Jolteon follow the usual sequence of phases: election, pre-commit, commit (we

consider a two-phase version of HotStuff [Bravo et al. 2020]). In order to overcome the lack of trust
between replicas, leaders use quorum certificates (QCs) as evidence that an operation is approved
(similar to votes in Fig. 3). A QC is a collection of a super quorum of cryptographically signed
votes [Shoup 2000] containing the identity of the voter, their current timestamp, and the QC for
their latest log entry. By collecting a QC with every request, replicas build up a trusted chain of
evidence that guarantees byzantine replicas cannot break the safety guarantees.
Once a QC is formed, it is forwarded to the leader for the next round. Under good conditions,

the chain of QCs continues to grow; however, a round that ends in a timeout has no QC and breaks
the evidence chain. The solution is to fill the gap with a timeout certificate (TC). This is similar to
a QC, but it contains a super quorum of timeout messages instead of votes, each containing the
timed-out replica’s latest QC. If a TC is formed, it guarantees no QC can also be formed for the
current round, which assures the replicas it is safe to move to the next round.

2.3 Atomic Distributed Objects

AdoB uses a modified version of the cache tree abstraction from Honoré et al. [2022]. The key idea
is to model not just the current state, but the entire history of a distributed system as a single tree
with different nodes (caches in ADO terminology) representing the outcome of various operations.

There are three operations for modifying the cache tree: pull, invoke, and push (we omit
reconfig). Each represents one of the consensus phases (election, local log update, commit), but
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ECache
voters={S1,S2} 
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(a) pull elects 𝑆1 and adds 𝐸𝐶𝑎𝑐ℎ𝑒 .
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(b) invoke adds an𝑀𝐶𝑎𝑐ℎ𝑒 .
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ldr=S1 
time=1 

MCache 
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time=1

CCache 
voters={S1,S3} 

time=1

(c) push commits and creates a 𝐶𝐶𝑎𝑐ℎ𝑒 .

CCache 
voters={S1,S3} 

time=1

ECache
voters={S1,S3} 

ldr=S3 
time=2 

MCache 
method=B 

time=2
...

(d) 𝑆3 is elected and invokes a new method.

CCache 
voters={S1,S3} 

time=1

ECache
voters={S1,S3} 

ldr=S3 
time=2 

MCache 
method=B 

time=2

ECache
voters={S1,S2} 

ldr=S1 
time=3 

...

(e) 𝑆1 is elected before 𝑆3 commits, creating a fork.

CCache 
voters={S1,S3} 

time=1

ECache
voters={S1,S3} 

ldr=S3 
time=2 

MCache 
method=B 

time=2

ECache
voters={S1,S2} 

ldr=S1 
time=3 

...
MCache 

method=C 
time=3

CCache 
voters={S1,S2} 

time=3

(f) 𝑆1 invokes and commits its own method, making 𝑆3’s branch unreachable.

Fig. 4. A cache tree’s evolution in the ADO model. Newly created caches are marked with a thick outline.

The cloud abbreviates the 𝐸𝐶𝑎𝑐ℎ𝑒 ,𝑀𝐶𝑎𝑐ℎ𝑒 prefix.

the result is decided atomically by consulting a logical oracle rather than through sending network
messages. The simplest way to understand these operations is through an example like Fig. 4.
Caches are divided into three variants to represent different operations: 𝐸𝐶𝑎𝑐ℎ𝑒 for elections,

𝑀𝐶𝑎𝑐ℎ𝑒 for method invocations (i.e., local log updates), and 𝐶𝐶𝑎𝑐ℎ𝑒 for commits. Each contains
important metadata, such as logical timestamps and quorums of voters. Consider a system consisting
of replicas 𝑆1, 𝑆2, and 𝑆3. One must become the leader by calling pull, which queries the oracle
and indicates that the election either fails or succeeds with some quorum of voters. The pull in
Fig. 4a receives votes from 𝑆1 and 𝑆2 so it creates an 𝐸𝐶𝑎𝑐ℎ𝑒 for replica 𝑆1. This serves as a logical
marker that, at this point, 𝑆1 has the most recent state among at least a quorum of replicas.

Next, 𝑆1 proposes an uncommitted method with invoke, which creates an𝑀𝐶𝑎𝑐ℎ𝑒 . The𝑀𝐶𝑎𝑐ℎ𝑒

follows the 𝐸𝐶𝑎𝑐ℎ𝑒 to indicate that it is extending 𝑆1’s log. The method is then committed using
push, which again consults an oracle to decide whether a quorum approves it. In this case, both 𝑆1
and 𝑆3 accept the method, so a 𝐶𝐶𝑎𝑐ℎ𝑒 is created, which indicates that the𝑀𝐶𝑎𝑐ℎ𝑒 is committed.

In the steady state, the tree continues to grow linearly. For example, 𝑆3 may be elected (it voted
for the𝐶𝐶𝑎𝑐ℎ𝑒 so it has the most recent state), after which it can invoke another method. Suppose
then that 𝑆3 crashes before committing. Eventually, 𝑆1 may become the leader again with votes
from 𝑆1 and 𝑆2. Note that neither of these replicas has observed 𝑆3’s𝑀𝐶𝑎𝑐ℎ𝑒 yet. The cache that
the 𝐸𝐶𝑎𝑐ℎ𝑒 follows represents the most recent state of its voters, which, in this case, is the 𝐶𝐶𝑎𝑐ℎ𝑒 .
Now there is a fork in the tree, which means there are two competing versions of the state.

Fortunately, this inconsistency is resolved as soon as one branch is committed. For example, if 𝑆1
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creates a 𝐶𝐶𝑎𝑐ℎ𝑒 with 𝑆1 and 𝑆2, then 𝑆3’s branch is effectively unreachable. Any quorum for a
later pull must contain either 𝑆1 or 𝑆2, so it will choose 𝑆1’s 𝐶𝐶𝑎𝑐ℎ𝑒 over 𝑆3’s𝑀𝐶𝑎𝑐ℎ𝑒 because it
is more recent. This is the key to guaranteeing the primary safety property that there is a single
linear path through the tree containing all 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 (and therefore all committed methods).
One significant advantage of this approach is it abstracts away the details and complexities of

network-based communication. Operations either succeed or fail immediately, reducing the number
of outcomes to consider. This also provides a uniform, generic interface for consensus that can
be implemented by many different protocols. As far as the ADO model is concerned, there is no
distinction between a Paxos or Raft election. Any differences are hidden and the common essence is
captured by pull. Representing the replicas’ local states as a tree instead of a set of independent logs
also better captures the global dependencies and invariants. For instance, temporary inconsistencies
appear as explicit forks in the tree and the committed common prefix can be traced along a branch.

2.4 AdoB

It is clear from Figs. 1 and 3 that benign and byzantine consensus share a similar structure, but
there are some key differences, such as the pre-commit phase and the need to validate operations.
Rather than attempt to bridge these differences at the implementation level, we instead develop
a simplified abstraction (AdoB) for reasoning about high-level properties, and separately prove
that it faithfully models these lower-level specifications through refinement. We base AdoB on the
ADO model because it has been shown to be effective for high-level reasoning about consensus
protocols; however, prior versions are lacking in two areas for our purposes: they have no concept
of a timeout, and they are limited to a strictly benign setting.

The first problem is addressed by introducing a new timeout cache (𝑇𝐶𝑎𝑐ℎ𝑒) and adjusting pull,
invoke, and push to either succeed (creating an 𝐸𝐶𝑎𝑐ℎ𝑒 , 𝑀𝐶𝑎𝑐ℎ𝑒 , or 𝐶𝐶𝑎𝑐ℎ𝑒 , respectively), or
fail with a 𝑇𝐶𝑎𝑐ℎ𝑒 . We found this to be a surprisingly subtle operation to model correctly. Recall
that timeouts require a set of replicas to communicate amongst themselves without a leader to
coordinate them. This is a very different communication pattern than the other operations, and
modeling it as an atomic action leads to some surprising behaviors. See Section 6 for a discussion
of some subtle bugs we discovered in an early version of AdoB.
By carefully constructing this new timeout-aware ADO model to highlight the essential com-

ponents of consensus and abstract away any other implementation details, we are able to adapt
it to a byzantine setting with only a few additional modifications. The first is, of course, to allow
certain replicas to behave maliciously. We model this by relaxing many of the preconditions for
pull, invoke, and push to only apply to honest replicas. For example, no restrictions are placed on
the local timestamps of byzantine replicas as they cannot be trusted to accurately report them.
The only other significant modification is to change invoke from a purely local operation that

requires just the leader’s approval to one that requires a super quorum of votes. We do this by
appealing to an oracle, just as with pull and push.
The final step is to merge the benign-only and byzantine-only versions of AdoB by observing

that the quorum required by invoke only needs to be large enough to guarantee a common honest
voter with the previous pull quorum and following push quorum. In the benign setting, the leader
is assumed to be honest, so it can serve as the common voter and it is enough for invoke to be local,
while, in the byzantine case, it requires a super quorum because the leader may be untrustworthy.
By introducing a parameterized method quorum (mquorum), we can cover both cases at once.

3 ADOB FOR BENIGN FAILURES

This section presents a formal specification of the AdoB abstraction specialized to the benign
case, along with some key steps of the safety and liveness proofs. Although we do not yet handle
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Parameters

nonfaulty : 𝑆𝑒𝑡 (Nnid )
faulty : 𝑆𝑒𝑡 (Nnid )

conf ≜ nonfaulty ∪ faulty
honest ≜ conf

isQuorum : 𝑆𝑒𝑡 (Nnid ) → B
leaderAt : Ntime → Nnid

Assumptions

(Disjoint) nonfaulty ∩ faulty = ∅
(Overlap) isQuorum(𝑄) ∧ isQuorum(𝑄 ′) =⇒ 𝑄 ∩𝑄 ′ ≠ ∅

Fig. 5. Benign AdoB configuration and quorum parameters and assumptions.

Cache ≜ 𝐸𝐶𝑎𝑐ℎ𝑒 (Nnid ∗ Ntime ∗ 𝑆𝑒𝑡 (Nnid ))
| 𝑀𝐶𝑎𝑐ℎ𝑒 (Nnid ∗ Ntime ∗ 𝑆𝑒𝑡 (Nnid ) ∗Method)
| 𝐶𝐶𝑎𝑐ℎ𝑒 (Nnid ∗ Ntime ∗ 𝑆𝑒𝑡 (Nnid ))
| 𝑇𝐶𝑎𝑐ℎ𝑒 (Ntime ∗ 𝑆𝑒𝑡 (Nnid ) ∗ 𝑆𝑒𝑡 (Nnid ))

CacheTree ≜ Ncid ⇀ Ncid ∗ Cache
TimeMap ≜ Nnid ⇀ Ntime

Σ ≜ CacheTree ∗ TimeMap

Fig. 6. Benign AdoB state definitions.

𝑂𝑝 ≜ pull : Nnid → Σ→ Σ | invoke : Nnid → Method → Σ→ Σ | push : Nnid → Σ→ Σ

Fig. 7. Benign AdoB operations.

byzantine failures, there are several key design decisions that enable a smooth transition to the
generalized case in Section 4.

3.1 Semantics

State. Fig. 6 defines the system state (Σ) as a pair of a cache tree and every replica’s local logical
timestamp (the subscripts on N are simply labels to clarify the semantic purpose). We use the
notations tree(𝑠𝑡) and times(𝑠𝑡) to discuss these fields. The configuration consists of the disjoint
union of an arbitrary set of nonfaulty and faulty replicas, all of which are honest (Fig. 5). The
quorum definition is flexible, but it must at least guarantee that any two quorums have a non-empty
intersection (Overlap). The rotating leader schedule is determined by the leaderAt parameter.

Caches. There are four types of cache representing a successful election (𝐸𝐶𝑎𝑐ℎ𝑒), method
invocation (𝑀𝐶𝑎𝑐ℎ𝑒), commit (𝐶𝐶𝑎𝑐ℎ𝑒), or timeout (𝑇𝐶𝑎𝑐ℎ𝑒), respectively. Caches are associated
with a unique cache ID (cid) and the cache tree is implemented as a partial map from a cid to its
cache and corresponding parent cid (with cid 0 as the root). New caches can only be added at the
leaves of the tree with addLeaf , whose definition we omit for brevity.
Each cache contains the logical timestamp (time) of the round in which it was created, and the

success caches (i.e., not 𝑇𝐶𝑎𝑐ℎ𝑒) additionally contain the node ID (nid) that initiated the operation.
Recall that timeouts are initiated independently by several replicas, so𝑇𝐶𝑎𝑐ℎ𝑒𝑠 instead contain a set
of nids. Caches are strictly ordered (≻) by comparing timestamps and using cRank as a tie-breaker.
Fig. 8 defines ≻ along with other useful functions on caches and cache trees. We use the variables
𝑡𝑟 , 𝐶 , 𝑠 , and 𝑄 to represent cache trees, caches, individual servers, and sets of servers, respectively.

Every cache is associated with two related, but subtly different sets of replicas called its voters
and supporters. A replica’s active cache (its “local state”) is the largest (with respect to ≻) for which
it is in the set of supporters. Likewise, its voted cache is the largest for which it is in the set of
voters. The voter and supporter sets may be equal (as for𝐶𝐶𝑎𝑐ℎ𝑒), one may be a subset of the other
(𝐸𝐶𝑎𝑐ℎ𝑒), or they may be unrelated (𝑇𝐶𝑎𝑐ℎ𝑒).

Operations. The AdoB interface consists of pull, invoke, and push (Fig. 7). Each takes its
caller’s node ID and the current state and returns a new state. The invoke operation additionally
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cRank(𝐶) ≜ if 𝐶 = 𝐸𝐶𝑎𝑐ℎ𝑒 (_) then 0 else if 𝐶 = 𝑀𝐶𝑎𝑐ℎ𝑒 (_) then 1 else
if 𝐶 = 𝐶𝐶𝑎𝑐ℎ𝑒 (_) then 2 else if 𝐶 = 𝑇𝐶𝑎𝑐ℎ𝑒 (_) then 3

𝐶1 ≻ 𝐶2 ≜ time(𝐶1) > time(𝐶2) ∨ (time(𝐶1) = time(𝐶2) ∧ cRank(𝐶1) > cRank(𝐶2))
voters(𝐶) ≜ if 𝐶 = 𝐸𝐶𝑎𝑐ℎ𝑒 (_, _, 𝑄) then 𝑄 else if 𝐶 = 𝑀𝐶𝑎𝑐ℎ𝑒 (_, _, 𝑄, _) then 𝑄 else

if 𝐶 = 𝐶𝐶𝑎𝑐ℎ𝑒 (_, _, 𝑄) then 𝑄 else if 𝐶 = 𝑇𝐶𝑎𝑐ℎ𝑒 (_, 𝑄, _) then 𝑄

supporters(𝐶) ≜ if 𝐶 = 𝐸𝐶𝑎𝑐ℎ𝑒 (nid, _, _) then {nid} else if 𝐶 = 𝑀𝐶𝑎𝑐ℎ𝑒 (nid, _, _, _) then {nid} else
if 𝐶 = 𝐶𝐶𝑎𝑐ℎ𝑒 (_, _, 𝑄) then 𝑄 else if 𝐶 = 𝑇𝐶𝑎𝑐ℎ𝑒 (_, _, 𝑄) then 𝑄

voted (𝑡𝑟, 𝑠) ≜ max
≻
{𝐶 ∈ 𝑡𝑟 | 𝑠 ∈ voters(𝐶)}

active(𝑡𝑟, 𝑠) ≜ max
≻
{𝐶 ∈ 𝑡𝑟 | 𝑠 ∈ supporters(𝐶)}

activeCommit (𝑡𝑟, 𝑠) ≜ max
≻
{𝐶 ∈ 𝑡𝑟 | 𝑠 ∈ supporters(𝐶) ∧𝐶 = 𝐶𝐶𝑎𝑐ℎ𝑒 (_)}

canElect (𝑡𝑟,𝐶,𝑄) ≜ (𝐶 = 𝐶𝐶𝑎𝑐ℎ𝑒 (_) ∨𝐶 = 𝑇𝐶𝑎𝑐ℎ𝑒 (_)) ∧ ∀𝑠 ∈ 𝑄 ∩ honest .𝐶 ⪰ active(𝑡𝑟, 𝑠)
canInvoke(𝑡𝑟,𝐶, nid, 𝑄) ≜ 𝐶 = 𝐸𝐶𝑎𝑐ℎ𝑒 (nid, _, _) ∧ ∀𝑠 ∈ 𝑄 ∩ honest .𝐶 ⪰ voted (𝑡𝑟, 𝑠)

canCommit (𝑡𝑟,𝐶, nid, 𝑄) ≜ 𝐶 = 𝑀𝐶𝑎𝑐ℎ𝑒 (nid, _, _, _) ∧ ∀𝑠 ∈ 𝑄 ∩ honest .𝐶 ⪰ voted (𝑡𝑟, 𝑠)
canTimeout (𝑡𝑟,𝐶,𝑄) ≜ ∀𝑠 ∈ 𝑄 ∩ honest .𝐶 ⪰ activeCommit (𝑡𝑟, 𝑠)

Fig. 8. Selected benign AdoB auxiliary definitions.

PullOk
Opull (𝑠𝑡, nid) = Ok(𝑄,𝐶max , 𝑡)

𝑠𝑡 ′ ≜ setTimes(𝑠𝑡,𝑄, 𝑡) 𝐶new ≜ 𝐸𝐶𝑎𝑐ℎ𝑒 (nid, 𝑡,𝑄)
O ⊢ pull(nid) : 𝑠𝑡 ⇝ addLeaf (𝑠𝑡 ′,𝐶max ,𝐶new)

InvokeOk
Oinvoke (𝑠𝑡, nid) = Ok(𝐶𝐸 )

𝐶new ≜ 𝑀𝐶𝑎𝑐ℎ𝑒 (nid, time(𝐶𝐸 ), {nid} , 𝑀)
O ⊢ invoke(nid, 𝑀) : 𝑠𝑡 ⇝ addLeaf (𝑠𝑡,𝐶𝐸 ,𝐶new)

PushOk
Opush (𝑠𝑡, nid) = Ok(𝑄,𝐶𝑀 )

𝑠𝑡 ′ ≜ setTimes(𝑠𝑡,𝑄, time(𝐶𝑀 ) + 1) 𝐶new ≜ 𝐶𝐶𝑎𝑐ℎ𝑒 (nid, time(𝐶𝑀 ), 𝑄)
O ⊢ push(nid) : 𝑠𝑡 ⇝ addLeaf (𝑠𝑡 ′,𝐶𝑀 ,𝐶new)

Timeout
Oop (𝑠𝑡, nid) = Timeout (𝑄vote, 𝑄supp,𝐶max , 𝑡)

𝑠𝑡 ′ ≜ setTimes(𝑠𝑡,𝑄vote ∪𝑄supp, 𝑡 + 1) 𝐶new ≜ 𝑇𝐶𝑎𝑐ℎ𝑒 (𝑡,𝑄vote, 𝑄supp)
O ⊢ op(nid) : 𝑠𝑡 ⇝ addLeaf (𝑠𝑡 ′,𝐶max ,𝐶new)

Fig. 9. Semantics of benign AdoB operations. Every operation can time out, so Timeout is parameterized by

𝑜𝑝 , which can be any of pull, invoke, or push. For invoke, 𝑜𝑝 is understood to also take𝑀 as an argument.

takes a command to execute on the replicated state machine. As this is completely independent
from the safety and liveness properties, we represent it as an abstract, opaque Method type.
Network-level failures and asynchrony introduce nondeterminism into the outcome of these

operations, whichwe capture with a logical oracle (O). The oracle abstracts over every waymessages
may interleave or fail and returns a simple success (Ok) or timeout (Timeout) result (Fig. 10). The
notation O ⊢ 𝑜𝑝 : 𝑠𝑡 ⇝ 𝑠𝑡 ′ represents operation 𝑜𝑝 called on state 𝑠𝑡 with oracle O results in 𝑠𝑡 ′.

Pull. The pull operation models an election by asking O (written as Opull to indicate the
operation under consideration) to choose a set of voters (𝑄), a sufficiently up-to-date cache (𝐶max ),
and the next timestamp (𝑡 ). It then updates the voter’s timestamps with setTimes to reflect their
vote, and adds a new 𝐸𝐶𝑎𝑐ℎ𝑒 child to 𝐶max (Fig. 9). This represents a logical marker that at this
point, 𝐶max is the most recent cache among this quorum of voters.
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ValidPullOracleOk
𝑡 = time(𝐶max ) + 1 leaderAt (𝑡) = nid isQuorum(𝑄) canElect (tree(𝑠𝑡),𝐶max , 𝑄)

∀𝑠 ∈ 𝑄 ∩ honest . times(𝑠𝑡) [𝑠] ≤ 𝑡 ∀𝑠 ∈ 𝑄 ∩ honest . time(voted (𝑠𝑡, 𝑠)) < 𝑡

Opull (𝑠𝑡, nid) = Ok(𝑄,𝐶max , 𝑡)

ValidInvokeOracleOk
𝑡 = time(𝐶𝐸 ) leaderAt (𝑡) = nid canInvoke(tree(𝑠𝑡),𝐶𝐸 , nid, {nid})

Oinvoke (𝑠𝑡, nid) = Ok(𝐶𝐸 )

ValidPushOracleOk
𝑡 = time(𝐶𝑀 ) leaderAt (𝑡) = nid

isQuorum(𝑄) canCommit (tree(𝑠𝑡),𝐶𝑀 , nid, 𝑄) ∀𝑠 ∈ 𝑄 ∩ honest . times(𝑠𝑡) [𝑠] ≤ 𝑡

Opush (𝑠𝑡, nid) = Ok(𝑄,𝐶𝑀 )

ValidOracleTimeout
isQuorum(𝑄vote) 𝑄supp ∩ honest ≠ ∅ canTimeout (tree(𝑠𝑡),𝐶max , 𝑄vote)

∀𝑠 ∈
(
𝑄vote ∪𝑄supp

)
∩ honest . times(𝑠𝑡) [𝑠] ≤ 𝑡 ∃𝑠 ∈ 𝑄vote ∩ honest . times(𝑠𝑡) [𝑠] = 𝑡

Oop (𝑠𝑡, nid) = Timeout (𝑄vote, 𝑄supp,𝐶max , 𝑡)

Fig. 10. Valid benign AdoB oracle conditions. The conditions for timing out are identical regardless of the

operation so ValidOracleTimeout is parameterized by 𝑜𝑝 .

Opull chooses these values nondeterministically, but it must obey certain restrictions to faithfully
model consensus. The first three are simple sanity checks; namely, the new timestamp follows
sequentially from the previous round, the caller is the designated leader for this round, and it has
received a quorum of voters. The others ensure the oracle’s choice of cache is sufficiently up-to-date.
For instance, canElect requires that𝐶max is a𝐶𝐶𝑎𝑐ℎ𝑒 or𝑇𝐶𝑎𝑐ℎ𝑒 , as those are the only valid ways to
end a round, and that it is at least as recent as the honest voters’ active caches. The two remaining
preconditions guarantee the voters have not already voted for an election with this timestamp.

The voters of the new 𝐸𝐶𝑎𝑐ℎ𝑒 are not also supporters. They have witnessed the fact that the new
leader chose a sufficiently recent cache, but they do not yet have enough evidence to know that
setting it as their active cache is safe. For that, they must wait until the leader tells them to commit.

Invoke. The local log update step is modeled by invoke. Oinvoke simply confirms that it is called
by the leader and that the chosen cache (𝐶𝐸 ) is that leader’s latest 𝐸𝐶𝑎𝑐ℎ𝑒 (canInvoke), which it
then extends with an𝑀𝐶𝑎𝑐ℎ𝑒 . This is a local operation that does not require a quorum of approval,
so the leader is its sole voter and supporter.

Push. Finally, push attempts to commit the 𝑀𝐶𝑎𝑐ℎ𝑒 created by invoke. Like pull it receives
a set of voters (𝑄), and a cache to commit (𝐶𝑀 ) from Opush. It performs similar checks to pull to
confirm the caller is indeed the leader and that 𝐶𝑀 is its latest uncommitted𝑀𝐶𝑎𝑐ℎ𝑒 (canCommit).
Note that the voters’ timestamps are set to one past the𝑀𝐶𝑎𝑐ℎ𝑒’s timestamp to ensure that they
can no longer participate in the current or any previous rounds.
Now the voters can finally support the 𝐶𝐶𝑎𝑐ℎ𝑒 because the leader has told them it is safe. This

influences future pull operations because it affects valid choices of 𝐶max . Recall that canElect
requires that 𝐶max be at least as recent as its voters’ active (i.e., supported) caches. These voters
constitute a quorum, which means at least one must also be a supporter of the 𝐶𝐶𝑎𝑐ℎ𝑒 . Therefore,
the next election is guaranteed to “see” the 𝐶𝐶𝑎𝑐ℎ𝑒 and choose a 𝐶max that is at least as recent.

Timeout. For each of these operations, a second possible outcome is a timeout, which is repre-
sented by the oracle returning Timeout along with the replicas that timed out (𝑄vote), the replicas
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CCache 
voters={S1,S3} 

time=1

ECache
voters={S1,S3} 

ldr=S3 
time=2 

MCache
voters={S3} 
method=B 

time=2

...
TCache 

voters={S1,S2} 
supps={S1} 

time=2

TCache 
voters={S1,S2} 

supps={S1} 
time=2

(a) 𝑆3 times out while committing.

CCache 
voters={S1,S3} 

time=1

ECache
voters={S1,S3} 

ldr=S3 
time=2 

MCache
voters={S3} 
method=B 

time=2

...
TCache 

voters={S1,S2} 
supps={S1} 

time=2

ECache
voters={S1,S2} 

ldr=S1 
time=3 

(b)Option 1: The next leader starts a new branch.

CCache 
voters={S1,S3} 

time=1

ECache
voters={S1,S3} 

ldr=S3 
time=2 

MCache
voters={S3} 
method=B 

time=2
...

TCache 
voters={S1,S2} 

supps={S1} 
time=2

ECache
voters={S1,S2} 

ldr=S1 
time=3 

(c)Option 2: The next leader continues building off the previous𝑀𝐶𝑎𝑐ℎ𝑒 .

Fig. 11. An example of a timeout in AdoB.

that observed at least a quorum of timeouts (𝑄supp), the most recent cache among those that timed
out (𝐶max ), and the timestamp at which they timed out (𝑡 ). The effect is to create a𝑇𝐶𝑎𝑐ℎ𝑒 , and, like
push, force the participating replicas to move to the next round by setting their timestamps to 𝑡 + 1.
The restrictions on the oracle are slightly different from the other cases due to the unique

communication pattern used for timeouts. The set of voters, 𝑄vote , have each timed out locally, but
it is only when some replicas, 𝑄supp, receive a quorum of these timeout messages that the timeout
is considered successful. Therefore, 𝑄vote must be a quorum and 𝑄supp must be non-empty.

Included in each timeout message from𝑄vote is the replica’s active cache. These are collected and
forwarded to the leader of the next round to prompt it to begin an election. The oracle enforces this
with canTimeout, which confirms 𝐶max is at least as recent as the voters’ latest supported 𝐶𝐶𝑎𝑐ℎ𝑒
(activeCommit). The final two preconditions require that no voter or supporter has already timed
out or voted in a more recent round, and that at least one voter is actually in the round that is
currently timing out. This prevents spurious timeouts for rounds that have not yet even begun.
Though these rules seem reasonable, it is not clear whether some slight modifications might

not be equally valid. For example, what if canTimeout requires 𝐶 = activeCommit (𝑡𝑟, 𝑠), or 𝑄vote
is used for both voters and supporters? These are, in fact, invalid because they do not faithfully
model the actual protocol-level behaviors, though this is far from obvious. This demonstrates why
refinement is essential to check the validity of the high-level model. Section 6 discusses this further.

Example. As in Fig. 4, in the steady state, branches grow linearly with 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 followed by
𝑀𝐶𝑎𝑐ℎ𝑒𝑠 followed by 𝐶𝐶𝑎𝑐ℎ𝑒𝑠; however, failures are represented slightly differently with the
addition of 𝑇𝐶𝑎𝑐ℎ𝑒𝑠 . Previously, pull simply selected the latest 𝐶𝐶𝑎𝑐ℎ𝑒 , which could create forks
as in Fig. 4e; now, pullmust choose a𝐶𝐶𝑎𝑐ℎ𝑒 or𝑇𝐶𝑎𝑐ℎ𝑒 from the previous round. This is important
to ensure liveness because it prevents pull from simply choosing the same𝐶𝐶𝑎𝑐ℎ𝑒 forever without
making any actual progress, but it means the situation in Fig. 4e is now disallowed.

Instead, before creating an 𝐸𝐶𝑎𝑐ℎ𝑒 for time 3, there must first be a𝑇𝐶𝑎𝑐ℎ𝑒 for time 2. In Fig. 11 the
three valid options for the 𝑇𝐶𝑎𝑐ℎ𝑒’s parent (caches that satisfy canTimeout) are: an uncommitted
𝑀𝐶𝑎𝑐ℎ𝑒 , its parent 𝐸𝐶𝑎𝑐ℎ𝑒 , and the latest 𝐶𝐶𝑎𝑐ℎ𝑒 . If the 𝐶𝐶𝑎𝑐ℎ𝑒 is chosen, then a fork is created
and the𝑀𝐶𝑎𝑐ℎ𝑒 is abandoned. Otherwise, if the𝑀𝐶𝑎𝑐ℎ𝑒 is chosen, then the next leader picks up
where the previous one left off and continues extending the same branch. Choosing the 𝐸𝐶𝑎𝑐ℎ𝑒 also
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creates a fork and is essentially equivalent to choosing the 𝐶𝐶𝑎𝑐ℎ𝑒 because the branch contains
exactly the same prefix of𝑀𝐶𝑎𝑐ℎ𝑒𝑠 and 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 .

3.2 Safety and Liveness Proofs

A practical consensus protocol must be both safe and live. We have proved, in Coq, that both
properties hold for AdoB, and, in this section, we summarize some key steps of these proofs as
well as some necessary assumptions. Coq versions of the following definitions and theorems can
be found in Appendix A and the full proofs can be found in the supplementary materials.

Safety. The top-level safety property is stated as follows.

Theorem 3.1 (Safety). For any two 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 in the cache tree, one is a descendant of the other. In
other words, committed methods form a linear path through the cache tree.

The proof proceeds by proving a variety of invariants about well-formed cache trees to show
that 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 may never appear on different branches. For example, the following lemma states
that every 𝐸𝐶𝑎𝑐ℎ𝑒 must be a descendant of every earlier 𝐶𝐶𝑎𝑐ℎ𝑒 .

Lemma 3.2 (Election Follows Commit). For any 𝐶𝐶𝑎𝑐ℎ𝑒 𝐶 and 𝐸𝐶𝑎𝑐ℎ𝑒 𝐶′, if 𝐶′ ≻ 𝐶 , then 𝐶′
must be a descendant of 𝐶 .

This sort of invariant is an example of how the cache tree abstraction can greatly simplify
high-level reasoning. Intuitively, it is clear that leaders cannot be elected if they are missing any
committed methods. In AdoB it is equally simple to express this formally because 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 and
𝐶𝐶𝑎𝑐ℎ𝑒𝑠 serve as convenient logical markers of when elections and commits occurred relative to
each other. A typical network-based model, on the other hand, does not have this level of structure,
so formulating this property is much more cumbersome.

This, and several other key invariants, follow from the fact that consecutive elections, timeouts,
and commits have overlapping quorums of voters. To keep AdoB as general as possible, we do not
specify the exact definition of a quorum, but instead describe it axiomatically by insisting it satisfy
the property that two quorums have a non-empty intersection (Overlap in Fig. 5). This permits a
range of interesting implementations, some of which are shown in Section 4.2.

Liveness. The liveness of AdoB can be stated informally as: given any cache tree, within some
finite time a new method will be committed. To avoid referencing physical time, we formalize this
property in terms of a strategy.

Definition 3.3 (Strategy). A strategy is a deterministic function that, given a trace of AdoB
operations, decides the next operation to execute.

This acts as a logical global scheduler for the replicas, determining what they do and in what
order. By repeatedly applying the strategy we can extend the trace and consider future states of the
cache tree. For liveness, it is not enough to assume an arbitrary strategy, but instead, we require a
productive strategy; i.e., one that will try to make progress whenever it is able. This is enforced by
requiring that, whenever a replica is able to perform an operation, the strategy will decide to call it
within some finite number of steps, and, furthermore, the replica will not participate in any other
operations before that point.

Definition 3.4 (Productive Strategy). When a replica is eligible to become the leader, a productive
strategy requires it to call pull as its next action within a finite number of steps. Similarly, replicas
must call invoke and push as soon as possible whenever they are able.

We can then formally express liveness in the following way.
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Theorem 3.5 (Liveness). Given a cache tree and a productive strategy, within a finite number of
steps, a new cache tree will be produced with a more recent 𝐶𝐶𝑎𝑐ℎ𝑒 than the original tree.

Note that a productive strategy does not require an operation to succeed when called. Due to
the partial synchrony assumption, as long as the replica keeps trying it will eventually have an
opportunity to succeed. Recall from Section 2.1 that, after some global stabilization time (GST),
messages between non-faulty replicas are delivered in finite time, which we express as follows.

Definition 3.6 (Partial Synchrony). There exists an arbitrary but finite GST, as well as a function
to determine if a cache tree has reached GST. After GST, if a replica is eligible to be elected, then
Opull returns Ok with some set of voters that includes every non-faulty replica. Likewise for Opush.

The final necessary assumption is that, a non-faulty leader eventually has the opportunity to be
elected. To remain flexible, AdoB simply assumes the existence of an arbitrary deterministic order
that eventually selects a non-faulty replica.

Definition 3.7 (Fair Rotating Leadership). Leaders are determined for each round according to
some deterministic schedule. The order may be completely arbitrary except that there must be a
finite number of rounds between non-faulty replicas.

Armed with these assumptions, the liveness proof decomposes into two main parts: the system
always progresses to the next round by either committing a method or timing out; and, after GST,
a non-faulty leader is eventually reached. Then, because we have reached GST, Definition 3.6
guarantees the eventual success of pull and push. The newly created 𝐶𝐶𝑎𝑐ℎ𝑒 must have a strictly
larger timestamp than any before it and the proof is complete.

Proof Effort. Implementing benign AdoB in Coq and proving safety and liveness took under one
person-month and approximately 700 lines of specification and 6800 lines of proof. This does not
include a pre-existing custom library of general lemmas and tactics, nor the initial planning period
to design the model and informally outline the proofs. Nevertheless, this is quite fast for mechanized
consensus proofs, where timescales are normally on the order of several months rather than weeks.
This is largely due to AdoB’s atomic interface and cache tree abstraction, which very neatly capture
only the essential protocol-level information with none of the orthogonal network-related issues.

4 ADOB FOR GENERALIZED FAILURES

We now demonstrate how to adapt the previous benign model to a byzantine version, and finally
merge the two into a generalized abstraction.

4.1 Adapting to Byzantine Consensus

Thanks to our efforts in Section 3 to bring out the shared structure of the benign and byzantine cases,
only three additional changes are required to support byzantine consensus. Figs. 12 to 14 highlight
these modifications with boxed blue text . The first change is to allow malicious behaviors by
partitioning the replicas into honest and byzantine sets. Now, when preconditions such as canElect
intersect 𝑄 with honest, this reflects the fact that byzantine replicas cannot be trusted to accurately
report their local state. We still assume that byzantine replicas cannot lie about their identity, invent
votes they did not receive, or create caches out of thin air. These are enforced in practice with
cryptographic threshold signatures, the implementation of which we do not verify here.
In general, one cannot tell whether an individual replica is honest or byzantine, but, if enough

replicas are involved and one assumes an upper bound on the fraction of byzantine replicas, then
one can show that the group behaves honestly. This is the purpose of the second change: super
quorums (isSQuorum in Fig. 12). As with regular quorums, we do not fix super quorums to any
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Parameters

honest : 𝑆𝑒𝑡 (Nnid )
byzantine : 𝑆𝑒𝑡 (Nnid )

conf ≜ honest ∪ byzantine

isQuorum : 𝑆𝑒𝑡 (Nnid ) → B
isSQuorum : 𝑆𝑒𝑡 (Nnid ) → B

leaderAt : Ntime → Nnid
Assumptions (Disjoint) honest ∩ byzantine = ∅

( SOverlap ) isSQuorum(𝑄) ∧ isSQuorum(𝑄 ′) =⇒ 𝑄 ∩𝑄 ′ ∩ honest ≠ ∅

Fig. 12. Byzantine AdoB configuration and quorum parameters and assumptions. The replicas are no longer

all honest. Super quorums must have an honest overlap.

InvokeOk
Oinvoke (𝑠𝑡, nid) = Ok(𝑄 ,𝐶𝐸 )

𝑠𝑡 ′ ≜ setTimes(𝑠𝑡,𝑄 ∩ honest, time(𝐶𝐸 )) 𝐶new ≜ 𝑀𝐶𝑎𝑐ℎ𝑒 (nid, time(𝐶𝐸 ), 𝑄 ,𝑀)
O ⊢ invoke(nid, 𝑀) : 𝑠𝑡 ⇝ addLeaf (𝑠𝑡 ′,𝐶𝐸 ,𝐶new)

Fig. 13. Semantics of byzantine AdoB operations. All are identical to the benign case except invoke now
requires a super quorum of voters (𝑄) instead of just nid.

ValidInvokeOracleOk
𝑡 = time(𝐶𝐸 ) leaderAt (𝑡) = nid

isSQuorum(𝑄) canInvoke(tree(𝑠𝑡),𝐶𝐸 , nid, 𝑄 ) ∀𝑠 ∈ 𝑄 ∩ honest . times(𝑠𝑡) [𝑠] ≤ 𝑡

Oinvoke (𝑠𝑡, nid) = Ok(𝑄 ,𝐶𝐸 )

Fig. 14. Valid byzantine AdoB oracle conditions. All cases but invoke are identical to Fig. 10 other than

replacing isQuorum with isSQuorum.

particular size, but instead assume only that any two super quorums have a common honest member
(SOverlap). Then every instance of isQuorum is replaced with isSQuorum in Fig. 14.

Note that, while the model separates honest and byzantine replicas, it is important that we never
rely on this knowledge to determine an operation’s outcome. That is why honest is only used to
weaken preconditions (e.g., ∀𝑠 ∈ 𝑄 ∩ honest . 𝑃 (𝑠) exempts byzantine replicas from satisfying 𝑃 ).
In Section 5, we prove that we do not make any invalid assumptions by showing that they are all
satisfiable by a network-level protocol specification.
With these changes, we have moved to a model where only groups, rather than individuals,

can be trusted. In particular, this includes the leader, who, if it were byzantine, could attempt to
trick other replicas into committing invalid states either by proposing an out-of-date cache, or
by equivocating and proposing different caches to different replicas. To rule out this possibility,
leaders must gather evidence that at least a super quorum has approved a proposed cache before it
can be committed. Previously, this evidence was provided implicitly by invoke, with the leader
unilaterally giving its approval for an𝑀𝐶𝑎𝑐ℎ𝑒 . Now, invokemust gather a super quorum of voters,
which is decided by Oinvoke (Fig. 14). The preconditions are the same as before but extended to every
replica in 𝑄 instead of just the leader. One may wonder if the oracles really capture all possible
behaviors of a malicious replica. This is another example of why the refinement proof in Section 5
is critical to validate this high-level model.

Examples. Even with byzantine replicas, AdoB behaves similarly to before. Fig. 15 shows a
possible cache tree with one byzantine replica (𝑆4, shown in red) and three honest replicas (𝑆1, 𝑆2,
𝑆3). The leader, 𝑆3, successfully invokes a method by acquiring a super quorum of votes (at least 3
out of 4). This ensures that, although one of the voters cannot be trusted (𝑆4), the other voters form
an honest quorum (at least 2 out of 3). At least one of these honest voters must have also voted for
the previous election (𝑆1 and 𝑆3 in this case), so we know creating this𝑀𝐶𝑎𝑐ℎ𝑒 is safe.
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MCache
voters=

{S1,S3,S4} 
method=B 

time=2CCache 
voters=

{S1,S2,S3} 
time=1

ECache
voters={S1,S2,S3} 

ldr=S3 
time=2 

...
TCache 
voters= 

{S1,S2,S4} 
supps={S1} 

time=2

(a) 𝑆1, 𝑆2, 𝑆4 time out waiting for 𝑆3 to com-

mit. 𝑆4 may lie about its time, but it is still

safe because {𝑆1, 𝑆2} is an honest quorum.

MCache
voters=

{S1,S3,S4} 
method=B 

time=2CCache 
voters=

{S1,S2,S3} 
time=1

ECache
voters={S1,S2,S3} 

ldr=S3 
time=2 

...
TCache 
voters= 

{S1,S2,S4} 
supps={S1} 

time=2

MCache
voters=

{S1,S2,S4} 
method=C 

time=3

ECache
voters={S1,S2,S4} 

ldr=S4 
time=3 

(b) 𝑆4 is elected leader and invokes a method. Byzantine leaders

can make progress as long as they behave honestly.

Fig. 15. Allowed behaviors in byzantine AdoB.

MCache
voters=

{S1,S3,S4} 
method=B 

time=2CCache 
voters=

{S1,S2,S3} 
time=1

ECache
voters={S1,S2,S3} 

ldr=S3 
time=2 

...
TCache 
voters= 

{S1,S2,S4} 
supps={S1} 

time=2

MCache 
voters={S4} 
method=C 

time=3

(a) 𝑆4 cannot invoke a method without being elected.

MCache
voters=

{S1,S3,S4} 
method=B 

time=2CCache 
voters=

{S1,S2,S3} 
time=1

ECache
voters={S1,S2,S3} 

ldr=S3 
time=2 

...
TCache 
voters= 

{S1,S2,S4} 
supps={S1} 

time=2

MCache 
voters={S4} 
method=C 

time=3

ECache
voters={S1,S2,S4} 

ldr=S4 
time=3 

(b) 𝑆4 cannot invoke a method on the wrong branch.

MCache
voters=

{S1,S3,S4} 
method=B 

time=2CCache 
voters=

{S1,S2,S3} 
time=1

ECache
voters={S1,S2,S3} 

ldr=S3 
time=2 

...
TCache 
voters= 

{S1,S2,S4} 
supps={S1} 

time=2

CCache 
voters={S4} 

time=3

ECache
voters={S1,S2,S4} 

ldr=S4 
time=3 

(c) 𝑆4 cannot commit a method from an old round.

MCache
voters=

{S1,S3,S4} 
method=B 

time=2CCache 
voters=

{S1,S2,S3} 
time=1

ECache
voters={S1,S2,S3} 

ldr=S3 
time=2 

...
TCache 
voters= 

{S1,S2,S4} 
supps={S1} 

time=2

CCache 
voters={S4} 

time=3

ECache
voters={S1,S2,S4} 

ldr=S4 
time=3 

(d) 𝑆4 cannot commit without first invoking a method.

Fig. 16. Disallowed behaviors in byzantine AdoB. Dotted outlines represent impossible cases.

In Fig. 15a, 𝑆1, 𝑆2, and 𝑆4 time out while waiting for 𝑆3 to commit and create a 𝑇𝐶𝑎𝑐ℎ𝑒 . It is
possible that 𝑆4 is lying about its timer running out, but, once again, the existence of a super quorum
of voters ensures the 𝑇𝐶𝑎𝑐ℎ𝑒 is safe despite a potentially malicious participant. Finally, in Fig. 15b,
𝑆4 is successfully elected and invokes a method. This shows that byzantine replicas may sometimes
choose to behave honestly, in which case they can contribute to the committed state.

Fig. 16 shows that byzantine replicas are limited in the damage they can cause. For example, 𝑆4
could never create the𝑀𝐶𝑎𝑐ℎ𝑒 with the dotted outline in Fig. 16a because honest replicas only vote
for invoke requests from a leader and 𝑆4 does not have an 𝐸𝐶𝑎𝑐ℎ𝑒 . However, even as the leader,
𝑆4 cannot invoke a method on a different branch than its 𝐸𝐶𝑎𝑐ℎ𝑒 because canInvoke ensures that
the parent of an𝑀𝐶𝑎𝑐ℎ𝑒 is both an 𝐸𝐶𝑎𝑐ℎ𝑒 and at least as recent as any cache the honest voters
have voted for. In Fig. 16b, 𝑆1 and 𝑆2 have voted for the 𝑇𝐶𝑎𝑐ℎ𝑒 , so there is no way to form a super
quorum that would vote for 𝑆4’s𝑀𝐶𝑎𝑐ℎ𝑒 .
For the same reasons, 𝑆4 also cannot commit a method from a previous round (Fig. 16c). The

𝑇𝐶𝑎𝑐ℎ𝑒 is more recent than the𝑀𝐶𝑎𝑐ℎ𝑒 for method 𝐵, so 𝑆4 can never acquire enough votes. Nor
can it create a𝐶𝐶𝑎𝑐ℎ𝑒 on its own branch without first invoking a method (Fig. 16d). Replicas require
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Parameters

isMQuorum : Nnid → 𝑆𝑒𝑡 (Nnid ) → B
Assumptions

(MOverlap ) isMQuorum(ldr, 𝑄) ∧ isMQuorum(ldr, 𝑄′) =⇒ 𝑄 ∩𝑄 ′ ∩ honest ≠ ∅
(MSOverlap ) isMQuorum(ldr, 𝑄) ∧ isSQuorum(𝑄 ′) ∧ ldr ∈ 𝑄 ′ =⇒ 𝑄 ∩𝑄 ′ ∩ honest ≠ ∅

Fig. 17. Method quorum (mquorum) parameters and assumptions.

ValidInvokeOracleOk
𝑡 = time(𝐶𝐸 ) leaderAt (𝑡) = nid

isMQuorum(nid, 𝑄) canInvoke(tree(𝑠𝑡),𝐶𝐸 , nid, 𝑄) ∀𝑠 ∈ 𝑄 ∩ honest . times(𝑠𝑡) [𝑠] ≤ 𝑡

Oinvoke (𝑠𝑡, nid) = Ok(𝑄,𝐶𝐸 )

Fig. 18. Oinvoke replaces super quorums with mquorums.

proof of a successful pre-commit round before voting for a commit request, which in AdoB is
modeled by canCommit’s requirement that the parent of a 𝐶𝐶𝑎𝑐ℎ𝑒 be an𝑀𝐶𝑎𝑐ℎ𝑒 .

4.2 Merging the Models

Now, after identifying exactly where these benign and byzantine models differ, we are in a position
to unify them by introducing parameters that hide the differences behind a common interface. For
two of the changes, this is trivial. The set of byzantine replicas is already a parameter that can
simply be instantiated to the empty set for the benign case. Likewise, if isSQuorum is set equal to
isQuorum, then SOverlap clearly holds because quorums overlap and every replica is honest.
This leaves only invoke, and the key to bridging this gap is to understand what role invoke

serves in maintaining an important safety invariant. In order to linearize concurrent events, it is
required that, for any two consecutive events, there is a common voter, which creates an unbroken
chain of evidence that the logical timestamps are non-decreasing and can therefore be totally
ordered. The byzantine case guarantees this by requiring a super quorum of voters for every
operation, but, at first glace, the benign case seems to make an exception for invoke.

In fact, although benign invoke only requires the leader’s approval, this does not break the chain
of common voters. Observe that an𝑀𝐶𝑎𝑐ℎ𝑒 always follows an 𝐸𝐶𝑎𝑐ℎ𝑒 created by the same leader,
and a 𝐶𝐶𝑎𝑐ℎ𝑒 always follows an 𝑀𝐶𝑎𝑐ℎ𝑒 also from the same leader. Therefore, the leader is the
common voter through this chain of caches.
We can therefore consider benign invoke to require a special quorum of size 1, whose only

restriction is that it must overlap with any other quorum containing the same leader. By dropping
the size restriction and generalizing the overlap condition to hold for super quorums, we arrive
at a generic method quorum (isMQuorum in Fig. 17) that can be instantiated to either the benign
or byzantine case. Unlike the other quorums, isMQuorum depends on the nid of the leader as well
as a set of voters, which is used to determine when mquorums must overlap. In particular, two
mquorums with the same leader must always have a common honest voter (MOverlap), and an
mquorum must also have an honest overlap with any super quorum containing the same leader
(MSOverlap). All that is needed then to reach the fully unified AdoBmodel is to replace isSQuorum
with isMQuorum in Oinvoke’s preconditions (Fig. 18).

Fig. 19 demonstrates that the various quorum parameters can easily be instantiated to support
different consensus strategies. In addition to the standard 1/2 benign quorum and 2/3 byzantine
super quorums, one can also express something similar to a proof-of-stake scheme [Saleh 2021] in
which each replica is assigned a weight (𝔴), which represents its “voting power”. The proofs that
these definitions satisfy the overlap assumptions can be found in the supplementary Coq proofs.
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Benign Byzantine Weighted (Proof of Stake)

byzantine ∅ Arbitrary 𝑆𝑒𝑡 (Nnid ) Arbitrary 𝑆𝑒𝑡 (Nnid )
isQuorum(𝑄) |𝑄 | > |conf |/2 |𝑄 | > |conf |/2 𝔚(𝑄) > 𝔚(conf )/2
isSQuorum(𝑄) isQuorum(𝑄) |𝑄 | > 2|conf |/3 𝔚(𝑄) > 2𝔚(conf )/3

isMQuorum(ldr, 𝑄) ldr ∈ 𝑄 isSQuorum(𝑄) isSQuorum(𝑄)

𝔴 : Nnid → N 𝔚(𝑄) ≜ Σs∈𝑄𝔴 (𝑄)

Fig. 19. Quorum instantiations for benign and byzantine settings.

4.3 Adjusting Safety and Liveness Proofs

Adapting the safety and liveness proofs for benignAdoB to this new unifiedmodel is straightforward
because all but the essential details have already been stripped away. None of the high-level proof
structure changes, and all that remains is to weaken certain lemmas to only apply for honest
replicas, and to account for the non-local effects of invoke.

Weakening Invariants. AdoB leaves the behavior of byzantine replicas largely unspecified,
which means many invariants that previously held for all replicas are now only provable for honest
replicas. For example, an honest replica’s local time is bounded below by the timestamp of every
cache it has voted for or supported, but byzantine replicas can lie about their local time.

As before, everything relies on an honest quorum overlap, this time between super quorums and
mquorums (SOverlap, MOverlap, MSOverlap). With these additional assumptions, we can show
that, even with the weakened invariants, enough honest replicas are involved in every operation
that malicious replicas cannot convince the system to behave incorrectly.

Non-local invoke. Now that invoke requires an mquorum of voters, it is no longer a strictly
local operation. Therefore, a few new lemmas, as well as some minor changes to existing ones,
are required. For example, one important invariant guarantees that push appends a 𝐶𝐶𝑎𝑐ℎ𝑒 to the
leader’s most recent𝑀𝐶𝑎𝑐ℎ𝑒 .

Lemma 4.1 (Push Max Parent). If Opush returns Ok for some replica, then the cache it selects is as
least as recent (according to ⪰) as every other𝑀𝐶𝑎𝑐ℎ𝑒 created by the same replica.

In the benign case, this follows from the fact that canCommit says 𝐶𝑀 is at least as recent as its
voters’ latest voted caches. Then, when comparing 𝐶𝑀 against any other𝑀𝐶𝑎𝑐ℎ𝑒 𝐶 , we know that
𝐶’s only voter is the leader that created it, which is the same as the current leader by assumption, so
𝐶𝑀 ⪰ 𝐶 . This reasoning does not work in the generalized setting because 𝐶 now has an mquorum
of voters. However, because of MSOverlap, we know that𝐶’smquorum of voters and push’s super
quorum of voters have a common honest replica, which means canCommit still implies 𝐶𝑀 ⪰ 𝐶 .

Proof Effort. The updated specifications and proofs for the generalized AdoB model required
only an additional two person-weeks, approximately 20 lines of specification (720 total), and 1300
lines of proof (8100 total). This relatively small delta is a testament to how well the benign AdoB
abstraction already captures the core essence of consensus.

5 SAFETY REFINEMENT AND NETWORK-LEVEL LIVENESS

AdoB’s safety and liveness is only meaningful if it faithfully models the behavior of actual be-
nign and byzantine consensus protocols. We demonstrate that this is indeed the case by proving
that network-based specifications of two protocols refine AdoB. The first is a novel variant of
Jolteon [Gelashvili et al. 2022] that we call GenJolteon because it is capable of tolerating either benign
or byzantine faults depending on the instantiation of mquorum. The second is Fast Paxos [Lamport
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Σnet ≜ (Nnid ⇀ Replica) ∗ Network
Replica ≜ Ntime ∗ Log ∗ Phase ∗ 𝑆𝑒𝑡 (Msg)

Network ≜ 𝑆𝑒𝑡 (Msg) ∗ 𝑆𝑒𝑡 (Msg)
Log ≜ 𝐿𝑖𝑠𝑡 (Ntime ∗ 𝑆𝑒𝑡 (Nnid ) ∗Method)

Phase ≜ NoVote | InvokeVoted | CommitVoted | Done
| Elected | InvokeWait | Invoked | CommitWait

Msg ≜ Request (Nnid ∗ 𝑆𝑒𝑡 (Nnid ) ∗ Ntime ∗ Cmd)
| Ack(Nnid ∗ Nnid ∗ Ntime ∗ Cmd)
| Timeout (Nnid ∗ 𝑆𝑒𝑡 (Nnid ) ∗ Ntime ∗ Log)

Cmd ≜ Elect (𝑆𝑒𝑡 (Nnid ) ∗ 𝑆𝑒𝑡 (Log))
| Invoke(Log ∗ 𝑆𝑒𝑡 (Log) ∗Method)
| Commit (Log)

𝑂𝑝net ≜ invoke : Nnid → Method → Σnet → Σnet

| commit : Nnid → Σnet → Σnet

| timeout : 𝑆𝑒𝑡 (Nnid )→Ntime→Σnet→Σnet

| deliver : Msg → Σnet → Σnet

Fig. 20. Abstract network-based state and operations.

Phase Leader Non-leader

NoVote The replica has entered this round, but has not done anything yet.

Elected
The leader has received a QC or TC
from the previous round and is ready
to build an Invoke request.

N/A

InvokeWait
The leader has sent out an Invoke re-
quest and is waiting for responses. N/A

InvokeVoted N/A The replica has voted for an Invoke request.

Invoked
The replica has received a super quo-
rum of acks for an Invoke request and
is ready to send a Commit request.

N/A

CommitWait
The replica has sent out a Commit
request and is waiting for responses. N/A

CommitVoted
The replica has received a super quo-
rum of Commit acks. The replica has voted for aCommit request.

Done The replica has timed out and will not respond to messages from this round.

Fig. 21. Semantics of GenJolteon replica phases.

2006], which is a benign protocol with a slightly different voting mechanism from Paxos and
PBFT-like protocols. In this section, we give a brief overview of these proofs, as well as a basic
performance evaluation for GenJolteon. More technical details can be found in Appendices B and C.

GenJolteon Network-Based Specification. We model the network as a state machine consisting
of a set of local replica states and a bag of sent and received messages (Fig. 20). Messages may arrive
in any order, at any time after being sent. Honest replicas react by updating their local state and
sending new messages. Byzantine replicas are allowed to update their state arbitrarily, but may not
do anything that requires forging other replicas’ signatures (e.g., constructing a QC). Each replica
maintains a local timestamp (the current round it is participating in), a log of methods tagged with
a timestamp and a set of voters, a phase, and a set of received Timeout messages. A replica’s phase
represents its idea of network progress, and determines what actions it is allowed to take (Fig. 21).
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Our notion of refinement consists of proving a relation between network states and cache trees.
To reconcile the concurrent, out-of-order network voting events with AdoB’s atomic oracular
model, we define certain network events as linearization points for cache creation. We then show
that every reachable network state has a corresponding valid cache tree, such that there is a bijection
between network linearization points and caches. Once this relation is established, we can use
AdoB’s safety and liveness theorems to prove similar properties for the network-level protocol.

GenJolteon Safety. GenJolteon is based on the standard non-pipelined Jolteon protocol with
the same generic quorum parameters as AdoB instead of a fixed 2/3 quorum. GenJolteon uses
two phases, invoke and commit, corresponding to the 2-chain rule in Gelashvili et al. [2022]. Each
phase requires the leader to collect a super quorum of votes. A successful invoke phase marks a
linearization point that corresponds to simultaneously creating an 𝐸𝐶𝑎𝑐ℎ𝑒 and𝑀𝐶𝑎𝑐ℎ𝑒 . Likewise,
a successful commit phase corresponds to creating a 𝐶𝐶𝑎𝑐ℎ𝑒 . By establishing a bijection between
these events and AdoB caches, we can prove the following theorem.

Theorem 5.1 (GenJolteon Refinement). For every valid network state of GenJolteon, there exists
a cache tree that is related to the network state through the following refinement guarantees:

(1) The local log of each replica always corresponds to a branch of the cache tree. If the replica is
honest, then the corresponding cache must have a timestamp at least that of the highest𝐶𝐶𝑎𝑐ℎ𝑒
the replica voted for;

(2) If the local timestamp of an honest replica is 𝑟 , then there exists a 𝐶𝐶𝑎𝑐ℎ𝑒 or 𝑇𝐶𝑎𝑐ℎ𝑒 of round
𝑟 − 1. Hence, the cache tree cannot fall too far behind network progress;

(3) Every successful Commit request (thus, every QC) in the network corresponds to a 𝐶𝐶𝑎𝑐ℎ𝑒 ;
(4) Every𝑀𝐶𝑎𝑐ℎ𝑒 in the cache tree corresponds to some proposed block in the network. Therefore,

there cannot be spurious blocks in the cache tree.

The first part of the relation, which maps replicas’ local logs to cache tree branches, together with
AdoB’s Theorem 3.1, which says that every 𝐶𝐶𝑎𝑐ℎ𝑒 lies on the same branch, implies GenJolteon’s
safety property that there is a unique sequence of committed methods that is shared by every
replica’s log. The proof of this theorem is divided into two major steps. The first involves reordering
and grouping related network send and receive events (e.g., votes for the same request), while
proving that the resulting honest network state (i.e., all but the byzantine replicas, whose behavior
we model non-deterministically) is equivalent to the original order. These events are then collected
in a record called the round descriptor, which provides a structured view of every externally visible
event that has occurred. The second step constructs a cache tree from the round descriptor.

Fast Paxos Safety. The Fast Paxos refinement follows the same network to round descriptor to
cache tree approach as GenJolteon; however, aside from only supporting benign failures, there are
two differences worth noting. The first is that Fast Paxos is a single-shot protocol that commits at
most one value, while AdoB may have arbitrarily many committed𝑀𝐶𝑎𝑐ℎ𝑒𝑠 . We therefore add the
condition to the canInvoke predicate that, if the consensus log of the leader’s latest 𝐸𝐶𝑎𝑐ℎ𝑒 is not
empty, the last entry being𝑚, then the leader may only invoke𝑚 again. Then, by induction, the
consensus log of every cache is either empty or a repeated sequence of the same method.

The second key difference is that Fast Paxos has two types of rounds: a slow round, which works
as in standard Paxos where the leader broadcasts a method, and a fast round, in which the leader
broadcasts a special message that permits voters to accept any method provided by a client directly,
bypassing the leader. If clients suggest different methods, the voters may become stuck and time
out, which triggers a recovery procedure. We refer readers to Lamport [2006] or Appendix C for
details, but a consequence of this voting mechanism is that a 3/4 quorum is necessary.
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These different quorum sizes are easily accommodated by AdoB. A super quorum is 3/4 or more
of the voters. For slow rounds, anmquorum is just the leader, and, for fast rounds, it is 1/2 or more of
the voters. This implies that any two super quorums intersect on a fastmquorum. The linearization
point for creating an 𝐸𝐶𝑎𝑐ℎ𝑒 is when a new leader receives a super quorum of timeouts; for an
𝑀𝐶𝑎𝑐ℎ𝑒 , it is when a fast mquorum votes for the same value or when the leader decides a value in
a slow round; and, for a 𝐶𝐶𝑎𝑐ℎ𝑒 , it is when the leader receives a super quorum of votes.
Compared with GenJolteon, the main verification challenge is showing that the recovery algo-

rithm always returns the committed value, if one exists. Despite the significant differences between
the protocols, the overall proof structure is quite similar, primarily involving reordering network
events and mapping them to AdoB caches.

GenJolteon Liveness. Unfortunately, whereas GenJolteon’s safety follows directly from AdoB’s
safety, its liveness requires additional network-level reasoning. The problem is the refinement
loses important temporal information when it reorders network events. Nevertheless, the safety
refinement is still useful for proving the following liveness result. In future work, we plan to
investigate alternative forms of refinement that will allow us to use AdoB’s liveness more directly.

Theorem 5.2 (GenJolteon Liveness). After the GST period, starting from any valid network state,
a new command will eventually be committed.

To even state this theorem requires a formal model of time and terms like “eventually”. In our
liveness proofs, we represent temporal properties in terms of timed traces. Let 𝑇 be the timepoint
where GST commences, and Δ be the maximum delivery delay. Then, let 𝜏𝑘 represent the prefix of
the timed trace consisting of all events that occurred before timepoint 𝑇 + 𝑘Δ. We can then ask:
given the network state at the end of the partial trace 𝜏𝑘 , what can we infer about the network state
at the end of 𝜏𝑘+1? For example, consider the scenario where:
• The honest leader of round 𝑟 is waiting upon a commit request;
• Every honest replica is in round 𝑟 , and has sent out its commit vote;
• Every honest replica still has at least 2Δ of time at its local timer.

Intuitively, within Δ, the leader will receive all the votes from the honest replicas, and thus its
commit request will succeed. We can formalize this idea by considering the network state at 𝑡 + Δ.
First, note that no honest replica could have timed out within Δ, because they all still have sufficient
time remaining on their local timers. Therefore, there cannot be a TC of round 𝑟 at this point.

The rest of the cases follow a similar line of reasoning. For example, if some honest replica has
entered a round 𝑟 ′ > 𝑟 + 1, then there exists a QC or TC in round 𝑟 ′ − 1. The structure of the cache
tree then implies that there exists a QC or TC in every round between 𝑟 and 𝑟 ′ − 1. In particular, this
implies the existence of a QC in round 𝑟 . This demonstrates the main benefit of the refinement with
the cache tree model: by referring to the structural properties of the tree, we can infer information
about previous events from the current state of the network.

The rest of the liveness proof consists of two parts. First, we show that honest replicas continually
enter new rounds. Then, we characterize a set of “good network states” that cover every valid
network configuration and prove that each necessarily eventually leads to a successfully committed
method. We identify seven such states, supposing that an honest leader is in round 𝑟 .
(1) Every honest replica is in a round 𝑟 ′ < 𝑟 ;
(2) Every honest replica is either in a round 𝑟 ′ < 𝑟 , or in round 𝑟 in the NoVote phase with timer
≥ 3Δ, and at least one honest replica is in round 𝑟 ;

(3) Every honest replica is either in a round 𝑟 ′ < 𝑟 , or in round 𝑟 in the NoVote phase with timer
≥ 2Δ, or in the InvokeVoted phase with timer ≥ 3Δ, while the leader is in the InvokeWait
phase with timer ≥ 3Δ;
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Layer Specs (Lines) Proof (Lines) Purpose

GenJolteon

NetworkAtomic 849 4229 Build AdoB cache tree from atomic events.
NetworkMultiElect 801 992 Discard extra TCs.
RoundDescriptor 424 2102 Group individual events into atomic events.
AlmostNetwork 845 6079 Reorder individual events, except timeouts.
NetworkExplicit 753 1298 Reorder receiving timeout messages.

Fast Paxos

RoundDescriptor 315 1284 Group individual events into atomic events
and build AdoB cache tree.

Network 398 813 Reorder individual events.
Table 1. Refinement layers proof effort. See Appendices B and C for descriptions of each layer.

(4) Every honest replica is in round 𝑟 in the InvokeVoted phase with timer ≥ 2Δ, while the leader
is in the InvokeWait phase with timer ≥ 2Δ;

(5) Every honest replica is either in a round 𝑟 ′ < 𝑟 , or in round 𝑟 in the NoVote phase with timer
≥ Δ, or in the InvokeVoted phase with timer ≥ Δ, or in the CommitVoted phase with timer
≥ 3Δ, while the leader is in the CommitWait phase with timer ≥ 3Δ;

(6) Every honest replica is in round 𝑟 in the CommitVoted phase with timer ≥ 2Δ, while the
leader is in the CommitWait phase with timer ≥ 2Δ;

(7) The leader is in round 𝑟 in the CommitVoted phase.
If the network is in state 7, then it has received a super quorum of Commit acknowledgments.

Consequently, from the AdoB safety and refinement proofs, we can conclude that a 𝐶𝐶𝑎𝑐ℎ𝑒 has
been created. For any other state, we show that it must progress to another, “better” state with a
higher number. For example, suppose that the network is in state 4. Since every honest replica
is in the InvokeVoted phase, there exists a super quorum of Invoke acknowledgments. Since the
leader is honest, there is only one Invoke request in round 𝑟 , so everyone acknowledges the same
request. After one network step, all of these acknowledgments must have been received by the
leader. Therefore, the leader is either in the CommitWait or CommitVoted phase. In the first case,
we reach state 5, and in the second case we reach state 7. See Appendix B.3 for more proof details.

Proof Effort. In total, GenJolteon’s refinement and safety proofs took took approximately eight
person-months and 17000 lines of Coq proof. Note, however, that this includes the time to discover
the right proof structure and correct the GenJolteon and AdoB specifications as errors were
discovered. For Fast Paxos, we were able to leverage this experience and common proof architecture
to complete the proofs in only one person-month and around 2000 lines of proof. Table 1 summarizes
the layers into which each proof was broken. Fast Paxos’ proof uses only two layers because we
found that GenJolteon’s finer-grained steps did not actually reduce the overall proof effort.
GenJolteon’s liveness proof took an additional two person-months and 2700 lines of proof. We

have not completed a network-level liveness proof for Fast Paxos, but we expect the proof effort to
be comparable to GenJolteon’s as the informal argument follows essentially the same structure.
(1) Each replica eventually enters a new round due its timer.
(2) After beginning a round, it does not time out within 4Δ.
(3) Once a non-faulty leader enters a round after GST, it can always commit a value within 3Δ.

The primary difference from GenJolteon is that Fast Paxos does not need a pre-commit phase as it
does not have to consider byzantine participants. The addition of the fast rounds does not affect the
reasoning very much because the proof is mainly concerned with demonstrating progress in the
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canTimeout (𝑡𝑟,𝐶,𝑄) ≜ ∀𝑠 ∈ 𝑄 ∩ honest .𝐶 ⪰ activeCommit (𝑡𝑟, 𝑠)
∧ ∃𝑠 ∈ 𝑄 ∩ honest .𝐶 = activeCommit (𝑡𝑟, 𝑠)

ValidOracleTimeout
isSQuorum(𝑄 ) canTimeout (tree(𝑠𝑡),𝐶max , 𝑄 )

∀𝑠 ∈ 𝑄 ∩ honest . times(𝑠𝑡) [𝑠] ≤ 𝑡 ∃𝑠 ∈ 𝑄 ∩ honest . times(𝑠𝑡) [𝑠] = 𝑡

Oop (𝑠𝑡, nid) = Timeout (𝑄 ,𝐶max , 𝑡)

Fig. 23. An incorrect early attempt at modeling timeouts. The mistakes are marked with a blue box .

worst case, when the recovery procedure is triggered. However, the safety proof already handles
much of the complexity by showing that whatever value it produces is safe to commit, and the
liveness proof can simply rely on this result.

Extraction to OCaml. To further demonstrate that AdoB faithfully models real protocols, we
use Coq’s support for extraction to OCaml to produce an executable version of GenJolteon. The
pure, functional event handlers are automatically extracted and glued together with a hand-written
shim layer that handles network communication. The main execution path of the program is
single-threaded and a separate thread manages sending timeout messages as necessary.
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Fig. 22. Latency measurements.

We evaluated the extracted code on a research cloud environ-
ment with a four-replica configuration. Each node is equipped
with four vCPU cores, 16 GB memory, and runs Rocky Linux
8.8. The average network round trip time between nodes is
392 `s. The extracted code exhibits a median latency of 1.87 ms
and maximum latency of 9.83 ms (excluding cryptographic
signing) to commit a request under a steady state. We config-
ured the timeout to be 10 ms and ran another experiment with
one failed replica. Fig. 22 shows a series of latency measure-
ments to increment the timestamp either by committing a method or by timing out. The leader
rotates at every timestamp, so the system must wait for a timeout on the failed replica’s turn.
These latency results are comparable to those of the verified instance of PBFT in Rahli et al.

[2018] (approximately 1.5 ms), and within an acceptable range of the 0.5 ms achieved by the
optimized, unverified BFT-SMaRt system [Bessani et al. 2014]. The extracted code is not optimized
for throughput and has a commit rate of 535 blocks per second (a block can include multiple
transactions), which is lower than the tens of thousands of transactions per second that BFT-SmaRt
and Jolteon [Gelashvili et al. 2022] can achieve. Note that these results are only rough indications
of GenJolteon’s baseline performance. Our goal is primarily to demonstrate that AdoB can produce
executable programs, so there is significant room for relatively simple performance optimizations,
including handling requests with multiple threads, batching more transactions per block, and
implementing pipelining. In addition to the shim layer, the trusted computing base consists of Coq’s
extraction mechanism, the OCaml compiler, and the network, thread, and cryptographic libraries.

6 DISCUSSION

Refinement as a Sanity Check. Working at a high level of abstraction is useful for simplifying
reasoning, but it can be easy to lose sight of the underlying system. Refinement is an essential
tool to sanity check the model against a real implementation and have confidence in its validity.
For example, an early version of AdoB had complete safety and liveness proofs, but, during the
GenJolteon refinement, we discovered subtle mistakes related to the handling of timeouts (Fig. 23).

One bug was due to incorrectly conflating 𝑇𝐶𝑎𝑐ℎ𝑒 voters and supporters. Recall that a timeout
is successful when some replica receives a super quorum of timeout messages. These are bundled
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together to form a TC, which acts as evidence that it is safe to begin a new round. In AdoB, the TC
is represented by a 𝑇𝐶𝑎𝑐ℎ𝑒 , and an oracle determines what super quorum of replicas timed out.

This super quorum is the 𝑇𝐶𝑎𝑐ℎ𝑒’s voters, but, initially, it was also defined to be its supporters.
This implies that the replicas that time out are exactly the same replicas that receive the completed
TC, which is not always the case. Suppose replicas 𝑆1 and 𝑆2 time out but only 𝑆3 receives the
messages. 𝑆1 and 𝑆2 vote for the TC because they contribute to its creation, but only 𝑆3 supports
the TC because it is the only one to actually observe the TC and update its local state accordingly.

This is solved by returning two sets from the oracle: one (𝑄vote) that represents the replicas that
timed out and another (𝑄supp) that observed the completed 𝑇𝐶𝑎𝑐ℎ𝑒 . 𝑄vote must be a super quorum,
but 𝑄supp can be as small as a single honest replica.

A related bug overly restricted the parent cache that the oracle selects for 𝑇𝐶𝑎𝑐ℎ𝑒 (𝐶max ). Origi-
nally, canTimeout required not just that 𝐶max was at least as recent as the voters’ activeCommit,
but that it was also equal to one of these activeCommit. The reasoning was that some replicas will
support this 𝑇𝐶𝑎𝑐ℎ𝑒 , so, to maintain safety, it should only choose a committed cache.
This becomes a problem when considering the situation where a leader invokes a method but

times out before committing it (as in Fig. 11). At the network level, the TC may very well contain
the uncommitted method, but this incorrect canTimeout does not allow a 𝑇𝐶𝑎𝑐ℎ𝑒 to follow an
𝑀𝐶𝑎𝑐ℎ𝑒 . The solution is to drop the requirement that 𝐶max be a 𝐶𝐶𝑎𝑐ℎ𝑒 . This is still safe because,
as long as it is at least as recent as the latest𝐶𝐶𝑎𝑐ℎ𝑒 , the linear chain of𝐶𝐶𝑎𝑐ℎ𝑒𝑠 will not be broken.

AdoB Generality. We have demonstrated that AdoB is generic in the sense that it captures
both benign and byzantine consensus. It also supports a variety of consensus strategies, including
the typical 1/2 and 2/3 majority quorums, as well as proof-of-stake-style weighted majorities. It
would be interesting, in future work, to study proof-of-work systems like Bitcoin [Nakamoto 2008].
Although they exhibit a similar tree structure to other forms of consensus, they typically provide
only probabilistic safety guarantees, which poses additional challenges for verification.

From our experience with proving refinement for GenJolteon and Fast Paxos, we expect support-
ing other common protocols, such as PBFT and Tendermint [Buchman 2016], to be straightforward
as they all follow a similar sequence of phases and rely on overlapping quorums to guarantee agree-
ment. For instance, Tendermint has pre-vote and pre-commit phases that are roughly analogous to
invoke and push. Unlike Jolteon, rather than relying on the leader to provide a QC, replicas gather
their own evidence of a command’s safety by broadcasting their votes. This removes the need for
TCs and a pacemaker because the leader is no longer necessary to make progress. Nevertheless,
the result is the same from AdoB’s perspective: an honest replica may only commit a command for
which it has observed a super quorum of votes.

Earlier versions of the ADO model [Honoré et al. 2021, 2022] have already shown that it supports
multiple benign protocols, including several Paxos variants and Raft. In almost all respects, AdoB
is a strictly more general model, and can therefore be expected to support a superset of these
protocols. For example, although AdoB adds 𝑇𝐶𝑎𝑐ℎ𝑒𝑠 , it can still be implemented by a protocol
without timeouts, though liveness guarantees may be forfeited. The few restrictions it introduces,
such as allowing only a single𝑀𝐶𝑎𝑐ℎ𝑒 per round and requiring rotating leadership, are necessary
for supporting byzantine failures and liveness reasoning and are not very limiting in practice. The
former requirement can be worked around by batching multiple commands into a single commit
request, and the latter is still quite flexible as it only requires a very weak form of fairness.

Possible Extensions. AdoB is intended to describe the general behavior of leader-based consen-
sus protocols, but there are a number of important optimizations and extensions that, although
currently out of scope, would be interesting targets for future work.
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Benign Byzantine Safety Liveness Executable Safety
Refinement

AdoB ✓ ✓ ✓ ✓ ✓ ✓
IronFleet [Hawblitzel et al. 2015] ✓ × ✓ ✓ ✓ ✓

Verdi [Wilcox et al. 2015] ✓ × ✓ × ✓ ✓
Taube et al. [2018] ✓ × ✓ × ✓ ×

Adore [Honoré et al. 2022] ✓ × ✓ × ✓ ✓
QTrees [Cirisci et al. 2023] ✓ ✓ ✓ × × ✓
Velisarios [Rahli et al. 2018] × ✓ ✓ × ✓ ✓

Carr et al. [2022] × ✓ ✓ × × ×
Padon et al. [2018] ✓ × ✓ ✓* × ×

Losa and Dodds [2020] × ✓ ✓ ✓* × ×
Berkovits et al. [2019] × ✓ ✓ ✓* × ×

Table 2. Comparison between consensus verification projects.

*: The liveness proof does not cover partially-synchronous protocols.

Pipelining, for example, is an optimization implemented by Jolteon and similar protocols that
merges the commit phase for the previous round into the pre-commit phase of the current round.
However, the danger of a malicious leader still exists, so a command is not actually considered
committed until there are two consecutive commits (a 2-chain commit in blockchain terminology).
This breaks the simple correspondence between AdoB’s invoke and push operations and the
pre-commit and commit phases. A possible solution is to introduce a modified version of AdoB
that combines invoke and push in the same way as two-chain Jolteon. In this version, a 𝐶𝐶𝑎𝑐ℎ𝑒
would not be truly committed until it is directly preceded by a 𝐶𝐶𝑎𝑐ℎ𝑒 from the previous round.
One could then prove that the pipelined AdoB refines the three-phase AdoB.

Reconfiguration, the mechanism by which participating replicas can be added and removed, is an
important, but subtle operation for practical consensus systems. Honoré et al. [2022] demonstrated
that an ADO-based model can support it, but only for a benign setting. Many blockchain protocols,
such as Algorand [Gilad et al. 2017], periodically rotate the subset of the participants that are
allowed to propose or vote to commit blocks. This could be modeled in AdoB by maintaining an
active set of replicas that can be changed either by pull or a new operation. The challenge is then
to show that a quorum overlap still exists between caches created by different sets of voters.

In practice, consensus is too slow for certain applications, so many real-world systems use it in
conjunction with weaker consistency models [Burrows 2006; Dean 2009; Hunt et al. 2010; Li et al.
2012]. It would be interesting to investigate whether an AdoB-like abstraction could be adapted to
these weaker models by keeping the cache tree abstraction, but adjusting the behavior of pull,
invoke, and push. One might then be able to consider hybrid-consistency systems through some
notion of cache tree composition.

7 RELATEDWORK

Formal Verification of Consensus. AdoB is the first abstraction to support the simultaneous
verification of benign and byzantine consensus, but prior work has studied each case individually.
Table 2 compares a selection of these projects along multiple dimensions; namely, does it target
benign or byzantine consensus, does it prove both safety and liveness, can it produce executable
code, and, if so, is there any formal connection between the code and the high-level abstraction.

Of the selected benign verification frameworks, IronFleet [Hawblitzel et al. 2015] is the only one to
prove liveness, using an embedding of TLA [Lamport 1994] in Dafny [Leino 2010]. Safety is proved in
an abstract state-machine model, which can be linked with more concrete implementations through
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refinement. Unlike AdoB, its strengths lie more in facilitating this refinement than providing a
generic, reusable abstraction for reasoning about whole classes of protocols.
Verdi [Wilcox et al. 2015] solves a similar problem by providing a mechanism for specifying a

distributed system in Coq using a simplified fault-free network-based model and automatically
refining it to a more realistic model using verified system transformers. These transformers auto-
matically perform a very similar process to the manual refinement described in Section 5 and it
would be interesting future work to attempt to merge these approaches. As with IronFleet, Verdi
does not provide a common atomic abstraction for consensus like AdoB, but instead provides
developers with tools to reason about individual systems in a more ad-hoc manner.

Another benign safety verification framework is Taube et al. [2018]. It emphasizes decomposing
the system into modules and applying decidable logics to check the invariants of these modules.

Adore [Honoré et al. 2022] is the closest in spirit to AdoB and a direct inspiration for our use of
the ADO model [Honoré et al. 2021]. It provides a generic cache tree-based abstraction for benign
consensus with reconfiguration and a reusable safety proof. Aside from reconfiguration support,
which we leave as future work, AdoB is strictly a generalization of Adore. We expect that proving
a refinement between a fixed-configuration version of Adore and AdoB would be straightforward.

Quorum Trees [Cirisci et al. 2023] (QTrees) are another consensus abstraction that represent the
state of a consensus protocol as a tree of proposed and committed nodes. Its ADDED and COMMITTED
nodes are similar to𝑀𝐶𝑎𝑐ℎ𝑒𝑠 and 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 , and GHOST nodes correspond to𝑀𝐶𝑎𝑐ℎ𝑒𝑠 that can no
longer be selected as the parent of an 𝐸𝐶𝑎𝑐ℎ𝑒 . One difference is that ADDED nodes are updated
in-place to become GHOST or COMMITTED, while AdoB’s caches are immutable. The authors provide
pen-and-paper proofs of the safety of the abstract model and show that a variety of benign and
byzantine protocols refine it, but, to our knowledge, these have not been mechanized. QTrees also
do not have a means of representing timeouts and are not suitable for liveness reasoning without
modifications, which as we found with the ADO model and AdoB, are non-trivial.
Velisarios [Rahli et al. 2018] is the first framework to provide a mechanized safety proof for

byzantine consensus. In particular, it showed the safety of PBFT in Coq using a logic-of-events
abstraction, which models a system as a collection of traces of logical events with some order
enforced by a happens-before relationship. This is similar to the ADO model in that it captures the
history of a distributed system as a collection of events with dependencies, but the structure of the
cache tree makes the relation to the concrete state (i.e., logs of commands) more explicit. Velisarios
does not consider benign consensus or liveness.
Carr et al. [2022] proves the safety of a generalized specification of HotStuff in Agda [Agda

Development Team 2022]. The protocol is modeled as an abstract state transition system with
parameters for certain implementation details and assumptions that they must satisfy (as we do
for𝑚𝑞𝑢𝑜𝑟𝑢𝑚). This shares AdoB’s goal of capturing the core behaviors of a protocol so proofs of
high-level properties can be reused across implementations; however, it is targeted specifically at
HotStuff variants, does not cover benign consensus, and lacks liveness and refinement proofs.

Liveness Verification. Our work includes the first mechanized byzantine consensus liveness
proof under partial synchrony, but a series of recent research efforts have proved other models of
liveness using decidable fragments of temporal logic. Padon et al. [2018] demonstrated that, for
certain fully asynchronous or synchronous protocols, liveness guarantees can be converted to safety
guarantees. Berkovits et al. [2019] proved liveness for two asynchronous byzantine consensus
protocols, but was unable to obtain liveness results for Byzantine Fast Paxos, a partially-synchronous
protocol. More recently, Bertrand et al. [2022] verified the liveness of a protocol that is similar in
structure to partially-synchronous protocols, but is ultimately still asynchronous.
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Among the applications of the liveness-to-safety reduction, Losa and Dodds [2020] are the
first to mechanically prove both the safety and liveness of a widely-deployed byzantine protocol,
Stellar [Mazieres 2015]. Instead of traditional quorums, Stellar uses federated agreement, in which
each replica chooses a set of replicas to trust (a quorum slice). The proof uses the Ivy [Padon
et al. 2016] Z3-based prover to show the safety and liveness of a first-order logic encoding of
the protocol. The validity of this model is then checked against a more standard specification in
Isabelle/HOL [Isabelle Development Team 2022] by showing that axioms in the Ivy model hold in
Isabelle. However, there is no mechanically-checked connection between the models nor is there
any connection to an executable implementation. Also, because Stellar is an open membership
consensus protocol, the notion of liveness is weaker than AdoB’s. Specifically, the proof does not
cover bounded latency of termination under bounded delivery assumptions.
This is not to suggest that these liveness proofs are less valid than AdoB’s or that partial

synchrony is the “right” model. There are many models of liveness with varying assumptions and
guarantees. AdoB’s contribution is to demonstrate a simpler way of reasoning about one of the
popular ones, which has proved to be challenging for other approaches to handle.

Connecting Benign and Byzantine Consensus. Others have also noticed the similarities
between benign and byzantine consensus and attempted to formalize the connection. However,
AdoB is the first, to our knowledge, to provide mechanized safety and liveness proofs, as well as a
refinement with a concrete implementation.

Lamport [2011] demonstrated that a byzantine version of Paxos (BPCon) refines a modified ver-
sion of benign Paxos (PCon). In particular, PCon adds a 1𝑐 message (pre-commit in our terminology)
that asserts a particular value is safe to commit. PCon is proved to be safe in TLAPS [Chaudhuri
et al. 2008] and is “byzantinized” by proving that BPCon refines it, showing that both implement
consensus despite the malicious replicas.
The 1𝑐 message serves a similar role to AdoB’s 𝑚𝑞𝑢𝑜𝑟𝑢𝑚 in that it is a generic method for

asserting the validity of a commit with an adjustable burden of proof depending on the trust model.
Thanks to the refinement, PCon’s safety implies BPCon’s safety, but this proof is specialized to
this one instance of benign and byzantine protocols. By raising the level of abstraction to the
ADO model, AdoB is able to handle a much more general class of protocols. There is an informal
argument for the liveness of BPCon, but no mechanized proof.
Another, more general approach by Rütti et al. [2010] aims to provide a generic specification

for benign and byzantine consensus. Once again, the key is to parameterize the pre-commit phase
(what they refer to as the validation round) to adjust the evidence required from the leader that a
command is safe to commit. The authors demonstrate that these parameters can be instantiated
for several concrete protocols, including Paxos and PBFT. This is closer to the level of generality
provided by AdoB; however, there are no mechanized proofs of safety or liveness for this algorithm.
Furthermore, it is specified in terms of a very abstract network-based model with no formal
connection to an implementation.
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These appendices contain additional formal and technical details about the proofs described in
the paper. Complete Coq formalizations can also be found in the supplementary materials.

A ADOB SAFETY AND LIVENESS DETAILS

This section contains additional details about certain key definitions and theorems for the safety and
liveness of AdoB, including Coq formalizations (slightly simplified for the sake of presentation).

Safety. 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 form a linear path in the cache tree. More specifically, given a well-formed cache
tree (ctree_wfmeans a tree is created using pull, invoke, and push according to the rules in for a
valid oracle), and two distinct𝐶𝐶𝑎𝑐ℎ𝑒𝑠 , one must be a descendant of the other ([c ~> c' | ctree]
means c' is a descendant of c in ctree).
Theorem safety (ctree: CacheTree) (wf: ctree_wf ctree) :

forall (c c': Cache),

c <> c' ->

In c ctree -> In c' ctree ->

is_commit c = true -> is_commit c' = true ->

[c ~> c' | ctree] \/ [c' ~> c | ctree].

The proof proceeds by supposing neither cache is the other’s descendant in order to derive a
contradiction. We then observe that each 𝐶𝐶𝑎𝑐ℎ𝑒 must have a corresponding 𝐸𝐶𝑎𝑐ℎ𝑒 ancestor as
well as some nearest common ancestor. By considering the different positions of these caches, we
can see that at least one 𝐸𝐶𝑎𝑐ℎ𝑒 is either the nearest common ancestor, or a descendant or ancestor
of it. In each case, we use invariants about well-formed cache trees to derive a contradiction.

For example, we can show that 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 have unique timestamps, which means their correspond-
ing 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 must as well. Then, if the more recent of the two 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 is an ancestor of the earlier
𝐶𝐶𝑎𝑐ℎ𝑒 , this contradicts the following lemma, which states that 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 and 𝑇𝐶𝑎𝑐ℎ𝑒𝑠 descend
from earlier 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 .
Lemma election_follows_commit (ctree: CacheTree) (wf: ctree_wf ctree) :

forall (c c': Cache),

is_commit c = true -> (is_election c' || is_timeout c' = true) ->

c' ≻ c ->

[c ~> c' | ctree].

We represent assumptions about configurations and quorums in the QuorumParams typeclass.
This introduces three parameters: an abstract configuration (Config), a projection function to a
set of replicas (members), and a function to decide if a given set of replicas is a quorum of a given
configuration (is_quorum). The quorum definition must satisfy the property that any two quorums
share a common replica, and adding more replicas to a quorum still produces a quorum.
Class QuorumParams := {

Config: Type;

members: Config -> set NID;

is_quorum: set NID -> Config -> bool;

quorum_overlap: forall (S S': set NID) (C: Config),

incl S (members C) -> incl S' (members C) ->

is_quorum S C = true -> is_quorum S' C = true ->

exists (s: NID), In s S /\ In s S';

quorum_subset: forall (S S: set NID) (C: Config),

incl S S' -> is_quorum S C = true -> is_quorum S' C = true;

is_squorum: set NID -> Config -> bool;

is_mquorum: NID -> set NID -> Config -> bool;

super_honest_subquorum: forall (S: set NID) (C: Config),
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incl S (members C) -> is_squorum S C = true -> is_quorum (S ∩ honest) C = true;

mquorum_overlap: forall (ldr: NID) (S S': set NID) (C: Config),

incl S (members C) -> incl S' (members C) ->

is_mquorum ldr S C = true -> is_mquorum ldr S' C = true ->

exists (s: NID), In s S /\ In s S' /\ In s honest;

msquorum_overlap: forall (ldr: NID) (S S': set NID) (C: Config),

incl S (members C) -> incl S' (members C) -> In ldr S' ->

is_mquorum ldr S C = true -> is_squorum S' C = true ->

exists (s: NID), In s S /\ In s S' /\ In s honest;

}.

Liveness. Eventually a new 𝐶𝐶𝑎𝑐ℎ𝑒 will be added to the cache tree.
Theorem liveness (ctree: CacheTree) (wf: ctree_wf ctree) :

exists (n: nat), maxCommit (runStrategy n ctree) ≻ maxCommit ctree.

A strategy is defined as a typeclass with a next_move function that, given a cache tree, decides
what operation to apply next (pull, invoke, or push). A strategy can then be run for any number
of steps to determine future states of a cache tree.

Class Strategy := { next_move: CacheTree -> CacheTree; }.

Fixpoint runStrategy `{Strategy} (n: nat) (ctree: CacheTree) : CacheTree :=

match n with | 0 => ctree | S n => runStrategy n (next_move ctree) end.

A productive strategy guarantees operations are called in a timely manner.

Definition productive_pull `{Strategy} (ctree: CacheTree) (nid: NID) :=

can_pull ctree nid ->

exists (n: nat),

runStrategy n ctree = ctree' /\

next_step ctree' = pull nid ctree' /\

(forall (n': nat), 0 <= n' <= n -> not_involved nid ctree (runStrategy n' ctree)).

Definition productive_invoke `{Strategy} (ctree: CacheTree) (nid: NID) := ... (* Similar *)

Definition productive_push `{Strategy} (ctree: CacheTree) (nid: NID) := ... (* Similar *)

Definition productive_strategy `{Strategy} := forall (ctree: CacheTree) (nid: NID),

productive_pull ctree nid /\ productive_invoke ctree nid /\ productive_push ctree nid.

A partially synchronous network has some GST, after which messages are guaranteed to be
delivered to honest replicas within a fixed time bound. This is modeled by an arbitrary GST
parameter, a function to determine whether GST has been reached, and assumptions that after GST
all non-faulty replicas will vote for any valid pull, invoke, or push request.

Class PSyncParams := {

GST: nat;

time_elapsed: CacheTree -> nat;

gst_pull: forall (ctree: CacheTree) (nid: NID),

ctree_wf ctree ->

GST < time_elapsed ctree ->

In nid nonfaulty ->

can_pull ctree nid ->

exists (vote: set NID) (cmax: Cache) (t: Time),

pull_oracle ctree nid = Ok vote cmax t /\ incl nonfaulty vote;

gst_invoke ...; (* Similar to gst_pull *)

gst_push: ...; (* Similar to gst_pull *)

}.
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Leaders are chosen according to a deterministic scheme that must always eventually select an
honest replica.
Class LeaderParams := {

leader_at: Time -> NID;

leader_at_fair: forall (t: Time), exists (t': Time) (nid: NID),

t < t' /\ leader_at t' = nid /\ In nid honest;

}.

The global time is the timestamp of the most recent 𝐸𝐶𝑎𝑐ℎ𝑒 or 𝑇𝐶𝑎𝑐ℎ𝑒 .
Definition global_time (ctree: CacheTree) (t: Time) :=

exists (c: Cache),

In c ctree /\

is_election c || is_timeout c = true /\

time c = t /\

(forall (c': Cache), In c' ctree -> time c' <= t).

By proving that the global time always eventually increases, we ensure that the system never
gets stuck in a particular round.
Lemma round_advances (ctree: CacheTree) (wf: ctree_wf ctree) :

GST < time_elapsed ctree ->

forall (t t': Time),

global_time ctree t ->

t <= t' ->

exists (n: nat), global_time (runStrategy n ctree) t'.

This follows from the productive strategy assumption. Whatever replica is the leader for the
current round must eventually call invoke and then push. If push fails and times out, then the
round advances and we are done. Otherwise, if it succeeds, then the next leader must eventually
call pull, which will also advance the global time by creating either an 𝐸𝐶𝑎𝑐ℎ𝑒 on success, or a
𝑇𝐶𝑎𝑐ℎ𝑒 on timeout.

A replica’s local timestamp is bounded below by the timestamps of the caches it has voted for or
supported.
Lemma local_time_lower_bound (ctree: CacheTree) (wf: ctree_wf ctree) :

forall (nid: NID) (c: Cache),

In c ctree ->

In nid honest ->

voted nid c = true \/ supports nid c = true ->

time c <= local_time nid.

Now we know that, if one waits long enough, a round will begin with a non-faulty leader. Then,
because we have reached GST, partial synchrony guarantees the eventual success of pull and
push.

Finally, we prove that the parent cache chosen byOpush is the most recent of the leader’s𝑀𝐶𝑎𝑐ℎ𝑒𝑠 ,
which implies. that the newly created𝐶𝐶𝑎𝑐ℎ𝑒 must have a strictly larger timestamp than any before
it, and the liveness proof is complete.
Lemma push_max_mcache (ctree: CacheTree) (wf: ctree_wf ctree) :

forall (c cm: Cache) (ldr: NID) (vote: set NID),

In c ctree ->

is_method c = true ->

nid c = ldr ->

push_oracle ctree ldr = Ok vote cm ctree ->
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Σnet ≜ (Nnid ⇀ Replica) ∗ Network
Replica ≜ Ntime ∗ Log ∗ Phase ∗ 𝑆𝑒𝑡 (Msg)

Network ≜ 𝑆𝑒𝑡 (Msg) ∗ 𝑆𝑒𝑡 (Msg)
Log ≜ 𝐿𝑖𝑠𝑡 (Ntime ∗ 𝑆𝑒𝑡 (Nnid ) ∗Method)

Phase ≜ NoVote | InvokeVoted | CommitVoted | Done
| Elected | InvokeWait | Invoked | CommitWait

Msg ≜ Request (Nnid ∗ 𝑆𝑒𝑡 (Nnid ) ∗ Ntime ∗ Cmd)
| Ack(Nnid ∗ Nnid ∗ Ntime ∗ Cmd)
| Timeout (Nnid ∗ 𝑆𝑒𝑡 (Nnid ) ∗ Ntime ∗ Log)

Cmd ≜ Elect (𝑆𝑒𝑡 (Nnid ) ∗ 𝑆𝑒𝑡 (Log))
| Invoke(Log ∗ 𝑆𝑒𝑡 (Log) ∗Method)
| Commit (Log)

𝑂𝑝net ≜ invoke : Nnid → Method → Σnet → Σnet

| commit : Nnid → Σnet → Σnet

| timeout : 𝑆𝑒𝑡 (Nnid )→Ntime→Σnet→Σnet

| deliver : Msg → Σnet → Σnet

Fig. 24. Abstract network-based state and operations.

cm ⪰ c.

B GENJOLTEON DETAILS

In this section, we specify our GenJolteon protocol, and describe our effort to prove safety and
liveness of GenJolteon.
The safety proof takes the form of a refinement between network states and AdoB cache trees.

The refinement is done in two major steps. In the first step, we construct a round descriptor structure
that captures all externally visible events in the network. In the second step, we construct an AdoB
cache tree from the round descriptor that faithfully captures these events. Each step is realized in
two or three refinement layers.

The liveness proof first defines a metric called current network time (CNT) that measures network
progress. We show that increase of CNT is an indication that a new block is committed. Then we
show that CNT will eventually increase. This shows that new blocks will eventually be committed.

B.1 Network Specification of GenJolteon

Network-Based Specification. The global state of the abstract network-based model (Fig. 24)
consists of local states of each replica and sets of sent and delivered messages. Each replica maintains
a local timestamp (the current round it is participating in), a log of methods tagged with a timestamp
and a set of voters, a phase, and a set of received Timeout messages. The phase of a replica indicates
its current idea of network progress, and determines what actions it is allowed to take. The semantics
of each phase is shown in Fig. 25, and are explained as we present the operation of GenJolteon.
Three kinds of messages exist. They all contain at least a sender, one or more receivers, and a

timestamp. A Request message additionally contains a command, which can be Elect, Invoke, or
Commit. Ack messages are responses to Request messages, and contain the same command as
the request it responds to. Timeout messages are sent when a replica times-out, and contains the
command log stored by the replica when it times-out.

Initialization of GenJolteon. Initially, all replicas are in round 1 and NoVote phase. There is
nothing for the replicas to do. Consequently, all honest replicas will time out in round 1, broadcasting
Timeout messages. When an honest replica receives a super quorum of Timeout messages, it builds
a TC, wraps it in an Elect message, and sends it to the leader of the next round.

Normal Operation of GenJolteon. A new round 𝑟 begins when its leader receives an Elect
message of timestamp 𝑟 , which contains a QC or a TC of timestamp 𝑟 − 1. It updates its timestamp,
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Phase Leader Non-leader

NoVote The replica has entered this round, but has not done anything yet.

Elected
The leader has received aQC or TC from
the previous round and is ready to build
an Invoke request.

N/A

InvokeWait
The leader has sent out an Invoke re-
quest and is waiting for responses. N/A

InvokeVoted N/A The replica has voted for an Invoke re-
quest.

Invoked
The replica has received a super quo-
rum of acks for an Invoke request and
is ready to send a Commit request.

N/A

CommitWait
The replica has sent out a Commit re-
quest and is waiting for responses. N/A

CommitVoted
The replica has received a super quorum
of Commit acks

The replica has voted for a Commit re-
quest.

Done The replica has timed-out and will not respond to messages of this round.

Fig. 25. Semantics of GenJolteon replica phases.

transitions into Elected phase, builds an Invoke request, and broadcasts it to all replicas. Invoke
requests are considered valid only when they come from the leader of round 𝑟 and are backed by a
QC or a TC. Invalid requests are silently ignored by honest replicas. Non-leader byzantine replicas
cannot build valid requests, nor can byzantine leaders that have not yet received an Elect request.
After sending out the Invoke request, the leader transitions into InvokeWait phase.

The replicas, upon receiving the Invoke request, enter the new round, send Invoke acks to the
leader, and transition into InvokeVoted phase. Honest replicas respond to at most one Invoke request
per round. Hence if some Invoke request gains a super quorum of acks, no other Invoke request
of the same round can also gain a super quorum of acks. This prevents byzantine leaders from
attempting to commit two different blocks in a single round.
When the leader receives a super quorum of Invoke acks, it enters Invoked phase, broadcasts

a Commit request, and updates its own log. After sending the request the leader enters the
CommitWait phase. When the replicas receive the Commit request, they also update their logs,
send out Commit acks and enter CommitVoted phase. When the leader receives a super quorum of
Commit acks, it enters CommitVoted phase, builds a QC and sends it within an Elect message to
the next leader. Thus, a round completes and a new round begins.

Faulty Operation of GenJolteon. When GenJolteon cannot progress, because the leader is
byzantine or the network is asynchronous, each honest replica will eventually time out by broad-
casting a Timeout message and entering Done phase. At this point, they no longer respond to any
message in the current round except other Timeout messages. When all honest replicas time out,
they will all receive a super quorum of Timeout messages, which allows them to build a TC and
enter a new round. The TC will be sent in an Elect message to the new leader, so it can initiate
requests.
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1 // Leader

2 elect(time, logs) {

3 // self.time < time || (self.time == time

&& self.phase == NoVote)

4 // Received Req(_, _, time, Elect(_, logs))

5 self.time := time;

6 self.phase := Elected(logs); }

7 invoke(logs, m) {

8 // self.phase = Elected(logs)

9 log := max_log(logs);

10 cmd := Invoke(log, logs, m);

11 self.phase := InvokeWait(cmd, {});

12 broadcast_req(self.time, cmd); }

13 handle_invoke_ack(votes, vote) {

14 // self.phase = InvokeWait(cmd, votes)

15 // Received Ack(vote, _, _, cmd)

16 votes.add(vote);

17 if (is_quorum(votes)) {

18 self.phase := Invoked;

19 self.log.append(m); } }

20 commit() {

21 // self.phase = Invoked

22 cmd := Commit(self.log);

23 self.phase := CommitWait(cmd, {});

24 broadcast_req(self.time, cmd); }

25 handle_commit_ack(votes, vote) {

26 // self.phase = CommitWait(cmd, votes);

27 // Received Ack(vote, _, _, cmd)

28 votes.add(vote);

29 if (is_quorum(votes)) {

30 self.phase := CommitVoted;

31 cmd := Elect({self.nid}, {self.log});

32 ntime := self.time + 1;

33 send_req(ldr(ntime), ntime, cmd); } }

1 // Replicas

2 handle_invoke_req(ldr, time, log, logs, m) {

3 // Received Request(ldr, _, time,

4 // Invoke(log, logs, m))

5 // self.time < time || (self.time = time &&

self.phase == NoVote)

6 self.time := time;

7 self.phase := InvokeVoted;

8 send_ack(ldr, time, Invoke(log, logs, m));}

9 handle_commit_req(ldr, time, log) {

10 // Received Request(ldr, _, time,

11 // Commit(log))

12 // self.time < time || (self.time = time &&

self.phase == NoVote or InvokeVoted)

13 self.time := time;

14 self.log := log;

15 self.phase := CommitVoted;

16 send_ack(ldr, time, Commit(log)); }

17

18 // Common

19 timeout() {

20 // self.phase != Elected or Done

21 self.phase := Done;

22 broadcast_timeout(self.time, self.log); }

23 handle_timeout(vote, time, log) {

24 // Received Timeout(vote, _, time, log)

25 // time >= log.last_entry.time

26 self.timeouts.add(id, time, log);

27 tos := filter_by_time(time, self.timeouts);

28 if (is_quorum(tos)) {

29 ntime := time + 1;

30 self.time := ntime;

31 self.phase := NoVote;

32 cmd := Elect(ids(tos), logs(tos));

33 send_req(ldr(ntime), ntime, cmd); } }

Fig. 26. GenJolteon pseudocode.

When Should a Replica Increase its Timestamp? Our protocol is designed along the following
principle: if an honest replica increases its timestamp to 𝑟 , then it is guaranteed that all honest
replicas will eventually increase their timestamp to 𝑟 . Let us see why violating this principle leads
to livelessness.
Variation 1: The current leader jumps to the next round after receiving a quorum of Commit

acks. All other replicas stay in the current round. Suppose the current leader is honest, while the
next leader is byzantine. After the current leader jumps to the next round, all byzantine replicas
become silent. At this point, it is impossible to convince the remaining honest replicas to jump to
the next round. The protocol is stuck.
Variation 2: Every honest replica jumps to the next round upon voting for a Commit request.

Suppose that the current leader is byzantine. It delays sending out its Commit request, so that it
reaches a small number of honest replicas, but other honest replicas time out before receiving the
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request. At this point all byzantine replicas become silent. Now the honest replicas are split into
two groups, neither of which forms a quorum. The protocol is stuck.
Variation 3: Every honest replica jumps to the next round upon voting for a Commit request,

or receiving a Timeout message containing a log with timestamp equal to the replica’s current
timestamp. This is slightly different from variation 2 above. The difference is that, after the honest
replicas are split into two groups, those in the higher round can convince those in the lower round
to join, by sending out Timeout messages. However, this also means that, when the honest replicas
eventually enter the higher round, the leader of that round cannot make successful requests, as
some of the honest replicas have already timed-out. This implies that a byzantine leader can prevent
an adjacent honest leader from making progress. This is an undesirable fairness issue.

One consequence of enforcing this rule is that a leader cannot timeout if it is currently in Elected
phase, i.e., it has received an Elect message, but has not yet sent out an Invoke request. If it times-out
at this point, then it effectively leaves all other replicas behind, which will affect liveness.

Monotonicity and Idempotency in GenJolteon. GenJolteon is designed to be monotonic and
idempotent. This means that:
(1) If an honest replica will not respond to a message now, then it will never respond to that

message in the future;
(2) After an honest replica responds to a message, it will never respond to the same message

twice.
For example, suppose that an honest replica is in round 𝑟 and receives an Invoke request from

round 𝑟 ′ > 𝑟 . Since it is always safe to vote for a valid Invoke request, the replica sends out an
Invoke ack, and sets its timestamp to 𝑟 ′ and phase to InvokeVoted. At this point, it will never vote
for the same Invoke request or any Invoke request of round 𝑟 ′ again.

If a protocol is not formulated in a monotonic and idempotent way, then an honest replica may
be currently in state 𝑋 , where it will refuse to respond to a message𝑀 , but later it transitions into
state 𝑌 , where it will send a response to message𝑀 . If a protocol allows such behavior, then when
one reasons about its liveness one always needs to consider cases where message𝑀 is delivered
when the replica is in state 𝑋 , or in state 𝑌 .

This issue may be mitigated by mandating that each honest replica should buffer messages
delivered to it to which it cannot respond at the moment. However, in the byzantine setting we then
need to consider how to prevent flooding attacks. Byzantine replicas may send out an unbounded
number of messages, to which honest replicas cannot decide how to respond. These messages will
fill up the buffer of honest replicas, leading to availability issues.

Our protocol avoids these issues, as every request is either immediately responded to or silently
dropped. Since there is no request buffer, there cannot be flooding attacks. Later, we will also see
how monotonicity and idempotency helps simplifying liveness proof.

B.2 Safety Proof Details

Building the Round Descriptor. In the AdoB model, sending requests and receiving responses
are considered a single atomic event. In reality, however, they are distinct and potentially out-of-
order. Thus, an Invoke request can arrive at a replica long after the leader has received a super
quorum of responses and sent out a Commit request, due to network asynchrony. Our first step of
refinement is to reorder the events, so that responses to a single request become adjacent and can
be grouped into atomic events.
Now, what refinement relation can we claim between the traces before and after reordering?

Ideally, each replica should have exactly the same state at the end of the trace. In a non-byzantine
setting this would be possible, because each replica acts deterministically. However, in a byzantine
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1 Record ElectEv := { elect_logs: list (list Entry); elect_is_from_timeout: bool }.

2 Record InvokeReq := { invoke_logs: list (list Entry); invoke_is_from_timeout: bool;

invoke_method: Method; }.

3 Record InvokeEv := { invoke_req: InvokeReq; invoke_recips: set NID; invoke_resps: set NID }.

4 Record CommitEv := { commit_log: list Entry; commit_recips: set NID; commit_resps: set NID }.

5 Definition TimeoutEv : Type := NID * list Entry.

6

7 Record RoundDesc := {

8 round_desc_elect: set ElectEv;

9 round_desc_invoke: set InvokeEv;

10 round_desc_commit: option CommitEv;

11 round_desc_timeout: set TimeoutEv;

12 round_desc_timeout_recv: set NID;

13 round_desc_tc: set (list TimeoutEv);

14 }.

Fig. 27. Definition of Round Descriptor Structure

setting, this is impossible. Suppose that a byzantine replica sends out a Commit request. Later, it
forgets this event and sends out an Invoke request. After reordering the events, the Invoke request
would be sent before the Commit request. As byzantine replicas behave non-deterministically, there
is no guarantee that the replica arrives at the same state in the two traces. Honest replica states are
also affected by reordering, though command logs can be preserved.

Because of this, we cannot claim an exact equivalence of network states before and after reorder-
ing the events. Instead, we only maintain externally visible events. This means that every message
sent/delivered in the unordered trace is still sent/delivered after reordering, and the command log
reported by each honest replica is still the same after reordering. These facts are recorded in a
structured record called a round descriptor.

Refinement Layers between Network Model and Round Descriptor. Our network model
is specified in NetworkExplicit.v. We first reorder delivery of Timeout messages, so that each
replica receives a super quorum of Timeouts atomically. Timeout messages are different from other
messages, in that replicas do not respond to them individually, but only when a super quorum
of them are received. They have no effect on the local state of honest replicas, other than that
they have to buffer them until they form a super quorum. Hence, it is convenient to assume that
Timeouts are delivered not individually but in quorums. The model where Timeouts are delivered
atomically is AlmostNetwork.v, and refinement is proven in RefineNetExplicit.v.
We then insert all other send and deliver events into the round descriptor structure, defined in

Fig. 27. It contains a list of all Elect messages the leader received, all Invoke and Commit requests
the leader sent, responses to each request, and a list of all Timeouts and TCs sent by each replica.
For a round descriptor to be valid, the recorded events must be causally related. For example,

each Invoke request must follow from a received Elect message, and every Elect message must
follow from a QC or TC from the previous round. These requirements are set down in RoundDesc.v,
and the refinement proof is in RefineAlmostNetwork.v.

Building the Cache Tree. Our next step in refinement is to actually group the adjacent related
events into single atomic events. At this point, we encounter a bit of trouble related to timeouts.
Suppose that a previous leader sent out a Commit request, but it was only received by a small
number of honest replicas, before all replicas time out. Now, it may occur that a one replica receives
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a super quorum of Timeout messages containing the proposed block, while another replica build a
TC not containing that block. There would be two different TCs in the network, while only one
can be represented by a 𝑇𝐶𝑎𝑐ℎ𝑒 .

Ideally, each leader should only receive one Elect message, and make one Invoke request. Hence,
we can choose the one actually used by the next leader to enter the cache tree. In the byzantine
setting this breaks down, because a byzantine leader can accept multiple Elect messages and make
multiple Invoke requests. However, it is still the case that at most one Invoke request will eventually
gain a super quorum of votes. Hence, we choose the TC that will eventually result in a successful
Invoke request to enter the cache tree.

Refinement Layers between Round Descriptor and Cache Tree. Between the round de-
scriptor and the AdoB cache tree, there are two refinement layers, called NetworkMultiElect
and NetworkAtomic. They share the common feature that sending a request, delivering it to
the replicas, and receiving its acks are done in a single atomic step. Also, within each round
replicas timeout simultaneously. The difference is that, in NetworkMultiElect multiple differ-
ent TCs can be generated in a timeout event, while in NetworkAtomic a single TC is gener-
ated, which is chosen from the multiple TCs according to the discussion above. The two layers
are defined in NetworkMultiElect.v and NetworkAtomic.v, and the refinement proofs are in
RefineRoundDesc.v and RefineMultiElect.v.
We then build the cache tree from a NetworkAtomic trace in RefineNetAtomic.v. The cache

tree is correlated to the round descriptors in the following way:
(1) Each successful Invoke request corresponds to an 𝑀𝐶𝑎𝑐ℎ𝑒 , and vice versa. Unsuccessful

Invoke requests are ignored;
(2) Each successful Commit request corresponds to a 𝐶𝐶𝑎𝑐ℎ𝑒 , and vice versa. Unsuccessful

Commit requests are ignored;
(3) Each TC that eventually leads to a successful Invoke request corresponds to a 𝑇𝐶𝑎𝑐ℎ𝑒 , and

vice versa. Other TCs are ignored.
The various refinement layers are linked together in RefineLink.v. The final refinement theorem

is refine_guarantees_bado.

B.3 Liveness Proof Details

Our Coq proof of liveness is in Liveness.v. The final theorem is eventually_ccache.

Network Assumptions. We rely on the partial synchrony model. After a certain time called
the GST, every message in the network is delivered to each recipient at least once within a period
of Δ after it is sent. We will call every period of Δ a network step. Recall that our protocol is fully
monotonic and idempotent. Suppose that a message𝑀 is sent at time 𝑥 , and one of its recipients 𝑛
is in a state where it will respond to that message. When the message𝑀 arrives at 𝑛, either it will
respond to𝑀 , thus transitioning to a state where it will silently drop𝑀 , or it has already been in
such a state. We can thus conclude that, for every message𝑀 sent before time 𝑥 > 𝐺𝑆𝑇 , and every
recipient 𝑛 of𝑀 , after one network step, 𝑛 will be in a state where it will not respond to𝑀 . This
simple observation allows us to make useful inferences about the network state after a network
step, based on messages sent before that step.

We also need each honest replica not to time out for a sufficiently long period. We assume that,
each honest replica has a timer. The timer is reset to at least 3Δ whenever the replica changes its
local timestamp or phase. The replica times-out when and only when the timer runs to 0. Hence,
if before a network step the countdown at every honest timer is greater than Δ, then no honest
replica should time out during the network step.
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Finally, we assume that honest replicas perform local events whenever they can. After each
network step, no honest replica should be in Elected or Invoked phase, because they should have
sent out Invoke and Commit requests, transitioning into InvokeWait and CommitWait phases.

Inferring Network Progress via Safety Refinement. Our proof makes heavy use of the fol-
lowing kind of reasoning. Suppose that the leader of round 𝑟 is honest, and before a network
step, the local timestamp of that leader has not yet reached 𝑟 . In that case there can be no Invoke
request, consequently no 𝐶𝐶𝑎𝑐ℎ𝑒 of round 𝑟 . Suppose that after a network step, we observe that
some honest replica increased its timestamp to 𝑟 + 1. By safety refinement, there must be either a
𝐶𝐶𝑎𝑐ℎ𝑒 or a 𝑇𝐶𝑎𝑐ℎ𝑒 of round 𝑟 . If we additionally know that no honest replica timed-out during
the network step, then the cache in question must be a 𝐶𝐶𝑎𝑐ℎ𝑒 . Hence, we know that a new block
has been committed.

Measuring Network Progress. Our proof strategy is thus as follows. For every valid network
state, we define a value called the current network time (CNT) that measures the current progress
of the network. It is a global property of the network state, not the timestamp of any individual
replica. We first show that after GST, the CNT value will eventually increase. If CNT increases
during a network step, and we know that no honest replica timed out during the step, we can infer
that a 𝐶𝐶𝑎𝑐ℎ𝑒 has been created. Hence, we only need to focus on network steps where CNT stays
constant. Assuming the current CNT is 𝑟 and the leader of round 𝑟 is honest, we will show that
after the network step, the network state must be in a certain “good state”. Furthermore, good
states only get “better” after more network steps. Eventually, the network must reach a state where
a 𝐶𝐶𝑎𝑐ℎ𝑒 of round 𝑟 is created.
Our CNT is defined in terms of sent messages. Let 𝑟1 be the maximum 𝑟 such that an Invoke

request of timestamp 𝑟 exists (1 if no such message exists). Let 𝑟2 be the maximum 𝑟 such that
a super quorum of Timeout messages of timestamp 𝑟 exists (0 if no such 𝑟 exists). Then CNT is
defined to be max(𝑟1, 𝑟2 + 1). Because sent messages cannot be unsent, one easily sees that CNT
must increase monotonically. Also, because Invoke requests and Timeout messages are broadcast,
after one network step, every honest replica should increase its timestamp to at least CNT.

Good Network States. Suppose that before a network step, the CNT is at most 𝑟 , and it increases
(or stays at) 𝑟 after the network step. In this case, what can we say about the local state of each
replica? We can show that the network state must be in one of the following seven “good types”:
(1) Every honest replica is in a round 𝑟 ′ < 𝑟 ;
(2) Every honest replica is either in a round 𝑟 ′ < 𝑟 , or in round 𝑟 with NoVote phase and timer
≥ 3Δ, and at least one honest replica is in round 𝑟 ;

(3) Every honest replica is either in a round 𝑟 ′ < 𝑟 , or in round 𝑟 with NoVote phase and timer
≥ 2Δ, or InvokeVoted phase and timer ≥ 3Δ, while the leader is in InvokeWait phase and
timer ≥ 3Δ;

(4) Every honest replica is in round 𝑟 with InvokeVoted phase and timer ≥ 2Δ, while the leader
is in InvokeWait phase and timer ≥ 2Δ;

(5) Every honest replica is either in a round 𝑟 ′ < 𝑟 , or in round 𝑟 with NoVote phase and timer
≥ Δ, or InvokeVoted phase and timer ≥ Δ, or CommitVoted phase and timer ≥ 3Δ, while the
leader is in CommitWait phase and timer ≥ 3Δ;

(6) Every honest replica is in round 𝑟 with CommitVoted phase and timer ≥ 2Δ, while the leader
is in CommitWait phase and timer ≥ 2Δ;

(7) The leader is in round 𝑟 with CommitVoted phase.
If the network is in type 7, then it has received a super quorum of Commit acks. Consequently, a
𝐶𝐶𝑎𝑐ℎ𝑒 has been created.
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We can show that if a network is currently in one of the good types, then after a network step it
must be in another good type with higher type number. Our reasoning mostly uses the following
pattern. Suppose that currently we are in type 4. Since every honest replica is in InvokeVoted phase,
there exists a super quorum of Invoke acks. Since the leader is honest, there is only one Invoke
request in round 𝑟 , so everyone acknowledges the same request. After one network step, all these
acks must have been received by the leader. Therefore, the leader is either in CommitWait phase or
CommitVoted phase. In the first case, we reach type 5, and in the second case we reach type 7.

Latency of GenJolteon. Suppose that an honest leader receives an Elect message and sends out
an Invoke request. At this point, the network must be in good state type 3. Since good states get
better in each network step, one easily sees that within 4 network steps either we reach type 7,
or the network CNT increases. In either case, we can infer that the honest leader has successfully
committed a block. This gives us a latency bound of GenJolteon from sending out Invoke requests
to committing a block.

Subtle Aspects of Liveness Proof. Here we discuss a few subtle aspects we uncovered as we
were constructing our liveness proof. They are often overlooked in paper-based liveness proofs.

Suppose that we are after GST, all replicas are in round 𝑟 with NoVote phase and timer ≥ 3Δ. The
leader of round 𝑟 has sent out an Invoke request. According to the partial synchrony assumption,
all honest replicas will receive the request within Δ. Now, it would seem natural to infer that every
honest replica would vote for the request upon receiving it. The liveness proof of Jolteon [Gelashvili
et al. 2022] relies precisely on this assumption. However, this is not exactly accurate. Suppose
that some byzantine replicas received the request much earlier than some honest replicas, and
they voted for the request like any other honest replica. It might occur that the leader had already
received a super quorum of votes before the request reached every honest replica. If the leader then
sends out a Commit request, and this Commit request reaches honest replicas before the Invoke
request, then even honest replicas would not vote for the Invoke request.

To make this kind of “when-they-receive-they-will-vote” argument complete, we must addition-
ally show that, if the replica chooses not to respond to the request when it arrives, then the leader
must have already collected a super quorum of votes. In our GenJolteon protocol, if an honest
replica does not respond to an Invoke request in round 𝑟 , then either it has voted for a Commit
request in round 𝑟 , or it has voted for some other request in round 𝑟 ′ > 𝑟 . In either case the safety
refinement proof shows that there already exists an MCache of round 𝑟 , indicating the leader has
received a super quorum of votes.

Our GenJolteon is based on the principle that a new round can begin only after the previous round
has ended. The new leader has to prove this through a QC or TC. On the other hand, PBFT and its
variants support so-called parallel submit, where a leader can propose a new entry before previous
entries have been committed. A liveness proof for PBFT has been claimed in Bravo et al. [2022].
However, we observe that the PBFT protocol described in Bravo et al. [2022] allows unbounded
parallel submit, and is therefore subject to the following availability-liveness dilemma.
Since byzantine leaders can propose blocks before previous ones have been committed, it can

send out a very large number of block proposals. The honest replicas do not know which ones are
valid, and therefore have to simultaneously participate in a large number of byzantine consensus
instances. This can easily congest the network and lead to a denial-of-service attack. Real world
PBFT implementations usually counter this issue by requiring each honest replica to dynamically
maintain a proposal number threshold, and ignore proposals higher than the threshold. We now
show that this can lead to liveness issues. Suppose an honest leader sends out a number of proposals.
Since byzantine replicas can make votes like any other honest replica, these proposals may get
committed before reaching all honest replicas. Suppose that the leader now makes a proposal 𝑘 , and
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1 Record NodeState : Type := {

2 node_round : nat; (* Current round of replica *)

3 node_leader_phase : LeaderPhase; (* Progress indicator for leader *)

4 node_voter_phase : VoterPhase; (* Progress indicator for voter *)

5 node_commit_round : nat; (* Last round in which the voter made votes; 0 if never voted *)

6 node_commit_method: nat; (* The value voted for in the last vote *)

7 node_commit_fast: bool; (* Whether the last vote was made after an "Any" message *)

8 node_recv_timeouts : list TimeoutMsg; (* List of received timeouts *)

9 node_recv_votes : ZMap.t (option VoteMsg); (* List of received votes *)

10 }.

Fig. 28. State variables of replicas in Fast Paxos.

𝑘 is above the threshold of some honest replica 𝑛, who has not yet learned the previous proposals.
If proposal 𝑘 reaches 𝑛 before the previous proposals, then 𝑘 gets dropped, even though it is from
an honest leader. Hence, naive thresholding is problematic in a formal analysis of liveness. Bravo
et al. [2022] simply assumes that a replica should buffer all received messages, but this leads to
flooding attacks as we have noted above.

C FAST PAXOS DETAILS

In this section we specify our version of Fast Paxos and describe related proofs.

C.1 Network Specification of Fast Paxos

We first describe our specification of Fast Paxos. The overall framework is similar to GenJolteon.
We start from defining replica states and messages, and then define the actions in pseudocode.

Fast Paxos involves more bookkeeping than GenJolteon, because it has to support the conflict
recovery mechanism. The replica state is shown in Fig. 28, where we annotate each field to indicate
its content. The message schema is shown in Fig. 29. The timeout message, being more complex
than other message types, is described in Fig. 30.
In the classic presentation of Fast Paxos, a replica can request to become the leader by sending

Phase 1a messages and collect Phase 1b votes. It is difficult to achieve deterministic liveness under
this design. Therefore, we replaced it with a pacemaker-like approach where Timeout messages
play the role of Phase 1b messages. A replica becomes a leader only after receiving timeouts from
3/4 of voters. The request and vote messages here correspond to Phase 2a and Phase 2b messages
in the classic presentation.
The leader phase of a replica can be one of 𝑁𝑜𝑡𝐿𝑒𝑎𝑑𝑒𝑟, 𝑃𝑢𝑙𝑙𝑒𝑑, 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 , or 𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑 . The

voter phase can be one of𝑁𝑜𝑉𝑜𝑡𝑒,𝑉𝑜𝑡𝑒𝐴𝑛𝑦,𝑉𝑜𝑡𝑒𝑑 , or𝐷𝑜𝑛𝑒 . The semantics are shown in Fig. 31. The
pseudocode of how the replica transitions between these phases is shown in Fig. 32. The recovery
algorithm, which recovers a potentially committed value from a super-quorum of timeouts, is
described in Algorithm 1. The full formal details are in the file refine/specs/FastPxNetwork.v
file of the artifact.

C.2 Details of Safety Refinement Proof

Like the safety proof for GenJolteon, the Fast Paxos proof proceeds in two steps. In the first step we
construct a round descriptor structure that captures key network events and presents a structured
view of them. This step is completed in refine/proofs/RefineFastPxNetwork.v. The round
descriptors provide a convenient language for proving simple invariants about the system, such as
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Σnet ≜ (Nnid ⇀ NodeState) ∗ 𝑆𝑒𝑡 (Msg)
Msg ≜ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 (N𝑟𝑜𝑢𝑛𝑑 ∗𝑀𝑒𝑡ℎ𝑜𝑑)

| 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝐴𝑛𝑦 (N𝑟𝑜𝑢𝑛𝑑 )
| 𝑉𝑜𝑡𝑒 (N𝑛𝑖𝑑 ∗ N𝑟𝑜𝑢𝑛𝑑 ∗𝑀𝑒𝑡ℎ𝑜𝑑)
| 𝑇𝑖𝑚𝑒𝑜𝑢𝑡

| 𝑇𝐶 (N𝑟𝑜𝑢𝑛𝑑 ∗𝑂𝑝𝑡𝑖𝑜𝑛(𝑀𝑒𝑡ℎ𝑜𝑑))

Fig. 29. Network state of Fast Paxos.

1 struct timeout_msg {

2 int id; // Voter ID

3 int r; // Current round number upon timeout

4 int last_commit_round; // Last round in which the voter made commit votes

5 int last_commit_value; // The value the voter last voted for

6 bool last_commit_is_fast; // Whether the vote was made after "Any" message

7 }

Fig. 30. Timeout message structure in our Fast Paxos

Leader Phase Meaning Voter Phase Meaning

NotLeader
The replica is not leader in this
round NoVote The replica has not voted yet

Pulled
The leader has received TC and is
ready to send request VoteAny

The voter has received VoteAny and
can choose a value

Requested
The leader has sent out request mes-
sage Voted The voter has voted in this round

Committed
The leader has committed a value
in this round Done

The voter has timed-out in this
round

Fig. 31. Semantics of replica phases in Fast Paxos.

Algorithm 1 Fast Paxos Recovery Algorithm
1: function recover_value(timeouts)
2: 𝑡 ← argmax𝑚𝑠𝑔∈𝑡𝑖𝑚𝑒𝑜𝑢𝑡𝑠𝑚𝑠𝑔.last_commit_round
3: if 𝑡 .last_commit_round = 0 then return ⊥
4: if 𝑡 .last_commit_is_fast = 𝑓 𝑎𝑙𝑠𝑒 then

5: return 𝑡 .last_commit_value
6: else

7: if 1/2 of voters commit some single value𝑚 in round 𝑡 .last_commit_round then

8: return𝑚

9: else

10: return ⊥
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1 // Leader

2 handle_tc(round, method) {

3 // self.round < round

4 self.round := round;

5 if self.id = leader_at(round) {

6 self.leader_phase := Pulled(method);

7 } else {

8 self.leader_phase := NotLeader;

9 } }

10 request(m) {

11 // self.leader_phase = Pulled None ||

self.leader_phase = Pulled (Some m)

12 self.leader_phase := Requested

13 self.recv_votes := [];

14 broadcast(Request(self.round, m)); }

15 request_fast() {

16 // self.leader_phase = Pulled None

17 self.leader_phase := Requested

18 self.recv_votes := [];

19 broadcast(RequestAny(self.round)); }

20 commit() {

21 // self.leader_phase = Requested

22 // Received votes for m from 3/4 of

voters

23 self.leader_phase := Committed; }

1 // Voter

2 handle_tc(round, method) {

3 // self.round < round

4 self.round := round;

5 self.voter_phase := NoVote; }

6 handle_request(round, method) {

7 // self.round < round || self.round =

round && self.voter_phase = NoVote

8 self.voter_phase := Voted;

9 self.commit_round := round;

10 self.commit_value := method;

11 self.commit_is_fast := false; }

12 handle_request_fast(round) {

13 // self.round < round || self.round =

round && self.voter_phase = NoVote

14 // Voter chooses method m

15 self.voter_phase := Voted;

16 self.commit_round := round;

17 self.commit_value := m;

18 self.commit_is_fast := true; }

19

20 //Common

21 timeout() {

22 self.voter_phase := Done;

23 broadcast(Timeout(id, self.round, self.

commit_round, self.commit_value, self.

commit_is_fast)); }

24 build_tc() {

25 // Received timeouts of round self.round

from 3/4 of voters

26 v := recover_value(timeouts);

27 broadcast(TC(self.round, v)); }

Fig. 32. Pseudocode of Fast Paxos.

that if a voter sends out both commit votes and timeouts within a round, then the timeout would
reflect the commit vote. See refine/specs/FastPxRoundDesc.v for more invariants.

In the second step, an AdoB cache tree is constructed from the descriptors. This step is completed
in refine/proofs/RefineFastPx.v.
Unlike GenJolteon, where it is straightforward to establish the preconditions for add caches, a

key part of Fast Paxos safety proof is to prove that the recovery algorithm will always recover a
committed value. Our safety reasoning can be summarized as follows. Suppose a value𝑚 has been
committed in round 𝑟 , and the leader of round 𝑟 ′ > 𝑟 has received a super-quorum of timeouts
from round 𝑟 ′ − 1. Then at least 1/2 of voters have both committed value𝑚 and sent out timeouts.
Suppose that none of these voters have made commit votes in any round 𝑟 ′′ > 𝑟 , then the recovery
algorithm would observe commit votes for value 𝑚 from all these voters and return 𝑚 (Line 8
of Algorithm 1). If some of these voters have made commit votes in some round 𝑟 ′′ > 𝑟 , since
these votes must have been made after receiving a request message from the leader of round 𝑟 ′′,
there must exist an 𝐸𝐶𝑎𝑐ℎ𝑒 of round 𝑟 ′′. By safety property of AdoB cache tree, that leader must
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have observed that value𝑚 had been committed, and so can only rebroadcast𝑚 again. Hence the
recovery algorithm would still return𝑚 as expected (Line 5 of Algorithm 1).

Received 20-OCT-2023; accepted 2024-02-24

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 109. Publication date: April 2024.


	Abstract
	1 Introduction
	2 Overview
	2.1 Benign Consensus
	2.2 Byzantine Consensus
	2.3 Atomic Distributed Objects
	2.4 AdoB

	3 AdoB for Benign Failures
	3.1 Semantics
	3.2 Safety and Liveness Proofs

	4 AdoB for Generalized Failures
	4.1 Adapting to Byzantine Consensus
	4.2 Merging the Models
	4.3 Adjusting Safety and Liveness Proofs

	5 Safety Refinement and Network-Level Liveness
	6 Discussion
	7 Related Work
	Acknowledgments
	References
	A AdoB Safety and Liveness Details
	B GenJolteon Details
	B.1 Network Specification of GenJolteon
	B.2 Safety Proof Details
	B.3 Liveness Proof Details

	C Fast Paxos Details
	C.1 Network Specification of Fast Paxos
	C.2 Details of Safety Refinement Proof


