
Adore: Atomic Distributed Objects with Certified

Reconfiguration

Wolf Honoré
Yale University

New Haven, Connecticut, USA
wolf.honore@yale.edu

Ji-Yong Shin
Northeastern University

Boston, Massachusetts, USA
j.shin@northeastern.edu

Jieung Kim∗

Yale University
New Haven, Connecticut, USA

jieungkim@google.com

Zhong Shao
Yale University

New Haven, Connecticut, USA
zhong.shao@yale.edu

Abstract

Finding the right abstraction is critical for reasoning about
complex systems such as distributed protocols like Paxos and
Raft. Despite a recent abundance of impressive verification
work in this area, we claim the ways that past efforts model
distributed state are not ideal for protocol-level reasoning:
they either hide important details, or leak too much complex-
ity from the network. As evidence we observe that nearly all
of them avoid the complex, but important issue of reconfig-
uration. Reconfiguration’s primary challenge lies in how it
interacts with a protocol’s core safety invariants. To handle
this increased complexity, we introduce the Adore model,
whose novel abstract state hides network-level communi-
cations while capturing dependencies between committed
and uncommitted states, as well as metadata like election
quorums. It includes first-class support for a generic reconfig-
uration command that can be instantiated with a variety of
implementations. Under this model, the subtle interactions
between reconfiguration and the core protocol become clear,
and with this insight we completed the first mechanized
proof of safety of a reconfigurable consensus protocol.

CCS Concepts: • Software and its engineering → Dis-

tributed programming languages; Software safety; For-
mal software verification; • Theory of computation→
Distributed computing models; Abstraction.

Keywords: distributed systems, consensus protocols, recon-
figuration, formal verification, refinement, proof assistants

∗Jieung Kim is now at Google Research.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PLDI ’22, June 13–17, 2022, San Diego, CA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9265-5/22/06.
https://doi.org/10.1145/3519939.3523444

ACM Reference Format:

Wolf Honoré, Ji-Yong Shin, Jieung Kim, and Zhong Shao. 2022.
Adore: Atomic Distributed Objects with Certified Reconfiguration.
In Proceedings of the 43rd ACM SIGPLAN International Conference

on Programming Language Design and Implementation (PLDI ’22),

June 13–17, 2022, San Diego, CA, USA. ACM, New York, NY, USA,
26 pages. https://doi.org/10.1145/3519939.3523444

1 Introduction

When reasoning about distributed systems there are three
main layers of abstraction to consider. On top is an appli-
cation, which provides some client-facing interface for a
replicated object (e.g., Chubby [1] or ZooKeeper [11]). Under
that is a distributed protocol like Paxos [12, 29] or Raft [26],
which manages replication and consistency. At the bottom
is the network level, which implements the communication
primitives used by the protocol and handles issues such as
server crashes and network asynchrony.

Each layer has different goals and challenges, so naturally
it is important to model the state of a distributed system in
a way that suits the properties being proved. Previous work
has developed useful state abstractions at various levels [7,
20, 27, 28, 38]; however, we claim that none has yet found the
right model for protocol-level reasoning. This is especially
true if one considers a critical feature that, thus far, has been
largely unaddressed by verification work: reconfiguration.
Reconfiguration is necessary for realistic distributed sys-

tems, but it deeply interacts with a protocol’s core invariants
in a way that makes it difficult to verify. The ideal protocol-
level model should therefore express these invariants as
clearly as possible while also hiding all irrelevant details
from the network and application levels. It should also be
general enough to support many different protocols and
reconfiguration schemes so that proofs can be reused. In
this paper we present Adore: a novel and generic approach
to modeling reconfigurable consensus protocols that is de-
signed for protocol-level reasoning.

There is no clear divide between different abstraction lay-
ers, but rather a continuous spectrum. Fig. 1 shows some of
the most commonly used models and how Adore fits into

https://orcid.org/0000-0001-8524-1978
https://orcid.org/0000-0002-1595-4849
https://orcid.org/0000-0001-7581-041X
https://orcid.org/0000-0001-8184-7649
https://doi.org/10.1145/3519939.3523444
https://doi.org/10.1145/3519939.3523444

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Wolf Honoré, Ji-Yong Shin, Jieung Kim, and Zhong Shao

M1

A
pp
lic
at
io
n

Pr
ot
oc
ol

N
et
w
or
k

M2

M1 M2

M3

M5

SMR

ADO

Network-
Based

Adore
M3

M5

{S1,S2}
S1

{S1,S2}
S2

{S2,S3}

M1 M2

M1 M2

M1

S1

S2

S3

M3

M5

M4

M4

M4

M
Committed

Method
M

Uncommitted
Method

S
{voters}
Election
Marker
{voters}
Commit
Marker
Key

M1 M2

Figure 1. The spectrum of distributed system models. Each shows
a snapshot of the same distributed state at a different level of ab-
straction. Network-based represents each node (𝑆1, 𝑆2, 𝑆3) as a
separate object. SMR and ADO treat the committed methods as a
single, atomic object, but ADO also exposes uncommitted methods.
Adore is like ADO, but with additional evidence of the system’s
safety in the form of election and commit markers that record the
servers that approved each operation.

their hierarchy (these are explained in more detail in Sec-
tion 2.2). At one end is the class of network-based models,
which represent a protocol’s behavior in terms of a set of
servers passing messages over an abstract network. This is
flexible and closely mirrors the implementation; however, it
blends protocol and network-level logic, which obscures the
protocol safety invariants and creates a huge number of cases
to consider. If the set of participating servers is then also
allowed to change, the situation quickly becomes untenable.

On the other end is state machine replication (SMR), which
gives the illusion of a single, atomically-accessible object
(represented by a log of committed commands) rather than
a collection of individual servers. It hides internal communi-
cation details and the existence of intermediate, inconsistent
states behind a remote procedure call (RPC) interface. This
makes it ideal for application-level reasoning, but much too
abstract to prove anything about a protocol.

A third option just below SMR is the atomic distributed ob-
ject (ADO) model [8], which also provides an atomic object-
oriented interface, but “opens up” the black box slightly. It
unfolds the RPC call into three atomic steps, each of which
can fail, and, in addition to committed commands, it pre-
serves and exposes intermediate states with a tree of un-
committed commands. This is necessary to accurately model
partial failures, which affect both protocol and application-
level behaviors. However, the ADO model is mainly targeted
at application-level reasoning and hides too many details to
be appropriate for use at the protocol level.
Adore builds on the ADO’s core concepts and adds the

missing details that allow it to represent a protocol’s entire
history including committed states, partial failures, and con-
figuration changes in a single tree. This makes invariants
and dependencies of the replicated state clearer than when

it is scattered across different servers. Communication is
abstracted into an atomic ADO-like interface, which hides
many of the network-level complexities.
Adore’s support for reconfiguration is especially impor-

tant because server failures are inevitable in distributed set-
tings [5, 23], so a method for safely and efficiently adjusting
the membership is essential. In particular, Adore targets the
safety of the challenging class of “hot” algorithms, which con-
tinue processing client requests during amembership change.
Its generic reconfiguration command is parameterized by the
definition of a quorum and of a valid configuration, which
also allows it to admit a variety of implementations.

Reconfiguration requires special care because it can break
many of the basic assumptions that protocols rely on. Adding
or removing a server at the wrong time can easily compro-
mise a protocol’s safety by allowing committed data to be
overwritten, or liveness by making the entire system inoper-
able [6]. The fundamental challenge is that reconfiguration
changes the metadata that protocols rely on to achieve con-
sensus (e.g., membership, quorum sizes), but it also uses
consensus to ensure the changes are applied consistently.
This circularity creates subtle dependencies among dif-

ferent aspects of the protocol, so it can be difficult even for
experts to fully anticipate how reconfiguration influences
the safety properties. For example, Raft’s single-server mem-
bership change algorithm contained a critical safety bug that
passed unnoticed for over a year after its publication [24, 25].
A fix was proposed along with a loose sketch of its correct-
ness, but up to now no complete proof has been published.
Using the Coq proof assistant [36] we prove that Adore

satisfies the key safety property that committed states are
never lost or overwritten. This guarantee applies to any
benign fault tolerant consensus algorithm with a compatible
hot reconfiguration scheme (defined in Section 3) that refines
Adore. This proof brings to light subtle circularity issues
that were not apparent in previous informal proof sketches,
but we demonstrate that with Adore, an elegant solution
naturally arises from its novel tree-based abstraction.

Our key contributions are:

• Adore: A novel protocol-level model, whose tree-based
abstract state enables simple verification of the safety of
reconfigurable distributed consensus protocols by hiding
irrelevant network-level details and neatly capturing im-
portant state dependencies and invariants.

• Amechanized proof that the reconfigurable protocols mod-
eled by Adore satisfy replicated state safety, which is the
first of its kind. This proof holds for any reconfiguration
scheme that satisfies the assumptions about the parame-
terized quorum and configuration definitions.

• Multiple case studies demonstrating the generality of our
framework and covering reconfiguration schemes such as
Raft single-node [24, 25], Raft joint consensus [26], pri-
mary backup [30], and dynamic quorum sizes [17].

Adore: Atomic Distributed Objects with Certified Reconfiguration PLDI ’22, June 13–17, 2022, San Diego, CA, USA

• A connection to a more standard network-based specifica-
tion of a Raft-like protocol through a refinement proof.

• Automated extraction from the Coq specification of the
Raft-like protocol to an executable OCaml program.
The source code is available on Zenodo [10]. Additional

details can be found in the appendices of the extended tech-
nical report [9].

2 Overview

Our goal is to design a language-based abstraction to facili-
tate verification of distributed protocols with reconfiguration.
Before coming to our solution, we first provide some back-
ground on the protocols, ways in which existing models are
lacking, and how reconfiguration complicates the problem.

2.1 Consensus

There are many types of distributed system, but we target
the important class of consensus protocols. The high-level
goal is to replicate a log of commands across 𝑛 servers (or
replicas) and get them to agree on the command in each slot.
This is driven by a leader replica, which commits commands
by convincing a large-enough subset (often a majority) of
the replicas, known as a quorum, to add them to their logs.
Two popular consensus protocols are multi-Paxos [29]

and Raft [26]. Each has an election phase in which replicas
vote for a leader with a sufficiently up-to-date log (deter-
mined by comparing the logical timestamp of the last entry),
followed by a commit phase where the leader replicates new
commands. See Appendix A for a more detailed tutorial.
Consensus guarantees replicated state safety, which en-

sures global agreement on the order of committed commands.
This holds even if some replicas crash, as long as a quorum re-
main functional. This is because election and commit phases
both require quorums, which prevents replicas from being
partitioned into isolated groups since every action must be
approved by at least one member of both groups.

2.2 Distributed System Models

Finding the right model that highlights key properties while
hiding unnecessary details can reveal elegant solutions. For
consensus this means cleanly representing the implicit rela-
tion between different replicas’ local states; i.e., the existence
of a common prefix of committed commands.

2.2.1 State Machine Replication. State machine repli-
cation (SMR) [31] is a popular high-level abstraction that
models the distributed state as a centralized, global log of
commands. Clients extend the log through an opaque remote
procedure call (RPC) [1, 39] interface, which internally relies
on an underlying consensus protocol.
For example, consider a distributed key-value store with

a put command to insert a new mapping. From a client’s
perspective, put("a", 1) is an atomic action that either up-
dates the state, or times out and fails (SMR in Fig. 2). Internally,

1 // SMR

2 return rpc_call(["put","a",1]);

1 // Network

2 for s in cfg { send(s, ELECT); }

3 votes = [];

4 for s in cfg { if recv(s) == VOTE { votes.add(s); } }

5 if !isQuorum(votes) { return FAIL; }

6 for s in cfg { send(s, COMMIT, ["put","a",1]); }

7 votes = [];

8 for s in cfg { if recv(s) == COMMITTED { votes.add(s); } }

9 if isQuorum(votes) { return OK; } else { return FAIL; }

1 // ADO

2 if !pull() { return FAIL; }

3 if !invoke(["put","a",1]) { return FAIL; }

4 if push() { return OK; } else { return FAIL; }

Figure 2. Pseudocode representing the client-facing interfaces for
updating a distributed key-value store in three models.

however, a replica may initiate an election and repeatedly
multicast the command to handle partial failures.

This is a convenient abstraction for clients of a distributed
application who are not concerned with its inner workings,
but it hides toomuch information about quorums and uncom-
mitted commands to be suitable for protocol-level reasoning.

2.2.2 Network-BasedModels. One can recover these de-
tails with a lower-level network-based model, like those used
in many existing verification projects [7, 34, 35, 38]. This mir-
rors the implementation and models the system as a set of
logs (one per replica). Rather than an atomic RPC interface,
communication is modeled with abstract network events
(e.g., send an election request, receive a vote). In this case
put("a", 1) is no longer an atomic operation, but a long
sequence of interleaving events (Network in Fig. 2).
It is clearly possible, though challenging, to prove a pro-

tocol’s correctness in this type of model as evidenced by
proofs for Raft [40] and multi-Paxos [7]; however, the model
does little to highlight protocol-level invariants and it allows
network-level implementation details to leak through. For
example, the representation of the local states as indepen-
dent logs, while true to the implementation, does not make it
clear that they must agree on a prefix of committed entries.

2.2.3 ADOModel. A third option is the atomic distributed
object (ADO) model [8], which provides an atomic interface
and a centralized, tree-based state abstraction, while still
exposing distinct election and commit phases as well as un-
committed states. Like SMR, it is targeted more at application
rather than protocol-level verification; nonetheless, some of
its core design decisions are a step in the right direction.

State. Like SMR, committed methods in the ADO model
are represented by an append-only persistent log. Uncom-
mitted methods, which SMR does not explicitly model, are

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Wolf Honoré, Ji-Yong Shin, Jieung Kim, and Zhong Shao

M1 M2 M3

M4

M5

(a) A persistent log and cache tree.

M1 M2 M3

M4

M5

(b) 𝑆1 calls pull and selects𝑀4.

M1 M2 M3

M4

M5

M6

(c) 𝑆1 invokes𝑀6.

M1 M2 M3

M4

M5

M6

(d) 𝑆2 calls pull and selects𝑀5, pre-
empting 𝑆1.

M1 M2 M3

M4

M5

M6

M7

(e) 𝑆2 invokes𝑀7.

M1 M2 M7M3 M5

(f) 𝑆2 calls push and commits𝑀3,𝑀5.

Figure 3. Sample ADO behaviors.

referred to as caches (due to their volatile nature) and are
organized into a cache tree. The parent-child relation repre-
sents dependencies between methods that must be respected
if they are ever committed and “flushed” to the persistent
log. For example, if 𝑃 is the parent of 𝐶 , then either 𝑃 or the
sequence 𝑃 •𝐶 can be committed, but never only𝐶 . Forks in
the tree represent slots for which replicas’ logs disagree.
Fig. 1 shows a side-by-side comparison of a set of multi-

Paxos or Raft logs at the bottom (i.e., network-based) and
the equivalent ADO persistent log and cache tree on the
second row. A majority of replicas at the bottom agree on𝑀1
and𝑀2, so they are committed. This is reflected in the ADO
model’s persistent log by the squares. 𝑆1 and 𝑆2 have𝑀3 and
𝑀5 in the third slot, respectively. Since one replica is not a
quorum in a three-replica configuration, both𝑀3 and𝑀5 are
uncommitted, hence the circles in the ADO cache tree. As
𝑆1 and 𝑆2 disagree about the methods in this third slot, 𝑀3
and𝑀5 are represented in different branches in the tree.𝑀4
is uncommitted and comes after𝑀3 in 𝑆1, so it is placed on
the same branch as𝑀3 in the ADO cache tree.
The persistent log and cache tree provide a neat, global

summary of the replicas’ local states. The interface for atom-
ically interacting with them consists of invoking application-
defined methods, and the pull and push operations, which
represent the election and commit phases, respectively.

Pull. Like the election phase, the purpose of pull is to
choose a unique timestamp and an up-to-date state snapshot.
Rather than broadcast a request and wait for a quorum of
responses, the ADOmodel assumes the existence of an oracle
that abstracts over the network communication to nondeter-
ministically return either a successful or failed outcome.
On success the oracle chooses a unique timestamp and

records the caller as the leader at that time. It also selects an

arbitrary cache to serve as the leader’s active cache. For ex-
ample, in Fig. 3b, 𝑆1’s active cache is the blue one containing
𝑀4. A failed pull represents a candidate that did not receive
a quorum of votes; however, it may still block leaders with
smaller timestamps from committing new methods.

Method Invocation. Method invocation adds a child to
the caller’s active cache, and sets the new cache as active
(e.g., 𝑆1 and𝑀6 in Fig. 3c). Only leaders are allowed to invoke
methods, but multiple leaders can be active at the same time
(e.g., 𝑆1 and 𝑆2 in Figs. 3d and 3e). This is safe because only
the one with the largest timestamp can commit its methods.

Push. The push operation attempts to commit the meth-
ods on the leader’s active branch (the ancestors of the active
cache). Like pull, an oracle nondeterministically decides the
outcome. When committing multiple methods it may hap-
pen that some succeed while others are lost due to network
errors, but if one fails then all that follow it must as well.

The oracle models this outcome by selecting an arbitrary
prefix of the active branch to commit. The successful prefix
is moved to the persistent log while the uncommitted suffix
remains in the tree. The sibling branches now represent stale
states so they are also removed. In Fig. 3f, 𝑆2 only manages
to commit𝑀3 and𝑀5, leaving𝑀7 in the cache tree.
Returning to the key-value store, calling put("a", 1) is

a hybrid of the steps in SMR and network-based models (ADO
in Fig. 2). If the client does not yet have an active cache it first
calls pull. It then invokes the method and tries to commit
it with push. Each step may fail, in which case the client
decides to retry or abandon the attempt. This unfolds the
RPC interface like the network-based approach, except each
step is atomic, and the state is collected into a centralized
tree-based representation rather than split into local logs.

2.3 Reconfiguration

In practical systems the set of participating replicas may not
be constant as old servers are taken down for maintenance
and new ones are added to cope with increased load. Because
the key to maintaining safety is that elections and commits
have overlapping quorums, the configuration change must
be handled carefully to avoid violating this invariant.

There are many algorithms to accomplish this [16]. Some,
such as Stoppable Paxos [21], use a “stop-the-world” ap-
proach that first blocks new commands from being com-
mitted by the old configuration, then copies the logs to the
new configuration, and finally resumes normal processing.
This somewhat simplifies the problem by ensuring that at no
point are both configurations active at once; however, it also
incurs a performance cost due to the disruption in service.
An alternative is “hot” reconfiguration, which alters the

configuration without blocking the normal processing of
commands. Although clearly a more attractive option, this
introduces additional complexities by intermingling the old

Adore: Atomic Distributed Objects with Certified Reconfiguration PLDI ’22, June 13–17, 2022, San Diego, CA, USA

{S1,S2,S3,S4}

...

...

...

...

S1

S2

S3

S4

Log entriesNode

follows S1

Status
{config}

{S1,S2,S3,S4}
leader

{S1,S2,S3,S4}
follows S1

{S1,S2,S3,S4}
follows S1

(a) 𝑆1 is the leader.

{S1,S2,S3,S4}

...

...

...

...

S1

S2

S3

S4

follows S1

{S1,S2,S3}
leader

{S1,S2,S3,S4}
follows S1

{S1,S2,S3,S4}
follows S1

{S1,S2,S3}

Log entriesNode
Status
{config}

(b) 𝑆1 removes 𝑆4.

{S1,S2,S4}

...

...

...

...

S1

S2

S3

S4

leader
{S1,S2,S3}

{S1,S2,S3,S4}
follows S2

{S1,S2,S4}
follows S2

{S1,S2,S3}

Log entriesNode
Status
{config}

{S1,S2,S4}

{S1,S2,S4}

(c) 𝑆2 is elected leader, removes 𝑆3
and commits.

{S1,S2,S4}

...

...

...

...

S1

S2

S3

S4

leader

{S1,S2,S3}
leader

{S1,S2,S3,S4}
follows S1

{S1,S2,S4}
follows S2

{S1,S2,S3}

Log entriesNode
Status
{config}

{S1,S2,S4}

{S1,S2,S4}

(d) 𝑆1 is elected with the old configu-
ration.

Figure 4. Raft’s reconfiguration can violate safety.

and new configurations. Adore supports many hot algo-
rithms, but to highlight the main challenges we first consider
Raft’s single-node membership change approach [24].

Raft’s Flawed Approach. The core idea is to communi-
cate membership changes through the usual log replication
machinery using a special command. The key difference
between the special and regular commands is the latter is
applied after it is committed, but the former takes effect upon
entering a replica’s log. This allows new configurations to
begin participating immediately, but because uncommitted
commands may be overwritten it is a kind of speculative ex-
ecution and requires special care. Therefore two conditions
must be met before a leader can propose a new configuration.
R1 A new configuration can differ from the leader’s con-

figuration by at most one server.
R2 The leader’s log cannot contain any uncommitted re-

configuration commands.
These restrictions are meant to ensure that consecutive

configurations still have overlapping quorums, so the usual
(static configuration) safety arguments still hold. R1 guaran-
tees that a majority subset of a new configuration still shares
at least one server with the old one, and R2 makes sure con-
figurations only change once before being committed. At
first glance these seem sufficient; however, they miss a subtle,
but critical corner case that took over a year to discover [25].

The Problem. Consider Fig. 4, in which the configuration
is 𝑆1–𝑆4 and 𝑆1 is the leader. 𝑆1 proposes a new configuration
without 𝑆4, but fails to replicate it. 𝑆2 then initiates an elec-
tion, becomes the leader with the support of 𝑆3 and 𝑆4, and

begins its own reconfiguration that removes 𝑆3. 𝑆2 begins
using its new configuration immediately, so the command
is committed once it reaches 𝑆4 ({𝑆2, 𝑆4} is a majority of
{𝑆1, 𝑆2, 𝑆4}). Suppose then 𝑆1 initiates another election and
receives votes from itself and 𝑆3. Because it also uses the lat-
est configuration from its log ({𝑆1, 𝑆2, 𝑆3}), these two votes
constitute a quorum and it wins the election. At this point
the game is lost because 𝑆1 and 𝑆2 are leaders with disjoint
quorums, which means each is free to commit commands
independently, violating the consistency guarantee.

The problem is that reconfiguration and consensus are in-
herently circularly related, and this approach fails to account
for the effect this has on elections. In particular, although
R2 prevents a leader from changing the configuration until
the current one is committed, it does not stop other leaders
from being elected under uncommitted configurations.

The Solution. The solution proposed by Ongaro [25] is
to deny pending reconfiguration commands before issuing
new ones. Because a leader can only be elected if its log
contains every committed command, it is enough to commit
any regular command before allowing reconfiguration.

R3 The leader’s log must contain a committed command
with the current timestamp.

Ongaro [25] gives a very high-level proof sketch that R3
solves the problem by arguing that a leader cannot be elected
without the latest committed command in its log. It enumer-
ates the possible configurations for the leader and command
and shows that in each case their quorums must overlap
because of R1–3. As before, this argument seems reasonable,
but it overlooks some subtle issues. It relies on the invariant
that leaders are elected with unique timestamps, but this re-
quires some care since the leaders’ quorums may no longer
overlap. Section 4 shows how the wrong approach can lead
to a circular argument, and why a model that cleanly exposes
reconfiguration’s mutual relation with consensus is needed.

2.4 Adore

The ADO’s cache tree helps expose the implicit dependencies
and relationships between methods in the local logs, but it
lacks metadata such as who the current leader is, and who
voted for it. The key insight of Adore is that this information
can be encoded in the cache tree, which makes it not just
a representation of the current state, but also a complete
history of how the system arrived at that state.

Cache Tree. To make this possible, in addition to record-
ing the methods that have been called, Adore’s has new
cache variants for metadata about leader elections and com-
mittedmethods (𝐸𝐶𝑎𝑐ℎ𝑒𝑠 for elections,𝐶𝐶𝑎𝑐ℎ𝑒𝑠 for commits,
and 𝑀𝐶𝑎𝑐ℎ𝑒𝑠 for methods). Every cache is also annotated
with its configuration and a set of supporters; i.e., the repli-
cas that voted for it. Finally, to support reconfiguration an

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Wolf Honoré, Ji-Yong Shin, Jieung Kim, and Zhong Shao

RCache
Node ID
{config}

(time,version)

ECache
Node ID

(time,version)
{supporters}

{config}

MCache
Node ID
Method

(time,version)

CCache
Node ID

(time,version)
{supporters}

{config}

(a) Key for Adore caches.

S1
(1,0)

{S1,S2,S3}
{S1,S2S3}

S1
M1

(1,1)

S1
M2

(1,2)

(b) 𝑆1 calls pull and invokes two methods.

S1
(1,0)

{S1,S2,S3}
{S1,S2S3}

S1
M1

(1,1)

S1
(1,1)

{S1,S2,S3}
{S1,S2S3}

S1
M2

(1,2)

(c) 𝑆1 calls push and commits𝑀1.

S1
(1,0)

{S1,S2,S3}
{S1,S2S3}

S1
M1

(1,1)

S1
M2

(1,2)

S1
(1,1)

{S1,S2,S3}
{S1,S2S3}

S1
{S1,S3}

(1,3)

(d) 𝑆1 removes 𝑆2 from the configuration.

S1
(1,0)

{S1,S2,S3}
{S1,S2S3}

S1
M1

(1,1)

S1
(1,1)

{S1,S2,S3}
{S1,S2S3} S2

(2,0)
{S2,S3}

{S1,S2S3}

S1
M2

(1,2)

S2
M3

(2,1)

S1
{S1,S3}

(1,3)

(e) 𝑆2 calls pull and invokes𝑀3.

Figure 5. Sample Adore behaviors.

𝑅𝐶𝑎𝑐ℎ𝑒 is also introduced that behaves like an𝑀𝐶𝑎𝑐ℎ𝑒 , but
contains a new configuration instead of a method.

An advantage of this representation is it gives a concise vi-
sual summary of the complete history of the distributed state.
Fig. 5 shows the evolution of a system through a sequence of
operations similar to Fig. 3. Invoking a method creates a leaf
𝑀𝐶𝑎𝑐ℎ𝑒 node on whatever branch the caller was last active
(Fig. 5b). Similarly, push places a 𝐶𝐶𝑎𝑐ℎ𝑒 after one of the
caller’s latest𝑀𝐶𝑎𝑐ℎ𝑒𝑠 , though not necessarily the last one
(Fig. 5c). Like invoking a method, a reconfiguration grows
the caller’s active branch (Fig. 5d). An 𝐸𝐶𝑎𝑐ℎ𝑒 is inserted
after the most up-to-date cache observed by any of the elec-
tion voters (Fig. 5e). Here that is the𝐶𝐶𝑎𝑐ℎ𝑒 , because neither
of the supporters, 𝑆2 and 𝑆3, have observed 𝑆1’s𝑀𝐶𝑎𝑐ℎ𝑒 or
𝑅𝐶𝑎𝑐ℎ𝑒 yet. Note that unlike Fig. 1 where committed meth-
ods are represented by squares, 𝑀𝐶𝑎𝑐ℎ𝑒𝑠 and 𝑅𝐶𝑎𝑐ℎ𝑒𝑠 are
always drawn as circles, and are implicitly committed if a
𝐶𝐶𝑎𝑐ℎ𝑒 is among their descendants. This allows the cache
tree to be append-only and avoid in-place updates.

By encoding the information this way, previously implicit
relations on disjoint states are nowmore explicitly expressed

𝐶𝑎𝑐ℎ𝑒 ≜ 𝐸𝐶𝑎𝑐ℎ𝑒 (N𝑛𝑖𝑑 ∗ N𝑡𝑖𝑚𝑒 ∗ N𝑣𝑟𝑠𝑛∗ 𝑆𝑒𝑡 (N𝑛𝑖𝑑)∗𝐶𝑜𝑛𝑓 𝑖𝑔)
| 𝑀𝐶𝑎𝑐ℎ𝑒 (N𝑛𝑖𝑑 ∗ N𝑡𝑖𝑚𝑒 ∗ N𝑣𝑟𝑠𝑛 ∗𝑀𝑒𝑡ℎ𝑜𝑑 ∗ 𝐶𝑜𝑛𝑓 𝑖𝑔)
| 𝑅𝐶𝑎𝑐ℎ𝑒 (N𝑛𝑖𝑑 ∗ N𝑡𝑖𝑚𝑒 ∗ N𝑣𝑟𝑠𝑛 ∗𝐶𝑜𝑛𝑓 𝑖𝑔)
| 𝐶𝐶𝑎𝑐ℎ𝑒 (N𝑛𝑖𝑑 ∗ N𝑡𝑖𝑚𝑒 ∗ N𝑣𝑟𝑠𝑛 ∗ 𝑆𝑒𝑡 (N𝑛𝑖𝑑)∗𝐶𝑜𝑛𝑓 𝑖𝑔)

𝐶𝑎𝑐ℎ𝑒𝑇𝑟𝑒𝑒 ≜ N𝑐𝑖𝑑 ⇀ N𝑐𝑖𝑑 ∗𝐶𝑎𝑐ℎ𝑒
𝑇𝑖𝑚𝑒𝑀𝑎𝑝 ≜ N𝑛𝑖𝑑 ⇀ N𝑡𝑖𝑚𝑒

ΣAdore ≜ 𝐶𝑎𝑐ℎ𝑒𝑇𝑟𝑒𝑒 ∗𝑇𝑖𝑚𝑒𝑀𝑎𝑝

Figure 6. Adore state definitions.

as structural invariants. This also makes it easy to see the mu-
tual dependency between 𝑅𝐶𝑎𝑐ℎ𝑒𝑠 , 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 , and 𝐶𝐶𝑎𝑐ℎ𝑒𝑠
that is the source of much of the safety proof’s complexity.
Thanks to this insight we discovered a technique for break-
ing the circularity by decomposing the tree into subtrees
with only one 𝑅𝐶𝑎𝑐ℎ𝑒 each and then composing these more
manageable cases to prove the safety of the general case.

Generality. The cache tree abstraction may seem far re-
moved from a protocol’s actual implementation, but it is
really the same information restructured to highlight the im-
portant details. We can prove this with refinement, which im-
plies that Adore captures every valid behavior of a network-
based model of a protocol, and therefore Adore’s safety
properties hold for the protocol as well. Adore’s pull, push,
invoke, and reconfig operations map fairly directly onto
the election, commit, and local log update phases found in
most consensus protocols, so in fact, this relation can be
proved for many protocols, including various Paxos variants
and Raft. Section 5 demonstrates this in more detail.
The other dimension in which Adore is general is its re-

configuration scheme. Just as Raft’s single-node algorithm
requires R1–3 to be safe, Adore has similar conditions that
must be met. However, we observe that R1 is stronger than
necessary and instead all that is needed is that consecutive
configurations have overlapping quorums. In fact, the proto-
col’s safety is completely independent from the definitions
of a quorum and of a valid configuration as long as they guar-
antee this property. By parameterizing these features Adore
becomes a generic verification framework that permits many
possible implementation (see Section 6 for examples).

3 Adore Formal Semantics

This section formalizes the previous intuitive description of
Adore. We mark everything related to reconfiguration in
blue with a box. Removing these parts leaves a configuration-
aware model (CADO) that is also useful for reasoning about
the safety of protocols with static configurations.

State. Fig. 6 defines the type ΣAdore for state (𝑠𝑡), which
is a pair of a cache tree (𝑡𝑟𝑒𝑒), and the largest timestamp
that each replica has observed (𝑡𝑖𝑚𝑒𝑠). We use the notation

Adore: Atomic Distributed Objects with Certified Reconfiguration PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Parameters

𝐶𝑜𝑛𝑓 𝑖𝑔 : 𝑇𝑦𝑝𝑒
𝑚𝑏𝑟𝑠 : 𝐶𝑜𝑛𝑓 𝑖𝑔 → 𝑆𝑒𝑡 (N𝑛𝑖𝑑)

𝑖𝑠𝑄𝑢𝑜𝑟𝑢𝑚 : 𝑆𝑒𝑡 (N𝑛𝑖𝑑) → 𝐶𝑜𝑛𝑓 𝑖𝑔 → B
R1+ : 𝐶𝑜𝑛𝑓 𝑖𝑔 → 𝐶𝑜𝑛𝑓 𝑖𝑔 → B

Assumptions about R1+ and 𝑖𝑠𝑄𝑢𝑜𝑟𝑢𝑚

(Reflexive) R1+ (𝑐 𝑓 , 𝑐 𝑓)
(Overlap) R1+ (𝑐 𝑓 , 𝑐 𝑓 ′)∧ 𝑖𝑠𝑄𝑢𝑜𝑟𝑢𝑚(𝑄, 𝑐 𝑓)∧ 𝑖𝑠𝑄𝑢𝑜𝑟𝑢𝑚(𝑄 ′, 𝑐 𝑓 ′)

=⇒ 𝑄 ∩𝑄 ′ ≠ ∅

Definitions

𝑅2(𝑡𝑟,𝐶) ≜ ∀𝐶 ′ ∈ 𝑡𝑟 .𝐶 ′ = 𝑅𝐶𝑎𝑐ℎ𝑒 (_) ∧𝐶 ′ ↑ 𝐶 =⇒
∃𝐶 ′′ ∈ 𝑡𝑟 .𝐶 ′′ = 𝐶𝐶𝑎𝑐ℎ𝑒 (_) ∧𝐶 ′ ↑ 𝐶 ′′ ∧𝐶 ′′ ↑ 𝐶

𝑅3(𝑡𝑟,𝐶) ≜ ∃𝐶 ′ ∈ 𝑡𝑟 .

𝐶 ′ = 𝐶𝐶𝑎𝑐ℎ𝑒 (_) ∧ 𝑡𝑖𝑚𝑒 (𝐶 ′) = 𝑡𝑖𝑚𝑒 (𝐶) ∧𝐶 ′ ↑ 𝐶

𝑐𝑎𝑛𝑅𝑒𝑐𝑜𝑛𝑓 (𝑡𝑟,𝐶, 𝑛𝑐 𝑓) ≜ R1+ (𝑐𝑜𝑛𝑓 (𝐶), 𝑛𝑐 𝑓)∧ 𝑅2(𝑡𝑟,𝐶)∧ 𝑅3(𝑡𝑟,𝐶)

Figure 7. Configuration/quorum parameters and definitions.

𝑛𝑎𝑚𝑒 (𝑠𝑡) to represent extracting one of these fields (e.g.,
𝑡𝑟𝑒𝑒 (𝑠𝑡) returns the first element). Fig. 7 declares that the
type of the configuration (𝐶𝑜𝑛𝑓 𝑖𝑔) is an opaque parameter
with functions to extract a set of nodes (𝑚𝑏𝑟𝑠) and decide
if some set constitutes a quorum (𝑖𝑠𝑄𝑢𝑜𝑟𝑢𝑚). This allows
the model and safety proof to work for any instantiation of
these parameters as long as they satisfy the Reflexive and
Overlap invariants (𝐶 ′ ↑ 𝐶 means 𝐶 ′ is an ancestor of 𝐶).

Note that, unlike the ADOmodel, Adore does not have an
explicit log of committed methods separate from the cache
tree. This is because the ADO model assumes the underlying
protocol ensures consistency, so the existence of a common
prefix of committed methods is guaranteed. In Adore, on
the other hand, we prove this property by showing that all
𝐶𝐶𝑎𝑐ℎ𝑒𝑠 lie on the same branch of the cache tree, which
implies global agreement on a consistent commit history.

Caches. Caches are divided into election (𝐸𝐶𝑎𝑐ℎ𝑒), method
(𝑀𝐶𝑎𝑐ℎ𝑒), reconfiguration (𝑅𝐶𝑎𝑐ℎ𝑒), and commit (𝐶𝐶𝑎𝑐ℎ𝑒)
variants. Each has a unique cache ID (𝑐𝑖𝑑) and the cache tree
is implemented as a partial map from 𝑐𝑖𝑑 to the correspond-
ing cache, plus the 𝑐𝑖𝑑 of the cache’s parent (with 0 reserved
for the root). The functions for growing the tree are addLeaf ,
which adds a child to a parent, and insertBtw, which inserts
a cache between a parent and its children. We omit their
technical details for brevity. For the unabridged semantics,
refer to Appendix D or the source code [10].

Each type of cache contains the node ID (𝑛𝑖𝑑) of the replica
that called the operation creating it (𝑐𝑎𝑙𝑙𝑒𝑟), a timestamp
(𝑡𝑖𝑚𝑒), a version number (𝑣𝑟𝑠𝑛), and the configuration (𝑐𝑜𝑛𝑓)
under which it was called (the root cache is initialized with
some 𝑐𝑜𝑛𝑓0). The timestamp corresponds to a Paxos ballot
number or a Raft term number and is assigned to a leader in
each round. The version number resets to 0 at the start of
each round and increments on every method/reconfig call.

𝑂𝑝 ≜ pull : N𝑛𝑖𝑑 → ΣAdore → ΣAdore

| invoke : N𝑛𝑖𝑑 → 𝑀𝑒𝑡ℎ𝑜𝑑 → ΣAdore → ΣAdore

| reconfig : N𝑛𝑖𝑑 → 𝐶𝑜𝑛𝑓 𝑖𝑔 → ΣAdore → ΣAdore

| push : N𝑛𝑖𝑑 → ΣAdore → ΣAdore

Figure 8. Adore operations.

𝐶1 ≻ 𝐶2 ≜ (𝑡𝑖𝑚𝑒 (𝐶1), 𝑣𝑟𝑠𝑛(𝐶1)) > (𝑡𝑖𝑚𝑒 (𝐶2), 𝑣𝑟𝑠𝑛(𝐶2))
∨ ((𝑡𝑖𝑚𝑒 (𝐶1), 𝑣𝑟𝑠𝑛(𝐶1)) = (𝑡𝑖𝑚𝑒 (𝐶2), 𝑣𝑟𝑠𝑛(𝐶2))

∧𝐶1 = 𝐶𝐶𝑎𝑐ℎ𝑒 (_) ∧𝐶2 ≠ 𝐶𝐶𝑎𝑐ℎ𝑒 (_))
𝑠𝑒𝑡𝑇𝑖𝑚𝑒𝑠 (𝑠𝑡,𝑄, 𝑡) ≜ (𝑡𝑟𝑒𝑒 (𝑠𝑡), 𝑡𝑖𝑚𝑒𝑠 (𝑠𝑡) [𝑠 ↦→ 𝑡 | ∀𝑠 ∈ 𝑄])
𝑖𝑠𝐿𝑒𝑎𝑑𝑒𝑟 (𝑠𝑡, 𝑛𝑖𝑑, 𝑡) ≜ 𝑡𝑖𝑚𝑒𝑠 (𝑠𝑡) [𝑛𝑖𝑑] = 𝑡

𝑣𝑎𝑙𝑖𝑑𝑆𝑢𝑝𝑝 (𝑛𝑖𝑑,𝑄,𝐶) ≜ 𝑛𝑖𝑑 ∈ 𝑄 ∧𝑄 ⊆ 𝑚𝑏𝑟𝑠 (𝑐𝑜𝑛𝑓 (𝐶))
𝑚𝑜𝑠𝑡𝑅𝑒𝑐𝑒𝑛𝑡 (𝑡𝑟,𝑄) ≜max

≻
{𝐶 ∈ 𝑡𝑟 | 𝑄 ∩ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑟𝑠 (𝐶) ≠ ∅}

𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑎𝑐ℎ𝑒 (𝑡𝑟, 𝑛𝑖𝑑) ≜max
≻

{𝐶 ∈ 𝑡𝑟 | 𝑐𝑎𝑙𝑙𝑒𝑟 (𝐶) = 𝑛𝑖𝑑}

𝑙𝑎𝑠𝑡𝐶𝑜𝑚𝑚𝑖𝑡 (𝑡𝑟, 𝑛𝑖𝑑) ≜max
≻

{
𝐶 ∈ 𝑡𝑟

����� 𝑛𝑖𝑑 ∈ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑟𝑠 (𝐶)
∧𝐶 = 𝐶𝐶𝑎𝑐ℎ𝑒 (_)

}
𝑐𝑎𝑛𝐶𝑜𝑚𝑚𝑖𝑡 (𝐶,𝑛𝑖𝑑, 𝑠𝑡) ≜(

𝐶 = 𝑀𝐶𝑎𝑐ℎ𝑒 (_) ∨ 𝐶 = 𝑅𝐶𝑎𝑐ℎ𝑒 (_)
)
∧ 𝑐𝑎𝑙𝑙𝑒𝑟 (𝐶) = 𝑛𝑖𝑑

∧ 𝑖𝑠𝐿𝑒𝑎𝑑𝑒𝑟 (𝑠𝑡, 𝑛𝑖𝑑, 𝑡𝑖𝑚𝑒 (𝐶)) ∧𝐶 ≻ 𝑙𝑎𝑠𝑡𝐶𝑜𝑚𝑚𝑖𝑡 (𝑡𝑟𝑒𝑒 (𝑠𝑡), 𝑛𝑖𝑑)

Figure 9. Selected Adore auxiliary definitions.

In Fig. 9, we define a strict order (≻) on caches by compar-
ing the lexicographic order of their timestamp and version
number pairs, with the exception that if a 𝐶𝐶𝑎𝑐ℎ𝑒 has the
same timestamp and version as a non-𝐶𝐶𝑎𝑐ℎ𝑒 , the𝐶𝐶𝑎𝑐ℎ𝑒 is
considered greater, which is needed to make ≻ a total order.
𝐸𝐶𝑎𝑐ℎ𝑒𝑠 and 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 also carry the node IDs of their

𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑟𝑠 ; i.e., the replicas that voted for them. An𝑀𝐶𝑎𝑐ℎ𝑒

or 𝑅𝐶𝑎𝑐ℎ𝑒’s only supporter is its caller.𝑀𝐶𝑎𝑐ℎ𝑒𝑠 also contain
the name of a𝑀𝑒𝑡ℎ𝑜𝑑 . In practice this encodes an application-
specific function (e.g., add 𝑛 to a counter) to be applied once
committed; however, the actual methods have no bearing on
the protocol’s safety, so we treat them as arbitrary identifiers.

Operations. Each of Adore’s operations (pull, invoke,
reconfig, and push) takes its caller’s node ID, the current
state (ΣAdore), and for invoke and reconfig a newmethod or
configuration, and returns a new state (see Fig. 8). The pull
and push operations rely on an oracle O (consisting of Opull

and Opush respectively) to model nondeterministic network
behaviors. The semantics of each operation are defined in
Fig. 10 (with helper functions defined in Fig. 9). We write
O ⊢ 𝑜𝑝 : 𝑠𝑡 ⇝ 𝑠𝑡 ′ to mean calling the operation 𝑜𝑝 on state
𝑠𝑡 with oracle O results in 𝑠𝑡 ′.

Pull. Recall that the purpose of the election phase is to
choose a unique logical timestamp and a sufficiently up-to-
date state snapshot with all of the committed commands.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Wolf Honoré, Ji-Yong Shin, Jieung Kim, and Zhong Shao

PullOk
O
pull

(𝑠𝑡, 𝑛𝑖𝑑) = Ok(𝑄,𝑄𝑜𝑘 ,𝐶𝑚𝑎𝑥 , 𝑡) 𝑠𝑡 ′ ≜ 𝑠𝑒𝑡𝑇𝑖𝑚𝑒𝑠 (𝑠𝑡,𝑄, 𝑡)
𝐶𝑛𝑒𝑤 ≜ 𝐸𝐶𝑎𝑐ℎ𝑒 (𝑛𝑖𝑑, 𝑡, 0, 𝑄, 𝑐𝑜𝑛𝑓 (𝐶𝑚𝑎𝑥))

O ⊢ pull(𝑛𝑖𝑑) : 𝑠𝑡 ⇝ if 𝑄𝑜𝑘 then addLeaf (𝑠𝑡 ′,𝐶𝑚𝑎𝑥 ,𝐶𝑛𝑒𝑤) else 𝑠𝑡 ′

InvokeOk
𝐶𝐴 ≜ 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑎𝑐ℎ𝑒 (𝑡𝑟𝑒𝑒 (𝑠𝑡), 𝑛𝑖𝑑) 𝑖𝑠𝐿𝑒𝑎𝑑𝑒𝑟 (𝑠𝑡, 𝑛𝑖𝑑, 𝑡𝑖𝑚𝑒 (𝐶𝐴))
𝐶𝑛𝑒𝑤 ≜ 𝑀𝐶𝑎𝑐ℎ𝑒 (𝑛𝑖𝑑, 𝑡𝑖𝑚𝑒 (𝐶𝐴), 𝑣𝑟𝑠𝑛(𝐶𝐴) + 1, 𝑀, 𝑐𝑜𝑛𝑓 (𝐶𝐴))

O ⊢ invoke(𝑛𝑖𝑑,𝑀) : 𝑠𝑡 ⇝ addLeaf (𝑠𝑡,𝐶𝐴,𝐶𝑛𝑒𝑤)

ReconfigOk
𝐶𝐴 ≜ 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑎𝑐ℎ𝑒 (𝑡𝑟𝑒𝑒 (𝑠𝑡), 𝑛𝑖𝑑) 𝑖𝑠𝐿𝑒𝑎𝑑𝑒𝑟 (𝑠𝑡, 𝑛𝑖𝑑, 𝑡𝑖𝑚𝑒 (𝐶𝐴))

𝑐𝑎𝑛𝑅𝑒𝑐𝑜𝑛𝑓 (𝑡𝑟𝑒𝑒 (𝑠𝑡),𝐶𝐴, 𝑛𝑐 𝑓)
𝐶𝑛𝑒𝑤 ≜ 𝑅𝐶𝑎𝑐ℎ𝑒 (𝑛𝑖𝑑, 𝑡𝑖𝑚𝑒 (𝐶𝐴), 𝑣𝑟𝑠𝑛(𝐶𝐴) + 1, 𝑛𝑐 𝑓)
O ⊢ reconfig(𝑛𝑖𝑑, 𝑛𝑐 𝑓) : 𝑠𝑡 ⇝ addLeaf (𝑠𝑡,𝐶𝐴,𝐶𝑛𝑒𝑤)

PushOk
O
push

(𝑠𝑡, 𝑛𝑖𝑑) = Ok(𝑄,𝑄𝑜𝑘 ,𝐶𝑀) 𝑠𝑡 ′ ≜ 𝑠𝑒𝑡𝑇𝑖𝑚𝑒𝑠 (𝑠𝑡,𝑄, 𝑡𝑖𝑚𝑒 (𝐶𝑀))
𝐶𝑛𝑒𝑤 ≜ 𝐶𝐶𝑎𝑐ℎ𝑒 (𝑛𝑖𝑑, 𝑡𝑖𝑚𝑒 (𝐶𝑀), 𝑣𝑟𝑠𝑛(𝐶𝑀), 𝑄, 𝑐𝑜𝑛𝑓 (𝐶𝑀))

O ⊢ push(𝑛𝑖𝑑) : 𝑠𝑡 ⇝ if 𝑄𝑜𝑘 then insertBtw(𝑠𝑡 ′,𝐶𝑀 ,𝐶𝑛𝑒𝑤) else 𝑠𝑡 ′

PullNoOp
O
pull

(𝑠𝑡, 𝑛𝑖𝑑) = Fail

O ⊢ pull(𝑛𝑖𝑑) : 𝑠𝑡 ⇝ 𝑠𝑡

Similar NoOp rules exist for the
other operations. See the Appendix.

Figure 10. Semantics of Adore operations.

ValidPullOracle
𝑣𝑎𝑙𝑖𝑑𝑆𝑢𝑝𝑝 (𝑛𝑖𝑑,𝑄,𝐶𝑚𝑎𝑥) 𝑄𝑜𝑘 ≜ 𝑖𝑠𝑄𝑢𝑜𝑟𝑢𝑚(𝑄, 𝑐𝑜𝑛𝑓 (𝐶𝑚𝑎𝑥))
∀𝑠 ∈ 𝑄. 𝑡𝑖𝑚𝑒𝑠 (𝑠𝑡) [𝑠] < 𝑡 𝐶𝑚𝑎𝑥 ≜ 𝑚𝑜𝑠𝑡𝑅𝑒𝑐𝑒𝑛𝑡 (𝑡𝑟𝑒𝑒 (𝑠𝑡), 𝑄)

O
pull

(𝑠𝑡, 𝑛𝑖𝑑) = Ok(𝑄,𝑄𝑜𝑘 ,𝐶𝑚𝑎𝑥 , 𝑡)

ValidPushOracle
𝑣𝑎𝑙𝑖𝑑𝑆𝑢𝑝𝑝 (𝑛𝑖𝑑,𝑄,𝐶𝑀) 𝑄𝑜𝑘 ≜ 𝑖𝑠𝑄𝑢𝑜𝑟𝑢𝑚(𝑄, 𝑐𝑜𝑛𝑓 (𝐶𝑀))

∀𝑠 ∈ 𝑄. 𝑡𝑖𝑚𝑒𝑠 (𝑠𝑡) [𝑠] ≤ 𝑡𝑖𝑚𝑒 (𝐶𝑀) 𝑐𝑎𝑛𝐶𝑜𝑚𝑚𝑖𝑡 (𝐶𝑀 , 𝑛𝑖𝑑, 𝑠𝑡)
O
push

(𝑠𝑡, 𝑛𝑖𝑑) = Ok(𝑄,𝑄𝑜𝑘 ,𝐶𝑀)

Figure 11. Valid pull and push oracle conditions.

Adore models this with pull, which relies on Opull to simu-
late the network and arbitrarily decide what set of supporters
(𝑄) receive the election request. One can imagine the oracle
as an omnipotent observer that abstracts over the network
details by treating it as a nondeterministic black box. Fig. 11
defines conditions that a valid oracle must satisfy.
On success the oracle chooses a set of supporters and

a time (𝑡) that is strictly larger than any they have previ-
ously observed. The cache it returns (𝐶𝑚𝑎𝑥) is the result of
𝑚𝑜𝑠𝑡𝑅𝑒𝑐𝑒𝑛𝑡 , and is the most up-to-date cache supported by
any replica in𝑄 . This guarantees that the leader learns about
every committed method. The supporters’ timestamps are
updated to reflect their vote. There are two outcomes for the
cache tree depending on𝑄 . If it is not a quorum then the elec-
tion fails and the only effect is the change in the timestamps.

Otherwise, a new 𝐸𝐶𝑎𝑐ℎ𝑒 child is added to 𝐶𝑚𝑎𝑥 . The oracle
may also return failure in which case the state is unchanged
(see PullNoOp in Fig. 10). This is also a possible outcome for
the other operations, which we omit in Fig. 10.

Invoke. When a method𝑀 is invoked it finds the caller’s
active cache (𝐶𝐴), which is the largest cache called by 𝑛𝑖𝑑 . If
the active cache’s time is not equal to the caller’s local time
then it has been preempted by another leader and themethod
fails. Otherwise, a new𝑀𝐶𝑎𝑐ℎ𝑒 with an incremented version
number is inserted into the tree as a child of the active cache
(thus making it the new active cache).

Reconfig. So far every new cache inherits its parent’s
configuration. The only exception is an 𝑅𝐶𝑎𝑐ℎ𝑒 , which is
essentially a special kind of 𝑀𝐶𝑎𝑐ℎ𝑒 that contains a new
configuration (𝑛𝑐 𝑓) instead of a method. 𝑅𝐶𝑎𝑐ℎ𝑒𝑠 are created
by reconfig, whose semantics are nearly identical to regular
method invocation, except for a few additional restrictions,
which are modified versions of R1–3 from Section 2.3. Put
in words R2 and R3 guarantee the following:
R2 There are no uncommitted𝑅𝐶𝑎𝑐ℎ𝑒𝑠 in the active branch.
R3 There must be a 𝐶𝐶𝑎𝑐ℎ𝑒 with the same timestamp as

the active cache in the active branch.
As explained earlier, Raft’s R1 is stronger than necessary

so it is replaced by the more general R1+ predicate, which can
be instantiated by any condition that satisfies the properties
in Fig. 7. Section 6 demonstrates a few of the many possible
reconfiguration schemes this permits.

Push. Like the ADOmodel, a successful push commits an
arbitrary prefix of the most recent uncommitted commands.
This is chosen by Opush, which returns a cache (𝐶𝑀) that
satisfies 𝑐𝑎𝑛𝐶𝑜𝑚𝑚𝑖𝑡 . This means 𝐶𝑀 must be an𝑀𝐶𝑎𝑐ℎ𝑒 or
𝑅𝐶𝑎𝑐ℎ𝑒 that was called by 𝑛𝑖𝑑 with its current timestamp,
and is more recent than the latest 𝐶𝐶𝑎𝑐ℎ𝑒 supported by 𝑛𝑖𝑑 .
This guarantees that 𝑛𝑖𝑑 is a valid leader, 𝐶𝑀 is an uncom-
mitted command, and committing it will not conflict with
a previous commit. Like pull, the supporters’ timestamps
must not be greater than 𝐶𝑀 ’s, though they may be equal.
As with pull, push updates the supporters’ timestamps,

and the cache tree if 𝑄 is a quorum. The new𝐶𝐶𝑎𝑐ℎ𝑒 (𝐶𝑛𝑒𝑤)
is added with insertBtw rather than addLeaf , which puts
𝐶𝑛𝑒𝑤 between 𝐶𝑀 and its children instead of creating a leaf
node. The children represent partial failures that may still be
committed later on, so shifting them after the𝐶𝐶𝑎𝑐ℎ𝑒 leaves
them as viable candidates for some later pull or push.

4 Safety Proof

The primary purpose of Adore is to simplify the verifica-
tion of safety properties of consensus protocols even with
the complexity introduced by reconfiguration. This section
demonstrates how it accomplishes this goal by sketching
the proof of replicated state safety and highlighting inter-
esting challenges. For reasons of clarity and space, we stick

Adore: Atomic Distributed Objects with Certified Reconfiguration PLDI ’22, June 13–17, 2022, San Diego, CA, USA

mainly to informal arguments, but more rigorous proofs can
be found in both Appendix B and the source code [10].

4.1 Breaking Circularity with rdist

Replicated state safety guarantees that clients observe the
committed commands in the same order regardless of which
replica they contact. This means if two replicas commit a
command in a certain slot, the prefixes of their logs up to
that slot are equal.1 Phrased in Adore terms, there exists a
single branch that contains every 𝐶𝐶𝑎𝑐ℎ𝑒 .

Definition 4.1 (Replicated State Safety). There exists a lin-
ear path from the root of the tree to a leaf node that contains
every committed method. In other words, for any 𝐶𝐶𝑎𝑐ℎ𝑒𝑠
𝐶𝐶1 and 𝐶𝐶2, one must be a descendant of the other.

Without reconfiguration, the core of this proof is that con-
secutive elections and commits both require a quorum of
supporters. This implies that they share at least one replica,
which ensures that a leader’s log must be sufficiently up-
to-date and contains the latest committed method. Note,
however, that this latest commit is unique only if every com-
mitted method has a distinct timestamp and version number
pair, which is easy to prove as long as every leader has a
unique timestamp. The standard proof of this property rea-
sons that leaders require a quorum of voters, so two elections
must involve at least one common voter. Then, because repli-
cas only vote for candidates with timestamps greater than
what they have seen, the shared voter cannot have voted for
two candidates with the same timestamp.
Now consider what happens with reconfiguration. We

can no longer assume that two leaders were elected under
the same configuration, so the existence of a shared voter is
not automatically guaranteed. Instead, we must prove that
the leaders’ configurations cannot diverge to the point that
they no longer overlap. R1+ guarantees this if the leaders are
separated by only one reconfiguration, but it does not help
for two or more changes. For those cases we need R2 and
R3 to show that if both leaders have the latest committed
method then their configurations must still be similar. How-
ever, recall that for there to be a unique latest committed
method, leaders must have unique timestamps. This, in turn,
requires their quorums to overlap, which is where we began.
This circularity arises because there may be arbitrarily

many reconfigurations between the commit and election.
The solution is to count the number of reconfigurations be-
tween two commands, which we call their 𝑟𝑑𝑖𝑠𝑡 , and reduce
the problem to smaller, more manageable steps. This is a
fairly awkward property to express in a network-based spec-
ification because one must essentially construct a tree from
two logs by merging their common prefix into a branch that
forks where their tails diverge. This is much more natural in
Adore because the cache tree already captures this structure.
1Certain variants of multi-Paxos allow committing slots while earlier entries
are still undecided, but this property still holds once the gaps are filled in.

Definition 4.2 (rdist). Suppose𝐶1 and𝐶2 are caches with a
nearest common ancestor 𝐶𝐴. The 𝑟𝑑𝑖𝑠𝑡 of 𝐶1 and 𝐶2 is the
number of 𝑅𝐶𝑎𝑐ℎ𝑒𝑠 on the path between 𝐶1 and 𝐶2, which
passes through 𝐶𝐴, not including the endpoints.

This is a useful metric because it counts only the reconfig-
urations that influence a given pair of caches. We can extend
this idea by defining the 𝑟𝑑𝑖𝑠𝑡 of a tree to be the maximum
𝑟𝑑𝑖𝑠𝑡 between any two caches in the tree. The high-level
strategy then is to use induction on 𝑟𝑑𝑖𝑠𝑡 to break the safety
proof down into the following cases.

𝑟𝑑𝑖𝑠𝑡 = 0 The configurations are the same, so standard argu-
ments about overlapping quorums apply.

𝑟𝑑𝑖𝑠𝑡 = 1 R1+, R2, and R3 guarantee quorums still overlap.
𝑟𝑑𝑖𝑠𝑡 = 𝑛 + 1 The cache tree must decompose into a subtree

with 𝑟𝑑𝑖𝑠𝑡 = 𝑛 and a branch with exactly one 𝑅𝐶𝑎𝑐ℎ𝑒 .
The inductive hypothesis and 𝑟𝑑𝑖𝑠𝑡 = 1 case guarantee
𝐶𝐶𝑎𝑐ℎ𝑒𝑠 in these regions are on the same branch.

The typical approach to proving safety in a network-based
model goes by induction over the trace of network events;
i.e., assume the property holds, then show it continues to
hold when some replica receives a commit request, or when
a candidate receives a quorum of election votes, and so on.

Y

X
Z rdist=n

An advantage of Adore is that one can
instead reason directly about the structure of
the cache tree, which makes for simpler and
more intuitive proofs. Given a cache tree,

one can consider a small number of cases that could have led
to that situation, and prove that the property holds for each.
These cases are often most easily explained using pictures
like the one to the left. This represents a subtree in which 𝑍

is a common ancestor of 𝑋 and 𝑌 . The cloud symbol means
𝑍 can be any type of cache. The dotted arrows indicate that
𝑋 and 𝑌 are descendants, but not necessarily direct children
of 𝑍 . The label 𝑟𝑑𝑖𝑠𝑡 = 𝑛 means that 𝑟𝑑𝑖𝑠𝑡 (𝑋,𝑌) = 𝑛.

4.2 Base Cases

The safety proof for the 𝑟𝑑𝑖𝑠𝑡 = 0 case follows the standard
static-configuration argument [14, 26] so we leave the details
to Appendix B. Many properties that hold for caches where
𝑟𝑑𝑖𝑠𝑡 = 0 also hold when 𝑟𝑑𝑖𝑠𝑡 = 1 if one can show that
their configurations still have overlapping quorums, which
is precisely what R1+, R2, and R3 are meant to guarantee.
The purpose of R1+ is clear (Overlap in Fig. 7 ensures that
when a leader proposes a new configuration it overlaps with
the old one), but the other two are no less important.

R2 ensures that a leader cannot begin a new reconfigura-
tion attempt while there is an uncommitted 𝑅𝐶𝑎𝑐ℎ𝑒 in its
branch. This prevents the configuration from changing twice
in a single commit, which might break the overlap guaran-
tee (Overlap only holds for consecutive configurations). R3
requires the leader’s log to contain a committed entry with
the current timestamp. This serves a similar purpose to R2

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Wolf Honoré, Ji-Yong Shin, Jieung Kim, and Zhong Shao

S1
(1,2)

{S1,S2,S3}

S1
(1,1)

{S1,S2,S3}
{S1,S2,S3,S4}

...

(a) 𝑆1 proposes a new configuration.

S2
(2,1)

{S2,S4}
{S1,S2,S4}

S1
(1,2)

{S1,S2,S3}

S2
(2,0)

{S2,S3,S4}
{S1,S2,S3,S4}

S2
(2,1)

{S1,S2,S4}

S1
(1,1)

{S1,S2,S3}
{S1,S2,S3,S4}

...

(b) 𝑆2 commits a different configuration.

S2
(2,1)

{S2,S4}
{S1,S2,S4}

S1
(1,2)

{S1,S2,S3}

S2
(2,0)

{S2,S3,S4}
{S1,S2,S3,S4}

S2
(2,1)

{S1,S2,S4}

S1
(3,0)

{S1,S3}
{S1,S2,S3} S1

(1,1)
{S1,S2,S3}

{S1,S2,S3,S4}

...

(c) 𝑆1 is elected without 𝑆2’s𝐶𝐶𝑎𝑐ℎ𝑒 .

Figure 12. An example of a breach of safety without R3.

in that it prevents a leader from beginning a new reconfigu-
ration while another leader still has one in progress. This is
a particularly subtle problem because the new leader might
not even be aware of the old reconfiguration.
For example, consider the situation in Fig. 12 (this is the

same as Fig. 4 but with cache trees). The leader 𝑆1 removes
𝑆4 from the configuration but fails to commit it. Then 𝑆2
becomes the leader, but is unaware of the reconfiguration
attempt because its supporters do not include 𝑆1, so it begins
its own reconfiguration by removing 𝑆3. It succeeds with a
quorum (𝑆2 and 𝑆4) of supporters. At this point any future
election must have this 𝐶𝐶𝑎𝑐ℎ𝑒 in its history or else safety
is compromised. However, because 𝑆1 and 𝑆3 did not par-
ticipate in 𝑆2’s reconfiguration, 𝑆1 is elected using its own
configuration on a different branch from the 𝐶𝐶𝑎𝑐ℎ𝑒 .

Note that although 𝑆1 and 𝑆2 each change only one server,
their configurations differ by two servers, which allows dis-
joint majorities. R3 prevents this because before 𝑆2 can re-
move 𝑆3 it must commit a command with the old configura-
tion. This blocks 𝑆1 from being elected using its own 𝑅𝐶𝑎𝑐ℎ𝑒
because 𝑆2’s 𝐶𝐶𝑎𝑐ℎ𝑒 has a larger timestamp.
Together these properties guarantee that caches with an

𝑟𝑑𝑖𝑠𝑡 of 1 have overlapping quorums and therefore properties
like the uniqueness of a leader’s timestamp and safety follow
from similar arguments to their 𝑟𝑑𝑖𝑠𝑡 = 0 counterparts.

Theorem 4.3 (Safety, rdist ≤ 1). Any cache tree 𝑡𝑟 with

𝑟𝑑𝑖𝑠𝑡 ≤ 1 satisfies replicated state safety.

4.3 General Case

Now that we have proved safety for 𝑟𝑑𝑖𝑠𝑡 ≤ 1, the final
step is to show that the general case of 𝑟𝑑𝑖𝑠𝑡 = 𝑛 reduces
to a combination of these cases. To help with this reduction
we require an invariant that, as a consequence of R3, given
two 𝑅𝐶𝑎𝑐ℎ𝑒𝑠 on different branches, at least one must have a
𝐶𝐶𝑎𝑐ℎ𝑒 ancestor that is not an ancestor of the other.

Lemma 4.4 (CCache in RCache Fork). Let 𝐶𝑅1 and 𝐶𝑅2 be

𝑅𝐶𝑎𝑐ℎ𝑒𝑠 such that 𝑟𝑑𝑖𝑠𝑡 (𝐶𝑅1,𝐶𝑅2) = 0, and neither is a de-

scendant of the other, but both have a common ancestor 𝐶𝐴.

Then there exists a 𝐶𝐶𝑎𝑐ℎ𝑒 𝐶𝐶 that is a descendant of 𝐶𝐴 and

an ancestor of either 𝐶𝑅1 or 𝐶𝑅2.

Theorem 4.5 (Safety). Any cache tree 𝑡𝑟 with any 𝑟𝑑𝑖𝑠𝑡 sat-

isfies replicated state safety.

Proof Sketch.We proceed by induction on 𝑟𝑑𝑖𝑠𝑡 (𝑡𝑟). For
𝑟𝑑𝑖𝑠𝑡 ≤ 1 we are done by Theorem 4.3. Suppose now that all
trees with 𝑟𝑑𝑖𝑠𝑡 = 𝑛 are safe, and 1 < 𝑟𝑑𝑖𝑠𝑡 (𝑡𝑟) = 𝑛 + 1 so
1 < 𝑟𝑑𝑖𝑠𝑡 (𝐶𝐶1,𝐶𝐶2) ≤ 𝑛 + 1 for some 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 𝐶𝐶1 and 𝐶𝐶2.
If 𝑟𝑑𝑖𝑠𝑡 (𝐶𝐶1,𝐶𝐶2) ≤ 𝑛 then they are in some subtree 𝑡𝑟 ′ with
𝑟𝑑𝑖𝑠𝑡 (𝑡𝑟 ′) = 𝑛, so we are done by the inductive hypothesis.
Safety also holds if𝐶𝐶1 and𝐶𝐶2 are on the same branch, and
if not we will show that all other shapes for 𝑡𝑟 are impossible.

CA rdist=0

CC2

CC1CR1
rdist=n+1

CR2

CA rdist=0

CC2

CC1
rdist=n+1

CR

CA

CC1CR
rdist=n+1 rdist=0

CC2

The first two cases are symmetric, and Lemma 4.4 implies
that in the last case there must be another 𝐶𝐶𝑎𝑐ℎ𝑒 between
𝐶𝐴 and either𝐶𝑅1 or𝐶𝑅2, which results in the same situation
as the other cases. Therefore, we can assume without loss of
generality that𝐶𝑅 is on the first 𝑅𝐶𝑎𝑐ℎ𝑒 on𝐶𝐶1’s branch. Let
𝐶𝐶𝑅 be 𝐶𝑅 ’s first 𝐶𝐶𝑎𝑐ℎ𝑒 descendant. It is enough to show
that 𝑟𝑑𝑖𝑠𝑡 (𝐶𝐶𝑅,𝐶𝐶2) ≤ 𝑛 because then 𝐶𝐶𝑅 and 𝐶𝐶2 must
be on the same branch, which is a contradiction. We know
𝑟𝑑𝑖𝑠𝑡 (𝐶𝐶1,𝐶𝐶2) > 1, so 𝐶𝑅 cannot be the only 𝑅𝐶𝑎𝑐ℎ𝑒 on
𝐶𝐶1’s branch. We also know by R2 that this other 𝑅𝐶𝑎𝑐ℎ𝑒
cannot be between 𝐶𝑅 and 𝐶𝐶𝑅 . Therefore this 𝑅𝐶𝑎𝑐ℎ𝑒 does
not count towards 𝑟𝑑𝑖𝑠𝑡 (𝐶𝐶𝑅,𝐶𝐶2) and it is at most 𝑛. □

5 Refinement

We now know that Adore is safe, but what does this im-
ply for concrete protocols like multi-Paxos and Raft? With
refinement we can formalize the intuitive correspondence
between Adore and these protocols and show that Adore’s
safety guarantees their safety. We demonstrate this for a
slightly simplified version of Raft, but note that this is just
one of many possible implementations.
In a sense, Adore models an abstract, synchronous ver-

sion of Raft in which communication happens atomically
and in logical time order. Through a series of refinements
we show that a more realistic asynchronous network-based

Adore: Atomic Distributed Objects with Certified Reconfiguration PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Σnet ≜ (N𝑛𝑖𝑑 ⇀ 𝑆𝑒𝑟𝑣𝑒𝑟) ∗ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘

𝑆𝑒𝑟𝑣𝑒𝑟 ≜ N𝑡𝑖𝑚𝑒 ∗ N𝑣𝑟𝑠𝑛 ∗ 𝐿𝑖𝑠𝑡 (N𝑡𝑖𝑚𝑒 ∗𝑀𝑒𝑡ℎ𝑜𝑑 ∗𝐶𝑜𝑛𝑓 𝑖𝑔) ∗ . . .
𝑁𝑒𝑡𝑤𝑜𝑟𝑘 ≜ 𝑆𝑒𝑡 (𝑀𝑠𝑔) ∗ 𝑆𝑒𝑡 (𝑀𝑠𝑔)

𝑂𝑝net ≜ elect : N𝑛𝑖𝑑 → Σnet → Σnet

| commit : N𝑛𝑖𝑑 → Σnet → Σnet

| invoke : N𝑛𝑖𝑑 → 𝑀𝑒𝑡ℎ𝑜𝑑 → Σnet → Σnet

| reconfig : N𝑛𝑖𝑑 → 𝐶𝑜𝑛𝑓 𝑖𝑔 → Σnet → Σnet

| deliver : 𝑀𝑠𝑔 → Σnet → Σnet

Figure 13. Selected Raft network-based state and operations.

Real Time

elect@2
L2 S1

elect@1
L1 S2

elect@1
L1 S1

elect@2
L2 S2

elect@2
L2 S1

elect@1
L1 S2

elect@2
L2 S2

elect@2
L2 S1

elect@1
L1 S2

elect@2
L2 S2

elect@1
L1 {S2}

elect@2
L2 {S1,S2}

R
af

t
SR

af
t

pull(L1, 1)
{S2}

pull(L2, 2)
{S1,S2}Ad

or
e

Figure 14. Raft to SRaft to Adore refinement. 𝐿1 → 𝑆1 denotes a
message sent from a leader to a server with the type and logical
timestamp of the message indicated below.

specification of Raft behaves equivalently to this synchro-
nous version. This part is similar to previous work [2, 7, 37],
but an important distinction is the final refinement, which
lifts the simplified network-based model to Adore.

Specification. We begin by writing a standard asynchro-
nous network-level specification for our Raft protocol. The
state (Fig. 13) comprises a set of replicas each with a current
timestamp, a local log of commands, and some additional
bookkeeping details (e.g., the current leader, number of votes
received). Communication between replicas is only possi-
ble through the network, which is represented as a pair of
bags of sent and delivered messages, respectively. Messages
are of four types: election/commit requests/acknowledge-
ments. Requests are generated by the elect and commit
operations. Any time after being sent, a message may arrive
with deliver, which triggers a handler based on the type of
the message. A leader may also call invoke and reconfig,
which are local operations that only affect its own log.

We also create another specification that is the same ex-
cept for a few simplifying assumptions: only valid messages
are delivered (i.e., messages that will not be ignored by their

S1
S1
M1

S1
{S1,S2,S3}

S2

S1
M2

S2
M3

S1
{S1,S3}

M1

S1

S2

S3

Log entriesNode

M2

M3

{S1,S3}M1

M1

Active Branch Local Log

S1
S1
M1

S1
{S1,S2,S3}

S2

S1
M2

S2
M3

S1
{S1,S3}

M1

S1

S2

S3

M2

M3

{S1,S3}M1

M1

S1
S1
M1

S1
{S1,S2,S3}

S2

S1
M2

S2
M3

S1
{S1,S3}

M1

S1

S2

S3

M2

M3

{S1,S3}M1

M1

Figure 15. Correspondence between replicas’ local logs and ac-
tive branches. The active branch of each replica is shown by the
gray backgrounds, with the dark gray indicating caches that have
matching entries in the local log (𝑀𝐶𝑎𝑐ℎ𝑒𝑠 and 𝑅𝐶𝑎𝑐ℎ𝑒𝑠).

recipients for having the wrong timestamp, coming from out-
side the current configuration, etc.), messages are delivered
in order of their logical timestamps, requests are received
and acknowledged atomically by all of the recipients at once.
Unless otherwise qualified, we refer to the asynchronous
model as Raft, and this simplified version as SRaft.

Refinement Relation. The next step is to define a re-
finement relation R between Raft and Adore’s state. This
includes correspondences between auxiliary state such as
timestamps, and leadership flags, but for Adore’s safety to
imply something useful about Raft, R must ensure that for
any replica’s local log, the methods are the same as those
along that replica’s active branch of the cache tree. Then,
since Adore guarantees that every replica’s active branch
has a common prefix of committed methods, the same must
be true in Raft as long as R holds. SRaft and Raft share the
same state definitions, so R also holds for SRaft and Adore.

Simulation. Finally, we show that Adore simulates Raft
by proving that given two states related by R, for any step
that Raft can take, there is a corresponding step for Adore
that preserves the relation. If the initial states are also related
then this implies thatAdore captures all valid Raft behaviors
and therefore its safety implies Raft’s safety.

Intuitively, the correspondence between Adore and Raft
steps is clear: pull for elections, push for commits, and
Adore method invocation and reconfiguration for their Raft
counterparts. The reality is less straightforward because the
Adore operations are atomic, while their Raft equivalents
are not. SRaft’s purpose is to be an intermediate specification

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Wolf Honoré, Ji-Yong Shin, Jieung Kim, and Zhong Shao

that rearranges asynchronous Raft operations into an equiva-
lent order that satisfies the intuitive mapping. As an example,
consider the situation in Fig. 14. We’d like to show that the
four Raft receive events in the bottom layer correspond to
the two pull requests in the top layer, but how can we be
sure that these sequences of events are actually equivalent?

We first observe that 𝑆1 receives amessagewith timestamp
1 after it received onewith timestamp 2. Therefore, 𝑆1 ignores
the second message, and we can safely drop it from the
sequence of events. Next, we note that 𝑆1 receiving amessage
has no effect on 𝑆2 and vice-versa, so the first two receive
events safely commute, which puts the sequence in logical
time order. Now that 𝐿1 and 𝐿2’s requests are untangled, we
can merge adjacent receive events and treat the messages as
if they arrived at each recipient at the same time.

Now we have a much simpler network-based model with
in-order, atomic message delivery that is equivalent to the
asynchronous version. To complete the refinement, the fi-
nal step is to show that corresponding SRaft and Adore
operations preserve R. Because we have already “lined up”
the events, the bulk of the remaining work is to translate
between different state representations, such as a replica’s
local log in SRaft and its active branch inAdore (Fig. 15). See
Appendix C for more information about these refinement
layers, and the source code [10] for the full proofs.

6 Instantiating Reonfiguration Schemes

Recall that the only information about configurations that
the safety proof relies on is that quorums of two configu-
rations related by R1+ have a non-empty intersection. This
means that for any valid instantiation of the configuration-
related parameters the safety proof holds for free. To give a
sense of how flexible Adore’s reconfiguration scheme is, we
demonstrate several practical and diverse implementations.

Raft Single-Node. One option, of course, is Raft’s single-
node algorithm, which uses a standard majority quorum and
only allows configurations to change one replica at a time.

𝐶𝑜𝑛𝑓 𝑖𝑔 ≜ 𝑆𝑒𝑡 (N𝑛𝑖𝑑)
R1+ (𝐶,𝐶 ′) ≜ 𝐶 = 𝐶 ′ ∨ ∃𝑠 .𝐶 = 𝐶 ′ ∪ {𝑠} ∨𝐶 ′ = 𝐶 ∪ {𝑠}

𝑖𝑠𝑄𝑢𝑜𝑟𝑢𝑚(𝑆,𝐶) ≜ |𝐶 | < 2 ∗ |𝑆 ∩𝐶 |

Raft Joint Consensus. Amore complicated case is Raft’s
other reconfiguration strategy [26], which allows arbitrary
configuration changes. Like the single-node version, a new
configuration is proposed as a special command, but instead
of immediately switching to the new configuration, the repli-
cas transition to an intermediate “joint configuration” con-
sisting of both the old and new members. In this state elec-
tions and commit operations require support from majorities
of both configurations (not their union) to succeed. Once a
command is committed under the joint configuration it is
safe to transition to the new configuration.

𝐶𝑜𝑛𝑓 𝑖𝑔 ≜ 𝑆𝑒𝑡 (N𝑛𝑖𝑑) ∗𝑂𝑝𝑡𝑖𝑜𝑛(𝑆𝑒𝑡 (N𝑛𝑖𝑑))
R1+ (𝐶,𝐶 ′) ≜ ∃ 𝑜𝑙𝑑.

(
𝐶 = (𝑜𝑙𝑑,⊥) ∧𝐶 ′ = (𝑜𝑙𝑑, _)

)
∨

∃ 𝑛𝑒𝑤.
(
𝐶 = (_, 𝑛𝑒𝑤) ∧𝐶 ′ = (𝑛𝑒𝑤,⊥)

)
𝑖𝑠𝑄𝑢𝑜𝑟𝑢𝑚(𝑆, (𝑜𝑙𝑑, 𝑛𝑒𝑤)) ≜ |𝑜𝑙𝑑 | < 2 ∗ |𝑆 ∩ 𝑜𝑙𝑑 | ∧

(𝑛𝑒𝑤 = ⊥ ∨ |𝑛𝑒𝑤 | < 2 ∗ |𝑆 ∩ 𝑛𝑒𝑤 |)

The essential point here is that the joint configuration re-
quires majorities from both configurations. This ensures that
when transitioning from the old to joint configuration, or
joint to new, there exists a majority of supporters in both
sets, which guarantees a common server.

Primary Backup. Instead of relying on majorities, an-
other approach is something similar to a primary backup
protocol, such as Chain Replication [30], in which one replica
or set of replicas (the primary) is responsible for committing
commands, while the others serve as passive backups. A quo-
rum then is any set containing the primary, which means
the set of passive backups can change arbitrarily.

𝐶𝑜𝑛𝑓 𝑖𝑔 ≜ N𝑛𝑖𝑑 ∗ 𝑆𝑒𝑡 (N𝑛𝑖𝑑)
R1+ ((𝑃, _), (𝑃 ′, _)) ≜ 𝑃 = 𝑃 ′

𝑖𝑠𝑄𝑢𝑜𝑟𝑢𝑚(𝑆, (𝑃, _)) ≜ 𝑃 ∈ 𝑆

In this case the primary is constant and is a member of every
quorum, so all quorums obviously intersect. The limitation
of this is if the primary crashes then all progress is blocked.
A more reliable alternative is to use one of the previous
approaches to manage a set of primaries that can be replaced
as needed. Primaries can then be replaced one at a time, and
passive backups can still be freely added or removed. This
allows replicas to move between the primary and passive
sets to dynamically adjust to varying availability needs.

Dynamic Quorum Sizes. With a set of 𝑛 replicas, a quo-
rum size of ⌈𝑛/2⌉ allows only one replica to be added or
removed while still guaranteeing overlap. On the other hand,
a quorum size of 𝑛 means 𝑛−1 replicas can safely be changed
at once. Larger quorums therefore allow for faster reconfig-
uration, but are less fault tolerant. This type of trade-off is
why protocols like Vertical Paxos [17] allow quorum size to
be adjusted dynamically. Adore’s reconfiguration scheme
supports this by adding quorum size (𝑞) to the configuration.

𝐶𝑜𝑛𝑓 𝑖𝑔 ≜ N ∗ 𝑆𝑒𝑡 (N𝑛𝑖𝑑)
R1+ ((𝑞,𝐶), (𝑞′,𝐶 ′)) ≜ (𝐶 ⊆ 𝐶 ′ ∧ |𝐶 ′ | < 𝑞 + 𝑞′) ∨

(𝐶 ′ ⊆ 𝐶 ∧ |𝐶 | < 𝑞 + 𝑞′)
𝑖𝑠𝑄𝑢𝑜𝑟𝑢𝑚(𝑆, (𝑞,𝐶)) ≜ 𝑞 ≤ |𝑆 ∩𝐶 |

The argument for why this guarantees overlap is a general-
ization of the single-node case. Intuitively, if the sum of the
quorum sizes is greater than the size of the larger sets, then
two quorums together contain at least that many elements.
Then, by the pigeonhole principle, at least one element is a
duplicate, so the quorums must have it in common.

Adore: Atomic Distributed Objects with Certified Reconfiguration PLDI ’22, June 13–17, 2022, San Diego, CA, USA

7 Evaluation and Discussion

Proof Effort and Experience. The total amount of Coq to
implement and prove the safety of Adore is approximately
10.8k lines. Of that, 2.3k are generic well-formedness invari-
ants about the tree data structure (e.g., proving the absence
of cycles), and 4k are part of a general library of utility func-
tions and lemmas, leaving 4.5k for the kind of proof shown
in Section 4. We also performed the same safety proof using
the CADO model (Adore without reconfiguration), which
took approximately 1.3k lines (excluding the tree properties).
The CADO proof took one person approximately 2 weeks to
complete and adding reconfiguration took another 3.
For comparison, Advert (an ADO-based Coq verification

framework) proved a similar replicated state safety property
for a network-based model of a non-reconfigurable multi-
Paxos in approximately 5k lines [8]. The relative ease with
which Adore handles a much more complicated problem is
a strong demonstration that an abstraction designed specifi-
cally for protocol-level reasoning is a powerful tool.
The primary features of Adore that make it ideal for

protocol-level reasoning properties are its atomic interface
and cache tree. Reducing the complexities of network com-
munication to four simple operations greatly reduces the
number of cases to consider. The cache tree is also an expres-
sive abstraction that captures important information from
log-based models, but makes explicit certain invariants, such
as the existence of a common prefix of committed commands.

Refinement. The refinement proof between the network-
based model of a Raft-like protocol and Adore takes approx-
imately 13.8k lines of Coq, of which 2.5k is the refinement
between SRaft and Adore. The protocol is parameterized
by the same 𝑖𝑠𝑄𝑢𝑜𝑟𝑢𝑚 and R1+ predicates as Adore, which
means the refinement proof actually holds for a large family
of protocols with different reconfiguration schemes. Instan-
tiating these parameters and proving that they satisfy the
necessary properties is trivial. Adore’s codebase includes
six examples (the four from Section 6 and two others) that
take about 200 lines in total for both the definitions and
proofs (several rely on the proof that majority subsets over-
lap, which is an additional 100 lines).

OCaml Extraction and Performance. Using Coq’s sup-
port for extraction to OCaml we created an executable ver-
sion of the Raft network-based specification and with a small,
unverified network library wrapper, evaluated its perfor-
mance on Amazon EC2 with m4.xlarge instances. The exper-
iment reconfigures after every 1000 client requests, starting
with five nodes, dropping to three, then increasing back to
five. Fig. 16 shows the maximum, mean, and minimum la-
tencies for processing each client command over eight runs.
Reconfiguration adds a small delay, especially when the num-
ber of nodes increases, but it is within the normal range of
sporadic latency spikes. Our aim is not to make any strong

 0

 200

 400

 600

 800

 1000

 0 1000 2000 3000 4000

(5) (4) (3) (4) (5)

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Request number

Max
Avg
Min

Figure 16. OCaml Raft performance under reconfiguration. (𝑛)
indicates a configuration under 𝑛 nodes.

performance claims, but merely to demonstrate thatAdore’s
safety guarantees can extend to verified executable code (ex-
cluding the OCaml extraction process, compiler, and network
libraries) without being unreasonably slow.

8 Related Work

Alternative ReconfigurationAlgorithms. Adore is de-
signed to support hot reconfiguration algorithms where un-
committed reconfiguration commands update the configu-
ration immediately. These are both more efficient and more
challenging to verify than other types because they inter-
leave reconfiguration with normal operations. The cache
tree’s representation of uncommitted state is ideal for han-
dling this kind of speculative behavior, and the R1+ and
𝑖𝑠𝑄𝑢𝑜𝑟𝑢𝑚 parameters allow Adore to support a wide vari-
ety of schemes; however, we believe that with some slight
modifications, it could easily handle even more.

Lamport et al. [16] suggests an “easy” approach to recon-
figuration in which each instance of consensus (each slot
in the log) uses a configuration that is inherited from the
previous instance. The configuration can then be changed
by committing a special command that tells the next con-
sensus instance to use it. To avoid blocking instance 𝑖 + 1
from beginning until 𝑖 is fully committed, the algorithm is
generalized to use a parameter 𝛼 such that a configuration
committed in instance 𝑖 takes effect in instance 𝑖 + 𝛼 , thus
allowing 𝑖 through 𝑖 + 𝛼 − 1 to continue as normal.
This already has a fair amount in common with Adore,

such as inheriting the previous slot’s configuration. The first
required change is to wait until a configuration is committed
to begin using it, rather than having it take effect immedi-
ately. The other is to block new methods from being invoked
on an active branch that has 𝛼 uncommitted caches.
Stoppable Paxos [21] introduces a “stop” command that

prevents replicas from committing further commands. Once
stopped, a new configuration is launched and the old log is
copied up to the stop command.WormSpace [35] implements
a similar approach by “sealing” the configuration, which
causes servers to reject subsequent requests, before start-
ing a new instance. Liskov and Cowling [18] also define a
membership change algorithm for Viewstamped Replication

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Wolf Honoré, Ji-Yong Shin, Jieung Kim, and Zhong Shao

in which a special command defines the new configuration
and begins a view change (i.e., election). Like the other ap-
proaches, handling of client requests is paused until the logs
are completely transferred to the new configuration.

Adore could model this style of stop-the-world reconfig-
uration by deleting all caches not on the active branch when
an 𝑅𝐶𝑎𝑐ℎ𝑒 is committed, which simulates copying the com-
mitted commands to a new cluster of servers. This simplifies
the problem because once the 𝑅𝐶𝑎𝑐ℎ𝑒 is committed there is
a clean break between the old and new configurations with
no opportunity for both to run simultaneously.

Formal Verification. There is surprisingly little prior
work on formal verification of reconfiguration. Verdi’s proof
of Raft’s safety does not consider either the single-node or
joint consensus algorithms [38, 40]. IronFleet’s Paxos-based
IronRSL also omits reconfiguration though they claim it
“only requires additional developer time” [7]. Padon et al.
[27] prove the safety of Vertical Paxos, but assume the ex-
istence of a correct external reconfiguration service, thus
sidestepping the issue. Even in the blockchain world, where
membership tends to be very flexible, verification efforts of-
ten make strict assumptions about configurations. For exam-
ple, a proof of safety for the Stellar Consensus Protocol [22]
assumes “arbitrary, but fixed configurations” [19].
The nearest work to Adore is the verification of Mon-

goDB’s reconfiguration scheme [32, 33], which occurred
concurrently with Adore’s development. Like Adore, the
protocol is based on Raft’s single-node algorithm, but with
an optimization that reconfiguration operations are stored
separately from regular commands, which somewhat relaxes
the dependencies between them, and means replicas only
need to keep the latest configuration. However, there are
several significant differences in our approaches and results.

The MongoDB work is specified in TLA+ [13, 15] in a very
abstract network-based model and its safety is proved with
the TLA+ proof system [3]. The specification is at a compa-
rable level of abstraction to our SRaft specification where
communication details are mostly hidden, but state is still
modeled as local logs rather than a global cache tree. Unlike
Adore, there is no refinement with a more realistic model,
or the ability to extract executable code. The MongoDB spec-
ification is also for a fixed reconfiguration scheme, and lacks
the generality of Adore’s 𝑖𝑠𝑄𝑢𝑜𝑟𝑢𝑚 and R1+ parameters.
The high-level structure of the safety proofs are quite

different as well. Because MongoDB also uses a hot recon-
figuration algorithm, it faces the same sort of circularity
problems described in Section 4; however, without Adore’s
tree structure to suggest the 𝑟𝑑𝑖𝑠𝑡-based approach, they re-
sort to the more standard technique of establishing an in-
ductive invariant that implies safety and is preserved by
every step of the specification. This invariant must contain
enough information both to prove safety and its own invari-
ance, which means several mutually dependent properties

must be bundled together. In particular, the MongoDB in-
variant is a conjunction of 20 high-level properties ranging
from important safety guarantees like election safety and log
matching to implementation details such as the uniqueness
of a configuration’s term and version number.

With all of these invariants packed together the intuition
behind why the protocol works is obscured, and the proof is
more complex because it is harder to break down into smaller
steps. Discovering the correct invariant alone took between
1–2 person-months using a counterexample-driven approach
with a tool that attempts to detect invalid invariants. Actually
proving that the invariant is inductive and implies safety took
another 4 person-months.When comparedwith the 5 person-
weeks to prove Adore’s safety, this supports our claim that
finding the correct protocol-level abstraction is essential for
scaling verification to more realistic and complex systems.

9 Conclusion and Future Work

Existing models for distributed systems are not ideal for
protocol-level verification, which makes it difficult to reason
about important, but complex operations like reconfigura-
tion. We presented Adore, whose cache tree abstraction and
atomic interface make it the right choice for this type of
problem. We demonstrate this by showing how it facilitates
the first mechanized safety proof for a generic consensus
protocol with a hot reconfiguration algorithm.

Although Adore guarantees the safety of the protocols it
models, it makes no claims about their liveness or availability.
These important properties can also be compromised by an
incorrect reconfiguration scheme, so they are natural targets
for future extensions of Adore. This requires introducing a
notion of time and an assumption of a partially synchronous
network, but we expect that Adore’s intuitive tree-based
state representation would be an asset here as well.

Another direction that Adoremight be extended is to sup-
port byzantine fault tolerant protocols such as HotStuff [41]
or Jolteon [4]. These use larger quorum sizes and additional
machinery to handle malicious replicas, but their safety ulti-
mately still relies on a logical tree of commands with over-
lapping quorums to prevent branching. Thus, we expect an
Adore-likemodel would also work quite well in this domain.

Acknowledgments

We would like to thank our shepherd Tej Chajed and anony-
mous reviewers for their helpful feedback. This material is
based upon work supported in part by NSF grants 2019285,
1945541, and 2118851, and by the Defense Advanced Re-
search Projects Agency (DARPA) andNaval InformationWar-
fare Center Pacific (NIWCPacific) under Contract No. N66001-
21-C-4018. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF,
DARPA, and NIWC Pacific.

Adore: Atomic Distributed Objects with Certified Reconfiguration PLDI ’22, June 13–17, 2022, San Diego, CA, USA

References

[1] Mike Burrows. 2006. The Chubby Lock Service for Loosely-Coupled
Distributed Systems. In Proc. of the 7th Symposium on Operating Sys-

tems Design and Implementation (Seattle, WA, USA) (OSDI ’06). USENIX
Association, Berkeley, CA, USA, 335–350. https://dl.acm.org/doi/10.
5555/1298455.1298487

[2] Tej Chajed, Frans Kaashoek, Butler Lampson, and Nickolai Zeldovich.
2018. Verifying Concurrent Software Using Movers in CSPEC. In Proc.

of the 13th USENIX Symposium on Operating Systems Design and Imple-

mentation (Carlsbad, CA, USA) (OSDI ’18). USENIX Association, Carls-
bad, CA, 306–322. https://dl.acm.org/doi/10.5555/3291168.3291191

[3] Denis Cousineau, Damien Doligez, Leslie Lamport, Stephan Merz,
Daniel Ricketts, and Hernan Vanzetto. 2012. TLA+ Proofs. In Proc. of

the 18th International Symposium on Formal Methods (FM ’12, Vol. 7436),
Dimitra Giannakopoulou and Dominique Mery (Eds.). Springer-Verlag,
Berlin, Heidelberg, 147–154. https://www.microsoft.com/en-us/
research/publication/tla-proofs/

[4] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander
Spiegelman, and Zhuolun Xiang. 2022. Jolteon and Ditto: Network-
Adaptive Efficient Consensus with Asynchronous Fallback. In Proc.

of the 26th International Conference on Financial Cryptography and

Data Security (Grenada) (FC ’22). Springer-Verlag, Berlin, Heidelberg.
https://fc22.ifca.ai/preproceedings/35.pdf

[5] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Under-
standing Network Failures in Data Centers: Measurement, Analysis,
and Implications. In Proc. of the ACM SIGCOMM 2011 Conference. ACM,
New York, NY, USA, 350–361. https://doi.org/10.1145/2043164.2018477

[6] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa,
Tiratat Patana-anake, Thanh Do, Jeffry Adityatama, Kurnia J. Eliazar,
Agung Laksono, Jeffrey F. Lukman, Vincentius Martin, and Anang D.
Satria. 2014. What Bugs Live in the Cloud? A Study of 3000+ Issues
in Cloud Systems. In Proc. of the ACM Symposium on Cloud Comput-

ing (Seattle, WA, USA) (SoCC ’14). ACM, New York, NY, USA, 1–14.
https://doi.org/10.1145/2670979.2670986

[7] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan
Parno, Michael L. Roberts, Srinath Setty, and Brian Zill. 2015. IronFleet:
Proving Practical Distributed Systems Correct. In Proc. of the 25th

Symposium on Operating Systems Principles (Monterey, CA, USA) (SOSP
’15). ACM, New York, NY, USA, 1–17. https://doi.org/10.1145/2815400.
2815428

[8] Wolf Honoré, Jieung Kim, Ji-Yong Shin, and Zhong Shao. 2021. Much
ADO about Failures: A Fault-Aware Model for Compositional Verifica-
tion of Strongly Consistent Distributed Systems. Proc. ACM Program.

Lang. 5, OOPSLA (Oct. 2021). https://doi.org/10.1145/3485474
[9] Wolf Honoré, Ji-Yong Shin, Jieung Kim, and Zhong Shao. 2022. Adore:

Atomic Distributed Objects with Certified Reconfiguration. Technical
Report YALEU/DCS/TR-1560. Yale Univ. https://flint.cs.yale.edu/
publications/adore.html

[10] Wolf Honoré, Ji-Yong Shin, Jieung Kim, and Zhong Shao. 2022. Artifact
For "Adore: Atomic Distributed Objects with Certified Reconfiguration".
Yale University. https://doi.org/10.5281/zenodo.6321150

[11] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin
Reed. 2010. ZooKeeper: Wait-Free Coordination for Internet-Scale
Systems. In Proc. of the 2010 USENIX Conference on USENIX Annual

Technical Conference (Boston, MA, USA) (USENIXATC ’10). USENIX
Association, Berkeley, CA, USA, 11. https://doi.org/10.5555/1855840.
1855851

[12] Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput.

Syst. 16, 2 (1998), 133–169. https://doi.org/10.1145/279227.279229
[13] Leslie Lamport. 1999. Specifying Concurrent Systems with TLA+. Cal-

culational System Design (April 1999), 183–247. https://www.microsoft.
com/en-us/research/publication/specifying-concurrent-systems-tla/

[14] Leslie Lamport. 2001. Paxos Made Simple. SIGACT News 32, 4 (Dec.
2001), 51–58. https://doi.org/10.1145/568425.568433

[15] Leslie Lamport. 2002. Specifying Systems: The TLA+ Language

and Tools for Hardware and Software Engineers. Addison-
Wesley, Boston, MA, USA. https://www.microsoft.com/en-
us/research/publication/specifying-systems-the-tla-language-and-
tools-for-hardware-and-software-engineers/

[16] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. 2008. Reconfig-

uring a State Machine. Technical Report MSR-TR-2008-193. Mi-
crosoft. https://www.microsoft.com/en-us/research/publication/
reconfiguring-a-state-machine/

[17] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. 2009. Vertical Paxos
and Primary-Backup Replication. In Proc. of the 28th ACM Symposium

on Principles of Distributed Computing (Calgary, AB, Canada) (PODC
’09). ACM, New York, NY, USA, 312–313. https://doi.org/10.1145/
1582716.1582783

[18] Barbara Liskov and James Cowling. 2012. Viewstamped Replication

Revisited. Technical Report MIT-CSAIL-TR-2012-021. MIT. http:
//hdl.handle.net/1721.1/71763

[19] Giuliano Losa and Mike Dodds. 2020. On the Formal Verification of
the Stellar Consensus Protocol. In Proc. of the 2nd Workshop on Formal

Methods for Blockchains (FMBC ’20, Vol. 84), Bruno Bernardo and Diego
Marmsoler (Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, 1–9. https://doi.org/10.4230/OASIcs.FMBC.2020.9

[20] Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos Kapritsos, Baris
Kasikci, and Karem A. Sakallah. 2019. I4: Incremental Inference of
Inductive Invariants for Verification of Distributed Protocols. In Proc. of
the 27th ACM Symposium on Operating Systems Principles (Huntsville,
ON, Canada) (SOSP ’19). ACM, New York, NY, USA, 370–384. https:
//doi.org/10.1145/3341301.3359651

[21] Dahlia Malkhi, Leslie Lamport, and Lidong Zhou. 2008. Stoppable

Paxos. Technical Report MSR-TR-2008-192. Microsoft. https://www.
microsoft.com/en-us/research/publication/stoppable-paxos/

[22] David Mazieres. 2015. The Stellar Consensus Protocol: A Federated
Model for Internet-Level Consensus. https://www.stellar.org/papers/
stellar-consensus-protocol

[23] Justin Meza, Tianyin Xu, Kaushik Veeraraghavan, and Onur Mutlu.
2018. A Large Scale Study of Data Center Network Reliability. In Proc.

of the Internet Measurement Conference (Boston, MA, USA) (IMC ’18).
ACM, New York, NY, USA, 393–407. https://doi.org/10.1145/3278532.
3278566

[24] Diego Ongaro. 2014. Consensus: Bridging Theory and Practice. Ph. D.
Dissertation. Stanford University.

[25] Diego Ongaro. 2015. bug in single-server membership changes. https:
//groups.google.com/g/raft-dev/c/t4xj6dJTP6E/m/d2D9LrWRza8J.

[26] Diego Ongaro and John K. Ousterhout. 2014. In Search of an Under-
standable Consensus Algorithm. In USENIX Annual Technical Con-

ference. USENIX Association, Berkeley, CA, USA, 305–319. https:
//dl.acm.org/doi/10.5555/2643634.2643666

[27] Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. 2017.
Paxos Made EPR: Decidable Reasoning About Distributed Protocols.
Proc. ACM Program. Lang. 1, OOPSLA, Article 108 (Oct. 2017), 31 pages.
https://doi.org/10.1145/3140568

[28] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and
Sharon Shoham. 2016. Ivy: Safety Verification by Interactive General-
ization. In Proc. of the 37th ACM SIGPLAN Conference on Programming

Language Design and Implementation (Santa Barbara, CA, USA) (PLDI
’16), Chandra Krintz and Emery Berger (Eds.). ACM, New York, NY,
USA, 614–630. https://doi.org/10.1145/2908080.2908118

[29] Robbert Van Renesse and Deniz Altinbuken. 2015. Paxos Made Mod-
erately Complex. ACM Computing Surveys (CSUR) 47, 3 (2015), 42.
https://doi.org/10.1145/2673577

[30] Robbert Van Renesse and Fred B. Schneider. 2004. Chain Replication
for Supporting High Throughput and Availability. In Proc. of the 6th

USENIX Symposium on Operating Systems Design and Implementation

(San Francisco, CA, USA) (OSDI ’04, Vol. 4). USENIX Association, Berke-
ley, CA, USA, 91–104. https://dl.acm.org/doi/10.5555/1251254.1251261

https://dl.acm.org/doi/10.5555/1298455.1298487
https://dl.acm.org/doi/10.5555/1298455.1298487
https://dl.acm.org/doi/10.5555/3291168.3291191
https://www.microsoft.com/en-us/research/publication/tla-proofs/
https://www.microsoft.com/en-us/research/publication/tla-proofs/
https://fc22.ifca.ai/preproceedings/35.pdf
https://doi.org/10.1145/2043164.2018477
https://doi.org/10.1145/2670979.2670986
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/3485474
https://flint.cs.yale.edu/publications/adore.html
https://flint.cs.yale.edu/publications/adore.html
https://doi.org/10.5281/zenodo.6321150
https://doi.org/10.5555/1855840.1855851
https://doi.org/10.5555/1855840.1855851
https://doi.org/10.1145/279227.279229
https://www.microsoft.com/en-us/research/publication/specifying-concurrent-systems-tla/
https://www.microsoft.com/en-us/research/publication/specifying-concurrent-systems-tla/
https://doi.org/10.1145/568425.568433
https://www.microsoft.com/en-us/research/publication/specifying-systems-the-tla-language-and-tools-for-hardware-and-software-engineers/
https://www.microsoft.com/en-us/research/publication/specifying-systems-the-tla-language-and-tools-for-hardware-and-software-engineers/
https://www.microsoft.com/en-us/research/publication/specifying-systems-the-tla-language-and-tools-for-hardware-and-software-engineers/
https://www.microsoft.com/en-us/research/publication/reconfiguring-a-state-machine/
https://www.microsoft.com/en-us/research/publication/reconfiguring-a-state-machine/
https://doi.org/10.1145/1582716.1582783
https://doi.org/10.1145/1582716.1582783
http://hdl.handle.net/1721.1/71763
http://hdl.handle.net/1721.1/71763
https://doi.org/10.4230/OASIcs.FMBC.2020.9
https://doi.org/10.1145/3341301.3359651
https://doi.org/10.1145/3341301.3359651
https://www.microsoft.com/en-us/research/publication/stoppable-paxos/
https://www.microsoft.com/en-us/research/publication/stoppable-paxos/
https://www.stellar.org/papers/stellar-consensus-protocol
https://www.stellar.org/papers/stellar-consensus-protocol
https://doi.org/10.1145/3278532.3278566
https://doi.org/10.1145/3278532.3278566
https://groups.google.com/g/raft-dev/c/t4xj6dJTP6E/m/d2D9LrWRza8J
https://groups.google.com/g/raft-dev/c/t4xj6dJTP6E/m/d2D9LrWRza8J
https://dl.acm.org/doi/10.5555/2643634.2643666
https://dl.acm.org/doi/10.5555/2643634.2643666
https://doi.org/10.1145/3140568
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/2673577
https://dl.acm.org/doi/10.5555/1251254.1251261

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Wolf Honoré, Ji-Yong Shin, Jieung Kim, and Zhong Shao

[31] Fred B. Schneider. 1990. Implementing Fault-Tolerant Services Using
the State Machine Approach: A Tutorial. ACM Computing Surveys

(CSUR) 22, 4 (1990), 299–319. https://doi.org/10.1145/98163.98167
[32] William Schultz, Ian Dardik, and Stavros Tripakis. 2022. Formal Verifi-

cation of a Distributed Dynamic Reconfiguration Protocol. In Proc. of

the 11th ACM SIGPLAN International Conference on Certified Programs

and Proofs (Philadelphia, PA, USA) (CPP ’22). ACM, New York, NY,
USA, 143–152. https://doi.org/10.1145/3497775.3503688

[33] William Schultz, Siyuan Zhou, Ian Dardik, and Stavros Tripakis. 2022.
Design and Analysis of a Logless Dynamic Reconfiguration Protocol.
In Proc. of the 25th International Conference on Principles of Distributed

Systems (Strasbourg, France) (OPODIS ’21, Vol. 217), Quentin Bramas,
Vincent Gramoli, and Alessia Milani (Eds.). Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, Dagstuhl, Germany, 1–16. https://doi.org/10.
4230/LIPIcs.OPODIS.2021.26

[34] Ilya Sergey, James R. Wilcox, and Zachary Tatlock. 2017. Programming
and Proving with Distributed Protocols. Proc. ACM Program. Lang. 2,
POPL, Article 28 (Dec. 2017), 30 pages. https://doi.org/10.1145/3158116

[35] Ji-Yong Shin, Jieung Kim, Wolf Honoré, Hernán Vanzetto, Srihari Rad-
hakrishnan, Mahesh Balakrishnan, and Zhong Shao. 2019. WormSpace:
A Modular Foundation for Simple, Verifiable Distributed Systems.
In Proc. of the ACM Symposium on Cloud Computing (Santa Cruz,
CA, USA) (SoCC ’19). ACM, New York, NY, USA, 299–311. https:
//doi.org/10.1145/3357223.3362739

[36] The Coq Development Team. 1999–2022. The Coq Proof Assistant.
http://coq.inria.fr.

[37] Klaus v. Gleissenthall, Rami Gökhan Kici, Alexander Bakst, Deian
Stefan, and Ranjit Jhala. 2019. Pretend Synchrony: Synchronous
Verification of Asynchronous Distributed Programs. Proc. ACM

Program. Lang. 3, POPL, Article 59 (Jan. 2019), 30 pages. https:
//doi.org/10.1145/3290372

[38] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi
Wang, Michael D. Ernst, and Thomas Anderson. 2015. Verdi: A Frame-
work for Implementing and Formally Verifying Distributed Systems. In
Proc. of the 36th ACM SIGPLAN Conference on Programming Language

Design and Implementation (Portland, OR, USA) (PLDI ’15). ACM, New
York, NY, USA, 357–368. https://doi.org/10.1145/2737924.2737958

[39] AnnWollrath, Roger Riggs, and JimWaldo. 1996. A Distributed Object
Model for the Java System. Comput. Syst. 9 (1996), 265–290. https:
//dl.acm.org/doi/10.5555/1268049.1268066

[40] DougWoos, James R.Wilcox, Steve Anton, Zachary Tatlock, Michael D.
Ernst, and Thomas Anderson. 2016. Planning for Change in a Formal
Verification of the Raft Consensus Protocol. In Proc. of the 5th ACM

SIGPLAN International Conference on Certified Programs and Proofs (St.
Petersburg, FL, USA) (CPP ’16). ACM, New York, NY, USA, 154–165.
https://doi.org/10.1145/2854065.2854081

[41] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and
Ittai Abraham. 2019. HotStuff: BFT Consensus with Linearity and
Responsiveness. In Proc. of the 2019 ACM Symposium on Principles of

Distributed Computing (Toronto ON, Canada) (PODC ’19). ACM, New
York, NY, USA, 347–356. https://doi.org/10.1145/3293611.3331591

https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/3497775.3503688
https://doi.org/10.4230/LIPIcs.OPODIS.2021.26
https://doi.org/10.4230/LIPIcs.OPODIS.2021.26
https://doi.org/10.1145/3158116
https://doi.org/10.1145/3357223.3362739
https://doi.org/10.1145/3357223.3362739
http://coq.inria.fr
https://doi.org/10.1145/3290372
https://doi.org/10.1145/3290372
https://doi.org/10.1145/2737924.2737958
https://dl.acm.org/doi/10.5555/1268049.1268066
https://dl.acm.org/doi/10.5555/1268049.1268066
https://doi.org/10.1145/2854065.2854081
https://doi.org/10.1145/3293611.3331591

Adore: Atomic Distributed Objects with Certified Reconfiguration PLDI ’22, June 13–17, 2022, San Diego, CA, USA

A Consensus Primer

Both the election and commit phases involve a replica broad-
casting a message to the others and trying to collect positive
acknowledgements from a quorum. The goal of the election
phase is for a replica, known as a candidate, to get permission
to add new log entries by confirming that its has all of the
existing committed entries. This requires a way to determine
which of two logs is more “up to date”. Replicas do not have
access to a synchronized global clock, so instead, every com-
mand is assigned a logical timestamp (called a ballot number
in Paxos and a term number in Raft) and logs are compared
by looking at the timestamps of their last entries.

Replicas keep track of the largest timestamp they have ob-
served and only vote for candidates with larger timestamps
and sufficiently up-to-date logs. A candidate wins an elec-
tion and becomes a leader if it receives a quorum of votes,
at which point it moves on to the commit phase.
Paxos and Raft use different approaches to ensure that

a candidate’s log is sufficiently up-to-date, but the result is
the same in both cases. In Paxos, replicas respond to the
candidate with their own logs, and the candidate chooses the
one whose last entry has the latest timestamp. A candidate
in Raft sends its log to the replicas, which compare against
their own logs to decide how to vote. If a candidate receives
a quorum of positive votes it becomes a leader and moves
on the commit phase. Although the place at which the com-
parison is done differs, at the end of a successful election
the leader’s log is guaranteed to contain the most up-to-date
log out of a quorum of replicas (at least at the time that the
replicas voted).
During the commit phase, the leader handles client re-

quests by appending commands to its log and asking the
replicas to do the same. If a replica still believes that the
leader’s log is sufficiently up-to-date and has not been pre-
empted by a newer leader it adds the command to its log.
When a quorum of replicas accept the command it is commit-
ted and the leader can inform the client. A leader continues in
the commit phase until it learns that there is a newer leader,
at which point it steps down and behaves as a regular replica.
If a replica suspects the leader has crashed (e.g., because it
has been too long since it last received a message), it may
begin a new election.

B Additional Safety Proofs

This section provides the omitted proofs from Section 4. For
each theorem its corresponding [Coq theorem name] is
included after the theorem’s statement. The Coq theorems
and proofs can be found in the source code [10].

Lemma B.1 (Descendant Order). If𝐶𝑌 is a descendant of𝐶𝑋

then 𝐶𝑌 ≻ 𝐶𝑋 .

[rado_inv_descendant_lt]

Proof. It is enough to show that every newly added cache
is greater than its parent. An 𝐸𝐶𝑎𝑐ℎ𝑒 added by pull has a
larger timestamp than its supporters, including its parent.
𝑀𝐶𝑎𝑐ℎ𝑒𝑠 and𝑅𝐶𝑎𝑐ℎ𝑒𝑠 increment their parent’s version num-
ber. push copies the parent’s time and version, but since the
parent must be an𝑀𝐶𝑎𝑐ℎ𝑒 or 𝑅𝐶𝑎𝑐ℎ𝑒 , the𝐶𝐶𝑎𝑐ℎ𝑒 is greater
by definition of ≻. □

Lemma B.2 (Leader Time Uniqueness, rdist-0). If 𝐶𝐸1 and

𝐶𝐸2 are 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 and 𝑟𝑑𝑖𝑠𝑡 (𝐶𝐸1,𝐶𝐸2) = 0, then 𝑡𝑖𝑚𝑒 (𝐶𝐸1) ≠
𝑡𝑖𝑚𝑒 (𝐶𝐸2).
[rado_inv_E_unique_time_no_R]

Proof. Because 𝑟𝑑𝑖𝑠𝑡 = 0,𝐶𝐸1 and𝐶𝐸2 have the same con-
figuration and thus overlapping quorums of supporters. pull
chooses a time greater than any observed by its supporters,
so, since 𝐶𝐸1 and 𝐶𝐸2 share a supporter, whichever cache
was added to the tree last must have a larger timestamp. □

Theorem B.3 (Election-Commit Order, rdist-0). Let 𝐶𝐶 be

a 𝐶𝐶𝑎𝑐ℎ𝑒 and 𝐶𝐸 be an 𝐸𝐶𝑎𝑐ℎ𝑒 such that 𝐶𝐸 ≻ 𝐶𝐶 and

𝑟𝑑𝑖𝑠𝑡 (𝐶𝐸,𝐶𝐶) = 0. 𝐶𝐸 must be a descendant of 𝐶𝐶 .

[rado_inv_EC_descendant_no_R]

Proof. If 𝐶𝐸 is a descendant of 𝐶𝐶 then we are done, so
suppose it is not for the sake of deriving a contradiction.
By Lemma B.1, 𝐶𝐶 cannot be a descendant of 𝐶𝐸 either. By
double induction on the time and version number, we can
assume that𝐶𝐸 is the first 𝐸𝐶𝑎𝑐ℎ𝑒 that is not a descendant of
𝐶𝐶 and for all 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 𝐶 ′

𝐸
where 𝐶𝐸 ≻ 𝐶 ′

𝐸
≻ 𝐶𝐶 , 𝐶 ′

𝐸
is a de-

scendant of𝐶𝐶 . Because 𝑟𝑑𝑖𝑠𝑡 = 0,𝐶𝐸 and𝐶𝐶 have the same
configuration and thus overlapping quorums of supporters.
Therefore 𝐶𝐸 ’s parent, 𝐶𝑃 , is greater than 𝐶𝐶 because pull
selects the largest cache supported by its supporters. This
leaves the three following options for the shape of the tree:

CC

CP
CA rdist=0

CE

CC

CE
CA rdist=0

CPCPE
CPE

CC

CE
CA rdist=0

CP

In the first case 𝐶𝑃 is an 𝐸𝐶𝑎𝑐ℎ𝑒 , but then 𝐶𝐸 ≻ 𝐶𝑃 ≻ 𝐶𝐶 ,
so by the inductive hypothesis it must be a descendant of𝐶𝐶 ,
which is a contradiction. If𝐶𝑃 is not an 𝐸𝐶𝑎𝑐ℎ𝑒 , it must have
an 𝐸𝐶𝑎𝑐ℎ𝑒 ancestor, 𝐶𝑃𝐸 , such that 𝑡𝑖𝑚𝑒 (𝐶𝑃) = 𝑡𝑖𝑚𝑒 (𝐶𝑃𝐸).
From𝐶𝑃 ≻ 𝐶𝐶 we know 𝑡𝑖𝑚𝑒 (𝐶𝑃) ≥ 𝑡𝑖𝑚𝑒 (𝐶𝐶), but thanks to
Lemma B.2, we also know that if 𝑡𝑖𝑚𝑒 (𝐶𝑃) = 𝑡𝑖𝑚𝑒 (𝐶𝐶) they
must be on the same branch. Since they are not, 𝑡𝑖𝑚𝑒 (𝐶𝑃) =
𝑡𝑖𝑚𝑒 (𝐶𝑃𝐸) > 𝑡𝑖𝑚𝑒 (𝐶𝐶) so 𝐶𝑃𝐸 ≻ 𝐶𝐶 .

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Wolf Honoré, Ji-Yong Shin, Jieung Kim, and Zhong Shao

The two possible locations for 𝐶𝑃𝐸 are between the com-
mon ancestor 𝐶𝐴 and 𝐶𝑃 , or before 𝐶𝐴. The first option de-
rives a contradiction because𝐶𝐸 ≻ 𝐶𝑃𝐸 ≻ 𝐶𝐶 , but𝐶𝑃𝐸 is not
a descendant of 𝐶𝐶 . The second case is also impossible by
Lemma B.1 because 𝐶𝑃𝐸 is an ancestor of 𝐶𝐶 , but 𝐶𝑃𝐸 ≻ 𝐶𝐶 .
Thus, it is impossible to arrive at a cache tree in which 𝐶𝐸 is
not a descendant of 𝐶𝐶 . □

Theorem B.4 (Safety, rdist-0). Let 𝐶𝐶1 and 𝐶𝐶2 be 𝐶𝐶𝑎𝑐ℎ𝑒𝑠

such that 𝑟𝑑𝑖𝑠𝑡 (𝐶𝐶1,𝐶𝐶2) = 0. Either 𝐶𝐶1 is a descendant of

𝐶𝐶2 or 𝐶𝐶2 is a descendant of 𝐶𝐶1.

[rado_inv_C_linear_no_R]

Proof. As before, assume that neither 𝐶𝐶1 nor 𝐶𝐶2 is a
descendant of the other in order to derive a contradiction.
Each must have a nearest 𝐸𝐶𝑎𝑐ℎ𝑒 ancestor, 𝐶𝐸1 and 𝐶𝐸2 re-
spectively, with the same time and no intervening 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 .
Three possibilities are as follows:

CC2
CA rdist=0

CC1
CE

CC2
CA rdist=0

CC1
CE1 CE2

CC2
CA rdist=0

CC1
CE2 CE1

In the first case 𝐶𝐸1 and 𝐶𝐸2 are the same 𝐸𝐶𝑎𝑐ℎ𝑒 , called
𝐶𝐸 , and in the other two the elections are distinct common
ancestors of𝐶𝐶1 and𝐶𝐶2. Recall that there can be no 𝐸𝐶𝑎𝑐ℎ𝑒𝑠
between 𝐶𝐸1 and 𝐶𝐶1 and likewise for 𝐶𝐸2 and 𝐶𝐶2 so the
latter two cases are impossible. Similarly, in the first case
there are no 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 anywhere on the forking branches
after 𝐶𝐴, but this is also impossible because pull is the only
operation that can create forks in the tree. This leaves three
options:

CC2
CA rdist=0CE1

CC1

CE2 CC2
CA rdist=0

CE1 CC1
CE2

CC2
CA rdist=0

CE1 CC1

CE2

In the first case 𝐶𝐸2 is a descendant of 𝐶𝐸1 so 𝐶𝐸2 ≻ 𝐶𝐸1
by Lemma B.1. This also implies 𝑡𝑖𝑚𝑒 (𝐶𝐸2) > 𝑡𝑖𝑚𝑒 (𝐶𝐸1)

because an 𝐸𝐶𝑎𝑐ℎ𝑒’s version number is always 0. Then, be-
cause 𝑡𝑖𝑚𝑒 (𝐶𝐸1) = 𝑡𝑖𝑚𝑒 (𝐶𝐶1), 𝐶𝐸2 ≻ 𝐶𝐶1 as well. By The-
orem B.3, 𝐶𝐸2 must be a descendant of 𝐶𝐶1, but it is not,
so this case is impossible. The second case follows by a
symmetric argument. The final case also contradicts Theo-
rem B.3 if 𝑡𝑖𝑚𝑒 (𝐶𝐸1) ≠ 𝑡𝑖𝑚𝑒 (𝐶𝐸2), which we know is true
by Lemma B.2. □

Lemma B.5 (Leader Time Uniqueness, rdist-1). If 𝐶𝐸1 and

𝐶𝐸2 are 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 and 𝑟𝑑𝑖𝑠𝑡 (𝐶𝐸1,𝐶𝐸2) = 1, then 𝑡𝑖𝑚𝑒 (𝐶𝐸1) ≠
𝑡𝑖𝑚𝑒 (𝐶𝐸2).
[rado_inv_E_unique_time_overlap]

Proof. R1+ guarantees that quorums of 𝐶𝐸1 and 𝐶𝐸2’s
configurations overlap. pull chooses a time greater than
any observed by its supporters, so, since𝐶𝐸1 and𝐶𝐸2 share a
supporter, whichever cache was added to the tree last must
have a larger timestamp. □

Theorem B.6 (Election-Commit Order, rdist-1). Let 𝐶𝐶 be

a 𝐶𝐶𝑎𝑐ℎ𝑒 and 𝐶𝐸 be an 𝐸𝐶𝑎𝑐ℎ𝑒 such that 𝐶𝐸 ≻ 𝐶𝐶 and

𝑟𝑑𝑖𝑠𝑡 (𝐶𝐸,𝐶𝐶) = 1. 𝐶𝐸 must be a descendant of 𝐶𝐶 .

[rado_inv_ERC_descendant_no_R]

[rado_inv_REC_descendant_no_R]

Proof. The proof of Theorem B.3 relied on Lemma B.1
and Lemma B.2 to show that every case where 𝐶𝐸 is not a
descendant of 𝐶𝐶 is impossible. The only difference in this
case is that 𝑟𝑑𝑖𝑠𝑡 = 1; however, Lemma B.1 is independent
of 𝑟𝑑𝑖𝑠𝑡 , and Lemma B.2 can be replaced by Lemma B.5, so
nearly exactly the same proof as before works. □

Theorem B.7 (Safety, rdist-1). Let 𝐶𝐶1 and 𝐶𝐶2 be 𝐶𝐶𝑎𝑐ℎ𝑒𝑠

such that 𝑟𝑑𝑖𝑠𝑡 (𝐶𝐶1,𝐶𝐶2) = 1. Either 𝐶𝐶1 is a descendant of

𝐶𝐶2 or 𝐶𝐶2 is a descendant of 𝐶𝐶1.

[rado_inv_RC_linear_no_ERC]

[rado_inv_RC_linear_no_RC]

Proof. If 𝐶𝐶1 and 𝐶𝐶2 are on the same branch then we
are done, so suppose they are not for the sake of deriving
a contradiction and let 𝐶𝐴 be a common ancestor. Because
𝑟𝑑𝑖𝑠𝑡 = 1 there is one 𝑅𝐶𝑎𝑐ℎ𝑒 , 𝐶𝑅 , between either 𝐶𝐴 and
𝐶𝐶1 or 𝐶𝐴 and 𝐶𝐶2. Without loss of generality, suppose it
is on 𝐶𝐶1’s branch. By R3 𝐶𝑅 must have a 𝐶𝐶𝑎𝑐ℎ𝑒 ancestor,
𝐶𝐶𝑅 with the same time and no other intervening 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 .
The possible locations for 𝐶𝐶𝑅 are:

CC2
CA rdist=0

CC1CR
rdist=1

CCR

CC2

CC1CR
rdist=1CCR

The first case has two 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 with 𝑟𝑑𝑖𝑠𝑡 = 0 on sepa-
rate branches, which is impossible by Theorem B.4. In the
second case 𝐶𝐶𝑅 is a common ancestor of 𝐶𝑅 and 𝐶𝐶2. Each

Adore: Atomic Distributed Objects with Certified Reconfiguration PLDI ’22, June 13–17, 2022, San Diego, CA, USA

𝐶𝐶𝑎𝑐ℎ𝑒 must have a nearest 𝐸𝐶𝑎𝑐ℎ𝑒 ancestor, 𝐶𝐸1 and 𝐶𝐸2
respectively, with the same time and no intervening 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 .
Three possibilities are as follows:

CC2

CC1CR
rdist=1CCRCE2

CC2

CC1CR
rdist=1CCRCE1

CE2

CC2

CC1CR
rdist=1CCR

CE2

CE1

In the first case, recall that 𝑡𝑖𝑚𝑒 (𝐶𝑅) = 𝑡𝑖𝑚𝑒 (𝐶𝐶𝑅), which
implies that there are no 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 between them. Likewise,
there are none between 𝐶𝐸2 and 𝐶𝐶2, so neither fork has
an 𝐸𝐶𝑎𝑐ℎ𝑒 , which is impossible. In the second case, 𝐶𝐸2 ≻
𝐶𝐸1 by Lemma B.1 so 𝑡𝑖𝑚𝑒 (𝐶𝐸2) > 𝑡𝑖𝑚𝑒 (𝐶𝐸1). Then since
𝑡𝑖𝑚𝑒 (𝐶𝐸1) = 𝑡𝑖𝑚𝑒 (𝐶𝑅) = 𝑡𝑖𝑚𝑒 (𝐶𝐶𝑅), 𝐶𝐸2 ≻ 𝐶𝐶𝑅 as well.
But this contradicts Theorem B.6 since 𝐶𝐸2 is not a descen-
dant of 𝐶𝐶𝑅 . The final case also contradicts Theorem B.6
because 𝑡𝑖𝑚𝑒 (𝐶𝐸1) ≠ 𝑡𝑖𝑚𝑒 (𝐶𝐸2) by Lemma B.5, so one must
be greater than the other. This leaves no option but that 𝐶𝐶1
is a descendant of 𝐶𝐶2 or vice-versa. □

Lemma B.8 (CCache in RCache Fork). Let 𝐶𝑅1 and 𝐶𝑅2 be

𝑅𝐶𝑎𝑐ℎ𝑒𝑠 such that 𝑟𝑑𝑖𝑠𝑡 (𝐶𝑅1,𝐶𝑅2) = 0, and neither is a de-

scendant of the other, but both have a common ancestor 𝐶𝐴.

Then there exists a 𝐶𝐶𝑎𝑐ℎ𝑒 𝐶𝐶 that is a descendant of 𝐶𝐴 and

an ancestor of either 𝐶𝑅1 or 𝐶𝑅2.

[rado_inv_R_branch_case]

Proof. By R3 each 𝑅𝐶𝑎𝑐ℎ𝑒 must have a 𝐶𝐶𝑎𝑐ℎ𝑒 ancestor
with the same time, called𝐶𝐶1 and𝐶𝐶2 respectively. If either
𝐶𝐶1 or𝐶𝐶2 is a descendant of𝐶𝐴 then we are done. Otherwise
the options are for 𝐶𝐶1 and 𝐶𝐶2 to be the same cache, or for
one to be a descendant of the other.

CA
CR1

CR2
CC rdist=0

CA
CR1

CR2
CC2CC1 rdist=0 CA

CR1

CR2
CC1CC2 rdist=0

Recall that there cannot be any 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 between𝐶𝐶1 and
𝐶𝑅1 or between 𝐶𝐶2 and 𝐶𝑅2. This means that in every case
that are no 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 on either forking branch, which is im-
possible. □

Theorem B.9 (Safety). Let 𝑡𝑟 be a cache tree with any 𝑟𝑑𝑖𝑠𝑡 .

For any𝐶𝐶𝑎𝑐ℎ𝑒𝑠 𝐶𝐶1 and𝐶𝐶2 in 𝑡𝑟 , one must be a descendant

of the other.

[rado_inv_C_linear]

Proof.We proceed by induction on 𝑟𝑑𝑖𝑠𝑡 (𝑡𝑟). For 𝑟𝑑𝑖𝑠𝑡 ≤
1 we are done by Theorems B.4 and B.7. Suppose now that
all trees with 𝑟𝑑𝑖𝑠𝑡 = 𝑛 are safe, and 1 < 𝑟𝑑𝑖𝑠𝑡 (𝑡𝑟) = 𝑛 + 1
so 1 < 𝑟𝑑𝑖𝑠𝑡 (𝐶𝐶1,𝐶𝐶2) ≤ 𝑛 + 1. If 𝑟𝑑𝑖𝑠𝑡 (𝐶𝐶1,𝐶𝐶2) ≤ 𝑛 then
they are in some subtree 𝑡𝑟 ′ with 𝑟𝑑𝑖𝑠𝑡 (𝑡𝑟 ′) = 𝑛, so we are
done by the inductive hypothesis. Safety also holds if 𝐶𝐶1
and𝐶𝐶2 are on the same branch, and if not we will show that
all other shapes for 𝑡𝑟 are impossible.
There are two options for how the 𝑛 𝑅𝐶𝑎𝑐ℎ𝑒𝑠 could be

distributed. Either all 𝑛 + 1 𝑅𝐶𝑎𝑐ℎ𝑒𝑠 are on one branch (e.g.,
𝑟𝑑𝑖𝑠𝑡 (𝐶𝐴,𝐶𝐶1) = 𝑛+1 and 𝑟𝑑𝑖𝑠𝑡 (𝐶𝐴,𝐶𝐶2) = 0) or the𝑅𝐶𝑎𝑐ℎ𝑒𝑠
are distributed such that there is at least one on both branches.
In either case we can identify the first 𝑅𝐶𝑎𝑐ℎ𝑒 descendant
of 𝐶𝐴 on both branches.

CC2
CA

CC1CR
rdist=n+1 rdist=0

CC2
CA

CC1
rdist=n+1

CR
rdist=0

CC2
CA

CC1CR1
rdist=n+1

CR2
rdist=0

The first two cases are symmetric, so assume without
loss of generality that 𝐶𝑅 is on 𝐶𝐶1’s branch. Let 𝐶𝐶𝑅 be
the first 𝐶𝐶𝑎𝑐ℎ𝑒 descendant of 𝐶𝑅 . It is enough to show
that 𝑟𝑑𝑖𝑠𝑡 (𝐶𝐶𝑅,𝐶𝐶2) ≤ 𝑛 because then 𝐶𝐶𝑅 and 𝐶𝐶2 must
be on the same branch, which is a contradiction. We know
𝑟𝑑𝑖𝑠𝑡 (𝐶𝐶1,𝐶𝐶2) > 1, so 𝐶𝑅 cannot be the only 𝑅𝐶𝑎𝑐ℎ𝑒 on
𝐶𝐶1’s branch. We also know by R2 that this other 𝑅𝐶𝑎𝑐ℎ𝑒
cannot be between 𝐶𝑅 and 𝐶𝐶𝑅 . Therefore this 𝑅𝐶𝑎𝑐ℎ𝑒 does
not count towards 𝑟𝑑𝑖𝑠𝑡 (𝐶𝐶𝑅,𝐶𝐶2) and it is at most 𝑛.

For the final case, by Lemma B.8 there must be a 𝐶𝐶𝑎𝑐ℎ𝑒
between 𝐶𝐴 and either 𝐶𝑅1 or 𝐶𝑅2. Suppose it is between 𝐶𝐴

and𝐶𝑅2 and call it𝐶 ′
𝐶2. Now 𝑟𝑑𝑖𝑠𝑡 (𝐶𝑅1,𝐶

′
𝐶2) = 0 so this is the

same case as before. Therefore this situation is impossible as
well and the only possibility is that 𝐶𝐶1 and 𝐶𝐶2 are on the
same branch. □

C Refinement

This section contains proof sketches of the key steps of the
refinement between an asychronous network-based model
of Raft and Adore. Full proofs can be found in the source
code [10].

C.1 SRaft and Adore

The most important part of the R refinement relation is the
𝑙𝑜𝑔𝑀𝑎𝑡𝑐ℎ property (Fig. 17), which maps a replica’s local log
to its corresponding branch in the cache tree. The following
proof sketch demonstrates the intuition forwhy this property
is preserved by every operation.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Wolf Honoré, Ji-Yong Shin, Jieung Kim, and Zhong Shao

𝑡𝑜𝐿𝑜𝑔(𝑡𝑟, 𝑛𝑖𝑑) ≜
{𝐶 ∈ 𝑎𝑐𝑡𝑖𝑣𝑒𝐵𝑟𝑎𝑛𝑐ℎ(𝑡𝑟, 𝑛𝑖𝑑) | 𝐶 = 𝑀𝐶𝑎𝑐ℎ𝑒 (_) ∨𝐶 = 𝑅𝐶𝑎𝑐ℎ𝑒 (_)}

𝑙𝑜𝑔𝑀𝑎𝑡𝑐ℎ(𝑠𝑡𝑛𝑒𝑡 , 𝑠𝑡𝐴𝑑𝑜𝑟𝑒) ≜
∀𝑛𝑖𝑑. 𝑡𝑜𝐿𝑜𝑔(𝑡𝑟𝑒𝑒 (𝑠𝑡𝐴𝑑𝑜𝑟𝑒), 𝑛𝑖𝑑) = 𝑙𝑜𝑔(𝑛𝑜𝑑𝑒𝑠 (𝑠𝑡𝑛𝑒𝑡) [𝑛𝑖𝑑])

Figure 17. The log-branch correspondence of R.

Rnet (𝑠𝑡, 𝑠𝑡 ′′) ≜ ∀𝑛𝑖𝑑.
𝑙𝑜𝑔(𝑛𝑜𝑑𝑒𝑠 (𝑠𝑡) [𝑛𝑖𝑑]) = 𝑙𝑜𝑔(𝑛𝑜𝑑𝑒𝑠 (𝑠𝑡 ′) [𝑛𝑖𝑑]) ∧
𝑡𝑖𝑚𝑒 (𝑛𝑜𝑑𝑒𝑠 (𝑠𝑡) [𝑛𝑖𝑑]) = 𝑡𝑖𝑚𝑒 (𝑛𝑜𝑑𝑒𝑠 (𝑠𝑡 ′) [𝑛𝑖𝑑])

Figure 18. The network-equivalence relation, Rnet.

Lemma C.1 (Adore Refinement). Suppose R holds for some

SRaft state and a cache tree, 𝑡𝑟 , and that replica 𝑆 ’s local log is

𝜆. For any valid SRaft step where 𝑆’s new log is 𝜆′ there is a
valid Adore step to some 𝑡𝑟 ′ such that 𝑡𝑜𝐿𝑜𝑔(𝑡𝑟 ′, 𝑆) = 𝜆′.

[R_step (RefineNetAtomic.v)]

Proof. Consider each possible SRaft operation. Neither elect
nor commit change 𝜆, so Adore can take a stutter step and
the result holds trivially. Both invoke and reconfig append
a newmethod to 𝜆, and the corresponding Adore operations
append an equivalent cache to the end of 𝑆’s active branch,
preserving the relation. If deliver’s message is an election
request or acknowledgement then 𝜆 does not change and
likewise, pull only adds an 𝐸𝐶𝑎𝑐ℎ𝑒 to the cache tree, which
𝑡𝑜𝐿𝑜𝑔 ignores. The only other operation to change 𝜆 is a
delivery of a commit request, in which case 𝑆 takes the log
𝜆′ sent by some leader 𝐿. push adds a 𝐶𝐶𝑎𝑐ℎ𝑒 to 𝐿’s branch
whose supporters include 𝑆 , which also makes it 𝑆’s active
branch. Therefore, because 𝑡𝑜𝐿𝑜𝑔 also ignores 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 , we
have 𝑡𝑜𝐿𝑜𝑔(𝑡𝑟 ′, 𝑆) = 𝑡𝑜𝐿𝑜𝑔(𝑡𝑟 ′, 𝐿) = 𝜆′. □

C.2 Raft and SRaft

Recall that SRaft is essentially the same as Raft, aside from
some simplifying assumptions about how and when mes-
sages are delivered. To prove that Raft refines SRaft, we must
show that, despite these assumptions, SRaft behaves equiv-
alently to Raft, up to Rnet (Fig. 18), which states that the
relevant parts of every replica’s local state is the same. The
following proof sketches explain the intuition for why each
assumption is safe.

Definition C.2 (Valid Message). Upon receiving a message,
every replica checks that it satisfies certain properties, and
ignores it if it does not. Examples include a request with an
insufficiently large timestamp, or an acknowledgement for
a request that has already ended. A message is valid if it
satisfies the properties and is therefore not ignored.
[deliver_can_recv (NetworkPre.v)]

Lemma C.3 (SRaft Valid Messages). For any sequence of

network events 𝑒𝑣𝑠 that results in a state 𝑠𝑡 , there exists an

sequence of events 𝑒𝑣𝑠 ′ that results in an equivalent state 𝑠𝑡 ′

(Rnet (𝑠𝑡, 𝑠𝑡 ′)), such that 𝑒𝑣𝑠 ′ contains only valid messages.

[E_inv (RefineNet.v)]

Proof. It is trivial to define 𝑒𝑣𝑠 ′ by simply filtering out in-
valid messages from 𝑒𝑣𝑠 . Since invalid messages are ignored
anyway, this has no effect on the replicas’ local states. □

Definition C.4 (Ordered Messages). Messages 𝑚 and 𝑚′

are ordered if
(𝑡𝑖𝑚𝑒 (𝑚), 𝑣𝑟𝑠𝑛(𝑚)) ≤𝑙𝑒𝑥 (𝑡𝑖𝑚𝑒 (𝑚′), 𝑣𝑟𝑠𝑛(𝑚′))

where ≤𝑙𝑒𝑥 is the usual lexicographic order.

Definition C.5 (Locally Ordered Messages). A sequence of
network events 𝑒𝑣𝑠 is locally ordered if for every𝑚 and𝑚′

such that 𝑒𝑣𝑠 = . . . • 𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚) • . . . • 𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚′) • . . . and
𝑡𝑜 (𝑚) = 𝑡𝑜 (𝑚′),𝑚 and𝑚′ are ordered.

Definition C.6 (Globally Ordered Message). A sequence of
network events 𝑒𝑣𝑠 is globally ordered if for every𝑚 and𝑚′

such that 𝑒𝑣𝑠 = . . . •𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚) • . . . •𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚′) • . . .,𝑚 and
𝑚′ are ordered.
[deliver_msg_ordered (NetworkOrdered.v)]

Lemma C.7 (SRaft Globally Ordered). For any sequence of
network events 𝑒𝑣𝑠 that contains only valid messages that

results in a state 𝑠𝑡 , there exists an sequence of events 𝑒𝑣𝑠 ′ that
results in an equivalent state 𝑠𝑡 ′ (Rnet (𝑠𝑡, 𝑠𝑡 ′)), such that 𝑒𝑣𝑠 ′

is globally ordered.

[E_inv (RefineNetNoDup.v)]

Proof. We know 𝑒𝑣𝑠 is already locally ordered because non-
locally ordered messages would be ignored, and there are no
invalid messages by assumption. Therefore, all that remains
is to show that sorting the globally unordered messages in
𝑒𝑣𝑠 does not affect the replicas’ local states. Observe that
receiving a message is a local operation in that it only affects
the state of the recipient. Therefore, deliveries to different
recipients are independent and can freely commute. Since
we have established that messages are locally ordered, the
only out-of-order messages must have different recipients,
and can be sorted without affecting the final global state. □

Definition C.8 (Atomic Deliveries). An operation in a se-
quence of network events 𝑒𝑣𝑠 is delivered atomically if every
corresponding delivery (both of the request and the acknowl-
edgements) is adjacent in 𝑒𝑣𝑠 .

Lemma C.9 (SRaft Atomic). For any sequence of network

events 𝑒𝑣𝑠 that contains only globally ordered, valid messages

that results in a state 𝑠𝑡 , there exists an sequence of events 𝑒𝑣𝑠 ′

that results in an equivalent state 𝑠𝑡 ′ (Rnet (𝑠𝑡, 𝑠𝑡 ′)), such that

𝑒𝑣𝑠 ′ has atomic deliveries.

[E_inv (RefineNetOrdered.v)]

[E_inv (RefineNetAtomicReq.v)]

Adore: Atomic Distributed Objects with Certified Reconfiguration PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Proof. To construct 𝑒𝑣𝑠 ′, for every operation, we must find
all unadjacent corresponding deliveries and “push” them
together in such a way that does not affect the resulting
state. Because 𝑒𝑣𝑠 is globally ordered, and no leader uses
the same timestamp-version number pair for its operations,
any messages that come between two related deliveries must
originate from a different leader. This also implies that the
deliveries must have different recipients, because a replica
would not accept two requests from different leaders with
the same timestamp. Therefore, these delivery events can
commute. By repeating this process, all delivery events can
be rearranged so that corresponding ones are adjacent, and
one can treat them as if they occurred atomically. □

Lemma C.10 (Raft Refines SRaft). For any sequence of net-

work events 𝑒𝑣𝑠 that results in a state 𝑠𝑡 , there exists an se-

quence of events 𝑒𝑣𝑠 ′ that results in an equivalent state 𝑠𝑡 ′

(Rnet (𝑠𝑡, 𝑠𝑡 ′)), such that 𝑒𝑣𝑠 ′ contains only valid, globally or-

dered, and atomic messages.

[E_inv (RefineLink.v)]

Proof. Trivial combination of Lemmas C.3, C.7 and C.9. □

Theorem C.11 (Raft Refines Adore). Suppose R holds for

some Raft state and a cache tree, 𝑡𝑟 , and that replica 𝑆 ’s local

log is 𝜆. For any valid Raft step where 𝑆 ’s new log is 𝜆′ there is
a valid Adore step to some 𝑡𝑟 ′ such that 𝑡𝑜𝐿𝑜𝑔(𝑡𝑟 ′, 𝑆) = 𝜆′.

[R_rado_network (RefineLink.v)]

Proof. Trivial combination of Lemmas C.1 and C.10. □

D ADO and Adore Formal Semantics

For reasons of clarity and space, Section 3 presented the se-
mantics of the Adore/CADO models piecemeal and omitted
certain trivial cases. For completeness this section presents
the full semantics of these models as well as the original
ADO.

D.1 ADO

State. The ADO state has many elements in commonwith
Adore. The distributed system state (ΣADO) is modeled as a
quadruple of the committed methods (𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝐿𝑜𝑔), the cache
tree of uncommitted methods (𝐶𝑎𝑐ℎ𝑒𝑇𝑟𝑒𝑒), a 𝐶𝐼𝐷𝑀𝑎𝑝 that
remembers every client’s active cache, and an 𝑂𝑤𝑛𝑒𝑟𝑀𝑎𝑝

that remembers the unique leader at every timestamp. The
tree is defined as a set of 𝐶𝑎𝑐ℎ𝑒𝑠 , which use a 𝐶𝐼𝐷 data
structure to induce the tree structure. A CID contains meta-
data about when a 𝐶𝑎𝑐ℎ𝑒 was added and by whom as well
as a pointer to the parent. 𝐸𝑣ADO defines all of the possi-
ble outcomes for pull, method invocation, and push. Every
operation’s behavior is divided into a generation rule that
outputs an 𝐸𝑣ADO, and an interpretation rule that consumes
an 𝐸𝑣ADO with 𝑖𝑛𝑡𝑒𝑟𝑝ADO to construct ΣADO.
Log Generation. The pull oracle (Opull) returns either

Ok if the election succeeds, Preempt if the leader received

too few votes, but still took away another leader’s supporters,
or Fail if the election had no effect. The time chosen by the
oracle must be larger than that of the parent cache and the
𝑛𝑜𝑂𝑤𝑛𝑒𝑟𝐴𝑡 precondition guarantees that another leader has
not already succeeded with the same timestamp.

Method invocation simply requires the caller’s active cache
to still be present in the cache tree. This both prevents meth-
ods from being called without first calling pull and stops
replicas from continuing to use stale states after a different
one was committed.

If the push oracle (Opush) decides that a commit succeeds
it returns the CID of an uncommitted method that belongs
to the caller and has the caller’s current timestamp. Note
that 𝑛𝑖𝑑 must be the 𝑚𝑎𝑥𝑂𝑤𝑛𝑒𝑟 , which prevents leaders
from being able to commit after having been preempted by
a leader with a larger timestamp.

Log Interpretation. The failure events (𝑃𝑢𝑙𝑙−, 𝐼𝑛𝑣𝑜𝑘𝑒−,
and 𝑃𝑢𝑠ℎ−) are all no-ops because they represent cases where
network failures prevented enough messages from being
delivered. A successful pull sets the caller’s active cache
and updates the 𝑂𝑤𝑛𝑒𝑟𝑀𝑎𝑝 with the new leader’s time. It
also blocks any leaders from being elected with an earlier
time by setting them to NoOwn. In the event of a partially
successful pull, only the times are updated.

Method invocation simply adds a new cache to the cache
tree and updates the caller’s active cache. A successful push
partitions the tree into the committed caches (i.e., the an-
cestors of 𝑐𝑐𝑖𝑑) and the stale caches (i.e., all of the sibling
branches). The committed branch is appended to the persis-
tent log and the stale branches are discarded. Children of
𝑐𝑐𝑖𝑑 remain in the tree because they could still be committed
by a later push.

D.2 Adore

State. The Adore state is similar to the ADO model. The
main differences are the caches store more information and
there is no persistent log. Instead both committed and uncom-
mitted caches are packed into the 𝐶𝑎𝑐ℎ𝑒𝑇𝑟𝑒𝑒 . The tree also
does away with the CID data type in favor of a simple unique
numeric identifier for each cache. Whereas the ADO caches
only stored methods,Adore has four types of𝐶𝑎𝑐ℎ𝑒 : 𝐸𝐶𝑎𝑐ℎ𝑒
(election),𝑀𝐶𝑎𝑐ℎ𝑒 (method), 𝑅𝐶𝑎𝑐ℎ𝑒 (reconfiguration) and
𝐶𝐶𝑎𝑐ℎ𝑒 (commit). This additional information means there
is no need for 𝐶𝐼𝐷𝑀𝑎𝑝 or 𝑂𝑤𝑛𝑒𝑟𝑀𝑎𝑝 because they can be
computed directly from the tree. The 𝑇𝑖𝑚𝑒𝑀𝑎𝑝 remembers
each replica’s largest observed timestamp.

Semantics. Like the ADO model, pull and push use ora-
cles (Opull andOpush) to nondeterministically determine their
outcomes and all operations can fail at any time. On success,
Opull chooses a set of supporters from the configuration and
a time that is larger than they have observed. There is no
need for a separate 𝑃𝑢𝑙𝑙∗ outcome because 𝑄 may or may

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Wolf Honoré, Ji-Yong Shin, Jieung Kim, and Zhong Shao

CID ≜ ⟨N𝑛𝑖𝑑 ∗ N𝑡𝑖𝑚𝑒 ∗ CID⟩ | Root
𝐶𝑎𝑐ℎ𝑒 ≜ CID ∗𝑀𝑒𝑡ℎ𝑜𝑑

𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝐿𝑜𝑔 ≜ 𝐿𝑖𝑠𝑡 (𝐶𝑎𝑐ℎ𝑒)
𝐶𝑎𝑐ℎ𝑒𝑇𝑟𝑒𝑒 ≜ 𝑆𝑒𝑡 (𝐶𝑎𝑐ℎ𝑒)

CIDMap ≜ N𝑛𝑖𝑑 ⇀ CID

𝑂𝑤𝑛𝑒𝑟𝑀𝑎𝑝 ≜ N𝑡𝑖𝑚𝑒 ⇀ (N𝑛𝑖𝑑 | NoOwn)
ΣADO ≜ 𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝐿𝑜𝑔 ∗𝐶𝑎𝑐ℎ𝑒𝑇𝑟𝑒𝑒 ∗ CIDMap ∗𝑂𝑤𝑛𝑒𝑟𝑀𝑎𝑝

𝐸𝑣ADO ≜ 𝑃𝑢𝑙𝑙+ (N𝑛𝑖𝑑 ∗ N𝑡𝑖𝑚𝑒 ∗ CID)
| 𝑃𝑢𝑙𝑙∗ (N𝑛𝑖𝑑 ∗ N𝑡𝑖𝑚𝑒)
| 𝑃𝑢𝑙𝑙− (N𝑛𝑖𝑑)
| 𝐼𝑛𝑣𝑜𝑘𝑒+ (N𝑛𝑖𝑑 ∗𝑀𝑒𝑡ℎ𝑜𝑑)
| 𝐼𝑛𝑣𝑜𝑘𝑒− (N𝑛𝑖𝑑)
| 𝑃𝑢𝑠ℎ+ (N𝑛𝑖𝑑 ∗ CID)
| 𝑃𝑢𝑠ℎ− (N𝑛𝑖𝑑)

𝑖𝑛𝑡𝑒𝑟𝑝ADO : 𝐸𝑣ADO → ΣADO → ΣADO

𝑖𝑛𝑡𝑒𝑟𝑝𝐴𝑙𝑙ADO (𝑒𝑣𝑠) ≜ 𝑓 𝑜𝑙𝑑 (𝑒𝑣𝑠, 𝑖𝑛𝑡𝑒𝑟𝑝ADO, 𝑖𝑛𝑖𝑡𝑆𝑡𝑎𝑡𝑒)
𝑂𝑝 ≜ pull : N𝑛𝑖𝑑 → 𝐿𝑖𝑠𝑡 (𝐸𝑣ADO) → 𝐿𝑖𝑠𝑡 (𝐸𝑣ADO)

| invoke : N𝑛𝑖𝑑 → 𝑀𝑒𝑡ℎ𝑜𝑑 → 𝐿𝑖𝑠𝑡 (𝐸𝑣ADO) → 𝐿𝑖𝑠𝑡 (𝐸𝑣ADO)
| push : N𝑛𝑖𝑑 → 𝐿𝑖𝑠𝑡 (𝐸𝑣ADO) → 𝐿𝑖𝑠𝑡 (𝐸𝑣ADO)

Figure 19. ADO state, events, and operations.

Opull : 𝐿𝑖𝑠𝑡 (𝐸𝑣ADO) → N𝑛𝑖𝑑 → (Ok(N𝑡𝑖𝑚𝑒 ∗ CID) | Preempt (N𝑡𝑖𝑚𝑒) | Fail)
Opush : 𝐿𝑖𝑠𝑡 (𝐸𝑣ADO) → N𝑛𝑖𝑑 → (Ok(CID) | Fail)

ValidPullOracle
𝑡𝑖𝑚𝑒𝑂𝑓 (𝑐𝑖𝑑) < 𝑡𝑖𝑚𝑒 𝑛𝑜𝑂𝑤𝑛𝑒𝑟𝐴𝑡 (𝑒𝑣𝑠, 𝑡𝑖𝑚𝑒) (𝑐𝑖𝑑 ∈ 𝑐𝑎𝑐ℎ𝑒𝑠 (𝑒𝑣𝑠) ∨ 𝑐𝑖𝑑 = 𝑟𝑜𝑜𝑡 (𝑒𝑣𝑠))

Opull (𝑒𝑣𝑠, 𝑛𝑖𝑑) = Ok(𝑡𝑖𝑚𝑒, 𝑐𝑖𝑑)

ValidPullOraclePartial
𝑡𝑖𝑚𝑒 ∉ 𝑑𝑜𝑚(𝑜𝑤𝑛𝑒𝑟𝑠 (𝑒𝑣𝑠))

Opull (𝑒𝑣𝑠, 𝑛𝑖𝑑) = Preempt (𝑡𝑖𝑚𝑒)

ValidPushOracle
𝑛𝑖𝑑𝑂𝑓 (𝑐𝑐𝑖𝑑) =𝑚𝑎𝑥𝑂𝑤𝑛𝑒𝑟 (𝑒𝑣𝑠) = 𝑛𝑖𝑑 𝑡𝑖𝑚𝑒𝑂𝑓 (𝑐𝑐𝑖𝑑) = 𝑡𝑖𝑚𝑒𝑂𝑓 (𝑐𝑖𝑑𝑠 (𝑒𝑣𝑠) [𝑛𝑖𝑑]) 𝑐𝑐𝑖𝑑 ∈ 𝑐𝑎𝑐ℎ𝑒𝑠 (𝑒𝑣𝑠)

Opush (𝑒𝑣𝑠, 𝑛𝑖𝑑) = Ok(𝑐𝑖𝑑)

Figure 20. ADO valid oracle rules.

not be a quorum. As in the ADO model, failure events are
no-ops. A successful pull updates the timestamps of the
supporters and, if the supporters constitute a quorum, adds
a new 𝐸𝐶𝑎𝑐ℎ𝑒 . The parent of the 𝐸𝐶𝑎𝑐ℎ𝑒 is the largest cache
supported by any of the supporters.

If a method invocation succeeds then the caller’s current
timestampmust equal the time of𝐶𝐴, the caller’s active cache.
This prevents a leader from continuing to call methods after
learning of a newer leader. Method invocation simply adds

an𝑀𝐶𝑎𝑐ℎ𝑒 as a child of the caller’s active cache. The version
number is increased by 1 to help make ≻ a total order.
reconfig behaves like a method invocation, except that

it replaces the current configuration and must satisfy R1+,
R2, and R3. These conditions restrict how much the configu-
rations can diverge before one is committed.
Finally, similarly to pull, a successful push updates the

supporters’ times and adds a 𝐶𝐶𝑎𝑐ℎ𝑒 if there is a quorum.

Adore: Atomic Distributed Objects with Certified Reconfiguration PLDI ’22, June 13–17, 2022, San Diego, CA, USA

PullSuccess
Opull (𝑒𝑣𝑠, 𝑛𝑖𝑑) = Ok(𝑡𝑖𝑚𝑒, 𝑐𝑖𝑑)

O ⊢ pull(𝑛𝑖𝑑) : 𝑒𝑣𝑠 ⇝ 𝑒𝑣𝑠 • 𝑃𝑢𝑙𝑙+ (𝑛𝑖𝑑, 𝑡𝑖𝑚𝑒, 𝑐𝑖𝑑)

PullPreempt
Opull (𝑒𝑣𝑠, 𝑛𝑖𝑑) = Preempt (𝑡𝑖𝑚𝑒)

O ⊢ pull(𝑛𝑖𝑑) : 𝑒𝑣𝑠 ⇝ 𝑒𝑣𝑠 • 𝑃𝑢𝑙𝑙∗ (𝑛𝑖𝑑, 𝑡𝑖𝑚𝑒)

PullFailure
Opull (𝑒𝑣𝑠, 𝑛𝑖𝑑) = Fail

O ⊢ pull(𝑛𝑖𝑑) : 𝑒𝑣𝑠 ⇝ 𝑒𝑣𝑠 • 𝑃𝑢𝑙𝑙− (𝑛𝑖𝑑)

MethodInvocation
𝑐𝑖𝑑𝑠 (𝑒𝑣𝑠) [𝑛𝑖𝑑] ∈ 𝑐𝑎𝑐ℎ𝑒𝑠 (𝑒𝑣𝑠)

O ⊢ invoke(𝑛𝑖𝑑,𝑀) : 𝑒𝑣𝑠 ⇝ 𝑒𝑣𝑠 • 𝐼𝑛𝑣𝑜𝑘𝑒+ (𝑛𝑖𝑑,𝑀)

MethodFailure
𝑐𝑖𝑑𝑠 (𝑒𝑣𝑠) [𝑛𝑖𝑑] ∉ 𝑐𝑎𝑐ℎ𝑒𝑠 (𝑒𝑣𝑠)

O ⊢ invoke(𝑛𝑖𝑑,𝑀) : 𝑒𝑣𝑠 ⇝ 𝑒𝑣𝑠 • 𝐼𝑛𝑣𝑜𝑘𝑒− (𝑛𝑖𝑑)

PushSuccess
Opush (𝑒𝑣𝑠, 𝑛𝑖𝑑) = Ok(𝑐𝑐𝑖𝑑)

O ⊢ push(𝑛𝑖𝑑) : 𝑒𝑣𝑠 ⇝ 𝑒𝑣𝑠 • 𝑃𝑢𝑠ℎ+ (𝑛𝑖𝑑, 𝑐𝑐𝑖𝑑)

PushFailure
Opush (𝑒𝑣𝑠, 𝑛𝑖𝑑) = Fail

O ⊢ push(𝑛𝑖𝑑) : 𝑒𝑣𝑠 ⇝ 𝑒𝑣𝑠 • 𝑃𝑢𝑠ℎ− (𝑛𝑖𝑑)

Figure 21. ADO event generation rules.

InterpPullSuccess
𝑐𝑖𝑑𝑠 ′ = 𝑐𝑖𝑑𝑠 [𝑛𝑖𝑑 ↦→ ⟨𝑛𝑖𝑑, 𝑡𝑖𝑚𝑒, 𝑐𝑖𝑑⟩] 𝑜𝑤𝑛𝑠 ′ = 𝑣𝑜𝑡𝑒𝑁𝑜𝑂𝑤𝑛(𝑜𝑤𝑛𝑠 [𝑡𝑖𝑚𝑒 ↦→ 𝑛𝑖𝑑], 𝑡𝑖𝑚𝑒 − 1)

𝑖𝑛𝑡𝑒𝑟𝑝ADO (𝑃𝑢𝑙𝑙+ (𝑛𝑖𝑑, 𝑡𝑖𝑚𝑒, 𝑐𝑖𝑑), (𝑝, 𝑐𝑠, 𝑐𝑖𝑑𝑠, 𝑜𝑤𝑛𝑠)) = (𝑝, 𝑐𝑠, 𝑐𝑖𝑑𝑠 ′, 𝑜𝑤𝑛𝑠 ′)

InterpPullPreempt
𝑜𝑤𝑛𝑠 ′ = 𝑣𝑜𝑡𝑒𝑁𝑜𝑂𝑤𝑛(𝑜𝑤𝑛𝑠, 𝑡𝑖𝑚𝑒)

𝑖𝑛𝑡𝑒𝑟𝑝ADO (𝑃𝑢𝑙𝑙∗ (𝑛𝑖𝑑, 𝑡𝑖𝑚𝑒), (𝑝, 𝑐𝑠, 𝑐𝑖𝑑𝑠, 𝑜𝑤𝑛𝑠)) = (𝑝, 𝑐𝑠, 𝑐𝑖𝑑𝑠, 𝑜𝑤𝑛𝑠 ′)

InterpPullFailure

𝑖𝑛𝑡𝑒𝑟𝑝ADO (𝑃𝑢𝑙𝑙− (𝑛𝑖𝑑), (𝑝, 𝑐𝑠, 𝑐𝑖𝑑𝑠, 𝑜𝑤𝑛𝑠)) = (𝑝, 𝑐𝑠, 𝑐𝑖𝑑𝑠, 𝑜𝑤𝑛𝑠)

InterpMethodInvocation
𝑐𝑠 ′ = 𝑐𝑠 ∪ {(𝑐𝑖𝑑𝑠 [𝑛𝑖𝑑], 𝑀)} 𝑐𝑖𝑑𝑠 ′ = 𝑐𝑖𝑑𝑠 [𝑛𝑖𝑑 ↦→ nextCID(𝑐𝑖𝑑)]
𝑖𝑛𝑡𝑒𝑟𝑝ADO (𝐼𝑛𝑣𝑜𝑘𝑒+ (𝑛𝑖𝑑,𝑀), (𝑝, 𝑐𝑠, 𝑐𝑖𝑑𝑠, 𝑜𝑤𝑛𝑠)) = (𝑝, 𝑐𝑠 ′, 𝑐𝑖𝑑𝑠 ′, 𝑜𝑤𝑛𝑠)

InterpMethodFailure

𝑖𝑛𝑡𝑒𝑟𝑝ADO (𝐼𝑛𝑣𝑜𝑘𝑒− (𝑛𝑖𝑑), (𝑝, 𝑐𝑠, 𝑐𝑖𝑑𝑠, 𝑜𝑤𝑛𝑠)) = (𝑝, 𝑐𝑠, 𝑐𝑖𝑑𝑠, 𝑜𝑤𝑛𝑠)

InterpPushSuccess
(®𝑐𝑜𝑘 , 𝑐𝑠 ′) = 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑐𝑠, 𝑐𝑐𝑖𝑑)

𝑖𝑛𝑡𝑒𝑟𝑝ADO (𝑃𝑢𝑠ℎ+ (𝑛𝑖𝑑, 𝑐𝑐𝑖𝑑), (𝑝, 𝑐𝑠, 𝑐𝑖𝑑𝑠, 𝑜𝑤𝑛𝑠)) = (𝑝 • ®𝑐𝑜𝑘 , 𝑐𝑠 ′, 𝑐𝑖𝑑, 𝑜𝑤𝑛𝑠)

InterpPushFailure

𝑖𝑛𝑡𝑒𝑟𝑝ADO (𝑃𝑢𝑠ℎ− (𝑛𝑖𝑑), (𝑝, 𝑐𝑠, 𝑐𝑖𝑑𝑠, 𝑜𝑤𝑛𝑠)) = (𝑝, 𝑐𝑠, 𝑐𝑖𝑑𝑠, 𝑜𝑤𝑛𝑠)

Figure 22. ADO event interpretation rules.

However, instead of creating a new leaf node, the 𝐶𝐶𝑎𝑐ℎ𝑒 is
inserted between the selected𝑀𝐶𝑎𝑐ℎ𝑒 and its children. The
𝐶𝐶𝑎𝑐ℎ𝑒 copies its parent’s timestamp and version number,
but ≻ is defined such that it is still greater than its parent. A
successful push chooses a set of supporters and an arbitrary

uncommitted𝑀𝐶𝑎𝑐ℎ𝑒 or 𝑅𝐶𝑎𝑐ℎ𝑒 belonging to the caller. The
cache must also have a timestamp at least as large as any
observed by the supporters. This prevents replicas from com-
mitting commands that come from anyone other than the
most recent leader.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Wolf Honoré, Ji-Yong Shin, Jieung Kim, and Zhong Shao

𝑛𝑖𝑑𝑂𝑓 (𝑐𝑖𝑑) ≜ let ⟨𝑛𝑖𝑑, _, _⟩ = 𝑐𝑖𝑑 in 𝑛𝑖𝑑

𝑡𝑖𝑚𝑒𝑂𝑓 (𝑐𝑖𝑑) ≜ let ⟨_, 𝑡𝑖𝑚𝑒, _⟩ = 𝑐𝑖𝑑 in 𝑡𝑖𝑚𝑒

𝑟𝑜𝑜𝑡 (𝑒𝑣𝑠) ≜ let (𝑝, _, _, _) = 𝑖𝑛𝑡𝑒𝑟𝑝𝐴𝑙𝑙ADO (𝑒𝑣𝑠) in if 𝑝 ≠ [] then 𝑙𝑎𝑠𝑡 (𝑝) else Root
𝑐𝑎𝑐ℎ𝑒𝑠 (𝑒𝑣𝑠) ≜ let (_, 𝑐𝑠, _, _) = 𝑖𝑛𝑡𝑒𝑟𝑝𝐴𝑙𝑙ADO (𝑒𝑣𝑠) in 𝑐𝑠

𝑐𝑖𝑑𝑠 (𝑒𝑣𝑠) ≜ let (_, _, 𝑐𝑖𝑑𝑠, _) = 𝑖𝑛𝑡𝑒𝑟𝑝𝐴𝑙𝑙ADO (𝑒𝑣𝑠) in 𝑐𝑖𝑑𝑠

𝑜𝑤𝑛𝑒𝑟𝑠 (𝑒𝑣𝑠) ≜ let (_, _, _, 𝑜𝑤𝑛𝑠) = 𝑖𝑛𝑡𝑒𝑟𝑝𝐴𝑙𝑙ADO (𝑒𝑣𝑠) in 𝑜𝑤𝑛𝑠

𝑛𝑜𝑂𝑤𝑛𝑒𝑟𝐴𝑡 (𝑒𝑣𝑠, 𝑡𝑖𝑚𝑒) ≜ 𝑡𝑖𝑚𝑒 ∉ 𝑑𝑜𝑚(𝑜𝑤𝑛𝑒𝑟𝑠 (𝑒𝑣𝑠)) ∨ 𝑜𝑤𝑛𝑒𝑟𝑠 (𝑒𝑣𝑠) [𝑡𝑖𝑚𝑒] = NoOwn

𝑚𝑎𝑥𝑂𝑤𝑛𝑒𝑟 (𝑒𝑣𝑠) ≜ let 𝑜𝑤𝑛𝑠 = 𝑜𝑤𝑛𝑒𝑟𝑠 (𝑒𝑣𝑠) in 𝑜𝑤𝑛𝑠 [max(𝑑𝑜𝑚(𝑜𝑤𝑛𝑠))]
𝑐𝑖𝑑1 < 𝑐𝑖𝑑2 ≜ 𝑐𝑖𝑑2 ≠ Root ∧ let ⟨_, _, 𝑝𝑎𝑟𝑒𝑛𝑡⟩ = 𝑐𝑖𝑑2 in 𝑐𝑖𝑑1 = 𝑝𝑎𝑟𝑒𝑛𝑡 ∨ 𝑐𝑖𝑑1 < 𝑝𝑎𝑟𝑒𝑛𝑡

𝑐𝑖𝑑1 ≤ 𝑐𝑖𝑑2 ≜ 𝑐𝑖𝑑1 < 𝑐𝑖𝑑2 ∨ 𝑐𝑖𝑑1 = 𝑐𝑖𝑑2

𝑣𝑜𝑡𝑒𝑁𝑜𝑂𝑤𝑛(𝑜𝑤𝑛𝑠, 𝑡𝑖𝑚𝑒) ≜ 𝑜𝑤𝑛𝑠 [𝑡 ↦→ NoOwn | ∀𝑡 ≤ 𝑡𝑖𝑚𝑒. 𝑡 ∉ 𝑑𝑜𝑚(𝑜𝑤𝑛𝑠)]
nextCID(𝑐𝑖𝑑) ≜ let ⟨𝑛𝑖𝑑, 𝑡𝑖𝑚𝑒, _⟩ = 𝑐𝑖𝑑 in ⟨𝑛𝑖𝑑, 𝑡𝑖𝑚𝑒, 𝑐𝑖𝑑⟩

𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑐𝑠, 𝑐𝑖𝑑) ≜ let ®𝑐𝑜𝑘 = 𝑠𝑜𝑟𝑡 ({(𝑐,𝑀) ∈ 𝑐𝑠 | 𝑐 ≤ 𝑐𝑖𝑑}) in
let 𝑐𝑠 ′ = {(𝑐,𝑀) ∈ 𝑐𝑠 | 𝑐𝑖𝑑 < 𝑐} in (®𝑐𝑜𝑘 , 𝑐𝑠 ′)

Figure 23. ADO auxiliary functions.

𝐶𝑎𝑐ℎ𝑒 ≜ 𝐸𝐶𝑎𝑐ℎ𝑒 (N𝑛𝑖𝑑 ∗ N𝑡𝑖𝑚𝑒 ∗ N𝑣𝑟𝑠𝑛 ∗ 𝑆𝑒𝑡 (N𝑛𝑖𝑑) ∗𝐶𝑜𝑛𝑓 𝑖𝑔)
| 𝑀𝐶𝑎𝑐ℎ𝑒 (N𝑛𝑖𝑑 ∗ N𝑡𝑖𝑚𝑒 ∗ N𝑣𝑟𝑠𝑛 ∗𝑀𝑒𝑡ℎ𝑜𝑑 ∗𝐶𝑜𝑛𝑓 𝑖𝑔)
| 𝐶𝐶𝑎𝑐ℎ𝑒 (N𝑛𝑖𝑑 ∗ N𝑡𝑖𝑚𝑒 ∗ N𝑣𝑟𝑠𝑛 ∗ 𝑆𝑒𝑡 (N𝑛𝑖𝑑) ∗𝐶𝑜𝑛𝑓 𝑖𝑔)
| 𝑅𝐶𝑎𝑐ℎ𝑒 (N𝑛𝑖𝑑 ∗ N𝑡𝑖𝑚𝑒 ∗ N𝑣𝑟𝑠𝑛 ∗𝐶𝑜𝑛𝑓 𝑖𝑔)

𝐶𝑎𝑐ℎ𝑒𝑇𝑟𝑒𝑒 ≜ N𝑐𝑖𝑑 ⇀ N𝑐𝑖𝑑 ∗𝐶𝑎𝑐ℎ𝑒
𝑇𝑖𝑚𝑒𝑀𝑎𝑝 ≜ N𝑛𝑖𝑑 ⇀ N𝑡𝑖𝑚𝑒

ΣAdore ≜ 𝐶𝑎𝑐ℎ𝑒𝑇𝑟𝑒𝑒 ∗𝑇𝑖𝑚𝑒𝑀𝑎𝑝

𝑂𝑝 ≜ pull : N𝑛𝑖𝑑 → ΣAdore → ΣAdore

| invoke : N𝑛𝑖𝑑 → 𝑀𝑒𝑡ℎ𝑜𝑑 → ΣAdore → ΣAdore

| reconfig : N𝑛𝑖𝑑 → 𝐶𝑜𝑛𝑓 𝑖𝑔 → ΣAdore → ΣAdore

| push : N𝑛𝑖𝑑 → ΣAdore → ΣAdore

Figure 24. Adore state.

Adore: Atomic Distributed Objects with Certified Reconfiguration PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Parameters

𝐶𝑜𝑛𝑓 𝑖𝑔 : 𝑇𝑦𝑝𝑒
𝑚𝑏𝑟𝑠 : 𝐶𝑜𝑛𝑓 𝑖𝑔 → 𝑆𝑒𝑡 (N𝑛𝑖𝑑)

𝑖𝑠𝑄𝑢𝑜𝑟𝑢𝑚 : 𝑆𝑒𝑡 (N𝑛𝑖𝑑) → 𝐶𝑜𝑛𝑓 𝑖𝑔 → B
R1+ : 𝐶𝑜𝑛𝑓 𝑖𝑔 → 𝐶𝑜𝑛𝑓 𝑖𝑔 → B

Assumptions about R1+ and 𝑖𝑠𝑄𝑢𝑜𝑟𝑢𝑚

(Reflexive) R1+ (𝑐 𝑓 , 𝑐 𝑓)
(Overlap) R1+ (𝑐 𝑓 , 𝑐 𝑓 ′) ∧ 𝑖𝑠𝑄𝑢𝑜𝑟𝑢𝑚(𝑄, 𝑐 𝑓) ∧ 𝑖𝑠𝑄𝑢𝑜𝑟𝑢𝑚(𝑄 ′, 𝑐 𝑓 ′) =⇒ 𝑄 ∩𝑄 ′ ≠ ∅

Definitions

𝑅2(𝑡𝑟,𝐶) ≜ ∀𝐶 ′ ∈ 𝑡𝑟 .𝐶 ′ = 𝑅𝐶𝑎𝑐ℎ𝑒 (_) ∧𝐶 ′ ↑ 𝐶 =⇒ ∃𝐶 ′′ ∈ 𝑡𝑟 .𝐶 ′′ = 𝐶𝐶𝑎𝑐ℎ𝑒 (_) ∧𝐶 ′ ↑ 𝐶 ′′ ∧𝐶 ′′ ↑ 𝐶
𝑅3(𝑡𝑟,𝐶) ≜ ∃𝐶 ′ ∈ 𝑡𝑟 .𝐶 ′ = 𝐶𝐶𝑎𝑐ℎ𝑒 (_) ∧ 𝑡𝑖𝑚𝑒 (𝐶 ′) = 𝑡𝑖𝑚𝑒 (𝐶) ∧𝐶 ′ ↑ 𝐶

𝑐𝑎𝑛𝑅𝑒𝑐𝑜𝑛𝑓 (𝑡𝑟,𝐶, 𝑛𝑐 𝑓) ≜ R1+ (𝑐𝑜𝑛𝑓 (𝐶), 𝑛𝑐 𝑓) ∧ 𝑅2(𝑡𝑟,𝐶) ∧ 𝑅3(𝑡𝑟,𝐶)

Figure 25. Configuration/quorum parameters and definitions.

𝐶1 ≻ 𝐶2 ≜ (𝑡𝑖𝑚𝑒 (𝐶1), 𝑣𝑟𝑠𝑛(𝐶1)) > (𝑡𝑖𝑚𝑒 (𝐶2), 𝑣𝑟𝑠𝑛(𝐶2))
∨ (𝑡𝑖𝑚𝑒 (𝐶1), 𝑣𝑟𝑠𝑛(𝐶1)) = (𝑡𝑖𝑚𝑒 (𝐶2), 𝑣𝑟𝑠𝑛(𝐶2)) ∧𝐶1 = 𝐶𝐶𝑎𝑐ℎ𝑒 (_) ∧𝐶2 ≠ 𝐶𝐶𝑎𝑐ℎ𝑒 (_)

𝑓 𝑟𝑒𝑠ℎ𝐶𝐼𝐷 (𝑡𝑟) ≜ max {𝑐𝑖𝑑 (𝐶) | 𝐶 ∈ 𝑡𝑟 } + 1
addLeaf (𝑠𝑡,𝐶𝑃 ,𝐶𝑛𝑒𝑤) ≜ (𝑡𝑟𝑒𝑒 (𝑠𝑡) [𝑓 𝑟𝑒𝑠ℎ𝐶𝐼𝐷 (𝑡𝑟𝑒𝑒 (𝑠𝑡)) ↦→ (𝐶𝑃 ,𝐶𝑛𝑒𝑤)], 𝑡𝑖𝑚𝑒𝑠 (𝑠𝑡))
insertBtw(𝑠𝑡,𝐶𝑃 ,𝐶𝑛𝑒𝑤) ≜ let 𝑡𝑟 ′ = 𝑡𝑟𝑒𝑒 (𝑠𝑡) [𝑐𝑖𝑑 (𝐶) ↦→ (𝑐𝑖𝑑 (𝐶𝑛𝑒𝑤),𝐶) | ∀(_,𝐶) ∈ 𝑡𝑟𝑒𝑒 (𝑠𝑡)] in

(𝑡𝑟 ′[𝑓 𝑟𝑒𝑠ℎ𝐶𝐼𝐷 (𝑡𝑟𝑒𝑒 (𝑠𝑡)) ↦→ (𝐶𝑃 ,𝐶𝑛𝑒𝑤)], 𝑡𝑖𝑚𝑒𝑠 (𝑠𝑡))
𝐶 ↑ 𝐶 ′ ≜ 𝐶 = 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐶 ′) ∨𝐶 ↑ 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐶 ′)

𝑠𝑒𝑡𝑇𝑖𝑚𝑒𝑠 (𝑠𝑡,𝑄, 𝑡) ≜ (𝑡𝑟𝑒𝑒 (𝑠𝑡), 𝑡𝑖𝑚𝑒𝑠 (𝑠𝑡) [𝑠 ↦→ 𝑡 | ∀𝑠 ∈ 𝑄])
𝑣𝑎𝑙𝑖𝑑𝑆𝑢𝑝𝑝 (𝑛𝑖𝑑,𝑄,𝐶) ≜ 𝑛𝑖𝑑 ∈ 𝑄 ∧𝑄 ⊆ 𝑚𝑏𝑟𝑠 (𝑐𝑜𝑛𝑓 (𝐶))
𝑖𝑠𝐿𝑒𝑎𝑑𝑒𝑟 (𝑠𝑡, 𝑛𝑖𝑑, 𝑡) ≜ 𝑡𝑖𝑚𝑒𝑠 (𝑠𝑡) [𝑛𝑖𝑑] = 𝑡

𝑚𝑜𝑠𝑡𝑅𝑒𝑐𝑒𝑛𝑡 (𝑡𝑟,𝑄) ≜max
≻

{𝐶 ∈ 𝑡𝑟 | 𝑄 ∩ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑟𝑠 (𝐶) ≠ ∅}

𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑎𝑐ℎ𝑒 (𝑡𝑟, 𝑛𝑖𝑑) ≜max
≻

{𝐶 ∈ 𝑡𝑟 | 𝑐𝑎𝑙𝑙𝑒𝑟 (𝐶) = 𝑛𝑖𝑑}

𝑙𝑎𝑠𝑡𝐶𝑜𝑚𝑚𝑖𝑡 (𝑡𝑟, 𝑛𝑖𝑑) ≜max
≻

{𝐶 ∈ 𝑡𝑟 | 𝑛𝑖𝑑 ∈ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑟𝑠 (𝐶) ∧𝐶 = 𝐶𝐶𝑎𝑐ℎ𝑒 (_)}

𝑐𝑎𝑛𝐶𝑜𝑚𝑚𝑖𝑡 (𝐶,𝑛𝑖𝑑, 𝑠𝑡) ≜ (𝐶 = 𝑀𝐶𝑎𝑐ℎ𝑒 (_) ∨𝐶 = 𝑅𝐶𝑎𝑐ℎ𝑒 (_)) ∧ 𝑐𝑎𝑙𝑙𝑒𝑟 (𝐶) = 𝑛𝑖𝑑

∧ 𝑖𝑠𝐿𝑒𝑎𝑑𝑒𝑟 (𝑠𝑡, 𝑛𝑖𝑑, 𝑡𝑖𝑚𝑒 (𝐶)) ∧𝐶 ≻ 𝑙𝑎𝑠𝑡𝐶𝑜𝑚𝑚𝑖𝑡 (𝑡𝑟𝑒𝑒 (𝑠𝑡), 𝑛𝑖𝑑)

Figure 26. Adore auxiliary definitions.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Wolf Honoré, Ji-Yong Shin, Jieung Kim, and Zhong Shao

Opull : ΣAdore → N𝑛𝑖𝑑 → (Ok(𝑆𝑒𝑡 (N𝑛𝑖𝑑) ∗ B ∗𝐶𝑎𝑐ℎ𝑒 ∗ N𝑡𝑖𝑚𝑒) | Fail)
Opush : ΣAdore → N𝑛𝑖𝑑 → (Ok(𝑆𝑒𝑡 (N𝑛𝑖𝑑) ∗ B ∗𝐶𝑎𝑐ℎ𝑒) | Fail)

ValidPullOracle
𝑣𝑎𝑙𝑖𝑑𝑆𝑢𝑝𝑝 (𝑛𝑖𝑑,𝑄,𝐶𝑚𝑎𝑥)

𝑄𝑜𝑘 ≜ 𝑖𝑠𝑄𝑢𝑜𝑟𝑢𝑚(𝑄, 𝑐𝑜𝑛𝑓 (𝐶𝑚𝑎𝑥)) ∀𝑠 ∈ 𝑄. 𝑡𝑖𝑚𝑒𝑠 (𝑠𝑡) [𝑠] < 𝑡 𝐶𝑚𝑎𝑥 ≜ 𝑚𝑜𝑠𝑡𝑅𝑒𝑐𝑒𝑛𝑡 (𝑡𝑟𝑒𝑒 (𝑠𝑡), 𝑄)
Opull (𝑠𝑡, 𝑛𝑖𝑑) = Ok(𝑄,𝑄𝑜𝑘 ,𝐶𝑚𝑎𝑥 , 𝑡)

ValidPushOracle
𝑣𝑎𝑙𝑖𝑑𝑆𝑢𝑝𝑝 (𝑛𝑖𝑑,𝑄,𝐶𝑀)

𝑄𝑜𝑘 ≜ 𝑖𝑠𝑄𝑢𝑜𝑟𝑢𝑚(𝑄, 𝑐𝑜𝑛𝑓 (𝐶𝑀)) ∀𝑠 ∈ 𝑄. 𝑡𝑖𝑚𝑒𝑠 (𝑠𝑡) [𝑠] ≤ 𝑡𝑖𝑚𝑒 (𝐶𝑀) 𝑐𝑎𝑛𝐶𝑜𝑚𝑚𝑖𝑡 (𝐶𝑀 , 𝑛𝑖𝑑, 𝑠𝑡)
Opush (𝑠𝑡, 𝑛𝑖𝑑) = Ok(𝑄,𝑄𝑜𝑘 ,𝐶𝑀)

Figure 27. Adore valid oracle rules.

PullOk
Opull (𝑠𝑡, 𝑛𝑖𝑑) = Ok(𝑄,𝑄𝑜𝑘 ,𝐶𝑚𝑎𝑥 , 𝑡) 𝑠𝑡 ′ ≜ 𝑠𝑒𝑡𝑇𝑖𝑚𝑒𝑠 (𝑠𝑡,𝑄, 𝑡) 𝐶𝑛𝑒𝑤 ≜ 𝐸𝐶𝑎𝑐ℎ𝑒 (𝑛𝑖𝑑, 𝑡, 0, 𝑄, 𝑐𝑜𝑛𝑓 (𝐶𝑚𝑎𝑥))

O ⊢ pull(𝑛𝑖𝑑) : 𝑠𝑡 ⇝ if 𝑄𝑜𝑘 then addLeaf (𝑠𝑡 ′,𝐶𝑚𝑎𝑥 ,𝐶𝑛𝑒𝑤) else 𝑠𝑡 ′

InvokeOk
𝐶𝐴 ≜ 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑎𝑐ℎ𝑒 (𝑡𝑟𝑒𝑒 (𝑠𝑡), 𝑛𝑖𝑑)

𝑖𝑠𝐿𝑒𝑎𝑑𝑒𝑟 (𝑠𝑡, 𝑛𝑖𝑑, 𝑡𝑖𝑚𝑒 (𝐶𝐴)) 𝐶𝑛𝑒𝑤 ≜ 𝑀𝐶𝑎𝑐ℎ𝑒 (𝑛𝑖𝑑, 𝑡𝑖𝑚𝑒 (𝐶𝐴), 𝑣𝑟𝑠𝑛(𝐶𝐴) + 1, 𝑀, 𝑐𝑜𝑛𝑓 (𝐶𝐴))
O ⊢ invoke(𝑛𝑖𝑑,𝑀) : 𝑠𝑡 ⇝ addLeaf (𝑠𝑡,𝐶𝐴,𝐶𝑛𝑒𝑤)

ReconfigOk
𝐶𝐴 ≜ 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑎𝑐ℎ𝑒 (𝑡𝑟𝑒𝑒 (𝑠𝑡), 𝑛𝑖𝑑)

𝑖𝑠𝐿𝑒𝑎𝑑𝑒𝑟 (𝑠𝑡, 𝑛𝑖𝑑, 𝑡𝑖𝑚𝑒 (𝐶𝐴)) 𝑐𝑎𝑛𝑅𝑒𝑐𝑜𝑛𝑓 (𝑡𝑟𝑒𝑒 (𝑠𝑡),𝐶𝐴, 𝑛𝑐 𝑓) 𝐶𝑛𝑒𝑤 ≜ 𝑅𝐶𝑎𝑐ℎ𝑒 (𝑛𝑖𝑑, 𝑡𝑖𝑚𝑒 (𝐶𝐴), 𝑣𝑟𝑠𝑛(𝐶𝐴) + 1, 𝑛𝑐 𝑓)
O ⊢ reconfig(𝑛𝑖𝑑, 𝑛𝑐 𝑓) : 𝑠𝑡 ⇝ addLeaf (𝑠𝑡,𝐶𝐴,𝐶𝑛𝑒𝑤)

PushOk
Opush (𝑠𝑡, 𝑛𝑖𝑑) = Ok(𝑄,𝑄𝑜𝑘 ,𝐶𝑀)

𝑠𝑡 ′ ≜ 𝑠𝑒𝑡𝑇𝑖𝑚𝑒𝑠 (𝑠𝑡,𝑄, 𝑡𝑖𝑚𝑒 (𝐶𝑀)) 𝐶𝑛𝑒𝑤 ≜ 𝐶𝐶𝑎𝑐ℎ𝑒 (𝑛𝑖𝑑, 𝑡𝑖𝑚𝑒 (𝐶𝑀), 𝑣𝑟𝑠𝑛(𝐶𝑀), 𝑄, 𝑐𝑜𝑛𝑓 (𝐶𝑀))
O ⊢ push(𝑛𝑖𝑑) : 𝑠𝑡 ⇝ if 𝑄𝑜𝑘 then insertBtw(𝑠𝑡 ′,𝐶𝑀 ,𝐶𝑛𝑒𝑤) else 𝑠𝑡 ′

PullNoOp
Opull (𝑠𝑡, 𝑛𝑖𝑑) = Fail

O ⊢ pull(𝑛𝑖𝑑) : 𝑠𝑡 ⇝ 𝑠𝑡

InvokeNoOp

O ⊢ invoke(𝑛𝑖𝑑,𝑀) : 𝑠𝑡 ⇝ 𝑠𝑡

ReconfigNoOp

O ⊢ reconfig(𝑛𝑖𝑑, 𝑛𝑐 𝑓) : 𝑠𝑡 ⇝ 𝑠𝑡

PushNoOp
Opush (𝑠𝑡, 𝑛𝑖𝑑) = Fail

O ⊢ push(𝑛𝑖𝑑) : 𝑠𝑡 ⇝ 𝑠𝑡

Figure 28. Semantics of Adore operations.

	Abstract
	1 Introduction
	2 Overview
	2.1 Consensus
	2.2 Distributed System Models
	2.3 Reconfiguration
	2.4 Adore

	3 Adore Formal Semantics
	4 Safety Proof
	4.1 Breaking Circularity with rdist
	4.2 Base Cases
	4.3 General Case

	5 Refinement
	6 Instantiating Reonfiguration Schemes
	7 Evaluation and Discussion
	8 Related Work
	9 Conclusion and Future Work
	Acknowledgments
	References
	A Consensus Primer
	B Additional Safety Proofs
	C Refinement
	C.1 SRaft and Adore
	C.2 Raft and SRaft

	D ADO and Adore Formal Semantics
	D.1 ADO
	D.2 Adore

