
J Autom Reasoning (2009) 42:301–347
DOI 10.1007/s10817-009-9118-9

Certifying Low-Level Programs with Hardware
Interrupts and Preemptive Threads

Xinyu Feng · Zhong Shao · Yu Guo · Yuan Dong

Received: 26 February 2009 / Accepted: 26 February 2009 / Published online: 20 March 2009
© Springer Science + Business Media B.V. 2009

Abstract Hardware interrupts are widely used in the world’s critical software sys-
tems to support preemptive threads, device drivers, operating system kernels, and hy-
pervisors. Handling interrupts properly is an essential component of low-level system
programming. Unfortunately, interrupts are also extremely hard to reason about:
they dramatically alter the program control flow and complicate the invariants in low-
level concurrent code (e.g., implementation of synchronization primitives). Existing
formal verification techniques—including Hoare logic, typed assembly language,
concurrent separation logic, and the assume-guarantee method—have consistently
ignored the issues of interrupts; this severely limits the applicability and power of
today’s program verification systems. In this paper we present a novel Hoare-logic-

A preliminary version of this paper appeared in the Proceedings of ACM SIGPLAN 2008
Conference on Programming Language Design and Implementation (PLDI’08), pp. 170–182,
ACM Press (2008).

X. Feng (B)
Toyota Technological Institute at Chicago,
6045 S. Kenwood Avenue, Chicago, IL 60637, USA
e-mail: feng@tti-c.org

Z. Shao
Department of Computer Science, Yale University, 51 Prospect Street,
New Haven, CT 06520-8285, USA
e-mail: shao@cs.yale.edu

Y. Guo
Department of Computer Science and Technology,
University of Science and Technology of China, Hefei,
Anhui, 230026, China
e-mail: guoyu@mail.ustc.edu.cn

Y. Dong
Department of Computer Science and Technology, Tsinghua University,
Beijing, 100084, China
e-mail: dongyuan@tsinghua.edu.cn

302 X. Feng et al.

like framework for certifying low-level system programs involving both hardware
interrupts and preemptive threads. We show that enabling and disabling interrupts
can be formalized precisely using simple ownership-transfer semantics, and the
same technique also extends to the concurrent setting. By carefully reasoning about
the interaction among interrupt handlers, context switching, and synchronization
libraries, we are able to—for the first time—successfully certify a preemptive thread
implementation and a large number of common synchronization primitives. Our
work provides a foundation for reasoning about interrupt-based kernel programs
and makes an important advance toward building fully certified operating system
kernels and hypervisors.

Keywords Operating system verification · Hardware interrupts ·
Preemptive threads · Thread libraries · Synchronization primitives ·
Separation logic · Modularity

1 Introduction

Low-level system programs (e.g., thread implementations, device drivers, operating
system kernels, and hypervisors) form the backbone of almost every safety-critical
software system in the world. It is thus highly desirable to formally certify the cor-
rectness of these programs. Indeed, there have been several new projects launched
recently—including Verisoft/XT [14, 32], L4.verified [36], and Singularity [20]—all
aiming to build certified OS kernels and/or hypervisors. With formal specifications
and provably safe components, certified system software can provide a trustworthy
computing platform and enable anticipatory statements about system configurations
and behaviors [20].

Unfortunately, system programs—especially those involving both interrupts and
concurrency—are extremely hard to reason about. In Fig. 1, we divide programs
in a typical preemptible uniprocessor OS kernel into two layers. At the “higher”
abstraction level, we have threads that follow the standard concurrent programming
model [17]: interrupts are invisible, but the execution of a thread can be preempted
by other threads; synchronization operations are treated as primitives.

Below this layer (see the shaded box), we have more subtle “lower-level” code
involving both interrupts and concurrency. The implementation of many synchro-
nization primitives and input/output operations requires explicit manipulation of

Fig. 1 “High-level” vs.
“low-level” system programs

locks cond var.

ctxt switching

scheduler

I/O primitives

. . .

High-Level Concurrent Programs

. . .

. .
 .

1
1
0
1
1
0
1
0

irq0
irq1
irq2
irq3
irq4
irq5
irq6
irq7

cli/
sti

Low-Level Code with Interrupts & Concurrency

device drivers

interrupt handlers

Certifying Low-Level Programs 303

interrupts; they behave concurrently in a preemptive way (if interrupt is enabled)
or a non-preemptive way (if interrupt is disabled). When execution of a thread is
interrupted, control is transferred to an interrupt handler, which may call the thread
scheduler and switch the control to another thread. Some of the code in the shaded
box (e.g., the scheduler and context switching routine) may behave sequentially since
they are always executed with interrupt disabled.

Existing program verification techniques (including Hoare logic [16], typed as-
sembly language [26], concurrent separation logic [5, 29], and its assume-guarantee
variant [8, 37]) can probably handle those high-level concurrent programs, but they
have consistently ignored the issues of interrupts thus cannot be used to certify
concurrent code in the shaded box. Having both explicit interrupts and threads
creates the following new challenges:

– Asymmetric preemption relations. Non-handler code may be preempted by
an interrupt handler (and low-priority handlers can be preempted by higher-
priority ones), but not vice versa. Interrupt handlers cannot be simply treated
as threads [33]: verification based on the standard thread semantics is too con-
servative and may give false positive reports of race conditions when interrupt
handlers take advantage of their higher priorities.

– Subtle intertwining between interrupts and threads. In Fig. 2, thread A is inter-
rupted by the interrupt request irq0. In the handler, the control is switched
to thread B. From thread A’s point of view, the behavior of the handler 0 is
complex: should the handler be responsible for the behavior of thread B?

– Asymmetric synchronizations. Synchronization between handler and non-
handler code is achieved simply by enabling and disabling interrupts (via sti and
cli instructions in x86). Unlike locks, interrupts can be disabled by one thread
and enabled by another. In Fig. 2, thread A disables interrupts and then switches
control to thread B (step (5)), which will enable interrupts.

– Handler for higher-priority interrupts might be “interrupted” by lower-priority
ones. In Fig. 2, handler 0 switches the control to thread B at step (1); thread B
enables interrupts and is interrupted by irq1, which may have a lower-priority
than irq0.

In this paper we tackle these challenges directly and present a novel framework for
certifying low-level programs involving both interrupts and preemptive threads. We
introduce a new abstract interrupt machine (named AIM, see Section 3 and the upper
half of Fig. 3) to capture “interrupt-aware” concurrency, and use simple ownership-
transfer semantics to reason about the interaction among interrupt handlers,

Fig. 2 Interaction between
threads and interrupts

. . .
cli
. . .

switch
. . .

sti
. . .

. . .

. . .
cli
. . .

switch
. . .
sti
. . .

switch

iret

. . .
. . .

iret

. . .

. . .
sti
. . .

irq0

irq1

Handler 0

Handler 1

Thread A Thread B

(1)

(2)(3)

(4)

(5)

304 X. Feng et al.

block

void blk(queue * q)

Condition Variables

void wait_m(Lock *l, CV *cv);
void signal_m(CV *cv);
void wait_h(Lock *l, CV *cv);
void signal_h(Lock *l, CV *cv);
void wait_bh(Lock *l, CV *cv);
void signal_bh(Lock *l, CV *cv);

Locks

void acq_m(Lock *l);
void rel_m(Lock *l);
void acq_h(Lock *l);
void rel_h(Lock *l);
void acq_spin(Lock *l);
void rel_spin(Lock *l);

yield

void yield()

ctxt switchingnode* deQueue(queue * q)
void enQueue(queue * q, node *n)

timer_handler cli/
sti

Level S

Level C

unblock

int unblk(queue * q)

switch

void scheduler()

Fig. 3 Structure of our certified preemptive thread implementation

context switching, and synchronization libraries. Our paper makes the following new
contributions:

– As far as we know, our work presents the first program logic (see Section 4)
that can successfully certify the correctness of low-level programs involving both
interrupts and concurrency. Our idea of using ownership-transfer semantics to
model interrupts is both novel and general (since it also works in the concurrent
setting). Our logic supports modular verification: threads and handlers can be
certified in the same way as we certify sequential code without worrying about
possible interleaving. Soundness of our logic is formally proved in the Coq proof
assistant.

– Following separation logic’s local-reasoning idea, our program logic also enforces
partitions of resources between different threads and between threads and in-
terrupt handlers. These logical partitions at different program points essentially
give an abstract formalization of the semantics of interrupts and the interaction
between handlers and threads.

– Our AIM machine (see Section 3) unifies both the preemptive and non-
preemptive threading models, and to our best knowledge, is the first to success-
fully formalize concurrency with explicit interrupt handlers. In AIM, operations
that manipulate thread queues are treated as primitives; These operations, to-
gether with the scheduler and context-switching code (the low half of Fig. 3),
are strictly sequential thus can be certified in a simpler logic. Certified code at
different levels is linked together using an OCAP-style framework [9, 12].

– Synchronization operations can be implemented as subroutines in AIM. To
demonstrate the power of our framework, we have certified, for the first time, var-
ious implementations of locks and condition variables (see Section 5). Our spec-
ifications pinpoint precisely the differences between different implementations.

2 Informal Development

Before presenting our formal framework, we first informally explain the design
of our abstract machine and the ownership-transfer semantics for reasoning about
interrupts.

Certifying Low-Level Programs 305

2.1 Design of the Abstract Machine

In Fig. 3 we outline the structure of a thread implementation taken from a simplified
OS kernel. We split all “shaded” code into two layers: the upper level C (for
“Concurrent”) and the low level S (for “Sequential”). Code at Level C is concurrent;
it handles interrupts explicitly and implements interrupt handlers but abstracts away
the implementation of threads. Code at Level S is sequential (always executed with
interrupts disabled); functions that need to know the concrete representations of
thread control blocks (TCBs) and thread queues are implemented at Level S; there
are one queue for ready threads and multiple queues for blocked threads.

We implement three primitive thread operations at Level S: switch, block, and
unblock. The switch primitive, shown as the scheduler() function in Fig. 3, saves
the execution context (consisting of the program counter, the stack pointer and other
states) of the current thread into its TCB, put the TCB into the ready queue, picks
another TCB from the queue, and switches to the execution context of the new
thread. The block primitive takes a pointer to a block queue as argument, puts the
current thread into the block queue, and switches the control to a thread in the ready
queue. The unblock primitive also takes a pointer to a block queue as argument; it
moves a thread from the block queue to the ready queue but does not do context
switching. Level S also contains code for queue operations and thread context
switching, which are called by these thread primitives.

In the abstract machine at Level C, we use instructions sti/cli to enable/disable
interrupts (as on x86 processors); the primitives switch, block and unblock are also
treated as instructions; thread queues are now abstract algebraic structures outside
of the data heap and can only be accessed via the thread primitives.

2.2 Ownership-Transfer Semantics

Concurrent entities, i.e., the handler code and the threads consisting of the non-
handler code, all need to access memory. To guarantee the non-interference, we
enforce the following invariant, inspired by recent work on Concurrent Separation
Logic [5, 29]: there always exists a partition of memory among the concurrent entities,
and each entity can only access its own part of memory. There are two important
points about this invariant:

– the partition is logical; we do not need to change our model of the physical
machine, which only has one global shared data heap. The logical partition can
be enforced following Separation Logic [21, 34], as we will explain below.

– the partition is not static; it can be dynamically adjusted during program execu-
tion, which is done by transferring the ownership of memory from one entity to
the other.

Instead of using the operational semantics of cli, sti and thread primitives described
above to reason about programs, we model their semantics in terms of memory
ownership transfers. This semantics completely hides thread queues and thus the
complex interleaving between concurrent entities.

We first study the semantics of cli and sti assuming that the non-handler code is
single-threaded. Since the interrupt handler can preempt the non-handler code but
not vice versa, we reserve the part of memory used by the handler from the global

306 X. Feng et al.

Fig. 4 Memory partition for
handler and non-handler

B A

INV0

B B

INV0

B

B B

INV0

B A

INV0

Critical
Region

cli

sti

memory, shown as block A in Fig. 4. Block A needs to be well-formed with respect
to the precondition of the handler, which ensures safe execution of the handler
code. We call the precondition an invariant INV0, since the interrupt may come at
any program point (as long as it is enabled) and this precondition needs to always
hold. If the interrupt is enabled, the non-handler code can only access the rest part
of memory, called block B. If it needs to access block A, it has to first disable
the interrupt by cli. Therefore we can model the semantics of cli as a transfer of
ownership of the well-formed block A, as shown in Fig. 4. The non-handler code
does not need to preserve the invariant INV0 if the interrupt is disabled, but it needs
to ensure INV0 holds before it enables the interrupt again using sti. The sti instruction
returns the well-formed block A to the interrupt handler.

If the non-handler code is multi-threaded, we also need to guarantee non-
interference between these threads. Figure 5 refines the memory model. The block
A is still dedicated to the interrupt handler. The memory block B is split into three
parts (assuming there are only two threads): each thread has its own private memory,
and both threads share the block C. When block C is available for sharing, it needs
to be well-formed with some specification INV1. However, a thread cannot directly
access block C if the interrupt is enabled, even if the handler does not access it. That
is because the handler may switch to another thread, as shown in Fig. 2 (step (1)). To
access block A and C, the current thread, say T1, needs to disable the interrupt; so cli
grants T1 the ownership of well-formed blocks A and C. If T1 wants to switch control
to T2, it first makes sure that INV0 and INV1 hold over A and C respectively. The

Fig. 5 The memory model for
multi-threaded non-handler

C A

INV0

T1: cli

T1 T2

INV1

T1 : C T1: A

INV0

T1 T2

INV1

C A

INV0

T
2
: sti

T1 T2

INV1 INV0

T1 T2

INV1

switch

T2 : C T2: A

Certifying Low-Level Programs 307

Fig. 6 Block and unblock

INV0

T1

INV1

? T2

INV0

T1

INV1

T2!

INV0

T1

INV1

T2!

T1: block

INV0

T1

INV1

! T2

T
2
: switch

T2: unblock

T1 : C T1: A

T1 : C T1: A

T2 : C T2: A

T2 : C T2: A

switch operation transfers the ownership of A and C from T1 to T2, knowing that the
interrupt remains disabled. Enabling the interrupt (by T2) releases the ownership.

Blocking thread queues are used to implement synchronization primitives, such
as locks or condition variables. When the lock is not available, or the condition
associated with the condition variable does not hold, the current thread is put into
the corresponding block queue. We can also model the semantics of block and
unblock as resource ownership transfers: a blocked thread is essentially waiting for
the availability of some resource, e.g., the lock and the resource protected by the
lock, or the resource over which the condition associated with the condition variable
holds. As shown in Fig. 6, thread T1 executes block when it waits for some resource
(represented as the dashed box containing “?”). Since block switches control to other
threads, T1 needs to ensure that INV0 and INV1 hold over A and C, which is the same
requirement as switch. When T2 makes the resource available, it executes unblock
to release a thread in the corresponding block queue, and transfers the ownership
of the resource to the released thread. Note that unblock itself does not do context
switching. When T1 takes control again, it will own the resource. From T1’s point of
view, the block operation acquires the resource associated with the corresponding
block queue. This view of block and unblock is very flexible: by choosing whether the
resource is empty or not, we can certify implementations of Mesa- and Hoare-style
condition variables (see Section 5).

3 The Abstract Interrupt Machine (AIM)

We present our Abstract Interrupt Machine (AIM) in two steps. AIM-1 shows the
interaction between the handler and sequential non-handler code. AIM-2, the final
definition of AIM, extends AIM-1 with multi-threaded non-handler code.

3.1 AIM-1

AIM-1 is defined in Fig. 7. The whole machine configuration W consists of a code
heap C, a mutable program state S, a control stack K, and a program counter
pc. The code heap C is a finite partial mapping from code labels f to commands
c (represented as {f � c}∗). Each command c is either a sequential or branch
instruction ι, or jump or return instructions. The state S contains a data heap H, a

308 X. Feng et al.

(World) :: ()

(CodeHeap) ::
(State) :: ()
(Heap) ::

(RegFile) :: r0 0 rk k

(Stack) :: nil :: () ::

(Bit) :: 0 1
(Flags) ::

(Labels) :: n (nat nums)
(Word) :: i (integers)

(Register) r :: 0 1

(Instr) :: mov movi add sub ld () st ()rd rs rd rd rs rd rs rd rs rt rs

beq rs rt call cli sti

(Commd) :: j ret iret

(InstrSeq) :: ; j ret iret

Fig. 7 Definition of AIM-1

register file R, and flags ie and is. The data heap is modeled as a finite partial
mapping from labels to integers. The register file is a total function that maps reg-
ister names to integers. The binary flags ie and is record whether the interrupt is
disabled, and whether it is currently being serviced, respectively. The abstract control
stack K saves the return address of the current function or the interrupt handler. An
empty stack is represented as nil. Each stack frame contains either a code label f
or a pair (f, R). The latter is pushed onto the stack when the interrupt handler is
triggered. More details are shown in the operational semantics below. The program
counter pc is a code label pointing to the current command in C.

A command c can be an instruction ι, a “jump”, a “return” from functions (ret) or
a “return ” from interrupt handlers (iret). An instruction can be a sequential oper-
ation (e.g., “move”, arithmetic operations, or memory “load” and “store”), condi-
tional branch or a function call. The registers rs, rt and rd represent the source,
temporary and target registers respectively. For simplicity, here we only show the
most common instructions. We also define the instruction sequence I as a sequence of
instructions ending with a jump or return command (i.e., a basic block). C[f] extracts
an instruction sequence starting from f in C, as defined in Fig. 8.

Figure 8 also defines some representations used in this paper. The function update
is represented as F{a � b}, which maps a into b and all other arguments x into F(x).
We use the dot notation to represent a component in a tuple, e.g., S.H means the

Fig. 8 Definition of
representations []

def
() and j ret or iret

; () and [1]
undefined otherwise

(F a b)(x)
def b if x a

F(x) otherwise

def
()

def
()

def
()

def
()

Certifying Low-Level Programs 309

data heap in state S. S|H′ is the new state that changes the data heap in S to H′. S|R′ ,
S|{ie=b} and S|{is=b} are defined similarly.

Operational semantics We use a non-deterministic operational semantics to model
the hardware interrupt request. Instead of using an oracle telling us when the inter-
rupts would come, we assume the interrupt request may come at any time. The binary
step relation �=⇒ models single-step transitions of program configurations:

W �=⇒ W
′ def= (W �−→ W

′) ∨ (W � W
′) (1)

At each step, the machine either executes the next instruction at pc (W �−→ W′) or
jumps to the interrupt handler to handle the incoming interrupt request (W � W′).
We use W �=⇒n W′ to mean W′ is reached from W in n steps:

W �=⇒0 W

W �=⇒ W′′ W′′
�=⇒n W′

W �=⇒n+1 W′

W �=⇒∗ W′ is defined as ∃n. W �=⇒n W′.
The following irq rule defines the transition relation W � W′.

ie = 1 is = 0
(C, (H, R, ie, is), K, pc)� (C, (H, R, 0, 1), (pc, R) ::K, h_entry)

(irq)

An incoming interrupt request is processed only if the ie bit is set, and no interrupt
is currently being serviced (i.e., is = 0). The processor saves the execution context
(pc, R) of the current program onto the stack K, clears the ie bit, sets is to 1, and
sets the new pc to h_entry. To simplify the presentation, the machine supports only
one interrupt with a global interrupt handler entry h_entry. It can be extended easily
to support multi-level interrupts. We discuss about the extension in Section 7.

() where ()
if

mov ((rd rs rd rs))
movi (rd rd)
add ((() (rd rs rd rs rd)))
sub ((() (rd rs rd rd rs)))
ld () (((rd rs rd rs)))

if ((rs)) dom()
st ()rt rs (((rt)) (rs))

if ((rt)) dom()
cli 0

sti 1

iret (1 0) if 1 ()::
for some and

other cases

()

if

call (1)::
ret if :: for some
iret if () ::

for some and
other cases

()

if

beq if () (rs rt rs rt)
beq 1 if () (rs rt rs rt)
call

j

ret if :: for some
iret if () ::

for some and
other cases 1

Fig. 9 Operational semantics of instructions

310 X. Feng et al.

The program transition W �−→ W′ models the execution of the next instruction at
pc. It is defined by the pc rule below:

c = C(pc)
NextS(c,K) S S′ NextK(pc,c) K K′ NextPC(c,S.R,K) pc pc′

(C, S, K, pc) �−→ (C, S′, K′, pc′)
(pc)

where the auxiliary relations NextS(c,K), NextK(pc,c) and NextPC(c,R,K) are defined
in Fig. 9. The relation NextS(c,K) shows the transition of states by executing c with
stack K; NextK(pc,c) describes the change of stacks made by c at the program counter
pc; while NextPC(c,R,K) shows how pc changes after c is executed with R and K.
Semantics of most instructions are straightforward, except iret which runs at the end
of each interrupt handler and does the following:

– pops the stack frame on the top of the stack K; the frame must be in the form of
(f, R′), which is saved when the interrupt is handled (see the irq rule);

– restores ie and is with the value when the interrupt occurs, which must be 1 and
0 respectively (otherwise the interrupt cannot have been handled);

– resets the pc and the register file R with f and R′, respectively.

In AIM, the register file R is automatically saved and restored at the entry and exit
point of the interrupt handler. This is a simplification of the x86 interrupt mechanism
for a cleaner presentation. In our implementation (Section 6), the interrupt handler
code needs to save and restore the registers.

(0 NoG) (i i)

(1 NoG)

(2 NoG)

(4 gid)

(1 NoG)

(3 NoG)

Fig. 10 Sample AIM-1 program: Teeter-Totter

Certifying Low-Level Programs 311

Note that, given a W, there may not always exist a W′ such that (W �−→ W′) holds.
If there is no such W′, we say the program aborts at W:

¬∃W′. W �−→ W′
W �=⇒ abort

n > 0 W �=⇒n−1 W′ W′
�=⇒ abort

W �=⇒n abort

W �=⇒n abort means the execution starting from W aborts at the n-th step. One
important goal of our program logic is to show that certified programs never abort.

Figure 10 shows a sample AIM-1 program. The non-handler code (on the left) and
the interrupt handler (on the right) share two memory cells at locations LEFT and
RIGHT. They initially contain the same value (say, 50). The non-handler increases the
value stored at LEFT and decrease the value at RIGHT. The interrupt handler code
does the reverse. One wins if it decreases the value of the other side to 0. Therefore
which side wins depends on how frequent the interrupt comes. To avoid races, the
non-handler code always disables interrupts before it accesses LEFT and RIGHT. We
will explain the program specifications in shaded boxes and the verification of the
program in Section 4.

3.2 AIM-2

Figure 11 defines AIM-2 as an extension over AIM-1. We extend the world W with
an abstract thread queue T, a set of block queues B, and the id tid for the current
thread. T maps a thread id to a thread execution context, which contains the register
file, the stack, the is flag and pc. B maps block queue ids w to block queues Q.
These block queues are used to implement synchronization primitives such as locks
and condition variables. Q is a set of thread ids pointing to thread contexts in T. Note
here we do not need a separate Q for ready threads, which are threads in T but not
blocked:

readyQ(T, B)
def= {tid | tid ∈ dom(T) ∧ ¬∃w. tid ∈ B(w)} . (2)

We also add three primitive instructions: switch, block and unblock.
The step relation (W �−→ W′) of AIM-2 is defined in Fig. 12. The switch instruc-

tion saves the execution context of the current thread into the thread queue T, and
picks a thread nondeterministically from readyQ(T, B) to run. To let our abstraction
fit into the interfaces shown in Fig. 3, we require that the interrupt be disabled before
switch. This also explains why ie is not saved in the thread context, and why it is set
to 0 when a new thread is scheduled from T: the only way to switch control from one
thread to the other is to execute switch, which can be executed only if the interrupt
is disabled. The “block rt” instruction puts the current thread id into the block queue
B(rt), and switches the control to another thread in readyQ(T, B). If there are no
other threads in readyQ, the machine stutters (in our x86 implementation, this would
never happen because there is an idle thread and our program logic prohibits it

(World) :: ()

(ThrdSet) :: ()

(BlkQSet) :: w

(ThrdQ) :: 1 n

(ThrdID) :: n (nat nums, and n 0)

(qID) w :: n (nat nums, and n 0)

(Instr) :: switch block unblockrt rt rd

Fig. 11 AIM-2 defined as an extension of AIM-1

312 X. Feng et al.

() where ()
if ()

switch ((0))
if 0 (1) ()

and () ()
block rt (())

if 0 w (rt) (w) w () ()
() () and (1)

block rt (())
if 0 and ()

unblock rt rd (() 1)
if 0 w (rt) (w) and rd 0

unblock rt rd (() 1)
if 0 w (rt) (w) w and rd

other ()
if () () and ()

Fig. 12 The step relation for AIM-2

from executing block). The “unblock rt, rd” instruction removes a thread from B(rt)

and puts its tid into rd if the queue is not empty; otherwise rd contains 0. Here
� represents the union of two disjoint sets. By the definition of readyQ, we know
tid will be in readyQ after being unblocked. unblock does not switch controls. Like
switch, block and unblock can be executed only if the interrupt is disabled. The effects
of other instructions over S, K and pc are the same as in AIM-1. They do not change
T, B and tid. The transition (W � W′) for AIM-2 is almost the same as the one for
AIM-1 defined by the irq rule. It does not change T, B and tid either. Note that
our threads are at the kernel level. Just as the interrupt handler and the non-handler
code share stacks in AIM-1, here we let the interrupt handler share the stack space
with the interrupted thread. The definition of (W �=⇒ W′) is unchanged.

Fig. 13 A preemptive timer
handler

(i i)

(i i)

(0 0)

0
def

enable iret (r1)

0
def

INV0 () ()

Certifying Low-Level Programs 313

Our AIM machine is designed for uniprocessor systems. A thread cannot be
preempted directly by other threads, but it can be preempted by interrupt handers,
which may switch the execution to another thread. For higher-level concurrent
programs (see Fig. 1), the design of AIM is very interesting in that it supports
both preemptive threads (if the interrupt is enabled and the handler does context
switching) and non-preemptive ones (if the interrupt is disabled, or if the interrupt is
enabled but the handler does no context switching).

A preemptive timer interrupt handler Figure 13 shows the implementation of a
preemptive timer interrupt handler. Each time the interrupt comes, the handler tests
the value of the counter at memory location CNT. If the counter reaches 100, the
handler switches control to other threads; otherwise it increases the counter by 1 and
returns to the interrupted thread. We will explain the meanings of specifications and
show how the timer handler is verified in Section 4.

4 The Program Logic

We propose a Hoare-style program logic to verify the safety and partial correctness
of AIM programs. To verify programs, the programmer writes specifications spec-
ifying their functionalities, and then applies our logical rules to prove their “well-
formedness” with respect to the specifications. The soundness of our logic guarantees
that well-formed programs are safe to execute and their behaviors indeed satisfy the
specifications.

4.1 Assertions and Specifications

Instead of defining a new logic to write assertions, we use the mechanized meta-
logic implemented in the Coq proof assistant [6] as our assertion language. The
logic corresponds to Higher-Order Logic with inductive definitions. This approach
is known as “shallow embedding” of assertions [23]. However, it is important to note
that our program logic is independent of any special features of the meta-logic. It is
also independent of the use of “shallow embedding”.

To specify the behavior of AIM programs, the programmer writes specifications s
at different program points. As shown in Fig. 14, the specification � of a code heap C

is then a set of (f, s) pairs, where s is inserted at f in C. We allow each f to have more
than one s, just as a function may have multiple specified interfaces. The specification
s is a pair (p, g). The assertion p is a predicate over a stack K and a program state
S, (its meta-type in Coq is the type of functions that take K and S as arguments and
return logical propositions; Prop is the universe of logical assertions in Coq), while g

Fig. 14 Specification
constructs

(CdHpSpec) :: (1 1) (n n)

(Spec) :: ()

(Pred) Stack State Prop

(Guarantee) State State Prop

(MPred) INV0 INV1 Heap Prop

(WQSpec) :: w

314 X. Feng et al.

Fig. 15 Definitions of
separation logic assertions 1 2

def
dom(1) dom(1)

1 2
def 1 2 if 1 2

undefined otherwise

true
def

True emp
def

def def
()

1 2
def

1 2 (1 2) 1 1 2 2

def
1 2 (1 2) 1 2

def
()

def
()

precise()
def

1 2 (1) (2) 1 2 (1 2)

is a predicate over two program states. As we can see, the NextS(c,K) relation defined
in Fig. 9 is a special form of g. Following our previous work on reasoning low-level
code with stack based control abstractions [13], we use p to specify the precondition
over the stack and state at the corresponding program point, and use g to specify the
guaranteed behavior from the specified program point to the point where the current
function returns.

We also use the predicate m to specify data heaps. In Fig. 15 we encode Separation
Logic connectors [21, 34] in our assertion language. We use H1⊥H2 to represent that
data heaps H1 and H2 have disjoint domains. H1 � H2 is the union of the disjoint
heaps H1 and H2. Assertions in Separation Logic capture ownership of heaps. The
assertion “l �→ n” holds iff the heap has only one cell at l containing n. It can also
be interpreted as the ownership of this memory cell. The separating conjunction of m
and m′ (m ∗ m′) means the heap can be split into two disjoint parts, and m and m′ hold
over one of them respectively. The separating implication “m −∗ m′” holds over H iff,
for any disjoint heap H′ satisfying m, H � H′ satisfies m′. We also lift the separating
conjunction and the separating implication to state predicates p. A heap predicate m
is precise (i.e., precise(m) holds) if, for all heap, there is at most one sub-heap that
satisfies m.

The specification � in Fig. 14 maps a block queue identifier w to a heap predicate
m specifying the well-formedness of the resource that the threads in the block queue
B(w) are waiting for.

Specifications of the shared resources The heap predicates INV0 and INV1 are part
of our program specifications, which specify the well-formedness of the shared sub-
heap A and C respectively, as shown in Figs. 5 and 6. The definition of INV0 depends
on the functionality of the global interrupt handler; and INV1 depends on the sharing
of resources among threads. To simplify the presentation, we treat them as global
parameters throughout this paper.1

1They can also be treated as local parameters threading through judgments in our program logic
(as � and � in Fig. 16). To avoid the requirement of the global knowledge about shared resources
and to have better modularity, frame rules [30, 34] can be supported following the same way they are
supported in SCAP [11]. We do not discuss the details in this paper.

Certifying Low-Level Programs 315

: (Well-Formed Instruction Sequence)

call beq () 1 : enable() () (())

where
def

[[]]

() : ;
()

(()) () 1 :
(::) () (())

() : call ;
()

enableiret (gid)

() : iret
()

where enableiret
def

() :: 1

enableret (gid)

() : ret
()

where enableret
def

::

(()) () 1 :
(gidrs rt

) ((gidrs rt
))

(gidrs rt
) ((gidrs rt

))

() : beq rs rt ;
()

(()) ()

() : j
()

: (Well-Formed Code Heap)

for all () : : []

:
()

(Well-Formed World)

1 (1 1 1 1) n (n n n n)

0 n i (i i 0 i) (0 i n)

: dom() dom()

WFCth(0) where 0 0

for all 0 k n such that k () : WFRdy(k k k)

for all w and 0 j n such that j (w) : WFWait(j j j (w))

()
()

Fig. 16 Inference rules

Specification of the interrupt handler We need to give a specification to the inter-
rupt handler to certify the handler code and ensure the non-interference. We let
(h_entry, (pi, gi)) ∈ �, where pi and gi are defined as follows:

pi
def= λK, S. ((INV0 ∗ true) S.H) ∧ (S.is=1) ∧ (S.ie=0) ∧ ∃f, R, K

′. K=(f, R) ::K′

(3)

gi
def= λS, S

′.
{
INV0
INV0

}
S.H S

′.H ∧ (S′.ie = S.ie) ∧ (S′.is = S.is) (4)

316 X. Feng et al.

The precondition pi specifies the stack and state at the entry h_entry. It requires that
the local heap used by the handler (block A in Fig. 5) satisfy INV0. It leaves block
C and the local heap of the non-handler code unspecified because the handler does
not access them. The precondition also specifies the expectations over is, ie and
the stack, which will be guaranteed by the operational semantics (see the irq rule in
Section 3.1). The guarantee gi specifies the behavior of the handler. The arguments
S and S′ correspond to program states at the beginning and the end of the interrupt
handler, respectively. It says the ie and is bits in S′ have the same value as in S, and
the handler’s local heap satisfies INV0 in S and S′, while the rest of the heap remains

unchanged. The predicate
{
m1

m2

}
is defined below.

{
m1

m2

}
def= λH1, H2. ∃H

′
1, H

′
2, H. (m1 H

′
1) ∧ (m2 H

′
2) ∧ (H′

1 � H = H1) ∧ (H′
2 � H = H2)

(5)

It means part of the heap in H1 satisfies m1 and is transformed into a sub-heap
satisfying m2 in H2. The rest part of H1 is preserved in H2. It has the following nice
monotonicity with respect to heap extension:

Proposition 1 For all H1, H2 and H′, if
{
m1

m2

}
H1 H2, H1⊥H′, and H2⊥H′, then{

m1

m2

}
(H1 � H′) (H2 � H′).

Specifying heap transitions and ownership transfers The guarantee g in general

specifies state transitions. Predicates of the form
{
m1

m2

}
are very useful to specify tran-

sitions of data heaps. Below we show some commonly used patterns of transitions.

hid def=
{
emp
emp

}
Recv(m) def=

{
emp
m

}
Send(m) def=

{
m
emp

}

Presv(m) def=
{
m
m

}

The transition hid represents an identity transition of heaps. Transitions Recv(m) and
Send(m) represent transitions of the ownership of the sub-heap specified by m be-
tween a thread and its environment. Recv(m) means the heap at the beginning of the
transition is preserved at the end. In addition, the thread gets the extra ownership of
the sub-heap m. Send(m) means a sub-heap of the initial heap satisfies m and the own-
ership of it is lost at the end of the transition. The rest part of the initial heap is pre-
served at the end. The transition Presv(m) means there are sub-heaps satisfying m at
the beginning and the end, and the rest part of the initial heap is preserved at the end.

Certifying Low-Level Programs 317

We can also define separating conjunction for heap transitions, which is similar to
the separating conjunction for heap predicates.

{
m1

m2

}
�

{
m′

1
m′

2

}
def= λH1, H2. ∃H

′
1, H

′′
1, H

′
2, H

′′
2. (H1 = H

′
1 � H

′′
1) ∧ (H2 = H

′
2 � H

′′
2)

∧
{
m1

m2

}
H

′
1 H

′
2 ∧

{
m′

1
m′

2

}
H

′′
1 H

′′
2 (6)

It satisfies the following properties:

Proposition 2 For all H1 and H2, we have:

–
({

m1

m2

}
�

{
m′

1
m′

2

})
H1 H2 ⇐⇒

{
m1 ∗ m′

1
m2 ∗ m′

2

}
H1 H2

–
{
m1

m2

}
⇐⇒ Send(m1) � Recv(m2)

The proposition above also shows that the transition Presv(m) does not imply hid
because the sub-heaps satisfying m at the beginning and the end do not have to be
the same.

4.2 Inference Rules

Inference rules of the program logic are shown in Fig. 16. The judgment
�,� �{s} f : I defines the well-formedness of the instruction sequence I starting at
the code label f, given the imported interfaces in �, the specification � of block
queues, and the specification (p, g). Informally, it says if the state satisfies p and
the code blocks that might be reached from I through jumps, conditional branch
instructions or function calls are also well-formed with respect to their specifications
in �, then the execution starting from f would not abort, and the transition from
f to the end of the current function (not necessarily the end of I) satisfies g. The
specification � of block queues is used in the rules for block and unblock instructions
shown below. It specifies the resources that the threads in the corresponding block
queues are waiting for.

The seq rule is a schema for instruction sequences starting with an instruction ι

(excluding the branch and function call instructions). We need to find an interme-
diate specification (p′, g′), with respect to which the remaining instruction sequence
is well-formed. It is also used as a post-condition for the first instruction. We use
gι to represent the state transition [[ι]]� made by the instruction ι, which is defined
in Fig. 18 and is explained below. The premise enable(p, gι) is defined in Fig. 17. It
means that the state transition gι would not abort as long as the starting stack and

enable()
def def

0 0 0

def def

def def

Fig. 17 Connectors for p and g

318 X. Feng et al.

P
def

(P) (P)

cli
def

() ()
() () (0) Recv((1 0) (INV0 INV1) emp)

[[

[[

[[

[[

[[

[[[[

[[

[[

[[

[[

[[

sti
def

() ()
() () (1) Send((0 0) (INV0 INV1) emp)

switch
def

() ()
(0) () () () Presv(INV0 (0 INV1 emp))

block rs
def

() ()
(0) () () ()

((rs)) (Presv(INV0 (0 INV1 emp)) Recv())

unblock rs rd
def

() ()
(0) () () (r rd (r) (r))

((rs)) (true) Send(((rd) 0) emp)
def

() (for all other)

Fig. 18 Thread-local state transitions made by ι

state satisfy p. The predicate p � gι, shown in Fig. 17, specifies the stack and state
resulting from the state transition gι, knowing the initial state satisfies p. It is the
strongest post condition after gι. The composition of two subsequent transitions g
and g′ is represented as g ◦ g′, and p ◦ g refines g with the extra knowledge that the
initial state satisfies p. We also lift the implication relation between p’s and g’s. The
last premise in the seq rule requires the composition of gι and g′ fulfills g, knowing
the current state satisfies p.

If ι is an arithmetic instruction, move instruction or memory operation, we define
[[ι]]� in Fig. 18 as NextS(ι,). Since NextS does not depend on the stack for these
instructions (recall its definition in Fig. 9), we use “ ” to represent arbitrary stacks.
Also note that the NextS relations for ld or st require the target address to be in
the domain of heap, therefore the premise enable(p, gι) requires that p contain the
ownership of the target memory cell.

Interrupts and thread primitive instructions One of the major technical contributions
of this paper is our formulation of [[ι]]� for cli, sti, switch, block and unblock, which,
as shown in Fig. 18, gives them an axiomatic ownership transfer semantics.

The transition [[cli]]� says that, if cli is executed in the non-handler (is = 0) and
the interrupt is enabled (ie = 1), the current thread gets ownership of the well-
formed sub-heap A and C satisfying INV0 ∗ INV1, as shown in Fig. 5; otherwise there
is no ownership transfer because the interrupt has already been disabled before cli.
The transition [[sti]]� is defined similarly. Note that when ι in the seq rule is instan-
tiated with sti, the premise enable(p, gι) in the rule requires that the precondition p
must contain the ownership of (ie = 0 ∧ is = 0) ? (INV1 ∗ INV0):emp.

[[switch]]� requires that the sub-heap A and C (in Fig. 5) be well-formed before
and after switch. However, if we execute switch in the interrupt handler (is = 1), we
know INV1 always holds and leave it implicit. Also the premise enable(p, gι) in the
seq rule requires that p imply ie = 0 and INV0 ∗ (is = 0 ? INV1:emp) holds over
some sub-heap.

Certifying Low-Level Programs 319

The transitions [[block rs]]� and [[unblock rs, rd]]� refer to the specification �.
[[block rs]]� requires ie = 0 and that rs contain an identifier of a block queue with
some specification m in �. It is similar to [[switch]]�, except that the thread gets the
ownership of m after it is released (see Fig. 6). In [[unblock rs, rd]]�, we require the
initial heap must contain a sub-heap satisfying m, because unblock may transfer it to
a blocked thread. However, since unblock does not immediately switch controls, we
do not need the sub-heap A and C to be well-formed. If rd contains non-zero value at
the end of unblock, some thread has been released from the block queue. The current
thread transfers m to the released thread and has no access to it any more. Otherwise,
no thread is released and there is no ownership transfer.

Other instructions The call rule in Fig. 16 requires that the callee function f′ be
specified in � with some specification (p′, g′). We view the state transition g′ made
by the callee as the transition of the call instruction, like [[ι]]� in the seq rule. The
rule also requires that the precondition p imply the precondition p′ of the callee,
which corresponds to the enable premise in the seq rule. The specification (p′′, g′′),
as in the seq rule, serves as both the post-condition of the function call and the
precondition of the remaining instruction sequence. iret and ret rules require that
the interrupt handler or the function have finished its guaranteed transition at this
point. So an identity transition gid should satisfy the remaining transition g. The
predicates enableiret and enableret specify the requirements over stacks. In the beq
rule, we use gidrs=rt

and gidrs �=rt
to represent identity transitions with extra knowledge

about rs and rt:

gid def= λS, S′. S = S′

gidrs=rt

def= λS, S′. (gid S S′) ∧ (S.R(rs) = S.R(rt))

gidrs �=rt

def= λS, S′. (gid S S′) ∧ (S.R(rs) �= S.R(rt))

We do not have an enable premise because executing beq never aborts. The j rule
can be viewed as a specialization of the beq rule where rs = rt is always true.

Well-formed code heaps The cdhp rule says the code heap is well-formed if and only
if each instruction sequence specified in � ′ is well-formed. � and � ′ can be viewed
as the imported and exported interfaces of C respectively.

Program invariants The wld rule defines the well-formedness of the whole pro-
gram configuration W. It also formulates the program invariant enforced by our
program logic. If there are n threads in T in addition to the current thread, the heap
can be split into n + 1 blocks. Each block Hk (k > 0) is for a ready or blocked thread
in queues. The block H0 is assigned to the current thread, which includes both its
private heap and the shared part (blocks A and C, as shown in Fig. 5). The code heap
C needs to be well-formed, as defined by the cdhp rule. We require the imported
interface � is a subset of the exported interface � ′, therefore C is self-contained and
each imported specification has been certified. The domain of � should be the same
with the domain of B, i.e., � specifies and only specifies block queues in B. The wld
rule also requires that the local heaps and execution contexts of the current thread,
ready threads and blocked threads are all well-formed (see Fig. 19).
WFCth defines the well-formedness of the current thread. It requires that the

pc have a specification (p, g) in �. By the premise �,� � C :� ′ we know C[pc]

320 X. Feng et al.

Inv()
def

INV1 1
emp 0 and 0
INVs 0 and 1

where INVs
def

INV0 INV1

Inv
def

(Inv())

def
() ()

1 2 1 2 (1 2) (1 2)
(1) (1) Inv() 2 Inv() 2

WFST(nil)
def

WFST(::)
def

(()) (Inv) WFST()

WFST(() ::)
def

(()) (Inv) WFST()
where (1 0)

WFCth()
def

(()) (Inv) WFST()

WFCth()
def

WFCth()

WFRdy()
def

((INV0 INV1) WFCth())

WFRdy()
def

WFRdy()

WFWait()
def

(WFRdy())

Fig. 19 Well-formed current, ready and waiting threads

is well-formed with respect to (p, g). It also requires that the stack and the local
state (containing the sub-heap H0) of the current thread satisfy p ∗ Inv, which is
defined in Fig. 19. Here p specifies the state accessible by the current thread, while
Inv(ie, is) specifies the inaccessible part of the shared heap. As shown in Fig. 20, if
the current program point is in the interrupt handler (is = 1), p leaves the memory
block C unspecified, therefore Inv(ie, is) is defined as INV1 and specifies the well-
formedness of C. Otherwise (is = 0), if ie = 0, blocks A and C become the current
thread’s private memory and the inaccessible part is empty. If ie = 1, A and C are
inaccessible; Inv(ie, is) specifies their well-formedness in this case. Similarly, we use
�g� to require that the inaccessible part of the shared heap unspecified in g satisfy
Inv(ie, is) at the beginning and the end of g. �g� is used in WFST, which specifies
the well-formedness of the stack K.

C A T
1

p Inv

C A T
1

p

C A T
1

p Inv

(a) (b) (c)1 0 0 0 1

Fig. 20 The Meaning of p and Inv in WFCth. The blocks A and C have the same meanings as in
Fig. 5. The block T1 is the private heap of the current thread

Certifying Low-Level Programs 321

The predicate WFST ensures it is always safe to return to the code labels (i.e.,
return addresses of functions or interrupt handlers) stored on the top of K. If K

is empty, we are executing the topmost level function and cannot return. This is
enforced by requiring the remaining guarantee g be unsatisfiable. If K is not empty,
the return address f on the top of the stack needs to be specified in � with a
specification (pf, gf). Again, by the premise �,� � C :� ′ in the wld rule we know
the return continuation C[f] is well-formed. When the remaining guarantee g is
fulfilled and thus the current function (or the interrupt handler) can return, the
remaining stack and the state after ret (or iret if in the interrupt handler) need to
satisfy pf ∗ Inv, therefore it is safe to execute C[f]. Also, the remaining stack needs
to be well-formed with respect to �gf� in the new state. The definition of WFST
follows our previous work on SCAP [13] for stack-based control abstractions.

The definition of well-formed ready threads WFRdy is straightforward. We first
overload the name WFCth and define WFCth(pc, �) as a predicate over the stack
and state.WFRdy says if the ready thread gets the extra ownership of shared memory
A and C, it becomes a well-formed current thread (see Fig. 5). Recall that m −∗ p is
defined in Fig. 15. Similarly, WFWait says that the waiting thread in a block queue
waiting for the resource m becomes a well-formed ready thread if it gets m (see Fig. 6).
The definitions of WFRdy and WFWait concisely formulate the relationship between
current, ready and waiting threads.

4.3 Examples

Using our program logic, we can either certify a program module C by proving
�,� � C :� ′, where �, � and � ′ are specifications provided by the user; or certify
the well-formedness of a complete program configuration W by proving �,� �W

with the user provided specification � and �. In the second case, we also need to
prove �,� � W.C :� ′ for some � ′ to discharge the premise in the wld rule, which
is the major task of the verification process. In this section, we show how to specify
and certify the Teeter-Totter example in Fig. 10 and the preemptive timer handler in
Fig. 13.

The Teeter-Totter example We first instantiate INV0, the interrupt handler’s specifi-
cation for its local memory:

INV0
def= ∃wl, wr. ((LEFT �→ wl) ∗ (RIGHT �→ wr)) ∧ (wl + wr = n) ,

where n is an auxiliary logical variable. Then we can get the concrete specification of
the interrupt handler, following Formulae (3) and (4) in Section 4.1. We let INV1 be
emp, since the non-handler code is sequential.

The specifications, including some important intermediate ones used during ver-
ification, are shown in Fig. 10 and defined in Fig. 21. Recall enableiret is defined
in Fig. 16. To simplify our presentation, we present the predicate p in the form of
a proposition with free variables referring to components of the state S. Also, we
use the heap predicate m as a shorthand for the proposition m H when there is no
confusion.

If we compare p1 and p2, we will see that the non-handler code cannot access
memory at addresses LEFT and RIGHT without first disabling the interrupt because
p1 does not contain the ownership of memory cells at the locations LEFT and

322 X. Feng et al.

Fig. 21 Specifications of the
Teeter-Totter example

def
(1) (0)

def
(0) (0) 0

def

1
def

(r1) (r2)

2
def

(r1) (r2) (r3 0) (INV0 true)

3
def

(r1) (r2) (INV0 true)

4
def

enable iret NoG
def

False

RIGHT. Since the non-handler never returns, we simply use NoG (see Fig. 21) as the
guarantee for the state transition from the specified point to the return point.

The code heap specification � is defined as:

�
def= {incleft � (p0,NoG), l_loop � (p1,NoG), l_win � (p3,NoG),

h_entry � (pi, gi), r_win � (p4, gid)}
We define � as ∅. To certify the program, we need to prove �,� �{s} f : C[f]
for each (f, s) in �. Here C represents the whole program shown in Fig. 10. The
verification follows the rules in Fig. 16. We do not show the details here. Note that
C[l_loop] is a sub-sequence of C[incleft]. However, we do not need to verify
C[l_loop] twice. The verification of C[l_loop] can be reused when C[incleft] is
verified.

The timer handler We briefly explain the specification for the preemptive timer
handler shown in Fig. 13. The handler only accesses the memory cell at the location
CNT. We instantiate INV0 below:

INV0
def= ∃w. (CNT �→ w) ∧ (w ≤ 100) .

Then we get the specification of the handler (pi, gi) by Formulae (3) and (4). In g0
(shown in Fig. 13), we use primed variable (e.g., ie′ and is′) to refer to components
in the second argument. Like the use of m as the shorthand for m H, we omit the
arguments of heap transitions in g0 for the clarity of presentations.

4.4 Soundness

Our program logic is sound. The soundness theorem, Theorem 3, says that certified
programs never abort, and the behaviors of certified programs satisfy their specifica-
tions in the sense that assertions p inserted in code heaps C are satisfied when the
specified program points are reached by jump instructions, branch instructions or
function calls. Assertions at these points are of particular interest because they cor-
respond to loop invariants and preconditions of functions in higher-level programs.

Theorem 3 (Soundness) If INV0 and INV1 are precise, �,� �W, and
(h_entry, (pi, gi)) ∈ �, then there does not exist n such that W �=⇒n abort;
and for all n and W′, if W �=⇒n W′ and W′ = (C, S, K, pc, tid, T, B), then the
following are true:

1. if C(pc) = j f, then there exists (p, g) such that (f, (p, g)) ∈ � and (p ∗ true) K S;
2. if C(pc) = beq rs, rt, f and S.R(rs) = S.R(rt), then there exists (p, g) such that

(f, (p, g)) ∈ � and (p ∗ true) K S;

Certifying Low-Level Programs 323

3. if C(pc)=call f, then there exists (p, g) such that (f, (p, g))∈� and (p ∗ true)
(pc ::K) S.

Recall that precision is defined in Fig. 15; pi and gi are defined by formulae (3)
and (4).

Proof By Lemma 4 (shown below) we know W does not abort. Since W �=⇒n W′,
we also know �,� �W′. By Lemma 22 we know items 1–3 are true. ��

The following safety lemma shows certified programs never abort. More im-
portantly, we know the invariant formulated by the wld rule always holds during
program execution, from which we can derive rich properties of programs.

Lemma 4 (Safety) If INV0 and INV1 are precise, �,� �W, and (h_entry, (pi, gi)) ∈
�, then there does not exist n such that W �=⇒n abort; and for all n and W′, if W �=⇒n

W′, then �,� �W′.

Proof We do induction over n. The proof follows the syntactic approach to proving
the type safety [38]. We apply the progress lemmas (Lemmas 5 and 7) and the
preservation lemma (Lemma 8). The progress lemmas show a well-formed program
configuration W can always execute one more step. The preservation lemma shows
that, starting from a well-formed W, the new program configuration reached after
one step of execution is also well-formed. ��

Lemma 5 (Progress) If �,� �W, then there exists W′ such that W �−→ W′.

Proof By the pc rule and the auxiliary relations defined in Section 3, we know there
always exists W′ if the next command at pc is one of move instructions, arithmetic
instructions, function calls, conditional branches, jumps, cli or sti. So we only discuss
about the rest of instructions.

Suppose W = (C, S, K, pc, tid, T, B) and S = (H, R, ie, is). Since �,� �W,
by the wld rule we know there exist � ′ and H0 ⊆ H such that �,� � C :
� ′ and WFCth(S0, K, pc, � ′) hold, where S0 = S|H0 . Therefore, by the defini-
tion of WFCth we know there exist p and g such that (1) (pc, (p, g)) ∈ � ′; (2)
(p ∗ Inv) K S0; and (3)WFST(�g�, S0, K, � ′). By (1) and the cdhp rule we have (4) �,
� �{(p, g)} pc : C[pc].

If C(pc) is a load or store, by (4) and the seq rule we have
enable(p, NextS(C(pc),_)). By (2), H0 ⊆ H and Lemma 6 we know there exists
S′ such that NextS(C(pc),_) S S′. We let W′ = (C, S′, K, pc+1, tid, T, B). By the pc
rule we know W �−→ W′.

If C(pc) is ret, by (4) and the ret rule we know p ⇒ enableret. By (2) we know
there exists f and K′ such that K = f ::K′. Let W′ = (C, S, K′, pc+1, tid, T, B). We
know W �−→ W′. The proof is similar if C(pc) is iret.

If C(pc) is switch, block rs or unblock rs, rd, by (4) and the seq rule we can prove
enable(p, [[C(pc)]]�). Then by (2) we know ie = 0. By the operational semantics
shown in Fig. 12 we know there exists W′ such that W �−→ W′. ��

Proof of Lemma 5 uses the following monotonicity property of program state
transitions. It says the safety of the program is preserved by heap extensions.

324 X. Feng et al.

Lemma 6 (NextS-Monotonicity) If NextS(c,K) (H, R, ie, is) S′, and H⊥H′, then
there exists S′′ such that NextS(c,K) (H � H′, R, ie, is) S′′.

Proof Trivial, by inspection of the definition of NextS in Fig. 9. ��

The following lemma says the program can always reach the entry point of the
interrupt handler as long as the interrupt is enabled and there is no interrupts being
serviced.

Lemma 7 (Progress-IRQ) If W.S.ie = 1 and W.S.is = 0, there always exists W′
such that W � W′.

Proof It trivially follows the irq rule shown in Section 3.1. ��

Lemma 8 (Preservation) If INV0 and INV1 are precise, (h_entry, (pi, gi)) ∈ �,
�,� �W and W �=⇒ W′, we have �,� �W′.

Proof Since �,� �W′, we know there are two possible cases: W � W′ or W �−→ W′.
We apply Lemma 9 and Lemma 10 respectively. ��

The following lemma says the well-formedness of program configurations is
preserved when an interrupt comes and the control is transferred to the interrupt
handler.

Lemma 9 (Preservation-IRQ) If INV0 and INV1 are precise, (h_entry, (pi, gi)) ∈ �,
�,� �W and W � W′, we have �,� �W′.

Proof Suppose W = (C, S, K, pc, tid, T, B) and S = (H, R, ie, is). By �,� �W

and the wld rule we know there exist � ′ ⊇ � and H0 such that:

H0 ⊆ H (p1)

WFCth(S0, K, pc, � ′), where S0 = (H0, R, ie, is) (p2)

Since W � W′, by the irq rule (with the extension for multiple threads in AIM-II)
we know ie = 1, is = 0, and W′ = (C, (H, R, 0, 1), (pc, R) ::K, h_entry, tid, T, B).
Since the transition does not change C, H, T and B, by the wld rule we know we only
need to prove WFCth(S′

0, (pc, R) ::K, h_entry, � ′), where S′
0 = (H0, R, 0, 1).

Since we know (h_entry, (pi, gi)) ∈ �, by the definition of WFCth we need to
prove:

(pi ∗ Inv) ((pc, R) ::K) S
′
0 (g1)

WFST(�gi�, S0, (pc, R) ::K, � ′) (g2)

Certifying Low-Level Programs 325

By (p2) we know there exist p and g such that

(pc, (p, g)) ∈ � ′ (p2.1)

(p ∗ Inv) K S0 (p2.2)

WFST(�g�, S0, K, � ′) (p2.3)

Because ie = 1 and is = 0, by (p2.2) and the definition of p ∗ Inv we know
(p ∗ INVs) K S0. Therefore (INVs ∗ true) H0. By the definition of pi (Formula (3)) we
can prove (g1).

To prove (g2), by the definition of WFST we need to prove that, for all S′ and S′′
such that �gi� S′

0S
′ and S′′ = (S′.H, R, 1, 0), the following are true:

(p ∗ Inv) K S
′′ (g2.1)

WFST(�g�, S
′′, K, � ′) (g2.2)

By (p2.2), �gi� S′
0S

′, the precision of INV0 and INV1, and the definition of gi
(Formula (4)), we can prove (g2.1). We can also prove

∀S. �g� S
′′

S → �g� S0 S .

Then we know (g2.2) holds by Lemma 16. ��

The lemma below shows that executing the next instruction at pc preserves the
well-formedness of program configurations.

Lemma 10 (Preservation-PC) If INV0 and INV1 are precise, �,� �W and W �−→
W′, we have �,� �W′.

Proof Suppose W = (C, S, K, pc, tid, T, B) and S = (H, R, ie, is). Also sup-
pose T \ tid = {tid1 � (R1, K1, is1, pc1), . . . , tidn � (Rn, Kn, isn, pcn)}. By �,
� �W and the wld rule we know there exist � ′, H0, H1, . . . , Hn such that:

H = H0 � . . . � Hn (p1)

�,� � C :� ′ (p2)

� ⊆ � ′ (p3)

dom(�) = dom(B) (p4)

WFCth(S0, K, pc, � ′), where S0 = (H0, R, ie, is) (p5)

for all 0 < k ≤ n such that tidk ∈ readyQ(T, B):

WFRdy(Sk, Kk, pck, �
′), where Sk = (Hk, Rk, 0, isk) (p6)

for all w and 0 < j ≤ n such that tid j ∈ B(w) :

WFWait(S j, K j, pc j, �
′,�(w)) where S j = (H j, R j, 0, is j) (p7)

326 X. Feng et al.

By (p5) we know there exist p and g such that

(pc, (p, g)) ∈ � ′ (p5.1)

(p ∗ Inv) K S0 (p5.2)

WFST(�g�, S, K, � ′) (p5.3)

By (p5.1), (p2), and the cdhp rule we know:

�,� �{(p, g)} pc : C[pc] (p2.1)

We analyze different cases of C(pc).

Case: C(pc) = switch Suppose a thread tid′ in readyQ(T, B) is picked to
run after switch. There are two cases: tid′ �= tid or tid′ = tid. In the first
case, we know there exists some i > 0 such that tid′ = tidi. Therefore W′ =
(C, (H, Ri, 0, isi), Ki, pci, tidi, T′, B), where T′ = T{tid � (R, K, is, pc+1)}. By
the wld rule, we need to find a � ′′, H′

0 and H′
i such that:

H = H
′
0 � H1 . . . � Hi−1 � H

′
i � Hi+1 . . . Hn (g1)

�,� � C :� ′′ (g2)

� ⊆ � ′′ (g3)

WFCth(S′
i, Ki, pci, �

′′), where S
′
i = (H′

i, Ri, 0, isi) (g4)

WFRdy(S′
0, K, pc+1, � ′′), where S

′
0 = (H′

0, R, ie, is) (g5)

for all 0 < k ≤ n such that k �= i and tidk ∈ readyQ(T, B):

WFRdy(Sk, Kk, pck, �
′′), where Sk = (Hk, Rk, 0, isk) (g6)

for all w and 0 < j ≤ n such that tid j ∈ B(w) :
WFWait(S j, K j, pc j, �

′′,�(w)) where S j = (H j, R j, 0, is j) (g7)

By (p2.1) and the seq rule we know there exist p′ and g′ such that

�,� �{(p′, g′)} pc+1 : C[pc+1] (p2.1.1)

enable(p, [[switch]]�) (p2.1.2)

(p � [[switch]]�) ⇒ p′ (p2.1.3)

(p ◦ ([[switch]]� ◦ g′)) ⇒ g (p2.1.4)

We let � ′′ = � ′ ∪ {(pc+1, (p′, g′))}. So (g3) is trivial. The proof of (g2), (g6) and
(g7) follows Lemmas 17 and 18. By (p5.2) and Lemma 11 we know there exist H01

and H02 such that H0 = H01 � H02 and INVs H02 (INVs is defined in Fig. 19). We let

Certifying Low-Level Programs 327

H′
0 = H01 and H′

i = Hi � H02, i.e., the current thread tid transfers the sub-heap H02

to the thread tidi. (g1) is trivial. We prove (g4) by applying Lemma 11, and (g5) by
Lemma 12.

In the second case (tid′ = tid), the current thread tid is picked to run again.
By a combination of Lemma 11 and 12 we know the current thread tid is still well-
formed at pc+1. The proof is similar to the first case.

Case: C(pc) = block rs If there are no other threads in the ready queue except the
current thread, the program stutters and the proof is trivial. Otherwise, block rs puts
the current thread onto the corresponding block queue and picks a thread from the
ready queue as the current thread. The proof follows similar structure of the proof
above for switch. Lemma 13 shows the current thread becomes a well-formed waiting
thread after it transfers a sub-heap satisfying INVs to the ready thread. Lemma 12
shows the ready thread becomes a well-formed current thread after it receives the
sub-heap.

Case: C(pc) = unblock rt, rd If the corresponding block queue is empty, the only
effect of this instruction is to set rd to 0. The proof is simple and elided here.
Otherwise, unblock rt, rd moves a waiting thread from the block queue to the ready
queue. The proof follows similar structure of the proof above for switch. Lemma 14
shows the current thread is still well-formed at pc+1 after transferring a sub-heap
satisfying �(R(rt)) to the blocked thread. Lemma 15 shows the waiting thread
becomes a well-formed ready thread after it receives the resource it is waiting for.

Case: C(pc) = iret Since W �−→ W′, we know there exist pc′, R′ and K′ such that
K = (pc′, R′) ::K′ and W′ = (C, (H, R′, 1, 0), K′, pc′, tid, T, B). To prove �,� �W′,
by the wld rule we only need to prove:

WFCth(S′
0, K

′, pc′, � ′), where S
′
0 = (H0, R

′, 1, 0) (g1)

By the definition of WFCth, we need to prove there exist p′ and g′ such that

(pc′, (p′, g′)) ∈ � ′ (g1.1)

(p′ ∗ Inv) K
′
S

′
0 (g1.2)

WFST(�g′�, S
′
0, K

′, � ′) (g1.3)

By (p2.1) and the iret rule we know (p � gid) ⇒ g. Then by (p5.2) we know
�g� S0 S0. Together with (p5.3) and the definition of WFST, we know g1.1, g1.2 and
g1.3 are true.

Case: C(pc) = ret The proof is similar to the above proof for iret.

Case: C(pc) = call f or C(pc) = j f The proof for call f is similar to the proof of
Lemma 9, since the transfer of control to the interrupt handler can be viewed as
a special function call. The jump instruction j f is similar, but it does not change
the stack.

328 X. Feng et al.

Case: C(pc) is one of mov, movi, add, sub, ld, st, cli or sti instructions. These
sequential instructions do not change the stack, the ready queue and block queues.
We only need to prove that the current thread is still well-formed at pc+1. The
proof is similar to the proof for switch. Since the st instruction updates the heap, its
proof applies the frame property shown in Lemma 20. For cli and sti, we use [[cli]]�
and [[sti]]� instead of NextS(C(pc),K) to model state transitions. Their proofs apply
Lemma 21.

Case: C(pc) = beq rs, rt, f Depending on the validity of the condition, the branch
instruction can be viewed either as a jump or a sequential instruction. The proofs for
the two cases are similar to the proofs for j f and sequential instructions, respectively.

��

The following lemma says that, after executing switch, the current thread becomes
a well-formed ready thread and transfers a sub-heap satisfying INVs to a ready thread
that is scheduled to run. Lemma 12 shows the ready thread becomes a well-formed
current thread after receiving the sub-heap.

Lemma 11 (Switch) Suppose the premises of the seq rule are satisfied when
ι is instantiated with switch, ie.,(p1) �,� �{(p′, g′)} pc+1 : C[pc+1]; (p2)
enable(p, gι); (p3) (p � gι) ⇒ p′; and (p4) (p ◦ (gι ◦ g′)) ⇒ g; where gι = [[switch]]�.
If WFCth(S, K, pc, � ′) and S = (H, R, ie, is), then there exist H1 and H2 such
that H = H1 � H2, INVs H2, and WFRdy((H1, R, ie, is), K, pc+1, � ′′), where � ′′ =
� ′ ∪ {(pc+1, (p′, g′))}.

Proof By WFCth(S, K, pc, � ′) and S = (H, R, ie, is) we know

(pc, (p, g)) ∈ � ′ (p5)

(p ∗ Inv) K S (p6)

WFST(�g�, S, K, � ′) (p7)

By (p2) and (p6) we can prove that there exist H1 and H2 such that H = H1 � H2

and INVs H2. To prove WFRdy((H1, R, ie, is), K, pc+1, � ′′), we need to prove, by
the definition of WFRdy, that for all H′

2 and H′, if INVs H′
2 and H′ = H1 � H′

2, then
WFCth(S′, K, pc+1, � ′′), where S′ = (H′, R, ie, is). We need to prove

(pc+1, (p′, g′)) ∈ � ′′ (g1)

(p′ ∗ Inv) K S
′ (g2)

WFST(�g′�, S
′, K, � ′′) (g3)

(g1) trivially follows our assumption. We can prove (g2) by (p2), (p3) and (p6).
By (p2), (p4) and (p6) we know ∀S′′.�g� S S′′ → �g′� S′ S′′. To prove (g3), we
apply Lemma 16 and prove WFST(�g�, S, K, � ′′), which trivially follows Lemma 18
and (p7). ��

Certifying Low-Level Programs 329

Lemma 12 (Rdy-to-Run) If WFRdy(S, K, pc, �), INVs H′ and H′′ = S.H � H′, then
WFCth(S|H′′ , K, pc, �).

Proof Trivial, by the definition of WFRdy. ��

The following lemma is similar to Lemma 11. It says that, after executing the block
instruction, the current thread becomes a well-formed waiting thread and transfers a
sub-heap satisfying INVs to a ready thread that is scheduled to run.

Lemma 13 (Block) Suppose the premises of the seq rule are satisfied when
ι is instantiated with block rs, i.e., (p1) �,� �{(p′, g′)} pc+1 : C[pc+1]; (p2)
enable(p, gι); (p3) (p � gι) ⇒ p′; and (p4) (p ◦ (gι ◦ g′))⇒g; where gι =[[block rs]]�.
If WFCth(S, K, pc, � ′) and S = (H, R, ie, is), then there exist m, H1 and H2 such
that m = �(R(rs)), H = H1 � H2, INVs H2, and WFWait((H1, R, ie, is), K, pc+1,

� ′′, m), where � ′′ = � ′ ∪ {(pc+1, (p′, g′))}.

Proof Similar to the proof of Lemma 11. ��

The following lemma says the current thread is still well-formed after it releases
a blocked thread by transferring the resource that the blocked thread is waiting
for. Lemma 15 says the waiting thread becomes a well-formed ready thread after
receiving the resource.

Lemma 14 (Unblock) Suppose the premises of the seq rule are satisfied when
ι is instantiated with unblock rt, rd, i.e., (p1) �,� �{(p′, g′)} pc+1 : C[pc+1];
(p2) enable(p, gι); (p3) (p � gι) ⇒ p′; and (p4) (p ◦ (gι ◦ g′)) ⇒ g; where gι =
[[unblock rt, rd]]�. If WFCth(S, K, pc, � ′) and S = (H, R, ie, is), then there ex-
ist m, H1 and H2 such that m = �(R(rt)), H = H1 � H2, m H2, and for all n > 0,
WFCth((H1, R{rd � n}, ie, is), K, pc+1, � ′′), where � ′′ = � ′ ∪ {(pc+1, (p′, g′))}.

Proof Similar to the proof of Lemma 11. ��

Lemma 15 (Released) If WFWait(S, K, pc, �, m), m H′ and H′′ = S.H � H′, then
WFRdy(S|H′′ , K, pc, �).

Proof Trivial, by the definition of WFWait. ��

The following lemma says, if a stack is well-formed at the state S where the current
function has the remaining behavior of g to fulfill, it is still well-formed after the
function reaches a new state S′, as long as the new guaranteed behavior g′ fulfills g.
The lemma is used to prove Lemmas 9 and 10.

Lemma 16 (WFST-Strengthen) If WFST(g, S, K, �) and ∀S′′. g′ S′ S′′ → g S S′′,
then WFST(g′, S′, K, �).

Proof Trivial, by the definition of WFST in Fig. 19. ��

330 X. Feng et al.

This lemma says we can extend the exported interface as long as the corresponding
code block is well-formed with respect to the newly added specification.

Lemma 17 (Spec-Extension-I) If �,� � C :� ′, �,� �{s} f : C[f] and � ′′ = � ′ ∪
{(f, s)}, then �,� � C :� ′′.

Proof It trivially follows the cdhp rule. ��

The lemma below says an extension of the specification � preserves the well-
formedness of stacks, the current thread, ready threads and waiting threads.

Lemma 18 (Spec-Extension-II) If � ⊆ � ′, the following are true:

1. If WFST(g, S, K, �), then WFST(g, S, K, � ′).
2. If WFCth(S, K, pc, �), then WFCth(S, K, pc, � ′).
3. If WFRdy(S, K, pc, �), then WFRdy(S, K, pc, � ′).
4. If WFWait(S, K, pc, �, m), then WFWait(S, K, pc, � ′, m).

Proof Trivial by inspecting the definitions. ��

The next two lemmas show the standard frame properties [39] of the NextS
relation. They are used to prove the preservation lemma.

Lemma 19 (NextS-Frame-I) If NextS(c,K) (H, R, ie, is) (H′, R′, ie′, is′), H =
H1 � H2, and there exists a state S′ such that NextS(c,K) (H1, R, ie, is) S′, then
there exists a sub-heap H′

1 such that H′ = H′
1 � H2, and NextS(c,K) (H1, R, ie, is)

(H′
1, R′, ie′, is′).

Proof By inspection of the definition of the NextS relation in Fig. 9. ��

Lemma 20 (NextS-Frame-II) If NextS(c,K) S S′, (p ∗ m) K S, (p � NextS(c,K)) ⇒
p′, and enable(p, NextS(c,K)), then (p′ ∗ m) K S′.

Proof This lemma follows Lemma 19. ��

The lemma below is an auxiliary lemma to prove that the well-formed current
thread is still well-formed after the state transition of [[cli]]� or [[sti]]�. It is used in
Lemma 10 to prove the preservation of cli and sti.

Lemma 21 (CLI & STI) If (p ∗ Inv) K S, S′ = S|ie=0, and gι = [[cli]]� (or gι =
[[sti]]�), then

1. If (p � gι) ⇒ p′, then (p′ ∗ Inv) K S′.
2. If (p ◦ (gι ◦ g′)) ⇒ g, WFST(�g�, S, K, �), and INV0 and INV1 are precise, then

WFST(�g′�, S′, K, �).

Proof The proof of 1 simply follows the definition of p ∗ Inv and [[cli]]� (or [[sti]]�).
To prove 2, we apply Lemma 16 and prove ∀S′′. �g′� S′ S′′ → �g� S S′′, which can be
proved by the definition of �g� and [[cli]]� (or [[sti]]�). ��

Certifying Low-Level Programs 331

This lemma says if the current program configuration is well-formed and the in-
struction at pc is a jump, a conditional branch or a function call, then the specification
for the target address is satisfied when it is reached.

Lemma 22 If �,� �W and W = (C, S, K, pc, tid, T, B), then the following are true:

1. if C(pc) = j f, then there exists (p, g) such that (f, (p, g)) ∈ � and (p ∗ true) K S;
2. if C(pc) = beq rs, rt, f and S.R(rs) = S.R(rt), then there exists (p, g) such that

(f, (p, g)) ∈ � and (p ∗ true) K S;
3. if C(pc) = call f, then there exists (p, g) such that (f, (p, g)) ∈ � and (p ∗

true) (pc ::K) S.

Proof Since �,� �W, as the proof of Lemma 10 shows, there exist H0, p0 and
g0 such that H0 ⊆ S.H (this is (p1) in the proof of Lemma 10), �, � �{(p0, g0)} pc :
C[pc] ((p2.1) in Lemma 10) and (p0 ∗ Inv) K S|H0 ((p5.2) in Lemma 10).

To prove 1, by C(pc) = j f, �,� �{(p0, g0)} pc : C[pc] and the j rule we know
there exist p and g such that (f, (p, g)) ∈ �, and p0 ⇒ p. Since (p0 ∗ Inv) K S|H0 , we
know (p ∗ true) K S holds. The proof of 2 and 3 is similar and is elided here. ��

5 Certifying Implementations of Synchronization Primitives

In this section, we show how to implement common synchronization primitives in
AIM and certify them using our program logic.

5.1 Certifying Implementations of Locks

Threads use locks to achieve exclusive access to shared heaps. Following concurrent
separation logic, each lock is used to protect a region of the heap (a.k.a. a sub-heap).
Threads cannot access the sub-heap without first acquiring the corresponding lock.
To be shared by multiple threads, the sub-heap must be “well-formed” when it is not
exclusively owned by any threads (i.e., the corresponding lock has not been acquired
by any threads). The well-formedness can be viewed as the protocal between threads
sharing resources.

(LockID) l ::= l

(LockSpec) � ::= {l � m}∗

We use memory pointers (label l) as lock IDs l. The pointer l points to a memory
cell containing a binary flag that records whether the lock has been acquired (flag is
0) or not. The well-formedness of the sub-heap protected by a lock is specified using
a heap predicate m. The specification � maps lock IDs to the corresponding heap
predicates.

The heap used to implement locks and the heap protected by locks are shared by
threads in the non-handler code, therefore they are part of the block C in Fig. 5. The

332 X. Feng et al.

well-formedness of this part of heap is specified by INV(�) defined below. We require
INVs ⇒ INV(�) ∗ true (recall that INVs is a shorthand for INV0 ∗ INV1).

INV(l, m) def= ∃w. (l �→ w) ∗ ((w = 0) ∧ emp ∨ (w = 1) ∧ m) (7)

INV(�)
def= ∀∗l ∈ dom(�). INV(l, �(l)) (8)

INV(l, m) says there is a binary flag stored at the location l. If the flag is 0, the lock has
been acquired by some thread and the sub-heap protected by the lock is not available
for sharing (specified by emp). Otherwise the lock is available and the corresponding
sub-heap is also available and well-formed (specified by m). ∀∗ is an indexed, finitely
iterated separating conjunction, which is defined as:

∀∗x ∈ S. P(x)
def=

{
emp if S = ∅

P(xi) ∗ (∀∗x ∈ S′. P(x)) if S = S′ � {xi}

We first show two block-based implementations of locks, in which threads waiting
for the availability of locks are put onto block queues in B. We use the lock ID as
the identifier of the corresponding block queue. We also show an implementation of
spinlocks for uniprocessor systems.

The Hoare-style implementation In Hoare style, when a thread waiting for the lock
is released from the block queue, it immediately owns the lock (and the resource
protected by the lock). The acquire and release functions are implemented as ACQ_H
and REL_H respectively in Fig. 22. Each function takes a lock ID as argument, which
is passed from the caller through the register r1.

Specifications are inserted into the code in Fig. 22 and are defined in Fig. 23.
The precondition for ACQ_H is (p01, g01). The assertion p01 requires that r1 contain
a lock ID and that �(r1) = �(r1), i.e., threads on the block queue B(r1) are waiting
for the well-formed resource protected by the lock r1. The guarantee g01 shows that
the function obtains the ownership of �(r1) when it returns. Here we use primed
variables (e.g., ie′ and is′) to refer to components in the return state, and use
trash({r2, r3}) to mean that values of all registers other than r2 and r3 are preserved:

trash(S)
def= λS, S

′. ∀r. r �∈ S → S.R(r) = S
′.R(r) .

ACQ_H calls ACQ_H_a after it disables the interrupt. ACQ_H_a is specified by
(p11, g11). Comparing (p01, g01) and (p11, g11), we can see that (p01, g01) hides INVs and
the implementation details of the lock (e.g., the lock name l is a pointer pointing to
a binary value) from the client code. We also show some intermediate specifications
used during verification. Readers can also compare p12 and p13 and see how the blk
rule is applied.

The functions REL_H and REL_H_a are specified by (p21, g21) and (p31, g31), respec-
tively. The precondition p21 requires that the releasing thread must own the resource
�(r1) (thus it must be the owner of the lock r1). The guarantee g21 shows �(r1) is
released at the end. Depending on whether there are threads waiting for the lock,
the current thread may either transfer the ownership of �(r1) to a waiting thread (ga)

Certifying Low-Level Programs 333

l l

(01 01)

(11 11)

l

l

l
(12 11)

(13 gid)

l l
(21 21)

(31 31)

(32 32)

(33 33)

l
(34 gid)

Fig. 22 Hoare-style implementation of locks

or simply set the lock to be available (gb), as specified in g31. Either way, the current
thread loses the ownership of �(r1):

(INV(�) ∗ �(r1)) � (ga ∨ gb) ⇒ INV(�)

that is, with an initial state containing the resources INV(�) and �(r1), we can prove
that the new state after the transition ga or gb has only INV(�). Like the specification
(p01, g01) for ACQ_H, (p21, g21) here also hides the implementation details of the lock.

The Mesa-style implementation Figure 24 shows the Mesa-style implementation of
locks. In the acquire function ACQ_M, the thread needs another round of loop to
test the availability of the lock after it is released from the block queue—the lock
is not immediately passed to it. The release function REL_M always sets the lock to
be available. It does not pass the lock to the thread released from the block queue.
Specifications for ACQ_M and REL_M are the same as Hoare style locks except that the

334 X. Feng et al.

0
def

(0) enableret (r1 dom()) ((r1) (r1))

01
def

0 (1)

01
def

Recv((r1)) () () trash(r2 r3)

11
def

0 (0) (INVs true)

11
def

(Presv(INVs) Recv((r1))) () () trash(r2 r3)

12
def

0 (0) ([r1] 0) (INVs true)

13
def

0 (0) (INVs true (r1))

21
def

0 (1) ((r1) true)

21
def

Send((r1)) () () trash(r2 r3)

31
def

0 (0) ((r1) INVs true)

a
def

Send((r1)) b
def r1

r1 1

31
def

(a b) () () trash(r2 r3)

32
def

0 (0) ((r2 0) ((r1) INVs true) (r2 0) (INVs true))

32
def

((r2 0 b) (r2 0 hid)) () () trash(r2 r3)

33
def

0 (0) ((r1) INVs true)

33
def

b () () trash(r2)

34
def

0 (0) (INVs true)

Fig. 23 Specifications of Hoare-style locks

assertion p0, which is part of the preconditions, requires �(r1) = emp. This implies
the Mesa-style semantics of block and unblock: threads waiting on the block queue
do not get any resource when they are released.

Spinlocks An implementation of spinlocks for uniprocessor systems and its speci-
fications are shown in Fig. 25. The acquire function ACQ_S and the release function
REL_S are specified by (p11, g11) and (p21, g21) respectively. The specifications look
very similar to specifications for block-based implementations: ACQ_S gets the own-
ership of the extra resource �(r1) protected by the lock in r1, while REL_S loses
the ownership so that the client can no longer use the resource afterwards. The
preconditions p11 and p21 also requires r1 �∈ dom(�), that is, the lock is not associated
with a block queue. These specifications also hide the implementation details (the
binary flag in heap) from the client code.

Preventing mismatches of acquire and release functions Each acquire function of
locks should be paired with the release function of the same style. Mismatches of
them would cause incorrect code. Our specifications for different styles effectively
prevent the mismatches. We require �(l) = �(l) in Hoare-style and �(l) = emp in

Certifying Low-Level Programs 335

0
def

(0) enableret (r1 dom()) ((r1) emp)

11
def

0 (1) 12
def

11 (r3 0)

11
def

Recv((r1)) () () trash(r2 r3)

13
def

0 (0) (INVs true)

13
def

(Recv((r1)) Send(INVs)) (1) () trash(r2 r3)

14
def

0 (0) ((r1) INVs true)

14
def

Send(INVs) (1) () trash(r2 r3)

21
def

0 (1) ((r1) true)

21
def

Send((r1)) () () trash(r2)

22
def

0 (0) ((r1) INVs true)

22
def

Send((r1) INVs) (1) () trash(r2)

l l
(11 11)

(12 11)

l
l

l
(14 14)

(13 13)

(13 13)

l l

(21 21)

(22 22)

(22 22)

l

Fig. 24 Mesa-style locks

Mesa style (a mismatch between Hoare-style and Mesa style is harmless if �(l) =
emp). A spinlock l is not in dom(�).

336 X. Feng et al.

def
(0) enableret (r1 dom()) (r1 dom())

11
def

(1) 12
def

11 (r2 1)

11
def

Recv((r1)) () () trash(r2 r3)

13
def

(0) ((r1 1) true) (INVs true)

13
def

(Recv((r1)) Send(INVs)) (1) () trash(r2
)

21
def

(1) ((r1) true)

21
def

Send((r1)) () () trash(r2)

l l

(11 11)

(12 11)

l
l

(13 13)

l

l l

(21 21)

l

Fig. 25 A spinlock

5.2 Certifying Implementations of Condition Variables

Now we show implementations of Hoare style [18], Brinch Hansen style [4], and
Mesa style [24] condition variables. Condition variables are used together with locks
to implement monitors. Each condition variable corresponds to certain condition
over the shared resource protected by the corresponding lock. We use cv to represent
identifiers of condition variables. ϒ maps condition variables to the corresponding
conditions m.

(CondVar) cv ::= n (nat nums)

(CVSpec) ϒ ::= {cv � m}∗
In our implementation, we let cv be an identifier pointing to a block queue in B.

A lock l needs to be associated with cv to guarantee exclusive access of the shared

Certifying Low-Level Programs 337

(11 11) l cv

l
cv

(12 12)

(13 13)

(14 14)

(21 21) l cv

(22 22) cv

(23 23)

(24 24)

l
(25 25)

(21 31) l cv

(22 32)

cv
(23 33)

(24 34)

(25 35)

l
(34 24)

Fig. 26 Impl. of CV - Hoare style and Brinch Hansen style

resource. The difference between �(l) and ϒ(cv) is that �(l) specifies the basic well-
formedness of the resource (e.g., a well-formed queue), while ϒ(cv) specifies an extra
condition (e.g., the queue is not empty).

Hoare style and Brinch Hansen style implementations The implementations are
shown in Fig. 26. The Hoare style is implemented by functions WAIT_H and

338 X. Feng et al.

Cond(l cv)
def

(l) ((cv) true) Cond(l cv)
def

(l) ((cv) true)

(l cv)
def

(0) enableret ((l)) ((l)) ((cv)) ((cv) Cond(l cv))

11
def

(r1 r2) (1) (Cond(r1 r2) true)

11
def

(Send(Cond(r1 r2)) Recv(Cond(r1 r2))) () () trash(r2 r3 r4)

12
def

(r1 r4) (0) (Cond(r1 r2) INVs true)

12
def

(Send(Cond(r1 r2) INVs) Recv(Cond(r1 r2))) (1) () trash(r2 r3)

13
def

(r1 r4) (0) (INVs true)

13
def

(Recv(Cond(r1 r4)) Send(INVs)) (1) () trash()

14
def

() (0) (Cond(r1 r4 r1 r4) INVs true)

14
def

Send(INVs) (1) () trash()

21
def

() (1) (Cond(r1 r2 r1 r2) true)

21
def

(Send(Cond()) Recv(())) () () trash(r1 r2 r1 r3 r4)

22
def

() (0) (Cond(r1 r2 r1 r2) INVs true)

a
def

Send(Cond() INVs) Recv((r1 r2 r1)) b
def

Recv((r1)) Send(INVs)

22
def

a (1) () trash(r3 r4)

23
def

(r1 r2) (0) ((0) (Cond() INVs true) (r3 r1 r2 r3 0) (INVs true))

23
def

(0 a 0 b) (1) () trash(r3 r3 r4)

24
def

(r1 r2) (0) (INVs true))

24
def

b (1) () trash()

25
def

() (0) (INVs (r1 r2 r1) true)

25
def

Send(INVs) (1) () trash()

31
def

Send(Cond()) () () trash(r1 r2 r2 r3 r4)

a
def

Send(Cond(r1 r2) INVs) b
def
Send(INVs)

32
def

a (1) () trash(r2 r3 r4)

33
def

(0 ar3 r3 0 b) (1) () trash(r2 r3 r4)

34
def

enableret (0) (0) (INVs true))

34
def

b (1) () trash()

35
def

a (1) () trash(r2 r3)

Fig. 27 Spec. of CV - Hoare style and Brinch Hansen style

SIGNAL_H. The wait function for the Brinch Hansen style is the same as WAIT_H. The
signal function is shown as SIGNAL_BH. All three functions take two arguments: a
lock ID associated with the condition variable and the condition variable itself. They

Certifying Low-Level Programs 339

are passed through registers r1 and r2 respectively. Here we use the Hoare-style locks
shown in Fig. 22.

Specifications of the functions are defined in Fig. 27. WAIT_H is specified by
(p11, g11). As p11 shows, r1 contains a Hoare-style lock in the sense that �(r1) = �(r1).
The register r2 contains the condition variable with specification ϒ(r2). For Hoare
style, we require �(r2) = Cond(r1, r2) (defined as �(r1) ∧ (ϒ(r2) ∗ true) in Fig. 27).
Therefore, when the blocked thread is released, it gets the resource (�(r1)) protected
by the lock with the extra knowledge (ϒ(r2) ∗ true) that the condition associated
with the condition variable holds. Here the condition ϒ(r2) does not have to specify
the whole resource protected by the lock, therefore we use ϒ(r2) ∗ true. Before
calling WAIT_H, p11 requires that the lock must have been acquired, thus we have the
ownership �(r1). The condition ϒ(r2) needs to be false (as required in Cond(r1, r2)).
It is not an essential requirement, but we use it to prevent waiting without testing
the condition. The guarantee g11 says that, when WAIT_H returns, the current thread
still owns the lock (and �(r1)) and it also knows the condition specified in ϒ holds.
SIGNAL_H is specified by (p21, g21). It requires that the thread own the lock and that
the condition ϒ(r2) hold at the beginning. When it releases a thread waiting for the
condition, it passes the ownership of the lock and the knowledge that the condition
holds to the released thread. Then it blocks itself to wait for the ownership of the
lock. When it returns, the thread still owns the lock, but the condition may no longer
hold. Intermediate specifications are inserted into the code to show the proof sketch.
We do not explain the details here.

The Brinch Hansen style signal function SIGNAL_BH is specified by (p21, g31)

defined in Fig. 27. The precondition is the same as SIGNAL_H. We simply reuse p21 as
the precondition. The definition of g31 shows the difference between Hoare style and
Brinch Hansen style: the thread no longer owns the lock when SIGNAL_BH returns.
Therefore, calling the signal function must be the last command in the critical region.

Mesa style Figure 28 shows the Mesa-style condition variables. WAIT_M is specified
by (p11, g11). Similar to the Hoare style wait function, the precondition p11 also
requires that the thread owns the lock and that the condition is false. The difference
is that we require �(cv) = emp, where r2 contains the condition variable. Therefore,
as g11 shows, the current thread has no idea about the validity of the condition when
it returns. Requiring �(cv) = emp also prevents the mismatch between the Hoare
style (Brinch Hansen style) primitives and the Mesa style primitives.

SIGNAL_M is specified by (p21, g21). Unlike SIGNAL_H, it does not take the lock as
argument. The current thread does not need to own the lock to call SIGNAL_M. It
simply wakes up a waiting thread without passing the ownership of the lock and the
validity of the condition. From g21 we can see that, if we hide the details of releasing
a blocked thread, the signal function in Mesa style is just like a skip command that
has no effects over states.

6 Certifying X86 Primitives

The program logic presented in this paper has been adapted for the 16-bit, real-
mode x86 architecture. We have formalized a subset of the x86 assembly language,
its operational semantics, and the program logic in the Coq proof assistant [6].

340 X. Feng et al.

(l cv)
def

(0) enableret ((l)) ((l)) ((cv)) ((cv) emp)

11
def

() (1) (Cond(r1 r2 r1 r2) true)

11
def

(Send(Cond()) Recv(())) () () trash(r1 r2 r1 r2 r3 r4)

12
def

() (0) (Cond(r1 r4 r1 r2) INVs true)

12
def

(Send(Cond() INVs) Recv(())) (1) () trash(r1 r2 r1 r2 r3 r4)

13
def

(r1 r4) (0) (INVs true)

13
def

(Send(INVs) Recv(())) (1) () trash(r1 r2 r3)

14
def

(r1 r4) (0)

14
def

Recv((r1)) () () trash(r2 r3)

15
def

() (0) ((r1 r4 r1) true)

(cv)
def

(0) ((cv)) ((cv) emp)

21
def

(r1) (1)

21
def

hid () () trash(r2)

22
def

(r1) (0) (INVs true)

21
def

Send(INVs) (1) () trash(r2)

(11 11) l cv

l
cv

(12 12)

(13 13)

(13 13)

(14 14)

(15 gid)

(21 21) cv

cv
(22 22)

(22 22)

Fig. 28 Impl. and spec. of CV - Mesa style

In our implementation, we assume that all interrupts except the timer have been
masked. The three abstract instructions switch, block and unblock are replaced with
function calls to the concrete implementations of primitives scheduler, blk and

Certifying Low-Level Programs 341

Component # of lines

Basic Utility Definitions & Lemmas 2,766
Machine, Opr. Semantics & Lemmas 3,269
Separation Logic, Lemmas & Tactics 6,340
OCAP-x86 & Soundness 1,711
SCAP-x86 & Soundness 1,357
Thread Queues & Lemmas 1,199
AIM-Logic & Soundness 26,347

Component # of lines

Assembly Code at Level S 292
enQueue deQueue 4,838
scheduler, block, unblock 7,107

Assembly Code at Level C 411
Timer Handler 2,344

& 7,364
locks: & 10,838
cond. var.: & 5,440

They are the Coq source files containing the encoding of the assembly code. The real assembly
code in these two files is around 300 lines.

Fig. 29 The verified package in Coq

unblk at Level S in Fig. 3. The soundness of the program logic is proved in the
OCAP-x86 framework, which adapts the foundational OCAP framework [9] for x86.
The inference rules of our program logic are proved as lemmas in OCAP-x86. The
soundness of OCAP-x86 itself is then proved following the syntactic approach [38].
The proofs are also formalized in Coq and are machine-checkable.

Our preemptive thread libraries (shown in Fig. 3) are also implemented in the x86
assembly code and run in real-mode. Primitives at Level C and Level S are certified
using different program logics. Synchronization primitives at Level C are certified
using the AIM program logic. The timer interrupt handler calls the scheduler imple-
mented at the low-level, which corresponds to the switch instruction in AIM. The
yield function simply wraps the scheduler by disabling the interrupt at the beginning
and enabling it at the end. They are also certified using this logic. Thread primitives
at Level S are executed with interrupts disabled. They are certified as sequential code
using SCAP-x86, an adaptation of the SCAP logic [13] for x86, which is like a subset
of our program logic for AIM without rules for cli, sti, iret, switch, block and unblock.
We also link Level C programs with Level S programs to get a fully certified package.
The linking is done in the OCAP-x86 framework. It is based on the observation that
code at Level S only accesses thread queues and it does not touch the sub-heap
accessed by threads at higher level. On the other hand, code at Level C does not
touch the thread queues unless it calls Level S primitives. Therefore, the certified
code at one abstraction level can work together with code at the other level, knowing
that its program invariant would be preserved. More details about the methodology
of using “domain-specific” program logics to certify modules at different abstraction
levels and then linking them in a foundational logical framework are presented in
one of our recent papers [12]. The following implementation details are also taken
from that paper.

The whole Coq implementation has around 82,000 lines, including 1165 definitions
and 1848 lemmas and theorems. The package is available online.2 Figure 29 gives a
break down of the number of lines for various components. The implementation
has taken many man-months, including the implementation of basic facilities such as
lemmas and tactics for partial mappings, queues, and separation logic assertions. One
of the lessons we learn is that writing proofs is very similar to developing large-scale

2http://flint.cs.yale.edu/flint/publications/aim.coq.tar.gz.

http://flint.cs.yale.edu/flint/publications/aim.coq.tar.gz

342 X. Feng et al.

software systems—many software-engineering principles would be equally helpful
for proof development; especially a careful design and a proper infrastructure is
crucial to the success. We started to prove the main theorems without first developing
a proper set of lemmas and tactics. The proofs done at the beginning used only the
most primitive tactics in Coq. Auxiliary lemmas were proved on the fly and some
were proved multiple times by different team members. The early stage was very
painful and some of our members were so frustrated by the daunting amount of work.
After one of us ported a set of lemmas and tactics for separation logic from a different
project [25], we were surprised to see how the proof was expedited. The tactics
manipulating separation logic assertions, especially the ones that reorder sub-terms
of separating conjunctions, have greatly simplified the reasoning about memory.

Another observation is that certifying both the library (e.g., Level S primitives)
and its clients (e.g., Level C code) is an effective way to validate specifications. We
have found some of our initial specifications for Level S code are too strong or too
weak to be used by Level C. Also, to avoid redoing the whole proof after fixing the
specifications, it is helpful to decompose big lemmas into smaller ones with clear
interfaces.

The size of our proof scripts is huge, comparing with the size of the assembly
code. This is caused in part by the duplicate proof of the same lemmas by different
team members. Another reason is the lack of proper design and abstraction: when an
instruction is seen a second time in the code, we simply copy and paste the previous
proof and do some minor changes. The proof is actually developed very quickly after
introducing the tactics for separation logic. For instance, the 5440 lines Coq code
certifying condition variables is done by one of the authors in two days. We believe
the size of proof scripts can be greatly reduced with more careful abstractions and
more reuse of lemmas.

We implement the primitives in 16-bit real-mode x86 mainly for its simplicity,
which allows us to quickly adapt our program logic to this hardware-implemented
instruction set architecture (ISA). Although this ISA is rarely used in real-world
systems these days, the complexities of more popular architectures (e.g., the pro-
tected mode x86) are mostly orthogonal to the technical problems addressed in this
paper. Therefore our verification still gives us confidence on the expressiveness and
the applicability of the logic. Also, our logic does not prevent the use of automated
verification techniques, although we do the proof manually in Coq. Our inference
rules for instruction sequences shown in Fig. 16 are syntax directed, which can be
easily integrated in an algorithmic process to automatically generate verification
conditions. Recent efforts on SMT solvers [27] and theorem provers [1] also enable
us to discharge the verification conditions automatically. We would like to explore
these possibilities in our future work.

7 Related and Future Work

7.1 Reasoning about Interrupts

Regehr and Cooprider [33] also observed that programs with interrupts cannot be
directly viewed as a special class of multi-threaded programs. They proposed a non-
trivial translation to convert interrupt-driven programs to thread-based programs.

Certifying Low-Level Programs 343

However, their approach cannot be directly applied for our goal to build certified OS
kernels. First, proof of the correctness of the translation is non-trivial and has not
been formalized. As Regehr and Cooprider pointed out, the proof requires formal
semantics of interrupts. Our work actually provides such semantics. Second, their
translation requires higher-level language constructs such as locks. Our AIM is at a
lower abstraction level and does not have built-in locks. As we have shown, locks can
be implemented in AIM and certified using our program logic.

Suenaga and Kobayashi [35] presented a type system to guarantee deadlock-
freedom in a concurrent calculus with interrupts. Their calculus is an ML-style
language with built-in support of threads, locks and multi-level interrupts. Our AIM
is at a lower abstraction level than theirs in that context switching is explicitly done
by the programmer in threads or interrupt handlers. Also, AIM does not have
built-in locks. Their type system is designed mainly for preventing deadlocks with
automatic type inference, while our program logic supports verification of general
safety properties, including partial correctness.

Palsberg and Ma [31] proposed a calculus of interrupt driven systems, which has
multi-level interrupts but no threads. Instead of a general program logic like ours,
they proposed a type system to guarantee an upper bound of stack spaces needed by
interrupts. DeLine and Fähndrich [7] showed how to enforce protocols with regard
to interrupts levels as an application of Vault’s type system, but it is unclear how to
use the type system to verify general properties of interrupts.

In AIM, we only support one interrupt in the system, which cannot be interrupted
again. It is actually easy to extend the machine to support multi-level interrupts: we
change the is bit into a vector of bits ivec corresponding to interrupts in service. An
interrupt can only be interrupted by other interrupts with higher priorities, which
can also be disabled by clearing the ie bit. At the end of each interrupt handler, the
corresponding in-service bit will be cleared so that interrupts at the same or lower
level can be served.

Extension of the program logic to support multi-level interrupts is also straightfor-
ward, following the same idea of memory partitions. Suppose there are n interrupts
in the system, the memory will be partitioned into n+1 blocks, as shown below:

B An-1

INVn-1

A0

INV0

...

. . .

where block Ak will be used by the interrupt handler k. To take care of the preemp-
tion relations with multiple handlers, we need to change our definition of Inv(ie, is)
in Fig. 19 into Inv(ie, ivec), which models the switch of memory ownership at the
points of cli, sti and boundaries of interrupt handlers.

Another simplification in our work is the assumption of a global interrupt handler
entry. It is easy to extend our machine and program logic to support run-time
installation of interrupt handlers. In our machine, we can add a special register and
an “install” instruction to update this register. When interrupt comes, we look up
the entry point from this register. This extension has almost no effects over our
program logic, thanks to our support of modular reasoning. We only need to add a
command rule for the “install” instruction to enforce that the new handler’s interface
is compatible to the specification (pi, gi).

344 X. Feng et al.

7.2 Verification of OS Kernels and Thread Implementations

In his pioneer work, Bevier [2] showed how to formally certify Kit, an OS kernel
implemented in machine code. The kernel supports hardware interrupts. However,
interrupt handlers are part of the kernel code, and the kernel code is sequential
and cannot be interrupted. Gargano et al. [14] showed a framework to construct a
certified OS kernel in the Verisoft project. Similar to our layering of system code
shown in Fig. 3, they split the code into two levels: abstract communicating virtual
machines (CVM) and a concrete kernel. Like Kit, their kernel is also sequential.
User processes (virtual machines) can be interrupted, but they run in different virtual
address spaces and do not share memory. Ni et al. [28] certified a non-preemptive
thread implementation. Their code is purely sequential and they did not support
interrupts and preemption. In all these cases, the certified code is like our code
at Level S (but with other features that are not supported here, such as memory
management [14]), while we try to certify code at Level C, which involves both
hardware interrupts and preemptive concurrency. We also certified code at Level
S and linked the two levels to get a fully certified package.

Like Kit [2] and the Verisoft project [14], we only have fixed number of threads in
the AIM machine. In our previous work [10], we have shown how to support dynamic
thread creation following a similar technique to support dynamic memory allocation
in type systems. The technique is fairly orthogonal and can be easily incorporated
into this work. Another missing feature is dynamic creation of locks and block
queues. Gotsman et al. [15] and Hobor et al. [19] extended concurrent separation
logic with dynamic creation of storable locks. Their techniques might be applied here
as well to support dynamic block queues.

It is also interesting to extend our logic to support multi-processor machines in
the future. The general idea of memory partitions and ownership transfers used here
would still apply in a multi-processor setting, except that we need to know which
interrupt interrupts which processor. The implementation of kernel-level threads at
the Level S in Fig. 3 becomes more complicated because it is no longer sequential, but
it still prohibits interrupts at this level and can be certified based on existing work on
concurrency verification. Disabling interrupts plays a less important role to bootstrap
the implementation of synchronization primitives. To implement spinlocks, we need
to use atomic instructions provided by the hardware, e.g., the compare and swap
instruction (cas). Also, we would like to see how relaxed memory models affect the
reasoning about concurrent programs.

7.3 Concurrency Verification

O’Hearn proposed concurrent separation logic (CSL), which applies separation logic
to certify concurrent programs [29]. Brookes [5] gave a trace semantics to CSL.
The basic idea of CSL is to ensure that resources accessible by different concurrent
entities are disjoint with each other. Accessing shared resources is protected by
critical regions. The semantics of entering and exiting critical regions is modeled
as resource ownership transfers. The concurrent programming language supported
by CSL is a higher-level languages with built-in critical regions and implicit thread
context switching. It does not have interrupts. The development of our program logic
is inspired by CSL. We assign ownership-transfer semantics to cli, sti and low-level

Certifying Low-Level Programs 345

thread primitives that are not supported in CSL. Similar to CSL, certifying threads
and interrupt handlers in our logic is almost the same as certifying sequential pro-
grams in the sequential separation logic. We even unify the reasoning of concurrent
primitives (cli, sti and thread primitives) with normal sequential instructions in the
seq rule.

Rely-Guarantee reasoning by Jones [22] is another well-studied methodology
to certify concurrent programs. The basic idea is to let each thread to specify its
expectations over its environment (the rely condition) and its guarantees to its
environment (the guarantee condition). The behavior of a certified thread fulfills
its guarantee if the behavior of the environment satisfies its rely condition. There is
no interference between threads as long as each thread’s rely condition is implied
by all other’s guarantees. Rely-Guarantee reasoning is more expressive than CSL in
that it uses actions (like our g) to specify transitions of shared resources, while CSL
uses program invariant (like our INV0 and INV1) as specifications. On the other hand,
CSL is more modular than Rely-Guarantee reasoning because of the support of local
reasoning. Recent efforts [8, 37] have tried to combine the merits of both sides.

Like CSL, we only use invariants (e.g., INV0 and INV1) to specify shared resources,
which cannot be accessed by threads unless interrupts are disabled. This restricts the
support of fine-grained concurrency. To lift the restriction, it is possible to use the
more expressive rely-guarantee style specifications, following the approaches devel-
oped in recent work [8, 37]. Atomic operations can directly access shared resources
even if interrupts are enabled, as long as the transitions satisfy the rely/guarantee
conditions. Bornat et al. [3] proposed refinements of separation logic assertions
to distinguish read-only accesses and read/write accesses of heap. The refinements
can be incorporated in our program logic to support verification of reader/writer
locks. Another limitation of our logic is that it only supports specifications of safety
properties (including partial correctness). We would like to extend it to reason about
liveness properties in our future work.

8 Conclusion

In this paper we present a new Hoare-style framework for certifying low-level
programs involving both interrupts and concurrency. Following separation logic, we
formalize the interaction among threads and interrupt handlers in terms of memory
ownership transfers. Instead of using the operational semantics of cli, sti and thread
primitives, our program logic formulates their local effects over the current thread,
as shown in Fig. 18, which is the key for our logic to achieve modular verification. We
have also certified various lock and condition-variable primitives; our specifications
are both abstract (hiding implementation details) and precise (capturing the semantic
difference among these variations).

Practitioners doing informal proofs can also benefit from our logic by learning how
to do informal reasoning in a systematic way for general concurrent programs, whose
correctness is usually not obvious. Although the primitives shown in this paper are
similar to standard routines in many OS textbooks, we are not aware of any (even
informal) proofs for code that involves both hardware interrupts and preemptive
concurrency. Saying that the code should work is one thing (it often still requires
leap-of-faith in our experience)—knowing why it works (which this paper does) is

346 X. Feng et al.

another thing. The idea of memory partitions and ownership transfers shown in this
paper (and inspired by separation logic) gives general guidelines even for informal
proofs.

Acknowledgements We thank anonymous referees for suggestions and comments on an earlier
version of this paper. Wei Wang, Haibo Wang, and Xi Wang helped prove some of the lemmas in our
Coq implementation. Xinyu Feng and Zhong Shao are supported in part by gift from Microsoft and
NSF grants CCR-0524545, CCR-0716540, and CCR-0811665. Yu Guo is supported in part by grants
from National Natural Science Foundation of China (under grants No. 60673126 and No. 90718026),
China Postdoctoral Science Foundation (No. 20080430770) and Natural Science Foundation of
Jiangsu Province, China (No. BK2008181). Yuan Dong is supported in part by National Natural
Science Foundation of China (under grants No. 60573017 and No. 90818019), Hi-Tech Research
and Development Program Of China (under grant No. 2008AA01Z102), China Scholarship Council,
and Basic Research Foundation of Tsinghua National Laboratory for Information Science and
Technology (TNList). Any opinions, findings, and contributions contained in this document are those
of the authors and do not reflect the views of these agencies.

References

1. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: modular automatic assertion checking with
separation logic. In: Proc. 4th International Symposium on Formal Methods for Components and
Objects (FMCO’05). LNCS, vol. 4111, pp. 115–137. Springer, New York (2005)

2. Bevier, W.R.: Kit: a study in operating system verification. IEEE Trans. Softw. Eng. 15(11), 1382–
1396 (1989)

3. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in separation logic.
In: Proc. 32nd ACM Symp. on Principles of Prog. Lang., pp. 259–270. ACM, New York (2005)

4. Brinch Hansen, P.: The programming language concurrent pascal. IEEE Trans. Software Eng.
1(2), 199–207 (1975)

5. Brookes, S.: A semantics for concurrent separation logic. In: Proc. 15th Int’l Conf. on Concur-
rency Theory (CONCUR’04). LNCS, vol. 3170, pp. 16–34. Springer, New York (2004)

6. Coq Development Team: The Coq proof assistant reference manual. The Coq release v8.1 (2006)
7. DeLine, R., Fähndrich, M.: Enforcing high-level protocols in low-level software. In: Proc. 2001

ACM Conf. on Prog. Lang. Design and Impl., pp. 59–69. ACM, New York (2001)
8. Feng, X., Ferreira, R., Shao, Z.: On the relationship between concurrent separation logic

and assume-guarantee reasoning. In: Proc. 16th European Symp. on Prog. (ESOP’07). LNCS,
vol. 4421, pp. 173–188. Springer, New York (2007)

9. Feng, X., Ni, Z., Shao, Z., Guo, Y.: An open framework for foundational proof-carrying code.
In: Proc. 2007 ACM Workshop on Types in Lang. Design and Impl., pp. 67–78. ACM, New York
(2007)

10. Feng, X., Shao, Z.: Modular verification of concurrent assembly code with dynamic thread
creation and termination. In: Proc. 2005 ACM Int’l Conf. on Functional Prog., pp. 254–267.
ACM, New York (2005)

11. Feng, X., Shao, Z.: Local reasoning and information hiding in SCAP. Tech. rep.
YALEU/DCS/TR-1398, Dept. of Computer Science, Yale University, New Haven, CT (2008).
http://flint.cs.yale.edu/publications/SCAPFrame.html

12. Feng, X., Shao, Z., Guo, Y., Dong, Y.: Combining domain-specific and foundational logics
to verify complete software systems. In: Proc. Second IFIP Working Conference on Verified
Software: Theories, Tools, and Experiments (VSTTE’08). LNCS, vol. 5295, pp. 54–69. Springer,
New York (2008)

13. Feng, X., Shao, Z., Vaynberg, A., Xiang, S., Ni, Z.: Modular verification of assembly code with
stack-based control abstractions. In: Proc. 2006 ACM Conf. on Prog. Lang. Design and Impl.,
pp. 401–414. ACM, New York (2006)

14. Gargano, M., Hillebrand, M.A., Leinenbach, D., Paul, W.J.: On the correctness of operating
system kernels. In: Proc. 18th Int’l Conf. on Theorem Proving in Higher Order Logics. LNCS,
vol. 3603, pp. 1–16. Springer, New York (2005)

http://flint.cs.yale.edu/publications/SCAPFrame.html

Certifying Low-Level Programs 347

15. Gotsman, A., Berdine, J., Cook, B., Rinetzky, N., Sagiv, M.: Local reasoning for storable locks
and threads. In: Proc. Fifth ASIAN Symp. on Prog. Lang. and Sys. (APLAS’07). LNCS, vol. 4807,
pp. 19–37. Springer, New York (2007)

16. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 26(1), 53–56
(1969)

17. Hoare, C.A.R.: Towards a theory of parallel programming. In: Operating Systems Techniques,
pp. 61–71. Academic, London (1972)

18. Hoare, C.A.R.: Monitors: An operating system structuring concept. Commun. ACM 17(10),
549–557 (1974)

19. Hobor, A., Appel, A.W., Nardelli, F.Z.: Oracle semantics for concurrent separation logic. In:
Proc. 17th European Symp. on Prog. (ESOP’08). LNCS, vol. 4960, pp. 353–367. Springer,
New York (2008)

20. Hunt, G.C., Larus, J.R.: Singularity design motivation. Tech. rep. MSR-TR-2004-105, Microsoft
Corporation (2004)

21. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data structures. In: Proc.
28th ACM Symp. on Principles of Prog. Lang., pp. 14–26. ACM, New York (2001)

22. Jones, C.B.: Tentative steps toward a development method for interfering programs. ACM
Trans. Program. Lang. Syst. 5(4), 596–619 (1983)

23. Kleymann, T.: Metatheory of verification calculi in LEGO—to what extent does syntax mat-
ter? In: Proc. International Workshop on Types for Proofs and Programs (TYPES’98). LNCS,
vol. 1657, pp. 133–148. Springer, New York (1998)

24. Lampson, B.W., Redell, D.D.: Experience with processes and monitors in Mesa. Commun. ACM
23(2), 105–117 (1980)

25. McCreight, A., Shao, Z., Lin, C., Li, L.: A general framework for certifying garbage collectors
and their mutators. In: Proc. 2007 ACM Conf. on Prog. Lang. Design and Impl., pp. 468–479.
ACM, New York (2007)

26. Morrisett, G., Walker, D., Crary, K., Glew, N.: From system F to typed assembly language. In:
Proc. 25th ACM Symp. on Principles of Prog. Lang., pp. 85–97. ACM, New York (1998)

27. de Moura, L.M., Dutertre, B., Shankar, N.: A tutorial on satisfiability modulo theories. In: Proc.
19th International Conference on Computer Aided Verification (CAV’07). LNCS, vol. 4590,
pp. 20–36. Springer, New York (2007)

28. Ni, Z., Yu, D., Shao, Z.: Using XCAP to certify realistic systems code: machine context manage-
ment. In: Proc. 20th Int’l Conf. on Theorem Proving in Higher Order Logics. LNCS, vol. 4421,
pp. 189–206. Springer, New York (2007)

29. O’Hearn, P.W.: Resources, concurrency and local reasoning. In: Proc. 15th Int’l Conf. on
Concurrency Theory (CONCUR’04). LNCS, vol. 3170, pp. 49–67. Springer, New York (2004)

30. O’Hearn, P.W., Yang, H., Reynolds, J.C.: Separation and information hiding. In: Proc. 31th ACM
Symp. on Principles of Prog. Lang., pp. 268–280. ACM, New York (2004)

31. Palsberg, J., Ma, D.: A typed interrupt calculus. In: Proc. 7th Int’l Symp. on Formal Tech.
in Real-Time and Fault-Tolerant Sys. (FTRTFT’02). LNCS, vol. 2469, pp. 291–310. Springer,
New York (2002)

32. Paul, W., Broy, M., In der Rieden, T.: The Verisoft XT project. http://www.verisoft.de (2007)
33. Regehr, J., Cooprider, N.: Interrupt verification via thread verification. Electron. Notes Theor.

Comput. Sci. 174(9) (2007)
34. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: Proc. 17th Annual

IEEE Symp. on Logic in Comp. Sci. (LICS’02), pp. 55–74. IEEE Computer Society, Los Alamitos
(2002)

35. Suenaga, K., Kobayashi, N.: Type based analysis of deadlock for a concurrent calculus with
interrupts. In: Proc. 16th European Symp. on Prog. (ESOP’07). LNCS, vol. 4421, pp. 490–504.
Springer, New York (2007)

36. Tuch, H., Klein, G., Heiser, G.: OS verification—now! In: Proc. 10th Workshop on Hot Topics
in Operating Systems, Santa Fe, 12–15 June 2005

37. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic. In: Proc. 18th
Int’l Conf. on Concurrency Theory (CONCUR’07). LNCS, vol. 4703, pp. 256–271. Springer,
New York (2007)

38. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Inf. Comput. 115(1), 38–94
(1994)

39. Yang, H., O’Hearn, P.W.: A semantic basis for local reasoning. In: Proc. 5th Int’l Conf. on
Foundations of Software Science and Computation Structures (FoSSaCS’02). LNCS, vol. 2303,
pp. 402–416. Springer, New York (2002)

http://www.verisoft.de

	Certifying Low-Level Programs with Hardware Interrupts and Preemptive Threads
	Abstract
	Introduction
	Informal Development
	Design of the Abstract Machine
	Ownership-Transfer Semantics

	The Abstract Interrupt Machine (AIM)
	AIM-1
	AIM-2

	The Program Logic
	Assertions and Specifications
	Inference Rules
	Examples
	Soundness

	Certifying Implementations of Synchronization Primitives
	Certifying Implementations of Locks
	Certifying Implementations of Condition Variables

	Certifying X86 Primitives
	Related and Future Work
	Reasoning about Interrupts
	Verification of OS Kernels and Thread Implementations
	Concurrency Verification

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

