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Abstract
Hierarchical scheduling enables modular reasoning about the
temporal behavior of individual applications by partitioning
CPU time and thus isolating potential misbehavior. However,
conventional time-partitioning mechanisms fail to achieve
strong temporal isolation from a security perspective; varia-
tions in the executions of partitions can be perceived by others,
which enables an algorithmic covert timing-channel between
partitions that are completely isolated from each other in the
utilization of time. Thus, we present a run-time algorithm
that makes partitions oblivious to others’ varying behaviors
even when an adversary has full control over their timings.
It enables the use of dynamic time-partitioning mechanisms
that provide improved responsiveness, while guaranteeing
the algorithmic-level non-interference that static approaches
would achieve. From an implementation on an open-source
operating system, we evaluate the costs of the solution in
terms of the responsiveness as well as scheduling overhead.

1 Introduction
With advancement in modern computing and communica-

tion technologies, there has been an increasing trend toward
integrating a number of software applications into a high-
performance system-on-chip to reduce communication and
maintenance complexity, while allowing them to efficiently
utilize common hardware resources. Such a composition re-
quires that properties established for individual subsystems
be preserved at the integrated-system level. Especially for
safety-critical systems (e.g., avionics, automotive, industrial
control systems), it is of utmost importance to provide strong
isolation among applications that require different levels of
criticality in order to limit interference among them: pro-
tecting high-critical applications (e.g., instrument cluster in
digital cockpits [4]) from faulty behaviors of lower-critical
ones (e.g., infotainment system). This is increasingly chal-
lenging as individual subsystems are becoming more complex
due to advanced capabilities.

The isolation among subsystem applications is attained via
a form of resource partitioning [33]. For example, ARINC
653 (Avionics Application Standard Software Interface) [8]
standardizes time and space partitioning of applications ac-
cording to their design-assurance levels. This enables the soft-
ware functions to be developed and certified independently. In

particular, time partitioning is a key ingredient for providing
strong temporal-isolation of unpredictable interference from
timing-sensitive applications. It is enforced also in Multiple
Independent Levels of Security (MILS) systems [9] to prevent
a compromised application from exhausting time resources.
Operating in the form of two-level hierarchical scheduling
architecture [6, 14], as shown in Figure 1, it provides each
application with the illusion of exclusive CPU resources.

However, such a tight integration of applications poses a
security challenge that could have been easily addressed in
the air-gapped environment. In particular, we observe that
conventional hierarchical scheduling schemes enable illegit-
imate information-flow among partitions that are supposed
to be isolated from one another. As multiple threads sharing
the CPU time can collaborate to influence one’s execution
progress and infer secret information [41, 44], time-partitions
can form algorithmic covert timing-channel by varying their
temporal behavior. In this paper, we first demonstrate such a
vulnerability of hierarchical scheduling on existing real-time
operating systems; a partition can infer another partition’s
varying execution by observing the impact that the latter’s
execution has on its own local schedule, even without using
any time information. This algorithmic channel exists even if
microarchitectural channels [15, 24] were completely closed.

Based on these observations, we develop a run-time sched-
ule transformation algorithm that we call Blinder. It prevents
partitions from distinguishing others’ varying execution be-
havior by making each partition-local schedule determinis-
tic. Although static partitioning approaches, such as TDMA
(Time Division Multiple Access) [8], can achieve strong non-
interference due to the fixed nature of the schedules that they
generate, they are inflexible in CPU resource usage [17, 22].
On the other hand, non-static partitioning schemes, such as
real-time server algorithms [7, 37, 39], are more amenable
to dynamic workload and achieve better responsiveness, and
thus are increasingly adopted by commercial real-time oper-
ating systems and hypervisors [3, 5]. However, such a non-
determinism, or flexibility, is a double-edged sword as it is the
very source of information-flow between partitions; partitions
can use CPU time in a detectable pattern to send signals.

Our Blinder deters such attempts by guaranteeing that the
local-execution state (i.e., partition-local schedule) changes
at deterministic time points no matter how the global state
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Figure 1: Hierarchical scheduling.

changes (i.e., partition-level schedule). Hence, partitions can
be scheduled still in non-static ways (thus taking advantage
of the flexibility in resource utilization) while achieving the
strong partition-obliviousness property that has been possible
only with static approaches. Blinder removes the algorithmic
covert timing-channel in hierarchical scheduling even if an
attacker is able to precisely control the timings of applications.
Furthermore, it is minimally-intrusive and modular in that
it does not require any modifications to the global and local
scheduling policies and hence can be applied to a wide variety
of existing systems that employ hierarchical scheduling.

In summary, this paper makes the following contributions:
• We demonstrate an algorithmic covert timing-channel

between time-partitions through hierarchical scheduler
of existing real-time operating systems.

• We introduce Blinder, a run-time schedule transforma-
tion algorithm that makes partitions oblivious to others’
varying temporal behavior, and we also analyze its im-
pact on the schedulability of real-time tasks.

• We implement Blinder on an open-source real-time oper-
ating system and evaluate its impact on the responsive-
ness as well as scheduling overheads.

• We demonstrate a deployment of Blinder on a prototype
real-time system and discuss system design and imple-
mentation challenges and possible mitigations.

2 Preliminaries
2.1 System Model and Terminology
We consider a real-time system that hosts N applications,
ΠΠΠ = {Π1, . . . ,ΠN}, sharing CPU time. Each application, or
partition, Πi is comprised of one or more tasks, i.e., Πi =
{τi,1,τi,2, . . . ,τi,mi}, where mi is the number of tasks in Πi.
Each task is characterized by τi, j := (pi, j,ei, j), where pi, j is
the minimum inter-arrival time (i.e., period) and ei, j is the
worst-case execution time.

The partitions are scheduled in a hierarchical manner
[8, 14] as shown in Figure 1 and Algorithm 1; the global
scheduler determines which partition to execute next at time
instant t. Let Π(t) denote the partition selected by the global
scheduler for t. Then, the tasks of Π(t) are scheduled locally
according to its local scheduling policy.

Each task is associated with a priority, Pri(τi, j), which can
be fixed (e.g., Rate Monotonic (RM) [27] priority assignment)
or dynamic (e.g., Earliest Deadline First (EDF) [27]). We do
not assume any particular global and local scheduling policies.
However, simply for the ease of comprehension of the key

Algorithm 1: Schedule(ΠΠΠ, t)
Π(t)← GlobalScheduler(ΠΠΠ, t) /* 1© Selects partition */
if Π(t) 6= Π(t−1) then

SuspendPartition(Π(t−1))
end
LocalScheduler(Π(t)) /* 2© Selects task */

concepts, example schedules in the figures used throughout
this paper are based on the fixed-priority global and local
schedulings. For most safety-critical systems such as avionics
and automotive systems, Rate Monotonic scheduling policy
is dominantly employed for local task scheduling due to its
stability and conservative predictability [28, 35].
Terminology: Tasks arrive to the system on a schedule or in
response to external events (e.g., interrupts). For instance, a
task can be scheduled to arrive every 100 ms for service of
a recurrent workload. The arrival time of task τi, j is denoted
by ta(τi, j). A task is said to be released if it becomes visible
to the partition to which it belongs, thus becoming available
for execution. Each partition Πi maintains a ready queue QR

i
of tasks that have been released but not been finished. The
Πi-local scheduler selects a task from QR

i (t) for each t.
Each partition Πi := (Ti,Bi) is associated with a non-

negative, maximum budget Bi; the partition cannot execute
for more than Bi (e.g., 20 ms) during a replenishment period
Ti (e.g., 100 ms). The remaining budget for time t is denoted
by Bi(t) and 0≤ Bi(t)≤ Bi. No task of Πi can execute when
Bi(t) = 0. Partition Πi is said to be schedulable if it is guar-
anteed to execute for Bi over every replenishment period Ti.

Partition Πi is said to be active at t, denoted by active(Πi,
t), if it has a non-zero remaining budget and task(s) to execute,
i.e., Bi(t)> 0 and QR

i (t) 6= /0. Only active partitions are subject
to the global scheduling.

Definition 1 (Partition preemption). Partition Πi is said to
be preempted if it is not selected by the global scheduler (i.e.,
Π(t) 6= Πi) although it has a non-zero remaining budget and
has task(s) to run (i.e., it is active). That is,

Preempted(Πi, t)≡ [Π(t) 6= Πi]∧active(Πi, t).

2.2 Hierarchical Scheduling
Hierarchical scheduling can be categorized into two classes,
static or non-static partitionings, depending on whether parti-
tions are activated at deterministic times or not.

Static Partitioning: Commonly referred to as table-driven
scheduling, cyclic-executive, or TDMA (Time Division Multi-
ple Access) scheduling, this approach statically assigns a fixed
time window of length Bi to each partition Πi, as shown in Fig-
ure 2(a). The fixed schedule repeats every major cycle (MC)
which is the sum of the partition windows, i.e., MC = ∑i Bi.
Hence, each Πi effectively receives Bi/MC of CPU utiliza-
tion (e.g., 20 ms/100 ms = 20%). Π(t) is deterministic and
Π(t) = Π(t +MC) for any time t. Under the static partition-
ing scheme, the CPU is left unused if Π(t) has no task to
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Figure 2: A comparison of static and non-static partitionings.

run even when other partitions have ready tasks. Hence, the
temporal behavior of a partition is completely isolated from
others. The IMA (Integrated Modular Avionics) architecture
of ARINC 653 standard [8] and MILS systems employ this
table-driven approach as the partition-level scheduling, and
it is implemented in commercial RTOSes such as VxWorks
653 [6] and LynxSecure [1].

The simplicity in the temporal reasoning comes at the cost
of inflexibility of resource usage. As shown in Figure 2(a),
tasks (e.g., τ1,2) may experience long initial latency due to
asynchrony between task arrival and the partition’s active
window. To avoid this, the major cycle could be chosen to be
integer multiple of all task periods in the system. However, it
is unlikely to find such a major cycle that can remove the ini-
tial latencies especially when integrating multiple applications
that have different base rate, not to mention sporadic (e.g.,
interrupt-driven) arrivals of tasks. Furthermore, a (system-
wide) high-priority task in an inactive partition cannot run
until the partition’s next window comes, during which lower-
priority tasks in other partitions run. These phenomena are
inevitable in static partitionings [17, 22].

Non-static Partitioning: This category includes server-
based approaches such as periodic server [37], sporadic server
[39], constant bandwidth server [7], etc. Real-time servers
[28, 35] were originally employed to reserve a CPU share for
aperiodic tasks while isolating them from critical tasks. In the
context of hierarchical scheduling, a server acts as a single
partition for a set of tasks that constitutes an application. It is
characterized by the budget, Bi, and the replenishment period,
Ti. When a task executes, the associated server’s budget is
depleted for the amount of execution. Each server is assigned
a unique priority Pri(Πi), and partitions can be scheduled
based on fixed priority (e.g., periodic server, sporadic server)
or dynamic priority (e.g., constant bandwidth server).

Different server algorithms differ in the budget consump-
tion and replenishment policies, as shown in Figure 3. For
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Figure 3: A comparison of real-time server algorithms.

instance, a periodic server [37] is invoked periodically, at
which time instant the full budget is replenished. The bud-
get of the current server (i.e., selected by the partition-level
scheduler) is consumed even when no task is running. Hence,
if a new task arrives after the budget is idled away, the task
needs to wait until the next replenishment. In contrast, in de-
ferrable [40] and sporadic server [39] algorithms, budget is
consumed only when tasks run. In the former, the full budget
is replenished no matter how much budgets are consumed.
On the other hand, a sporadic server may have multiple re-
plenishment threads; if a task consumes a budget of b during
[t, t +b), the same amount of budget is replenished at t +Ti.
This effectively limits the server’s CPU utilization to Bi/Ti
for every Ti time units.

RTOSes implement variants of the server algorithms in
consideration of performance and complexity. For instance,
the sporadic-polling reservation in LITMUSRT [12] is a vari-
ant of the sporadic server – the budget consumption begins
once the server takes the CPU and the budget is fully re-
plenished after one period. QNX’s adaptive partitioning [2],
which enforces CPU utilization of each application partition,
also implements a variant of sporadic server in the form of
sliding window. Also, Linux (since version 3.14) supports
SCHED_DEADLINE scheduling policy that can implement con-
stant bandwidth server (CBS) [7] for per-task CPU reserva-
tion. Modern real-time hypervisors (e.g., [3, 5]) also support
priority-based time-partitioning among virtual machines.

Figure 4 compares task responsiveness under TDMA and
sporadic-polling server that are measured from our target sys-
tem (more detail is provided in Section 6.2 and Appendix B).
As the results highlight, and also as discussed above, the

!!,! !#,#

Figure 4: Probability distribution of response times under
TDMA and sporadic-polling server schedulers of LITMUSRT.
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ior using non-timing information such as a counter C.

non-static partitioning scheme achieves improved average
response times compared to the static mechanism (by 108%
and 39% for τ1,1 and τ4,4, respectively) mainly because parti-
tion executions are not fixed. However, as will be shown in
Section 3, such a flexibility is in fact what enables illegitimate
information-flow between partitions.

3 Algorithmic Covert Timing-Channel in Hi-
erarchical Scheduling

In this section, we discuss how non-static time partitioning
can enable algorithmic covert timing-channels through hier-
archical scheduling. Let us first consider Figure 5 with two
partitions, ΠS (Sender) and ΠR (Receiver), where Pri(ΠS)>
Pri(ΠR). The receiver partition ΠR has two tasks {τR,1,τR,2}
where Pri(τR,1)< Pri(τR,2). A covert communication chan-
nel can be formed between the partitions by (i) τS,1’s varying
execution length and (ii) changes in the local schedule of ΠR.
In Case (a) of the figure, τR,1 finishes before τR,2 starts if τS,1
executes for a short amount of time, whereas in Case (b) τR,1
is further delayed by τR,2 if τS,1’s execution is long enough.
In its simplest form, the sender τS,1 can have two execution
modes (i.e., short or long executions) to encode bits 0 or 1.

Here, ΠR can observe ΠS’s varying behavior without using
time information. For example, a counter C, shared only be-
tween τR,1 and τR,2, can be used to infer ΠR’s local schedule –
τR,1 checks if the value of C changes from the beginning of its
execution ( 1 ) to the end ( 2 ), while τR,2 increases C by 1 at
the beginning of its execution (W), as Figure 5 illustrates. The
order of 2 and W is influenced by the sender – if ΠS sends
0, τR,1 will see the counter value remaining same because it
finishes before τR,2 increases C. If τR,1 sees an increment of
C, it indicates that ΠS has signaled bit 1.

To show the vulnerability of existing operating systems to
the algorithmic covert timing-channel through hierarchical
scheduling, we implemented the scenario described above
on LITMUSRT [12], a real-time extension of the Linux kernel.
We used its sporadic-polling scheduler, which is a variant of
sporadic server. Figure 6 presents the source codes of (i) τS,1
that varies its execution length to encode bit 0 or 1, (ii) τR,1
that checks a change in the counter shared with τR,2, and (iii)
τR,2 that merely increases the shared counter. Tasks run for

void sender_job(int bit) {
if (bit==1)
n_loops = 10000000;

else
n_loops =  2000000;

for (i=0; i<n_loops; i++)
asm("nop");

}

int receiver1_job(void) {
prev_c = shared_c;
n_loops = 6000000;

for (i=0; i<n_loops; i++) 
asm("nop");

curr_c = shared_c;
return curr_c - prev_c;

}
void receiver2_job(void) {

shared_c++; 
}

1

W

2

2W1

2 W1
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bit=0:

Figure 6: Implementations of τS,1, τR,1, and τR,2.
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Figure 7: Extending from Figure 5, τR,1 can perceive varying
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a pre-defined number of loops (i.e., n_loops), thus no time
information is needed. The numbers are chosen in such a way
that τR,1 finishes prior to τR,2’s arrival if τS,1 sends bit 0. As
long as the conditions on the priority relation and the relative
phases are met, τS,1 can send an arbitrary bit-stream to τR,1.
We were also able to reproduce the same scenario on QNX
Neutrino as well. We created the partitions using its Adaptive
Partitioning Thread Scheduler [2] with the same configuration
used in LITMUSRT and C code similar to Figure 6, although
there is no priority relation among partitions in this case.

The technique described above can be extended in various
ways. Figure 7 shows an extension, in which τR,2 acts as a
regular tick counter. While ΠR is preempted by ΠS, τR,2’s ex-
ecutions are delayed. Because its priority is higher than τR,1,
upon returning from ΠS’s preemption, the accumulated jobs
of τR,2 execute, increasing the counter value by the number
of times it could not execute during the preemption. Depend-
ing on the length of the preemption, the difference curr_c -
prev_c at 2 changes, which enables a multi-bit channel.

3.1 Adversary Model
We assume that task execution is time-invariant. That is, if a
task executes for a period of time ∆t, the progress that it makes
from time t0 to t0+∆t remains indistinguishably constant even
if t0 changes. This assumption might be violated by, for exam-
ple, microarchitectural timing-channels [20, 23, 24, 26]. We
assume that the microarchitectural timing-channels are prop-
erly mitigated [15, 18] to the degree that the time-invariant
property holds. We acknowledge that the microarchitectural
timing-channels play an important role in interferences. In this
paper, we show that an algorithmic timing-channel through
hierarchical scheduling can exist even if the microarchitec-
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tural timing-channels are completely closed. Hence, we can
view the microarchitectural channels as an orthogonal issue.

Partitions can communicate with each other but only
through explicit channels to send/receive data such as sensor
data, actuation commands, system-monitoring information,
and so on. These channels are monitored, and no unknown
explicit channels exist. In Linux-based environment, software
compartmentalization mechanisms such as Linux contain-
ers (LXC) [10] can help reduce hidden channels as well as
providing proper resource (e.g., memory, I/O) isolation.

We do not limit an adversary’s ability to control its tim-
ing; he/she can even request the scheduler to launch tasks
at precise times, using facilities that are intended for man-
aging precedence constraints among tasks in both same and
different partitions (e.g., data sender and receiver) and also
for aligning task arrivals with certain events such as periodic
retrieval of sensor data. With such capabilities, the adversary
can maximize the chance for successful communication over
the covert channel through hierarchical scheduling. Our goal
is to prevent the adversary from forming the covert channel
even under such optimized conditions.

Motivating Scenario: We implemented the scenario pre-
sented above on an 1/10th-scale autonomous driving system
that is composed of four partitions as shown in Figure 8.
The implementation details are presented in Section 6.1. The
partitions are scheduled by the sporadic-polling scheduler,
and each partition is isolated inside an LXC. In this system,
various run-time information such as driving commands are
collected via explicit channels by the health monitoring par-
tition Π4 for a post-analysis purpose. We can consider an
ill-intended system administrator who exploits a covert chan-
nel to collect sensitive information such as location data that
are supposed not to be collected. In the system, the navigation
partition, which computes a navigation path for the behavior
controller, may leak the current location data to the health
monitoring module in which it is secretly stored along with
other run-time information, bypassing communication moni-
tors. Specifically, we took advantage of the watchdog process
in Π4; upon receiving a heartbeat message from Π3, the re-
ceiver task is launched with a delay to time itself to the sender.
This approach is advantageous in that the sender and receiver
tasks do not need to coordinate their timing in advance – the
timing and frequency are controlled by the sender. Of course,
if the adversary had a full control of the system, it could be
easily configured to launch the tasks in phase.

Biased 
Majority Vote

Priority 
Assignment

Figure 9: Accuracy of communication over the covert channel
through LITMUSRT’s hierarchical scheduling.

3.2 Feasibility Test
Although this paper does not aim to propose an advanced at-
tack technique, we demonstrate the feasibility of the scenarios
presented above in a general setting. For this, we used the sys-
tem configuration shown in Table 1 in Section 6.2. The parti-
tions divide the CPU share equally (with α= 1.25). The tasks’
inter-arrival times are not fixed, and thus they can arrive at ar-
bitrary times. This creates unpredictable interference with the
sender and receiver. We implemented the sender and receiver
tasks in Π3 and Π4, respectively, as middle-priority tasks and
tried three different base system loads (β∈ {0.25,0.625,1.0})
to vary the amount of noise on the covert channel. The sender
and the receiver use a simple repetition code of length 5.

We tried two approaches: (i) phased-based and (ii) message-
based launches. In the phase-based approach, the sender and
receiver tasks arrive periodically (every 100 ms) from the
same initial phase using LITMUSRT’s synchronous-release
function. The message-based scheme takes advantage of a le-
gitimate communication channel as explained above. Figure 9
presents the communication accuracy under the two schemes.
Each data point is measured for 30 minutes. Although the
success rate is considerably high when the system is light-
loaded, it drops as the interference by other partitions and
tasks increases (i.e., high-loaded). Overall, the message-based
coordination achieves higher accuracy than the phase-based
scheme because in the former, both the sender and receiver
tasks are delayed together until the sender takes the CPU.
Whereas in the latter, the receiver’s arrival is independent
from the sender.

Based on these observations, we tried a simple technique
that can significantly improve the accuracies – giving more
weight to bit ‘1’ when decoding a repetition code. This is
based on the fact that the receiver is more likely to see bit ‘0’
because its execution is likely to be delayed by other tasks
(i.e., τR,1 and τR,2 in Figure 5(a) are delayed together). As
shown in Figure 9, this biased majority voting improves the
accuracy by up to 14%. It can be further enhanced if the sender
and receiver tasks were allowed to choose their partition-
local priorities. This is based on the fact that communication
between them is likely to be successful if they execute back-
to-back. Hence, we tried giving the Π3-local lowest-priority
to the sender and the Π4-local highest-priority to the receiver,
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Figure 10: Schedule traces generated by LITMUSRT under our
solution that correspond to Figures 5(b) and 7(b).

which resulted in an improvement of up to 9%. Although
we did not try, the accuracies can be further improved if, for
example, (i) other tasks execute in a strictly-periodic fashion,
(ii) the sender and receiver can take into account other tasks’
timing properties such as periods, (iii) they can coordinate
with their partition-local tasks for a better timing, and so on.

The results above highlight that systems that employ hi-
erarchical scheduling with non-static time partitioning are
vulnerable to such covert timing-channel, and an adversary
can use various techniques to increase the chance of success-
ful communication. Our solution, which will be presented in
later sections, deters such attempts even when the system is
configured in favor of the adversary. In fact, the adversary’s
best chance at distinguishing timing variations from other
partitions becomes no better than a random guess because
the cases in Figures 5(b) and 7(b) cannot occur under our
solution, as shown in Figure 10.

4 Non-interference of Partition-Local Schedule
Following the definition in [32], we define information-

flow through hierarchical scheduling as follows:

Definition 2 (Information-flow through hierarchical schedul-
ing). Information is said to flow from a partition Π j to an-
other partition Πi when changes in the temporal behavior of
Π j result in changes in Πi’s observation on its local state.

Section 3 presented how illegitimate information-flow can
be established between non-static partitions even without us-
ing time measurements. Specifically, the tasks of partition ΠR
were able to perceive ΠS’s varying execution behavior from
observing changes in their own partition’s local schedule [29].

Definition 3 (Partition-local schedule). The Πi-local sched-
ule is defined as a mapping from the partition-local time, t(i),
to task set Πi. The partition-local time advances only when it
is selected by the global scheduler to serve its tasks.

Figure 11 shows how the varying execution of ΠS changes
the local schedule of ΠR. For instance, as soon as ΠR returns
from the preemption at local time t(R)1 , task τR,1 continues
its execution in Case (a). Whereas in Case (b), τR,2 executes
because it is the highest-priority task in the ready queue of
ΠR when it resumes. Similarly, at the local time t(R)2 , task τR,2
executes in Case (a) while τR,1 executes in Case (b).

The fundamental reason why the partition-local schedule
changes is because the tasks are released at non-deterministic
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Figure 11: Two different local schedules of ΠR due to the
varying execution of ΠS. Notice that the local time of ΠR
does not advance while it is not running due to a preemption.

local times even if they arrive at deterministic physical times.
For example, τR,2 arrives at physical time t2 as shown in Fig-
ure 5. However, in the ΠR-local time, it is released at t(R)1 +∆t
in Case (a) and t(R)1 in (b) as shown in Figure 11. Thus, the
amount of progress that τR,1 makes until τR,2’s release varies,
which enables them to know the order of their executions.

If tasks are released at deterministic local-time points, they
always produce the same partition-local schedule because the
state of the partition’s ready queue changes at the determin-
istic time points. Following the definition in [29], we define
the non-interference property of partition-local schedule as
follows:

Definition 4 (Non-interference of partition-local schedule).
Partition Πi is said to be non-interferent if its local schedule
is invariant to how other partitions ΠΠΠ\{Πi} execute. Specif-
ically, Πi’s local schedule is deterministic if tasks of Πi are
released at deterministic Πi-local times.

5 Partition-Oblivious Hierarchical Scheduling
In this section, we present Blinder, a run-time schedule

transformation algorithm that makes non-static time parti-
tions oblivious to others’ varying behavior. Our design goals
for Blinder are to (i) make it agnostic to global and local
scheduling mechanisms, (ii) incur low scheduling overhead,
and (iii) make its worst-case impact on the responsiveness
deterministic, which is important for real-time applications.

5.1 High-level Idea
Partition-local schedules can be made deterministic simply
by a static partitioning; that is, partitions are suspended at
deterministic time points for fixed amount of time. This, how-
ever, may lead to low CPU utilization as briefly discussed
in Section 2.2. Hence, instead of controlling when and how
long partitions should execute, we aim to allow partitions
to be scheduled still in non-static ways (thus taking advan-
tage of the improved responsiveness of non-static partitioning
schemes) while preventing the non-deterministic behaviors
from being distinguishable by local tasks. Blinder achieves
this by controlling when to introduce task to partition, i.e.,
task release time.
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Figure 12 illustrates the high-level idea using a two-
partition example that is similar to the case considered in
Figure 5. Here, the release of τi,2 that arrives at physical time
t2 is deferred as if Π j’s preemption did not occur. Specifi-
cally, τi,2’s release is deferred until t4 to ensure that τi,1 would
execute for the amount of time that it would have done (i.e.,
∆y = t2− t1) if the preemption by Π j did not happen. Hence,
τi,2 is released at t4 = t3 +∆y where t3 is when Πi returns
from the preemption. Thus, τi,1 is guaranteed to execute for

(t1− t0)+(t4− t3) = (t1− t0)+(t2− t1) = t2− t0 = ∆x+∆y.

Note that it is independent from the duration of the preemp-
tion by Π j, i.e., t3− t1. Thus, τi,1 makes the same amount of
progress, i.e., ∆x+∆y, until τi,2 is released, regardless of how
long the preemption is. Such a deferment is applied also to
certain tasks that arrive while the partition is active. τi,3 is
an example. If it was released immediately upon the arrival
at time t6, τi,1 would be preempted by τi,3, which would not
occur if Π j’s preemption was shorter or did not happen. On
the other hand, τi,2’s second arrival at time t8 does not need to
be deferred because all the prior executions that are affected
by the partition-level preemption complete before t8, and thus
τi,2’s execution does not change the local schedule of Πi.

Blinder guarantees that tasks are always released at deter-
ministic partition-local times by enforcing that the partition-
local schedules to follow the partition’s canonical local sched-
ule – the local schedule when no other partitions run [29]. Fig-
ure 13 shows an example canonical local schedule of Πi that
resulted in the schedule in Figure 12. For instance, the first ar-
rival of τi,2 is released at Πi-local time t(i)b = t(i)a +(∆x+∆y).
Only the corresponding physical time varies in the presence of
other partitions. An actual schedule observed in the physical-
time domain under Blinder can be viewed as the canonical
schedule being stretched out over time by higher-priority parti-
tions. Hence, actual schedules vary with the partition schedule
while the partition-local schedule remains same.

Arrival Queue Ready Queue
Task 
Arrival

Task 
Departure

Time-ordered Priority-ordered
Blinder

Local 
Scheduler

Release

Figure 14: Blinder uses arrival queue to control task release.

The canonical local schedule, however, cannot be statically
constructed because tasks may arrive at arbitrary times and
have variable execution times. Most importantly, these in
turn affect when partition budget is depleted and replenished.
Hence, the challenge lies in determining for how long τi,2’s
release must be deferred (i.e., ∆y in Figure 12), which depends
on the amount of CPU time that τi,1 would have used if not
preempted by Π j. The crux of Blinder algorithm is the on-line
construction of canonical local schedule.

5.2 Blinder Algorithm
Figure 14 illustrates a high-level overview of Blinder algo-
rithm. It constructs a canonical local schedule of partition in
the run-time by having an arrival queue hold newly-arrived
tasks until releasing them to the ready queue at the right tim-
ing: it depends on how the partition is scheduled. Without
Blinder, every newly-arriving task is immediately inserted to
the ready queue. As discussed earlier, this is the very source
of information-flow between partitions.

5.2.1 Scheduling Primitives

Blinder algorithm does not require a change in the generic
hierarchical scheduler presented in Algorithm 1 (Section 2.1).
That is, at each scheduling decision, a partition is selected
according to the global scheduling policy. It is important
to notice that Blinder only controls the task release times.
Once tasks are released, they are scheduled according to the
partition-specific local scheduling policy that is independent
from Blinder algorithm, as shown in Algorithm 2 (last line).

Task arrival, release, and departure: TaskArrive is in-
voked at any time when a new task τi, j arrives to partition Πi.
The task is inserted into the arrival queue QA

i (t), annotated
with the arrival time ta(τi, j) = t, as shown in Algorithm 3.
As long as the partition Πi is selected by the global scheduler
to run, i.e., Π(t) = Πi, it checks for task release. As shown in
Algorithm 2, Blinder releases tasks that meet a certain condi-
tion (which will be introduced shortly) by moving them from
the arrival queue to the ready queue. TaskDepart, shown in

Algorithm 2: LocalScheduler(Πi)
∆ti: time used by Πi since the last check
Usedi← Usedi +∆ti
for τi, j ∈ QA

i (t) do
lagi, j ← lagi, j−∆ti /* Reduce lag */

if lagi, j == 0 then
QA

i (t)← QA
i (t)−{τi, j}

QR
i (t)← QR

i (t)∪{τi, j} /* Release task */

end
end
τi(t)← select a task from QR

i (t) according to local scheduling policy



Algorithm 3: TaskArrive(τi, j)
ta(τi, j)← t /* Arrival time of τi, j */

QA
i (t)← QA

i (t)∪{τi, j}
lagi, j ← lagi(t) /* Initialize lagi, j */

if Mi(t) == Mnormal and Preempted(Πi, t) == True then
EnterDeferredMode(Πi)

end

Algorithm 4: TaskDepart(τi, j)
QR

i (t)← QR
i (t)−{τi, j}

if QR
i (t) == /0 and Mi(t) == Mdeffered then
if QA

i (t) == /0 then
Mi(t)← Mnormal /* Switch to normal mode */

else
ShiftRelease(Πi) /* Update lag in QA

i (t) */
end

end

Algorithm 4, is called when a task execution completes and
removes the task from the ready queue.

Task release mode: Blinder defines the task release mode
of partition Πi at time t, Mi(t): normal (Mnormal) or deferred
(Mdeffered) release modes. While a partition is in the normal
release mode, any newly-arriving task bypasses the arrival
queue and thus immediately becomes ready to execute. If the
partition is in the deferred release mode, the task is held in the
arrival queue until it is released by Blinder. Each partition is
initialized to the normal release mode. If a partition remains
in the normal release mode, its behavior is identical to what it
would be in a system without Blinder.

Entering into deferred release mode: A partition Πi enters
into the deferred release mode when a preemption on Πi by
another partition explicitly begins, as shown in Algorithm 5.
Πi is said to be implicitly preempted if it becomes active
(i.e., it has a non-zero remaining budget and tasks to run, as
defined in Section 2.1) due to a new task arrival or a budget
replenishment, but it is not selected by the global scheduler.
Hence, the partition can also enter into the deferred release
mode by a task arrival (as shown in Algorithm 3) or a budget
replenishment. Note that a suspension due to budget depletion
does not change the task release mode.

5.2.2 Lag-based Task Release

As discussed in Section 5.1, task releases are deferred in or-
der to hide preemptions by other partitions from local tasks.
Hence, release times are affected by when and how long pre-
emptions occur. Let us consider Figure 12 again. Suppose that
Πi has not been preempted by any partition prior to t1. That is,
t1 is the time instant at which the local schedule of Πi starts
deviating from its canonical schedule shown in Figure 13.
From this moment, the progresses of the tasks in the actual
schedule (i.e., Figure 12) lag behind those in the canonical
schedule. Hence, when a new task arrives after t1, its release
should be deferred until the actual schedule has caught up to

Algorithm 5: SuspendPartition(Πi)
if Mi(t) == Mnormal and Preempted(Πi, t) == True then

EnterDeferredMode(Πi)
end

Algorithm 6: EnterDeferredMode(Πi)
Mi(t)← Mdeffered
Usedi← 0
tdef(Πi)← t /* Current time */
Bdef(Πi)← Bi(t) /* Remaining budget */

the progress that the partition would have made until the task
is released in the canonical counterpart.

Since the canonical schedule cannot be statically deter-
mined in advance, Blinder constructs an imaginary canonical
schedule on the fly and updates it upon certain scheduling
events. For this, Blinder keeps track of the following per-
partition information to determine task release times:

Definition 5 (Available time). availablei(t) is the maxi-
mum amount of time that would have been available to the
tasks of Πi until time t since the latest time instant at which
Πi entered into the deferred release mode.

Definition 6 (Used time). usedi is the amount of time that
has actually been used by Πi since the latest time instant at
which Πi entered into the deferred release mode.

Note that usedi ≤ availablei(t) always hold as usedi
remains same as long as Πi is suspended due to a preemption.
usedi depends on the partition-level schedule and it can be
easily kept track of by counting the partition active times,
as done in Algorithm 2. For instance, in Figure 12, at time
t6, usedi = t6− t3. On the other hand, the computation of
availablei(t) is not straightforward because it depends on
the budget constraints, as we will detail shortly. In the example
above, we simply assumed no limitation on partition budgets.
Hence, availablei(t) was always the relative offset of t
from the beginning of the current deferred release mode, e.g.,
availablei(t6) = t6− t1.

Now, we define the lag as the difference between
availablei(t) and usedi:

Definition 7 (Lag). lagi(t) is the maximum amount of time
by which the current local schedule of Πi at time t lags behind
the canonical schedule. It is computed by

lagi(t) = availablei(t)−usedi.

A positive lagi(t), say l, when task τi, j arrives at time
t means that Πi would have executed up to the amount of
l until τi, j arrives if no preemptions on Πi have occurred.
Hence, the release of τi, j should be deferred until Πi will have
executed for l. This guarantees the tasks of Πi to make the
same amount of progresses that they would have made in the
canonical schedule until τi, j’s release. Therefore, when a new
task τi, j arrives (Algorithm 3), Blinder initializes the per-task
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Figure 15: Maximum available time for Πi from the beginning
of the deferred release mode until an arbitrary time t.

lag value, lagi, j. Then, it reduces the lag values of the tasks
in the arrival queue as long as the partition runs and releases
those tasks whose lag value become zero (Algorithm 2). Note
that lag is always zero in the normal release mode.
Budget constraint and available time: So far, it has been
assumed that partitions have unlimited budgets, and thus the
whole period of preemption on a partition was assumed to be
fully available to the partition if preemptions did not happen.
However, the budget constraint could have limited the avail-
able time to the partition. Suppose Πi enters into the deferred
release mode at time tdef. Then, the maximum amount of
time available to the partition from tdef to an arbitrary time
instant t in the canonical local schedule (i.e., when no pre-
emptions occur) is composed of the following terms (shown
in Figure 15):

• Remaining budget until the next replenishment or t:

a1 = min
[
Bdef,(t−tdef) ,

(
trep−tdef

)]
• Full-budget replenishments:

a2 = b(t−trep)/TicBi

• Last replenishment:

a3 = min
[
Bi,
(
t−trep

)
−b(t−trep)/TicTi

]
Here, Bdef is the remaining budget at the time of entering
into the deferred release mode, and trep is when the next
replenishment is scheduled at, both of which are known at
tdef. Then, availablei(t) is computed as follows:

availablei(t) = a1 +a2 +a3,

where a2 = a3 = 0 if t < trep. That is, the maximum available
time is obtained by assuming that all budgets are used up as
soon as they become available.

The maximum available time depends also on the budget
replenishment policy. In the formulation above, we assumed
a fixed-replenishment policy that can be found from peri-
odic and deferrable servers; the budget is replenished to the
maximum budget at a fixed-interval no matter how budgets
are used. Hence, the future replenishment times are always
known. In the other category, such as sporadic server, there
could exist multiple replenishment points determined by when
and how much budgets have been used. Nevertheless, the max-
imum available time can still be obtained, even in such a case,
because the information needed is available at the time of
entering into the deferred release mode; the available time
is decomposed into smaller available times, each of which

Algorithm 7: ShiftRelease(Πi)
τi,x← earliest arrival in QA

i (t)
Bdef(Πi)← Bi(ta(τi,x)) (See Appendix A)
tdef(Πi)← ta(τi,x)
Usedi← 0
for τi, j ∈ QA

i (t) do
lagi, j ← lagi(ta(τi, j)) /* Update lag */

end

can be computed by the formula above. Blinder algorithm can
be applied to other hierarchical scheduling schemes as long
as the available times can be deterministically computed.

Lag-update: The available function assumes the maximal
use of budget, subject to the budget constraint, over a time
interval. However, the actual execution may be smaller than
what is assumed by available function, which leads to a
situation in which the partition becomes idle while some tasks
are held in the arrival queue. One can improve their respon-
siveness by releasing them earlier than originally projected.
This can be done by reducing their lag values, as if time is
fast-forwarded. Suppose the ready queue becomes empty at
time t. The lag value for each τi, j ∈ QA

i (t) is adjusted by
ShiftRelease in Algorithm 7 in such a way that the earliest
arrival among the tasks in QA

i (t), denoted by τi,x, is released
immediately at t. That is, the beginning of the deferred release
mode is reset to τi,x’s arrival, i.e., ta(τi,x). To update the lag
values of the tasks in the arrival queue, the remaining budget
of Πi at τi,x’s arrival (i.e., the new beginning of the deferred
release mode) should be computed. Appendix A explains how
to compute Bi(ta(τi,x)) from lagi,x at time t.

Switching to normal release mode: If (i) the ready queue
becomes empty and (ii) there is no pending task-release (i.e.,
the arrival queue is empty), the partition switches to the nor-
mal release mode, as shown in Algorithm 4. It is when all
the tasks that have arrived before or during the deferred re-
lease mode complete their executions, resulting in the local
schedule being synchronized with the canonical one.

Example: Let us consider two partitions ΠH and ΠL that
consist of 1 and 3 tasks, respectively, with the following
configuration: ΠL =(10 ms, 7 ms), Pri(ΠH) > Pri(ΠL),
and Pri(τL,1)< Pri(τL,2)< Pri(τL,3). Figure 16 shows the
schedule trace generated by LITMUSRT. Suppose we are in-
terested in determining the release time of τL,2 that arrives at
t = 21 ms.

1. ΠL enters into the deferred release mode at tdef = 15
ms due to the partition-level preemption by ΠH .
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Figure 16: Example schedule trace generated by LITMUSRT.



2. The remaining budget of ΠL, Bdef, is 2 ms because 5 ms
has been used by τL,1 and τL,3 since time 10 ms.

3. Because ΠL started consuming the budget at time 10 ms,
the next replenishment time is trep = 20 ms. From then
to t = 21 ms, a budget of 1 ms is also available to ΠL.
Hence, availableL(21) = 2+1 = 3 ms.

4. From tdef, ΠL has never executed, thus usedL = 0 at
t = 21. This results in lagL,2 = lagL(21) = 3 ms.

5. ΠL returns from the preemption by ΠH at time 24 ms.
τL,3 resumes its execution because it is the highest-
priority task in the ready queue of ΠL. After τL,3 finishes,
τL,1 resumes its execution.

6. After 3 ms from the ΠL’s resumption, lagL,2 becomes 0.
Hence, τL,2 is released at time 27 ms.

Proof of non-interference: The following theorem proves
the non-interference property (Definition 4) of schedules
transformed by Blinder algorithm.

Theorem 1. With Blinder algorithm, tasks are released at the
deterministic partition-local times.
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Figure 17: Irrespective of the partition-level schedule Px, task
τi, j is released at the deterministic Πi-local time.

Proof. Suppose at time tdef, partition Πi enters into the de-
ferred release mode. Let us consider two arbitrary partition-
level schedules P1 and P2 that are equivalent until time
tdef. Let t(i)def be the corresponding Πi-local time, as de-
picted in Figure 17. Now, consider a task τi, j that arrives
at an arbitrary (physical) time t ≥ tdef. The two differ-
ent partition schedules during [tdef, t) result in different
lag values, lagi(t,P1) and lagi(t,P2), for τi, j. By the def-
inition, lagi(t,Px) = availablei(t,Px)−usedi(Px) where
both available and used times are parameterized by par-
tition schedule Px. Note that availablei(t,Px) is invari-
ant to Px because it computes the maximum amount of
time available to Πi when no other partitions run. Hence,
availablei(t,P1) = availablei(t,P2), which leads to

usedi(P1)+lagi(t,P1) = usedi(P2)+lagi(t,P2). (1)

By the definition of the used time, the Πi-local time at which
τi, j arrives is t(i)def+usedi(P1) for P1. Then, τi, j is released
after the partition executes for lagi(t,P1), which results in
the release time of t(i)def+usedi(P1)+lagi(t,P1). Similarly,
τi, j is released at t(i)def+usedi(P2)+lagi(t,P2) for P2. Then,

t
(i)
def+usedi(P1)+lagi(t,P1)=t

(i)
def+usedi(P2)+lagi(t,P2),

due to Eq. (1). That is, the release time of τi, j in Πi-local time
is same no matter what the partition-level schedule Px is.
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Figure 18: Worst-case response time of τi, j.

5.3 Schedulability Analysis
In this section, we analyze the schedulability of real-time
tasks under Blinder. The schedulability is tightly dependent
on particular choices of global and local scheduling policies
as well as budget replenishment policy. Hence, we base our
analysis on the fixed-priority server algorithm of LITMUSRT

on which our implementation is based.
Let us first consider the case without Blinder. The worst-

case situation for τi, j (illustrated in Figure 18) is when (a) it
arrives at time t0, at which the partition Πi’s budget is depleted
by lower-priority tasks as soon as possible, all the higher-
priority tasks in the same partition arrive together at t0, and
their subsequent invocations arrive as frequently as possible;
(b) the local task executions are served by Πi over one or
multiple replenishment periods (at most Bi over Ti); (c) all
partitions that can preempt Πi are replenished to their full
budgets together when Πi’s last replenishment happens, and
they execute as maximally and frequently as possible, thus
maximally delaying τi, j’s remaining executions [14].

In fact, the above worst-case situation also holds for Blin-
der. In other words, Blinder does not increase the worst-case
response time (WCRT) of tasks as long as partitions are sched-
uleable; a partition Πi is said to be schedulable if it is guaran-
teed to execute for Bi over every replenishment period Ti. By
viewing partitions as periodic tasks, the following iterative
equation [21] can be used to check if Πi is schedulable:

wn+1
i = Bi + ∑

Pri(Πk)>Pri(Πi)

dwn
i /TkeBk, (2)

where w0
i = Bi. If wn

i converges and is upper-bounded by the
replenishment period Ti, Πi is guaranteed to serve Bi to its
tasks over every period Ti, due to the critical instant theorem
[27]. As an example, Π4 in Table 1 in Section 6.2 takes up to
38 ms to execute for B4 = 10 ms. If we increase the budgets
for all partitions by 25%, Π4 becomes unschedulable.

Lemma 1. lagi ≤ Bi always holds if Πi is schedulable.

Proof. Suppose Πi is being replenished to its full budget Bi
at time t and all partitions that can preempt Πi are replenished
together and use up their budgets as frequently and maxi-
mally as possible. If there was no such preemption on Πi,
it could have served its tasks for up to Bi during [t, t + Ti).
Hence, availablei can reach up to Bi. On the other hand,



usedi remains 0 until Πi takes the CPU. Therefore, lagi can
reach up to Bi in the first period. From then on, over each
replenishment period the partition is provided Bi of available
time that it can fully use during the period as it is schedulable.
Therefore, due to ∆lagi = ∆availablei−∆usedi = 0, lagi
cannot grow over Bi. In fact, lagi is always reduced to 0 by
the next-replenishment time.

Theorem 2. If partition Πi is schedulable, Blinder does not
increase the worst-case response times of its tasks.
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Figure 19: Worst-case initial latency remains same.

Proof. This can be proved by showing that the worst-case
initial latency is same whether or not Blinder is used. Sup-
pose Πi is replenished to its full budget at time t, as shown in
Figure 19. The maximum lagi is achieved when Πi’s execu-
tion is delayed by higher-priority partitions at least until time
t +Bi, as shown in Case (a), at which lagi becomes Bi. Now,
due to Lemma 1, lagi returns to 0 by or earlier than the end of
the current period t +Ti. Hence, in the worst-case, a task τi, j
that arrives at time t+Bi can have the initial latency of Ti−Bi.
Without Blinder, the worst-case situation for τi, j occurs when
it arrives as soon as Πi’s budget is depleted, which can happen
as early as at time t+Bi. As shown in Case (b), the worst-case
initial latency is Ti−Bi. Therefore, τi, j can start its execution
at earliest at t +Ti. From then on, its execution is independent
from whether Blinder is used or not.

If Πi is not schedulable due to an ill-configuration of par-
tition parameters, the lagi might not be bounded if, albeit
unlikely, Πi’s workload is infinite, because ∆lagi over cer-
tain replenishment periods could be non-zero. In practice,
it is uncommon to assign parameters that make partitions
unschedulable. System integrator can use the exact analysis
presented in Eq. (2) for the test of partition schedulability.

Average-case response times: It is worth noting that, as will
be experimentally shown in Section 6.2, high-priority tasks
tend to experience longer average-case response times due to
the lag-based task release. However, because the use of lag
does not change both the demand from tasks and the supply
from partition, increases in the average-case response times
of high-priority tasks is compensated by decreases in low-
priority tasks’ response times. Also, the impact on response
times tends to be higher for low-priority partitions as they
are more likely to operate in the deferred release mode than
high-priority partitions.

Static
Partitions

Non-static Partitions 
(priority-driven)

Major cycle 

Disable access to physical time

Static
Partitions

Non-

Figure 20: Mix of static and non-static time partitioning.

5.4 Discussion

Physical time: If the precise physical time is available to
tasks in the receiver partition (i.e., ΠR in Figure 5), they can
directly perceive changes in their timings. Certain counter-
measures such as fuzzy time [19, 42] and virtual time [25, 45]
techniques can mitigate the threat. However, partitions under
a hierarchical scheduling can still form an algorithmic covert-
channel without time information as presented in Section 3.

Certain applications still require the physical time informa-
tion, making the above mitigations inapplicable. One possible
way to prevent such applications from exploiting the hier-
archical scheduling is to serve them in static partitions. As
shown in Figure 20, a system can host a mix of static and
non-static partitions by (i) allocating fixed time intervals for
the static partitions and (ii) letting the others (i.e., non-static
partitions) compete for the remaining times based on their
priorities. Note that there can be multiple static partitions
placed anywhere in the major cycle. From the perspective of
the non-static partitions, the static partitions can be viewed as
another non-static partition with the highest-priority and the
replenishment period being equal to the major cycle. The non-
static partitions are subject to Blinder, and access to precise
physical time is disabled for their user processes. In our proto-
type, we use a sandbox-based method to block physical-time
access for a demonstration purpose.

For most real-time applications, their correct functioning
highly depends on the execution regularity and schedulability.
Physical control processes use time elapsed between succes-
sive invocations to estimate a change in the process state over
time. For low-dynamics systems, the interval can be approxi-
mated by a constant time resolution. In such cases, applica-
tions do not need precise physical times. In Section 6.1, we
discuss the practicality of such an approximation based on our
prototype implementation. On the other hand, high-dynamics
processes require precise time information and such tasks can
be served in static partitions as explained above. In fact, such
highly critical applications are less likely to be malicious as
they tend to have low complexity and go through a stringent
verification process due to safety requirements.

Modularity: Blinder is modular in that it can be enabled/dis-
abled independently for each partition because it does not
change a partition’s behavior from others’ points of view.
Accordingly, enabling/disabling Blinder for individual parti-
tion does not affect others’ schedulability. This modularity
is especially useful when certain partitions are verified to
be trustworthy, and such applications are free of accessing
precise physical time.



Algorithm complexity: In the normal release mode lag is
not computed, and the arrival queue is always empty. Hence,
Blinder does not enter the loop in LocalScheduler (Algo-
rithm 2). Therefore, the algorithm complexity in this mode is
O(1). In the deferred release mode, both LocalScheduler

and ShiftRelease update the lag values of the tasks in
the arrival queue. Because a lag calculation is a constant-
time operation, the worst-case complexity for each partition
is linear to the size of its task set. Note that the operations
are independent from the number of partitions in the system.
Hence, letting M be the total number of tasks in the system,
the asymptotic complexity is O(M).

Multicore: Blinder can be applied to a multicore processor
without any modification. This feature is only disadvanta-
geous to adversaries–especially if partitions can migrate be-
tween cores. This is because the sender partition may not
be able to preempt the receiver partition. If migration is not
allowed, Blinder can be independently applied to each of the
application sets that share a CPU core. However, if a parti-
tion can run multiple tasks simultaneously across multiple
cores, one of them can serve as an implicit clock (e.g., using
a shared counter in a tight loop). Hence, partitions should not
be allowed to occupy multiple cores at the same time, as well
as disallowing shared memory and messaging across cores.
In fact, in high-assurance systems, it is a common practice
to fix a partition to a core to minimize the unpredictability
caused by concurrency [36].

6 Evaluation
6.1 Use Case
Platform: We applied Blinder to an 1/10th-scale self-driving
car platform. Figure 8 in Section 3.1 presented the overall sys-
tem architecture. It autonomously navigates an indoor track
using a vision-based steering control and an indoor position-
ing system. The health monitoring partition, Π4, collects run-
time log data and also runs watchdog process that monitors
the application partitions’ heartbeat messages.

Blinder Implementation: We implemented Blinder in the
latest version of LITMUSRT (based on Ubuntu 16.04 with ker-
nel version 4.9.30) which we run on Intel NUC mini PC that
has Intel Core i5-7260U processor operating at 2.20 GHz
and a main memory of 8 GB. Our implementation is based
on LITMUSRT’s partitioned reservation (P-RES) framework.
For our evaluation, we applied Blinder to the sporadic-polling
server of P-RES which is a variant of the sporadic-server al-
gorithm; the full budget is replenished after one period from
the beginning of first consumption, instead of maintaining
multiple replenishment threads. Hence the same available
function presented in Section 5.2.2 is used because only one
trep (i.e., the next replenishment time) exists and is known
at any time instant. We used the fixed-priority preemptive
scheduling for the partition-local scheduling. Our implemen-
tation is denoted by P-RES-NI (P-RES with non-interference).

One implementation challenge that needs to be highlighted
is that LITMUSRT reservation does not have a clock to gen-
erate regular tick-based signals. It rather uses a Linux high-
resolution timer (hrtimer) [16] to set an absolute expiration
time instant for the next schedule. Every time when the sched-
uler returns to the user thread, it resets this timer to the closest
instant that needs to be responded by the scheduler. In P-RES,
the next reschedule point is determined by the minimal value
of the time slices of the local scheduler, the remaining budget,
and the next replenishment time. For P-RES-NI, we added
one more condition, that is the remaining lag for the head of
the arrival queue, to accurately schedule task release points.
Blocking access to physical time: The behavior controller
partition, Π1, is allowed to access the physical time because
it is given the highest priority. The other partitions do not
need the precise physical time information. Thus, we blocked
them from accessing the physical time. Specifically, we imple-
mented a secure launcher that creates a restricted execution
environment for user tasks based on seccomp (secure comput-
ing mode) [11] that can filter any system calls. We blacklisted
time-related system calls such as time, clock_gettime,
timer_gettime, etc. In addition, we dropped the permissions
that could leak physical time information, including time-
relevant devices (e.g., /dev/hpet), time-stamp counter (TSC),
model-specific registers, and virtual ELF dynamic shared ob-
ject (vDSO) [13]. The tasks of Π2, Π3, and Π4 are launched
by this secure launcher. Other approaches such as fuzzy time
[19, 42] and virtual time [25, 45] could also be used for them.

The navigation partition also runs a Kalman filter-based
localization task that requires a time interval between suc-
cessive estimations. It uses a constant time interval (50 ms),
instead of precise time measurements. In order to see how
close it is to the actual variations, we measured time inter-
val between successive executions. Note that the interval is
hardly constant (unlike inter-arrival time) due to constraint
on partition-budget as well as delay by higher-priority parti-
tions/tasks. This can be seen from Figure 21 that compares
the localization task’s execution intervals under P-RES and
P-RES-NI. Although the interval ranges between 30 and 60
ms with a few outliers, the average matches the task’s esti-
mation rate (20 Hz). With Blinder enabled, we measured the
error in the position estimation (from the ground-truth) and
observed a 3% increase in the error when compared to the
case when time interval is measured from the wall clock.

PRES:    Mean=50.00,
Stdev=9.44

PRES-NI: Mean=50.00,   
Stdev=7.75

Figure 21: Time interval between successive execution of the
localization task in Π3.
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Figure 22: LITMUSRT schedule traces of the covert channel
scenario when Blinder is used.

Covert channel: Figure 22 shows the schedule traces for the
scenario presented in Section 3.1 with Blinder enabled. The
navigation task’s heartbeat message helps the watchdog task
in the health monitoring partition to time the receiver tasks to
the sender. Nevertheless, due to Blinder, Receiver 1, which has
a lower-priority than Receiver 2, always completes its execu-
tion before Receiver 2 increases the shared counter no matter
how long the sender executes. Thus, the receiver’s inference
always results in ‘0’ regardless of the sender’s signal.

6.2 Cost of Blinder
Response time: To evaluate the cost of Blinder in a general
setting, we measured task response times from a system that
is comprised of various rate-groups. The partition and task pa-
rameters are shown in Table 1. We initially set both α and β to
1, which sets the system load to 80%. In order to add random-
ness to the executions and thus to create numerous variations
in timings, task inter-arrival times are allowed to vary by 20
percent. Task priorities are assigned according to Rate Mono-
tonic policy [27] (i.e., shorter period→ higher priority). We
used rtspin tool of LITMUSRT to generate the real-time tasks.
We compare our method, P-RES-NI (N), against P-RES (P)
and TDMA (T). For TDMA, the major cycle is set to 50 ms.

Figure 23 summarizes the statistics of task response times
obtained from running each scheme for 10 hours. The em-
pirical probability distributions and the complete data includ-
ing the analytic WCRTs can be found in Appendix B. The
analytic WCRTs for P-RES are calculated by the analysis
presented in [14]. Those under TDMA can be calculated simi-
larly by treating other partitions as a single, highest-priority
periodic task. The analyses assume no kernel cost, and thus
the actual measurements can be slightly higher than what are
numerically computed. The results highlight the following: (i)
P-RES-NI does not increase the WCRTs compared to P-RES.
This is because all the partitions are schedulable as discussed
in Section 5.3; (ii) the behavior of Π1 (i.e., the highest-priority
partition) is not affected by Blinder because it never enters
into the deferred release mode; (iii) the experimental WCRTs,
in particular of low-priority tasks, under P-RES-NI tend to be
smaller than those measured under P-RES especially in low-
priority partitions. This is because those tasks are made more
responsive by Blinder (i.e., deferred release of higher-priority
tasks reduces the amount of preemption on lower-priority
tasks), and thus the true worst-cases were less likely to be
observed. In theory, the WCRTs under P-RES-NI and P-RES
are same; (iv) while TDMA benefits low-priority partition in

Table 1: Partition (Ti,Bi) and task (pi, j, ei, j) parameters for the
evaluation of response times on LITMUSRT system. Units are
in ms. The system load is controlled by α and β. For instance,
the system load is 80% for α = β = 1. Pri(Πi)> Pri(Πi+1).

τi,1 τi,2 τi,3 τi,4

Π1 (20,4α) (40,2β) (80,4β) (160,8β) (320,16β)
Π2 (30,6α) (60,3β) (120,6β) (240,12β) (480,24β)
Π3 (40,8α) (80,4β) (160,8β) (320,16β) (640,32β)
Π4 (50,10α) (100,5β) (200,10β) (400,20β) (800,40β)
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Figure 23: Statistics of response times of the tasks in Table 1.

terms of the WCRTs due to guaranteed time slices, it de-
grades the average responsiveness; (v) due to the lag-based
release control, the average-case response times, in particular
of high-priority tasks, increase. The impact is more notice-
able in lower-priority partitions. As a result, τ4,1’s average
response time is increased by 20% under P-RES-NI. However,
although criticality is not necessarily identical to priority, such
low-priority partitions tend to be less sensitive to degraded
responsiveness; (vi) the impact on lower-priority tasks are
smaller. For instance, the average response times of τ3,4 and
τ4,4 are decreased by 2% and 5%, respectively, compared to
P-RES. This is because in addition to the reduced-preemptions
by higher-priority tasks, a part or whole of the lag times could
have been spent nevertheless to wait for higher-priority tasks
to finish. Hence, their delayed releases can be masked.

(a) Π! is schedulable (b) Π! is not schedulable

Figure 24: Probability distribution of τ4,1’s response times.
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Figure 25: Configuration used for the overhead measurements
with varying number of partition-level preemptions and size
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Table 2: Average and standard deviation of response times
(ms) of τL,1 in Figure 25.

#HP 12 18 24 30 30
#LA 15 30 45 450

P-RES
96.15 96.17 96.19 96.22 96.22 96.23 96.39
(0.04) (0.06) (0.07) (0.09) (0.08) (0.08) (0.08)

P-RES-NI
96.17 96.19 96.22 96.24 96.25 96.26 96.73
(0.04) (0.05) (0.06) (0.08) (0.08) (0.07) (0.07)

Figure 24(b) shows the probability distribution of τ4,1’s
response times when Π4 is not schedulable due to the in-
creased system load (by setting α = β = 1.25 in Table 1). The
complete measurements data are provided in Table 4 in Ap-
pendix B. Note that with this configuration, some tasks miss
their deadlines even under P-RES. We performed this experi-
ment to show the impact of Blinder on such an ill-configured
system. Due to τ4,1’s longer release-delay, its worst and mean
response times are increased by 41% and 45%, respectively.

Table 5 in Appendix B presents the worst-case and average-
case response times when the system load is reduced to 40%
(by setting α = β = 0.5). The results do not show statisti-
cally significant evidence of a difference between P-RES and
P-RES-NI, except that τ4,1’s average response time increases
by 4.5% in P-RES-NI. Recall that the accuracy of the covert
communication demonstrated in Section 3 increases signif-
icantly when the system is light-loaded. This suggests that
Blinder can deter such malicious attempts effectively, incur-
ring a small overhead on real-time applications.

Scheduling overheads: In our implementation of Blinder in
LITMUSRT, Linux high-resolution timer (hrtimer) is used to
schedule the lag-based task release. When a partition is pre-
empted, the timer is rescheduled upon resumption to account
for the suspended time. Thus, the number of partition-level
preemptions as well as the size of the arrival queue may af-
fect the scheduling overhead. For this experiment, we use a
two-partition configuration shown in Figure 25. ΠL enters
into the deferred release mode at time 14 (ms) due to the
preemption by ΠH . 15 tasks of ΠL arrive at time 44, right
before ΠL returns from ΠH’s preemption. Every 2 ms from
time 46, ΠH preempts ΠL for 1 ms. Note that the result does
not change with varying number of higher-priority partitions,
because Blinder’s complexity is independent of the number of
partitions; it is irrelevant as to who preempts ΠL.

The initial lag values of the tasks that arrive at time 44 are

30. Hence, they are not released until τL,1 executes for another
30 ms since returning from ΠH ’s preemption. We assigned the
highest ΠL-local priority to τL,1 to isolate any impact of task-
level preemption. Therefore, the arrival queue of ΠL remains
same until τL,1 finishes at time 106. We vary the number of
ΠH ’s preemptions, and accordingly the execution time of τL,1
is adjusted to keep its nominal response time same. We ran
each configuration for 300 seconds with and without Blinder.
As Table 2 shows, τL,1’s response time naturally increases
with the number of ΠH’s preemptions (denoted by #HP) in
both cases. However, the difference of P-RES-NI from P-RES
remains almost constant. Increasing the number of ΠL’s tasks
(denoted by #LA) that arrive at time 44, thus increasing the
size of the arrival queue, does not change the trend. These
results indicate that the overhead due to Blinder’s lag-based
task release is statistically insignificant and that it is scalable.

7 Related Work
Timing-channels are a major threat to information security

[15, 18]. Microarchitectural timing-channels often involve
shared hardware resources: cache [34], branch predictors [24],
memory banks, TLBs, and interconnects [30]. An attacker usu-
ally either exploits the trace left by other users or overwhelms
the bandwidth. Fuzzy-time [19, 42] introduces noise to sys-
tem clocks so that adversaries cannot obtain precise physical
time. Virtual time approaches [25, 45] enforce execution de-
terminism by providing artificial time to processes. Although
these techniques can mitigate timing-channels formed from
observing physical time progress, they cannot prevent the sce-
narios presented in this paper because the tasks do not require
any time information to perceive a change in other partition’s
temporal behavior.

Studies have shown that real-time scheduling can leak
information, whether intended or not. Son et al. [38] pro-
vide a mathematical framework for analyzing the existence
and deducibility of covert channels under Rate Monotonic
scheduling. Similarly, Völp et al. [44] address the problem
of information-flows that can be established by altering task
execution behavior. The authors proposed modifications to
the fixed-priority scheduler to close timing-channels while
achieving real-time guarantees. In [43], Völp et al. also tackle
the issues of information leakage through real-time locking
protocols and proposed transformation for them to prevent un-
intended information leakage. All of these works address the
problem of task-level information leakage, whereas our work
concerns information-flow among time-partitions through
varying partition-level behavior.

Formal verification can be used to prove absence of covert
timing-channels. Murray et al. [31] show the non-interference
of Sel4’s time-partitions isolated by a static round-robin sched-
ule. Liu et al. [29] prove that partitions can be dynamically
scheduled, while preserving non-interference, if task arrivals
are always aligned with partition’s activation. Vassena et
al. [41] present a language-level information-flow control



system to eliminate covert timing-channels by fixing the ex-
act allocation of global-time for each parent-children thread
group (analogous to the partition-task relationship), allowing
user threads to access the global clock.

8 Conclusion
Blinder makes partition-local schedules deterministic by

controlling the timing of task release and thus prevents lo-
cal tasks from perceiving other partitions’ varying behav-
ior. We demonstrated that with Blinder, adversaries cannot
form an algorithmic covert timing-channel through a hierar-
chical scheduling even if the system is configured in the most
favorable way to them. Blinder enables applications to en-
joy the level of flexibility that dynamic partitioning schemes
would achieve while guaranteeing the partition obliviousness
that static approaches would provide. Also, it is backward-
compatible and minimally-intrusive in that no modification is
required to the underlying (both global and local) scheduling
mechanisms while incurring statistically insignificant over-
heads on the scheduler. Therefore, existing systems can bene-
fit from the improved security and resource efficiency that it
provides without a complete re-engineering, which is advan-
tageous especially to safety-critical systems that require high
re-certification costs.
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Appendix A Computation of Bi(ta(τi,x)) in
ShiftRelease

Suppose ShiftRelease occurs at time t, and let τi,x be the
earliest-arrival task in the arrival queue. As shown in Algo-
rithm 7, its arrival time, i.e., ta(τi,x), becomes the beginning of
a new deferred release mode. Here, we compute a new value
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Figure 26: Empirical probability distributions of task response times under TDMA, P-RES, and P-RES-NI when α = β = 1.

t!"# t$(𝜏%,')t($)*+",

Assumed ………

𝑙𝑎𝑔!,#

B$%& min	(Δt, 𝐵!)

Actual

Δt

………

Figure 27: ta(τi,x) becomes the beginning of a new deferred
release mode, and Bi(ta(τi,x)) is recomputed using lagi,x.

for Bdef based on lagi,x that is the remaining lag of τi,x when
the ShiftRelease is happening. ShiftRelease occurs be-
cause lagi,x is a non-zero. That is, the executions released
before τi,x’s arrival (at time ta(τi,x)) is shorter than what is
assumed when calculating the initial lag of τi,x. Hence, from
lagi,x we can find how much budget of Πi would have left
for τi,x at its arrival.

We can consider two cases: there had been at least one
budget replenishment before ta(τi,x) or not since entering the
current deferred release mode (i.e., tdef). Figure 27 shows
the former case. In this case, tlastrep is the time instant at
which the last budget replenishment happens before ta(τi,x).
At this moment, the budget is fully replenished to Bi. Now,

Bi(ta(τi,x)) depends on how much of the budget is consumed
by tasks of Πi until ta(τi,x). If no tasks execute since tlastrep,
the full budget Bi would have been available at ta(τi,x). In
this case, lagi,x is longer than min(ta(τi,x)− tlastrep,Bi),
that is, the maximum available time during the interval of
[tlastrep,ta(τi,x)). As lagi,x decreases, less budget becomes
available. Therefore,

Bi(ta(τi,x)) = Bi−
[

min
(
ta(τi,x)−tlastrep,Bi

)
−lagi,x

]
0
,

where [x]0 = max(x,0). If there had been no budget replen-
ishment since tdef, Bi and tlastrep are replaced by Bdef and
tdef, respectively.

Appendix B Complete Measurement Data of
Response Time

Figure 26 shows the empirical probability distributions of
task response times when the system shown in Table 1 (with
α = β = 1) in Section 6.2 is scheduled by TDMA, P-RES, and
P-RES-NI. Tables 3, 4, and 5 show (i) the analytic worst-case
response times (calculated by using the analysis in [14]) and
(ii) experimental worst- and average-case response times.



Table 3: Experimental worst- and average-case response times (in ms) when α = β = 1.
Analytic WCRT TDMA (T) P-RES (P) P-RES-NI (N) ∆ Average

TDMA P-RES Worst Average Stdev Worst Average Stdev Worst Average Stdev (T-P)/P (N-P)/P

τ1,1 42.00 18.00 44.15 19.65 13.46 18.19 9.47 5.74 18.18 9.45 5.73 107.50% -0.21%
τ1,2 48.00 38.00 48.09 25.24 13.95 38.22 19.92 10.11 38.09 19.89 10.13 26.71% -0.15%
τ1,3 144.00 80.00 144.01 63.57 26.83 80.23 62.71 12.14 79.90 62.59 12.17 1.37% -0.19%
τ1,4 400.00 320.00 399.45 242.98 49.84 317.63 226.38 34.51 317.82 225.80 34.33 7.33% -0.26%

τ2,1 43.00 31.00 43.26 21.33 13.57 31.16 14.02 8.61 31.16 14.69 8.66 52.14% 4.78%
τ2,2 49.00 64.00 49.09 28.92 13.85 63.18 29.85 14.71 60.96 30.15 14.87 -3.12% 1.01%
τ2,3 196.00 184.00 195.73 112.03 27.00 179.06 92.53 18.46 123.67 92.50 18.84 21.07% -0.03%
τ2,4 600.00 664.00 592.93 364.63 64.89 478.56 323.98 51.16 477.04 320.96 51.13 12.55% -0.93%

τ3,1 44.00 46.00 44.17 23.09 13.64 46.13 18.15 11.26 46.11 20.23 11.67 27.22% 11.46%
τ3,2 96.00 90.00 96.02 52.37 23.70 89.90 39.69 19.06 85.89 40.35 19.30 31.95% 1.66%
τ3,3 248.00 250.00 243.58 139.79 38.79 235.55 120.07 25.86 169.50 120.33 26.39 16.42% 0.22%
τ3,4 800.00 890.00 732.36 491.47 75.26 637.61 400.21 73.04 631.58 395.00 71.92 22.80% -1.30%

τ4,1 45.00 67.00 45.15 24.87 13.67 67.08 21.96 13.69 67.10 26.37 14.89 13.25% 20.08%
τ4,2 95.00 128.00 95.06 53.82 24.29 119.97 49.58 22.44 116.81 50.31 22.95 8.55% 1.47%
τ4,3 200.00 328.00 199.78 161.71 29.21 287.48 142.65 34.67 223.48 142.54 35.45 13.36% -0.08%
τ4,4 800.00 1128.00 797.48 607.31 92.55 786.56 438.05 94.71 745.06 427.14 92.11 38.64% -2.49%

Table 4: Experimental worst- and average-case response times (in ms) when α = β = 1.25.
Analytic WCRT TDMA (T) P-RES (P) P-RES-NI (N) ∆ Average

TDMA P-RES Worst Average Stdev Worst Average Stdev Worst Average Stdev (T-P)/P (N-P)/P

τ1,1 40.00 17.50 40.20 18.39 12.95 17.67 9.46 5.55 17.68 9.45 5.55 94.40% -0.11%
τ1,2 47.50 37.50 47.55 25.16 13.65 37.65 20.52 9.63 37.58 20.49 9.64 22.61% -0.15%
τ1,3 142.50 80.00 142.37 64.15 25.54 80.03 63.15 11.85 79.85 63.06 11.87 1.58% -0.14%
τ1,4 400.00 320.00 398.42 239.97 48.22 316.44 227.36 34.05 316.15 227.18 34.11 5.55% -0.08%

τ2,1 41.25 31.25 41.41 20.51 13.13 31.39 13.99 8.34 31.40 14.95 8.42 46.60% 6.86%
τ2,2 48.75 65.00 48.77 29.80 13.53 61.26 30.82 13.78 61.16 31.18 14.04 -3.31% 1.17%
τ2,3 195.00 185.00 194.31 111.08 26.48 179.58 92.71 18.18 124.54 92.97 18.64 19.81% 0.28%
τ2,4 600.00 665.00 591.01 365.91 63.16 477.13 321.29 50.97 474.49 317.92 50.95 13.89% -1.05%

τ3,1 42.50 47.50 42.65 22.66 13.23 47.61 17.83 10.38 47.60 21.00 11.29 27.09% 17.78%
τ3,2 95.00 97.50 94.95 52.11 22.40 95.36 41.25 17.29 87.33 42.02 17.71 26.33% 1.87%
τ3,3 247.50 257.50 241.86 140.15 37.12 236.91 118.71 26.52 176.51 119.21 26.70 18.06% 0.42%
τ3,4 800.00 897.50 723.41 488.99 73.51 631.79 379.96 73.63 615.82 372.57 73.07 28.70% -1.94%

τ4,1 43.75 93.75 43.86 24.82 13.26 88.13 23.45 12.79 124.45 34.08 18.17 5.84% 45.33%
τ4,2 93.75 162.50 93.72 55.01 23.11 156.96 56.45 21.73 167.54 62.28 24.24 -2.55% 10.33%
τ4,3 200.00 362.50 199.52 162.74 28.88 352.83 151.24 45.33 293.57 151.00 41.55 7.60% -0.16%
τ4,4 800.00 1162.50 796.62 606.38 91.23 848.32 446.81 105.42 781.24 424.71 99.57 35.71% -4.95%

Table 5: Experimental worst- and average-case response times (in ms) when α = β = 0.625.
Analytic WCRT TDMA (T) P-RES (P) P-RES-NI (N) ∆ Average

TDMA P-RES Worst Average Stdev Worst Average Stdev Worst Average Stdev (T-P)/P (N-P)/P

τ1,1 46.00 19.00 47.18 22.28 14.12 19.20 9.47 6.01 19.21 9.45 6.01 135.27% -0.21%
τ1,2 49.00 39.00 49.17 25.18 14.32 39.27 18.55 11.04 39.17 18.57 11.01 35.74% 0.11%
τ1,3 147.00 80.00 147.22 78.85 21.99 80.36 61.44 12.77 80.08 61.35 12.81 28.34% -0.15%
τ1,4 400.00 320.00 639.17 259.47 42.66 319.41 223.67 35.18 318.73 222.62 35.15 16.01% -0.47%

τ2,1 46.50 30.50 46.71 23.06 14.20 30.68 14.10 9.03 30.69 14.29 9.03 63.55% 1.35%
τ2,2 49.50 62.00 49.66 26.99 14.28 60.59 27.80 16.39 60.54 27.83 16.47 -2.91% 0.11%
τ2,3 198.00 182.00 197.99 113.49 27.82 144.64 91.76 19.37 121.92 91.61 19.48 23.68% -0.16%
τ2,4 600.00 662.00 598.90 366.12 68.12 480.02 326.37 52.30 477.95 325.10 52.24 12.18% -0.39%

τ3,1 47.00 43.00 47.21 24.00 14.22 43.09 18.58 12.03 43.08 19.18 12.10 29.17% 3.23%
τ3,2 98.00 85.00 98.19 52.99 26.30 83.08 36.85 21.66 83.00 36.99 21.75 43.80% 0.38%
τ3,3 249.00 245.00 247.12 142.19 40.96 211.52 121.09 26.20 164.84 120.98 26.52 17.43% -0.09%
τ3,4 800.00 885.00 786.50 499.35 79.08 636.94 424.84 70.98 638.34 421.88 70.23 17.54% -0.70%

τ4,1 47.50 56.50 47.69 24.93 14.23 56.65 23.12 15.11 56.58 24.17 15.23 7.83% 4.54%
τ4,2 97.50 109.00 97.71 54.80 26.32 106.56 45.97 26.92 106.45 46.03 27.07 19.21% 0.13%
τ4,3 200.00 309.00 294.37 159.48 29.94 294.48 149.41 33.47 208.70 148.94 34.21 6.74% -0.31%
τ4,4 800.00 1109.00 799.10 607.05 94.49 790.65 510.74 89.55 794.26 507.11 89.77 18.86% -0.71%


	Introduction
	Preliminaries
	System Model and Terminology
	Hierarchical Scheduling

	Algorithmic Covert Timing-Channel in Hierarchical Scheduling
	Adversary Model
	Feasibility Test

	Non-interference of Partition-Local Schedule
	Partition-Oblivious Hierarchical Scheduling
	High-level Idea
	Blinder Algorithm
	Scheduling Primitives
	Lag-based Task Release

	Schedulability Analysis
	Discussion

	Evaluation
	Use Case
	Cost of Blinder

	Related Work
	Conclusion
	Computation of Bi(ta(i,x)) in ShiftRelease 
	Complete Measurement Data of Response Time

