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CoMpUter soFtWare is  one of the most influential 
technologies ever created. Software has entered every 
aspect of our lives, used to control everything from 
computing and communication devices (such as 
computers, networks, cellphones, and Web browsers), 
to consumer products (such as cameras, TVs, and 
refrigerators), to cyber-physical systems (such as 
automobiles, medical devices, and aviation systems), 
and to critical infrastructure (such as financial, 
energy, communications, transportation, and national 
defense). 

Unfortunately, software is also sometimes our  
least dependable engineering artifact. Software 
companies lack the kind of meaningful warranty  
most other engineering organizations are expected  
to provide. Major corporations and government 
agencies worldwide invest in fixing software bugs, 

but prospects for building reliable 
software are bleak. The pervasive pres-
ence of software bugs also makes all 
existing computing and information 
systems vulnerable to security and pri-
vacy attacks. 

An important cause of such dif-
ficulty is the sheer complexity of the 
software itself. If each line of code is 
viewed as an individual component, 
software systems are easily the most 
complicated things we humans have 
ever built. Unlike hardware compo-
nents, software execution can eas-
ily lead to an unbounded number of 
states, so testing and model-checking 
techniques cannot guarantee reliabil-
ity. As the hardware community moves 
deep into new multi-core and cyber-
physical platforms, and as software is 
thoroughly integrated into everyday 
objects and activities, the complex-
ity of future software could get much 
worse, even as demand for dependable 
software becomes more urgent. 

For most of today’s software, es-
pecially low-level forms like operat-
ing systems, nobody knows precisely 
when, how, and why they actually 
work. They lack rigorous formal speci-
fications and were developed mostly 
by large teams of developers using 
programming languages and libraries 
with imprecise semantics. Even if the 
original developers had a good infor-
mal understanding of the inner work-
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Only if the programmer can prove (through 
formal machine-checkable proofs) it is free of 
bugs with respect to a claim of dependability. 
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 key insights

    The dependability of a software system 
should be treated separately from its 
execution environment; the former is a 
rigorous mathematical entity, but the 
latter is imperfect and far less rigorous. 

    Building end-to-end certified 
software requires a rich metalogic for 
expressiveness, a set of domain-specific 
program logics for modularity and 
automation, a certified linking framework 
for interoperability, and machine-
checkable proofs for scalability.

    The trusted computing base of a good 
certified framework should contain 
only components whose soundness 
and integrity can also be validated by 
independent third parties.
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ings, their knowledge and assump-
tions about system behavior (often 
implicit) are easily lost or broken in 
subsequent development or mainte-
nance phases. 

The software research community 
has sought to tackle these problems in 
recent years but remains hampered by 
three key difficulties: 

Lack of metrics. Metrics are still 
lacking for measuring software de-
pendability, making it difficult to 
compare different techniques and 
build steady progress in the field. De-
pendability often includes attributes 
like reliability, safety, availability, and 
security. A system’s availability can be 
measured retroactively as a percent-
age of its uptime in a given year; for ex-
ample, 99.9999% means 31.5 seconds 
downtime per year, but quantifying 
other attributes is much more diffi-
cult. A program with one bug is not 
necessarily 10 times more secure than 
a program with 10 bugs. A system’s re-
liability depends on its formal specifi-
cation, which is often nonexistent. 

Worse, software dependability is of-
ten confused with the dependability of 
the software’s execution environment, 
which consists of not just hardware 
devices but also human operators and 
the physical world. Since the depend-
ability of the execution environment 
is often beyond human control, many 
people view software as a complex bio-
logical system, rather than as a rigor-
ous mathematical entity; 

System software. A software appli-
cation’s dependability also relies on 
the dependability of its underlying 
system software, including OS kernel, 
device driver, hypervisor, garbage col-
lector, and compiler. These low-level 
programs are often profoundly com-
plex and bug-prone, but little has been 
done to make them truly dependable. 
For example, if an OS kernel or even 
a compiler has security holes, the en-
tire system could be compromised, 
regardless of what software developers 
do at a higher level19,31; and 

Last-mile problem. Despite recent 
progress in formal-methods research, 
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program verification still involves 
a vexing “last-mile problem.” Most 
software-verification research con-
centrates on high-level models rather 
than on actual programs—valuable for 
finding bugs but leaving a big gap that 
must be closed before meaningful de-
pendability claims can be made about 
actual software. Failure to reason 
about actual code also has serious im-
plications for maintainability; for ex-
ample, it is difficult for programmers 
to pinpoint the source and a fix when 
a new bug is identified and ensure that 
subsequent updates (to actual code) 
will not break the code’s high-level 
model. 

Leading research on certified soft-
ware aims to tackle all three. For exam-
ple, concerning the lack of good met-
rics, a line is drawn between the actual 
machine-executable software and the 
surrounding physical environment 
(such as hardware devices and human 
operators). We can neither predict the 
future of the physical world nor for-
mally certify human behavior, but at 
least under a well-defined, stable hard-
ware platform (such as the x86 instruc-
tion set), the behavior of each machine 
executable is a rigorous mathematical 
entity. With a formal specification stat-
ing its desirable behavior, we can (at 
least in theory) rigorously “certify” that 
the machine executable behaves as ex-
pected. A good dependability metric is 
then just the formal claim developers 
make and certify about each program. 

The long-term goal for research on 
certified software is to turn code—of-
ten a system’s weakest link—into its 
most dependable component. The 
formal specification given may not 
precisely capture the behavior of the 
physical environment, so the overall 
system may still not function properly, 
but at least when a problem occurs, 
programmers and users alike are as-
sured that the behavior of the software 
is properly documented and rigor-
ously enforced. The specifications for 
functional correctness of individual 
components may occasionally be too 
large to be comprehensible, but many 
systemwide safety, liveness, and secu-
rity properties can be stated succinctly 
and certified with full confidence. 

To address the second and third 
difficulties, software developers must 
also certify the actual system-software 

code. Most needed is a new “certified” 
computing platform where program-
mers have firm control over the be-
havior of its system software stack, in-
cluding bootloader, OS kernel, device 
driver, hypervisor, and other runtime 
services. Software consisting of mostly 
certified components would be easier 
to maintain, because the effects of up-
dating a certified component would be 
easier to track, and new bugs would 
quickly be localized down to the non-
certified modules. 

Constructing large-scale certified 
software systems is itself a challenge. 
Still unknown is whether it can be 
done at all and whether it can be a 
practical technology for building truly 
dependable software. In this article, I 
explore this new field, describing sev-
eral exciting recent advances and chal-
lenging open problems. 

What it is 
Certified software consists of a ma-
chine-executable program C plus a 
rigorous formal proof P (checkable by 
computer) that the software is free of 
bugs with respect to a particular de-
pendability claim S. Both the proof P 
and the specification S are written us-
ing a general-purpose mathematical 
logic, the same logic ordinary program-
mers use in reasoning every day. The 
logic is also a programming language; 
everything written in logic, including 
proofs and specifications, can be de-
veloped using software tools (such as 
proof assistants, automated theorem 
provers, and certifying compilers). 
Proofs can be checked automatically 
for correctness—on a computer—by a 
small program called a proof checker. 
As long as the logic used by program-
mers is consistent, and the depend-
ability specification describes what 
end users want, programmers can be 
sure the underlying software is free of 
bugs with respect to the specification. 

The work on certified software fits 
well into the Verified Software Initia-
tive (VSI) proposed by Hoare and Mis-
ra14 but differs in several distinct ways 
from traditional program-verification 
systems: 

First, certified software stresses use 
of an expressive general-purpose met-
alogic and explicit machine-checkable 
proofs to support modular reasoning 
and scale program verification to han-
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dle all kinds of low-level code.3,10,24,32 
Using a rich mechanized metalogic 
allows programmers to define new 
customized “domain-specific” logics 
(together with its meta theory), apply 
them to certify different software com-
ponents, and link everything to build 
end-to-end certified software.7 With 
machine-checkable proofs, proof-
checking is automated and requires 
no outside assumptions. As long as the 
metalogic is consistent, the validity of 
proof P immediately establishes that 
the behavior of program C satisfies 
specification S. 

Existing verification systems of-
ten use a rather restricted assertion 
language (such as first-order logic) to 
facilitate automation but do not pro-
vide explicit machine-checkable proof 
objects. Program components verified 
using different program logics or type 
systems cannot be linked together to 
make meaningful end-to-end depend-
ability claims about the whole software 
system. These problems make it more 
difficult for independent third parties 
to validate claims of dependability. 

Second, with an expressive meta-
logic, certified software can be used 
to establish all kinds of dependability 
claims, from simple type-safety prop-
erties to more advanced safety, live-
ness, security, and correctness prop-
erties. Building these proofs need not 
follow Hoare-style reasoning15; much 
of the earlier work on proof-carrying 
code23 constructed safety proofs auto-
matically using such technologies as 
type-preserving compilation29,30 and 
typed assembly language.22 However, 
most traditional program verifiers 
concentrate on partial correctness 
properties only. 

Third, certified software empha-
sizes proving properties for the ac-
tual machine executables, rather than 
their high-level counterparts, though 
proofs can still be constructed at the 
high level, then propagated down to 
the machine-code level using a certify-
ing or certified compiler. On the other 
hand, most existing program verifiers 
target high-level source programs. 

Fourth, to establish a rigorous de-
pendability metric, certified software 
aims to minimize the trusted comput-
ing base, or TCB—the small part of a 
verification framework in which any 
error can subvert a claim of end-to-end 

dependability. TCB is a well-known 
concept in verification and security, as 
well as a source of confusion and con-
troversy.5 

The dependability of a computing 
system rests on the dependable be-
havior of its underlying hardware de-
vices, human operators, and software. 
Many program verifiers are comfort-
able with placing complex software 
artifacts (such as theorem provers, OS, 
and compilers) in the TCB because it 
seems that the TCB of any verification 
system must include those “hard-to-
reason-about” components (such as 
hardware devices and human opera-
tors) so is already quite large. 

All program-verification systems 
are able to create a formal model 
about the underlying execution envi-
ronment. Any theorem proved regard-
ing the software is with respect to the 
formal model only, so the TCB for any 
claim made regarding the software 
alone should not include hardware de-
vices and human operators. 

Still, any bug in the TCB would (by 
definition) compromise the credibility 
of the underlying verification system. 
A smaller TCB is generally more desir-
able, but size is not necessarily the best 
indicator; for example, a 200-line gar-
bage collector is not necessarily more 
reliable than a 2,000-line straightfor-
ward pretty printer. The TCB of a good 
certified framework must include only 
components whose soundness and 
integrity can also be validated by inde-
pendent third parties. 

Components of a certified frame-
work. A typical certified framework 
(see Figure 1) consists of five compo-
nents: 

The certified software itself. Includ-
ing both machine code and formal 
proof; 

Formal machine model. Providing 

the operational semantics for all ma-
chine instructions; 

Formal dependability claim for the 
software. Including safety property, se-
curity policy, and functional specifica-
tion for correctness; 

Underlying mechanized metalogic 
(not shown). For coding all proofs, 
specifications, and machine-level pro-
grams; and 

Proof checker. For checking the va-
lidity of all the proofs following the in-
ference rules of the metalogic. 

If the proof of a given certified soft-
ware package can be validated by the 
proof checker, then execution of the 
software on the formal machine mod-
el is guaranteed to satisfy a formal de-
pendability claim. 

Things can still, however, go wrong. 
First, the mechanized metalogic could 
be inconsistent, a risk that can be 
minimized if the framework design-
ers choose a simple, well-understood, 
general-purpose metalogic and prove 
(perhaps on paper) why it is indeed 
consistent. 

Second, the proof checker is a com-
puter program, so it could go wrong 
all by itself. But if the framework uses 
a simple logic with a small number of 
inference rules, the proof checker can 
be made quite small, written in assem-
bly, and verified by hand. 

Third, the formal machine model 
might not reflect hardware behavior. 
Most hardware vendors perform in-
tensive hardware verification, so this 
risk can be minimized if hardware 
and software developers share the 
machine specifications. Even if not 
possible, the framework designer can 
still validate the model by comparing 
its operational semantics with the in-
struction-set reference manuals. 

Finally, the formal dependability 
specification (SP) may not accurately 

figure 1. Components of a certified framework. 
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capture the behavior of the human or 
physical world. Nevertheless, SP is for-
mally stated and the code is guaran-
teed to satisfy SP. Here, I deliberately 
decoupled the correctness of verifica-
tion from the specification process. 
Existing efforts validating and testing 
specifications are, of course, valuable 
and complementary to the certifica-
tion process. 

Since a dependability claim is made 
regarding only the formal machine 
model, the TCB of such a certified 
framework consists of just the consis-
tency proof of the metalogic and the 
integrity of the proof checker, both 
of which should be demonstrable by 
independent third parties (such as 
through the peer-review process of a 
top-quality journal). If the computer 
science community would agree on a 
single metalogic (a good thing), this 
task of standardizing a metalogic 
would need to be done only once. Cer-
tified software would then no longer 
be the weakest link in a dependable 
system. 

Mechanized metalogic. A key en-
abling technology for certified soft-
ware is to write formal proofs and 
specifications as typed functional 
programs, then have a computer au-
tomatically check the validity of the 
proofs, in the same way a static type-
checker does type-checking. This idea 
came from the well-known Curry-How-
ard correspondence referring to the 
generalization of a syntactic analogy 
between systems of formal logic and 
computational calculi first discovered 
by the American logicians Haskell Cur-
ry and William Howard. Most advanc-
es for developing large-scale machine-
checkable proofs were made only 
during the past 10 years; see an excel-
lent survey by Barendregt and Geuvers2 
and a 2008 overview article by Hales.11 

In the context of certified software, 
a few more requirements must be ad-
dressed: The logic must be consistent 
and expressive so software developers 
can express everything they want to 
say. It must also support explicit ma-
chine-checkable proof objects and be 
simple enough that the proof checker 
can be hand-verified for correctness. 

Because software components may 
be developed using different program-
ming languages and certified using 
different domain-specific logics and 

type systems, mechanized metalogic 
must also support meta-reasoning. It 
can be used to represent the syntax, 
inference rules, and meta-proofs (for 
their soundness) of the specialized ob-
ject logics. 

Much of the current work on certi-
fied software is carried out in the Coq 
proof assistant.16 Coq itself provides a 
rich higher-order logic with powerful 
inductive definitions, both crucial to 
writing modular proofs and expressive 
specifications. 

Advantages. With certified software, 
the dependability of a software system 
would be measured by the actual for-
mal dependability claim it is able to 
certify. Because the claim comes with a 
formal proof, the dependability can be 
checked independently and automati-
cally in an extremely reliable way. 

A formal dependability claim can 
range from making almost no guar-
antee, to simple type-safety property, 
to deep liveness, security, and to cor-
rectness properties. It provides a great 
metric for comparing different tech-
niques and making steady progress 
toward the system’s overall depend-
ability. 

If the software community would 
agree on a metalogic and work out the 
formal models of a few popular com-
puting platforms, certified software 
would provide an excellent framework 
for accumulating dependable software 
components. Since proofs are incon-
trovertible mathematical truths, once 
a software component is certified, its 
trustworthiness (with respect to its 
specification) would presumably last 
for eternity. 

Unlike higher-level programming 
languages, certified software places 
no restrictions on the efficiency of its 
underlying code and the way programs 
are developed. Because the metalogic 
is as rich as the one programmers use 
in daily reasoning, and everything run-
ning on a computer must eventually 
be executed as a machine executable, 
if programmers believe (informally) 
that their super-efficient and sophisti-
cated code really works as they claim, 
there should be a way to formally write 
down their proofs. When dependabil-
ity is not an issue, the software can be 
used as is, assuming proper isolation 
from the rest of the system; when pro-
grammers really care about depend-

ability, they must provide the formal 
machine-checkable proof. 

On the other hand, certified soft-
ware encourages the usual best prac-
tices in software engineering and 
program verification. Certifying large-
scale systems clearly benefits from 
high-level programming abstraction, 
domain-specific logics, modular de-
composition and refinement, model-
driven design and development, the 
correctness-by-construction method-
ology,12 and automated theorem-prov-
ing tools. The only difference is they 
now insist on receiving hard evidence 
(such as machine-checkable proof ob-
jects) as a way to deliver quality assur-
ance and measure the effectiveness of 
the technologies. 

Certified software also decouples 
the proof-construction and program-
development tools from the proof-
checking infrastructure. The rich 
metalogic provides the ultimate frame-
work for building up layers of abstrac-
tion for complex software. Once they 
are formed, programmers can build 
different software components and 
their proofs using completely different 
methods. Because specifications and 
proofs are both represented as pro-
grams (within a computer), they can 
be debugged, updated, transformed, 
analyzed, and reused by novel proof-
engineering tools. 

Certified software also significantly 
improves the maintainability of the 
underlying system. A local change 
to an individual component can be 
checked quickly against its specifica-
tion, with its effect on the overall sys-
tem known immediately. A major reor-
ganization of the system can be done 
in a principled way by comparing the 
changes against high-level specifica-
tions programmers have for each certi-
fied component. 

Challenges. The main challenge 
of certified software is the potentially 
huge cost in constructing its specifica-
tions and proofs, though it can be cut 
dramatically in the following ways: 

First, how software is developed 
makes a big difference in the system’s 
future dependability. If the software is 
full of bugs or developed without con-
sideration of the desirable depend-
ability claim, post-hoc verification 
would be extremely expensive in terms 
of time and money or simply impos-
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sible. A proactive approach (such as 
correctness-by-construction12) should 
lower the cost significantly. 

Second, building certified software 
does not mean that programmers 
must verify the correctness of every 
component or algorithm used in its 
code; for example, in micro-kernels or 
virtual-machine monitors, it is often 
possible for programmers to verify a 
small set of components that in turn 
perform run-time enforcement of 
security properties on other compo-
nents.33 

Dynamic validation (such as trans-
lation validation for compiler cor-
rectness26) also simplifies proofs 
significantly; for example, it may be 
extremely difficult to verify that a so-
phisticated algorithm A always takes 
an input X and generates an output Y 
such that R(X, Y) holds; instead, a pro-
grammer could extend A by adding an 
additional validation phase, or vali-
dator, that checks whether the input 
X and the output Y indeed satisfy the 
predicate R, assuming R is decidable. 
If this check fails, the programmer 
can invoke an easier-to-verify (though 
probably less-efficient) version of the 
algorithm A. To build certified soft-
ware, all the programmer needs to do 
is certify the correctness of the valida-
tor and the easier version of the algo-
rithm, with no need to verify algorithm 
A anymore. 

Third, the very idea that proofs and 
specifications can be represented as 
programs (within a computer) means 
that developers should be able to ex-
ploit the synergy between engineering 
proofs and writing large programs, 
building a large number of tools and 
proof infrastructures to make proof 
construction much easier. 

Finally, formal proofs for certified 
software ought to be much simpler 
and less sophisticated than those used 
in formal mathematics.11 Software de-
velopers often use rather elementary 
proof methods to carry out informal 
reasoning of their code. Proofs for soft-
ware are more tedious but also more 
amenable for automatic generation.6,28 

Certified software also involves 
other challenges. For example, time 
to market is likely terrible, assuming 
dependability is not a concern, so the 
cost of certification would be justified 
only if end users truly value a depend-

ability guarantee. Deployment would 
be difficult since most real-world en-
gineers do not know how to write for-
mal specifications, let alone proofs. 
Pervasive certification requires funda-
mental changes to every phase in most 
existing software-development prac-
tices, something few organizations are 
able to undertake. The success of certi-
fied software critically relies on efforts 
initially developed in the research 
community. 

Recent advances 
Advances over the past few years in cer-
tified software have been powered by 
advances in programming languages, 
compilers, formal semantics, proof 
assistants, and program verification. 
Here, I sample a few of these efforts 
and describe the remaining challeng-
es for delivering certified software: 

Proof-carrying code. Necula’s and 
Lee’s 1996 work23 on proof-carrying 
code (PCC) is the immediate precur-
sor to the large body of more recent 
work on certified software. PCC made 
a compelling case for the importance 
of having explicit witness, or formal 
machine-checkable evidence, in such 
applications as secure mobile code 
and safe OS kernel extensions. PCC 
allows a code producer to provide a 
(compiled) program to a host, along 
with a formal proof of safety. The host 
specifies a safety policy and a set of 
axioms for reasoning about safety; the 
producer’s proof must be in terms of 
these axioms. 

PCC relies on the same formal 
methods as program verification but 
has the advantage that proving safety 
properties is much easier than pro-
gram correctness. The producer’s for-
mal proof does not, in general, prove 
the code produces a correct or mean-
ingful result but does guarantee execu-
tion of the code satisfies the desirable 
safety policy. 

Checking proofs is an automated 
process about as simple as program-
ming-language type-checking; on the 
other hand, finding proofs of theo-
rems is, in general, intractable. Subse-
quent work on PCC focused on build-
ing a realistic certifying compiler4 that 
automatically constructs proofs (for 
simple type-safety properties) for a 
large subset of Java and on reducing 
the size of proof witness, an important 



62    CommuniCaTionS of ThE aCm    |   dECEmBEr 2010  |   vol.  53  |   No.  12

contributed articles

machine-
checkable proofs 
are necessary 
for allowing third 
parties to quickly 
establish that a 
software system 
indeed satisfies 
a desirable 
dependability claim.

concern in the context of mobile code. 
An important PCC advantage in-

herited by certified software is that the 
software does not require a particular 
compiler. As long as the code producer 
provides the proof, the code consumer 
is assured of safety. This significantly 
increases the flexibility available to 
system designers. 

The PCC framework is itself quite 
general, but the original PCC systems 
suffered from several major limita-
tions: Most notable was that the proof 
checker had to rely on a rather specific 
set of typing rules so did not support 
more expressive program properties; 
the typing rules were also error-prone, 
with their soundness often not proved, 
so a single bug could undermine the 
integrity of the entire PCC system. 

Foundational PCC, or FPCC,1,13 
tackled these problems by construct-
ing and verifying its proofs using a 
metalogic, with no type-specific axi-
oms. However, FPCC concentrated on 
building semantic models for high-
level type-safe languages, rather than 
performing general program verifica-
tion. 

Certified assembly programming. 
CAP32 is a logic-based approach for 
carrying out general program veri-
fication inside a rich mechanized 
metalogic (such as the one provided 
by Coq). Like Hoare logic, a CAP pro-
gram consists of assembly code an-
notated with pre- and post-conditions 
and program invariants. Unlike tra-
ditional Hoare-style verification, all 
CAP language constructs (such as as-
sembly instruction sets), program as-
sertions, inference rules, operational 
semantics, and soundness proofs 
are implemented inside the mecha-
nized metalogic. This design makes 
it possible to build a complete certi-
fied software package with formal 
dependability-claim and machine-
checkable proofs. With help from a 
proof assistant, programmers are able 
to combine manually developed proof 
scripts with automated proof tactics 
and theorem provers, allowing CAP to 
support verification of even undecid-
able program properties. 

CAP marries type-based FPCC with 
Hoare-style program verification, lead-
ing to great synergy in terms of modu-
larity and expressiveness. Hoare logic 
is well known for its limited support 

for higher-order features; most Hoare 
systems do not even support verifica-
tion of simple type-safety properties. 
However, both shortcomings are eas-
ily overcome in type-based approach-
es. Subsequent work on CAP over the 
past five years developed new special-
ized program logics for reasoning 
about such low-level constructs as em-
bedded code pointers,24 stack-based 
control abstractions,10 self-modifying 
code,3 and garbage collectors.21 

Under type-based FPCC, function 
returns and exception handlers are of-
ten treated as first-class functions, as 
in continuation-passing style (CPS), 
even though they have more limited 
scope than general first-class continu-
ations. For functional programmers, 
CPS-based code is conceptually sim-
ple but requires complex higher-order 
reasoning of explicit code pointers 
(and closures). For example, if a func-
tion needs to jump to a return address 
(treated as continuation), the function 
must assert that the return address is 
indeed a valid code pointer to jump to. 
But the function does not know exactly 
what the return address will be, so it 
must abstract over properties of all 
possible return addresses, something 
difficult to do in first-order logic. 

In our work on stack-based con-
trol abstraction,10 my colleagues and 
I showed that return addresses (or ex-
ception handlers) are much more dis-
ciplined than general first-class code 
pointers; a return address is always 
associated with some logical control 
stack, the validity of which can be es-
tablished statically; a function can cut 
to any return address if it establishes 
the validity of its associated logical 
control stack. Such safe cutting to 
any return address allows program-
mers to certify the implementation of 
sophisticated stack operations (such 
as setjmp/longjmp, weak continua-
tions, general stack cutting, and con-
text switches) without resorting to 
CPS-based reasoning. For example, 
when programmers certify the body 
of a function, they do not need to treat 
its return address as a code pointer; 
all they need is to make sure that at 
the return, the control is transferred 
to the original return address. It is the 
caller’s responsibility to set up a safe 
return address or valid code pointer; 
this is much easier because a caller 
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often knows the return address that 
must be used. 

Local reasoning and separation log-
ic. Modular reasoning is the key tech-
nique for making program verification 
scale. Development of a certified soft-
ware system would benefit from a top-
down approach where programmers 
first work out the high-level design and 
specification, then decompose the en-
tire system into smaller modules, re-
fine high-level specifications into actu-
al implementation, and finally certify 
each component and link everything 
together into a complete system. 

However, there is yet another criti-
cal dimension to making program 
verification modular. Traditional 
Hoare logics often use program speci-
fications with arbitrarily large “foot-
prints.” Separation logic17,27 advocates 
“local reasoning” using small-foot-
print specifications; that is, the speci-
fication of each module (or procedure) 
should refer only to data structures 
actually touched by a module’s un-
derlying code. By concisely specifying 
the separation of heap and other re-
sources, separation logic provides suc-
cinct yet powerful inference rules for 
reasoning about shared mutable data 
structures and pointer anti-aliasing. 

Concurrent separation logic (CSL)25 
applies the same idea to reasoning 
about shared-memory concurrent 
programs, assuming the invariant 
that there always exists a partition of 
memory among different concurrent 
entities and that each entity can ac-
cess only its own part of memory. This 
assumption might seem simple but is 
surprisingly powerful. There are two 
important points about the invariant: 
First, the partition is logical; program-
mers do not need to change their mod-
el of the physical machine, which has 
only one global shared data heap, and 
the logical partition can be enforced 
through separation logic primitives. 
Second, the partition is not static and 
can be adjusted dynamically during 
program execution by transferring the 
ownership of memory from one entity 
to the other. 

Under CSL, a shared-memory pro-
gram can be certified as if it were a 
sequential program since it is always 
manipulating its private heap; to ac-
cess shared memory, it must invoke 
an atomic operation that transfers re-

sources between the shared heap and 
the local heap. Several recent efforts 
have extended CSL with rely-guarantee 
reasoning, so even lock-free concur-
rent code can be certified using modu-
lar small-footprint specifications. 

Domain-specific logics and certi-
fied linking. A key first step toward 
making certified software practical is 
to show it is possible to carry out end-
to-end certification of a complete soft-
ware system. Large software systems, 
especially low-level system software, 
use many different language features 
and span many different abstraction 
levels. For example, the Yale FLINT 
group’s (http://flint.cs.yale.edu) ongo-
ing project8 to verify a simplified OS 
kernel exposes such challenges. In it, 
the kernel includes a simple bootload-
er, kernel-level threads and a thread 
scheduler, synchronization primitives, 
hardware interrupt handlers, and a 
simplified keyboard driver. Although 
it has only 1,300 lines of x86 assembly 

code, it uses dynamic code loading, 
thread scheduling, context switching, 
concurrency, hardware interrupts, 
device drivers, and I/O. How would a 
programmer use machine-checkable 
proofs to verify the safety or correct-
ness properties of such a system? 

Verifying the whole system in a 
single program-logic or type system 
is impractical because, as in Figure 
2a, such a verification system would 
have to consider all possible interac-
tions among these features, including 
dynamic code loading, concurrency, 
hardware interrupts, thread schedul-
ing, context switching, and embed-
ded code pointers, many at different 
abstraction levels. The resulting logic, 
if it exists, would be highly complex 
and difficult to use. Fortunately, soft-
ware developers seem to never use all 
features simultaneously. Instead, they 
use only a limited combination of fea-
tures—at a particular abstraction lev-
el—in individual program modules. It 

figure 2. using domain-specific logics to verify modules.
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figure 3. an open framework for building certified software.
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would be much simpler to design and 
use specialized “domain-specific” log-
ics (DSL) to verify individual program 
modules, as in Figure 2b. For example, 
for the simplified OS kernel, dynamic 
code loading is used only in the OS 
boot loader, and interrupts are al-
ways turned off during context switch-
ing; embedded code pointers are not 
needed if context switching can be 
implemented as a stack-based control 
abstraction. 

To allow interactions of modules 
and build a complete certified soft-
ware system, programmers must also 
support interoperability of different 
logics. In 2007, my colleagues and I 
developed a new open framework for 
CAP, or OCAP,9 to support verification 
using specialized program logics and 
for certified linking of low-level het-
erogeneous components. OCAP lays a 
set of Hoare-style inference rules over 
the raw operational semantics of a ma-
chine language (see Figure 3), and the 
soundness of these rules is proved in 
a mechanized metalogic so it is not in 
the TCB. OCAP uses an extensible and 
heterogeneous program-specification 
language based on the higher-order 
logic provided by Coq. OCAP rules are 
expressive enough to embed most ex-
isting verification systems for low-level 
code. OCAP assertions can be used to 
specify invariants enforced in most 
type systems and program logics (such 
as memory safety, well-formedness of 
stacks, and noninterference between 
concurrent threads). The soundness 
of OCAP ensures these invariants are 
maintained when foreign systems are 
embedded in the framework. 

To embed a specialized verifica-
tion system L, OCAP developers must 
first define an interpretation [[ ]]L that 
maps specifications in L into OCAP 
assertions; they then prove system-
specific rules/axioms as lemmas based 
on the interpretation and OCAP rules. 
Proofs constructed in each system can 
be incorporated as OCAP proofs and 
linked to compose the complete proof. 

There are still many open issues 
concerning OCAP design: For exam-
ple, to reason about information-flow 
properties, it must provide a seman-
tic-preserving interpretation of high-
order types (in an operational setting). 
And to support liveness properties, it 
must support temporal reasoning of 
program traces. 

Certified garbage collectors and 
thread libraries. In 2007, my col-
leagues and I used OCAP to certify sev-
eral applications involving both user-
program code and low-level runtime 
code. In one application,9 we success-
fully linked programs in typed assem-
bly language (TAL)22 with a certified 
memory-management library. TAL 
supports only type-preserving memory 
updates; the free memory is invisible 
to TAL code. We certified the memory-
management library in stack-based 
CAP, or SCAP,10 supporting reasoning 
about operations over free memory 
while ensuring that the invariants of 
TAL code are maintained. 

Also in 2007, in another applica-
tion,21 we developed a general frame-
work for certifying a range of garbage 
collectors and their mutators. If we 
had tried to develop a single type sys-
tem to type-check both an ML-like 

type-safe language and the underlying 
garbage collector (requiring fancy run-
time type analysis), the result would 
have involved analyzing polymorphic 
types, which is extremely complex. 
However, the ML type system never 
needs to know about runtime tagging 
and the internals of the garbage col-
lector. Moreover, implementation of 
the collector need not understand the 
polymorphic type system used in type-
checking ML code; it needs to only dis-
tinguish pointers from non-pointers. 
A better approach, which we followed 
in 2007, is to certify these modules 
using different domain-specific log-
ics, thus avoiding the difficult task of 
designing a universal program logic. 
Certified garbage collectors can then 
be linked with certified mutator code 
to form a complete system. 

A year later, in a third application,8 
we successfully certified the partial 
correctness of a preemptive thread li-
brary extracted from our simplified OS 
kernel. The kernel was implemented 
in 16-bit x86 assembly and worked in 
real mode for uniprocessor only. It 
consisted of thread context switch-
ing, scheduling, synchronizations, 
and hardware interrupt handlers. We 
stratified the thread implementation 
by introducing different abstraction 
layers with well-defined interfaces. In 
Figure 4, at the highest level (Level A), 
preemptive threads follow the stan-
dard concurrent programming model. 
The execution of a thread can inter-
leave with or be preempted by other 
threads. Synchronization operations 
are treated as primitives. Hardware 
interrupts are abstracted away and 
handled at Level B where code in-
volves both hardware interrupts and 
threads; synchronization primitives, 
input/output operations, device driv-
ers, and interrupt handlers are all im-
plemented at this level, and interrupt 
handling is enabled/disabled explic-
itly using sti/cli. At the lowest level 
(Level C), the thread scheduler and the 
context-switching routine manipulate 
the threads’ execution contexts stored 
in thread queues (on the heap). Inter-
rupts are invisible at this level because 
they are always disabled. Libraries im-
plemented at a lower level are exposed 
as abstract primitives for the level 
above it, and their operational seman-
tics in the high-level abstract machine 

figure 4. Decomposition of a preemptive thread implementation.
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serve as formal specifications for the 
low-level implementation. 

The stratified system model gives 
programmers a systematic and prin-
cipled approach for controlling com-
plexity. Programmers can thus focus 
on a subset of language features at 
each level and certify different soft-
ware components using specialized 
program logics. 

Certified and certifying compila-
tion. Much work in the program-veri-
fication community concentrates on 
source-level programs written in high-
level languages (such as C, Java, and 
C#). In order to turn these programs 
into certified assembly components 
suitable for linking in the OCAP frame-
work, OCAP developers must show 
that their corresponding compiler is 
also trustworthy. 

CompCert is a certified compiler 
for a subset of C (called C minor, or 
Cm) developed in 2006 by Leroy.20 By 
“certified” compiler, I mean the com-
piler itself is proved correct. Indeed, 
Leroy specified formal operational se-
mantics for Cm, as well as for the ma-
chine language, building a machine-
checkable proof in Coq whereby the 
compiler preserves behavior from 
one operational semantics to another. 
However, the current CompCert com-
piler supports only sequential Cm pro-
grams. It also must be bootstrapped by 
the OCaml compiler, even though the 
OCaml compiler is not verified. 

On the other hand, a certifying 
compiler is not necessarily correct but 
will take a (certified) source program 
and generate certified assembly code. 
Much work on certifying compilation 
focuses on type-safe source languages 
and can preserve only type-safety prop-
erties. A challenging open problem 
is to extend certifying compilation to 
preserve deep correctness and security 
properties. 

Lightweight formal methods. 
Building large-scale certified software 
systems does not always require heavy-
weight program verification. Most 
software systems are built from modu-
lar components at several levels of ab-
straction. At the lowest levels are the 
kernel and runtime-system compo-
nents discussed earlier. At the highest 
levels are components with restricted 
structure operating on well-defined in-
terfaces. The restricted structure can 

use a type-safe, high-level program-
ming language with high-level concur-
rency primitives or C programs (even 
concurrent C programs) in a style un-
derstandable to static-analysis tools. 
Both restricted styles are in wide-
spread commercial use today. 

Lightweight formal methods (such 
as high-level type systems, specialized 
program logic, with decidable deci-
sion procedure, and static analysis) 
can help guarantee important safety 
properties with moderate program-
mer effort; error messages from the 
typechecker, decision procedure, and 
static-analyzer usually give appropri-
ate feedback in the programming pro-
cess. These properties are sometimes 
also security properties, as in this 
example: “Module A cannot read the 
private variables of module B, except 
through the public methods provided 
by B.” Using information-flow type sys-
tems or static analysis a programmer 
can obtain a stronger version of the 
same guarantee while also adding “…
and not only that, but the public meth-
ods of module B do not leak the value 
of private variable x.” 

Lightweight formal methods can 
be used to dramatically cut the cost 
of building certified software. For a 
programmer, the challenge is to make 
them generate explicit proof witness 
(automatically) and link them to cer-
tified low-level kernel and runtime 
components. With proper embedding, 
lightweight formal methods would 
fit nicely into the DSL-centric OCAP 
framework for constructing end-to-
end certified software. 

Automation and proof engineer-
ing. The end goal of certified software 
is a machine-checkable dependabil-
ity metric for high-assurance software 
systems. Certified software advocates 
the use of an expressive metalogic 
to capture deep invariants and sup-
port modular verification of arbitrary 
machine-code components. Machine-
checkable proofs are necessary for 
allowing third parties to quickly es-
tablish that a software system indeed 
satisfies a desirable dependability 
claim. Automated proof construction 
is extremely important and desirable 
but should be done only without vio-
lating the overall integrity and expres-
siveness of the underlying verification 
system. 

Much previous research on verifi-
cation reflected full automation as a 
dominating concern and was reason-
able if the primary goal is finding bugs 
and having an immediate effect on 
the real world’s vast quantity of run-
ning software. Unfortunately, insist-
ing on full automation also severely 
hinders the power and applicability 
of formal verification; many interest-
ing program properties (that end users 
care about) are often undecidable (full 
automation is impossible), so human 
intervention is unavoidable. Low-level 
program modules often have subtle 
requirements and invariants that can 
be specified only through high-order 
logic; programming libraries verified 
through first-order specifications of-
ten have to be adapted and verified 
again at different call sites. 

Nevertheless, there is still great 
synergy in combining these two lines 
of software-verification work. The 
OCAP framework described earlier 
emphasizes domain-specific (includ-
ing decidable first-order) logics to 
certify the components in a software 
system. Successful integration would 
allow programmers to get the best of 
both lines. 

Developing large-scale mechanized 
proofs and human-readable formal 
specifications will be an exciting re-
search field on its own, with many 
open issues. Existing automated theo-
rem provers and Satisfiability Modulo 
Theories solvers6 work on only first-or-
der logic, but this limited functionality 
conflicts with the rich metalogic (often 
making heavy use of quantifiers) re-
quired for modular verification of low-
level software. Proof tactics in existing 
proof assistants (such as Coq) must be 
written in a different “untyped” lan-
guage, making it painful to develop 
large-scale proofs. 

Conclusion 
Certified software aligns well with a 
2007 study on software for dependable 
systems18 by the National Research 
Council (http://sites.nationalacade-
mies.org/NRC/index.htm) that argued 
for a direct approach to establishing 
dependability, whereby software devel-
opers make explicit the dependability 
claim and provide direct evidence that 
the software indeed satisfies the claim. 
However, the study did not explain 
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what would make a clear and explicit 
dependability claim, what would serve 
as valid evidence, and how to check the 
underlying software to ensure it really 
satisfies the claim without suffering 
credibility problems.5 

The study also said that the depend-
ability of a computer system relies not 
only on the dependability of its soft-
ware but also on the behavior of all 
other components in the system, in-
cluding human operators and the sur-
rounding physical environment. Certi-
fied software alone cannot guarantee 
the dependability of the computer 
system. However, many advantages, 
as explained earlier, follow from sepa-
rating the dependability argument for 
the software from the argument for the 
software’s execution environment. 

Computer software is a rigorous 
mathematical entity for which pro-
grammers can formally certify claims 
of dependability. However, the behav-
ior of human operators depends on 
too many factors outside mathemat-
ics; even if they try hard, they would 
probably never achieve the kind of 
rigor they can for software. By focusing 
on software alone and insisting that all 
certified software come with explicit 
machine-checkable proofs, a formal 
claim of dependability can be used as 
a metric for measuring software de-
pendability. Formal specifications are 
also more complete and less ambigu-
ous than informal specifications writ-
ten in natural languages; this should 
help human operators better under-
stand the behavior of the underlying 
software. 

A key challenge in building depend-
able systems is to identify the right 
requirements and properties for verifi-
cation and decide how they would con-
tribute to the system’s overall depend-
ability. Certified software does not 
make this task easier. Research on cer-
tifying low-level system software would 
give software developers more insight 
into how different programming-ab-
straction layers would work together. 
Insisting on machine-checkable proof 
objects would lead to new high-level 
certified programming tools, modu-
lar verification methodologies, and 
tools for debugging specifications, all 
of which would make developing de-
pendable software more economical 
and painless. 
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