
Certified Concurrent Abstraction Layers

Ronghui Gu
Yale University, USA

Columbia University, USA

Zhong Shao
Yale University

USA

Jieung Kim
Yale University

USA

Xiongnan (Newman) Wu
Yale University, USA

Jérémie Koenig
Yale University, USA

Vilhelm Sjöberg
Yale University, USA

Hao Chen
Yale University, USA

David Costanzo
Yale University, USA

Tahina Ramananandro
Microsoft Research, USA

Abstract
Concurrent abstraction layers are ubiquitous in modern
computer systems because of the pervasiveness of multi-
threaded programming and multicore hardware. Abstraction
layers are used to hide the implementation details (e.g., fine-
grained synchronization) and reduce the complex depen-
dencies among components at different levels of abstraction.
Despite their obvious importance, concurrent abstraction
layers have not been treated formally. This severely limits the
applicability of layer-based techniques and makes it difficult
to scale verification across multiple concurrent layers.
In this paper, we present CCAL—a fully mechanized pro-

gramming toolkit developed under the CertiKOS project— for
specifying, composing, compiling, and linking certified con-
current abstraction layers. CCAL consists of three technical
novelties: a new game-theoretical, strategy-based composi-
tional semantic model for concurrency (and its associated
program verifiers), a set of formal linking theorems for com-
posing multithreaded and multicore concurrent layers, and a
new CompCertX compiler that supports certified thread-safe
compilation and linking. The CCAL toolkit is implemented
in Coq and supports layered concurrent programming in
both C and assembly. It has been successfully applied to
build a fully certified concurrent OS kernel with fine-grained
locking.

CCS Concepts • Theory of computation → Logic and
verification; Abstraction; • Software and its engineer-
ing→ Functionality; Software verification;Concurrent
programming languages;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5698-5/18/06. . . $15.00
https://doi.org/10.1145/3192366.3192381

Keywords abstraction layer, modularity, concurrency, veri-
fication, certified OS kernels, certified compilers

ACM Reference Format:
Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu,
Jérémie Koenig, Vilhelm Sjöberg, HaoChen, David Costanzo, and Ta-
hina Ramananandro. 2018. Certified Concurrent Abstraction Layers.
In Proceedings of 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’18). ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3192366.3192381

1 Introduction
Abstraction layers (e.g., circuits, ISA, device drivers, OS
kernels, and hypervisors) are widely used in modern com-
puter systems to help reduce the complex interdependencies
among components at different levels of abstraction [3, 48].
An abstraction layer defines an interface that hides the im-
plementation details of its underlying software or hardware
components. Client programs built on top of each layer are
understood solely based on the interface, independent of the
layer implementation.
As multicore hardware and multithreaded programming

become more pervasive, many of these abstraction layers
also become concurrent in nature. Their interfaces not only
hide the concrete data representations and algorithmic de-
tails, but also create an illusion of atomicity for all of their
methods: each method call is viewed as if it completes in a
single step, even though its implementation contains com-
plex interleavings with operations done by other threads.
Herlihy et al. [19, 20] advocated using layers of these atomic
objects to construct large-scale concurrent software systems.

Figure 1 presents a few common concurrent layer objects
in a modern multicore runtime. Here we use the light gray
color to stand for thread-local (or CPU-local) objects, blue
(also with round dots in their top-right corner) for objects
shared between CPU cores, green for objects exported and
shared between threads, and orange for threads themselves.
Above the hardware layers, we must first build an efficient
and starvation-free spinlock implementation [36]. With spin-
locks, we can implement shared objects for sleep and pending
thread queues, which are then used to implement the thread
schedulers, and the primitives yield, sleep, and wakeup. On

646

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3192366.3192381
https://doi.org/10.1145/3192366.3192381

