
S/W
 Layers

CPU

PerCorePerCore

Core 0 Core 8…H�W Memory

CurID PCPU

Thread RdyQ

Scheduler

Spin Locks

PendQ SleepQPe
rT

hr
ea

d TCB

Stack

CtxtPe
rT

hr
ea

d TCB

Stack

Ctxt

Thread 1 Thread 2 Thread N

…

Sync. Libs QLock CV IPC…

…

QLock: Queue Lock

CV: Condition Variable
Ctxt: Threat Context

RdyQ: Ready Queue
PendQ: Pending Queue

SleepQ: Sleeping Queue
IPC: Inter-process Communication

TCB: Threat Control Block

CurID: Current IDAcronyms

Sync. Libs: Synchronization Libraries

Figure 1.An overview of concurrent abstraction layers in a modern
multithreaded and multicore environment (arrow means possible
function call from one component to another).

top of them, we can then implement high-level synchroniza-
tion libraries such as queuing locks, condition variables (CV),
and message-passing primitives [2].
Despite the importance of concurrent layers and a large

body of recent work on shared-memory concurrency veri�-
cation [5, 7, 8, 13, 23, 29, 30, 42, 45, 50, 57–59], there are no
certi�ed programming tools that can specify, compose, and
compile concurrent layers to form awhole system [6]. Formal
reasoning across multiple concurrent layers is challenging
because di�erent layers often exhibit di�erent interleaving
semantics and have a di�erent set of observable events. For
example, the spinlock module in Fig. 1 assumes a multicore
model with an overlapped execution of instruction streams
from di�erent CPUs. This model di�ers signi�cantly from
the multithreading model for building high-level synchro-
nization libraries: each thread will block instead of spinning
if a queuing lock or a CV event is not available; and it must
count on other threads to wake it up to ensure liveness.

Reasoning across these di�erent abstraction levels requires
a general, uni�ed compositional semantic model that can
cover all of these concurrent layers. It must also support
a general “parallel layer composition rule” that can handle
explicit thread control primitives (e.g., sleep and wakeup).
It must also support vertical composition [2] of these con-
current layer objects [19] while preserving both the lineariz-
ability and progress (e.g., starvation-freedom) properties.

Contributions. In this paper, we present CCAL—a fully
mechanized programming toolkit implemented in Coq [55]

and developed under the CertiKOS project [16] for building
certi�ed concurrent abstraction layers. As shown in Fig. 2,
CCAL consists of a novel compositional semantic model
for concurrency, a collection of C and assembly program
veri�ers, a library for building layered re�nement proofs, a
thread-safe veri�ed C compiler based on CompCertX [15],
and a set of certi�ed linking tools for composing multi-
threaded or multicore layers.
We de�ne a certi�ed concurrent abstraction layer as a

triple (L1[A],M,L2[A]) plus a mechanized proof object show-
ing that the layer implementationM , running on behalf of
a thread set A over the interface L1, indeed faithfully imple-
ments the desirable interface L2 above. Our compositional
semantics model is based upon ideas from game seman-
tics [38]. It enables local reasoning such that the implemen-
tation can be �rst veri�ed over a single thread t by building
(L1[{t}],M,L2[{t}]) without worrying too much about the
concurrency and the guarantees can then be propagated to
the whole concurrent machine by parallel compositions.
Following Gu et al. [15], certi�ed concurrent layers en-

force termination-sensitive contextual correctness property.
In the concurrent setting, this means that every certi�ed
concurrent object satis�es not only a safety property (e.g.,
linearizability) [10, 20] but also a progress property (e.g.,
starvation-freedom) [33].

The CCAL toolkit has already been used in multiple large-
scale veri�cation projects under CertiKOS: Gu et al. [16]
have successfully used CCAL to build the world’s �rst fully
certi�ed concurrent OS kernel; Sjöberg et al. [53] used CCAL
to verify the safety and liveness of a complex MCS lock
implementation [36]. Neither of these two papers [16, 53]
explained the internals of CCAL and how and why it can
work so e�ectively.

This paper, rather than focusing on the applications of
CCAL, gives an in-depth exploration of the CCAL toolkit
itself and how it can be used for building various certi�ed
concurrent objects. Over Gu et al. [16], this paper presents
the following three technical contributions:

• We introduce a new compositional semantic model for
shared-memory concurrent abstract machines and prove
a general parallel layer composition rule. We show how
our new framework is used to specify, verify, and com-
pose various concurrent objects at di�erent levels of ab-
straction (see Fig. 1).

• We showhow to apply standard simulation techniques [15,
26] to verify the safety and liveness of concurrent objects
in a uni�ed setting. Because our environment context
speci�es not just the environment’s past events but also
future events, we can readily impose temporal invariants
such as fairness requirements (for schedulers) or de�nite
actions [30] (for releasing locks). This allows us to give
full speci�cations for lock primitives and support vertical


