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Herlihy-Wing Linearizability

Linearizability: A Correctness Condition for . .
Concurrent ())ijects What is a concurrent object?

MAURIFE P. HERLIHY. and JEANNETTE M. WING
s eten nversiy Queue := {enq : N — {ok},deq: N+{L}}

A concurrent object is a data object shared by concurrent processes. Linearizability is a correctness
condition for concurrent objects that exploits the semantics of abstract data types. It permits a high
degree of concurrency, yet it permits programmers to specify and reason about concurrent objects
using known techniques from the sequential domain. Linearizability provides the illusion that each
operation applied by concurrent processes takes effect instantaneously at some point between its
invocation and its reporse, mplying that the meaning of a concurrent object’s operations can be
given by pre- and post-c . This paper defines linearizability, compares it to other correctness

i f i d

conditions, ts

shows how to reason mm concurrent ojecs,given they ao linerizabe.

Categories and Subject Descriptors: D.1.3 [F oncurrent,
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guages): Language Constructs—abstract data types, concurrent programming structures, data types
and structures; F.1.2 [Computation by Abstract Devices]: Modes of Computation—parallelism;
F3.1 (Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about
Programs—pre- and post-conditions, specification technigues

General Terms: Theory, Verification

Additional Key Words and Phrases: Concurrrency, correctness, Larch, linearizability, multi-
processing, serializability, shared memory, specification
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Classical Linearizability: Example
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Locality [Herlihy and Wing, 1990]

PROPOSITION

H is linearizable if and only if, for each object x, H | x is linearizable.

Linearizable Lin. Lin. Lin. Lin.
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Equivalence with Contextual Refinement [Filipovi¢ et Al. 2010]

Objcone observationally refines (C) Objatom When

V programs P . V states s . [P](Objconc)(s) € [P](Objatom)(s)

PROPOSITION

Objcone linearizes to Objarom <= Objcone Observationally refines Objaiom

5/45



Where does linearizability come from and why does it work?
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Key Contributions

> A new generalized definition of linearizability not tied to atomicity.

» The first model of linearizability that supports refinement, horizontal and vertical
composition.

» A general (category-theoretic) methodology for deriving linearizability from a model of
concurrent computation.

» New simpler proofs of the locality and refinement properties.
> A new program logic that is sound for our formulation of linearizability.

» Applications to compositional verification.
7/45



Outline

Compositionality
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Typical Approach for Verifying Concurrent Objects
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Typical Approach for Verifying Concurrent Objects

H|Clm|=|"|c|F
var VA

VA
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Implementating a Shared Queue

quueue : /
Import Q:Queue Vsqueue
Import L:Lock

enq (k) { deq () {

L.acq(); L.acq(); quueue
r <- Q.enq(k); r <- Q.deq();
L.rel(); L.rel();
ret r ret r / /
} } Yiock | Yqueue

» No account of how locality interacts with refinement.

» Locality doesn't apply! The queue has a race (not linearizable).
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Implementing a Shared Queue (Continued)

/ / /
Vsqueue Vsqueue Vsqueue
inline refine
! !
quueue = quueue E quueue
v v vl Y
lock queue lock lock

11/45



Vertical Composition

/ / !
Vlock DEqueue DEqueue
Miock A quueue - Mioek + quueue
/ / / / / / / / /
Vfai  |Ycounter Z/yield Yock uneue Vfai  |Ycounter Z/yield uneue

Inlining ? Syntactic Linking?
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Compositionality

Linearizability

Refinement
_ g; _

Locality
— ® —

(Vertical) Composition

1

13/45



Outline

Sequentially Consistent Computation
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Our Methodology

1. Base Model of Computation
(A semicategory enriched with a notion of refinement)

2. Choose identity programs
(Usually obvious)

3. Compute a Compositional Model out of (1) and (2)
(The Karoubi Envelope)

4. Abstract Linearizability <= Concrete Linearizability
5. One Extra Axiom — Refinement Property

6. Tensor Product + One Extra Axiom = Locality

15 /45



Game Semantics

Types correspond to Games A, B, C

Programs correspond to strategies o : A — B of the game A — B

Object specifications correspond to strategies v : 1 — A

16 /45



Sequentially Consistent Computation

>

We start by defining a sequential model of computation.

v

A set of agent names o € T.

» A concurrent game A is specified by the sequential game A that all agents play.

v

A move looks like a:m where o« € T and m is a move of A.

v

The set of plays of A is the set of sequentially consistent interleavings of plays from A.
Example:
Counter = {get : N,inc : ok}

ag:inc oq:get m a1:n
\_/

ap:get
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Vertical Composition

There is a composition operation defined per usual by

" Parallel composition + Hiding"

Denoted by

c:A—oB 7 B—oC+—— 0;7:A—C

Which is associative ... but there is no identity element!

Vo : A — B.idy;o;idg =0

In other words, concurrent games with concurrent strategies assembles into a semicategory
MConc

18/45



Refinement

Our model is enriched over a notion of refinement C (behavior containment)

- | c
A
o | cC

19/45



Sequential Copycat

Import Q:Queue

eng (n : N) {
r <- Q.enq(n);
ret r

}
deq () {
r <- Q.deq();

ret r

}

The copycat strategy copy, : A —o A behaves as the sequential identity

20 /45



Concurrent Strategies

Import Q:Queue Import Q:Queue
eng (n : N) { enqg (n : N) {
r <- Q.enq(n); r <- Q.enq(n);
ret r ret r
¥
ccopys = [[qerCoPya e
deq () { deq O {
r <- Q.deq(Q); r <- Q.deq();
ret r ret r
} T
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Composition can lead to emergent behavior.

o C o; ccopyg
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The Karoubi Envelope

PROPOSITION
ccopya
For all concurrent game A the strategy ccopyy : A — A is
,,,,,,,,,, = CCO|
idempotent, i.e. P
CCOPY4; CCOPYA = CCOPY A copva
Call a strategy o : A — B saturated when
ccopya; 0 ccopyg = O P

Composition of saturated strategies is associative and has as identity

ccopyg
ccopy
Call the resulting category of concurrent games and saturated strategies

Gamecgnc

22/45



Two Models of Concurrent Computation

Gamecg,,c Gameconc

Good for specification Good for composition

We can convert between models:
KConc_

o:A — B e Gamecg, ! ccopy; 0; ccopyg € Gameconc

23 /45



Outline

Linearizability
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Abstract Linearizability

DEFINITION

DEFINITION (ABSTRACT . . . . .
( A linearizable object consists of a pair

LINEARIZABILITY)
/
We say (V4 : A € Gamecone, v : A € Gamecg,c)
/

vy : A € Gamec

A one such that
linearizes to V;‘ C Kcone VA

va : A € Gamecgpc

ccopya
when L]
/
va € Kconc VA VA g VA

Vv, is the implementation and v4 the specification 25 /45



Rewrites

PROPOSITION (GHICA AND MURAWSKI, 2004)

o : A is saturated if and only if Vt € 0.Vs € Pp.s~pt = s€o

If t € 0 and s is "more concurrent” than t then s is also in o

26 /45



Linearizability

DEFINITION

s € P, is linearizable to t € P4 when there exists a sequence sp of Opponent moves and
a sequence sp of Proponent moves such that

S-Sp~at-so

v

t need not be atomic (coincides with Herlihy-Wing when it is);
> sp = returns;
» so = removed pending invocations (not all need be removed);

» ~»4 = happens-before order preservation.

27 /45



Abstract Linearizability

PROPOSITION
Let 7 : A € Gamecg, then

Kcone T = {s € P4 | 3t € 7.5 linearizes to t}
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Abstract Linearizability
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Properties
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Interaction Refinement

1N

< VBVs:A—B.

€ Gameconc
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Interaction Refinement: Proof (Forward)

1N

(o2
. | =
g
ccopya
!
1%
A VA VA
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Interaction Refinement: Proof (Backward)

VBNo: A — B.
(o
o ccopya ccopya
/ / / C

32/45



Horizontal Composition

We define a tensor product of strategies:
oA , 7B — o®7:ARB

where
o ® T = all sequentially consistent interleavings of plays of o and 7

o (1%4) T

This makes Gamecenc into a symmetric monoidal category.
(— ® — has a unit 1, is associative and commutative, bifunctor, ...)

33/45



Horizontal Composition:

Functorial

/42 [32 /‘2 [32
o1: 7 71 o1:9 X 71§
A B A B
__________ ® Ee—————) -
A B A By
0'02? T()ZT Uo:? (1%4) ’7'02‘]7
Ao Bo Ao By
ccopya X ccopyg = | cCcopyags

34/45



Horizontal Composition: Monotonicity

O']_ZA 7'1:B
Ul Ul
op: A T0: B

o1 ® 71
Ul
00 : (1%4) 70 :

35/45



Horizontal Composition: Order-Isomorphism

O']_ZA 7'1:B
Ul Ul
op: A T0: B

o1 : (1%4) T
Ul
00 : (1%4) 70 :

36/45



Locality

THEOREM
CCopy A ccopyp CCOpPY AxB
VA VB VA (1%4) VB
<~
Ul /A Ul Ul
Va Vg Va ® Vg

37/45



Locality: Proof

CCOPY A B ccopya X ccopyp
"""""""""""" =1 1T (Functoriality)
VA (1%4) vp VA (14) VB
ccopya ccopyp
e N (Functoriality)
VA VB
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Locality:

THEOREM

Proof

ccopya ccopyp
12 1423
Ul Ul
Va vg

ccopya ccopyg
®
VA VB
Ul
Va ® Vg

Holds by the order-isomorphism

39/45



Locality Proof [Herlihy and Wing, 1990]

Let < be the transitive closure of the union of all <, with <y. It is immediate
from the construction that < satisfies Conditions (1) and (2), but it remains to

be shown that < is a partial order. f not, then there
exists a set of operations ey, ..., e,, such thate; < e; < .-+ < e,, e, < ¢, and
each pair is directly related by some <, or by <u. Choose a cycle whose length is
minimal.

Suppose all operations are associated with the same object x. Since <, is a
total order, there must exist two operations e,_; and e; such that e;_; < g ¢; and
e; <, e;-,, Contradictingithe linearizability of x.

The cycle must therefore include operations of at least two objects. By rein-
dexing if necessary, let e; and e, be operations of distinct objects. Let x be the
object associated with e;. We claim that none of e,, ..., e, can be an operation
of x. The claim holds for e, by construction. Let e; be the first operation in
es, ..., e, associated with x. Since ¢,_, and ¢; are unrelated by <,, they must be
related by <u; hence the response of e, precedes the invocation of e;. The
invocation of e, precedes the response of e;_;, since otherwise e;_; <y e, -g

es, ..., e—;. Finally, the response of e; precedes the invocation
of ey, since e; <y e, by construction. It follows that the response to e, precedes
the invocation of e;, hence e; <y e;, Jiclding the/Shortericycle ei, e, . . . , €.

Since e, is not an operation of x, but e, < e;, it follows that e, <y e,. But
e; <y e; by construction, and because <y is transitive, e, <y e,

€y, ..., ey, the final contradiction. [ 1015
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Implementing a Shared Queue

/ / / /
Vsqueue Vsqueue Viock Viock
refine refine
!
quueue E quueue Mlock E Mlock
V/ l/l U I/I I/, / I/,- Vi v Vi Id
lock queue lock queue fai  |Ycounter| Yyield fai ‘counter| Vyiel
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Program Logic

» We define a program logic for showing individual programs implement linearizable
objects.

» Sound for our notion of linearizability (and in particular for, interval-linearizability).

> Directly connects with our compositional theory.

PROPOSITION (SOUNDNESS)

If R[A],G[A] =a {P[A]} M[A] {Q[A]} and (vg : tE,vE : tE) is a linearizable concurrent
object then
V;:'; [[M[A]]] N V;-' C Kcone VF

43/45



Composing Verified Components

/ / v
Ylock Vsqueue squeue
quueue
M /\ M — 7 7
lock squeue | Vo | | Ut weve |
Mlock ® CeokY
Vé . I// V/ ield l// ]//
ai counter| “yie lock queue 7 7 7 7
| Vtai |® Pcountg ® | Vyield | |uneue|
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Conclusion

Conclusion
» New foundations for linearizability and its properties.
» A compositional theory for linearizability.
» Promising applications for compositional verification.
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Check our paper and TR for more:
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More...
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Thank you!
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