
J Autom Reasoning (2018) 61:141–189
https://doi.org/10.1007/s10817-017-9446-0

Toward Compositional Verification of Interruptible OS
Kernels and Device Drivers

Hao Chen1,2 · Xiongnan Wu2 · Zhong Shao2 ·
Joshua Lockerman2 · Ronghui Gu2

Received: 1 April 2017 / Accepted: 14 December 2017 / Published online: 23 December 2017
© Springer Science+Business Media B.V., part of Springer Nature 2017

Abstract An operating system (OS) kernel forms the lowest level of any system software
stack. The correctness of the OS kernel is the basis for the correctness of the entire system.
Recent efforts have demonstrated the feasibility of building formally verified general-purpose
kernels, but it is unclear how to extend their work to verify the functional correctness of
device drivers, due to the non-local effects of interrupts. In this paper, we present a novel
compositional framework for building certified interruptible OS kernels with device drivers.
We provide a general devicemodel that can be instantiatedwith various hardware devices, and
a realistic formal model of interrupts, which can be used to reason about interruptible code.
We have realized this framework in the Coq proof assistant. To demonstrate the effectiveness
of our new approach, we have successfully extended an existing verified non-interruptible
kernel with our framework and turned it into an interruptible kernel with verified device
drivers. To the best of our knowledge, this is the first verified interruptible operating system
with device drivers.

This is a revised and extended version of the conference paper [11] under the same title.

B Hao Chen
hao.chen@yale.edu

Xiongnan Wu
xiongnan.wu@yale.edu

Zhong Shao
zhong.shao@yale.edu

Joshua Lockerman
joshua.lockerman@yale.edu

Ronghui Gu
ronghui.gu@yale.edu

1 University of Electronic Science and Technology of China, Chengdu, Sichuan, China

2 Yale University, New Haven, CT, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-017-9446-0&domain=pdf
http://orcid.org/0000-0002-1180-9433

142 H. Chen et al.

Keywords Program verification · Certified OS kernels · Interrupts · Device drivers ·
Abstraction layer · Modularity

1 Introduction

An operating system (OS) kernel serves as the lowest level of any system software stack.
The correctness of the OS kernel is the basis for that of the entire system. In a monolithic
kernel, device drivers form the majority of the code base; 70% of the Linux 2.4.1 kernel are
device drivers [12]. Furthermore, such drivers are found to be the major source of crashes in
the Linux and Windows operating systems [8,12,19]. While recent efforts on seL4 [28] and
CertiKOS [20] have demonstrated the feasibility of building formally verified OS kernels, it
is unclear how to extend their work to verify the functional correctness of device drivers. In
CertiKOS [20], drivers are unverified, and it is not obvious how to extend their framework to
model devices and interrupts. In amicrokernel like seL4 [28], device drivers are implemented
in user space, and, though its proofs guarantee driver isolation, it does not eliminate bugs in
its user-level drivers.

A major challenge in driver verification is the interrupt: a non-local jump to some driver
code, triggered by a device.When device drivers are implemented inside the kernel (for better
performance), the kernel should be interruptible; otherwise, it can lead to an unacceptable
interrupt processing latency. Reasoning about interruptible code is particularly challenging,
since every fine-grained processor step could contain a non-local jump, and, upon return, the
machine state could be substantially changed. Even worse, it is not clear how such reasoning
should be done at the C level, which is completely interrupt-unaware. Existing work either
assumes that interrupts are turned off inside the kernel [20,34], or polls the interrupts at a
few carefully chosen interrupt points [28].

Furthermore, interrupt hardware is not static, but is configured by software. In order to
verify any interesting device drivers (serial, disk, etc.), we first need to model the interrupt
controller devices (e.g., LAPIC [24], I/O APIC [23]), and formally verify their drivers. This
is important because, if the interrupt controllers are not initialized properly, it may lead
to undesired interrupt behaviors. Device drivers also interact with interrupt controllers to
mask/unmask particular interrupt lines. These issues have been overlooked in past work,
where interrupt controllers are assumed to be properly initialized and their drivers are cor-
rectly implemented [2].

Finally, verifying an interruptible operating system with device drivers also faces the
following challenges.

Devices and CPU Run in Parallel Thus, the executions of CPU instructions and device
transitions can interleave arbitrarily. Code verification on this highly nondeterministic
machine can be challenging, since it needs to consider device state transitions, even when
the CPU is executing a set of instructions unrelated to external devices. Recent work [1,2,4]
tries to address this by enforcing a stability requirement that device states only change due to
CPU operations. This requirement is, however, too strong as devices interacting with external
environments are not stable: a serial device constantly receives characters through its port,
a network card continuously transfers packets, an interrupt controller (IC) asynchronously
receives interrupt requests, etc.

Devices may Directly Interact with Each Other Existing work assumes that a device
driver monopolizes its underlying device and devices do not influence each other [2]. This

123

Toward Compositional Verification of Interruptible OS… 143

assumption does not hold for many devices in practice. For example, most devices directly
communicate with an interrupt controller by signaling an interrupt.

Device Drivers are Written in Both Assembly and C Existing device driver verification
is either done completely at the assembly level [2,15] or the verified properties are only
guaranteed to hold at the C level [37,38]. For realistic use-cases, proven properties should
be translated down and then formally linked with the assembly-level proofs.

The Correctness Results of Different Components Should be Integrated Formally For
example, the correctness proofs of device drivers and the OS kernel need to be formally
linked as an integrated system, before one can deliver formal guarantees on theOS as awhole.
Not doing so can introduce semantic gaps among different modules, a scenario which intro-
duced actual bugs in previous verification efforts as reported by Yang and Hawblitzel [42].
Unfortunately, this formal linking process was found to be even more challenging than the
correctness proofs of individual modules themselves [2]. Even OS’s with user-level device
drivers can suffer if the correctness proofs of their drivers are not formally linked with those
of the kernel. For example, if some device driver code triggers a page fault at the user level,
the behavior of the corresponding driver is linked to the behaviors of the page-fault handlers
and address translation mechanism of the kernel.

In this paper, we propose a novel compositional approach that tackles all of the above
challenges. There are two key contributing ideas. One is to build up a certified “virtual” device
hierarchy, and the other is a new abstract interrupt model, built upon a realistic hardware
interruptmodel through contextual refinement.We use these to build an extensible framework
that systematically enforces the isolation among different operating systemmodules, which is
important for scalability of any verification effort and critical for reasoning about interruptible
code.

Our paper makes the following new contributions:

– We present a new extensible architecture for building certified OS kernels with device
drivers. Instead of mixing the device drivers with the rest of the kernel (since they both
run on the same physical CPU), we treat the device drivers for each device as if they
were running on a “logical” CPU dedicated to that device. This novel idea allows us to
build up a certified hierarchy of extended abstract devices over the raw hardware devices,
meanwhile, systematically enforcing the isolation among different “devices” and the rest
of the kernel.

– We present a novel abstraction-layer-based approach for expressing interrupts, which
enables us to build certified interruptibleOSkernels and device drivers.Our formalization
of interrupts includes a realistic hardware interrupt model, and an abstract model of
interrupts which is suitable for reasoning about interruptible code. We prove that the two
interrupt models are contextually equivalent.

– We present, to the best of our knowledge, the first verified interruptible OS kernel and
device drivers that comewithmachine-checkable proofs. The implementation, modeling,
specification, and proofs are all done in a unified framework (realized in the Coq proof
assistant [40]), yet the machine-checkable proofs verify the correctness of the assembly
code that can run on the actual hardware.

This paper presents a step (of our ongoing work) towards the formal verification of a
faithful operating system, which contains certain limitations that could be explored as further
research topics. First, the specification of hardware needs to be manually checked, but could
be discharged in the future by the verification of device gate-level implementation. Second,
concurrency caused by multi-processors and thread preemption are not discussed, thus need
to be further investigated with a general shared-memory concurrency framework, such as

123

144 H. Chen et al.

[21]. In addition, the framework does not support the verification of real-time behaviors of
devices due to the lack of real-time notion in our machine model and events.

The rest of this paper is organized as follows. Section 2 briefly explains our abstraction-
layer-based verification technology using a concrete example. Section 3 gives an overview
on how we extend the layer-based framework to build our device hierarchy while enforcing
isolation from the rest of the kernel. Section 4 defines a formal machine model extended with
raw hardware devices. Section 5 presents the device objects, hardware interrupt model, and
abstract interrupt model, and shows how we prove contextual refinement between the two
interrupt models. Section 6 presents case studies of our verified drivers using the techniques
developed in this paper. Section 7 describes our concrete Coq implementation in detail.
Sections 8 and 9 give an evaluation of our new techniques and describe the lessons we
learned, the limitations, and future work. Finally, we discuss related work and then conclude.

The artifact, including the specifications, the proofs, the framework, and automation library
are available at http://flint.cs.yale.edu/certikos/publications/device/index.html for further
references.

2 Overview of Certified Abstraction Layers

In this section, we give an overview of our abstraction-layer-based approach on verifying sys-
tem software, first introduced in [20]. As in any other system verification, we associate every
code module (a piece of code) a specification, and prove that the code meets its specification,
or more formally, there is a forward simulation [32] from the module implementation to its
specification. A specification of a module is a logical abstract representation of the module’s
behavior with the concrete implementation details hidden. For example, to specify operations
on a doubly linked list stored in memory, we may logically interpret the complex in-memory
data structure as a simple logical list and specify its push and pop operations as a simple list
append and remove operations. To support this, the framework needs to provide a systematic
way to hide the private memory state from its client, and replace them with abstract states to
specify the full functionality of each operation in the interface in terms of the abstract states.
Furthermore, a complex system like a kernel module is normally implemented in a combina-
tion of the C and assembly language. Thus, the framework should be able to be instantiated
in both languages and provide a way to certifiably compile the C-based framework into the
assembly-based one. The certified abstraction layers provide exactly such support.

2.1 C and Assembly Languages Used

Our framework supports both a C-like language and an x86 assembly language called Clight
and LAsm, respectively.

Clight [10] is a subset of C and is formalized in Coq as part of the CompCert project [30].
Its formal semantics relies on amemorymodel [31] that is not only realistic enough to specify
C pointer operations, but also designed to simplify reasoning about non-aliasing of different
variables. From the programmer’s point of view, Clight avoids most pitfalls and peculiarities
of C such as nondeterminism in expressionswith side effects. On the other hand, Clight allows
for pointer arithmetic and is a true subset ofC: validClight programs are validCprogramswith
the same semantics. Such simplicity andpracticality turnClight into a solid choice for certified
programming. Furthermore, the CompCert verified compiler provides strong guarantees on
code obtained by compilation of Clight programs. However, Clight provides little support
for abstraction, and proving properties about a Clight program requires intricate reasoning

123

http://flint.cs.yale.edu/certikos/publications/device/index.html

Toward Compositional Verification of Interruptible OS… 145

about data structures. This issue is addressed by our layer infrastructure. Our Clight code is
automatically generated from standard C code through a tool called clightgen provided by
CompCert. We directly verify the generated Clight code. Thus, correctness of the clightgen
does not affect the correctness of the verified code.

LAsm is a super set of the CompCert x86 assembly language with more machine-
dependent registers and instructions needed for implementing low level system software.

2.2 Layer Interface

A layer interface L consists of the abstract states, primitives, a set of invariants on the abstract
states, and proofs that all the primitives in the layer interface preserves the layer invariants.
An abstract state could be a logical state that does not correspond to any physical state in
the machine, but in most cases, it is a logical state that is abstracted from a concrete state
in the registers or memory. Each primitive operates on the abstract states and is associated
with an atomic specification. It is abstracted from a concrete, verified piece of the actual
code. Since the invariants are preserved by all the primitives, the abstract states can only be
accessed through calling one of the primitives, and execution of the primitives are atomic,
the invariants hold at any moment during the system execution.

2.3 Code Module

A code module M corresponds to a concrete piece of code in Clight or LAsm assembly. Note
that a module M implemented on top of a layer interface L may call any of the primitives
defined in L . However, the standard Clight semantics is unaware of either the abstract states
or the abstract primitives defined in the layer interface. While we would like to support the
new abstract states and primitives, we seek to minimize the impact on the existing proof
infrastructure for program and compiler verification. Thus, we do not modify the semantics
of basic operations of Clight, but access the abstract states exclusively through the Clight’s
external function mechanism provided in CompCert. In addition, the external function mech-
anism is also used to model the interaction with the devices, such as input/output. Indeed,
CompCert models compiler correctness through traces of events which can be generated
only by external functions. CompCert axiomatizes the behaviors of external functions with-
out specifying them, and only assumes they do not behave in a manner that violates compiler
correctness. We use the external function mechanism to extend Clight with our primitive
operations, and supply their specifications to make the semantics of external functions more
precise. The semantics of LAsm is also instrumented accordingly to support the primitive
calls in the assembly code. The verified Clight source code can be compiled by our extended
CompCertX compiler [20] to the corresponding LAsm assembly in such a way that all proofs
at the Clight level are preserved at the LAsm level. Then, the compiled LAsm modules and
their proofs can be linked with the ones directly developed in LAsm.

2.4 Certified Layer

A certified layer is a new language-based module that consists of a triple (L1, M, L2) plus
a mechanized proof object showing that the layer implementation M that is built on top of
the layer interface L1 (the underlay interface), denoted �M�L1, is a contextual refinement
of the desirable layer interface L2 above (the overlay interface), as shown in Fig. 1. A deep
specification of L2 captures everything contextually observable about running M over its

123

146 H. Chen et al.

L1
abstract
state s primitive iMemory data

M

L2
abstract
state Memory new primitive p

- +

use
contextual

Underlay

Overlay

Data Invariants

hide
+

Fig. 1 Layer-based contextual refinement

underlay L1. Once a certified layer (L1, M, L2) with its deep specification is built, there is
no need to ever look at M again, since any property about M can be proven using L2 alone.

The contextual refinement is proven by showing a forward simulation from L2 to �M�L1

over a refinement relation. Thus, for every contextual refinement, we need to find a refinement
relation R that can relate the system’s states (including the abstract states) between the layer
interface L1 and L2. In the above doubly linked list example, R needs to relate the in-memory
doubly linked list of L1 to the abstract logical list in L2. In the case when there is no data
abstraction between L1 and L2, R is simply an identity relation. To prove forward simulation,
we need to prove that for every state (s1, s2) in R, and for every primitive p in L2, if p takes
the state from s2 to s′

2, then there exists zero or more steps in M which can take the state s1
to s′

1, where (s′
1, s

′
2) is also in R.

In addition, the contextual refinement also needs to guarantee that the context code running
on the overlay interface does not accidentally damage the underlay in-memory data by directly
accessing the relevant memory. As shown in Fig. 1, we achieve this by utilizing the CompCert
memory permissions [31] to hide the relevant memory region at overlay, which prevents
the context code from accessing the relevant memory. These logical permissions do not
correspond to any physical protection mechanism, but are used to ensure that the abstract
machine at overlay gets stuck if any code tries to directly access this portion of memory.
The safety proof of our entire system (the system never gets stuck) guarantees that such a
situation never happens. Thus, the only way to affect the abstracted memory by any context
code running over the overlay interface L2 is to explicitly calling relevant primitives in L2.

Traditionally, refinement is proven by an upward simulation from implementation to spec-
ification to ensure soundness, i.e., any property we prove on the overlay specification is
guaranteed to hold at underlay implementation. In our framework, we also prove the upward
simulation. But as a proof technique, we first prove the downward simulation and later turn it
into an upward one using the fact that our machine semantics is deterministic with respect to
the external events. We model all non-deterministic behaviors by encapsulating all potential
non-deterministic aspects into event logs. And we prove our strong contextual refinement
property with respect to all possible combinations of event logs. This is how we guarantee
that our proof holds for all possible scenarios in the non-deterministic executions.

On the other hand, if the number of simulating underlay steps is not constrained, a down-
ward simulation could potentially be fulfilled by bogus implementations, We always insist
writing the deep specifications for the overlay interface to capture everything contextually
observable for the underlay implementation. Thus, the form of our high level specifications
at overlay is not some random high level relations vaguely restricting our underlay behav-
iors, but actual precise specifications of what should be the exact outcome after running
corresponding abstract primitive, explained in terms of abstract states. Thus, under same

123

Toward Compositional Verification of Interruptible OS… 147

preconditions enforced by the primitive specification, the behavior of overlay primitive and
underlay implementation should be exactly the same over the same external events.

As in Fig. 1 and the following figures, we use L to represent a layer interface, which
consists of an abstract states s and a list of primitives (prim). The layer implementation is
presented as M which contains one or multiple LAsm or Clight functions. The contextual
refinement relation of a module to a layer interface is denoted as M L , which requires to
preserve the refinement relation () between the abstract states of two layers. We always
put the more abstract layer on top of more concrete layers.

2.5 Verification of Clight and LAsm functions

Given that majority of the system software are developed in C (Clight in our case), we need a
good framework-level automation support to verify that C modules meet their specifications.
In our framework, this proof is achieved semi-automatically through Coq tactic libraries
implemented in the Coq’s tactical language Ltac. The primary proof tactic cauto consists of
many components.

One main component is a verification condition generator that decomposes all the Clight
expressions and statements, and produces conditions as sub-goals for the further expression
evaluation and statement execution based on the big-step semantics defined in CompCert.
The only exception is the loop, whose verification conditions cannot be generated by simply
applying the semantic rules. We developed a separate logic for loops, which requires the user
to provide the loop invariants that are preserved on every iteration of the loop execution.
Our proof is termination sensitive. Thus, the logic also requires a termination metric, a well-
founded order of the type of the provided metric, and a proof that the metric decreases at
every iteration of the loop according to the provided well-founded order.

The language Clight strictly follows the C standard and disallows the undefined behaviors
described in the standard C semantics. Thus, these all become the preconditions in the seman-
tic rules of the Clight language. For a reasonably realistic C module, the set of verification
condition generated is extremely large. Thus, discharging the conditions after they are fully
generated would be very inefficient. Instead, the cauto tactic integrated many of the theory
solvers to discharge the sub-goals on the fly as soon as they become provable.

First, to prevent the integer overflow, the Clight semantics requires every intermediate
value in the middle of expression evaluations to be within the range regarding its type. In this
way, most of the Clight code generates a huge set of arithmetic sub-goals for checking value
ranges. However, the standard omega tactic is too weak to prove most of the goals. We have
incorporated the cauto tactic a powerful arithmetic solver that can handle divisions, modular
operations, bit-wise operations, machine finite precision integers, etc.

Clight semantics also utilizes partial maps and Coq lists to represent the local variable
environments and arguments. Furthermore, we extensively use partial maps and Coq lists in
the abstract states to abstract many of the concrete data structures in memory. To support
those, the tactic contains theory solvers to discharge proof goals for properties related to
partial maps and Coq lists. The tactic also contains a number of domain specific libraries
which handle items such as device transitions and logs.

The automation library is easy to learn and use, and is exercised extensively by many
students and researchers in our group to prove thousands of lines of C code in our verified
OS kernel.

We have also developed an automation library to semi-automatically prove the modules
directly implemented in LAsm. The automation support for LAsm is not as mature and
powerful as the support for Clight, as the assembly code is much less structured in nature

123

148 H. Chen et al.

Fig. 2 Console circular buffer implementation in C

Memory

Lhigh

Llow

cb_read
cb_write

cb_init

rpos
wpos

Lmid rpos
wpos

ZMap
i1 undef
i2 val

cb_read
cb_write

cb_init

M :: cb_read M :: cb_write M :: cb_init

Memory

Memory

R

R

Fig. 3 The layer hierarchy of circular console buffer

compared to the Clight programs. In practice, it is not a big issue since the part of system
code directly implemented in assembly is relatively small.

2.6 Example: Verification of Console Circular Buffer

To better illustrate how the certified abstraction layers work, in this subsection, we demon-
strate how we can utilize the techniques to verify a console circular buffer implementation
used in our verified device drivers. As shown in Fig. 2, in memory, the circular buffer is
implemented as a circular array (to store the received input characters) with two additional
fields (to mark the head (rpos) and the tail (wpos) of the circular buffer as shown in Fig. 3).
Since the console buffer module M in Fig. 2 does not utilize any layer primitives, we can
view that M could run on a layer interface Llow with empty abstract state and primitives.

Now we define a new layer interface Lhigh with an abstract state d abstractly representing
the circular buffer, and a list of abstract primitives cb_init, cb_read, and cb_write that
operate on the abstract buffer. First, we define d = (cons_buf : list Z), i.e., we simply
abstract the in-memory circular buffer as a simple logical list. Next, we give specifications
to the set of primitives as shown in Fig. 4. Here, we use inference rules (Premise1 Premise2 ...

Conclusion)
to express the specification and the notations [·] and ++ to represent a singleton list and list
concatenation, respectively. The specification shown in Fig. 4 is much cleaner and simpler

123

Toward Compositional Verification of Interruptible OS… 149

Fig. 4 Specifications of abstract
console buffer primitives

than the actual implementation which simplifies future reasoning of code modules that use
the data structure.

Next, we can define a refinement relation R to relate the concrete circular buffer in the
memory and the abstract list, then prove the contextual refinement between �M�Llow and
Lhigh over the simulation relation R. The forward simulation proof can be achieved on the
primitive-by-primitive basis. One can imagine that due to the non-trivial R, this simulation
proof is also complex.

The complexity may further explode when this logical complexity gets mixed with the
complexity of handling the accesses to the CompCert memory. CompCert memory model is
an axiomatized model where the properties are defined through a big list of axioms without
a specific implementation. Any concrete implementation of this memory model needs to
satisfy all the axioms. Thus, one cannot perform any simple evaluations on the memory, but
needs to keep applying appropriate axioms to derive any desired properties. This severely
limits the room for proof automation and significantly increases the proof size and memory
consumption for proof compilation as the proof gets more complex. To separate the com-
plexity that comes from the CompCert memory model from the actual complexity of the
proof, in our layered approach, we always make the gap between the underlay and overlay
interface as small as possible when it comes to data abstraction, i.e., when a piece of memory
gets abstracted into an abstract state at the overlay interface (Fig. 3).

In the case of the circular console buffer, instead of directly jumping from the in-memory
implementation to a logical list, we introduce an intermediate layer interface where the
representation of the circular buffer in the abstract state is very similar to the one in the
memory. We define the intermediate layer interface Lmid with the abstract state d and the
primitive specifications as shown in Fig. 5. Here, for any type T , ZMap.t T is the type
of partial map from integer keys to the values of type T . One can easily observe that the
representations shown in Fig. 5 are extremely similar to the actual implementations shown in
Fig. 2. Given the similarity, one can easily come up with a refinement relation R which maps
the concrete values in the memory to their appropriate logical values in d . The simulation
proof over R is also relatively easy and there is no other complex factors interfering with the
ones from handling the CompCert memory.

Once the contextual refinement between �M�Llow and Lmid is proven, the contextual
refinement between Lmid and Lhigh can be proven with no code module involved. Thus, this
part of proof is completely logical and the refinement relation Rcons_bu f (shown in Fig. 6)

123

150 H. Chen et al.

Fig. 5 Intermediate specifications of console buffer primitives

Fig. 6 The definition of refinement relation between Lhigh and Lmid in Coq

in this case only needs to relate two sets of abstract states. In Fig. 6, Abs is the type of the
abstract states in each layer interface. The overall layer hierarchy of entire console buffer is
shown in Fig. 3. This kind of two-stage proof strategy significantly reduces the complexity
of the proof and lifts the main complex proof effort to pure logical level.

3 Certified Abstraction Layers with Device Drivers and Interrupts

Instead of verifying an operating system from scratch, we start from an existing verified
kernel that is developed in our group, named mCertiKOS. It is developed and verified using
the abstraction layer-based approach illustrated in Sect. 2. The kernel currently runs on the 32
bit x86 architecture. It provides a multi-processing environment for user-level applications
using separate virtual address spaces. It implements bothmessage passing and sharedmemory

123

Toward Compositional Verification of Interruptible OS… 151

Timer

TSC

IDT
CPU
freq

DMA
OwnershipLAPIC IOAPIC

APIC

PCI Root

PCI Function List

Serial Kbd

Video

Console

PCI DeviceAHCIDisk

CPU
Memory

Heap BIOS DMALocal
APIC

I/O
APIC AHCI

PCI

USB NIC
Serial Key-

board VGA

Memory Mapped
Reg Base

mptable Console Buffer

Legend

Hardware

Global
Data

Driver

drive

use

Fig. 7 The device driver hierarchy of mCertiKOS

inter-process communication protocols. As a hypervisor, it can also boot recent versions
of unmodified Linux operating systems inside a virtual machine. Unlike large commercial
operating systems like Linux or Unix, mCertiKOS kernel only implements a small subset
of the POSIX-like API, e.g., process creation and control, physical and virtual memory
management, and inter-process communication. It does not implement signals, pipes, etc.
The current file system implementation in mCertiKOS is not verified.

Figure 7 shows the device hierarchy of mCertiKOS. Here the white boxes represent raw
hardware devices; the green boxes denote the device drivers, and the gray boxes are the
data structures used by the drivers. The purple/black lines show how these device and driver
components are related. Note that the drivers in mCertiKOS are not verified; they are imple-
mented in about 1600 lines of C and assembly code, and would be considered as part of the
trusted computing base (if they are kept inside the kernel).

We take mCertiKOS’s lowest level machine model, LAsm, and extend it with device mod-
els. We model devices as finite state transition systems interacting with the processor and the
external environments. Since devices run concurrently with the processor, parts of the device
state changewithout the processor explicitly modifying them. Though these “volatile” device
states can change nondeterministically, the processor itself only ever observes a “current”
state when it reads the device data via an explicit I/O operation. The processor does not,
and in fact cannot, care about any states that the device may enter between these observed
states. Therefore, instead of designing fine-grained small-step transition systems that model
all possible interleaved executions amongst the processor and devices, our devices simply
perform an atomic big-step transition whenever they are observed, i.e., when there is a device
read/write operation from the CPU.

Next, the machine model needs to be extended with the hardware interrupt model. The
processor responds to an interrupt by temporarily suspending the current execution and then
jumping to another routine (i.e., an interrupt handler). Interrupts can be triggered by both
hardware and software. Software interrupts (e.g., exceptions, system calls) are relatively easy
to reason about, since their behaviors are always deterministic. For example, a page fault
exception occurs whenever the accessed address belongs to an unmapped page or a page
with wrong permission, and a system call is triggered by an explicit instruction. However,
hardware interrupts (IRQs) are unpredictable; when we execute some code with interrupts
turned on, at every fine-grained processor step, the machine state (e.g., registers andmemory)
may undergo significant changes. Recent work on verified operating systems (including
mCertiKOS) neglects this kind of reasoning, ignoring one of the largest kernel threat-surfaces
[4,20,27]. Finally, modeling interrupts is important because it also opens the way toward
enabling interrupts within the kernel.

123

152 H. Chen et al.

P

P

CPU Memory D1 D2

module <container> :: c_init() { }.

MBoot md1 ρρ

MContainerP md2 ρρ

DSerialIntroP mdi ρρ

module <serial> :: s_putc() { }. P

DSerialP mdi+1 ρρ

data abstraction

new primitive

?

? Legend
Hardware

Driver

module

Context

Layer

Primitive

 Link

interrupt

use

introduce

Fig. 8 Abstraction layers w. interrupts: a failed attempt

On top of this lowest-level machine model, each kernel module can be related to either
device drivers (denoted asDD) or the rest of the kernel (denoted asK, representingnon-device-
related kernel components). To introduce, verify, and abstract each such kernel module into
an abstract object with atomic logical primitive transitions, we need to prove the following
isolation properties:

– For each function inK or user space, which has interrupts turned on, the interruptmust not
affect the behavior of the function. Although the code can be interrupted at any moment,
and the control flow transferred to a place outside the function, it will eventually return
with states (which the function relies upon) unchanged.

– Devices which directly change the memory through Direct Memory Access (DMA), do
not change any memory that the execution of any function in K depends on.

– For each interruptible device driver function inDD, any interrupt not related to the current
device must not change any state related to the current device.

– In case that all interrupts related to a device are masked out, no interrupts can affect the
state of the interrupt handler for the device.

For a particular fixed set of functions, the proof of the above properties may not seem
hard. However, they have to be proven repeatedly for all possible combinations of currently
introduced sets of functions and devices. This immediately makes the verification of an
interruptible operating system with device drivers unscalable.

Furthermore, it is not obvious how to apply techniques presented in Sect. 2 to handle
hardware interrupts. Figure 8 shows one such attempt. Here, P denotes the kernel/user-level
context code; MBoot, MContainer, DSerialIntro, and DSerial denote several kernel and
driver layers. With interrupts turned on in the kernel, it is immediately unclear how to show
contextual refinement among different layers. For a kernel function like c_init, it cannot be
easily refined into an atomic specification as the code can be interrupted at any point during
the execution by a device interrupt, unless all possible interleaving of interrupts are encoded
into the specification itself. Similarly, for a device driver function like puts, the code can be
interrupted at any moment by interrupts triggered from other devices or the device itself.

In this paper, we propose a systematic way that strictly enforces isolation among different
entities by construction. Our approach consists of the following two key ideas.

First, rather than viewing drivers as separate modules that interact with the CPU via
in-memory shared-state, we instead view each driver as an extended device. We utilize

123

Toward Compositional Verification of Interruptible OS… 153

Extended Device Object (Driver)

Raw Device Object

trans state local logs
(+) state

code
read/
write

(+)primitive

C
on

te
xt

C
od

e

Fig. 9 The driver as an extended device

P

P

logical
CPU 0

Kernel logical
Memory

module <c> :: c_init() {→→}

MBoot md ρρ

MContainerP md ρρ

MShareOpP md ρρ

data abstraction

new primitive

CPU Memory D1 D2

P

P

logical
CPU 1

D1 logical
Memory

M <d1> :: f1() {→→}

D1_Raw s

D1_Func s

D1_Intr s

M <d1> :: puts() { }

D1_Puts s D1_puts

��

��

��

��

logical
CPU 2

D2 logical
Memory

M <d1> :: f1() {→→}

D2_Raw s

D2_Func s

D2_Intr s

��

��

��

logical
separation

critical area critical area

Fig. 10 Building certified abstraction layers with hardware interrupts: our new approach

abstraction layers and contextual refinement to gradually abstract thememory shared between
a device and its driver into the internal abstract states of a more general device. Furthermore,
we use the same technique to abstract those driver functions that manipulate these data into
the abstract primitives of a higher level device. After this, our approach ensures that those
abstract states can no longer be accessed by the other entities, through, e.g., memory reads
and writes, but, rather, can only be manipulated via explicit calls to the device interface. We
repeat these procedures so we can incrementally refine a raw device into more and more
abstract devices by wrapping them with the relevant device drivers (see Fig. 9). In the rest
of the paper, we call this extended abstract device a device object, to distinguish it from the
raw hardware device. Note that in our model, device objects are indeed treated similarly to
raw devices, and both have quite similar interfaces.

Second,we introduce and verify the interrupt handler for each device at the lowestmachine
model, which is not yet suitable for reasoning about interruptible code. This is possible
because, for each device, we require that either the interrupt be disabled or its corresponding
interrupt line be masked inside the interrupt handler of the device. Next, we introduce a
new abstract machine with a more abstract interrupt model, that provides strong isolation
properties amongst different device objects and the kernel, in which any future (context)
code with interrupts turned on can be reasoned about naturally. We prove a strong contextual
refinement property between these two abstract machines: any context code running on the
machine with the abstract interrupt model (overlay) retains an equivalent behavior when it is
running on top of the machine with the concrete hardware interrupt model (underlay).

Figure 10 shows the layer hierarchy of our interruptible kernel with device drivers. We
treat the driver code as if it runs on its own device’s “logical CPU,” and each logical CPU

123

154 H. Chen et al.

operates on its own separate internal states. Thus, the approach provides a systematic way
of assuring isolation among different device objects (running on its own local logical CPUs)
and the rest of the kernel.

On the kernel side (the layer hierarchy on the left hand side of Fig. 10), the contextual
refinement is achieved in the same way as shown in Sect. 2 since the hardware interrupts
(from the other logical CPUswith separate states) no longer affect the execution of any kernel
primitive (like c_init), i.e., the kernel is completely interrupt-unaware.

Similarly, the device driver functions are no longer affected by the hardware interrupts
triggered from other devices. For each device D running on top of its own logical CPU,
we first introduce and verify part of the driver in the critical area, i.e., the low-level device
functions that should not be interrupted by the same device, and the interrupt handler of the
device. Next, we use contextual refinement to introduce a new layer that has a more abstract
interrupt model. On this layer, we can introduce and verify even interruptible driver code
(e.g., puts) while still enforcing strong isolation and providing clean interface to the kernel.

4 Machine Model with Devices

In this section, we present our machine model, which is based on the Intel x86 architecture.
We start from the LAsm machine model, and extend it to model devices and interrupts.

Our devices are modeled as finite state transition systems interacting with the CPU and
the external environments. Each read/write (input/output) operation initiated from the CPU
triggers an atomic big-step transition in the corresponding device. Device transitions (i.e.,
trans in Fig. 9) are affected by two types of interactions, one by the CPU and another by
external events.

Device Transitions caused by the CPU The CPU may trigger a device transition through I/O
instructions or memory-mapped I/O operations. These operations can be categorized into the
following two actions:

Definition 1 (CPU Operation on a Device)

O::= input n � Read value from the register at address n
| output n v � Write value v to the register at address n

For every device, we define an atomic transition function δCPU, which takes the current
device state s and a CPU operation o, and returns the new state s′. Note that δCPU is not a
CPU transition, instead, it is strictly a device transition triggered by a CPU I/O operation.

Device Transitions caused byExternal Events Device transitions can also be caused by events
from the external environment, such as the keyboard or network, with specific transitions
depending on the kind of event. When modeling these external events, we take a minimalistic
approach: though the devices can receive all kinds of different external events, we onlymodel
those that change the observable behavior of the device. Thus, the events do not map one
to one to the transitions in the device hardware but rather to the CPU observations on the
hardware. We model the device interfaces, not the device internals. The device interface
contains all the information that a programmer can know about its states. Some example
events are:

123

Toward Compositional Verification of Interruptible OS… 155

Definition 2 (Device External Events)

E ::=
� UART device

| Recv (s : list char) � UART receives string s
| NoSendingCompAck � Sending is not complete
| SendingCompAck � UART completes the sending

� Keyboard device
| KeyPressed (c : Z) � A specific key is pressed
| KeyReleased (c : Z) � A specific key is released

· · ·
External events are unpredictable, as their causes are not controlled by the OS. We deter-

minize the behavior of each device by parametrizing it with the set of all possible list of
events �env that will be processed sequentially when the CPU performs I/O operations on
this device. The atomic transition function δenv takes an external event e as input and changes
the device states accordingly.

Note that events, even within a single device, can commute. For example, a serial port
serves two roles: to receive user input and to send program output. Accordingly, among the
events a serial device can receive are one for the reception of a new input string, and one
signaling that some past output operation has been completed. Consider a function that first
writes to a serial port, then waits until the write operation is completed by repeatedly reading
some relevant status register. During one of these reads the user might send new input to
the serial port. It would be reasonable for the device to observe the corresponding Recv
event during one of the register reads, but doing so would make verifying the write function
unnecessarily complex; not only would a function need to handle its own logic, but it would
also need to handle any other state transition the device could undergo, even if the result were
not observable in the current function.

To address this verification challenge, each device keeps a set of local logs � = {�1, . . . �k},
each of which is a strict prefix of �env .1 The serial device from the example above could
contain two local logs, one for input and one for output. Then when δenv receives an event
that does not correspond to the currently processed action, the event can simply be skipped.
When a later action observes a part of the device state which is affected by the event, that
action will handle the event. In the serial port example, we would defer handling the Recv
event until some process reads from the serial port.

Every raw device provides two I/O primitives: read n and write n v. The read
primitive first updates the device state based on the environmental device transition δenv with
the next relevant external event in �env , then returns a value from the new state, and finally
does the transition δCPU triggered by this read action. The write primitive first triggers
the transition δenv to update the device state based on the next relevant external event, then
performs the transition δCPU initiated by this write operation.

In the following, the function next(�env, �i) finds the first relevant event e in �env that has
not yet been processed with respect to the local log �i , and returns the event e plus a new
local log that is synchronized with �env up to the event e.

1 We have chosen the prefix form over the subset to allow us determinemore easilywhere the current execution
is at on the global event list.

123

156 H. Chen et al.

Now, we define the operational semantics of the set of device primitives formally. Let κ

be the function retrieving the value of device register addressed by n, then we have:

(e, �′
i) = next(�env, �i)

s′ = δenv(s, e) res = κ(n, s′) s′′ = δCPU(s′, input n)

read(n, s, �i , �
env) = (res, s′′, �′

i)
(read)

(e, �′
i) = next(�env, �i) s′ = δenv(s, e) s′′ = δCPU(s′, (output n v))

write(n, v, s, �i , �
env) = (s′′, �′

i)
(write)

Thanks to the local logs, this machine model eliminates much of the nondeterminism that
complicates reasoning about asynchronous systems. Nonetheless, it accurately models the
observable behaviors of real hardware.

Ideally, the global event list should contain a sequence of small atomic events which get
associated with the time when they get triggered. Then the framework should have some
notion of real-time clock that allows us to determine what exact set of events should be
consumed by the next transition based on the current time. This is out of scope of the current
paper. Instead, we allow our transition to consume a single “combined” event (as a list of
event). For example, the “Recv” event in the Definition 2 takes a list of characters. In addition,
a device may also consume an “empty” event which indicates there was no event triggered
in the real world since the last time we checked �env . We parameterize our proof in a way
that it hold for all possible combinations of such combined event list.

5 Driver Framework with Interrupts

The processor inherently runs in parallelwith devices. In Sect. 4,we have presented amachine
model representing this level of concurrency. On top of this machinemodel, we build certified
abstraction layers introducing more and more driver code. At each abstraction layer, our
model enforces systematic isolation among the different device objects and the rest of the
kernel, so that interaction with one device object does not affect the states of other device
objects nor the rest of the kernel. Thus, isolation properties are satisfied by construction. This
dramatically simplifies our reasoning by allowing us, at any given time, to focus on only the
device objects that are currently interacted with.

In this section,we define the device objectmore formally; thenwe showhow to incorporate
interrupts into our model while still following our isolation policy.

5.1 Device Objects

A device object is a logical abstraction containing a hardware device plus its related drivers.
Each device object consists of a set of abstract states, abstracting the private states of the device
(e.g., device registers, driver private memory); and a set of primitives, abstracting the module
interface. The abstract states are private to the device object, and can only be manipulated by
explicit calls to the device object’s primitives. This is achieved by establishing a contextual
refinement relation from the concrete memory and device function implementation to the
abstract state and primitives. As shown in Fig. 11, we follow the layer-based methodology
introduced in Sect. 2 and utilize the CompCert memory permissions [31] to hide the relevant
memory at overlay, which prevents the context code from accessing the object’s private

123

Toward Compositional Verification of Interruptible OS… 157

DevicereadMemory data Driver
Function

DevicestateMemory new primitive p
- +

Underlay

Overlay

Data Invariants

hide
+

state write

use

contextual

Fig. 11 Layer-based contextual refinement of the device object

data. These logical permissions do not correspond to any physical protection mechanism,
but are used to ensure that the abstract machine at overlay gets stuck if any code tries to
directly access this portion of data. The safety proof of our entire operating system (the
kernel never gets stuck) guarantees that such a situation never happens. The set of driver
functions at underlay, which manipulate the memory that will be abstracted away at overlay,
are themselves abstracted into the set of device primitives at the overlay (see Fig. 11).

For example, the console buffer is implemented as a circular buffer in our console driver.
The concrete implementations of the buffer operators (cb_read and cb_write) directly manip-
ulate the concrete circular buffer in memory. At a higher layer, in our abstract console device
object, the logical buffer is represented as a list, and the primitives are specified directly over
this abstract list, i.e., the cb_read simply returns the head element in the list, while cb_write
adds the new element to the end of the list, discarding a single head element if the size of the
list exceeds its limit. The contextual refinement relation between the two layers ensures that
any code running on top of the more abstract overlay exhibits behavior equivalent to running
on top of the underlay.

The primitives at the underlay can be passed through to the overlay, or hidden if they are no
longer needed. For example, once the primitive ahci_transfer is introduced at the overlay, the
underlay primitives ahci_read and ahci_write, used to implement ahci_transfer, are hidden.
This facilitates the invariant proofs as stronger invariants can be introduced at higher layers,
which could otherwise be violated by the lower-level primitives.

This kind of abstraction does not necessarily have to include any code, and sometimes
are achieved already at the raw device level. For example, some part of memory may be
designated to the hardware device to set up the direct memory access (DMA) to allow the
device directly read from or write to the main memory without going through the main CPU.
In this case, the part of memory designated for DMA can also be abstracted into the device’s
internal abstract states through the contextual refinement.

Combining Device Objects At a certain abstraction layer, some drivers, or more generally,
system services, may interact with multiple device objects, by, e.g., transferring data between
two devices, or broadcasting messages to multiple devices. At this stage, such devices are no
longer totally isolated, but are synchronized through hardware or software mechanisms. This
does not fit directly into our model providing systematic isolation among different device
objects and the rest of the kernel.

In the above scenario, we introduce at the overlay a single heterogeneous device object,
which combines the device objects from the underlay via the newly introduced functions. The
abstract machine at overlay thereby provides systematic isolation between the new abstract
device object and the rest of the kernel. The internal states and local logs of the combined
device object are the disjoint union of the relevant objects at underlay, while the functions that
manipulate multiple device objects at underlay become primitives of the new device object,

123

158 H. Chen et al.

LASM Machine Interrupt Controller D

d, m, ρ

iret intrCPU

ι,masks
intrIC eoi mask

irq, �, sD

intr_handler p1, p2, , pn

δenvDev
IC

Kernel/
User

Event arrivial

intrIC

intrCPU
eoi

intr_handler

iret

Enter critical

mask
pi

Exit critical

unmask

LASM Machine Interrupt Controller D

d, m, ρ irq, �, sD

p1, p2, , pn

δenvDev
IC

Kernel/
User

Event arrivial

intr_handler

intr_disable

pi

intr_enable intr_disable

intr_enable

Fig. 12 The hardware interrupt model (bottom), the abstract interrupt model (top), and the contextual refine-
ment between these two models

operating on a wider range of internal states, at overlay. As in all device objects, existing
primitives can be either passed through to this new device, or hidden.

5.2 Interrupts

We now show how to adapt the interrupts into our setting.We first present our interrupt model
at the hardware level, where the interrupt transitions are separately defined for the CPU, the
interrupt controllers (IC), and the devices. At this low level we lack the full behaviors of
interrupt handlers, so all the primitives verified at this machine level have the precondition
that interrupts are disabled or the corresponding interrupt lines are masked. A special flag
critical is defined in the abstract state of each device to make sure that every such low level
primitives have precondition of critical being true to enter the critical section for accessing
the data shared between the primitives and the interrupt handler of the device. On top of
this hardware abstraction layer, we incrementally introduce and verify interrupt handlers
for each device through abstraction layers. Above a certain abstraction layer, we have full
behaviors of the interrupt handlers, so we introduce a new abstraction layer with an abstract
interrupt model, where an interrupt only changes the state of the device object that triggered
it. This makes the interrupt completely transparent to the CPU, the IC, and other devices;
thus, guaranteeing our desired isolation properties.We prove the strong contextual refinement
property between these two abstraction layers to ensure that any context program running on
top of the overlay retains behavior equivalent to running atop the underlay. Starting from the
abstraction layer with the abstract interrupt model, we support verification of any code with
interrupts enabled.

The entities involved in any given interrupts are categorized into three parties (shown
in the bottom half of Fig. 12). If a device transition (e.g., from the device D in Fig. 12)
triggers an interrupt, it gets sent to the IC. The IC multiplexes several interrupt lines onto
the CPU (i.e., the LAsm machine in Fig. 12), with the ability to mask and unmask each

123

Toward Compositional Verification of Interruptible OS… 159

Fig. 13 Interrupt transition for the IC

interrupt line. At each transition, the IC selects the pending unmasked interrupt with the
highest priority and forwards it to the CPU. When the CPU receives an interrupt signal, it
first checks whether interrupts are enabled on that CPU, and, if so, saves the current context
and jumps to the corresponding entry in the interrupt descriptor table (IDT). If interrupts are
turned off, the interrupt signal is ignored. Thus, an interrupt involves atmost three consecutive
transitions: the device, the IC, and the CPU. These three transitions seem inter-related, and
isolation among the three entities is non-obvious. In our approach, we first develop a low
level hardware interrupt model that separately defines the set of interrupt related operations.
Then these three disconnected components are united at some higher level abstract machine
model after we have verified all the interrupt handlers.

5.2.1 Interrupt Transition for Devices

As described in Sect. 4, every raw device has its own transition function δenv specifying how
it reacts to the external events. When a particular transition triggers an interrupt (e.g., see the
event arrival and the green box δenv along the Dev line in the bottom half of Fig. 12), the
device marks an interrupt request bit (irq) in its internal state.

5.2.2 Interrupt Transition for IC

When the IC receives an interrupt signal (e.g., see the orange box intrIC along the IC line
in Fig. 12), it first checks whether the particular interrupt line is masked, and if so, it ignores
the interrupt; if not, then the IC marks the corresponding interrupt line. The transition rules
are defined in Fig. 13. Here, ND is the corresponding interrupt line number of the device D
which triggered the interrupt; it is fixed by the hardware connection, and is mapped to IRQ n
by the configuration of the IC; the ι field of sIC indicates which IRQ number is raised; we
use ∅ to indicate that there is no raised interrupt. After the CPU performs its initial interrupt
transition, the IC would receive the End Of Interrupt (EOI) signal (e.g., see the orange box
eoi along the IC line in Fig. 12), it clears the raised mark on the interrupt line. The IC
also has two primitives mask and unmask, which set the sic.masks[ND] of the interrupt line
number ND to Masked and Unmasked respectively.

5.2.3 Interrupt Transition for the CPU

As soon as the IC marks an interrupt line as raised, the CPU will perform its own interrupt
transition (e.g., see the purple box intrCPU along the Kernel/User line in Fig. 12). Let
ρ represent the register set, and d be the logical abstract states in the machine model, then
the interrupt transition of a CPU is shown in Fig. 14.

123

160 H. Chen et al.

Fig. 14 Interrupt transition for the CPU

We use EFLAGS.if to represent the interrupt flag bit in the EFLAGS register. If interrupts
are disabled inside the CPU, the intrCPU primitive is totally transparent. Otherwise, it first
changes the logical isr state totrue, saves the current context into the end of the trap frame
list (d ′[tfs]), and jumps to the corresponding IDT entry. Here isr indicates whether the
current machine execution is in the interrupt handling mode; the save_context function
models the hardware behavior of saving the current context into the abstract state (d ′[tfs]),
which corresponds to the concrete stack frames in the memory (abstracted in layers below).

The primitiveiret is the counterpart ofintrCPU, andmodels the behavior ofCPUwhen
the interrupt handler returns. It restores EFLAGS (including the old interrupt flag bit) from
the context and thus also re-enable interrupts. The restore_context function models
the hardware behavior of restoring the current context from the abstract state (d[tfs]).
Lemma 1 The function restore_context is a left inverse of the function save_
context.

tfs′ = save_context(d[tfs], ρ)

(d ′,m′, ρ′) = f (d[tfs ← tfs′],m, ρ)

d[tfs] = d ′[tfs] (tfs′′, ρ′′) = restore_context(d ′[tfs])
tfs = tfs′′ ∧ ρ = ρ′′

The CPU also has two primitives sti and cli, which set the EFLAGS.if bit to Enabled and
Disabled respectively.

5.2.4 Abstract Interrupt Model

The low-levelmachinemodel, we just described, is not suitable for reasoning about interrupts,
since each of the three entities has its own disconnected view. For instance, when the CPU
jumps to an IDT entry, it is unaware of the behavior of the corresponding interrupt handler,
and when the IC sends an interrupt signal to the CPU, it does not know whether the interrupt
will be handled or not. We would like to formally connect these three different views to
derive a nice machine model that is suitable for reasoning about the end-to-end behavior of
interrupts, i.e., an interrupt triggered by a device only modifies the particular device’s internal
states, and is transparent to the CPU, the IC, and other devices. To achieve this, we need a
model of the full behavior of the interrupt handler for each device.

Starting from the above hardware interrupt model, we incrementally extend a raw device
by wrapping it with driver code related to the interrupt handler, until we have fully verified
the interrupt handler for the device. Each device has exactly one interrupt handler, which, by
our isolation policy, only modifies the internal states of its particular device (Lemma 2), and
cannot itself be interrupted by the same device.

123

Toward Compositional Verification of Interruptible OS… 161

Fig. 15 Transition rules for intr_disable and intr_enable

Lemma 2 The interrupt handler (intr_handler) of device D can only observe and
modify the abstract states of D.

At this stage, we have the formal specification of the interrupt handler for a device. Next,
through contextual refinement, we encapsulate the behaviors of interrupts into two primitives
intr_enable and intr_disable at overlay for the device, which, as shown in the top half of
Fig. 12, render interrupts transparent to the CPU and the IC. The precise transition rules are
given in Fig. 15. Here, the next function, as defined at the end of Sect. 4, returns the next
relevant event in �env and a new local log synchronized with �env up to the returned event.
Before, the states on whether each device’s interrupt line is masked or not were part of the
IC devices. Following our isolation policy, in the new abstract interrupt model, we introduce
a new abstract state critical in the device itself to indicate whether the particular interrupt is
masked. When critical is true, it indicates that the interrupt line for the device is masked,
thus the execution can enter the critical sections to read and write the device internal states,
and vice versa. Recall that all the low level primitives (ones introduced before the interrupt
handler) of the device have the precondition of critical to be true to enter the critical section.

The intr_disableprimitivefirst synchronizes the device statewith the previously unhandled
interrupts then sets interrupt as disabled. It performs the synchronization by scanning the log
from the last place intr_enable was called, until we hit the first event that did not trigger any
interrupt. This ensures that subsequent observations on the device (in the abstract model) will
be consistentwith those performed under the hardware interruptmodel.Note that intr_disable
is defined recursively: it performs the environment transition δenv on each event until we hit
an event that does not trigger interrupts (i.e., theDisableNoIntr case); the stmp state should
be discarded since the device transition stops at the point where the last unhandled interrupt
is handled.

The intr_enable primitive discharges any raised interrupts, then sets interrupt as enabled.
This models the physical machine behavior, wherein interrupts (which can occur while
interrupts are disabled) get delayed until interrupts are re-enabled. This causes the OS to
immediately jump to the interrupt handler after re-enabling interrupts. This repeats until the

123

162 H. Chen et al.

Fig. 16 Interrupt transition for the whole system, in the case when an interrupt is triggered by the device D
on interrupt line number ND

device no longer attempts to trigger an interrupt within the interrupt handler, and normal
execution can continue.

With these two new primitives, the CPU transition in the abstract interrupt model can
be completely oblivious of the device transitions. For example, in the top half of Fig. 12,
the purple box along the Kernel/User line can ignore any event arrival from a device;
the CPU for the Kernel/User line would only force the device transitions when it wants
to make observations about a device (e.g., by calling intr_disable, then a high-level device
primitive pi , followed by intr_enable).

Contextual Refinement Between Two Interrupt Models To show the contextual refinement
between the two abstraction layers in Fig. 12, we prove that the behavior of an IRQ can
indeed be made transparent to the CPU and the IC.

Lemma 3 An IRQ is transparent to the CPU and the IC, i.e., the transitions triggered by the
IRQ only change the states of the corresponding device that triggered the interrupt.

Proof When the interrupt is disabled on the CPU or the particular interrupt line is masked in
the IC, the proof is obvious. When the interrupt is enabled, i.e., the corresponding interrupt
line is routed, not masked, and the EFLAGS.if register bit is set, the state transition of the
whole system is shown in Fig. 16. Here, the transition intr takes an abstract state d , the
memory m, the register set ρ, the state of interrupt controller sic, the state of the device sD , a
local log of the device �i , the event list �env , and returns appropriate new system states after
the interrupt transition is fully performed. In this case, we need to show that:

(d ′,m′, ρ′, s′
ic, s

′
D, �′

i) = intr(d,m, ρ, sic, sD, �i , �
env)

(s′
D, �′

i) = intr_handlerD(sD, �i , �
env) ∧ d ′ = d ∧ m′ = m ∧ ρ′ = ρ ∧ s′

ic = sic

This can be proven by composing the interrupt transition rules of the CPU and the IC with
Lemma 1.2

2 In our IC model, the middle states in the transition of interrupt delivery are discarded if the interrupt is
not successfully handled. In the case when the interrupt is disabled in the CPU but not masked in the IC, the
states of IC fallback to their original value. This model is still valid in the sense that we can delay this state
change of IC until the next time when the interrupt is raised again for that particular device and gets handled
successfully.

123

Toward Compositional Verification of Interruptible OS… 163

Fig. 17 Interrupt transition for the whole system when nested interrupts are allowed

δenvDev

IC

Kernel/
User

Event arrivial

intrIC

intrCPU

eoi

iret

Enter critical

mask
pi

Exit critical

unmask

δenvDev

IC

Kernel/
User

Event arrivial

intr_handler

intr_disable

pi

intr_enable

mask

sti cli

unmask

intr_handler

Fig. 18 The contextual refinement between interrupt models with nested interrupts

Corollary 1 IRQs do not affect the kernel, i.e., they do not change any of the kernel’s states3.

At this abstract interrupt model, every access to the device’s abstract states needs to
be guarded by a call to intr_disable, and this is systematically enforced through explicit
preconditions of all device primitives. Note that at this level, an interrupt handler of a device
only changes abstract states of that particular device. Thus, the correctness of deferring
handling all the interrupts to intr_disable and intr_enable naturally follows, as none of the
“non-critical” steps outside the pair can change the states of the device, nor reading any states
of the device.

5.2.5 Nested Interrupts

Note that the intrCPU transition in Fig. 14 disables the interrupt. Thus between intrCPU
and iret in Fig. 16, the interrupt is turned off, which means that no nested interrupts are
allowed. In many cases, supporting nested interrupts is critical so that some high priority
interrupt processing is not delayed by the low priority ones. The interrupt transition for the
whole system with nested interrupts is shown in Fig. 17. Here, before the interrupt handler
is called, we mask the interrupt line of the particular device (to make sure there is no nested
interrupt from the same device) and then turn on the interrupt on the CPU. Accordingly, after
the interrupt handling, we disable the CPU interrupt, then unmask the particular interrupt
line before the iret transition is performed. We have proved that this model also refines the
same abstract interrupt model (see Fig. 18).

6 Case Study

In this section, we present case studies of our verified drivers. Fig. 19 shows the overall struc-
ture of our verified serial console, while the left side reflects how the implementation of driver

3 Remember, we consider device drivers a part of the device, not the kernel.

123

164 H. Chen et al.

CPU

Serial Operation
Layer Group

Serial PortLAPIC I/O APIC Rx Tx

Interrupt
Management

intrCPU

Serial Driver

serial_intr_handler

Console

buf_write

cons_bu er

buf_read

serial_putc

intr_disable intr_enable

IDT

sys_getcsys_puts

Memory

Process n
stdio

Process 1 Process 2

eoi

Console Bu er
Layer Group

Serial Interrupt

Layer Group

Interrupt
Management
Layer Group

System Call / Console
 Layer Group

DLAPIC

DIOAPIC

DHandlerIntro

TTrap

DAbsHandler

Fig. 19 The data-flow of serial console messages and corresponding layer decomposition

modules organized as well as the data/control flow. The right side gives an overview of how
thosemodules are verified by construction of certified layers.We have used a single controller
in Sect. 5 to make the presentation concise. However, mCertiKOS utilizes two physical inter-
rupt controller devices: the I/O Advanced Programmable Interrupt Controller (I/O APIC)
and the Local Advanced Programmable Interrupt Controller (Local APIC). Together with
the serial device, we present the formal models of these three hardware devices throughout
this section.

As shown in Fig. 19, at the system call level, users can invoke relevant system calls
(sys_getc, sys_puts, etc.) to read from or write to the serial port. The red lines in the figure
represents the flow of receiving data from serial port. The implementation is interrupt driven.
Thus, when the serial receiving buffer (Rx) gets new data, the device triggers an interrupt
that goes through the Local APIC and I/O APIC devices and the interrupt handler of serial
device stores the data into the console circular buffer (cons_buffer). Later, when a user
process makes the system call sys_getc, the system call handler simply pops and returns the
head of cons_buffer. On the transmitting side, writing data to the serial port (blue lines
in the figure) is completely synchronous. When the system call sys_puts is invoked, the
system call handler calls the transmission function serial_putc of serial driver to write
data to the transmission buffer (Tx) of serial device. The critical sections are protected by
the functions serial_intr_disable and serial_intr_enable which masks and
unmasks the interrupt signal of the serial device.

The verification of the console circular buffer (cons_buffer) is already presented in
Sect. 2. In this section, we also present the formal model and verification of their drivers for
the serial port, I/O APIC, and Local APIC.

6.1 Serial Port

Figure 20 illustrates a typical serial port with a bounded internal buffer of size 12. It consists of
a RS-232 interface and a Universal Asynchronous Receiver/Transmitter (UART) controller.
RS-232 delivers electrical signals between the UART controller and the connected cable. The
UART controller is responsible for demodulating received data into digital bits and storing
them into the internal receiving (Rx) buffer, and also modulating sent data from digital bits
and inserting them into the transmission (Tx) buffer.

The hardware UART controller has many features, and the mCertiKOS serial driver only
utilizes those parts needed for sending and receiving character strings. When modeling the

123

Toward Compositional Verification of Interruptible OS… 165

6
1

2

3

4

5

7

8

9

UART Controller
irq

RxBuf

TxBuf Databits

FIFO

Parity

Baudrate

Stopbits
Base

DLAB

RxInt
Enable CPU

Internal Buses

Fig. 20 The hardware connections of a serial port

serial port, we take the minimalistic approach of only modeling the set of features utilized
by the existing drivers. The internal state of the serial port device is defined as:

Definition 3 Abstract state of serial device.

s = (RxBuf : list char, � Receiving buffer
TxBuf : list char, � Transmission buffer
irq : bool, � Interrupt pending
Connected : bool, � Power
Base : Z, � Base address
� Line and modem configurations:
RxIntEnable : bool, DLAB : bool, Baudrate : Z,

Databits : Z, Stopbits : Z, Parity : ParityType,

FIFO : Z, Modem : Z).

There are three external events for the serial device. The serial event Recv s indicates
that a string has been received. The SendingCompAck event implies the device received
the acknowledgment that the characters in the transmission buffer have been sent out suc-
cessfully, while the NoSendingCompAck events indicates that the sending of characters in
the transmission buffer is not yet complete.

The serial device is configured to trigger an interrupt when it receives data (a nonempty
string), and not to trigger any interrupt when the transmission buffer becomes empty, i.e.,
when the characters in the transmission buffer are sent out successfully. Thus, before any data
is written to the serial port, we have to poll the transmission status until it becomes empty.
We have chosen this setup because it covers both interrupt-triggering and polling events.

Note that, the states s.RxBuf and s.irq are disjoint from s.TxBuf under the environment
transitions in that the former is for receiving data and the latter is for sending data only. This
allows us to use two separate local logs in our device model, �tx (for transmission) and �rx
(for receiving), to handle these possibly commutative events.

Next, in Fig. 21, we define the transition functions δenv and δCPU, where δenv needs to
handle all the possible environmental events against the current state, and δCPU updates the
current state based on the input and output addresses and values. Note that function last is
used to model the action of dropping some elements in the front of the buffer when the length
of the new buffer exceeds the hardware buffer size (BufSize). The baud_low in Fig. 21
is an example configuration of the control registers. The value of Baudrate is not used to
simulate the timing of the signal, but is checked against the real hardware settings in certain
transitions, such as δCPU for read and write, in order to verify that the driver is free of
mis-configuration bugs.

By instantiating the device state and transition functions from our general device model in
Sect. 4, we create a concrete model of the serial port with the read and write primitives.

123

166 H. Chen et al.

Fig. 21 The environment and CPU transition functions

Fig. 22 The implementation of serial_putc and serial_getc in C

Next, we show how the drivers are specified and verified on top of this model. Figure 22
shows code fragments of the function serial_putc and serial_getc. There, the
serial_read and serial_write are the two primitives in the serial hardware model,
while get_serial_exist is a new primitive (already verified in some underlay) indi-
cating whether the serial device is already initialized. The if statement (line 3) prevents any
misuse of serial_putc() before initialization.

123

Toward Compositional Verification of Interruptible OS… 167

Fig. 23 The implementation of
serial_puts in C

For serial_putc, if the s.TxBuf buffer is initially empty, or the device receives a
SendingCompAck event during the loop (line 4–6), the program sends the character c to
the serial port (line 8). The function serial_putc is specified as follows:

s.TxBuf = ∅ s.get_serial_exist = true
s′ = s[TxBuf ← [c]] (e, �′

tx) = next(�env, �tx) (e′, �′′
tx) = next(�env, �′

tx)

serial_putc(s, c, �tx, �
env) = (s′, �′′

tx)

s.TxBuf �= ∅ s.get_serial_exist = true (e, �′
tx) = next(�env, �tx)

s′ = δenv(s, e) (s′′, �′′
tx) = serial_putc(s′, c, �′

tx, �
env)

serial_putc(s, c, �tx, �
env) = (s′′, �′′

tx)

The first rule above shows the case when the transmission buffer is originally empty.
Here, lsr immediately becomes 1 in the first loop iteration, and the character is written to
the transmission buffer in the device right away. Note that the function next is called twice
because the implementation of serial_putc has two serial I/O operations for the base case:
one to check whether the transmission buffer is empty, and the other to put the character into
the transmission buffer.

The second rule above shows the case when the initial transmission buffer is not empty.
Here, the device performs transition based on the received event e, and repeats the same
process until it finally receives the SendingCompAck event. Then, by definition of δenv in
Fig. 21, the transmission buffer becomes empty and the next recursive call falls into the first
case of the specification.

As for serial_getc, a check of status register will be first performed to clear the irq
state, and confirm that there are pending receiving messages (line 16). If the receiving buffer
is not empty, the head of the buffer is fetched (line 17) and inserted into the console buffer.

In Fig. 23, we show the implementation of the driver function serial_puts that writes
a string into the serial device by repeatedly calling serial_putc for each character in the
input string. Each call to serial_putc is wrapped with calls to serial_intr_disable and
serial_intr_enable (both derived from those in Fig. 15) to protect the critical section.

For each driver function, we prove that the concrete implementation satisfies its specifi-
cation. Our proof is termination-sensitive; we prove total correctness of each function. In the
case of serial_putc, themaximum iteration counter (12,800) is used solely to enforce ter-
mination. We maintain an invariant on �env that the serial port receives a SendingCompAck
event within 12,800 times the delay() function is called. This assumption is reasonable
because a sending operation that does not complete within this time frame implies an under-
lying hardware failure.

123

168 H. Chen et al.

Processor Core

Local
APIC

ISA
Device

ISA Bus

Platform
Controller

Hub

I/O APIC

Redirect table

Baseι id maxIntr

PCI
Device

PCI
Device

PCI Bus APIC / System Bus

irqs

MIRQ

Serial
Port

Fig. 24 The hardware connections and registers of APIC

Fig. 25 Internal states of I/O
APIC

Fig. 26 I/O APIC transition rules

6.2 I/O APIC

An I/O APIC device collects interrupts from externally connected devices and distributes
them to the corresponding Local APIC. It can be programmed to mask one or more of these
interrupt lines, if the OS does not wish to receive interrupts from some device(s).

Figure 24 illustrates the registers and connections of an I/OAPICdevice,which collects the
IRQs from devices and route them to the Local APIC controller on CPU. The “redirect table”
controls themapping between interrupt lines and the IRQnumber. Following ourminimalistic
approach, we omit logical destination, remote-IRR configuration, and other features that are
not used in our kernel. The internal state of the I/O APIC is defined in Fig. 25, where ι

represents the interrupt request currently being processed and its corresponding destination
LAPIC ID.

As an interrupt controller, the I/O APIC is treated as a special device. It does not observe
any event from the external environment, and thus has neither a local log nor an environmental
transition δenv, but instead, it receives interrupt requests from the devices and EOI signals
from the Local APIC. We have introduced a special transition function δintr to specify these
interrupt-related behaviors. Accordingly, δintr takes two kinds of events: IRQ n indicates
that an IRQ with number n is triggered by a device; and EOI states that the latest interrupt
request has been handled by the OS. The interesting parts of the transition rules for δintr are
shown in Fig. 26.

123

Toward Compositional Verification of Interruptible OS… 169

Fig. 27 The implementation of ioapic_init in C

In addition to δintr , the I/O APIC also contains the CPU transition function δCPU used to
specify the read/write primitives of I/O APIC, discussed in Sect. 4.

In order to coordinate the IRQs assigned by the kernel with the external interrupt vector,
a kernel usually utilizes the Global System Interrupt (GSI) number. Thus, the IC is first
extended into a device object with this extra data as part of its internal state. Then this IC
object is further extended into more abstract objects by introducing additional driver layers.

At the top level, the I/O APIC device object provides four primitives, two of them are
used to setup the IRQmappings in the I/O APIC. Specifically, ioapic_init initializes the
device when the kernel boots, and ioapic_enable links a given interrupt line to a Local
APIC when a new device is plugged in or some device changes its working mode. Another
two, namelyioapic_mask andioapic_unmask, are used to enable and disable a certain
interrupt line.

Function ioapic_init in Fig. 27 shows the initialization of the I/O APIC. It first reads
the size of the interrupt redirection table (line 2), and for each entry, marks the corresponding
interrupt to be edge-triggered, active high, and masked (i.e. not routed to any Local APIC).
The behavior of this function can be described using the following rule:

l = s.maxIntr s′ = s[masks[1..l] ← Masked]
s′′ = s′[irqs[1..l] ← gsi..(gsi + l)][dest[1..l] ← 0][ι ← (None, None)]

ioapic_init(s) = s′′

Function ioapic_mask in Fig. 27 shows the code for masking interrupt line n. It first reads
the entry ‘n − gsi’ in the interrupt redirection table (line 13), sets the mask bit (line 14), and
then writes it back to the redirection table. The behavior can be described using the following
rule:

gsi ≤ n ≤ gsi + s.maxIntr s′ = s[masks[n − gsi] ← Masked]
ioapic_mask(s, n) = s′

6.3 Local APIC

Each processor has a Local APIC device which manages and delivers the interrupt requests
dedicated to this core. It serves as a bridge between I/O APIC and the processor core and
is also programmable which can be used to specify the manner for each type of interrupt.
As shown in Fig. 28, the Local APIC in our kernel is mainly served to deliver the external
interrupt and generate the End-of-Interrupt (EOI) signals. An EOI signal indicates current
interrupt is completely handled so that the I/O APIC can issue the next interrupt.

123

170 H. Chen et al.

Processor

Local APIC

APIC / System Bus

I/O APIC ESR

Spurious

LDR

Error

ISR

ESR_CLR

TPR
Local
Vector
Table

Processor
Core

INTR

INTA

EXTINT

NMI/SMI

Enable

Fig. 28 The hardware connections of a Local APIC

Fig. 29 Internal states of Local APIC

Fig. 30 Local APIC transition rules

The internal state of the Local APIC is defined in Fig. 29, where ISR represents the IRQ
which is being handled. It is set to None if the CPU is available for incoming interrupts.
Following the minimalistic approach, we omit the features that are not used in our kernel,
such as performance monitoring counters and prioritizer. Other fields in the Local APIC
device object have structure and meaning as in the hardware specification manual.

Figure 30 presents some transition rules in Local APIC. The first rule shows a successful
delivery of external IRQ from I/O APIC if there is no interrupt in service. The second rule
shows the transition of EOI in the Local APIC side, where 44 is the offset to access EOI in
the memory mapped registers. Note that the models of I/O APIC and Local APIC can be
merged into a heterogeneous interrupt controller with the simplified transition rules that are
presented in Sect. 5.

7 Coq Implementation of Certified Abstraction Layers

In this section, we present in detail the actual implementation of the certified abstraction
layers. To make it more easy to reproduce our work, various examples in this sections are

123

Toward Compositional Verification of Interruptible OS… 171

Table 1 Common Coq terms, keywords and definitions

Statement Description

x: T The type of x is T

A -> B Arrow type. Non-dependent product

option _ Option type, either ‘Some v’ or ‘None’

hd :: tl List construction. Create a new list with an element ‘hd’ and an
old list ‘tl’

l1 ++ l2 List concatenation. Create a new list with l1 followed by l2

s {f: v} Field update. Replace the value of field ‘f’ in ‘s’ with ‘v’

Definition x: X := t. Constant definition

Function x (a1:T1)(a2:T2) Function definition with arguments a1, a2, · · · , return value rv
and

... : (rv: T) := t . function body t

Fixpoint x (a1:T1)(a2:T2) As for function definition but t can make recursive calls to x.

... : (rv: T) := t .

match t with p1 => t1 | ... end Pattern matching, select t1 if t matches with p1
if b then t else u Binary selection, b can be either true or false

let x := t in u Local binding

presented directly as they are implemented in the Coq proof assistant. Various Coq construc-
tions commonly used throughout this section is presented in Table 1. We also explain them
as they show up in the examples.

Starting from a bottom-most layer interface abstracting the CPU, devicemodels and exter-
nal interfaces, we gradually introduce driver code modules to develop certified abstraction
layers by introducing higher level layer interfaces abstracting the concrete driver behaviors,
and showing contextual refinement between each overlay interface and the code module
running on the underlay interface, for each of two adjacent layer interfaces. More formally,
for each layer interface Llow , we introduce a device driver module M , and a new overlay
interface Lhigh abstracting the behaviors ofM , and show that �M�Llow , is a contextual refine-
ment of the overlay interface Lhigh . By repeating this strategy, we have developed a stack of
layer interfaces, with the top-most layer interface containing the full abstract behaviors of
the verified device drivers. Next, we introduce these layer interfaces and the verified driver
modules one by one. The implementations of various concepts in Coq is shown in Fig. 31,
with the concrete examples used in the rest of sections listed on the right hand side. We
explain the concepts and implementations in more detail as we get to the corresponding layer
implementation.

7.1 The Lowest Level Layer Interface: MBoot

The interface MBoot is the bottom-most layer interface used to model the behaviors of the
CPU and devices. In addition to the abstract states and primitives in the original verified
mCertiKOS, we have extended MBoot with the new abstract states and read/write primitives
for the serial port, I/O APIC, and Local APIC devices as described in Sect. 6.

This layer interface introduces a set of layer invariants to enforce the validity of various
hardware states, and all the read/write primitives of the devices are required to preserve the
invariants. In the rest of the invariant definitions, nth is a list operation defined in Coq, which

123

172 H. Chen et al.

Fig. 31 The formal model and Coq presentation of device abstract states and layer interfaces

takes a natural number n, a list l, a default value v, and returns the n’th value in the list l.
In the case when the index is invalid, it returns the default value v. nth_error is a similar
operation but returns either a value or none in the case of invalid index, instead of returning
the default value. Zlength is another list operation that returns the length of provided list as
an integer.

Invariant 1 (valid serial port) The base address of the I/O port to access COM1 is always
0x3F8 (1016 in decimal) and cannot be changed by any primitive.

serial.Base = 1016

The primitives serial_read and serial_write use serial.Base to map the I/O address to the
registers. Requiring this value to be constant ensures that there is no misuse of I/O addresses.

Invariant 2 (valid I/O APIC maxIntr) The number of entries in the redirection table of an
I/O APIC is less than 239.

0 ≤ ioapic.maxIntr < 239

The length of the redirection table in an I/O APIC varies depending on the hardware imple-
mentation. The actual value for a certain I/OAPIC is static and stored in the I/OAPICVersion
Register[16:23], which corresponds to ioapic.maxIntr in our device model. This invariant
guarantees that the actual value of ioapic.maxIntr is within a range.

Invariant 3 (valid I/O APIC masks length) The length of the mask array in an I/O APIC
should be exactly maxIntr + 1.

Zlength(ioapic.masks) = ioapic.maxIntr + 1

For the purpose of saving space, the hardware implementation of an I/O APIC makes each
entry in the redirection table to be a 64-bit register containing all the configuration items of a
certain interrupt line, such as rtbl[i][0:7] for interrupt-vector, rtbl[i][8:10] for delivery mode,
etc. In our abstract machine model, we extract each configuration item from all the entries
and combine them into a list. This invariant requires the number of masks to be always equal
to maxIntr + 1.

123

Toward Compositional Verification of Interruptible OS… 173

Invariant 4 (valid I/O APIC irq length) The length of the interrupt-vector in an I/O APIC
should be exactly maxIntr + 1.

Zlength(ioapic.irqs) = ioapic.maxIntr + 1

Invariant 5 (valid I/O APIC irq) The value of each interrupt-vector in an I/O APIC ranges
from 0x10 to 0xFE.

∀n, 0 ≤ n ≤ ioapic.max Intr → 16 ≤ nth n (ioapic.irqs) 0 ≤ 254

The value in the interrupt-vector is the IRQ number raised on the connected CPU. This value
can be configured during the runtime, and should be within the specified range.

Invariant 6 (valid interrupt states) If a device is not in the interrupt service mode (the
execution is not in the interrupt handler), the interrupt controller observed by the device
should not be in the interrupt service mode either. The state in_intr indicates whether the
system is currently handling an interrupt. Note that it will be abstracted into corresponding
logical states in the extended device objects during the interrupt refinement process to enforce
our isolation policy.

in_intr = false → (lapic.ISR = None ∧ ioapic.ι = None)

7.2 Layer Interface DConsoleBufferIntro

On top of the underlay interface MBoot, we introduce and verify the circular console buffer
(for the serial driver) using the strategy illustrated in Sect. 2.6. The layer interface DConsole-
BufferIntro corresponds to the intermediate layer interface Lmid in Sect. 2.6. At this layer,
we also introduce the following invariants on the intermediate console buffer (see Fig. 5) at
this layer interface. Recall that, by the design of a layer interface, the invariants are required
to hold at every moment of the system execution. Thus, these invariants can be used as facts
in any part of the verification. Invariants are stronger notions than the preconditions in the
specifications, in the sense that the preconditions need to be validated during the primitive
call while the invariants are guaranteed to hold before and after calling the primitive.

Invariant 7 (valid console buffer positions)

0 ≤ d.rpos < CB_SIZE ∧ 0 ≤ d.wpos < CB_SIZE

As explained in Sect. 2.6, the contextual refinement fromMBoot to DConsoleBufferIntro
is achieved relatively easily as the abstraction in the current layer interface is extremely
similar to the actual implementation. The concrete methodology is illustrated in Sect. 7.4,
with a simpler example.

7.3 Layer Interface DAbsConsoleBufferIntro

This layer interface provides the higher level of abstraction of the console buffer as a Coq
list and corresponds to the layer interface Lhigh in Sect. 2.6. Detailed definitions and the
refinement proofs are omitted since they are already presented in Sect. 2.6. This layer interface
introduces a new layer invariant on the abstract console buffer.

Invariant 8 (valid console buffer length)

0 ≤ Zlength(serial.cons_bu f) ≤ CB_SIZE

123

174 H. Chen et al.

Fig. 32 The specification and implementation of C function set_serial_exist

Fig. 33 The low level specification of C function set_serial_exist

7.4 Layer Interface DSerialIntro

The next three layer interfaces are designated to the verification of serial driver. On top of
the underlay interface DAbsConsoleBufferIntro, we introduce a global variable serial_exist
of type bool to indicate whether the serial device is initialized or not, and provide a getter
and setter function called get_serial_exist, set_serial_exist, respectively. Accordingly, in
DSerialIntro, we introduce a new abstract state serial_exist : bool and two new getter and
setter primitives under the same names.

As an example, the source code (in C) and the specification (in Coq) of set_serial_exist()
are shown in Fig. 32. Here, Abs is the type of abstract state in this layer interface, v is the
argument of the primitive, and the boolean function zlt_le a b c returns true if and only if
a < b ≤ c, as its name suggests. Furthermore, d{attr : val} is our own notation defined
in the Coq, which indicates a new abstract states derived from the original abstract states d ,
where the attribute attr is replaced by the new value val, but otherwise the same as d . Note
that the return type of the specification function is an option type, and the specification gets
stuck (returns None) when the argument is not within the bound of 32-bit integer. This is the
requirement that any future caller of this primitive needs to satisfy.

The function set_serial_exist runs on a machine with the underlay interface, and our
goal is to prove the contextual refinement between the code running on the underlay and the
abstract overlay interface DSerialIntro. The contextual refinement is proven in three steps.

First, we write a separate low level specification for the C code set_serial_exist with the
low level memory load and store operations on the underlay interface, as shown in Fig. 33.
Here, “Inductive” is the Coq keyword used to define a logical predicate inductively, with
the vertical bar “|” used to separate different cases that can cause the relation to hold. Then
the inductively defined predicate set_serial_exist_low_level_spec ge args m rval m′
indicates that under the global environment (ge) mapping global variable identifiers to their

123

Toward Compositional Verification of Interruptible OS… 175

locations in the (CompCert) memory, given the argument list args, the function changes the
memory fromm tom′ with the return value rval (Vundef if no return value).Mem.store is an
operation in the CompCert memory model; it takes the memory writing type, initial memory
to write to, the memory block, block offset, and a value, and returns the new memory after
writing the value on the location represented by the memory block and offset on the initial
memory. As shown in the figure, the specification has two cases as in the source code, and in
fact, it is very close to the source code. Thus, it is relatively easy to show that the source code
satisfies the low level specification shown in Fig. 33 and the proof can be achieved nearly
automatically by our proof tactics.

Second,we prove a simulation from the low level specification at underlay shown in Fig. 33
and the overlay specification shown in Fig. 32, with a refinement relation that trivially maps
the value of the global variable in the memory at underlay to the new abstract state at overlay.
This part of proof, whichwe call data abstraction, can vary depending on the kind of concrete
data structures in memory and the abstracted states in the overlay interface. In the case of
set_serial_exist, the proof is very simple given that it is just a single variable, but in other
cases, the proof could be quite complex and we may need to further split the proof into
multiple layers as shown in the example of the circular console buffer. The benefit is that
after the data abstraction, the modules and layer interfaces built on top of that could benefit
greatly from the simplicity in the abstracted form.

Last, we apply the correctness theorem of our CompCertX compiler to compile the C
source code and its simulation proof from the first step into appropriate form in LAsm and
link it with the simulation proof obtained in the second step, to derive the desired final
contextual refinement theorem.

7.5 Layer Interface DSerial

On top of the underlay layer interfaceDSerialIntro,we introduce a new layer interfaceDSerial
to abstract three driver functions for the serial device. They are serial_init that initializes the
serial device, serial_getc and serial_putc that reads a character from and writes a character
to the serial device, respectively. The implementation of serial_getc and serial_putc were
shown in Fig. 22, and the C source code for serial_init is shown in Fig. 34.

A new layer invariant is introduced in DSerial to protect the configuration data.

Invariant 9 (valid serial state) After initialization, the control registers in the serial device
should be properly configured.

serial.serial_exist = true →
serial.Baudrate = 115200 ∧ serial.Databits = 8 ∧
serial.Stopbits = 1 ∧ serial.Parity = NoParity ∧
serial.RxIntEnable = true ∧ serial.FIFO = 1 ∧
serial.Modem = DTR + RTS + OUT2

Both serial_getc and serial_init do not contain any loops and are relatively easy to verify.
Note that serial_init detects the existence of serial device, sets the proper configuration based
on our hardware connection parameters, and uses set_serial_exist to set the abstract state
serial_exist when the initialization succeeds.

In the rest of this subsection, we present details on the function serial_putc. As shown
in Fig. 22, the implementation of serial_putc involves a loop to poll the status of TxBuf
(through the serial_read primitive of serial device) until it is empty or reaches the maximum
waiting steps. We assume the correctness of hardware. Thus, we have a separate assumption

123

176 H. Chen et al.

Fig. 34 The implementation of serial_init in C

on the event log stating the TxBuf always become empty before the maximum iteration is
reached.

The specification of the abstract serial_putc primitive at the new DSerial layer interface
puts the sending character into the serial device’s TxBuf and updates the local log accordingly,
as shown in Fig. 35. It first performs some validation checks, including whether the current
execution status is in the critical mode, whether the serial device is initialized (line 4) and
whether the device is properly configured (line 7). Then, it cases on whether the transmission
buffer (TxBuf) is empty (line 8). Here, we use the notation d.attr to indicate the attribute
value with name attr in the abstract state d , and Z .eq_dec is the boolean function for integer
equality.

Empty buffer indicates that the device is ready to sendmore characters, and in this case, the
primitivewrites the proper contents to the abstract hardware buffer. Our serial communication
protocol requires a new line (‘\n’) to be a sequence of LF and CR, to be compatible with
most serial applications. The ‘if’ expression at line 10 and 14 serves for this purpose. The
local log �t x only records the transmitting events, which separates from the receiving log �r x .
Since we only consumed a single SendingCompAck event in this case, we simply fetch
the next transmitting event from the environment log (�env) and update the transmitting log.
Recall that function next is defined in the Sect. 4. It takes a local log, finds the first relevant
event with respect to this log and returns a pair of event and the updated log.

When the buffer is non-empty, the device is still in the middle of transmitting messages
and the execution needs to wait until the transmission is complete. In the implementation,
there is a loop to poll the status of the transmitter, but the specification simply writes the
TxBuf with the sending message and updates the log �t x to find the first SendingCompAck

123

Toward Compositional Verification of Interruptible OS… 177

Fig. 35 The specification of serial_putc in Coq

Fig. 36 The specification of next_sendcomplete in Coq

event in �env . This is achieved through the next_sendcomplete fix-point function shown in
Fig. 36. Note that nextk � k is a function to call next k times and only returns the updated
log.

Next, we need to prove the contextual refinement between the specification and the C
code. To do that, we need to design a loop invariant that allows us to prove that once the
loop terminates, the transmission buffer (TxBuf) is empty so that sending new messages to
the serial will not overwrite the previous messages. Recall that because of our assumption
on the correctness of the hardware, there is always an index t between 0 and 12800, at which
iteration the loop terminates and serial device gets ready for the next write. Thus, we have
designed the following loop invariant:

(0 ≤ i ≤ t ∧ seriali = serial0[�t x ← nextk (serial0.�t x , i)] ∧ lsr = 0) ∨
(i = t + 1 ∧ seriali = serial0[�t x ← nextk (serial0.�t x , t + 1)][TxBuf ← nil] ∧
lsr = 1).

Here, seriali indicates the value of abstract state serial after the i th iteration of the loop,
where serial0 indicates the initial state before entering the loop. With this loop invariant, the
proof can be achieved with the help from our automation tactic libraries.

123

178 H. Chen et al.

Fig. 37 The implementation of serial_intr_handler and cons_init in C

Fig. 38 The specification of serial_intr_handler in Coq

7.6 Layer Interface DConsole

The layer interface DConsole introduces two new primitives. One is cons_init which
initializes the serial and the console buffer. The other is the interrupt handler of the serial
device serial_intr_handler. Their C implementations are shown in Fig. 37.

Once an interrupt signal is produced by the serial device indicatingwe have newly received
characters in the receiving buffer (RxBuf), the interrupt handler repeatedly reads the charac-
ters one by one from RxBuf and writes them to the console buffer until either all characters
are received or the console buffer is full of the newly received messages. It is achieved by
repeatedly calling the serial_getc primitive (introduced at the DSerial) within a loop.

The specification of the serial_intr_handler primitive is shown in Fig. 38. In contrast to
the C implementation in Fig. 37, the specification in Fig. 38 does not involve any fix points,
but simply concatenates the whole receiving buffer (RxBuf) into the abstract console buffer
list, skipping extra characters in the head of the list if necessary. This discrepancy between the
implementation and the clean loop-free specification introduces extra complexity in proving
the simulation between those two.

To prove the simulation between them, we first introduce a specification for the loop and
prove the loop body refines this specification. This is used later to prove the whole function
body containing the loop. The specification for the loop body is a predicate on the abstract
state serial and the local environment for storing the temporary variables in Clight, before
(serial, le) and after (serial ′, le′) the loop:

123

Toward Compositional Verification of Interruptible OS… 179

Fig. 39 The specification of cons_buf_mid in Coq

serial.serial_exist = true →
serial.RxBuf = str →
Forall isChar str →
serial.(cons_buf) = cons_buf_mid str serial.(cons_buf) 0 →
le[hasMore] = true →
le[t] = 1 →
(serial ′.lr x = nextk (serial.lr x, Zlength(tl str) ∗ 2 + 1)∧
serial ′.cons_buf = cons_buf_mid str serial.cons_buf (Zlength str)),

where, tl is the standard list operation that retrieves the tail of a list, Forall isChar is an
inductive predicate to describe the property that all the characters in str is a valid character
(fun x → 0 ≤ x ≤ 255), and cons_buf_mid str cb n is a function shown in Fig. 39. This
function calculates the console buffer when the first n + 1 characters in str is moved to cb.

The loop invariant is constructed as:

(0 ≤ i ≤ Zlength(tl str) ∧ le[hasMore] = 1 ∧
seriali .lr x = nextk (serial.lr x, i × 2) ∧ seriali .RxBuf = skipn (i + 1) str ∧
seriali .cons_buf = cons_buf_mid str serial.cons_buf i)

∨
(i = Zlength str ∧ le[hasMore] = 0 ∧
seriali .lr x = nextk (serial.lr x, (Zlength str) × 2 + 1) ∧ seriali .RxBuf = nil ∧
seriali .cons_buf = cons_buf_mid str seriali .cons_buf (Zlength str))

This loop invariant has two parts: the first part shows the states during the loop; and the
second part shows the states when the loop terminates.

7.7 Layer Interface DIOApic

The layer interfaceDIOApic is built on top of I/OAPICmachine interface. Four primitives are
introduced in DIOApic: ioapic_init, ioapic_enable, ioapic_mask, and ioapic_unmask.

The function ioapic_init initializes the I/OAPIC device. Figure 27 shows theC implemen-
tation of this primitive. It includes a loop of calling ioapic_write() to set the interrupt
vectors and masks. The specification of this primitive is shown in Fig. 40, which contains a
fix-point to set related states. In the figure, the abstract state init indicates whether the device
has been properly initialized. Every primitive other than the initialization primitive has the
precondition on the init being true.

To prove the simulation between these two loops, we first prove the refinement between
the loop body and the abstract disable_irq. Then we prove the simulation from the loop
to the fix-point ioapic_init_aux with following loop invariant:

123

180 H. Chen et al.

Fig. 40 The specification of ioapic_init in Coq

0 ≤ i ≤ ioapic0.maxIntr ∧ ioapici = ioapic_init_aux ioapic0 (Z .to_nat i)

From this loop invariant,we can show thatwhen the loop completes, thefinal state is consistent
with the one in the specification.

We also introduce a new invariant in this layer interface.

Invariant 10 (valid I/O APIC state) After initialization, the value of interrupt vector cor-
responding to interrupt line n should be equal to n + IRQ0 and this interrupt line should be
either masked or unmasked.

ini t = true →
∀n ∈ N, v ∈ Z, nth_error (ioapic.irqs) n = value v →
(v = Z .of _nat n + IRQ0 ∧ ∃ b ∈ B, nth_error(ioapic.masks) n = value b)

In the mCertiKOS kernel, we allocate sequential entries from the interrupt descriptor table
(IDT) for the IRQs. The range is from IRQ0 to IRQ0 + ioapic.maxIntr. IRQ0 is the first
IRQ number which is also known as the global system interrupt (GSI). The initialization
sets the correct values of interrupt vectors which match the IDT entries so that the correct
interrupt handler can be called when an IRQ occurs. The mapping from interrupt lines to IRQ
numbers is static in mCertiKOS, so this invariant protects this mapping on the I/O APIC.

Primitive ioapic_enable is used to set the routing configuration for an interrupt line in
order to make it ready for serving the incoming interrupts. The implementation and specifi-
cation of ioapic_enable are shown in Fig. 41. Because mCertiKOS only uses one mode of
the interrupt delivery, we only check the validity of given parameters of lapicid , tr igger ,
and polari t y, but do not model the functionality of these parameters in our device. The
ioapic_write primitive also requires these parameters to contain exactly the same values.

The primitives ioapic_mask and ioapic_unmask are used to mask and unmask a partic-
ular interrupt line designated for a device. It is not allowed to designate a single interrupt line
for multiple devices. Thus, the masking status of each interrupt line could be later abstracted
into the internal state of corresponding abstract device object to enforce our isolation policy.
The verification of ioapic_mask and ioapic_unmask is similar to that of ioapic_enable.

The verification of the four functions introduced in DIOApic is reasonably simple, and
can be automated using our tactics.

123

Toward Compositional Verification of Interruptible OS… 181

Fig. 41 The implementation (in C) and specification (in Coq) of ioapic_enable

7.8 Layer Interface DLApic

Two primitives are introduced under the layer interface DLApic: lapic_init and lapic_eoi.
The verification of lapic_init is similar to ioapic_init. Recall that during the later contextual
refinement of interrupt models, the operations of two interrupt controllers will be merged
and canceled to derive the abstract interrupt model, where an interrupt triggered by the serial
device is only related to the serial device object, and is independent from either of the interrupt
controllers or the CPU.

7.9 Above DLApic

Finally, we introduce a new layer interface to introduce the abstract interrupt model (as shown
in Sect. 5.2.4), and more layer interfaces for the driver-related system calls.

8 Evaluation and Lessons Learned

WhatWeHaveProved Thefinal theoremweproved for our kernel is the contextual refinement
relation between our lowest level hardware machine model MBoot (which defines the x86
instructions, the serial device, and the I/O APIC and Local APIC devices, etc.), and the top
level machine mCertiKOS (which defines the abstract system call interface). Let [[·]]x86 and
[[·]]mCertiKOS denote the whole-machine semantics of each machine model, and K denote the
(assembly) source code of mCertiKOS, then the theorem is formalized as:

Theorem 1 ∀P, [[K
� P]]x86 � [[P]]mCertiKOS.

The theorem states that for any kernel/user/guest/host context program P , there is a sim-
ulation between program P running on top of the top level abstract machine mCertiKOS,
and the program P linked with the mCertiKOS source code K , running atop the bottom-most
machine x86.

The abstraction layers also define the data invariants that are proved to hold at anymoment
of the whole program execution. Some example invariants are: the console’s circular buffer
is always wellformed, and the interrupt controller states are always consistent, etc.

Besides this, our framework automatically derives that all the system calls always run
safely and terminate; there are no code injection attacks, no buffer overflows, no null pointer
access, no integer overflows, etc.

123

182 H. Chen et al.

Isolation Wetake the existing implementationof theCertiKOS infrastructure [20], and extend
it with our device and interrupt models. On top of the extended machine model, we have
verified a subset of the device drivers in mCertiKOS with 10 abstraction layers. Some layers
are introduced to verify concrete driver implementation, while others are introduced purely
for logical abstraction (e.g., from a circular console buffer implementation in memory to
an abstract list, from the hardware interrupt model to the abstract interrupt model enforcing
isolation, etc). These abstraction layers are inserted into the existing layers of mCertiKOS as
a certified plugin. Thanks to our isolation policy, this does not invalidate most of the existing
proofs of mCertiKOS, and the integration only required minimal effort, despite the existing
mCertiKOS proofs being unaware of interrupts.

Execution Model and Completeness The majority of our device drivers are specified and
verified at C level, then compiled by our CompCertX compiler. The entire kernel (both C
and assembly) source code, together with the source code for the verified compiler, are
extracted into an OCaml program through Coq’s extraction mechanism. When this program
gets executed, it compiles the extracted C source code into the assembly, and merges it with
the existing assembly kernel source code, to produce a piece of assembly code corresponding
to our verified kernel. Thus, our deliverable comeswith a piece of assembly code for the entire
verified kernel, a high level deep specification of various kernel behaviors, and a machine
checkable proof object stating the assembly code running on the actual hardware satisfies
the high level specification.

The verified assembly code is then linked with the rest of kernel code (the boot loader and
remaining unverified drivers) to produce the actual binary image of the OS. The resulting
kernel is practical: it runs on stock x86 hardware and the hypervisor version with the Intel
vt-x support can successfully boot an unmodified version of Linux as guest.

Verification Effort Using our general device interface, we have modeled a serial device and
two interrupt controller devices. On top of these device models, we have verified the related
drivers and interrupt handlers. The entire verification effort consists of roughly 20k lines of
Coq code added to the existing mCertiKOS verification code base. Regarding the specifi-
cation, there are 510 lines of code used to specify the machine model including the device
hardware, and 126 lines of code for specification of the additional system call interfaces.
There are additional 9829 lines of Coq code that were used to define auxiliary definitions,
lemmas, theorems, invariants, etc. Note that these 9829 lines of definitions are outside our
TCB, thus does not need to be trusted. In terms of proof size, there are 3671 lines of Coq
code for the layer refinement proofs, 3589 lines for code verification, 1802 lines for proving
invariants, and 307 lines for linking different modules together.

The entire verification effort took roughly 7 personmonths, themajority ofwhichwent into
the design and development of the framework itself, including the extended machine model,
general device framework, the interrupt refinement, and the tactic libraries for automating
most of the non-intellectual parts of verification task. We anticipate the cost of verification
for future drivers would be dramatically reduced.

Bugs Found An extended version of the mCertiKOS kernel has been deployed in a practical
system that is used in the context of a largeDARPA-funded research project [20]. Yet, through
the verification of the console driver, we found a critical bug which may lead to the loss of
many characters received from the serial device. The bug was in the implementation of the
circular console buffer, where, in some rare cases, the read and write positions to the buffer
array overlap, causing the entire contents in the buffer to be lost. The bug was caught when

123

Toward Compositional Verification of Interruptible OS… 183

we tried to establish the contextual refinement between the concrete implementation of the
circular buffer and its abstract list representation.

Another bugwas found in the code for initializing the serial device, where the interruptwas
not configured correctly by accidentally setting the Interrupt Enable Register (IER) before
the DLAB was unset. This was caught when we tried to prove the initialization code against
its specification.

9 Limitations and Future Work

Our verified kernel assumes correctness of the hardware. In our device model, we enforce a
set of invariants on the list of external events, which specifies correct hardware behaviors,
e.g., all the 8 bit characters are 8 bits, serial port eventually transmits its contents, etc. Every
function that tries towrite to the serial devicefirst busy-waits reading the device’s transmission
buffer status until it becomes empty. We rely on the above assumption to prove that the loop
eventually terminates and when it does terminate, the transmission buffer is empty so we can
write to the device again. In the future, we plan to extend our device drivers to handle the
hardware errors, e.g., when the serial device does not acknowledge the previous output was
successful in the time period specified in the hardware documentation. In this case, we can
add states to the device state machine to represent those erroneous cases, and add appropriate
error handling code. The process is the same as a non-faulty device. For example, when the
serial port does not transmit its contents in a certain amount of time, we can reset the serial
port and try again.

Furthermore, as with any verified system, the specification of hardware devices and the
top level system call primitives have to be trusted. For the hardware specification, we only
model the set of features utilized by the kernel, instead of modeling the entire hardware
manual. Our system calls are specified at the top abstraction layer, where all implementation
details are hidden. These lead to specifications of a fairly small size (636 lines of Coq code),
limiting the possible room for errors, and easing the review process.

Sometimes, the compiler may unsoundly optimize away some memory accesses to the
memory mapped registers, e.g., a dead read of a memory mapped device register. In this case,
we can use the CompCert built-in calls like volatile_load, which are not supposed to
be optimized away by CompCert. On the other hand, those operations can also be directly
implemented in assembly in our framework.

Some parts of the TCB from the originalmCertiKOS still remain, including the bootloader,
the Coq proof checker, and the pretty-printing phase of the CompCert compiler.

Verification ofOtherDrivers Some device drivers (i.e., thosewith underlined names in Fig. 7)
inmCertiKOS still remain unverified.With the newcompositional framework and automation
libraries we have developed, we anticipate that the rest of the drivers can be verified with a
reasonable amount of proof engineering effort.

Among those drivers shown in Fig. 7, the text-mode VGA driver can be verified easily
since it is not much more complex than the serial driver. The timer and TSC drivers can also
be verified, but mCertiKOS’s assembly machine must first be parametrized with a good cost
model for x86 instructions.

The disk driver (including the PCI and AHCI drivers) is the largest driver in our kernel.
The mCertiKOS kernel communicates with the hard disk through the AHCI controllers using
memory mapped registers (mCertiKOS also communicates with the APIC using memory

123

184 H. Chen et al.

mapped registers through the verified drivers). We believe that our device model is general
enough to model required features for these devices used by the disk driver. We have already
started applying our approach to verify the mCertiKOS disk driver which will also serve as
a basis for building a certified file system.

Concurrency Reasoning Our current certified kernel assumes a runtime environment consist-
ing of a single processor, and user processes do not preempt each other. Therefore, our work
so far does not support preemptive nor multicore concurrency. With general concurrency,
different user/kernel threads may share memory and use a wide variety of synchronization
mechanisms that must also be verified. The techniques presented in this paper do not provide
such support (since the logical CPUs for devices and the main kernel/user CPU do not share
any state).

This would mean that we sometimes need to poll the device states if not doing so would
cause us to handle shared-memory concurrency. For example, a user process tries to read
a character from the serial device needs to poll the device status within a loop until the
device’s receiving buffer becomes non-empty. There have been recent efforts on adding
general concurrency support tomCertiKOS [21] andwebelieve that our device framework can
be faithfullymerged into the event-basedmodel introduced in [21].With concurrency support,
each logical CPU will have its own (logical) scheduler, (logical) memory, and collection of
kernel or user threads that may share memory.

Device drivers often do need to modify kernel memory, as in Linux bottom halves (imple-
mented as low-priority threads) or deferred procedure calls in Windows. With support of
these “concurrency-aware” logical CPUs, we believe that our technique can be extended to
support low-priority kernel threads dedicated to serve Linux bottom-halves. The idea is to
treat these device-serving kernel threads (and memory) as part of the logical CPU dedicated
for each device. Since we are already treating device driver code as if it runs on its “device”
CPU, it is quite natural to place those device-serving kernel threads on the logical (device)
CPUs as well.

10 Related Work

Gu et al. [20] pioneered the compositional proof machinery that builds certified OS kernels
using deep specifications and certified abstraction layers. We built our certified interrupt-
ible OS kernel and device drivers using the same methodology. Our new compositional
proof framework, however, adds two novelties. First, we show how to handle device objects,
which are different from regular mCertiKOS kernel objects. The states in these new device
objects can be updated either by the kernel (via device methods) or by an external environ-
ment, whereas regular mCertiKOS objects can only be mutated synchronously by the CPU;
device objects can also be asynchronously mutated by the environment; we introduce a new
abstraction of per-device event logs to handle this asynchronicity. Second, we support for-
mal reasoning about kernel code and device drivers running on multiple logical CPUs (see
Fig. 10) while under Gu et al. [20], all verified code at each layer must run on a single CPU
(see Fig. 8); we treat the driver stack for each device as if it were running on the logical CPU
dedicated to that device.

Klein et al. [27] were the first to verify the correctness and security properties of a
high-performance L4-family microkernel in a modern mechanized proof assistant [35]. To
make verification easier, they introduced an intermediate executable specification to hide

123

Toward Compositional Verification of Interruptible OS… 185

C specifics. Gu et al. [20] built their certified mCertiKOS kernel (in Coq) by decomposing
it into many abstraction layers; such fine-grained layer decomposition led to significantly
lower proof and development effort and also better extensibility. Both kernels, however, lack
a realistic interrupt model, so reasoning about interruptible code is not supported. The device
drivers are not verified in either kernel.

Hawblitzel et al. [22] has recently developed a set of new tools based on the Dafny
verifier [29] and Z3 SMT solver [14], and applied them to build their Ironclad system which
includes a verified kernel (based on Verve [42]), verified drivers, verified system and crypto
libraries, and several applications. This is another impressive effort that advances the frontier
of system software verification. However, the abstract device model in Ironclad is too high
level to model many hardware details.

The Verisoft team [34] has done a large body of work aiming to verify an OS kernel with
device drivers in a proof assistant [1,2,4]. Alkassar and Hillebrand [2] reported their work
on verification of device driver, which investigated the relationship between external events,
device and processor execution, and proved several non-trivial lemmas that can be viewed
as a foundation of this work. In their work, the execution of CPU and devices are modeled
as a combined transition system with an oracle to select the next one to make a step. The
transition of each step is categorized into three cases: (1) processor-device transition, (2)
local processor transition, and (3) external device transition. The paper shows that: (a) the
steps of local processor and external device transition can be swapped because they do not
interfere with each other; (b) the steps of external device transition by other devices can be
reordered to the end of the execution because they do not change the state of the current
device with the assumption that all the drivers only access to their own devices. Therefore,
the device transitions triggered by external events can be moved from the code of high-level
language which do not access the devices into the driver code which is written in assembly.
In addition, the specification of the driver code which involves processor and device steps
can be called atomically. They further proved the correctness of a simple ATAPI disk driver.
In our paper, the “logical” CPUs are systematically built in an isolated way, so that the
assumption that drivers only access to their own devices are guaranteed by construction.
Furthermore, viewing drivers as more abstract devices enables us to add device accessing
primitives into the device “ISA”, and encapsulate the transitions of devices layer by layer
into richer yet atomic specifications. Last, interrupt is allowed when the driver is running.
We use intr_disable/intr_enable to mark the specific regions as critical sections, so that the
interrupt being disabled is not an assumption of our driver code.

Based on the ideas of concurrent separation logic (CSL), Alkassar et al. [3] presented
a modular and polymorphic method to specify IPC algorithms in VCC, which relies on
transferring ownership of the ghost objects between IPC entities and attached invariants
to guarantee the correctness of the algorithm. They extended their specification pattern to
specify and verify an inter-processor interrupt (IPI) protocol in multiprocessor systems, in
which IPC mailboxes are used to model the APIC bus between processors, and the IPI
sending and receiving (NMI interrupt handler) code are modeled as while- loops. They
focused on the interaction between the IPI participants locally, but not between the triggered
interrupt handler and the previous execution on its CPU. In our device driver verification, we
also address the interleavings between normal execution and interrupt handler on the same
processor. In addition, the verification in [3] does not prove strong contextual refinement
property as in our paper.

The idea of shuffling the execution of interrupt handlers to a certain point so that the
verification can be done at higher level languages is discussed in Pentchev’s PhD thesis [36].
Their concurrent machine MI PSP was modeled as an automaton with a sequence of step-

123

186 H. Chen et al.

indicators as external inputs. At each step, the transition function makes a case distinction
basedon an external input pair (component i.e. core/ipi/guest/vmexit, processor) and let one or
multiple components to make a step. In order to propagate properties from the C Intermediate
Language (C-IL) program to the MI PSP execution, they applied order reduction to prove
the sequential compiler consistency (a simulation relation to achieve that the execution of
interrupt handlers only happens between the C statements) by having interleaving occur at
consistent state, namely interleaving points. In contrast to our paper, because the IPIs are
non-maskable, the interrupt handler has to be carefully designed to avoid the race condition,
and they only provided the semantics of concurrent C-IL encapsulated with IPI to specify the
interrupt handler. In our paper, we push it further to the boundary of critical sections. We do
not consider the interleaving between the kernel and device execution at such early stage. We
view them as separated logical machine and design their own transition functions. In addition,
the states among logical CPUs are isolated and are not visible to each other. The consistency
of the states between a driver and its interrupt handler is guaranteed by examining the same
local log to construct all shared states. We enforce a principle of a common programming
pattern that drivers have to disable the interrupt before entering into the critical section, so
that the “interleaving points” in our paper is only the intr_disable and intr_enable. Thus,
above a certain layer, the code verification can not only be done at Clight level, but also be
free of considering the interleaving between the code and interrupt handlers, because they
are all encapsulated in the primitive of those functions accessing shared states.

Feng et al. [17,18] developed a formal Hoare-logic-like framework for certifying low-
level system programs involving both hardware interrupts and preemptive threads. Using
ideas from concurrent separation logic [33], they showed how to use ownership-transfer
semantics to model enabling and disabling interrupts and reason about the interaction among
interrupt handlers, context switching, and synchronization libraries. They successfully certi-
fied a preemptive thread implementation (as libraries) and a set of common synchronization
primitives in the Coq proof assistant. Their work, however, did not model any hardware
device or interrupt controller, and their interrupt model is much simpler than ours. They also
only proved the partial correctness property (for their certified library functions), not the
strong contextual refinement property which we proved for our kernel. Of course, since our
current certified kernel does not support preemptive concurrency, we believe there are good
opportunities for combining their techniques (for reasoning about preemptive concurrency)
with our refinement-based approach.

Ryzhyk et al. [37,38] have done much work on the synthesis of device drivers from the
specifications. In their approach, both the device and the interface of the corresponding driver
are modeled as state machines, which communicate via messages. The generated driver code
requires some unverified run-time support. Furthermore, the correctness of the drivers is
limited to the synthesized C programs, not the compiled assembly code running on the actual
hardware.

In the work of Duan and Regehr [16], a UART driver in the ARM architecture with
interrupt is verified. They have created an abstract device model which gets plugged into the
instruction set of the ARM6 architecture. In their model, the device state is mixed into the
machine state. Thus, they have to carefully consider the interleavings between the execution
of the device and the CPU. Albeit a realistic UARTmodel, the driver only consists of 20 lines
of the assembly code. The framework is later ported to the Cambridge model of the ARMv7
architecture [15]. Schwarz et al. [39] proposed a device model where all the devices are
executed nondeterministically in parallel with a single core processor. Based on the model,
they have proved several noninterference properties among the processor and devices which
potentially use DMA or interrupts. Monniaux et al. [13] have verified a driver with a USB

123

Toward Compositional Verification of Interruptible OS… 187

OHCI controller model written in C with a static analyzer. They have showed the verified
driver exhibits no undefined behavior.

Andronick et al. [6,7] presented a scalable framework for formally reasoning an embedded,
real-time operation system: eChronos. In eChronos, OS functions are treated as interrupts,
which are wrapped with supervisor calls (software triggered interrupts) even in the same
address space. An extended Owicki-Gries approach is used to model and verify the system
as all the concurrency components, such as tasks, interrupt handlers, supervisor calls, and
asynchronous hardware behaviors, which are composed in parallel. Furthermore, in order to
show the controlled interleaving allowed by the hardware, a ghost variable “AT” is introduced
to represent the current active task. The correctness of eChronos is proven by properties
(expressed by invariants) held through all executions and at every reachable step. Because
of the non-determinism introduced by parallel composition, it is challenging to write the
specification in an atomic way so that refinement can be applied to prove the functional
correctness.

There are many lines of work in verifying device drivers based on model checking. Amani
et al. [5] proposed an approach to automatically verify the protocols between drivers and the
operating system.ThomasWitkowski [41] andAlexeyKhoroshilov [25] have verified specific
protocols of some Linux drivers using the model checker SatAbs and DDVerify. Kim et
al. [26] have verified a driver for a flash memory in NuSMV, Spin, and CBMC. Ball et al. [9]
have developed the static analysis tool SLAM, which is included in the Microsoft Windows
Driver Developer Kit.

11 Conclusions

We have presented a novel compositional framework for reasoning about the end-to-end
functional correctness of device drivers in a certified interruptible kernel. Our formalization
of interrupts follows the abstraction-layer-based approach and includes a realistic hardware
interrupt model and an abstract model of interrupts (which is suitable for reasoning about
interruptible code). We have proved that the two interrupt models are contextually equiva-
lent. We have successfully extended an existing verified non-interruptible kernel with our
framework and turned it into an interruptible kernel with verified device drivers. The imple-
mentation, specification, and proofs are all done in a unified framework (realized in the
Coq proof assistant), yet the mechanized proofs verify the correctness of the assembly code
that can run on the actual hardware. To the best of our knowledge, this is the first verified
interruptible operating system with device drivers.

Acknowledgements We thank Quentin Carbonneaux, Hernán Vanzetto, Mengqi Liu, Jérémie Koenig, other
members of the CertiKOS team at Yale, and anonymous referees for helpful comments and suggestions
that improved this paper and the implemented tools. This research is based on work supported in part by NSF
Grants 1065451, 1319671, and 1521523 andDARPAGrants FA8750-12-2-0293 and FA8750-15-C-0082. Hao
Chen’s work is also supported in part by China Scholarship Council. Any opinions, findings, and conclusions
contained in this document are those of the authors and do not reflect the views of these agencies.

References

1. Alkassar, E.: OS verication extended: on the formal verication of device drivers and the correctness of
client/server software. PhD thesis, Saarland University, Computer Science Department (2009)

123

188 H. Chen et al.

2. Alkassar, E., Hillebrand, M.A.: Formal functional verification of device drivers. In: Proceedings of the
Verified Software: Theories, Tools, Experiments Second International Conference (VSTTE), Toronto,
Canada, pp. 225–239 (2008)

3. Alkassar, E., Cohen, E., Hillebrand, M., Pentchev, H.: Modular specification and verification of interpro-
cess communication. In: Proceedings of the 2010 Conference on Formal Methods in Computer-Aided
Design, FMCAD Inc, Austin, TX, FMCAD ’10, pp. 167–174 (2010a)

4. Alkassar, E., Paul, W., Starostin, A., Tsyban, A.: Pervasive verification of an OS microkernel: inline
assembly, memory consumption, concurrent devices. In: Verified Software: Theories, Tools, Experiments
(VSTTE 2010), Edinburgh, UK, pp. 71–85 (2010b)

5. Amani, S., Chubb, P., Donaldson, A., Legg, A., Ryzhyk, L., Zhu, Y.: Automatic verification of message-
based device drivers. In: Systems Software Verification, Sydney, Australia, pp. 1–14 (2012)

6. Andronick, J., Lewis, C., Morgan, C.: Controlled Owicki-Gries concurrency: reasoning about the pre-
emptible eChronos embedded operating system. In: vanGlabbeekRJ,Groote JF,Höfner P (eds)Workshop
on models for formal analysis of real systems (MARS 2015), Suva, Fiji, pp. 10–24 (2015)

7. Andronick, J., Lewis, C., Matichuk, D., Morgan, C., Rizkallah, C.: Proof of OS Scheduling Behavior in
the Presence of Interrupt-Induced Concurrency, pp. 52–68. Springer, Berlin (2016)

8. Ball, T., Bounimova, E., Cook, B., Levin,V., Lichtenberg, J.,McGarvey, C., Ondrusek, B., Rajamani, S.K.,
Ustuner, A.: Thorough static analysis of device drivers. In: Proceedings of the 1st ACMSIGOPS/EuroSys
European Conference on Computer Systems 2006, ACM, New York, NY, USA, EuroSys ’06, pp. 73–85
(2006)

9. Ball, T., Bounimova, E., Kumar, R., Levin, V.: SLAM2: Static driver verification with under 4% false
alarms. In: Proceedings of the 2010 Conference on FormalMethods in Computer-Aided Design, FMCAD
Inc, Austin, TX, FMCAD ’10, pp. 35–42 (2010)

10. Blazy, S., Leroy, X.: Mechanized semantics for the Clight subset of the C language. J. Autom. Reason.
43(3), 263–288 (2009)

11. Chen, H., Wu, X.N., Shao, Z., Lockerman, J., Gu, R.: Toward compositional verification of interruptible
OS kernels and device drivers. In: Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ACM, New York, NY, USA, PLDI ’16, pp. 431–447 (2016)

12. Chou, A., Yang, J., Chelf, B., Hallem, S., Engler, D.: An empirical study of operating systems errors. In:
Proceedings of the 18th ACM Symposium on Operating Systems Principles, ACM, New York, NY, USA,
SOSP ’01, pp. 73–88 (2001)

13. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Proceedings of the 14th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’08), pp.
337–340 (2008)

14. Duan, J.: Formal verification of device drivers in embedded systems. PhD thesis, University of Utah
(2013)

15. Duan, J., Regehr, J.: Correctness proofs for device drivers in embedded systems. In: Proceedings of the 5th
International Conference on Systems Software Verification, USENIX Association, Berkeley, CA, USA,
SSV’10, p. 5 (2010)

16. Feng, X., Shao, Z., Dong, Y., Guo, Y.: Certifying low-level programs with hardware interrupts and
preemptive threads. In: Proceedings of the ACM Conference on Programming Language Design and
Implementation, pp. 170–182 (2008)

17. Feng, X., Shao, Z., Guo, Y., Dong, Y.: Certifying low-level programs with hardware interrupts and
preemptive threads. J. Autom. Reason. 42(2–4), 301–347 (2009)

18. Ganapathi, A., Ganapathi, V., Patterson, D.: Windows XP kernel crash analysis. In: Proceedings of the
20thConference onLarge Installation SystemAdministration, USENIXAssociation, Berkeley, CA,USA,
LISA ’06, pp. 12–12 (2006)

19. Gu, R., Koenig, J., Ramananandro, T., Shao, Z., Wu, X., Weng, S.C., Zhang, H., Guo, Y.: Deep specifi-
cations and certified abstraction layers. In: Proceedings of the 42nd ACM Symposium on Principles of
Programming Languages, pp. 595–608 (2015)

20. Gu, R., Shao, Z., Chen, H., Wu, X.N., Kim, J., Sjöberg, V., Costanzo, D.: Certikos: An extensible archi-
tecture for building certified concurrent os kernels. In: Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation, USENIX Association, Berkeley, CA, USA, OSDI’16,
pp. 653–669 (2016)

21. Hawblitzel, C., Howell, J., Lorch, J.R., Narayan, A., Parno, B., Zhang, D., Zill, B.: Ironclad apps: end-
to-end security via automated full-system verification. In: Proceedings of the 11th USENIX Symposium
on Operating Systems Design and Implementation (2014)

22. Intel: 82093AA I/O advanced programmable interrupt controller (I/O APIC) datasheet. Specification
(1996)

23. Intel: Multiprocessor specification, version 1.4. Specification (1997)

123

Toward Compositional Verification of Interruptible OS… 189

24. Khoroshilov, A., Mutilin, V., Petrenko, A., Zakharov, V.: Establishing Linux driver verification process.
In: Pnueli, A., Virbitskaite, I., Voronkov, A. (eds.) Perspectives of Systems Informatics. Lecture Notes in
Computer Science, vol. 5947, pp. 165–176. Springer, Berlin (2010)

25. Kim, M., Choi, Y., Kim, Y., Kim, H.: Formal verification of a flash memory device driver - an experience
report. In: Havelund, K., Majumdar, R., Palsberg, J. (eds.) Model Checking Software. Lecture Notes in
Computer Science, vol. 5156, pp. 144–159. Springer, Berlin (2008)

26. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D., Engelhardt, K.,
Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: Formal verification of an OS kernel.
In: Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles (SOSP), Big
Sky, MT, US, pp. 207–220 (2009)

27. Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R., Heiser, G.: Comprehensive
formal verification of an OS microkernel. ACM Trans. Comput. Syst. 32(1), 2 (2014)

28. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In: Proceedings of the
Conference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR 2010), pp. 348–370
(2010)

29. Leroy, X.: The CompCert verified compiler. http://compcert.inria.fr/ (2005–2013)
30. Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its uses for verifying program

transformation. J. Autom. Reason. 41(1), 1–31 (2008)
31. Lynch, N.A., Vaandrager, F.W.: Forward and backward simulations: I. Untimed systems. Inf. Comput.

121(2), 214–233 (1995)
32. Monniaux,D.:Verificationof device drivers and intelligent controllers: a case study. In:KirschC,Wilhelm,

R. (eds.) Proceedings of the 7th ACM International Conference On Embedded Software, EMSOFT 2007,
pp. 30–36. ACM & IEEE (2007)

33. O’Hearn, P.W.: Resources, concurrency and local reasoning. In: Proceedings of the 15th International
Conference on Concurrency Theory (CONCUR’04), pp. 49–67 (2004)

34. Paul, W., Broy, M., In der Rieden, T.: The Verisoft XT Project. http://www.verisoft.de (2007)
35. Paulson, L.C.: Isabelle:AGeneric TheoremProver, LectureNotes inComputer Science, vol. 828. Springer

(1994)
36. Pentchev, H.: Sound semantics of a high-level language with interprocessor interrupts. PhD thesis, Saar-

land University, Computer Science Department (2016)
37. Ryzhyk, L., Chubb, P., Kuz, I., Le Sueur, E., Heiser, G.: Automatic device driver synthesis with Termite.

In: Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles (SOSP), Big
Sky, MT, US, pp. 73–86 (2009)

38. Ryzhyk, L., Walker, A.C., Keys, J., Legg, A., Raghunath, A., Stumm, M., Vij, M.: User-guided device
driver synthesis. In:USENIXSymposiumonOperating SystemsDesign and Implementation, Broomfield,
CO, USA, pp. 661–676 (2014)

39. Schwarz, O., Dam, M.: Formal verification of secure user mode device execution with DMA. In: Yahav,
E. (ed.) Hardware and Software: Verification and Testing, Lecture Notes in Computer Science, vol. 8855,
pp. 236–251. Springer (2014)

40. The Coq development team: The Coq proof assistant. http://coq.inria.fr (1999–2016)
41. Witkowski, T.: Formal verification of Linux device drivers. Master’s thesis, Dresden University of Tech-

nology (2007)
42. Yang, J., Hawblitzel, C.: Safe to the last instruction: automated verification of a type-safe operating system.

In: Proceedings of the 2010 ACM Conference on Programming Language Design and Implementation,
pp. 99–110 (2010)

123

http://compcert.inria.fr/
http://www.verisoft.de
http://coq.inria.fr

	Toward Compositional Verification of Interruptible OS Kernels and Device Drivers
	Abstract
	1 Introduction
	2 Overview of Certified Abstraction Layers
	2.1 C and Assembly Languages Used
	2.2 Layer Interface
	2.3 Code Module
	2.4 Certified Layer
	2.5 Verification of Clight and LAsm functions
	2.6 Example: Verification of Console Circular Buffer

	3 Certified Abstraction Layers with Device Drivers and Interrupts
	4 Machine Model with Devices
	5 Driver Framework with Interrupts
	5.1 Device Objects
	5.2 Interrupts
	5.2.1 Interrupt Transition for Devices
	5.2.2 Interrupt Transition for IC
	5.2.3 Interrupt Transition for the CPU
	5.2.4 Abstract Interrupt Model
	5.2.5 Nested Interrupts

	6 Case Study
	6.1 Serial Port
	6.2 I/O APIC
	6.3 Local APIC

	7 Coq Implementation of Certified Abstraction Layers
	7.1 The Lowest Level Layer Interface: MBoot
	7.2 Layer Interface DConsoleBufferIntro
	7.3 Layer Interface DAbsConsoleBufferIntro
	7.4 Layer Interface DSerialIntro
	7.5 Layer Interface DSerial
	7.6 Layer Interface DConsole
	7.7 Layer Interface DIOApic
	7.8 Layer Interface DLApic
	7.9 Above DLApic

	8 Evaluation and Lessons Learned
	9 Limitations and Future Work
	10 Related Work
	11 Conclusions
	Acknowledgements
	References

