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Abstract

An operating system (OS) kernel forms the lowest level

of any system software stack. The correctness of the OS

kernel is the basis for the correctness of the entire system.

Recent efforts have demonstrated the feasibility of building

formally verified general-purpose kernels, but it is unclear

how to extend their work to verify the functional correctness

of device drivers, due to the non-local effects of interrupts.

In this paper, we present a novel compositional framework

for building certified interruptible OS kernels with device

drivers. We provide a general device model that can be

instantiated with various hardware devices, and a realistic

formal model of interrupts, which can be used to reason

about interruptible code. We have realized this framework in

the Coq proof assistant. To demonstrate the effectiveness of

our new approach, we have successfully extended an existing

verified non-interruptible kernel with our framework and

turned it into an interruptible kernel with verified device

drivers. To the best of our knowledge, this is the first verified

interruptible operating system with device drivers.

Categories and Subject Descriptors D.2.4 [Software En-

gineering]: Software/Program Verification—Correctness

proofs, formal methods; D.3.3 [Programming Languages]:

Languages Constructs and Features; D.4.5 [Operating Sys-

tems]: Reliability—Verification; D.4.7 [Operating Systems]:

Organization and Design—Hierarchical design; F.3.1 [Log-

ics and Meanings of Programs]: Specifying and Verifying

and Reasoning about Programs

General Terms Verification, Reliability, Security, Lan-

guages, Design

Keywords Program Verification; Certified OS Kernels; In-

terrupts; Device Drivers; Abstraction Layer; Modularity.

1. Introduction

An operating system (OS) kernel serves as the lowest level of

any system software stack. The correctness of the OS kernel is

the basis for that of the entire system. In a monolithic kernel,

device drivers form the majority of the code base; 70% of

the Linux 2.4.1 kernel are device drivers [7]. Furthermore,

such drivers are found to be the major source of crashes

in the Linux and Windows operating systems [7, 5, 13].

While recent efforts on seL4 [21] and CertiKOS [14] have

demonstrated the feasibility of building formally verified OS

kernels, it is unclear how to extend their work to verify the

functional correctness of device drivers. In CertiKOS [14],

drivers are unverified, and it is not obvious how to extend their

framework to model devices and interrupts. In a microkernel

like seL4 [21], device drivers are implemented in user space,

and, though its proofs guarantee driver isolation, it does not

eliminate bugs in its user-level drivers.

A major challenge in driver verification is the interrupt: a

non-local jump to some driver code, triggered by a device.

When device drivers are implemented inside the kernel

(for better performance), the kernel should be interruptible;

otherwise, it can lead to an unacceptable interrupt processing

latency. Reasoning about interruptible code is particularly

challenging, since every fine-grained processor step could

contain a non-local jump, and, upon return, the machine state

could be substantially changed. Even worse, it is not clear

how such reasoning should be done at the C level, which is

completely interrupt-unaware. Existing work either assumes

that interrupts are turned off inside the kernel [14, 27], or polls

the interrupts at a few carefully chosen interrupt points [21].

Furthermore, interrupt hardware is not static, but is con-

figured by software. In order to verify any interesting device

drivers (serial, disk, etc.), we first need to model the interrupt

controller devices (e.g., LAPIC [17], IOAPIC [16]), and for-

mally verify their drivers. This is important because, if the

interrupt controllers are not initialized properly, it may lead

to undesired interrupt behaviors. Device drivers also interact

with interrupt controllers to mask/unmask particular interrupt

lines. These issues have been overlooked in past work, where

interrupt controllers are assumed to be properly initialized

and their drivers are correctly implemented [2].
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Finally, verifying an interruptible operating system with

device drivers also faces the following challenges.

Devices and CPU run in parallel. Thus, the executions

of CPU instructions and device transitions can interleave

arbitrarily. Code verification on this highly nondeterministic

machine can be challenging, since it needs to consider device

state transitions, even when the CPU is executing a set of

instructions unrelated to external devices. Recent work [1, 2,

3] tries to address this by enforcing a stability requirement

that device states only change due to CPU operations. This

requirement is, however, too strong as devices interacting

with external environments are not stable: a serial device

constantly receives characters through its port, a network

card continuously transfers packets, an interrupt controller

(IC) asynchronously receives interrupt requests, etc.

Devices may directly interact with each other. Existing

work assumes that a device driver monopolizes its underlying

device and devices do not influence each other [2]. This

assumption does not hold for many devices in practice.

For example, most devices directly communicate with an

interrupt controller by signaling an interrupt.

Device drivers are written in both assembly and C. Ex-

isting device driver verification is either done completely at

the assembly level [2, 9] or the verified properties are only

guaranteed to hold at the C level [29, 30]. For realistic use-

cases, proven properties should be translated down and then

formally linked with the assembly-level proofs.

The correctness results of different components should be

integrated formally. For example, the correctness proofs of de-

vice drivers and the OS kernel need to be formally linked as an

integrated system, before one can deliver formal guarantees

on the OS as a whole. Not doing so can introduce semantic

gaps among different modules, a scenario which introduced

actual bugs in previous verification efforts as reported by

Yang and Hawblitzel [34]. Unfortunately, this formal linking

process was found to be even more challenging than the cor-

rectness proofs of individual modules themselves [2]. Even

OS’s with user-level device drivers can suffer if the correct-

ness proofs of their drivers are not formally linked with those

of the kernel. For example, if some device driver code triggers

a page fault at the user level, the behavior of the correspond-

ing driver is linked to the behaviors of the page-fault handlers

and address translation mechanism of the kernel.

In this paper, we propose a novel compositional approach

that tackles all of the above challenges. There are two key

contributing ideas. One is to build up a certified “virtual”

device hierarchy, and another is a new abstract interrupt

model, built upon a realistic hardware interrupt model through

contextual refinement. We use these to build an extensible

framework that systematically enforces the isolation among

different operating system modules, which is important for

scalability of any verification effort and critical for reasoning

about interruptible code.

Our paper makes the following new contributions:

• We present a new extensible architecture for building certi-

fied OS kernels with device drivers. Instead of mixing the

device drivers with the rest of the kernel (since they both

run on the same physical CPU), we treat the device drivers

for each device as if they were running on a “logical” CPU

dedicated to that device. This novel idea allows us to build

up a certified hierarchy of extended abstract devices over

the raw hardware devices, meanwhile, systematically en-

forcing the isolation among different “devices” and the

rest of the kernel.

• We present a novel abstraction-layer-based approach for

expressing interrupts, which enables us to build certified

interruptible OS kernels and device drivers. Our formal-

ization of interrupts includes a realistic hardware interrupt

model, and an abstract model of interrupts which is suit-

able for reasoning about interruptible code. We prove that

the two interrupt models are contextually equivalent.

• We present, to the best of our knowledge, the first verified

interruptible OS kernel and device drivers that come with

machine-checkable proofs. The implementation, model-

ing, specification, and proofs are all done in a unified

framework (realized in the Coq proof assistant [32]), yet

the machine-checkable proofs verify the correctness of

the assembly code that can run on the actual hardware.

The rest of this paper is organized as follows. Sec. 2

gives an overview on how we build our device hierarchy

while enforcing isolation from the rest of the kernel. Sec. 3

defines a formal machine model extended with raw hardware

devices. Sec. 4 presents the device objects, hardware interrupt

model, and abstract interrupt model, and shows how we

prove contextual refinement between the two interrupt models.

Sec. 5 presents two case studies of our verified drivers: one

for a serial port and another for the interrupt controllers.

Sections 6 and 7 give an evaluation of our new techniques and

describe the lessons we learned, the limitations, and future

work. Finally, we discuss related work and then conclude.

2. Overview of Our Approach

Instead of verifying an operating system from scratch, we

start from an existing verified kernel. Gu et al. [14] presented

a compositional framework for building certified abstrac-

tion layers with deep specifications. There, a certified layer

is a new language-based module that consists of a triple

pL1,M,L2q plus a mechanized proof object showing that

the layer implementation M , built on top of the interface

L1 (the underlay), is a contextual refinement of the desirable

interface L2 above (the overlay). A deep specification L2 of a

module M captures everything contextually observable about

running the module over its underlay L1. Once a certified

layer M with a deep specification L2 is built, there is no need

to ever look at M again, since any property about M can be

proven using L2 alone. Using this framework, Gu et al. [14]

have successfully verified an OS kernel called mCertiKOS.
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Figure 1. The device driver hierarchy of mCertiKOS

The mCertiKOS kernel currently runs on the 32 bit x86

architecture. It provides a multi-processing environment for

user-level applications using separate virtual address spaces.

It implements both message passing and shared memory

inter-process communication protocols. As a hypervisor, it

can also boot recent versions of unmodified Linux operating

systems inside a virtual machine. Unlike large commercial

operating systems like Linux or Unix, mCertiKOS kernel

only implements a small subset of the POSIX-like API, e.g.,

process creation and control, physical and virtual memory

management, and inter-process communication. It does not

implement signals, pipes, etc. The current file system imple-

mentation in mCertiKOS is not certified.

Figure 1 shows the device hierarchy of mCertiKOS. Here

the black boxes represent raw hardware devices; the green

boxes denote the device drivers, and the gray boxes are the

data structures used by the drivers. The purple/black lines

show how these device and driver components are related.

Note that the drivers in mCertiKOS are not verified; they are

implemented in about 1,600 lines of C and assembly code,

and would be considered as part of the trusted computing

base (if they are kept inside the kernel).

We take mCertiKOS’s lowest level machine model, LAsm,

and extend it with device models. We model devices as finite

state transition systems interacting with the processor and the

external environments. Since devices run concurrently with

the processor, parts of the device state change without the

processor explicitly modifying them. Though these “volatile”

device states can change nondeterministically, the processor

itself only ever observes a “current” state when it reads the

device data via an explicit I/O operation. The processor does

not, and in fact cannot, care about any states that the device

may enter between these observed states. Therefore, instead

of designing fine-grained small-step transition systems that

model all possible interleaved executions amongst the pro-

cessor and devices, our devices simply perform an atomic

big-step transition whenever they are observed, i.e., when

there is a device read/write operation from the CPU.

Next, the machine model needs to be extended with the

hardware interrupt model. The processor responds to an in-

terrupt by temporarily suspending the current execution and

then jumping to another routine (i.e., an interrupt handler).

Interrupts can be triggered by both hardware and software.

Software interrupts (e.g., exceptions, system calls) are rela-

tively easy to reason about, since their behaviors are always

deterministic. For example, a page fault exception occurs

whenever the accessed address belongs to an unmapped page

or a page with wrong permission, and a system call is trig-

gered by an explicit instruction. However, hardware interrupts

(IRQs) are unpredictable; when we execute some code with

interrupts turned on, at every fine-grained processor step, the

machine state (e.g., registers and memory) may undergo sig-

nificant changes. Recent work on verified operating systems

(including mCertiKOS) neglects this kind of reasoning, ig-

noring one of the largest kernel threat-surfaces [14, 20, 3].

Finally, modeling interrupts is important because it also opens

the way toward enabling interrupts within the kernel.

On top of this lowest-level machine model, each kernel

module can be related to either device drivers (denoted as

DD) or the rest of the kernel (denoted as K, representing

non-device-related kernel components). To introduce, verify,

and abstract each such kernel module into an abstract object

with atomic logical primitive transitions, we need to prove

the following isolation properties:

• For each function in K or user space, which has interrupts

turned on, the interrupt must not affect the behavior of

the function. Although the code can be interrupted at any

moment, and the control flow transferred to a place outside

the function, it will eventually return with states (which

the function relies upon) unchanged.

• Devices which directly change the memory through Direct

Memory Access (DMA), do not change any memory that

the execution of any function in K depends on.

• For each interruptible device driver function in DD, any

interrupt not related to the current device must not change

any state related to the current device.

• In case that all interrupts related to a device are masked

out, no interrupts can affect the state of the interrupt

handler for the device.
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For a particular fixed set of functions, the proof of the

above properties may not seem hard. However, they have to be

proven repeatedly for all possible combinations of currently

introduced sets of functions and devices. This immediately

makes the verification of an interruptible operating system

with device drivers unscalable.

Furthermore, it is not obvious how to apply techniques

of Gu et al. [14] to handle hardware interrupts. Figure 2

shows one such attempt. Here, P denotes the kernel/user-

level context code; MBoot, MContainer, DSerialIntro, and

DSerial denote several kernel and driver layers. With inter-

rupts turned on in the kernel, it is immediately unclear how

to show contextual refinement among different layers. For

a kernel function like c_init, it cannot be easily refined into

an atomic specification as the code can be interrupted at any

point during the execution by a device interrupt, unless all

possible interleaving of interrupts are encoded into the spec-

ification itself. Similarly, for a device driver function like

puts, the code can be interrupted at any moment by interrupts

triggered from other devices or the device itself.

In this paper, we propose a systematic way that strictly

enforces isolation among different entities by construction.

Our approach consists of the following two key ideas.

First, rather than viewing drivers as separate modules that

interact with the CPU via in-memory shared-state, we instead

view each driver as an extended device. We utilize abstraction

layers and contextual refinement to gradually abstract the

memory shared between a device and its driver into the

internal abstract states of a more general device. Furthermore,

we use the same technique to abstract those driver functions

that manipulate these data into the abstract primitives of a

higher level device. After this, our approach ensures that those

abstract states can no longer be accessed by the other entities,

through, e.g., memory reads and writes, but, rather, can only
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Figure 3. The driver as an extended device

be manipulated via explicit calls to the device interface. We

repeat these procedures so we can incrementally refine a raw

device into more and more abstract devices by wrapping them

with the relevant device drivers (see Fig. 3). In the rest of the

paper, we call this extended abstract device a device object,

to distinguish it from the raw hardware device. Note that in

our model, device objects are indeed treated similarly to raw

devices, and both have quite similar interfaces.

Second, we introduce and verify the interrupt handler

for each device at the lowest machine model, which is not

yet suitable for reasoning about interruptible code. This is

possible because, for each device, we require that either

the interrupt be disabled or its corresponding interrupt line

be masked inside the interrupt handler of the device. Next,

we introduce a new abstract machine with a more abstract

interrupt model, that provides strong isolation properties

amongst different device objects and the kernel, in which

any future (context) code with interrupts turned on can

be reasoned about naturally. We prove a strong contextual

refinement property between these two abstract machines:

any context code running on the machine with the abstract

interrupt model (overlay) retains an equivalent behavior when

it is running on top of the machine with the concrete hardware

interrupt model (underlay).

Figure 4 shows the layer hierarchy of our interruptible

kernel with device drivers. We treat the driver code as if it

runs on its own device’s “logical CPU,” and each logical

CPU operates on its own separate internal states. Thus, the

approach provides a systematic way of assuring isolation

among different device objects (running on its own local

logical CPUs) and the rest of the kernel.

On the kernel side (the layer hierarchy on the left hand

side of Fig. 4), the contextual refinement is achieved in the

same way as in Gu et al. [14] since the hardware interrupts

(from the other logical CPUs with separate states) no longer

affect the execution of any kernel primitive (like c_init), i.e.,

the kernel is completely interrupt-unaware.

Similarly, the device driver functions are no longer af-

fected by the hardware interrupts triggered from other devices.

For each device D running on top of its own logical CPU,

we first introduce and verify part of the driver in the critical

area, i.e., the low-level device functions that should not be
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Figure 4. Building certified abstraction layers with hardware interrupts: our new approach

interrupted by the same device, and the interrupt handler of

the device. Next, we use contextual refinement to introduce a

new layer that has a more abstract interrupt model. On this

layer, we can introduce and verify even interruptible driver

code (e.g., puts) while still enforcing strong isolation and

providing clean interface to the kernel.

3. Machine Model with Devices

In this section, we present our machine model, which is

based on the Intel x86 architecture. We start from the LASM

machine model presented in Gu et al. [14], and extend it to

model devices and interrupts.

Our devices are modeled as finite state transition systems

interacting with the CPU and the external environments. Each

read/write (input/output) operation initiated from the CPU

triggers an atomic big-step transition in the corresponding

device. Device transitions (i.e., trans in Fig. 3) are affected

by two types of interactions, one by the CPU and another by

external events.

Device Transitions caused by the CPU The CPU may

trigger a device transition through I/O instructions or memory-

mapped I/O operations. These operations can be categorized

into the following two actions:

Definition 1 (CPU Operation on a Device).

O ::“ input n Read value from the register at address n

| output n v Write value v to the register at address n

For every device, we define an atomic transition function

δCPU, which takes the current device state s and a CPU

operation o, and returns the new state s1. Note that δCPU is

not a CPU transition, instead, it is strictly a device transition

triggered by a CPU I/O operation.

Device Transitions caused by External Events Device

transitions can also be caused by events from the external

environment, such as the keyboard or network, with specific

transitions depending on the kind of event. When model-

ing these external events, we take a minimalistic approach:

though the devices can receive all kinds of different exter-

nal events, we only model those that change the observable

behavior of the device. Thus, the events do not map one to

one to the transitions in the device hardware but rather to

the CPU observations on the hardware. We model the device

interfaces, not the device internals. The device interface con-

tains all the information that a programmer can know about

its states. Some example events are:

Definition 2 (Device External Events).

E ::“
(* UART device *)

| Recv ps : list charq UART receives string s

| NoSendingCompAck Sending is not complete

| SendingCompAck UART completes the sending

(* Keyboard device *)

| KeyPressed pc : Zq A specific key is pressed

| KeyReleased pc : Zq A specific key is released

¨ ¨ ¨

External events are unpredictable, as their causes are not

controlled by the OS. We determinize the behavior of each

device by parametrizing it with the set of all possible list of

events ℓenv that will be processed sequentially when the CPU

performs I/O operations on this device. The atomic transition

function δenv takes an external event e as input and changes

the device states accordingly.

Note that events, even within a single device, can commute.

For example, a serial port serves two roles: to receive user

input and to send program output. Accordingly, among the

events a serial device can receive are one for the reception of

a new input string, and one signaling that some past output

operation has been completed. Consider a function that first

writes to a serial port, then waits until the write operation is
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completed by repeatedly reading some relevant status register.

During one of these reads the user might send new input

to the serial port. It would be reasonable for the device to

observe the corresponding Recv event during one of the

register reads, but doing so would make verifying the write

function unnecessarily complex; not only would a function

need to handle its own logic, but it would also need to handle

any other state transition the device could undergo, even if

the result were not observable in the current function.

To address this verification challenge, each device keeps

a set of local logs ~ℓ “ tℓ1, ...ℓku, each of which is a strict

prefix of ℓenv. The serial device from the example above

could contain two local logs, one for input and one for output.

Then when δenv receives an event that does not correspond

to the currently processed action, the event can simply be

skipped. When a later action observes a part of the device

state which is affected by the event, that action will handle

the event. In the serial port example, we would defer handling

the Recv event until some process reads from the serial port.

Every raw device provides two I/O primitives: read n and

write n v. The read primitive first updates the device state

based on the environmental device transition δenv with the

next relevant external event in ℓenv , then returns a value from

the new state, and finally does the transition δCPU triggered

by this read action. The write primitive first triggers the

transition δenv to update the device state based on the next

relevant external event, then performs the transition δCPU

initiated by this write operation.

In the following, the function nextpℓenv, ℓiq finds the first

relevant event e in ℓenv that has not yet been processed with

respect to the local log ℓi, and returns the event e plus a new

local log that is synchronized with ℓenv up to the event e.

Now, we define the operational semantics of the set of

device primitives formally. Let κ be the function retrieving

the value of device register addressed by n, then we have:

pe, ℓ1

iq “ nextpℓenv
, ℓiq s

1 “ δ
envps, eq

res “ κpn, s1q s
2 “ δ

CPUps1

, input nq

readpn, s, ℓi, ℓ
envq “ pres, s2

, ℓ
1

iq
(read)

pe, ℓ1

iq “ nextpℓenv
, ℓiq

s
1 “ δ

envps, eq s
2 “ δ

CPUps1

, poutput n vqq

writepn, v, s, ℓi, ℓ
envq “ ps2

, ℓ
1

iq
(write)

Thanks to the local logs, this machine model eliminates

much of the nondeterminism that complicates reasoning

about asynchronous systems. Nonetheless, it accurately mod-

els the observable behaviors of real hardware.

4. Driver Framework with Interrupts

The processor inherently runs in parallel with devices. In

Sec. 3, we have presented a machine model representing

this level of concurrency. On top of this machine model, we

build certified abstraction layers introducing more and more

Overlay

Underlay

Memory Driver Function Device

Memory PrimitiveState

Data Invariant

Use
Contextual

 Refinement
Data

Device

Figure 5. Layer-based contextual refinement

driver code. At each abstraction layer, our model enforces

systematic isolation among the different device objects and

the rest of the kernel, so that interaction with one device

object does not affect the states of other device objects nor

the rest of the kernel. Thus, isolation properties are satisfied

by construction. This dramatically simplifies our reasoning

by allowing us, at any given time, to focus on only the device

objects that are currently interacted with.

In this section, we define the device object more formally;

then we show how to incorporate interrupts into our model

while still following our isolation policy.

4.1 Device Objects

A device object is a logical abstraction containing a hardware

device plus its related drivers. Each device object consists

of a set of abstract states, abstracting the private states of

the device (e.g., device registers, driver private memory);

and a set of primitives, abstracting the module interface. The

abstract states are private to the device object, and can only be

manipulated by explicit calls to the device object’s primitives.

This is achieved by establishing a contextual refinement

relation from the concrete memory and device function

implementation to the abstract state and primitives. As shown

in Fig. 5, we follow the layer-based methodology [14] and

utilize the CompCert memory permissions [24] to hide the

relevant memory at overlay, which prevents the context code

from accessing the object’s private memory. These logical

permissions do not correspond to any physical protection

mechanism, but are used to ensure that the abstract machine

at overlay gets stuck if any code tries to directly access

this portion of memory. The safety proof of our entire

operating system (the kernel never gets stuck) guarantees that

such a situation never happens. The set of driver functions

at underlay, which manipulate the memory that will be

abstracted away at overlay, are themselves abstracted into

the set of device primitives at the overlay (see Fig. 5).

For example, the console buffer is implemented as a circu-

lar buffer in our console driver. The concrete implementations

of the buffer operators (buf_read and buf_write) directly ma-

nipulate the concrete circular buffer in memory. At a higher

layer, in our abstract console device object, the logical buffer

is represented as a list, and the primitives are specified di-

rectly over this abstract list, i.e., the buf_read simply returns
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the head element in the list, while buf_write adds the new

element to the end of the list, discarding a single head ele-

ment if the size of the list exceeds its limit. The contextual

refinement relation between the two layers ensures that any

code running on top of the more abstract overlay exhibits

behavior equivalent to running on top of the underlay.

The primitives at the underlay can be passed through

to the overlay, or hidden if they are no longer needed. For

example, once the primitive ahci_transfer is introduced at the

overlay, the underlay primitives ahci_read and ahci_write,

used to implement ahci_transfer, are hidden. This facilitates

the invariant proofs as stronger invariants can be introduced

at higher layers, which could otherwise be violated by the

lower-level primitives.

Combining Device Objects At a certain abstraction layer,

some drivers, or more generally, system services, may inter-

act with multiple device objects, by, e.g., transferring data

between two devices, or broadcasting messages to multiple

devices. At this stage, such devices are no longer totally iso-

lated, but are synchronized through hardware or software

mechanisms. This does not fit directly into our model provid-

ing systematic isolation among different device objects and

the rest of the kernel.

In the above scenario, we introduce at the overlay a single

heterogeneous device object, which combines the device

objects from the underlay via the newly introduced functions.

The abstract machine at overlay thereby provides systematic

isolation between the new abstract device object and the

rest of the kernel. The internal states and local logs of the

combined device object are the disjoint union of the relevant

objects at underlay, while the functions that manipulate

multiple device objects at underlay become primitives of

the new device object, operating on a wider range of internal

states, at overlay. As in all device objects, existing primitives

can be either passed through to this new device, or hidden.

4.2 Interrupts

We now show how to adapt the interrupts into our setting.

We first present our interrupt model at the hardware level,

where the interrupt transitions are separately defined for the

CPU, the interrupt controllers (IC), and the devices. At this

low level we lack the full behaviors of interrupt handlers,

so all the primitives verified at this machine level have the

precondition that interrupts are disabled or the corresponding

interrupt lines are masked. On top of this hardware abstrac-

tion layer, we incrementally introduce and verify interrupt

handlers for each device through abstraction layers. Above a

certain abstraction layer, we have full behaviors of the inter-

rupt handlers, so we introduce a new abstraction layer with

an abstract interrupt model, where an interrupt only changes

the state of the device object that triggered it. This makes

the interrupt completely transparent to the CPU, the IC, and

other devices, thus guaranteeing our desired isolation prop-

erties. We prove the strong contextual refinement property

DInterrupt
Controller

LASM 
Machine

Kernel/

IC
Dev

Event arrival

intrIC

intrCPU

intr_handler
eoi

iret

p i

Primitive called

User

Kernel/

IC
Dev

Event arrival

intr_handler p i

Primitive called

User

intr_disable

mask

LASM 
Machine

Interrupt
Controller

D

Figure 6. The hardware interrupt model (bottom), the ab-

stract interrupt model (top), and the contextual refinement

between these two models.

between these two abstraction layers to ensure that any con-

text program running on top of the overlay retains behavior

equivalent to running atop the underlay. Starting from the ab-

straction layer with the abstract interrupt model, we support

verification of any code with interrupts enabled.

4.2.1 Hardware Interrupt Model

The entities involved in any given interrupts are categorized

into three parties (shown in the bottom half of Fig. 6). If a

device transition (e.g., from the device D in Fig. 6) triggers

an interrupt, it gets sent to the IC. The IC multiplexes several

interrupt lines onto the CPU (i.e., the LASM machine in

Fig. 6), with the ability to mask and unmask each interrupt

line. At each transition, the IC selects the pending unmasked

interrupt with the highest priority and forwards it to the CPU.

When the CPU receives an interrupt signal, it first checks

whether interrupts are enabled on that CPU, and, if so, saves

the current context and jumps to the corresponding entry in

the interrupt descriptor table (IDT). If interrupts are turned off,

the interrupt signal is ignored. Thus, an interrupt involves at

most three consecutive transitions: the device, the IC, and the

CPU. These three transitions seem inter-related, and isolation

among the three entities is non-obvious. In our approach,

we first develop a low level hardware interrupt model that

separately defines the set of interrupt related operations. Then

these three disconnected components are united at some

higher level abstract machine model after we have verified

all the interrupt handlers.
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sic.masksrNDs “ Masked

sic.irqsrNDs “ n

intrICpsic, NDq “ psic, IRQ nq
(intrmIC )

sic.masksrNDs “ Unmasked

sic.irqsrNDs “ n sic.ι “ H

intrICpsic, NDq “ psicrι Ð ns, IRQ nq
(intruIC)

eoipsicq “ sicrι Ð Hs
(eoi)

Figure 7. Interrupt transition for the IC

ρrEFLAGS.ifs “ Disabled

intrCPUpd, ρ, IRQ nq “ pd, ρq
(intrdCPU)

ρrEFLAGS.ifs “ Enabled d
1 “ drisr Ð trues

tfs
1 “ save_contextpd1rtfss, ρq

d
2 “ d

1rtfs Ð tfs
1s IDTrns “ p

ρ
1 “ ρrEIP Ð psrEFLAGS.if Ð Disableds

intrCPUpd, ρ, IRQ nq “ pd2

, ρ
1q

(intreCPU)

ptfs 1

, ρ
1q “ restore_contextpdrtfssq

d
1 “ drisr Ð falsesrtfs Ð tfs

1s

iretpd, ρq “ pd1

, ρ
1q

(iret)

Figure 8. Interrupt transition for the CPU

Interrupt Transition for Devices As described in Sec. 3,

every raw device has its own transition function δenv speci-

fying how it reacts to the external events. When a particular

transition triggers an interrupt (e.g., see the event arrival and

the green box δenv along the Dev line in the bottom half of

Fig. 6), the device marks an interrupt request bit (irq) in its

internal state.

Interrupt Transition for the IC When the IC receives an

interrupt signal (e.g., see the orange box intrIC along the IC

line in Fig. 6), it first checks whether the particular interrupt

line is masked, and if so, it ignores the interrupt; if not, then

the IC marks the corresponding interrupt line as pending.

The transition rules are defined in Fig. 7. Here, ND is the

corresponding interrupt line number of the device D which

triggered the interrupt; it is fixed by the hardware connection,

and is mapped to IRQ n by the configuration of the IC; the ι

field of sIC indicates which IRQ number is pending; we use H
to indicate that there is no pending interrupt. After the CPU

performs its initial interrupt transition, the IC would receive

the End Of Interrupt (EOI) signal (e.g., see the orange box

eoi along the IC line in Fig. 6), it clears the pending mark on

the interrupt line. The IC also has two primitives mask and

unmask, which set the sic.masksrNDs of the interrupt line

number ND to Masked and Unmasked respectively.

Interrupt Transition for the CPU As soon as the IC marks

an interrupt line as pending, the CPU will perform its own

interrupt transition (e.g., see the purple box intrCPU along

the Kernel/User line in Fig. 6). Let ρ represent the register

set, and d be the logical abstract states in the machine model,

then the interrupt transition of a CPU is shown in Fig. 8.

We use EFLAGS.if to represent the interrupt flag bit in the

EFLAGS register. If interrupts are disabled inside the CPU,

the intrCPU primitive is totally transparent. Otherwise, it

first changes the logical isr state to true, saves the current

context into the end of the trap frame list (d1rtfss), and jumps

to the corresponding IDT entry. Here isr indicates whether

the current machine execution is in the interrupt handling

mode; the save_context function models the hardware

behavior of saving the current context into the abstract state

(d1rtfss), which corresponds to the concrete stack frames in

the memory (abstracted in layers below).

The primitive iret is the counterpart of intrCPU, and

models the behavior of CPU when the interrupt handler

returns. It restores EFLAGS (including the old interrupt flag

bit) from the context and thus also re-enable interrupts. The

restore_context function models the hardware behavior of

restoring the current context from the abstract state (drtfss).

Lemma 1. The function restore_context is a left inverse

of the function save_context.

ptfs, ρq “ restore_contextpsave_contextptfs, ρqq

The CPU also has two primitives sti and cli, which set the

EFLAGS.if bit to Enabled and Disabled respectively.

4.2.2 Abstract Interrupt Model

The low-level machine model, we just described, is not

suitable for reasoning about interrupts, since each of the three

entities has its own disconnected view. For instance, when the

CPU jumps to an IDT entry, it is unaware of the behavior of

the corresponding interrupt handler, and when the IC sends

an interrupt signal to the CPU, it does not know whether the

interrupt will be handled or not. We would like to formally

connect these three different views to derive a nice machine

model that is suitable for reasoning about the end-to-end

behavior of interrupts, i.e., an interrupt triggered by a device

only modifies the particular device’s internal states, and is

transparent to the CPU, the IC, and other devices. To achieve

this, we need a model of the full behavior of the interrupt

handler for each device.

Starting from the above hardware interrupt model, we

incrementally extend a raw device by wrapping it with driver

code related to the interrupt handler, until we have fully

verified the interrupt handler for the device. Each device has

exactly one interrupt handler, which, by our isolation policy,

only modifies the internal states of its particular device, and

cannot itself be interrupted by the same device.
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DISABLENOINTR: Disable with no unhandled interrupt

pe, ℓ1

iq “ nextpℓenv
, ℓiq stmp “ δ

envps, eq
stmp.irq “ false s

1 “ sriFlag Ð 0s

intr_disableps, ℓi, ℓ
envq “ ps1

, ℓiq

DISABLEINTR: Disable with unhandled interrupts

pe, ℓ1

iq “ nextpℓenv
, ℓiq s

1 “ δ
envps, eq

s
1

.irq “ true ps2

, ℓ
2

i q “ intr_handlerps1

, ℓ
1

i, ℓ
envq

ps3

, ℓ
3

i q “ intr_disableps2

, ℓ
2

i , ℓ
envq

intr_disableps, ℓi, ℓ
envq “ ps3

, ℓ
3

i q

ENABLENOINTR: Enable with no pending interrupt

s.irq “ false s
1 “ sriFlag Ð 1s

intr_enableps, ℓi, ℓ
envq “ ps1

, ℓiq

ENABLEINTR: Enable with pending interrupts

s.irq “ true ps1

, ℓ
1

iq “ intr_handlerps, ℓi, ℓ
envq

ps2

, ℓ
2

i q “ intr_enableps1

, ℓ
1

i, ℓ
envq

intr_enableps, ℓi, ℓ
envq “ ps2

, ℓ
2

i q

Figure 9. Transition rules for intr_disable and intr_enable

At this stage, we have the formal specification of the

interrupt handler for a device. Next, through contextual

refinement, we encapsulate the behaviors of interrupts into

two primitives intr_enable and intr_disable at overlay for

the device, which, as shown in the top half of Fig. 6, render

interrupts transparent to the CPU and the IC. The precise

transition rules are given in Fig. 9. Here, iFlag is an abstract

state indicating whether the particular device interrupt is

turned on or off; the next function, as defined at the end of

Sec. 3, returns the next relevant event in ℓenv and a new local

log synchronized with ℓenv up to the returned event.

The intr_disable primitive first synchronizes the device

state with the previously unhandled interrupts then sets

interrupt as disabled. It performs the synchronization by

scanning the log from the last place intr_enable was called,

until we hit the first event that did not trigger any interrupt.

This ensures that subsequent observations on the device (in

the abstract model) will be consistent with those performed

under the hardware interrupt model. Note that intr_disable

is defined recursively: it performs the environment transition

δenv on each event until we hit an event that does not trigger

interrupts (i.e., the DISABLENOINTR case); the stmp state

should be discarded since the device transition stops at the

point where the last unhandled interrupt is handled.

The intr_enable primitive discharges any pending inter-

rupts, then sets interrupt as enabled. This models the physical

machine behavior, wherein interrupts (which can occur while

interrupts are disabled) get delayed until interrupts are re-

enabled. This causes the OS to immediately jump to the

interrupt handler after re-enabling interrupts. This repeats un-

ps1

ic, IRQ nq “ intrICpsic, NDq
pd1

, ρ
1q “ intrCPUpd, ρ, IRQ nq

s
2

ic “ eoips1

icq ps1

D, ℓ
1

iq “ intr_handlerDpsD, ℓi, ℓ
envq

pd2

, ρ
2q “ iretpd1

, ρ
1q

intrpd,m, ρ, sic, sD, ℓi, ℓ
envq “ pd2

,m, ρ
2

, s
2

ic, s
1

D, ℓ
1

iq

Figure 10. Interrupt transition for the whole system, in the

case when an interrupt is triggered by the device D on

interrupt line number ND.

til the device no longer attempts to trigger an interrupt within

the interrupt handler, and normal execution can continue.

With these two new primitives, the CPU transition in the

abstract interrupt model can be completely oblivious of the

device transitions. For example, in the top half of Fig. 6, the

purple box along the Kernel/User line can ignore any event

arrival from a device; the CPU for the Kernel/User line

would only force the device transitions when it wants to make

observations about a device (e.g., by calling intr_disable, then

a high-level device primitive pi, followed by intr_enable).

Contextual Refinement Between Two Interrupt Models

To show the contextual refinement between the two abstrac-

tion layers in Fig. 6, we prove that the behavior of an IRQ

can indeed be made transparent to the CPU and the IC.

Lemma 2. An IRQ is transparent to the CPU and the IC, i.e.,

the transitions triggered by the IRQ only change the states of

the corresponding device that triggered the interrupt.

Proof: When the interrupt is disabled on the CPU or the
particular interrupt line is masked in the IC, the proof is
obvious. When the interrupt is enabled, i.e., the corresponding
interrupt line is routed, not masked, and the EFLAGS.if
register bit is set, the state transition of the whole system is
shown in Fig. 10. Here, the transition intr takes an abstract
state d, the memory m, the register set ρ, the state of interrupt
controller sic, the state of the device sD, a local log of the
device ℓi, the event list ℓenv, and returns appropriate new
system states after the interrupt transition is fully performed.
In this case, we need to show that:

pd1

,m
1

, ρ
1

, s
1

ic, s
1

D, ℓ
1

iq “ intrpd,m, ρ, sic, sD, ℓi, ℓ
envq

ps1

D, ℓ
1

iq “ intr_handlerDpsD, ℓi, ℓ
envq^

d
1 “ d ^ m

1 “ m ^ ρ
1 “ ρ ^ s

1

ic “ sic

This can be proven by composing the interrupt transition rules

of the CPU and the IC with Lemma 1.

Corollary 1. IRQs do not affect the kernel, i.e., they do not

change any of the kernel’s states1.

Nested Interrupts Note that the intrCPU transition in

Fig. 8 disables the interrupt. Thus between intrCPU and

iret in Fig. 10, the interrupt is turned off, which means that

no nested interrupts are allowed. In many cases, supporting

1 Remember, we consider device drivers a part of the device, not the kernel.
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ps1

ic, IRQ nq “ intrICpsic, NDq
pd1

, ρ
1q “ intrCPUpd, ρ, IRQ nq

s
2

ic “ eoips1

icq
s

3

ic “ maskps2

ic, NDq pd2

, ρ
2q “ stipd1

, ρ
1q

ps1

D, ℓ
1

iq “ intr_handlerDpsD, ℓi, ℓ
envq

pd3

, ρ
3q “ clipd2

, ρ
2q

s
4

ic “ unmaskps3

ic , NDq pd4

, ρ
4q “ iretpd3

, ρ
3q

intrpd,m, ρ, sic, sD, ℓi, ℓ
envq “ pd4

,m, ρ
4

, s
4

ic , s
1

D, ℓ
1

iq

Figure 11. Interrupt transition for the whole system when

nested interrupts are allowed.
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Primitive called
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cli iret

Figure 12. The contextual refinement between interrupt

models with nested interrupts.

nested interrupts is critical so that some high priority interrupt

processing is not delayed by the low priority ones. The inter-

rupt transition for the whole system with nested interrupts is

shown in Fig. 11. Here, before the interrupt handler is called,

we mask the interrupt line of the particular device (to make

sure there is no nested interrupt from the same device) and

then turn on the interrupt on the CPU. Accordingly, after

the interrupt handling, we disable the CPU interrupt, then

unmask the particular interrupt line before the iret transition

is performed. We have proved that this model also refines the

same abstract interrupt model (see Fig. 12).

5. Case Study

In this section, we present two case studies of our verified

drivers. First, we present our device model for a serial port,

and show how the relevant drivers are specified and verified.

Next, we present our interrupt controller model. We have

used a single controller in Sec. 4 to ease the presentation.

However, mCertiKOS utilizes two physical interrupt con-

troller devices: the I/O Advanced Programmable Interrupt

Controller (IOAPIC) and the Local Advanced Programmable

Interrupt Controller (LAPIC). In this section, we only present

the IOAPIC device model and the verification of its driver.

5.1 Serial Port

Fig. 13 illustrates a typical serial port with a bounded inter-

nal buffer of size 12. It consists of a RS-232 interface and a

Universal Asynchronous Receiver/Transmitter (UART) con-

troller. RS-232 delivers electrical signals between the UART

controller and the connected cable. The UART controller is

responsible for demodulating received data into digital bits

and storing them into the internal receiving (Rx) buffer, and

also modulating sent data from digital bits and inserting them

into the transmission (Tx) buffer.

The hardware UART controller has many features, and

the mCertiKOS serial driver only utilizes those parts needed

for sending and receiving character strings. When modeling

the serial port, we take the minimalistic approach of only

modeling the set of features utilized by the existing drivers.

The internal state of the serial port device is defined as:

s “ p RxBuf : list char, Ź Receiving buffer

TxBuf : list char, Ź Transmission buffer

irq : bool, Ź Interrupt pending

Connected : bool, Ź Power

Base : Z, Ź Base address

Ź Line and modem configurations:

RxIntEnable : bool, DLAB : bool, Baudrate : Z,

Databits : Z, Stopbits : Z, Parity : ParityType,

FIFO : Z, Modem : Z q.

There are three external events for the serial device. The

serial event Recv s indicates that a string has been re-

ceived. The SendingCompAck event implies the device re-

ceived the acknowledgment that the characters in the trans-

mission buffer have been sent out successfully, while the

NoSendingCompAck events indicates that the sending of

characters in the transmission buffer is not yet complete. We

have configured the serial device to trigger an interrupt when

it receives data (a nonempty string). The device is configured

to not to trigger any interrupt when the transmission buffer

becomes empty, i.e., when the characters in the transmission

buffer are sent out successfully. Thus, before any data is writ-

ten to the serial port, we have to poll the transmission status

until it becomes empty. We have chosen this setup because it

covers both interrupt-triggering and polling events.

Note that, the states s.RxBuf and s.irq are disjoint from

s.TxBuf under the environment transitions in that the former

is for receiving data and the latter is for sending data only.

This allows us to use two separate local logs in our device

model, ℓtx (for transmission) and ℓrx (for receiving), to handle

these possibly commutative events.

Next, in Fig. 14, we define the transition functions δenv

and δCPU, where δenv needs to handle all the possible environ-

mental events against the current state, and δCPU updates the

current state based on the input and output addresses and val-

ues. We use the notations r¨s and ++ to represent a singleton

list and list concatenation, respectively. The function last

takes a length n and a list l, and returns the last n elements

of l as a new list if the length of l exceeds n, and returns the

original list l otherwise. The function is used to model the

action of dropping some elements in the front of the buffer

when the length of the new buffer exceeds the hardware buffer

size (BufSize).
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Figure 13. The hardware connections of a serial port

s.Connected “ true s.RxIntEnable “ true

e “ Recv w w ‰ nil

newBuf “ lastpBufSize, ps.RxBuf++wqq

δ
envps, eq “ srRxBuf Ð newBufsrirq Ð trues

(recvd)

s.Connected “ true s.RxIntEnable “ true

e “ Recv w w “ nil

δ
envps, eq “ s

(norcv)

s.Connected “ true e “ SendingCompAck

δ
envps, eq “ srTxBuf Ð Hs

(sent)

s.Connected “ true e “ NoSendingCompAck

δ
envps, eq “ s

(noack)

s.Connected “ true o “ input n

n “ s.Base ` 0 s.DLAB “ false s.RxBuf “ w

δ
CPUps, oq “ srRxBuf Ð tl wsrirq Ð falses

(read)

s.Connected “ true o “ output n v

n “ s.Base ` 0 s.DLAB “ false s.TxBuf “ w

δ
CPUps, oq “ srTxBuf Ð lastpBufSize, pw++rvsqqs

(write)

Figure 14. The environment and CPU transition functions

By instantiating the device state and transition functions

from our general device model in Sec. 3, we create a concrete

model of the serial port with the read and write primitives.
Next, we show how the drivers are specified and verified

on top of this model. Fig. 15 shows a code fragment of
the function serial_putc. There, the serial_read and
serial_write are the two primitives in the serial hardware
model, while serial_exists is a new primitive (already
verified in some underlay) indicating whether the serial
device is already initialized. The if statement (line 3) prevents
any misuse of serial_putc() before initialization. If the
s.TxBuf buffer is initially empty, or the device receives
a SendingCompAck event during the loop (line 4-6), the
program sends the character c to the serial port (line 8). The

1 void serial_putc (unsigned int c) {

2 unsigned int lsr = 0, i;

3 if ( serial_exists() ){

4 for (i = 0; !lsr && i < 12800; i++) {

5 lsr = serial_read(0x3FD) & 0x20;

6 delay();

7 }

8 serial_write (0x3F8, c);

9 ...

Figure 15. The implementation of serial_putc in C

1 void serial_puts(char * s, int len) {

2 int i = 0;

3 while (i < len && s[i] != 0) {

4 serial_intr_disable();

5 serial_putc(s[i]);

6 serial_intr_enable();

7 i++;

8 }

9 }

Figure 16. The implementation of serial_puts in C

function serial_putc is specified as follows:

s.TxBuf “ H s.serial_exists “ true

s
1 “ srTxBuf Ð rcss

pe, ℓ1

txq “ nextpℓenv
, ℓtxq pe1

, ℓ
2

txq “ nextpℓenv
, ℓ

1

txq

serial_putcps, c, ℓtx, ℓ
envq “ ps1

, ℓ
2

txq

s.TxBuf ‰ H s.serial_exists “ true

pe, ℓ1

txq “ nextpℓenv
, ℓtxq s

1 “ δ
envps, eq

ps2

, ℓ
2

txq “ serial_putcps1

, c, ℓ
1

tx, ℓ
envq

serial_putcps, c, ℓtx, ℓ
envq “ ps2

, ℓ
2

txq

The first rule above shows the case when the transmission

buffer is originally empty. Here, lsr immediately becomes 1

in the first loop iteration, and the character is written to the

transmission buffer in the device right away.

The second rule above shows the case when the initial

transmission buffer is not empty. Here, the device performs

transition based on the received event e, and repeats the same

process until it finally receives the SendingCompAck event.

Then, by definition of δenv in Fig. 14, the transmission buffer

becomes empty and the next recursive call falls into the first

case of the specification.

In Fig. 16, we show the implementation of the driver

function serial_puts that writes a string into the serial device

by repeatedly calling serial_putc for each character in the

input string. Each call to serial_putc is wrapped with calls

to serial_intr_disable and serial_intr_enable (both derived

from those in Fig. 9) to protect the critical section.

Most of our drivers are implemented in ClightX [14],

which is an extension of the CompCert Clight language [23]

with abstract states and primitives. For each driver function,
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Figure 17. The hardware connections and registers of APIC

s “ p ι : optionpZ ˆ Zq, Ź Current handling IRQ

id : Z, Ź IOAPIC ID

maxIntr : Z, Ź Max redirection entries

irqs : Z, Ź Redirected IRQs

masks : array TMask, Ź Interrupt line masks

dests : array Zq Ź Destinations in LAPIC ID

Figure 18. Internal states of IOAPIC

we prove that the concrete implementation satisfies its spec-

ification. Our proof is termination-sensitive; we prove total

correctness of each function. In the case of serial_putc, the

maximum iteration counter (12800) is used solely to enforce

termination. We maintain an invariant on ℓenv that the serial

port receives a SendingCompAck event within 12800 times

the delay() function is called. This assumption is reasonable

because a sending operation that does not complete within

this time frame implies an underlying hardware failure.

The proof is achieved semi-automatically using the big-

step semantics of the CompCert Clight language. The au-

tomation is achieved through Coq tactic libraries including

the verification condition generator, arithmetic solvers, var-

ious theory solvers (partial map, list, etc), and a number of

domain specific libraries which handle items such as device

transitions and logs. The entire automation libraries are im-

plemented in Coq’s tactical language Ltac.

5.2 Interrupt Controller

An IOAPIC device collects interrupts from externally con-

nected devices and distributes them to the corresponding

LAPIC. It can be programmed to mask one or more of these

interrupt lines, if the OS does not wish to receive interrupts

from some device(s).

Fig. 17 illustrates the registers and connections of an

IOAPIC device. Following our minimalistic approach, we

s.ι “ None w “ IRQ n s.irqsrns “ q

s.masksrns “ Unmasked s.destsrns “ d

δ
intrps, wq “ srι Ð Some pq, dqs

(delivered)

s.ι “ None w “ IRQ n

s.masksrns “ Masked

δ
intrps, wq “ s

(masked)

s.ι “ Somepq, dq w “ EOI

s.irqsrns “ q s.destsrns “ d

δ
intrps, wq “ srι Ð Nones

(EOI)

Figure 19. IOAPIC transition rules

1 void ioapic_init(void) {

2 int j = 0, maxintr = ioapic_read(1) >> 24;

3 while(j <= maxintr) {

4 ioapic_write(0x10 + 2 * j, 0x10000 | gsi + j);

5 ioapic_write(0x10 + 2 * j + 1, 0);

6 }

7 }

Figure 20. The implementation of ioapic_init in C

omit logical destination, remote-IRR configuration, and other

features that are not used in our kernel. The internal state of

the IOAPIC is defined in Fig. 18, where ι represents the inter-

rupt request currently being processed and its corresponding

destination LAPIC ID.

As an interrupt controller, the IOAPIC is treated as a spe-

cial device. It does not observe any event from the external

environment, and thus has neither a local log nor an envi-

ronmental transition δenv, but instead, it receives interrupt

requests from the devices and EOI signals from the LAPIC.

We have introduced a special transition function δintr to spec-

ify these interrupt-related behaviors. Accordingly, δintr takes

two kinds of events: IRQ n indicates that an IRQ with num-

ber n is triggered by a device; and EOI states that the latest

interrupt request has been handled by the OS. The interesting

parts of the transition rules for δintr are shown in Fig. 19.

The interrupt related behaviors of the LAPIC are also

modeled, but are omitted here. Note that the models of

IOAPIC and LAPIC can be merged into a heterogeneous

interrupt controller with the simplified transition rules that

are presented in Sec. 4.

In addition to δintr, the IOAPIC also contains the CPU

transition function δCPU used to specify the read/write primi-

tives of IOAPIC, discussed in Sec. 3.

In order to coordinate the IRQs assigned by the kernel

with the external interrupt vector, a kernel usually utilizes the

Global System Interrupt (GSI) number. Thus, the IC is first

extended into a device object with this extra data as part of
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its internal state. Then this IC object is further extended into

more abstract objects by introducing additional driver layers.

At the top level, the IOAPIC device object provides two

primitives, which are used to setup the IRQ mappings in

the IOAPIC. Specifically, ioapic_init initializes the device

when the kernel boots, and ioapic_enable links a given

interrupt line to an LAPIC when a new device is plugged in

or some device changes its working mode.
The code in Fig. 20 shows the initialization of the IOAPIC.

It first reads the size of the interrupt redirection table (line
2), and for each entry, marks the corresponding interrupt to
be edge-triggered, active high, and masked (i.e. not routed to
any LAPIC). The behavior of this function can be described
using the following rule:

l “ s.maxIntr s
1 “ srmasksr1..ls Ð Maskeds

s
2 “ s

1rdestr1..ls Ð 0srι Ð pNone,Noneqs

ioapic_initpsq “ s
2

6. Evaluation and Lessons Learned

What We Have Proved The final theorem we proved for

our kernel is the contextual refinement relation between our

lowest level hardware machine model x86 (which defines the

x86 instructions, the serial device, and the ioapic and lapic

devices, etc.), and the top level machine mCertiKOS (which

defines the abstract system call interface). Let rr¨ssx86 and

rr¨ssmCertiKOS denote the whole-machine semantics of each

machine model, and K denote the (assembly) source code of

mCertiKOS, then the theorem is formalized as:

Theorem 1. @P, rrK’P ssx86 Ď rrP ssmCertiKOS.

The theorem states that for any kernel/user/guest/host

context program P , there is a simulation between program P

running on top of the top level abstract machine mCertiKOS,

and the program P linked with the mCertiKOS source code

K, running atop the bottom-most machine x86.

The abstraction layers also define the data invariants that

are proved to hold at any moment of the whole program

execution. Some example invariants are: the console’s circular

buffer is always wellformed, and the interrupt controller states

are always consistent, etc.

Besides this, our framework automatically derives that all

the system calls always run safely and terminate; there are no

code injection attacks, no buffer overflows, no null pointer

access, no integer overflows, etc.

Isolation We take the existing implementation of the

CertiKOS infrastructure [14], and extend it with our device

and interrupt models. On top of the extended machine model,

we have verified a subset of the device drivers in mCertiKOS

with 10 abstraction layers. Some layers are introduced to

verify concrete driver implementation, while others are in-

troduced purely for logical abstraction (e.g., from a circular

console buffer implementation in memory to an abstract list,

from the hardware interrupt model to the abstract interrupt

model enforcing isolation, etc). These abstraction layers are

inserted into the existing layers of mCertiKOS as a certified

plugin. Thanks to our isolation policy, this does not invalidate

most of the existing proofs of mCertiKOS, and the integration

only required minimal effort, despite the existing mCertiKOS

proofs being unaware of interrupts.

Execution Model and Completeness The majority of our

device drivers are specified and verified at C level, then

compiled by a modified version of the CompCert verified

compiler [14]. The entire kernel (both C and assembly)

source code, together with the source code for the verified

compiler, are extracted into an OCaml program through Coq’s

extraction mechanism. When this program gets executed, it

compiles the extracted C source code into the assembly, and

merges it with the existing assembly kernel source code,

to produce a piece of assembly code corresponding to our

verified kernel. Thus, our deliverable comes with a piece

of assembly code for the entire verified kernel, a high level

deep specification of various kernel behaviors, and a machine

checkable proof object stating the assembly code running on

the actual hardware satisfies the high level specification.

The verified assembly code is then linked with the rest of

kernel code (the boot loader and remaining unverified drivers)

to produce the actual binary image of the OS. The resulting

kernel is practical: it runs on stock x86 hardware and can

successfully boot a guest version of Linux.

Verification Effort Using our general device interface, we

have modeled a serial device and two interrupt controller

devices. On top of these device models, we have verified the

related drivers and interrupt handlers. The entire verification

effort consists of roughly 20k lines of Coq code added to

the existing mCertiKOS verification code base. Regarding

the specification, there are 510 lines of code used to specify

the machine model including the device hardware, and 126

lines of code for specification of the additional system call

interfaces. There are additional 9,829 lines of Coq code that

were used to define auxiliary definitions, lemmas, theorems,

invariants, etc. Note that these 9,829 lines of definitions are

outside our TCB, thus does not need to be trusted. In terms

of proof size, there are 3,671 lines of Coq code for the layer

refinement proofs, 3,589 lines for code verification, 1,802

lines for proving invariants, and 307 lines for linking different

modules together.

The entire verification effort took roughly 7 person months,

the majority of which went into the design and development

of the framework itself, including the extended machine

model, general device framework, the interrupt refinement,

and the tactic libraries for automating most of the non-

intellectual parts of verification task. We anticipate the cost of

verification for future drivers would be dramatically reduced.

Bugs Found An extended version of the mCertiKOS kernel

has been deployed in a practical system that is used in the

context of a large DARPA-funded research project [14]. Yet,
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through the verification of the console driver, we found a

critical bug which may lead to the loss of many characters

received from the serial device. The bug was in the imple-

mentation of the circular console buffer, where, in some rare

cases, the read and write positions to the buffer array overlap,

causing the entire contents in the buffer to be lost. The bug

was caught when we tried to establish the contextual refine-

ment between the concrete implementation of the circular

buffer and its abstract list representation.

Another bug was found in the code for initializing the

serial device, where the interrupt was not configured correctly

by accidentally setting the Interrupt Enable Register (IER)

before the DLAB was unset. This was caught when we tried

to prove the initialization code against its specification.

7. Limitations and Future Work

Our verified kernel assumes correctness of the hardware. In

our device model, we enforce a set of invariants on the list of

external events, which specifies correct hardware behaviors,

e.g., all the 8 bit characters are 8 bits, serial port eventually

transmits its contents, etc. Every function that tries to write

to the serial device first busy-waits reading the device’s

transmission buffer status until it becomes empty. We rely

on the above assumption to prove that the loop eventually

terminates and when it does terminate, the transmission buffer

is empty so we can write to the device again. In the future,

we plan to extend our device drivers to handle the hardware

errors, e.g., when the serial device does not acknowledge the

previous output was successful in the time period specified in

the hardware documentation. In this case, we can add states

to the device state machine to represent those erroneous cases,

and add appropriate error handling code. The process is the

same as a non-faulty device. For example, when the serial

port does not transmit its contents in a certain amount of time,

we can reset the serial port and try again.

Furthermore, as with any verified system, the specification

of hardware devices and the top level system call primitives

have to be trusted. For the hardware specification, we only

model the set of features utilized by the kernel, instead of

modeling the entire hardware manual. Our system calls are

specified at the top abstraction layer, where all implementa-

tion details are hidden. These lead to specifications of a fairly

small size (636 lines of Coq code), limiting the possible room

for errors, and easing the review process.

Sometimes, the compiler may unsoundly optimize away

some memory accesses to the memory mapped registers, e.g.,

a dead read of a memory mapped device register. In this case,

we can use the CompCert built-in calls like volatile_load,

which are not supposed to be optimized away by CompCert.

On the other hand, those operations can also be directly

implemented in assembly in our framework.

Some parts of the TCB from the original mCertiKOS still

remain, including the bootloader, the Coq proof checker, and

the pretty-printing phase of the CompCert compiler.

Verification of Other Drivers Some device drivers (i.e.,

those with underlined names in Fig. 1) in mCertiKOS still

remain unverified. With the new compositional framework

and automation libraries we have developed, we anticipate

that the rest of the drivers can be verified with a reasonable

amount of proof engineering effort.

Among those drivers shown in Fig. 1, the keyboard and

text-mode VGA drivers can be verified easily since they are

not much more complex than the serial driver. The timer and

TSC drivers can also be verified, but mCertiKOS’s assembly

machine must first be parametrized with a good cost model

for x86 instructions.

The disk driver (including the PCI and AHCI drivers) is

the largest driver in our kernel. The mCertiKOS kernel com-

municates with the hard disk through the AHCI controllers

using memory mapped registers (mCertiKOS also communi-

cates with the APIC using memory mapped registers through

the verified drivers). We believe that our device model is

general enough to model required features for these devices

used by the disk driver. We have already started applying our

approach to verify the mCertiKOS disk driver which will also

serve as a basis for building a certified file system.

Concurrency Reasoning Our current certified kernel as-

sumes a runtime environment consisting of a single processor,

and user processes do not preempt each other. Therefore, our

work so far does not support preemptive nor multicore concur-

rency. With general concurrency, different user/kernel threads

may share memory and use a wide variety of synchronization

mechanisms that must also be verified. The techniques pre-

sented in this paper does not provide such support (since the

logical CPUs for devices and the main kernel/user CPU do

not share any state).

We are working on adding general concurrency support

and believe that it is still a good idea to multiplex each CPU

core into multiple logical CPUs. With concurrency support,

we hope that each such logical CPU will have its own (logical)

scheduler, (logical) memory, and collection of kernel or user

threads that may share memory.

Device drivers often do need to modify kernel memory, as

in Linux bottom halves (implemented as low-priority threads)

or deferred procedure calls in Windows. With support of

these “concurrency-aware” logical CPUs, we believe that

our technique can be extended to support low-priority kernel

threads dedicated to serve Linux bottom-halves. The idea is

to treat these device-serving kernel threads (and memory)

as part of the logical CPU dedicated for each device. Since

we are already treating device driver code as if it runs on its

“device” CPU, it is quite natural to place those device-serving

kernel threads on the logical (device) CPUs as well.

8. Related Work

Gu et al. [14] pioneered the compositional proof machinery

that builds certified OS kernels using deep specifications and

certified abstraction layers. We built our certified interruptible
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OS kernel and device drivers using the same methodology.

Our new compositional proof framework, however, adds two

novelties. First, we show how to handle device objects, which

are different from regular mCertiKOS kernel objects. The

states in these new device objects can be updated either by

the kernel (via device methods) or by an external environ-

ment, whereas regular mCertiKOS objects can only be mu-

tated synchronously by the CPU; device objects can also be

asynchronously mutated by the environment; we introduce a

new abstraction of per-device event logs to handle this asyn-

chronicity. Second, we support formal reasoning about kernel

code and device drivers running on multiple logical CPUs

(see Fig. 4) while under Gu et al. [14], all verified code at

each layer must run on a single CPU (see Fig. 2); we treat

the driver stack for each device as if it were running on the

logical CPU dedicated to that device.

Klein et al. [20] were the first to verify the correctness and

security properties of a high-performance L4-family micro-

kernel in a modern mechanized proof assistant [28]. To make

verification easier, they introduced an intermediate executable

specification to hide C specifics. Gu et al. [14] built their certi-

fied mCertiKOS kernel (in Coq) by decomposing it into many

abstraction layers; such fine-grained layer decomposition led

to significantly lower proof and development effort and also

better extensibility. Both kernels, however, lack a realistic

interrupt model, so reasoning about interruptible code is not

supported. The device drivers are not verified in either kernel.

Hawblitzel et al [15] has recently developed a set of new

tools based on the Dafny verifier [22] and Z3 SMT solver [8],

and applied them to build their Ironclad system which in-

cludes a verified kernel (based on Verve [34]), verified drivers,

verified system and crypto libraries, and several applications.

This is another impressive effort that advances the frontier

of system software verification. However, the abstract device

model in Ironclad is too high level to model many hardware

details. The Verisoft team [27] has done a large body of work

aiming to verify an OS kernel with device drivers in a proof

assistant [1, 2, 3], but their stability requirement is too restric-

tive and does not fit well into many hardware devices.

Feng et al. [11, 12] developed a formal Hoare-logic-like

framework for certifying low-level system programs involv-

ing both hardware interrupts and preemptive threads. Using

ideas from concurrent separation logic [26], they showed how

to use ownership-transfer semantics to model enabling and

disabling interrupts and reason about the interaction among

interrupt handlers, context switching, and synchronization li-

braries. They successfully certified a preemptive thread imple-

mentation (as libraries) and a set of common synchronization

primitives in the Coq proof assistant. Their work, however,

did not model any hardware device or interrupt controller,

and their interrupt model is much simpler than ours. They

also only proved the partial correctness property (for their

certified library functions), not the strong contextual refine-

ment property which we proved for our kernel. Of course,

since our current certified kernel does not support preemp-

tive concurrency, we believe there are good opportunities for

combining their techniques (for reasoning about preemptive

concurrency) with our refinement-based approach.

Ryzhyk et al [29, 30] have done much work on the synthe-

sis of device drivers from the specifications. In their approach,

both the device and the interface of the corresponding driver

are modeled as state machines, which communicate via mes-

sages. The generated driver code requires some unverified

run-time support. Furthermore, the correctness of the drivers

is limited to the synthesized C programs, not the compiled

assembly code running on the actual hardware.

In the work of Duan and Regehr [10], a UART driver in

the ARM architecture with interrupt is verified. They have

created an abstract device model which gets plugged into the

instruction set of the ARM6 architecture. In their model, the

device state is mixed into the machine state. Thus, they have

to carefully consider the interleavings between the execution

of the device and the CPU. Albeit a realistic UART model,

the driver only consists of 20 lines of the assembly code.

The framework is later ported to the Cambridge model of the

ARMv7 architecture [9]. Schwarz et al [31] proposed a device

model where all the devices are executed nondeterministically

in parallel with a single core processor. Based on the model,

they have proved several noninterference properties among

the processor and devices which potentially use DMA or

interrupts. Monniaux et al [25] have verified a driver with

a USB OHCI controller model written in C with a static

analyzer. They have showed the verified driver exhibits no

undefined behavior.

There are many lines of work in verifying device drivers

based on model checking. Amani et al [4] proposed an ap-

proach to automatically verify the protocols between drivers

and the operating system. Thomas Witkowski [33] and

Alexey Khoroshilov [18] have verified specific protocols

of some Linux drivers using the model checker SATABS and

DDVERIFY. Kim et al [19] have verified a driver for a flash

memory in NuSMV, Spin, and CBMC. Ball et al [6] have

developed the static analysis tool SLAM, which is included

in the Microsoft Windows Driver Developer Kit.

9. Conclusions

We have presented a novel compositional framework for rea-

soning about the end-to-end functional correctness of device

drivers in a certified interruptible kernel. Our formalization of

interrupts follows the abstraction-layer-based approach and

includes a realistic hardware interrupt model and an abstract

model of interrupts (which is suitable for reasoning about

interruptible code). We have proved that the two interrupt

models are contextually equivalent. We have successfully

extended an existing verified non-interruptible kernel with

our framework and turned it into an interruptible kernel with

verified device drivers. The implementation, specification,

and proofs are all done in a unified framework (realized in
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the Coq proof assistant), yet the mechanized proofs verify

the correctness of the assembly code that can run on the ac-

tual hardware. To the best of our knowledge, this is the first

verified interruptible operating system with device drivers.
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