
Abstract

Memory Consistency and Program Verification

Rodrigo Ferreira

2010

Formal reasoning about concurrent programs is usually done with the assumption

that the underlying memory model is sequentially consistent, i.e. the execution outcome

is equivalent to an interleaving of instructions according to the program order. However,

memory models in reality are weaker in order to accommodate compiler and hardware

optimizations. To simplify the reasoning, many memory models provide a guarantee

that data-race-free programs behave in a sequentially consistent manner, the so-called

DRF-guarantee. The DRF-guarantee removes the burden of reasoning about relaxations

when the program is well-synchronized. It is common belief that the current tools for

program verification, such as Concurrent Separation Logic (CSL), yield DRF-programs. In

principle, they can rely on the DRF-guarantee to ignore memory model issues. However,

there is no rigorous evidence for that, given the fact that the work on memory models is

not founded with a level of formalism adequate for program verification. It is a semantic

gap between the two fields. This thesis provides seminal work towards bridging them

together.

In our presentation, we formalize memory consistency models by giving a parameter-

ized operational semantics to a concurrent programming language. Behaviors of a pro-

gram under a relaxed memory model are defined as behaviors of a set of related programs

under the sequentially consistent model. This semantics is parameterized in the sense that

different memory models can be obtained by using different relations between programs.

We present one particular relation, called command subsumption, that we believe accounts

for many memory models and sequential optimizations. We then show that the derived

relaxed memory model provides the DRF-guarantee, using, as intermediate, an auxiliary

2

mixed-step semantics that is compatible with the subsumption relation. Finally, we bridge

the soundness of CSL, and variations, to our relaxed semantics. We establish the sound-

ness following a standard semantic approach. This shows that, indeed, programs verified

with CSL are race-free and their execution in the relaxed memory model exhibits the same

set of behaviors as in the interleaved semantics.

Memory Consistency and Program Verification

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Rodrigo Ferreira

Dissertation Director: Zhong Shao

April 2010

Copyright c© 2010 by Rodrigo Ferreira

All rights reserved.

Contents

1 Introduction 1

1.1 Memory Models and Language Semantics . 4

1.2 Contributions . 5

1.3 Thesis Outline . 8

2 Preliminaries 9

2.1 Overview . 9

2.2 Parameterized Semantics . 12

2.3 Command Subsumption . 13

2.4 Relaxed Semantics . 14

3 Language Syntax and Semantics 17

3.1 Syntax . 17

3.2 Syntactic Sugar . 19

3.3 Runtime Objects and Footprints . 20

3.4 Program Contexts . 23

3.5 Semantics of Expressions and Actions . 24

3.6 Sequential Semantics . 27

3.7 Interleaved Semantics . 36

3.8 Parameterized Semantics . 42

3.9 Command Subsumption . 44

i

3.10 Relaxed Semantics . 71

4 Relaxed Semantics: Examples 78

5 Proof of Data-Race-Free Guarantee 88

5.1 DRF-guarantee Definition . 88

5.2 Interleaved Mixed-Step Semantics . 91

5.3 Proof of the DRF-guarantee . 126

6 Concurrent Separation Logic 127

6.1 Assertion Language . 128

6.2 Inference Rules . 129

6.3 Soundness . 132

6.3.1 With Regard to the Interleaved Semantics 132

6.3.2 With Regard to the Parameterized Semantics 163

6.3.3 With Regard to the Relaxed Semantics 164

6.4 Extension Rules . 164

6.5 Verification Examples . 167

6.5.1 Compare-And-Swap . 167

6.5.2 Single-Entry Mutex . 168

7 CSL with Partial Permissions 171

7.1 Assertion Language . 173

7.2 Inference Rules . 173

7.3 Soundness . 175

7.3.1 With Regard to the Interleaved Semantics 175

7.3.2 With Regard to the Parameterized Semantics 207

7.3.3 With Regard to the Relaxed Semantics 208

7.4 Verification Examples . 209

7.4.1 Dijkstra Semaphore . 209

ii

7.4.2 Dekker’s Algorithm . 210

7.4.3 Two-Lock Queue . 212

8 Separated Assume-Guarantee Logic 217

8.1 Assertion Language . 217

8.2 Inference Rules . 218

8.3 Soundness . 221

8.3.1 With Regard to the Interleaved Semantics 221

8.3.2 With Regard to the Parameterized Semantics 254

8.3.3 With Regard to the Relaxed Semantics 255

8.4 Extension Rules . 256

8.5 Embedding CSL in SAGL . 260

8.6 Verification Examples . 264

8.6.1 Dekker’s Algorithm . 264

9 Cross Rewriting and Partial Barriers 267

9.1 Cross Rewriting . 267

9.2 Partial Barriers . 269

10 Related Work and Conclusion 273

10.1 Related Work . 274

10.1.1 Memory Consistency Models . 274

10.1.2 Program Verification . 277

10.2 Conclusion . 278

A Notation Summary 280

B Guide to Coq Proofs 283

B.1 Organization . 283

B.2 Contents . 285

iii

Bibliography 323

iv

List of Figures

2.1 DRF-programs: (a) data accesses to private memory; (b) shared-memory

accesses using synchronization; (c) memory ownership transfer during syn-

chronization . 10

2.2 CSL verified programs . 11

2.3 Operational semantics: (a) traditional; (b) parameterized 13

2.4 Command subsumption: it preserves the synchronization operations but

allow great freedom in the rewriting of sequential code 14

2.5 Subsumption requirements: (a) safety preservation; (b) sequential equiva-

lence; (c) termination preservation; (d) footprint non-increase 15

3.1 Syntax . 18

3.2 Syntactic sugar . 20

3.3 Runtime objects . 20

3.4 Footprint . 22

3.5 Auxiliary footprint definitions . 22

3.6 Contexts . 23

3.7 Semantics of l-values, expressions, conditions, and actions 25

3.8 Footprint of l-values, expressions, conditions, and actions 26

3.9 Sequential semantics . 28

3.10 Sequential semantics with footprints . 30

3.11 Interleaved semantics . 36

v

3.12 Interleaved semantics with footprints . 39

3.13 Parameterized semantics . 42

3.14 Evaluation semantics . 45

5.1 Interleaved mixed-step semantics . 92

6.1 Assertions and assertion formulae . 128

6.2 Auxiliary assertion definitions . 129

6.3 CSL inference rules . 130

6.4 Compare-and-swap . 168

6.5 Single-entry mutex . 169

7.1 Program state with permissions . 171

7.2 Assertions and assertion formulae . 173

7.3 Auxiliary assertion definitions . 173

7.4 CSL with partial permissions . 174

7.5 Dijkstra semaphore . 209

7.6 Dekker’s algorithm . 210

7.7 Two-lock concurrent queue . 213

8.1 Binary assertions . 217

8.2 Auxiliary binary assertion definitions . 218

8.3 SAGL inference rules . 219

8.4 Interpretation of CSL into SAGL . 261

9.1 CSL inference rules for partial barriers . 270

vi

Chapter 1

Introduction

For many years, optimizations of sequential code — by both compiler and architecture —

have been the major source of performance improvement of computing systems. Com-

piler transformations, superscalar pipelines, and memory caches are some of the artifacts

used to achieve that. However, these optimizations were designed to preserve the sequen-

tial semantics of the code. When placed in a concurrent context, many of them violate the

interleaved semantics [51, 3] commonly assumed when reasoning about shared-memory

programs.

One example of that is Dekker’s mutual exclusion algorithm [24] as seen below:

Initially x 6= y and [x] = [y] = 0

[x] :=1;

v1 :=[y];

if v1 = 0 then critical section

‖

[y] :=1;

v2 :=[x];

if v2 = 0 then critical section

for which the proof of correctness (see for instance Yu and Shao [79]) is invalidated if

outcome v1 = v2 = 0 is allowed. Surprisingly, this behavior might happen if, for instance,

the compiler decides to reorders the assignment statements on both sides; leading to an

execution where both threads can enter the critical sections. Many other synchronization

algorithms are susceptible to failure in a similar fashion, this is a well-known problem

1

[13, 3].

The semantics of multithreaded languages must rely on a memory consistency model

to rigorously define how threads interact through a shared memory system. The mem-

ory model serves as a contract between the programmer and the compiler/architecture

designer, and is the reflex of a trade-off between programmability and performance. Its

thorough understanding is essential to correctly program a concurrent system.

The intuitive interleaving semantics, many times assumed by people not familiar with

memory consistency issues, is known as sequential consistency (SC). It was defined origi-

nally by Lamport [51] and is, unfortunately, too costly to be adopted as it disables many

optimizations widely used for sequential systems [3]. Memory models then often relax

the read/write ordering and visibility among threads to create room for optimizations,

hence they are referred to as relaxed or weak. As a side effect, they increase the reasoning

complexity required to understand program behavior, usually to a level that cannot be

managed beyond the scope of small code fragments.

To simplify the reasoning, memory models often provide a guarantee that DRF-pro-

grams behave according to the interleaved semantics; the so-called DRF-guarantee. A

DRF-program is a program absent of data-races for all interleaved executions; where a

data-race is defined as two simultaneous concurrent accesses to the same variable, at least

one of them modifying the variable, and at least one of them being unsynchronized.

In order to write a DRF-program, the programmer must enforce that shared-memory

communication is always performed using the specific synchronization primitives pro-

vided by the language/architecture. At the high-level, these primitives usually guarantee

some form of mutual exclusion, e.g. mutexes. At the low-level — such as in our Dekker’s

example where we are implementing mutual exclusion — these primitives will come in

the form of strong operations/barriers that enforce ordering and atomicity of memory

accesses, e.g. compare-and-swap (CAS) instruction.

In our presentation, throughout this thesis, we provide just one primitive for shared

memory access, the atomic block (atomic c). By wrapping a command c inside an atomic

2

block the programmer has the guarantee that it will execute atomically. Furthermore, an

atomic block also acts as a barrier, enforcing that all operations executed prior to it must

be finished before it starts, and all operations following it must wait for it to complete its

execution before they can start.

Back to our example, in order to implement Dekker’s algorithm, the programmer must

wrap conflicting accesses, i.e. accesses that may involve a race, inside an atomic block, as

can be seen below:

Initially x 6= y and [x] = [y] = 0

atomic [x] :=1;

atomic v1 :=[y];

if v1 = 0 then critical section

‖

atomic [y] :=1;

atomic v2 :=[x];

if v2 = 0 then critical section

By doing this, the program becomes DRF, which means that its execution in a relaxed

memory model appears to be sequential consistent, if, of course, we assume that the given

model provides the DRF-guarantee.

In fact, we use atomic blocks because they can generalize many concrete synchroniza-

tion primitives at both high- and low-levels, given that c can be arbitrary. For instance, a

non-reentrant lock operation on a mutex could be implemented as

atomic (while [l] 6=0 do skip; [l] :=1)

and a low-level CAS instruction can be implemented as

atomic (if [l]=v1 then ([l] :=v2; r :=1) else r :=0)

3

1.1 Memory Models and Language Semantics

Until recently, the problem of understanding and describing the semantics supported by

shared-memory programs has been addressed mostly by the computer architecture com-

munity. It has been ignored by the programming language community. However, a lot of

interest was brought to this matter due to the conception of the new Java Memory Model

(JMM) [54].

The JMM brought to attention the fact that — besides the DRF-guarantee — high-level

memory models must preserve the soundness of type safe languages in the presence of

races. Since Java’s type system is not powerful enough to rule out data-races, arbitrary

side-effects from them could violate the type safety of the language and be exploited to

bypass the sand-boxing provided by the runtime system. The majority of the time and

effort taken to define the JMM was spent drawing the line between optimization and

safety. Java also has a universal portability requirement that greatly complicates its mem-

ory model given that it must maintain the performance compromise for many different

architectures, including obsolete ones.

Some consensus was achieved and the JMM was officially released [47], but the topic

is still controversial [11, 21]. Nevertheless, it is undoubtful that important advances were

made in the field. Based on the experiences learned from the JMM, the C++ memory

model [12] was developed. However, it is much simpler. The C++ language is not type-

safe, therefore, it is not unreasonable to assign arbitrary behaviors for raceful programs.

In our setting, we are interested in studying the connection between program verifica-

tion and relaxed memory models. Therefore, we approach the problem from a different

perspective than the JMM. The behavior of raceful programs do not matter from the point

of view of program verification. This derives from the fact that verification already guar-

antees the DRF property, or, in other words, once a program has been verified it is conse-

quently race-free. This holds for Concurrent Separation Logic (CSL) [58, 18] which is the

most promising tool for concurrent program verification at the moment. It also holds for

4

many of its variations [14, 30, 71]. Therefore, we can take race-freedom for granted1.

Our concern is a different one. We have noticed that there is a semantic gap between

concurrent program verification and the semantics of relaxed memory models. The sound-

ness of CSL has been established in many different ways [18, 17, 30, 71, 42]. However, in-

variably, it was established with regard to a dynamic semantics that was either explicitly

sequentially consistent, or grainless, i.e. too abstract to reflect the effects of any relaxed

memory model. This means that — although there is a common belief that CSL-based

verification extends to relaxed memory models — there is no rigorous evidence of that.

On the other hand, the majority of the literature on memory models describe them infor-

mally. In the best case, they are described axiomatically as is the case for the JMM. These

descriptions impose constraints to the set of memory events that might happen during

execution, but the connection with language semantics is vague. They are not well-suited

for applying the standard formal reasoning techniques.

Formal reasoning is typically done with regard to an operational semantics. But, un-

fortunately, the operational approaches to relaxed memory models described in the liter-

ature [15, 16, 46] are very preliminary. We believe the inexistence of a proper operational

semantics is the main obstacle to close the semantic gap.

1.2 Contributions

In this thesis, we formalize memory consistency models by giving a parameterized oper-

ational semantics to a concurrent programming language. Behaviors of a program under

a relaxed memory model are defined as behaviors of a set of related programs under the

sequentially consistent model. That can be observed in the sample prototype rule depicted

below

(c1, c
′′
1)∈Λ 〈c′′1, σ〉 7−→ 〈c′1, σ′〉

[Λ] 〈c1‖c2, σ〉 7−→ 〈c′1‖c2, σ′〉

1In fact, we establish this DRF property formally as part of CSL’s soundness in Chapter 6.

5

where before performing a sequential step, the code c1 is replaced by c′′1 though the rela-

tion Λ. This semantics is parameterized in the sense that different memory models can

be obtained by using different relations between programs. The relation Λ is a parameter

that can be seen as a program transformer, such as a compiler or superscalar pipeline,

reordering/rewriting the code.

The parameterized semantics becomes more interesting once we instantiate Λ with

one particular relation, called command subsumption. Command subsumption is a relation

between a program and its transformed version such that synchronization operations and

the sequential semantics of non-synchronized code segments are preserved. We believe it

accounts for many memory models and sequential optimizations.

Once we have established this relaxed semantics, by instantiating the parameterized

semantics with the command subsumption, we show that it has the DRF-guarantee. In

order to construct the proof, we use, as intermediate, an auxiliary mixed-step semantics

that is compatible with the subsumption relation.

Finally, we bridge the soundness of concurrent separation logic (CSL), and variations,

to our relaxed semantics. We establish the soundness following a standard semantic ap-

proach. This shows that programs verified with CSL are race-free and their execution in

the relaxed memory model exhibits the same set of behaviors as in the interleaved seman-

tics. We highlight our main contributions:

1. We define an interesting interleaved contextual semantics for concurrency (Sec. 3.7),

in which atomic blocks have weak atomicity semantics (i.e. atomic blocks are not

executed in a single shot an might interleave with unprotected, sequential, code).

Also, our semantics does not impose restrictions over the nesting of atomic blocks

and parallel compositions. Moreover, it is furnished with explicit checks for race

conditions based on sequential footprints, which provides a natural way to define

data-race freedom;

2. We introduce a novel, simple and general, structural operational semantics for re-

6

laxed memory models (Sec. 3.8). It captures the elementary view that memory mod-

els are the result of program transformations by compiler or hardware. It is param-

eterized in order to capture different memory models;

3. We define one particular instantiation of the semantics, based on the idea of com-

mand subsumption (Sec. 3.9). Command subsumption is an asymmetric equiva-

lence relation between two commands that captures many sequential optimizations.

It is defined semantically for nonsynchronized portions of the code and it preserves

the relative displacement of synchronization code. We believe that command sub-

sumption should also serve as basis for checking the correctness of sequential com-

piler transformations;

4. We prove the DRF-guarantee of our relaxed semantics (Chapter 5), showing that

all program transformations performed according to the subsumption relation pre-

serve the semantics or DRF-programs. This is performed using an intermediate

mixed-step semantics that is compatible with subsumption and makes the proof a

lot simpler;

5. We work out a version of CSL for our concurrent language (Chapter 6), and we

prove its soundness with regard to the relaxed semantics using a standard seman-

tic approach. Since the dynamic semantics has weak atomicity characteristics, the

proof is unique when compared to the literature. Similar proofs were developed for

two extensions CSL with partial permissions (Chapter 7); and SAGL, the Separated

Assume-Guarantee Logic (Chapter 8), which is an adaptation of our original work

[30] combining assume-guarantee reasoning and separation logic;

6. We formalize most of the technical content of this thesis inside the Coq proof assis-

tant (Appendix B);

In a nutshell, we provide seminal work bridging together two related but nearly un-

connected fields: memory consistency models and concurrent program verification.

7

1.3 Thesis Outline

In Chapter 2, we present the big picture of this work, intuitively, as a informal prelude

to the subsequent, more technical, content of the thesis. In Chapter 3, we introduce the

syntax and semantics of our concurrent programming language, which includes the re-

laxed semantics. In Chapter 4, we provide a set of examples to illustrate and connect our

relaxed semantics to concrete features of memory models. In Chapter 5, we prove the

DRF-guarantee of our relaxed semantics. In Chapter 6, we present a version of CSL for

our concurrent language and we prove its soundness with regard to the relaxed seman-

tics. In Chapter 7, we extend CSL to handle shared read-only accesses by incorporating

partial permissions to the logic. In Chapter 8, we present a version of SAGL for our con-

current language, allowing shared memory to be accessed following the rely-guarantee

methodology. In Chapter 9, we discuss two important extensions of our work: cross-

atomic rewriting and partial barriers which are part of future work. Finally, in Chapter 10,

we present some of the related work and our conclusion. Appendix A contains all the no-

tations used through out this document. Appendix B provides a guide to the structure of

the Coq proofs.

8

Chapter 2

Preliminaries

In this chapter, we provide an informal and intuitive introduction to the technical content

to be presented in the subsequent chapters.

2.1 Overview

This thesis provides seminal work bridging together two related, but nearly unconnected,

fields: memory consistency and program verification. Most of the work on concurrent pro-

gram verification neglects the fact that shared-memory multiprocessors have relaxed mem-

ory consistency models; they typically adopt an interleaving semantics to parallelism. On

the other hand, the work of memory consistency models is not founded with a level of

formalism adequate for formal reasoning. This is a semantic gap between the two fields

in which we base our work.

Relaxed memory models (RMMs) exist because we need to define, formally, the be-

havior of concurrent programs in the presence of sequential optimizations. These opti-

mizations, if applied naively, produce undesirable side-effects in the execution. One such

examples is the Dekker’s algorithm implementation presented in Chapter 1, where a triv-

ial sequential transformation violates mutual exclusion. Furthermore, optimizations may

induce an execution that does not behave according to sequential consistency (SC), i.e. the

9

result cannot be obtained through the sequential interleaving of operations. Such behav-

iors are not intuitive.

Shared EnvironmentPrivate

C

Execution

Private Shared Environment

Synchronization
Execution

C1

C2

C3

(a) (b)

Private Shared Environment

Synchronization
Execution

C2

C3

C1

(c)

Figure 2.1: DRF-programs: (a) data accesses to private memory; (b) shared-memory ac-
cesses using synchronization; (c) memory ownership transfer during synchronization

What we learned in the past, from the literature on memory models, is that we need

to divide operations into two kinds: data operations and synchronization operations. The

optimizer must be aware of this segregation, and take proper cake when the optimization

involves synchronization. Moreover, in order to abstract the effects of the optimizer, one

must observe the data-race-free (DRF) guarantee of the RMM. The DRF-guarantee ensures

that DRF-programs behave under the RMM just like they would under SC. Where a DRF-

program is a program absent of data-races when executed according to SC. And a data-

race is defined as two simultaneous accesses to the same memory location, at least one of

10

them being a write, and either one of them is not synchronized.

As shown in Fig. 2.1, in a DRF program each thread must necessarily be either execut-

ing data operations in its own private memory or it must be performing a shared-memory

operation using a synchronization. The C’s in the figure represent purely sequential por-

tions of the code; while the black ribbons represent synchronization. During synchroniza-

tion, a thread may transfer some memory to or from its own private heap, such as when

a thread dequeues or enqueues a node in a concurrent queue. Note that the separation

between the private memories and shared memory depicted here are merely logical and

not enforced by the hardware.

From the point of view of program verification, we are interested in Concurrent Sep-

aration Logic (CSL) [58] and its variations. CSL is the most popular and promising logic

for concurrency verification nowadays. Its soundness has been established with regard

to a sequential consistent semantics in various different ways. Furthermore, it is common

belief that programs verified using CSL are DRF.

Private Shared Environment

Synchronization

P
P * I

IP’

P’’ I

I

Figure 2.2: CSL verified programs

The intuition behind CSL is shown in Fig. 2.2. In CSL, each thread has its own private

heap which is described by an assertion P. The shared memory has an invariant I. Separa-

tion between private heaps and shared memory is enforced using the separating conjunc-

tion from separation logic. Communication is performed at synchronization points where

the thread temporarily gains exclusive access to the shared memory, performs some oper-

11

ation, and releases the shared memory after restoring its invariant. Even having to restore

the invariant, ownership transfer might happen during synchronization. This is because

the same invariant might describe different shared memories allowing them to have dif-

ferent sizes (e.g. if the invariant is a linked-list of arbitrary size, it will hold for a given

linked list before and after a node is inserted). Note that it is not hard to see that following

CSL, race freedom is an intuitive property.

The main importance of this work is the formal connection between relaxed memory

models and program verification. We provide a soundness proof of CSL with regard to a

relaxed semantics, which is done in the following manner:

1. We define a parameterized semantics, a simple semantics to derive different RMMs;

2. We define subsumption, a relation between a program and its transformed version

such that synchronization operations and the sequential semantics of non-synchroni-

zed code segments are preserved;

3. We combine the parameterized semantics with subsumption in order to obtain our

relaxed semantics, which we use as target for the soundness proof of CSL;

Naturally, the soundness proof relies on the DRF property of CSL-verified programs

and the DRF-guarantee of our relaxed semantics.

2.2 Parameterized Semantics

The idea behind our parameterized semantics is very simple. We incorporate an optimizer

into the operational semantics. At every step, we allow transformations to occur. That can

be seen in Fig. 2.3.

In fact, our parameterized semantics considers the SC execution of all programs re-

lated through Λ. Naturally, we obtain a given memory model by instantiating Λ with its

optimizer. This semantics if very general and can support virtually any transformation.

12

(C,S)

Without code transformations

(C’,S’) (C’’,S’’) . . .

(a)

(C,S) (C’,S’) (C’’,S’) (C’’’,S’’) . . .(C’’’’,S’’)

Λ Λ

ParameterWith code transformations

(b)

Figure 2.3: Operational semantics: (a) traditional; (b) parameterized

2.3 Command Subsumption

The intuition behind command subsumption is that we can freely optimize sequential

code, because, for DRF programs, they will be accessing private memory and, therefore,

the intermediate states of computation do not affect the execution of other threads. It

must, though, maintain the surrounding synchronization operations. This idea is de-

picted in Fig. 2.4, and it is far more general than describing memory ordering of opera-

tions, specific hardware features, or compiler optimizations. Also, subsumption captures

program equivalence semantically. We only look at the program states in the beginning

and end of the sequential blocks, we do not look at the actual code that was executed.

Command subsumption is defined with 4 requirements in mind (depicted in Fig. 2.5):

1. It must preserve sequential safety: the target program only crashes if the source

program also crashes;

2. It must preserve sequential behavior: the target program executes starting from an

initial state and reaches a synchronization, or the end of the program, at a given final

state, only if the source program, executing from the same initial state, reaches the

13

Private Shared Environment

C3

C2

C1

Private Shared Environment

C3’

C1’

C2’

Figure 2.4: Command subsumption: it preserves the synchronization operations but al-
low great freedom in the rewriting of sequential code

same synchronization, at the same final state (and subsequent code must be related

through subsumption);

3. It must preserve sequential termination: the target program only diverges if the

source program also diverges;

4. It must preserve concurrent non-interference: the target program only executes with

a given footprint if the source program executes in a footprint that is not smaller. A

footprint is basically the set of memory locations that a program accesses;

2.4 Relaxed Semantics

By instantiating the parameterized semantics with the command subsumption relation,

we obtain a relaxed semantics. This relaxed semantics accounts for all the sequential

optimizations supported by subsumption. As can be observed from the figures presented

earlier in this chapter, subsumption preserves sequential semantics of unsynchronized

portions of the code, while maintaining the synchronization points. Furthermore, it does

that without creating environmental interference. We hope that, by now, the reader get

the intuition that: (a) if a program is verified with CSL it is DRF; and, (b) if a program is

14

Execution

CRASH!

C1

S

Execution

C2

CRASH!

S

(a)

Execution

C1’

C1

S’

S

Execution

C2

C2’

S’

S

(b)

Execution

DIVERGE ...

C1

S

Execution

C2

DIVERGE ...

S

(c)

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

Execution

C1

S

Execution

C2

S

(d)

Figure 2.5: Subsumption requirements: (a) safety preservation; (b) sequential equiva-
lence; (c) termination preservation; (d) footprint non-increase

15

DRF, the relaxed semantics will only produce behaviors that are achievable by a sequential

interleaving.

The formal definitions of subsumption and the relaxed semantics are presented in

Chapter 3. Examples of subsumption and the relaxed semantics are presented in Chap-

ter 4. The proof of the DRF-guarantee for the relaxed semantics is presented in Chapter 5.

The soundness of CSL, which includes the DRF-property of CSL-verified programs, is

presented in Chapter 6.

16

Chapter 3

Language Syntax and Semantics

In this chapter, we present the programming language used through out this thesis. It is

an imperative language composed of typical features like memory assignment, allocation

and deallocation, and control structures. The language has also concurrency primitives.

Here we present the language syntax and its structural operational semantics. The seman-

tics is presented in four distinct parts:

1. A footprint semantics for the sequential core of the language;

2. A concurrent semantics for interleaved execution;

3. A parameterized semantics that can be instantiated to obtain a given memory model;

4. A relaxed semantics as an instantiation of the parameterized semantics based on the

notion of program subsumption;

3.1 Syntax

The core syntax of the language is presented in Fig. 3.1.

A command c can be either and action (a), an empty command (skip), a control

flow command (if b then c1 else c2 or while b do c), or a concurrency command (c1 ‖ c2

or atomic c). Actions modify either program variables or memory locations. The empty

17

(Command) c ::= a | c1; c2 | skip
| if b then c1 else c2 | while b do c
| c1‖c2 | atomic c

(Action) a ::= ν :=e | ν :=cons(e1, . . . , en) | dispose(e)
(Lvalue) ν ::= v | [e]

(Expression) e ::= i | ν | e1+e2 | −e
(Condition) b ::= z | b1∧b2 | ¬b | e1=e2 | e1<e2

(Variable) v ∈ {a, . . . , z, A, . . . , Z, 0, . . . , 9}+

(Integer) i ∈ {. . . ,−2,−1, 0, 1, 2, . . .}
(Boolean) z ∈ {true, false}

Figure 3.1: Syntax

command skip is a no-operation. The conditional command if b then c1 else c2 tests

whether b holds; if it holds c1 is executed, otherwise c2 is executed. The loop command

executes c while condition b holds, testing the condition before each iteration. The paral-

lel composition command c1 ‖ c2 will perform the execution of both c1 and c2 as parallel

threads; communication or interference between c1 and c2 may happen through shared

variables or memory. The atomic command atomic c executes c in a single-shot; it is used

to group operations accessing a shared resource preventing other threads from seeing it

in a inconsistent state. The atomic command can be viewed as a synchronization block

in high-level languages. But it can be viewed as an atomic operation available at the

low-level, such as a memory write, a memory barrier, or a compare-and-swap (CAS) in-

struction. For instance, we can simulate a low-level compare-and-swap (CAS) operation:

atomic (v := [l]; if v=x then [l] :=y else skip; y :=v)

Higher-level synchronization primitives such as semaphores and mutexes can be imple-

mented using this primitive construct.

An action a can be either an assignment (ν := e), a memory allocation operation (

ν := cons(e1, . . . , en)), or a memory disposal operation (dispose(e)). An assignment

ν :=e evaluates the expression e and assigns the resulting integer to the location (either a

18

variable or a memory address) obtained from the evaluation of the l-value ν. A memory

allocation operation ν := cons(e1, . . . , en) allocates a n-length consecutive block of fresh

memory, assigning to each location i in the block (ranging from 1 to n) the integer value

obtained from evaluating the associated expressions ei; the starting address for the new

block is assigned to the location obtained from the evaluation of the l-value lval. A mem-

ory disposal operation dispose(e) evaluates the expression e obtaining a memory location

to be disposed, making it available to future allocation. (Note that disposal only disposes

a single memory location, naturally, multiple dispose operations can be used to dispose a

block of memory).

A l-value ν can be either a program variable (v) or a memory dereference ([e]).

An expression e can be either an integer constant (i), an l-value (ν), a binary arith-

metic addition operator (e1+e2), or an unary arithmetic negation operator (−e).

A condition b can be either a boolean constant (z), a binary boolean conjunction

operator (b1∧ b2), an unary boolean negation operator (¬b), or a binary arithmetic

comparison operator for equality (e1=e2) or less-than comparison (e1<e2).

Both expressions and conditions can read program variables and the memory, but only

actions can modify them. As a consequence, the evaluation order of expressions, condi-

tions, and l-values in a given action does not matter and thus need not to be specified.

A variable v is a case-sensitive non-empty sequence of letters and decimal digits. i,

count, fly2, 4mat are examples of program variables.

3.2 Syntactic Sugar

In all examples presented in this thesis we make use of some syntactic sugar which is

shown in Fig. 3.2. In this table we have the extended language syntax for the construct

(on the left hand side) and the associated translation into the core syntax as presented in

Fig. 3.1 (on the right hand side).

19

Syntax Expansion
if b then c if b then c else skip
repeat c until b c; while ¬b do c
for ν :=e1 to e2 do c ν :=e1; while ν<e2+1 do (c; ν :=ν+1)

dispose(e, n) dispose((e+1)−1); . . . ; dispose((e+n)−1)

wait b while ¬b do skip
when b do c atomic (while ¬b do skip; c)

〈a〉 atomic a
e1−e2 e1+−e2

b1∨b2 ¬(¬b1∧¬b2)

e1 6=e2 ¬(e1=e2)

e1≤e2 e1<e2+1

e1≥e2 ¬(e1<e2)

e1>e2 ¬(e1<e2+1)

Figure 3.2: Syntactic sugar

3.3 Runtime Objects and Footprints

In order to present the formal language semantics, we need some additional structures to

maintain the runtime execution environment. These structures are presented in Fig. 3.3.

(Config) κ ::= 〈T, σ〉 | abort | race
(State) σ ∈ Location ⇀fin Integer

(Location) ` ∈ Variable + Integer
(ThreadTree) T ::= c | 〈〈T1, T2 〉〉pc | 〈〈T 〉〉ac

Figure 3.3: Runtime objects

A program configuration κ is either a normal configuration (〈T, σ〉) or an abnormal

configuration (abort or race). A normal configuration 〈T, σ〉 is a pair composed of a

thread tree T and a state σ. An abnormal configuration is either an abort or a race which

are special configurations used to represent respectively, memory violation and a race

condition.

A state σ is a finite map from location to integers. A location can be either a program

variable or a memory address. We use a single map to represent both the variable store

and the memory heap. In other words, we treat variables as resources [61].

20

A thread tree T is an intermediate representation of a command. It can be either a

command per se (c), a tree node composed of two subtrees and a command (〈〈T1, T2 〉〉pc

) representing the ongoing execution of a parallel composition, or a tree node composed

of one subtree and a command (〈〈T 〉〉ac) representing an ongoing execution of an atomic

block. In the last two cases, the command c can be seen as a subsequent program contin-

uation.

We also define special classes of thread trees which are called n-atomic thread trees.

An n-atomic thread tree is a tree where there is exactly n top-level ongoing executions of

atomic blocks.

Definition 3.1. A thread tree T is n-atomic, if, and only if, either

• n = 0 and T = c

• or, n = 1 and T = 〈〈T ′ 〉〉ac

• or, n = n1+n2 and T = 〈〈T1, T2 〉〉pc, where T1 is n1-atomic and T2 is n2-atomic

Example 3.2. Here some sample thread trees and their n-atomic class:

• c , atomic c1‖c2 , and 〈〈 atomic c2, atomic c2 〉〉pc , are all 0-atomic

• 〈〈 t 〉〉ac , 〈〈 〈〈 t 〉〉ac1, atomic c2 〉〉pc , and 〈〈 〈〈 〈〈 t1 〉〉ac1, 〈〈 t2 〉〉ac2 〉〉pc 〉〉ac′ , are all 1-atomic

• 〈〈 〈〈 t1 〉〉ac1, 〈〈 t2 〉〉ac2 〉〉pc is 2-atomic

A very special runtime structure is a footprint, in which is required for the presenta-

tion of our sequential semantics (further in Sec. 3.6). A footprint δ represents a memory

footprint of a command, which is the set of memory locations that it accesses. Further-

more, a footprint qualifies the type of access to each location, which can be either a read

or write. We encode a memory footprint as a pair (rs,ws) where both rs and ws are a set

of locations, as can be seen in Fig. 3.4.

In this encoding, a rs represents the set of locations to which a read operation is per-

formed, and a ws represents the set of locations to which a write operation is performed.

21

(Footprint) δ ::= (rs,ws)

(LocSet) rs,ws ⊆ Location

Figure 3.4: Footprint

This is very convenient when constructing the footprint of a program from its text. Nat-

urally, the set of read-only locations is obtained by the subtraction rs \ws ; and the set of

read-or-write locations is obtained by the union of rs and ws . Following the same logic,

in principle, we could obtain the set of write-only locations by the subtraction ws\rs , and

set of read-and-write locations by the intersection of rs and ws .

However, we take a more conservative interpretation of the footprint encoding. For

the purpose of non-interference, it is not very useful to know that a given location is write-

only, as a write-only location is simply as harmful as a read-and-write location. Therefore,

in our interpretation of the encoding, ws should be viewed as the set of read-and-write

locations, and there is no way to tell whether a location is write-only. This is a subtle

difference in the interpretation, which is clearly reflected in the sub-footprint relation, e.g.

({`}, {`}) ⊆ (∅, {`}). The definition of the sub-footprint relation is shown in Fig. 3.5 along

with the other footprint related definitions.

emp
def
= (∅,∅)

δ1 ∪ δ2
def
= (δ1.rs ∪ δ2.rs, δ1.ws ∪ δ2.ws)

δ1 ⊆ δ2
def
= (δ1.rs ⊆ δ2.rs ∪ δ2.ws) ∧ (δ1.ws ⊆ δ2.ws)

δ1 ≡ δ2
def
= δ1 ⊆ δ2 ∧ δ2 ⊆ δ1

δ1 ⊂ δ2
def
= δ1 ⊆ δ2 ∧ δ1 6⊆ δ2

δ1 ~̂ δ2
def
= δ1.ws ∩ (δ2.rs ∪ δ2.ws) = ∅

δ1 ^ δ2
def
= δ1 ~̂ δ2 ∧ δ2 ~̂ δ1

Figure 3.5: Auxiliary footprint definitions

The empty footprint emp is, naturally, defined as a pair of empty sets. The union of

two footprints δ1 ∪ δ2 is defined as the union of their respective rs’s and ws’s. The sub-

footprint relation between two footprints δ1 ⊆ δ2 enforces that the δ1 is “smaller” than

22

δ2, i.e. the set of locations must be smaller or equal and some of the accesses can change

from read-and-write to read-only. We define also footprint equivalence δ1 ≡ δ2 in terms

of the sub-footprint relation, which is clearly distinct from structural equality δ1 = δ2. The

proper sub-footprint relation δ1 ⊂ δ2 is also defined in terms of sub-footprint relation.

The unidirectional non-interference between two footprints δ1 ~̂ δ2 ensures that the set of

read-and-write locations of δ1 does not overlap with the set of read-or-write locations of

δ2; this ensures that any code with footprint δ1 does not affect any code with footprint δ2.

The bidirectional non-interference between two footprints δ1 ^ δ2, naturally, ensures the

unidirectional non-interference in both ways.

3.4 Program Contexts

In this thesis, we present the various operational semantics in a contextual manner. There-

fore we define some useful command and thread tree contexts, as shown in Fig. 3.6.

(SequContext) S ::= • | S; c

(ThrdTreeContext) T ::= • | 〈〈T, T 〉〉pc | 〈〈T,T 〉〉pc | 〈〈T 〉〉ac

Figure 3.6: Contexts

A command context — specified in general by C— is a command with a “hole”. Some

examples of command contexts are: • , •; c , c; • , if b then • , etc. We use the notation

C[c] to obtain a command by replacing the hole in context C by the command c. For

instance, (c1; •)[c2; c3] = c1; (c2; c3). We also overload this notation C1[C2] to obtain a new

context by replacing the hole in the given context C1 by another context C2. For example,

(c1; •)[•; c3] = c1; (•; c3).

A sequential context S is a command context used to capture commands that start with

some redex in the hole and may have a non-empty sequence of commands succeeding it.

Analogous to a command context, a thread tree context T is simply a thread tree with

a hole. We also use the notations T[T] and T1[T2] to replace the hole by a thread tree or

a another thread tree context, respectively.

23

We define special classes of thread tree contexts which are call n-atomic thread three

contexts. A n-atomic thread tree context is a context where produces an environment of

exactly n ongoing executions of an atomic blocks. 0-atomic contexts are those where no

atomic block is being executed.

Definition 3.3. A thread tree context T is n-atomic, if, and only if, either

• n = 0 and T = •

• or, n = n1+n2 and T = 〈〈T′, T 〉〉pc, where T′ is n1-atomic and T is n2-atomic

• or, n = n1+n2 and T = 〈〈T,T′ 〉〉pc, where T′ is n1-atomic and T is n2-atomic

• or, T = 〈〈T′ 〉〉ac where T′ is also n-atomic

3.5 Semantics of Expressions and Actions

Before we present the sequential semantics, we need to present the semantics for the

building blocks of commands: expressions and actions. We also present a function for

computing the footprint of a given expression or action.

In Fig. 3.7, we present the semantics of l-values, expressions, conditions, and actions,

respectively. We overload the notation J−K to represent the semantics of each of those

syntactic categories.

We represent the semantics of l-values, conditions and expressions as a partial function

from states to either a location, an integer value, or a boolean value, respectively. By being

a function, we know it is deterministic, i.e. given the same expression and the same state,

we always get the same result (e.g. ∀e, σ. JeKσ = JeKσ). By being a partial function, we

can leave the result undefined whenever the expression access a location not present in

the domain of the given state. For instance, if σ is empty, then Ji+1Kσ is undefined; but, if

we consider σ being {i 5}, then Ji+1Kσ is 6. Note that there is an abuse of notation in

Fig. 3.7. Given that we are dealing with partial functions, when we write Je1Kσ+Je2Kσ, we

24

JνK ∈ State ⇀ Location
JvKσ

def
= v

J[e]Kσ
def
= JeKσ

JeK ∈ State ⇀ Integer
JiKσ

def
= i

JνKσ
def
=

{
σ(`) when JνKσ = ` and `∈dom(σ)
undefined otherwise

Je1+e2Kσ
def
= Je1Kσ+Je2Kσ

J−eKσ
def
= −JeKσ

JbK ∈ State ⇀ Boolean
JzKσ

def
= z

Jb1∧b2Kσ
def
= Jb1Kσ∧Jb2Kσ

J¬bKσ
def
= ¬JbKσ

Je1=e2Kσ
def
= Je1Kσ=Je2Kσ

Je1<e2Kσ
def
= Je1Kσ<Je2Kσ

JaK ⊆ State× State
Jν :=eK def

= {(σ, σ{` i}) | `∈dom(σ) ∧ JνKσ = ` ∧ JeKσ = i}
Jν :=cons(e1, . . . , en)K

def
= {(σ, σ{` n′+1, n′+1 i1, . . . , n

′+n in})
| `∈dom(σ) ∧ n′+1 6∈dom(σ) ∧ . . . ∧ n′+n 6∈dom(σ)
∧ JνKσ = ` ∧ Je1Kσ = i1 ∧ . . . ∧ JenKσ = in}

Jdispose(e)K def
= {(σ, σ\{i}) | i∈dom(σ) ∧ JeKσ = i)}

Figure 3.7: Semantics of l-values, expressions, conditions, and actions

actually mean i1+i2 when Je1K = i1 and Je2K = i2

undefined when Je1K or Je2K is undefined

On the other hand, we represent the semantics of actions as a relation of states. This

is due to the fact that memory allocation is non-deterministic, therefore, we cannot use a

partial function to express this. The other two actions, assignment and memory disposal,

are deterministic. For instance, assuming σ being {x 42}, all the pairs in the infinite

sequence (σ, {x 1, 1 43}), (σ, {x 2, 2 43}), (σ, {x 3, 3 43}), . . . , belong to

Jx :=cons(x+1)K. The memory location of the newly allocated block is always a positive

integer. Also, since the state is a finite partial map, there is always a positive memory

25

location where a n-length block can be allocated. The only case where memory allocation

fails, i.e. 6 ∃σ′.(σ, σ′) ∈ Jν :=cons(e1, . . . , en)K, is when the l-value fails to be evaluated

for the given state; in other words JνKσ is undefined. The semantics assignment Jν :=eK is

straightforward. For a given state σ, either there is at most one σ′ such that (σ, σ′)∈Jν :=eK.

If there is no such σ′ then the assignment failed. For instance, for σ being {x 42}, the

assignment x :=y+1 fails, i.e. 6 ∃σ′. (σ, σ′)∈Jx :=y+1K. Similarly, assignments y :=x+1 and

[x] :=x+1 also fail for that given state. The semantics of memory disposal Jdispose(e)K is

also straightforward. It removes the memory location obtained by evaluating expression

e from the domain of a given state σ. It fails if JeKσ is undefined, or if JeKσ 6∈ dom(σ) (i.e.

deallocation of a non-allocated memory cell).

Lν ∈ State→ LocSet

Lνσ
def
=

{
{`} when JνKσ = `
∅ otherwise

∆ν ∈ State→ Footprint

∆ν
σ

def
=

{
emp when ν = v
∆e
σ when ν = [e]

∆e ∈ State→ Footprint

∆e
σ

def
=


emp when e = i
∆ν
σ∪(Lνσ,∅) when e = ν

∆e1
σ ∪∆e2

σ when e = e1+e2

∆e′
σ when e = −e′

∆b ∈ State→ Footprint

∆b
σ

def
=


emp when b = z
∆b1
σ ∪∆b2

σ when b = b1∧b2
∆b′
σ when b = ¬b′

∆e1
σ ∪∆e2

σ when b = e1=e2

∆e1
σ ∪∆e2

σ when b = e1<e2

∆a ∈ State→ Footprint

∆a
σ

def
=


∆ν
σ∪∆e

σ∪(∅, Lνσ) when a = ν :=e
∆ν
σ∪∆e1

σ ∪. . .∪∆en
σ ∪(∅, Lνσ) when a = ν :=cons(e1, . . . , en)

∆e
σ∪(∅, L[e]σ) when a = dispose(e)

Figure 3.8: Footprint of l-values, expressions, conditions, and actions

In Fig. 3.8 we present a set of definitions used to calculate the footprint of l-values,

26

expressions, conditions and actions.

First, we define Lν as a function from states to locations sets. This function simply tests

if JνK for the given state σ is defined. If it is defined, then it returns a singleton location

set containing the corresponding location. Otherwise, it returns an empty set. The Lν

function is an auxiliary function that simply calculates the location accessed through a

defined l-value, which in fact will eventually become part of either rs or ws depending on

whether the ν was used as an l-value or as an expression, respectively.

The remaining of the definitions, ∆ν , ∆e, ∆b, and ∆a, are straightforward footprint

calculations, done mostly by taking the union of the footprints of subexpressions. There

are some remarks thought:

1. We do not include the location corresponding to an l-value, Lν , in the computation

of its footprint ∆ν . In fact, we include it later in the ws of a given action or in the

rs of a given expression, depending on whether it was used as an l-value or as an

expression, respectively.

2. We do not include freshly allocated memory cells in the calculation of the footprint

of memory allocation. Since memory allocation is non-deterministic, such behavior

cannot be defined as a function. These cells are treated specially in the semantics, as

it will become clear in the next section.

We also define a function to extract the largest footprint compatible with a state.

Definition 3.4. The function∇(σ) is defined as (∅, dom(σ))

3.6 Sequential Semantics

We are now ready to present a structural operational semantics for the sequential core of

the language. The semantics is shown in Fig. 3.9. It is presented in a contextual fashion,

using for each rule a sequential context S as defined in Fig. 3.6. The sequential context S

defines the places where the execution of primitive commands occur.

27

〈S[a], σ〉 −→ abort if @σ′. (σ, σ′)∈JaK

〈S[a], σ〉 −→ 〈S[skip], σ′〉 if (σ, σ′)∈JaK

〈S[skip; c], σ〉 −→ 〈S[c], σ〉 always

〈S[if b then c1 else c2], σ〉 −→ abort if @z. JbKσ = z

〈S[if b then c1 else c2], σ〉 −→ 〈S[c1], σ〉 if JbKσ = true

〈S[if b then c1 else c2], σ〉 −→ 〈S[c2], σ〉 if JbKσ = false

〈S[while b do c], σ〉 −→ 〈S[if b then (c; while b do c) else skip], σ〉
always

Figure 3.9: Sequential semantics

This semantics is fairly standard, and its understanding should be straightforward.

There are four types of execution rules for this semantics. The first two rules define the

execution of actions. An action a executes by transitioning from state σ to state σ′ and long

as the pair (σ, σ′) belongs to the relation defined by JaK. In this case, skip is also replaces

a in the command text, achieving the effect of removing a from the text. Otherwise, if no

such transition is possible, then the execution aborts by stepping into an abort configura-

tion. The third rule defines the execution for a skip, which in practice on removes it from

the text. The fourth, fifth and sixth rules define the execution of conditional commands. A

conditional command if b then c1 else c2 executes by testing whether the condition b holds

in the current state σ. This is done by testing whether the partial function JbK yields true

or false, choosing, respectively either c1 or c2. If JbK is undefined the execution steps into

an abort configuration. Finally, the last rule defines the execution of a while loop simply

by performing a syntactic translation. It uses a conditional command to test the condition

b and decide whether the loop body must execute one followed by the loop itself, or it it

should cease execution through skip.

Note that in this semantics there are configurations for which the stepping is not de-

fined, such as for those that start with an atomic block or a parallel composition. We

would like to stress that this simply means that the sequential execution does not proceed

from that point on. It does not mean being “stuck” as usually happens in traditional defi-

28

nitions of sequential operational semantics. In our semantics, an unbehaved execution is

represented explicitly as stepping into an abort configuration.

Example 3.5. Here some examples of execution according to the sequential semantics:

• 〈x :=y, {x 0, y 5}〉 −→ 〈skip, {x 5, y 5}〉

• 〈x :=y, {x 0}〉 −→ abort

• 〈x :=y, {y 5}〉 −→ abort

• 〈x := [y], {x 0, y 5, 5 3}〉 −→ 〈skip, {x 3, y 5, 5 3}〉

• 〈x := [y], {x 0, y 5}〉 −→ abort

• 〈x := [y], {x 0, 5 3}〉 −→ abort

• 〈[x] :=y, {x 5, y 3, 5 0}〉 −→ 〈skip, {x 5, y 3, 5 3}〉

• 〈[x] :=y, {x 33, y 3, 5 0}〉 −→ abort

• 〈[x] :=y, {y 3, 33 0}〉 −→ abort

• 〈x :=y+z, {x 5, y 3, z 4}〉 −→ 〈skip, {x 7, y 3, z 4}〉

• 〈x :=cons(5), {x 0}〉 −→ 〈skip, {x 33, 33 5}〉

• 〈x :=cons(5), {x 0}〉 −→ 〈skip, {x 44, 44 5}〉

• 〈x :=cons(5),∅〉 −→ abort

• 〈x :=cons(5, 6), {x 0}〉 −→ 〈skip, {x 44, 44 5, 45 6}〉

• 〈dispose(x), {x 44, 44 5}〉 −→ 〈skip, {x 44}〉

• 〈dispose(x), {x 44}〉 −→ abort

• 〈y :=x; z :=y, {x 5, y 3, z 4}〉 −→ 〈skip; z :=y, {x 5, y 5, z 4}〉

• 〈skip; z :=y, {x 5, y 5, z 4}〉 −→ 〈z :=y, {x 5, y 5, z 4}〉

29

• 〈if y<0 then x :=y else x :=−y, {y 5}〉 −→ 〈x :=−y, {y 5}〉

• 〈if y<0 then x :=y else x :=−y, {x 0}〉 −→ abort

• 〈while x<10 do x :=x+1, {x 0}〉 −→

〈if x<10 then (x :=x+1; while x<10 do x :=x+1) else skip, {x 0}〉

• 〈while x<10 do x :=x+1,∅〉 −→

〈if x<10 then (x :=x+1; while x<10 do x :=x+1) else skip,∅〉

〈S[a], σ〉 −→
∆a
σ

abort if @σ′. (σ, σ′)∈JaK

〈S[a], σ〉 −→
∆a
σ∪δ
〈S[skip], σ′〉 if (σ, σ′)∈JaK ∧ δ = (∅, dom(σ′)\dom(σ))

〈S[skip; c], σ〉 −→
emp

〈S[c], σ〉 always

〈S[if b then c1 else c2], σ〉 −→
∆b
σ

abort if @z. JbKσ = z

〈S[if b then c1 else c2], σ〉 −→
∆b
σ

〈S[c1], σ〉 if JbKσ = true

〈S[if b then c1 else c2], σ〉 −→
∆b
σ

〈S[c2], σ〉 if JbKσ = false

〈S[while b do c], σ〉 −→
emp

〈S[if b then (c; while b do c) else skip], σ〉

always

Figure 3.10: Sequential semantics with footprints

In Fig. 3.10 we present a sequential semantics equivalent to the one shown in Fig. 3.9

adorned with footprints. For each rule in Fig. 3.9 there is a similar corresponding rule in

Fig. 3.10. The ∆ functions used to calculate the footprints are defined in Fig. 3.8. The only

non-trivial footprint calculation is for the second rule where the set of locations present

in σ′ and not present in σ are included in the read-write set. This is due to the presence

of memory allocation for which the newly allocated cells were not included in the read-

write set by the function ∆a, given that there is some non-determinism associated with

their computation by JaK.

Example 3.6. Here the same set of examples from Example 3.5 adorned with footprints:

30

• 〈x :=y, {x 0, y 5}〉 −→
({y},{x})

〈skip, {x 5, y 5}〉

• 〈x :=y, {x 0}〉 −→
({y},{x})

abort

• 〈x :=y, {y 5}〉 −→
({y},{x})

abort

• 〈x := [y], {x 0, y 5, 5 3}〉 −→
({y,5},{x})

〈skip, {x 3, y 5, 5 3}〉

• 〈x := [y], {x 0, y 5}〉 −→
({y,5},{x})

abort

• 〈x := [y], {x 0, 5 3}〉 −→
({y},{x})

abort

• 〈[x] :=y, {x 5, y 3, 5 0}〉 −→
({y,x},{5})

〈skip, {x 5, y 3, 5 3}〉

• 〈[x] :=y, {x 33, y 3, 5 0}〉 −→
({y,x},{33})

abort

• 〈[x] :=y, {y 3, 33 0}〉 −→
({y,x},∅)

abort

• 〈x :=y+z, {x 5, y 3, z 4}〉 −→
({y,z},{x})

〈skip, {x 7, y 3, z 4}〉

• 〈x :=cons(5), {x 0}〉 −→
(∅,{x,33})

〈skip, {x 33, 33 5}〉

• 〈x :=cons(5), {x 0}〉 −→
(∅,{x,44})

〈skip, {x 44, 44 5}〉

• 〈x :=cons(5),∅〉 −→
(∅,{x})

abort

• 〈x :=cons(5, 6), {x 0}〉 −→
(∅,{x,44,45})

〈skip, {x 44, 44 5, 45 6}〉

• 〈dispose(x), {x 44, 44 5}〉 −→
({x},{44})

〈skip, {x 44}〉

• 〈dispose(x), {x 44}〉 −→
({x},{44})

abort

• 〈y :=x; z :=y, {x 5, y 3, z 4}〉 −→
({x},{y})

〈skip; z :=y, {x 5, y 5, z 4}〉

• 〈skip; z :=y, {x 5, y 5, z 4}〉 −→
(∅,∅)

〈z :=y, {x 5, y 5, z 4}〉

• 〈if y<0 then x :=y else x :=−y, {y 5}〉 −→
({y},∅)

〈x :=−y, {y 5}〉

• 〈if y<0 then x :=y else x :=−y, {x 0}〉 −→
({y},∅)

abort

31

• 〈while x<10 do x :=x+1, {x 0}〉 −→
(∅,∅)

〈if x<10 then (x :=x+1; while x<10 do x :=x+1) else skip, {x 0}〉

• 〈while x<10 do x :=x+1,∅〉 −→
(∅,∅)

〈if x<10 then (x :=x+1; while x<10 do x :=x+1) else skip,∅〉

Following the adorned sequential semantics, we can define a multi-step by taking the

union of the footprints of each individual step.

Definition 3.7. A sequential multi-step with footprint −→n

δ
is defined as:

κ −→0
emp

κ

κ −→
δ1

κ′′ κ′′ −→n

δ2
κ′

κ −→n+1

δ1∪δ2
κ′

The reflexive transitive closure is defined as: κ −→∗
δ

κ′ ⇐⇒ ∃n. κ −→n

δ
κ′.

Example 3.8. Here a similar set of examples from Example 3.27 adorned with footprints:

• 〈x := [x], {x 33, 33 44, 44 7}〉 −→0

(∅,∅)
〈x := [x], {x 33, 33 44, 44 7}〉

• 〈x := [x]; x := [x], {x 33, 33 44, 44 7}〉 −→∗
({x,33},{x})

〈x := [x], {x 44, 33 44, 44 7}〉

• 〈x := [x]; x := [x], {x 33, 33 44, 44 7}〉 −→∗
({x,33,44},{x})

〈skip, {x 7, 33 44, 44 7}〉

• 〈x := [x]; x := [x+1], {x 33, 33 44, 44 7}〉 −→∗
({x,33,45},{x})

abort

• 〈while x<10 do x :=x+1, {x 0}〉 −→∗
({x},{x})

〈while x<10 do x :=x+1, {x 2}〉

• 〈while x<10 do x :=x+1, {x 0}〉 −→∗
({x},{x})

〈skip, {x 10}〉

• 〈x :=cons(0); [x+1] :=3, {x 5, 33 0}〉 −→∗
({x},{x,22,23})

abort

• 〈x :=cons(0); [x+1] :=3, {x 5, 33 0}〉 −→∗
({x},{x,32,33})

〈skip, {x 32, 32 0, 33 3}〉

• 〈while x 6=10 do x :=cons(x), {x 0}〉 −→∗
({x},{x,10,33,44})

〈skip, {x 10, 10 44, 33 0, 44 33}〉

32

Now, it should be trivial to establish the equivalence between the plain sequential

semantics of Fig. 3.9 and the adorned sequential semantics of Fig. 3.10.

Remark 3.9. The following holds trivially:

1. κ −→ κ′ ⇐⇒ ∃δ. κ −→
δ
κ′

2. κ −→n κ′ ⇐⇒ ∃δ. κ −→n

δ
κ′

3. κ −→∗ κ′ ⇐⇒ ∃δ. κ −→∗
δ

κ′

Remark 3.10. The following holds:

1. If 〈c, σ〉 −→
δ

abort, then δ 6⊆ ∇(σ)

2. If 〈c, σ〉 −→
δ
〈c′, σ′〉, then δ ⊆ ∇(σ) ∪∇(σ′)

Framing properties. Here are the framing properties [73] of our sequential semantics,

which basically show that any safe code will work the exact same way in a larger context

with the exact same footprint. Also, as expected, assignments do not modify the domain

of the state.

Remark 3.11. If (σ1, σ
′
1)∈JaK, and σ = σ1] σ2, then

1. exists σ′ such that (σ, σ′)∈JaK

2. If (σ, σ′′)∈JaK, then exists σ′′1 such that σ′′ = σ′′1] σ2 and (σ1, σ
′′
1)∈JaK

Remark 3.12. If JbKσ1 = z, and σ = σ1] σ2, then JbKσ = z

Remark 3.13. If (σ, σ′)∈Jν :=eK, then dom(σ) = dom(σ′)

Remark 3.14. If (σ1, σ
′
1)∈JaK, and σ = σ1] σ2, then ∆a

σ = ∆a
σ1

Remark 3.15. If JbKσ1 = z, and σ = σ1] σ2, then ∆b
σ = ∆b

σ1

Lemma 3.16. If ¬〈c, σ1〉 −→ abort, and σ = σ1] σ2, then

33

1. ¬〈c, σ〉 −→ abort

2. If 〈c, σ〉 −→
δ
〈c′, σ′〉, then exists σ′1 such that σ′ = σ′1] σ2 and 〈c, σ1〉 −→

δ
〈c′, σ′1〉

Proof. Assuming (a) ¬〈c, σ1〉 −→ abort and (b) σ = σ1] σ2, we have 2 cases:

• If we assume (c) 〈c, σ〉 −→ abort, we need to show that we reach a contradiction.

Therefore, given (a), we will show that 〈c, σ1〉 −→ abort. From the semantics, and

(c), there are 2 cases:

– We have (d) c = S[a] and (e) @σ′. (σ, σ′) ∈ JaK, and we need to show that

@σ′1. (σ1, σ
′
1)∈ JaK. From (e) and (b), by contradiction, using Remark 3.11 (item

1), we conclude

– We have (d) c = S[if b then c1 else c2] and (e) @z.JbKσ = z, and we need to show

that @z′. JbKσ1 = z′. From (e) and (b), by contradiction, using Remark 3.12, we

conclude

• If (c) 〈c, σ〉 −→
δ
〈c′, σ′〉, from the semantics, there are 5 cases:

– We have (d) c = S[a], (e) c′ = S[skip], (f) δ = ∆a
σ ∪ (∅, dom(σ′)\dom(σ)),

and (g) (σ, σ′) ∈ JaK. From (d), and (a), we know there exists σ′1, such that (h)

(σ1, σ
′
1)∈JaK. From (h), (b), and (g), using Remark 3.11 (item 2), we know there

exists σ′′1 such that (i) σ′ = σ′′1] σ2 and (j) (σ1, σ
′′
1)∈ JaK. We instantiate the goal

with σ′′1 , and remains to show that σ′ = σ′′1] σ2 and 〈c, σ1〉 −→
δ
〈c′, σ′′1〉. From

the semantics, and (j), we have (k) 〈S[a], σ1〉 −→
∆a
σ1
∪δ′
〈S[skip], σ′′1〉, where (l)

δ′ = (∅, dom(σ′′1)\dom(σ1)). From (j) and (b), using Remark 3.14, we have (m)

∆a
σ = ∆a

σ1
. From (i), (b), and (l), we know that (n) δ′ = (∅, dom(σ′)\dom(σ)).

From (k), (d), (e), (m), and (n), we have (o) 〈c, σ1〉 −→
δ
〈c′, σ′′1〉. From (i) and (o),

we conclude

– We have (d) c = S[skip; c′′], (e) c′ = S[c′′], (f) δ = emp, and (g) σ = σ′.

We instantiate the goal with σ1, and remains to show that σ′ = σ1] σ2 and

34

〈c, σ1〉 −→
δ
〈c′, σ1〉. From (g) and (b), we have (h) σ′ = σ1] σ2. From the

semantics, we have (i) 〈S[skip; c′′], σ1〉 −→
emp
〈S[c′′], σ1〉. From (i), (d), (e), and

(f), we have (j) 〈c, σ1〉 −→
δ
〈c′, σ1〉. From (h) and (j), we conclude

– We have (d) c = S[if b then c1 else c2], (e) c′ = S[c1], (f) δ = ∆b
σ, (g) σ = σ′,

and (h) JbKσ = true. We instantiate the goal with σ1, and remains to show that

σ′ = σ1] σ2 and 〈c, σ1〉 −→
δ
〈c′, σ1〉. From (d), and (a), we know there exists

z, such that (i) JbKσ1 = z. From (i) and (b), using Remark 3.12, we have (j)

JbKσ = z. From (h), (j), and (i), we have (k) JbKσ1 = true. From (i) and (b),

using Remark 3.15, we have (l) ∆b
σ = ∆b

σ1
. From (g) and (b), we have (m) σ′ =

σ1]σ2. From the semantics, and (k), we have (n) 〈S[if b then c1 else c2], σ1〉 −→
∆b
σ1

〈S[c1], σ1〉. From (n), (d), (e), (f), and (l), we have (o) 〈c, σ1〉 −→
δ
〈c′, σ1〉. From

(m) and (o), we conclude

– We have (d) c = S[if b then c1 else c2], (e) c′ = S[c2], (f) δ = ∆b
σ, (g) σ = σ′,

and (h) JbKσ = false. We instantiate the goal with σ1, and remains to show that

σ′ = σ1] σ2 and 〈c, σ1〉 −→
δ
〈c′, σ1〉. From (d), and (a), we know there exists

z, such that (i) JbKσ1 = z. From (i) and (b), using Remark 3.12, we have (j)

JbKσ = z. From (h), (j), and (i), we have (k) JbKσ1 = false. From (i) and (b),

using Remark 3.15, we have (l) ∆b
σ = ∆b

σ1
. From (g) and (b), we have (m) σ′ =

σ1]σ2. From the semantics, and (k), we have (n) 〈S[if b then c1 else c2], σ1〉 −→
∆b
σ1

〈S[c2], σ1〉. From (n), (d), (e), (f), and (l), we have (o) 〈c, σ1〉 −→
δ
〈c′, σ1〉. From

(m) and (o), we conclude

– We have (d) c=S[while b do c′′], (e) c′=S[if b then(c′′; while b do c′′)else skip],

(f) δ = emp, and (g) σ = σ′. We instantiate the goal with σ1, and remains to

show that σ′ = σ1] σ2 and 〈c, σ1〉 −→
δ
〈c′, σ1〉. From (g) and (b), we have

(h) σ′ = σ1] σ2. From the semantics, we have (i) 〈S[while b do c′′], σ1〉 −→
emp

〈S[if b then (c′′; while b do c′′) else skip], σ1〉. From (i), (d), (e), and (f), we have

(j) 〈c, σ1〉 −→
δ
〈c′, σ1〉. From (h) and (j), we conclude

35

3.7 Interleaved Semantics

Fig. 3.11 defines the interleaving semantics of concurrent programs. This is also a contex-

tual semantics, where T is used to specify a given thread.

〈T[c], σ〉 7−→ abort if 〈c, σ〉 −→ abort

〈T[c], σ〉 7−→ 〈T[c′], σ′〉 if 〈c, σ〉 −→ 〈c′, σ′〉

〈T[S[c1‖c2]], σ〉 7−→ 〈T[〈〈 c1, c2 〉〉p(S[skip])], σ〉 always

〈T[〈〈 skip, skip 〉〉pc], σ〉 7−→ 〈T[c], σ〉 always

〈T[S[atomic c]], σ〉 7−→ 〈T[〈〈 c 〉〉a(S[skip])], σ〉 if T is 0-atomic

〈T[〈〈 skip 〉〉ac], σ〉 7−→ 〈T[c], σ〉 always

〈T[〈〈T1[c1],T2[c2] 〉〉pc], σ〉 7−→ race if ∃δ1, δ2, c
′
1, σ
′, κ.

〈c1, σ〉 −→
δ1
〈c′1, σ′〉 ∧

〈c2, σ
′〉 −→

δ2
κ ∧ δ1 6~̂ δ2

〈T[〈〈T1[c1],T2[c2] 〉〉pc], σ〉 7−→ race if ∃δ1, δ2, c
′
2, σ
′, κ.

〈c2, σ〉 −→
δ2
〈c′2, σ′〉 ∧

〈c1, σ
′〉 −→

δ1
κ ∧ δ2 6~̂ δ1

Figure 3.11: Interleaved semantics

The first two rules, define the a single step execution of a thread performing a sequen-

tial command. It follows the sequential semantics for the thread, that for the current state

σ either aborts or finds a subsequent state σ′. The single thread stepping is then reflected

in the interleaving semantics in a straightforward manner.

The next four rules are structural rules that syntactically modify the thread tree to

reflect the following operations, respectively: thread fork, thread join, atomic begin, and

atomic end. Despite of the heavy notation, these operations should be simple to follow.

A special mention should be done for the atomic begin operation. For the atomic begin

rule, we require a 0-atomic context differently from all other rules. This is due to the fact

that in our semantics atomic blocks execute in small steps, and we would like to prevent

an atomic block from starting if there is already a concurrent atomic block executing.

36

This ensures that atomic blocks are mutually exclusive in our interleaved semantics. And

since atomic blocks can interleave with non-atomic operations, it resembles the semantics

of weak atomicity [38]. Note also that we do not require any syntactic constraints to the

nesting of atomic blocks and parallel compositions. They can nest just like any other

sequential command of the language.

Remark 3.17. If T is 0- or 1-atomic, and 〈T, σ〉 7−→∗ 〈T ′, σ′〉, then T ′ is 0- or 1-atomic

The last two rules of Fig. 3.11 are the ones that make this semantics peculiar or interest-

ing. These two rules are symmetric, so we will only explain the first one. It defines a race

condition by checking if there is any interference from the stepping of a thread c1 to the

subsequent step of another thread c2, i.e. c1 writes to at least one location read by c2. This

is considered a race condition as the execution of c2 is likely to depend on the scheduling

of c1 prior to it. The program steps into a race configuration if such condition is estab-

lished. Note, however, that the race detection in this semantics is non-deterministic. This

means that even if there is a race condition according to the race rule, the program might

still step using one of the other rules, ignoring this condition. Although this might seem

unintuitive, this is very similar to program safety. An unsafe program does not necessar-

ily aborts because it depends on the non-determinism of the scheduling. Nevertheless,

we can define the safety of a given configuration κ simply as ¬κ 7−→∗ abort. In the same

way, this semantics allows us to define the race freedom of a given configuration κ simply

as ¬κ 7−→∗ race.

Another remark we would like to make is regarding the race conditions, as defined

by the semantics, and memory allocation and deallocation. In order to avoid stepping

into a race configuration, a program has to prevent concurrent allocation and dealloca-

tion. This is because an allocation action interleaved after a deallocation action might

reuse the memory. Following this semantics, they will have overlapping write sets and

be considered a race (it is curious, but this cannot happen if we consider two concurrent

allocations or two concurrent deallocations). Therefore, to avoid that, a program has to

37

enforce mutual exclusion between concurrent allocation and deallocation. This can be

done by proper synchronization of the program. Or by using a simple and straightfor-

ward pattern: always wrap allocation and deallocation inside an atomic block. We will

consider this last approach as our solution to avoid race conditions between memory al-

location and deallocation. It is not enforced by the dynamic semantics of Fig. 3.11, but it

will be enforced syntactically by the static semantics presented further in the subsequent

chapters. We take this approach because we know that these memory management oper-

ations are at a higher level of abstraction, and, in fact, their implementation typically use

some sort of synchronization to handle the reuse of memory. Real implementations have

a bounded free list and more deterministic behavior. Our language is powerful enough to

allow implementing such allocators with relying on the built-in constructs, if this becomes

an issue.

Example 3.18. Here some examples of execution according to the interleaved semantics:

• 〈(x :=y‖y :=x), {x 1, y 2}〉 7−→ 〈〈〈 x :=y, y :=x 〉〉pskip, {x 1, y 2}〉

• 〈〈〈 x :=y, y :=x 〉〉pskip, {x 1, y 2}〉 7−→ 〈〈〈 skip, y :=x 〉〉pskip, {x 2, y 2}〉

• 〈〈〈 x :=y, y :=x 〉〉pskip, {x 1, y 2}〉 7−→ 〈〈〈 x :=y, skip 〉〉pskip, {x 1, y 1}〉

• 〈〈〈 skip, skip 〉〉pskip, {x 1, y 1}〉 7−→ 〈skip, {x 1, y 1}〉

• 〈〈〈 x :=y, y :=x 〉〉pskip, {x 1, y 2}〉 7−→ race

• 〈〈〈 atomic x :=y, y :=x 〉〉pskip, {x 1, y 2}〉 7−→

〈〈〈 〈〈 x :=y 〉〉askip, y :=x 〉〉pskip, {x 1, y 2}〉

• 〈〈〈 〈〈 x :=y 〉〉askip, y :=x 〉〉pskip, {x 1, y 2}〉 7−→

〈〈〈 〈〈 skip 〉〉askip, y :=x 〉〉pskip, {x 2, y 2}〉

• 〈〈〈 〈〈 x :=y 〉〉askip, y :=x 〉〉pskip, {x 1, y 2}〉 7−→

〈〈〈 〈〈 x :=y 〉〉askip, skip 〉〉pskip, {x 1, y 1}〉

38

• 〈〈〈 〈〈 x :=y 〉〉askip, y :=x 〉〉pskip, {x 1, y 2}〉 7−→ race

Following the interleaved semantics, we can define the divergence of a concurrent

program.

Definition 3.19. The divergence of a configuration κ, according to the interleaved seman-

tics, is defined as follows: κ 7−→∞ ⇐⇒ ∀n. ∃κ′. κ 7−→n κ′

〈T[c], σ〉 7−→
δ

abort if 〈c, σ〉 −→
δ

abort

〈T[c], σ〉 7−→
δ
〈T[c′], σ′〉 if 〈c, σ〉 −→

δ
〈c′, σ′〉

〈T[S[c1‖c2]], σ〉 7−→
emp

〈T[〈〈 c1, c2 〉〉p(S[skip])], σ〉 always

〈T[〈〈 skip, skip 〉〉pc], σ〉 7−→
emp

〈T[c], σ〉 always

〈T[S[atomic c]], σ〉 7−→
emp

〈T[〈〈 c 〉〉a(S[skip])], σ〉 if T is 0-atomic

〈T[〈〈 skip 〉〉ac], σ〉 7−→
emp

〈T[c], σ〉 always

〈T[〈〈T1[c1],T2[c2] 〉〉pc], σ〉 7−→
δ1∪δ2

race if ∃c′1, σ′, κ.

〈c1, σ〉 −→
δ1
〈c′1, σ′〉 ∧

〈c2, σ
′〉 −→

δ2
κ ∧ δ1 6~̂ δ2

〈T[〈〈T1[c1],T2[c2] 〉〉pc], σ〉 7−→
δ1∪δ2

race if ∃c′2, σ′, κ.

〈c2, σ〉 −→
δ2
〈c′2, σ′〉 ∧

〈c1, σ
′〉 −→

δ1
κ ∧ δ2 6~̂ δ1

Figure 3.12: Interleaved semantics with footprints

In Fig. 3.12 we present a interleaved semantics equivalent to the one shown in Fig. 3.11

adorned with footprints. Naturally, for each rule in Fig. 3.11 there is a similar correspond-

ing rule in Fig. 3.12.

Following the adorned interleaved semantics, we can define a multi-step by taking the

union of the footprints of each individual step.

39

Definition 3.20. A interleaved multi-step with footprint 7−→n

δ
is defined as:

κ 7−→0
emp

κ

κ 7−→
δ1

κ′′ κ′′ 7−→n

δ2
κ′

κ 7−→n+1

δ1∪δ2
κ′

The reflexive transitive closure is defined as: κ 7−→∗
δ

κ′ ⇐⇒ ∃n. κ 7−→n

δ
κ′.

Now, it should be trivial to establish the equivalence between the plain interleaved

semantics of Fig. 3.11 and the adorned interleaved semantics of Fig. 3.12.

Remark 3.21. The following holds trivially:

1. κ 7−→ κ′ ⇐⇒ ∃δ. κ 7−→
δ
κ′

2. κ 7−→n κ′ ⇐⇒ ∃δ. κ 7−→n

δ
κ′

3. κ 7−→∗ κ′ ⇐⇒ ∃δ. κ 7−→∗
δ

κ′

Framing properties. Here are the framing properties of our interleaved semantics, which

basically show that any safe code will work the exact same way in a larger context. Note

that a safe program that is race free will also be race free in a larger context.

Lemma 3.22. If ¬〈T, σ1〉 7−→ abort, then for all σ and σ2, such that σ = σ1] σ2, we have:

1. ¬〈T, σ〉 7−→ abort

2. If ¬〈T, σ1〉 7−→ race, then ¬〈T, σ〉 7−→ race

3. If 〈T, σ〉 7−→
δ
〈T ′, σ′〉, then exists σ′1 such that σ′ = σ′1] σ2 and 〈T, σ1〉 7−→

δ
〈T ′, σ′1〉

Proof. Assuming (a) ¬〈T, σ1〉 7−→ abort, and (b) σ = σ1] σ2, we have 3 cases:

• We need to show that (c) 〈T, σ〉 7−→ abort is false. We will assume (c) and reach a

contradiction. From (c), and the semantics, we have (d) T = T[c] and (e) 〈c, σ〉 −→

abort. From (e), using Lemma 3.16 (item 1), we know (f) 〈c, σ1〉 −→ abort. From (d),

(f), and the semantics, we have (g) 〈T, σ1〉 −→ abort. We observe that (g) contradicts

(a), and conclude

40

• We assume (c) ¬〈T, σ1〉 7−→ race, and we need to show that (d) 〈T, σ〉 7−→ race is

false. We will assume (d) and reach a contradiction. From (d), and the semantics,

we have 2 cases:

– We have (e) T = T[〈〈T1[c1],T2[c2] 〉〉pc], (f) 〈c1, σ〉 −→
δ1
〈c′1, σ′〉, (g) 〈c2, σ

′〉 −→
δ2

κ,

and (h) δ1 6 ~̂ δ2. From (e), (a), and the semantics, we know (i) ¬〈c1, σ1〉 7−→

abort. From (i) and (f), using Lemma 3.16 (item 2), we know there exists σ′1

such that (j) σ′ = σ′1] σ2 and (k) 〈c1, σ1〉 −→
δ1
〈c′1, σ′1〉. We then have 2 cases:

∗ We consider (l) ¬〈c2, σ
′
1〉 −→ abort. From (l), and Lemma 3.16 (item 1),

we know (m) ¬〈c2, σ
′〉 −→ abort. From (m), and (g), we know (n) κ =

〈c′2, σ′′〉. From (l), and (g), using Lemma 3.16 (item 2), we know there exists

σ′′1 such that (o) σ′′ = σ′′1] σ2 and (p) 〈c2, σ
′
1〉 −→

δ2
〈c′2, σ′′1〉. From (e), (k), (p),

(h), and the semantics, we know (q) 〈T, σ1〉 7−→ race. We observe that (q)

contradicts (c), and conclude

∗ We consider (l) 〈c2, σ
′
1〉 −→ abort. From (l), we know there exists δ′2 such

that (m) 〈c2, σ
′
1〉 −→

δ′2

abort. We then have 2 cases:

1. We consider (n) δ1 6 ~̂ δ′2. From (e), (k), (m), (n), and the semantics,

we know (o) 〈T, σ1〉 7−→ race. We observe that (o) contradicts (c), and

conclude

2. We consider (n) δ1 ~̂ δ′2. From (k), (m), and (n), it is not hard to see

that (o) 〈c2, σ1〉 −→
δ′2

abort. From (e), (o), and the semantics, we know

(p) 〈T, σ1〉 7−→ abort. We observe that (p) contradicts (a), and conclude

– We have (e) T = T[〈〈T1[c1],T2[c2] 〉〉pc], (f) 〈c2, σ〉 −→
δ2
〈c′2, σ′〉, (g) 〈c1, σ

′〉 −→
δ1

κ,

and (h) δ2 6~̂ δ1. The proof is symmetric to the previous case.

• We assume (c) 〈T, σ〉 7−→
δ
〈T ′, σ′〉, and we need to show that then exists σ′1 such that

σ′ = σ′1] σ2 and 〈T, σ1〉 7−→
δ
〈T ′, σ′1〉. From (c), and the semantics, we have 5 cases:

– We consider (d) T = T[c], (e) T ′ = T[c′], and (f) 〈c, σ〉 −→
δ
〈c′, σ′〉. From

41

(d), (a), and the semantics, we know (g) ¬〈c, σ1〉 −→ abort. From (g) and (f),

using Lemma 3.16 (item 2), we know there exists σ′1 such that (h) σ′ = σ′1] σ2

and (i) 〈c, σ1〉 −→
δ
〈c′, σ′1〉. From (d), (e), (i), and the semantics, we know (j)

〈T, σ1〉 7−→
δ
〈T ′, σ′1〉. Instantiating the goal with σ′1, from (h) and (j), we conclude

– We consider (d) T = T[S[c1 ‖ c2]], (e) T ′ = T[〈〈 c1, c2 〉〉pS[skip]], (f) δ = emp,

and (g) σ = σ′. From (d), (e), and the semantics, we know (h) 〈T, σ1〉 7−→
emp

〈T ′, σ1〉. Instantiating the goal with σ1, from (b) and (h), we conclude

– We consider (d) T = T[〈〈 skip, skip 〉〉pc], (e) T ′ = T[c], (f) δ = emp, and (g)

σ = σ′. From (d), (e), and the semantics, we know (h) 〈T, σ1〉 7−→
emp

〈T ′, σ1〉.

Instantiating the goal with σ1, from (b) and (h), we conclude

– We consider (d) T = T[S[atomic c]], (e) T ′ = T[〈〈 c 〉〉aS[skip]], (f) δ = emp, (g)

σ = σ′, and (h) T is 0-atomic. From (d), (e), (h), and the semantics, we know

(h) 〈T, σ1〉 7−→
emp

〈T ′, σ1〉. Instantiating the goal with σ1, from (b) and (h), we

conclude

– We consider (d) T = T[〈〈 skip 〉〉ac], (e) T ′ = T[c], (f) δ = emp, and (g) σ = σ′.

From (d), (e), and the semantics, we know (h) 〈T, σ1〉 7−→
emp
〈T ′, σ1〉. Instantiating

the goal with σ1, from (b) and (h), we conclude

3.8 Parameterized Semantics

In this section, we present our parameterized operational semantics. This semantics al-

lows transformations to the program text to occur during execution. The actual transfor-

mations that happen are defined by a parameter of the semantics, that is why we refer to

it as parameterized.

[Λ] 〈T, σ〉 7−→ κ if ∃T ′. (T, T ′)∈bΛc ∧ 〈T ′, σ〉 7−→ κ

Figure 3.13: Parameterized semantics

42

Figure 3.13 shows the parameterized semantics as a single rule. The stepping relation

takes Λ as a parameter, which is a binary relation between commands

Λ ⊆ Command× Command

however it is lifted to thread trees according to the following definition:

Definition 3.23. The binary relation between thread trees bΛc is defined as follows:

(c1, c2)∈Λ

(c1, c2)∈bΛc

(T1, T2)∈bΛc (T ′1, T
′
2)∈bΛc (c1, c2)∈Λ

(〈〈T1, T ′1 〉〉pc1, 〈〈T2, T ′2 〉〉pc2)∈bΛc

(T1, T2)∈bΛc (c1, c2)∈Λ

(〈〈T1 〉〉ac1, 〈〈T2 〉〉ac2)∈bΛc

The semantics follows the interleaved semantics presented in Fig. 3.11, except that

at any given step, the current thread tree can be replaced by another thread tree related

through the bΛc relation. bΛc allows replacing leaf and continuation commands of thread

trees through the Λ relation. Λ is supposed to provide a set of commands that are related

to the given command using some notion of equivalence. This Λ-based semantics chooses

nondeterministically which thread tree will be chosen from bΛc. Therefore, in order to

reason about this semantics, one needs to consider all possible thread trees related through

a given instantiation of Λ.

Following the parameterized semantics, we can define both a multi-step and the di-

vergence of a concurrent program.

Definition 3.24. A parameterized multi-step [Λ] 7−→n is defined as:

[Λ] κ 7−→0 κ

[Λ] κ 7−→ κ′′ [Λ] κ′′ 7−→n κ′

[Λ] κ 7−→n+1 κ′

The reflexive transitive closure is defined as: [Λ] κ 7−→∗ κ′ ⇐⇒ ∃n. [Λ] κ 7−→n κ′.

Definition 3.25. The divergence of a configuration κ, according to the parameterized se-

mantics, is defined as follows: [Λ] κ 7−→∞ ⇐⇒ ∀n. ∃κ′. [Λ] κ 7−→n κ′

43

Naturally, different instantiations of Λ yield different semantics. As one can see, this

semantics is trivially equivalent to the interleaving semantics shown in Fig. 3.11 once Λ is

instantiated with an identity relation.

Remark 3.26. The following holds trivially:

1. [=] κ 7−→ κ′ ⇐⇒ κ 7−→ κ′

2. [=] κ 7−→n κ′ ⇐⇒ κ 7−→n κ′

3. [=] κ 7−→∗ κ′ ⇐⇒ κ 7−→∗ κ′

4. [=] κ 7−→∞ ⇐⇒ κ 7−→∞

A more interesting relation to be used as an instantiation of Λ is presented in the fol-

lowing section.

3.9 Command Subsumption

In this section, we define a command subsumption relation. We call it subsumption — in-

stead of equivalence — because it is an asymmetric relation. This asymmetry comes from

the fact that programs are non-deterministic. If the set of outcomes of program A is the

same as the set of outcomes of program B, we would say they are equivalent, and one

could be used in the place of the other. However, if the set of outcomes of program B is a

subset of the outcomes of program A, we can no longer replace program B by program A,

but certainly we can replace program A by program B. Thus, we can see program B as a

specialized (or rewritten) version of program A. In our terminology, we say that program

A subsumes program B, or equivalently we say that program B is subsumed by program

A.

Our subsumption relation permits rewriting of non-synchronized portions of a pro-

gram — those in-between atomic operations — freely, as long as it:

1. preserves their safety and termination properties;

44

2. preserves or specializes their sequential semantics;

3. does not increase their footprint.

The first two requirements are necessary to define subsumption even for sequential

programs. The last requirement is necessary for concurrent programs. The intuition be-

hind it is based on the fact that concurrent programs should be well-synchronized. In

other words, accesses to shared memory should be performed through atomic operations;

and non-synchronized operations should be restricted to only access thread-local or read-

only memory. Therefore, the effect of a thread’s non-synchronized code is not visible to

other threads until the next atomic block is reached. The last requirement guarantees that

this property is be preserved by subsumption.

In order to define subsumption, we need two auxiliary definitions — sequential eval-

uation (or big-step) and sequential divergence — as show in Fig. 3.14. A sequential eval-

uation κ ⇓ κ′, starting from configuration κ, executes a finite number of sequential steps

until configuration κ′ is reached where no more sequential steps can be taken. A sequen-

tial divergence κ ⇑, happens when there is always a configuration reachable from κ after

n-steps, for all possible values of n.

κ ⇓ κ′ if κ −→∗ κ′ ∧ ¬(∃κ′′. κ′ −→ κ′′)

κ ⇑ if ∀n. ∃κ′. κ −→n κ′

Figure 3.14: Evaluation semantics

Example 3.27. Here are some examples of evaluation and divergence for the sequential

semantics:

• 〈x := [x]; x := [x], {x 33, 33 44, 44 7}〉 ⇓ 〈skip, {x 7, 33 44, 44 7}〉

• 〈while x<10 do x :=x+1, {x 0}〉 ⇓ 〈skip, {x 10}〉

• 〈while x<10 do skip, {x 0}〉 ⇑

• 〈x :=cons(0); [x+1] :=3, {x 5, 33 0}〉 ⇓ 〈skip, {x 32, 32 0, 33 3}〉

45

• 〈while x 6=10 do x :=cons(x), {x 0}〉 ⇓ 〈skip, {x 10, 10 44, 33 0, 44 33}〉

• 〈while x 6=10 do x :=cons(x), {x 0}〉 ⇑

Example 3.28. Here some examples of sequential evaluation in the presence of non-sequen-

tial commands:

• 〈atomic skip,∅〉 ⇓ 〈atomic skip,∅〉

• 〈atomic skip; x :=3, {x 0}〉 ⇓ 〈atomic skip; x :=3, {x 0}〉

• 〈x :=3; atomic skip, {x 0}〉 ⇓ 〈atomic skip, {x 3}〉

• 〈if x<2 then x :=3 else (atomic y :=x), {x 0}〉 ⇓ 〈skip, {x 3}〉

• 〈if x<2 then x :=3 else (atomic y :=x), {x 2}〉 ⇓ 〈atomic y :=x, {x 2}〉

• 〈while x<10 do (x :=x+1; if x=8 then (x :=5‖x :=6)), {x 0}〉 ⇓

〈(x :=5‖x :=6); while x<10 do (x :=x+1; if x=8 then (x :=5‖x :=6)), {x 8}〉

Properties of evaluation. Given the definition of the sequential semantics (from Fig. 3.9),

it is not hard to see that, after a non-aborting big-step, either we reached the end of the

execution, or we reached a concurrent command.

Remark 3.29. If κ ⇓ κ′, where κ′ = 〈c, σ〉, then either:

1. c = skip;

2. or exists S, c1, and c2, such that c = S[c1‖c2];

3. or exists S, and c′, such that c = S[atomic c′].

Furthermore, if we reached the end of execution or a concurrent command, then we

know that any big-step will be trivially empty, and no divergence is possible.

Remark 3.30. For all κ, where κ = 〈c, σ〉, and c is skip, S[c1 ‖ c2], or S[atomic c′], we

have:

46

1. κ ⇓ κ;

2. for all κ′, if κ ⇓ κ′, then κ = κ′;

3. not κ ⇑;

Trivially, from Remark 3.29 and Remark 3.30 we can establish that after a big-step, any

subsequent big-step will be empty, and no divergence is possible.

Corollary 3.31. If κ ⇓ κ′, then

1. κ′ ⇓ κ′;

2. for all κ′′, if κ′ ⇓ κ′′, then κ′ = κ′′;

3. not κ′ ⇑;

We can also make the following remark regarding command evaluation, which means

that if a command evaluates to itself then the final state must match the initial state; as a

result of an empty evaluation.

Remark 3.32. If 〈c, σ〉 ⇓ 〈c, σ′〉, then σ = σ′

Now we are ready to define the command subsumption relation c1 c2. Note that

in order to have a well-founded inductive definition of subsumption, we had to use in-

dexing. A coinductive definition could also be used, removing the need for indexing.

However, we chose to avoid coinduction given that inductive principles are more com-

mon and far better understood.

Definition 3.33. c1 0 c2 always holds; c1 n+1 c2 holds if, and only if, the following are

true:

1. If 〈c2, σ〉 −→∗ abort, then 〈c1, σ〉 −→∗ abort;

2. If 〈c2, σ〉 ⇓ 〈c′2, σ′〉, then either 〈c1, σ〉 −→∗ abort,

or there exists c′1 such that 〈c1, σ〉 ⇓ 〈c′1, σ′〉 and the following constraints hold:

47

(a) if c′2 = skip, then c′1 = skip;

(b) if c′2 = S2[c′′2 ‖c′′′2], there exist S1, c′′1 and c′′′1 such that

i. c′1 = S1[c′′1 ‖c′′′1];

ii. c′′1 n c
′′
2 ;

iii. c′′′1 n c
′′′
2 ;

iv. S1[skip] n S2[skip];

(c) if c′2 = S2[atomic c′′2], there exist S1 and c′′1 such that

i. c′1 = S1[atomic c′′1];

ii. c′′1 n c
′′
2 ;

iii. S1[skip] n S2[skip];

3. If 〈c2, σ〉 ⇑, then either 〈c1, σ〉 −→∗ abort, or 〈c1, σ〉 ⇑.

4. If 〈c2, σ〉 −→∗
δ2

κ2, then either 〈c1, σ〉 −→∗ abort, or there exists δ1 and κ1 such that

〈c1, σ〉 −→∗
δ1

κ1 and δ2 ⊆ δ1.

We define c1 c2 as ∀n. c1 n c2. We define T1 t
T2 as (T1, T2)∈b c.

Informally, we say c2 is subsumed by c1 if for all input states — afters performing a

sequential big step — c2 aborts only if c1 aborts; or, if c2 completes, then either c1 aborts or

there is a sequential big step taken by c1 that ends in the same state. Also, if c2 completes

the big step and the execution terminates or reaches a concurrent command, there must

be a corresponding command at the end of the big step taken by c1 and the remaining

parts of c2 and c1 still satisfy the relation. We also enforce that if c2 diverges, then either

c1 aborts or it diverges as well. Furthermore, as explained earlier, if c2 executes a finite

number of steps with a given footprint δ2, then either c1 aborts or there must also be a

finite number of steps taken by c1 with a footprint δ1 equal or larger than δ2. Note that for

those cases where c1 aborts, c2 can have any arbitrary behavior.

48

Properties of subsumption. Here we present some important properties of subsump-

tion. The following lemmas are useful if we view c1 c2 as a transformation from c1 to

c2. They aid in the composition of transformation proofs.

Lemmas 3.34 and 3.35 shows that both the identity transformation and the composi-

tion of multiple transformations — given that they obey subsumption — do not violate

subsumption. It is useful when composing smaller transformations into large complex

sequences of transformations.

Lemma 3.34. The relation is reflexive.

Proof. We need to show that for all n and c, c n c. We prove by induction over n. If

n = 0, by Def. 3.33, we conclude. If n > 0, by Def. 3.33, we have 4 cases:

• If (a) 〈c, σ〉 −→∗ abort, we need to show that 〈c, σ〉 −→∗ abort. From (a), we conclude

• If (a) 〈c, σ〉 ⇓ 〈c′, σ′〉, we will show that there exists c′′ such that 〈c, σ〉 ⇓ 〈c′′, σ′〉 and

constraints (2.a) through (2.c) of Def. 3.33 hold over c′ and c′′. Instantiating the goal

with c′, knowing (a), remains to show that:

– If c′ = skip, then c′ = skip, we conclude trivially

– If c′ = S[c1‖c2], then exists S′, c′1, and c′2, such that c′ = S′[c′1‖c′2], c′1 n−1 c1,

c′2 n−1 c2, and S′[skip] n−1 S[skip]. By the induction hypothesis, we

know that (b) c1 k−1 c1, (c) c2 k−1 c2, and (d) S[skip] k−1 S[skip].

Instantiating the goal with S, c1, and c2, from (b), (c), and (d), we conclude

– If c′ = S[atomic c′′], then exists S′ and c′′′, such that c′ = S′[atomic c′′′],

c′′′ n−1 c′′, and S′[skip] n−1 S[skip]. By the induction hypothesis, we

know (b) c′′ k−1 c′′ and (c) S[skip] k−1 S[skip]. Instantiating the goal

with S and c′′, from (b), and (c), we conclude

• If (a) 〈c, σ〉 ⇑, we will show that 〈c, σ〉 ⇑. From (a), we conclude

49

• If (a) 〈c, σ〉 −→∗
δ

κ, we will to show that there exists δ′ and κ′ such that 〈c, σ〉 −→∗
δ′

κ′

and δ ⊆ δ′. We know that (b) δ ⊆ δ. Instantiating the goal with δ and κ, from (a) and

(b), we conclude

Lemma 3.35. The relation is transitive.

Proof. We need to show that for all n, c1, c2, and c3, assuming (a) c1 c2 and (b) c2 c3,

we have c1 n c3. From (a), by Def. 3.33, we know (c) c1 n c2. From (b), by Def. 3.33,

we know (d) c2 n c3. We prove by induction over n, assuming (c) and (d). If n = 0, by

Def. 3.33, we conclude. If n > 0, by Def. 3.33, we have 4 cases:

• If (e) 〈c3, σ〉 −→∗ abort, we need to show that 〈c1, σ〉 −→∗ abort. From (e) and (d), by

Def. 3.33 (item 1), we know (f) 〈c2, σ〉 −→∗ abort. From (f) and (c), by Def. 3.33 (item

1), we conclude

• If (e) 〈c3, σ〉 ⇓ 〈c′3, σ′〉, we need to show that either 〈c1, σ〉 −→∗ abort or there exists

c′1 such that 〈c1, σ〉 ⇓ 〈c′1, σ′〉 and constraints (2.a) through (2.c) of Def. 3.33 hold over

c′1 and c′3. From (e) and (d), by Def. 3.33 (item 2), we have 2 cases:

– If (f) 〈c2, σ〉 −→∗ abort, we will show that 〈c1, σ〉 −→∗ abort. From (f) and (c),

by Def. 3.33 (item 1), we conclude

– We have (f) 〈c2, σ〉 ⇓ 〈c′2, σ′〉 and (g) constraints (2.a) through (2.c) of Def. 3.33

hold over c′2 and c′3. From (f) and (c), by Def. 3.33 (item 2), we have 2 cases:

∗ If 〈c1, σ〉 −→∗ abort, we conclude

∗ We have (h) 〈c1, σ〉 ⇓ 〈c′1, σ′〉 and (i) constraints (2.a) through (2.c) of Def. 3.33

hold over c′1 and c′2. Instantiating the goal with c1, knowing (h), remains to

show that:

· If (j) c′3 = skip, then c′1 = skip. From (j) and (g), we know (k) c′2 = skip.

From (k) and (i), we conclude

· If (j) c′3 = S3[c′′3 ‖ c′′′3], then exists S1, c′′1 , and c′′′1 , such that c′1 = S1[c′′1 ‖

c′′′1], c′′1 n−1 c′′3 , c′′′1 n−1 c′′′3 , and S1[skip] n−1 S3[skip]. From

50

(j) and (g), we know there exists S2, c′′2 , and c′′′2 , such that (k) c′2 =

S2[c′′2 ‖ c′′′2], (l) c′′2 n−1 c
′′
3 , (m) c′′′2 n−1 c

′′′
3 , and (n) S2[skip] n−1

S3[skip]. From (k) and (i), we know there exists S1, c′′1 , and c′′′1 , such

that (o) c′1 = S1[c′′1 ‖ c′′′1], (p) c′′1 n−1 c′′2 , (q) c′′′1 n−1 c′′′2 , and (r)

S1[skip] n−1 S2[skip]. From (p) and (l), by the induction hypothe-

sis, we know that (s) c′′1 n−1 c
′′
3 . From (q) and (m), by the induction

hypothesis, we know that (t) c′′′1 n−1 c′′′3 . From (r) and (n), by the

induction hypothesis, we know that (u) S1[skip] n−1 S3[skip]. In-

stantiating the goal with S1, c′′1 , and c′′′1 , from (o), (s), (t), and (u), we

conclude

· If (j) c′3 =S3[atomic c′′3], then exists S1 and c′′1 such that c′1 =S1[atomic c′′1],

c′′1 n−1 c
′′
3 , and S1[skip] n−1 S3[skip]. From (j) and (g), we know

there exists S2 and c′′2 , such that (k) c′2 = S2[atomic c′′2], (l) c′′2 n−1 c
′′
3 ,

and (m) S2[skip] n−1 S3[skip]. From (k) and (i), we know there ex-

ists S1 and c′′1 , such that (n) c′1 = S1[atomic c′′1], (o) c′′1 n−1 c
′′
2 , and (p)

S1[skip] n−1 S2[skip]. From (o) and (l), by the induction hypothe-

sis, we know that (q) c′′1 n−1 c
′′
3 . From (p) and (m), by the induction

hypothesis, we know that (r) S1[skip] n−1 S3[skip]. Instantiating

the goal with S1 and c′′1 , from (n), (q), and (r), we conclude

• If (e) 〈c3, σ〉 ⇑, we need to show that either 〈c1, σ〉 −→∗ abort or 〈c1, σ〉 ⇑. From (e)

and (d), by Def. 3.33 (item 3), we have 2 cases:

– We have (f) 〈c2, σ〉 −→∗ abort, then we will show 〈c1, σ〉 −→∗ abort. From (f)

and (c), by Def. 3.33 (item 1), we conclude

– We have (f) 〈c2, σ〉 ⇑. From (f) and (c), by Def. 3.33 (item 3), we conclude

• If (e) 〈c3, σ〉 −→∗
δ3

κ3, we need to show that either 〈c1, σ〉 −→∗ abort or there exists δ1

and κ1 such that 〈c1, σ〉 −→∗
δ1

κ1 and δ3 ⊆ δ1. From (e) and (d), by Def. 3.33 (item 4),

51

we have 2 cases:

– We have (f) 〈c2, σ〉 −→∗ abort, then we will show that 〈c1, σ〉 −→∗ abort. From

(f) and (c), by Def. 3.33 (item 1), we conclude

– We have (f) 〈c2, σ〉 −→∗
δ2

κ2 and (g) δ3 ⊆ δ2. From (f) and (c), by Def. 3.33 (item

4), we have 2 cases:

∗ If 〈c1, σ〉 −→∗ abort, we conclude

∗ We have (h) 〈c1, σ〉 −→∗
δ1

κ1 and (i) δ2 ⊆ δ1. From (g) and (i), we know

that (j) δ3 ⊆ δ1. Instantiating the goal with δ1 and κ1, from (h) and (j), we

conclude

Lemma 3.36 ensures that local transformations that obey subsumption also hold in

any larger context. This helps modular proofs of transformation. Note that C does not

have to be an execution context S. It can be any context, i.e. a program with a hole in it.

Lemma 3.36. If c1 c2, then, for all contexts C, C[c1] C[c2].

Proof. By structural induction over C, assuming (a) c1 c2, we have 9 cases:

• We have (b) C = •. From (a), we conclude

• We have (b) C = (C′; c). From (a), using the induction hypothesis, we have (c)

C′[c1] C′[c2]. From (c), using Lemma 3.38, we conclude

• We have (b) C = (c; C′). From (a), using the induction hypothesis, we have (c)

C′[c1] C′[c2]. From (c), using Lemma 3.39, we conclude

• We have (b) C = if b then C′ else c. From (a), using the induction hypothesis, we

have (c) C′[c1] C′[c2]. From (c), using Lemma 3.40, we conclude

• We have (b) C = if b then c else C′. From (a), using the induction hypothesis, we

have (c) C′[c1] C′[c2]. From (c), using Lemma 3.41, we conclude

52

• We have (b) C = while b do C′. From (a), using the induction hypothesis, we have

(c) C′[c1] C′[c2]. From (c), using Lemma 3.42, we conclude

• We have (b) C = (C′ ‖ c). From (a), using the induction hypothesis, we have (c)

C′[c1] C′[c2]. From (c), using Lemma 3.43, we conclude

• We have (b) C = (c ‖ C′). From (a), using the induction hypothesis, we have (c)

C′[c1] C′[c2]. From (c), using Lemma 3.44, we conclude

• We have (b) C = atomic C′. From (a), using the induction hypothesis, we have (c)

C′[c1] C′[c2]. From (c), using Lemma 3.45, we conclude

The proof of Lemma 3.36 uses the following set of lemmas:

Lemma 3.37. If c1 n1
c2, and n2 ≤ n1, then c1 n2

c2

Proof. By induction over n1, assuming (a) c1 n1
c2 and (b) n2 ≤ n1. If n1 = 0, then

n2 = 0. By Def. 3.33, we conclude. If n1 > 0, considering n2 > 0, by Def. 3.33, we have 4

cases:

• If (a) 〈c2, σ〉 −→∗ abort, we need to show that 〈c1, σ〉 −→∗ abort. From (a), by

Def. 3.33 (item 1), we conclude

• If (a) 〈c2, σ〉 ⇓ 〈c′2, σ′〉, we need to show that either 〈c1, σ〉 −→∗ abort or there exists

c′1 such that 〈c1, σ〉 ⇓ 〈c′1, σ′〉 and constraints (2.a) through (2.c) of Def. 3.33 hold over

c′1 and c′2 observing indexing using n2−1. From (a), by Def. 3.33 (items 2.a through

2.c), using the induction hypothesis, we conclude

• If (a) 〈c2, σ〉 ⇑, we need to show that either 〈c1, σ〉 −→∗ abort or 〈c1, σ〉 ⇑. From (a),

by Def. 3.33 (item 3), we conclude

• If (a) 〈c2, σ〉 −→∗
δ2

κ2, we need to show that either 〈c1, σ〉 −→∗ abort or there exists

δ1 and κ1 such that 〈c1, σ〉 −→∗
δ1

κ1 and δ2 ⊆ δ1. From (a), by Def. 3.33 (item 4), we

conclude

53

Lemma 3.38. If c1 c2, then (c1; c) (c2; c)

Proof. From Def. 3.33, we need to show for all n, that (c1; c) n (c2; c). By induction over

n, if n = 0, by Def. 3.33, we conclude. If n > 0, assuming (a) c1 c2, by Def. 3.33, we

have 4 cases to consider:

• If (b) 〈c2; c, σ〉 −→∗ abort, we need to show that 〈c1; c, σ〉 −→∗ abort. From (b), and

the semantics, we have 2 cases:

– We consider (c) 〈c2, σ〉 −→∗ abort. From (a) and (c), by Def. 3.33 (item 1),

we have (d) 〈c1, σ〉 −→∗ abort. From (d), and the semantics, we know (e)

〈c1; c, σ〉 −→∗ abort. From (e), we conclude

– We consider that there exists σ′ such that (c) 〈c2, σ〉 ⇓ 〈skip, σ′〉 and

(d) 〈c, σ′〉 −→∗ abort. From (a) and (c), by Def. 3.33 (item 2.a), we have 2 cases:

∗ We consider (e) 〈c1, σ〉 −→∗ abort. From (e), and the semantics, we know

(f) 〈c1; c, σ〉 −→∗ abort. From (f), we conclude

∗ We consider (e) 〈c1, σ〉 ⇓ 〈skip, σ′〉. From (e), (d), and the semantics, we

know (f) 〈c1; c, σ〉 −→∗ abort. From (f), we conclude

• If (b) 〈c2; c, σ〉 ⇓ 〈c′2, σ′〉, we need to show that either 〈c1; c, σ〉 −→∗ abort or exists c′1

such that 〈c1; c, σ〉 ⇓ 〈c′1, σ′〉 and c′1 and c′2 satisfy constraints 2.a to 2.c of Def. 3.33.

From (b), and the semantics, we have 2 cases:

– We consider (c) 〈c2, σ〉 ⇓ 〈c′′2, σ′〉 and (d) c′2 = (c′′2; c). From (a) and (c), by

Def. 3.33 (item 2), we have 2 cases:

∗ We consider (e) 〈c1, σ〉 −→∗ abort. From (e), and the semantics, we have (f)

〈c1; c, σ〉 −→∗ abort. From (f), we conclude

∗ We consider (e) 〈c1, σ〉 ⇓ 〈c′′1, σ′〉 and (f) constraints 2.b and 2.c of Def. 3.33

hold for c′′1 and c′′2 . From (e), and the semantics, we have (g) 〈c1; c, σ〉 ⇓

54

〈c′′1; c, σ′〉. From (f), using the induction hypothesis, we know (h) con-

straints 2.b and 2.c of Def. 3.33 hold for c′′1; c and c′′2; c. Instantiating the

goal with c′′1; c, from (g), (h), we conclude

– We consider (c) 〈c2, σ〉 ⇓ 〈skip, σ′′〉 and (d) 〈c, σ′′〉 ⇓ 〈c′2, σ′〉. From (a) and (c),

by Def. 3.33 (item 2), we have 2 cases:

∗ We consider (e) 〈c1, σ〉 −→∗ abort. From (e), and the semantics, we have (f)

〈c1; c, σ〉 −→∗ abort. From (f), we conclude

∗ We consider (e) 〈c1, σ〉 ⇓ 〈skip, σ′′〉. From (e), (d), and the semantics, we

have (f) 〈c1; c, σ〉 ⇓ 〈c′2, σ′〉. Using Lemma 3.34, we know (g) constraints 2.a

to 2.c of Def. 3.33 hold for c′2 and c′2. Instantiating the goal with c′2, from (f)

and (g), we conclude

• If (b) 〈c2; c, σ〉 ⇑, we need to show that either 〈c1; c, σ〉 −→∗ abort or 〈c1; c, σ〉 ⇑. From

(b), and the semantics, we have 2 cases:

– We consider (c) 〈c2, σ〉 ⇑. From (a) and (c), by Def. 3.33 (item 3), we have 2

cases:

∗ We consider (d) 〈c1, σ〉 −→∗ abort. From (d), and the semantics, we know

(e) 〈c1; c, σ〉 −→∗ abort. From (e), we conclude

∗ We consider (d) 〈c1, σ〉 ⇑. From (d), and the semantics, we know

(e) 〈c1; c, σ〉 ⇑. From (e), we conclude

– We consider that there exists σ′ such that (c) 〈c2, σ〉 ⇓ 〈skip, σ′〉 and (d) 〈c, σ′〉 ⇑.

From (a) and (c), by Def. 3.33 (item 2.a), we have 2 cases:

∗ We consider (e) 〈c1, σ〉 −→∗ abort. From (e), and the semantics, we know

(f) 〈c1; c, σ〉 −→∗ abort. From (f), we conclude

∗ We consider (e) 〈c1, σ〉 ⇓ 〈skip, σ′〉. From (e), (d), and the semantics, we

know (f) 〈c1; c, σ〉 ⇑. From (f), we conclude

55

• If (b) 〈c2; c, σ〉 −→∗
δ2

κ2, we need to show that either 〈c1; c, σ〉 −→∗ abort or there

exists δ1 and κ1 such that 〈c1; c, σ〉 −→∗
δ1

κ1 and δ2 ⊆ δ1. From (b), and the semantics,

we have 2 cases:

– We consider (c) 〈c2, σ〉 −→∗
δ2

κ′2. From (a) and (c), by Def. 3.33 (item 4), we have

2 cases:

∗ We consider (d) 〈c1, σ〉 −→∗ abort. From (d), and the semantics, we know

(e) 〈c1; c, σ〉 −→∗ abort. From (e), we conclude

∗ We consider that there exists δ′1 and κ′1 such that (d) 〈c1, σ〉 −→∗
δ′1

κ′1 and (e)

δ2 ⊆ δ′1. From (d), and the semantics, we know that there exists κ′′1 such

that (f) 〈c1; c, σ〉 −→∗
δ′1

κ′′1 . Instantiating the goal with δ′1 and κ′′1 , from (f) and

(e), we conclude

– We consider (c) 〈c2, σ〉 −→∗
δ′2

〈skip, σ′〉 and (d) 〈c, σ′〉 −→∗
δ′′2

κ′2, where (e) δ2 =

δ′2 ∪ δ′′2 . From (a) and (c), by Def. 3.33 (item 2.a), we have 2 cases:

∗ We consider (f) 〈c1, σ〉 −→∗ abort. From (f), and the semantics, we know

(g) 〈c1; c, σ〉 −→∗ abort. From (g), we conclude

∗ We consider (f) 〈c1, σ〉 ⇓ 〈skip, σ′〉. From (f), (d), and the semantics, we

know there exists δ′1 and κ′1 such that (g) 〈c1; c, σ〉 −→∗
δ′1∪δ′′2

κ′1 and (h) δ′2 ⊆ δ′1.

Instantiating the goal with δ′1 ∪ δ′′2 and κ′1, from (g) and (h), we conclude

Lemma 3.39. If c1 c2, then (c; c1) (c; c2)

Proof. From Def. 3.33, we need to show for all n, that (c; c1) n (c; c2). By induction over

n, if n = 0, by Def. 3.33, we conclude. If n > 0, assuming (a) c1 c2, by Def. 3.33, we

have 4 cases to consider:

• If (b) 〈c; c2, σ〉 −→∗ abort, then we need to show that 〈c; c1, σ〉 −→∗ abort. From (b),

and the semantics, we have 2 cases:

– We consider (c) 〈c, σ〉 −→∗ abort. From (c), and the semantics, we know (d)

〈c; c1, σ〉 −→∗ abort. From (d), we conclude

56

– We consider (c) 〈c, σ〉 ⇓ 〈skip, σ′〉 and (d) 〈c2, σ
′〉 −→∗ abort. From (a) and (d),

by Def. 3.33 (item 1), we know (e) 〈c1, σ
′〉 −→∗ abort. From (c), (e), and the

semantics, we know (f) 〈c; c1, σ〉 −→∗ abort. From (f), we conclude

• If (b) 〈c; c2, σ〉 ⇓ 〈c′2, σ′〉, we need to show that either 〈c; c1, σ〉 −→∗ abort or exists c′1

such that 〈c; c1, σ〉 ⇓ 〈c′1, σ′〉 and c′1 and c′2 satisfy constraints 2.a to 2.c of Def. 3.33.

From (b), and the semantics, we have 2 cases:

– We consider (c) 〈c, σ〉 ⇓ 〈c′′2, σ′〉 and (d) c′2 = (c′′2; c2). From (c), and the seman-

tics, we have (e) 〈c; c1, σ〉 ⇓ 〈c′′2; c1, σ
′〉. From (a), using the induction hypoth-

esis, we know (f) constraints 2.b and 2.c of Def. 3.33 hold for c′′2; c1 and c′′2; c2.

Instantiating the goal with c′′2; c1, from (e), (f), we conclude

– We consider (c) 〈c, σ〉 ⇓ 〈skip, σ′′〉 and (d) 〈c2, σ
′′〉 ⇓ 〈c′2, σ′〉. From (a) and (d),

by Def. 3.33 (item 2), we have 2 cases:

∗ We consider (e) 〈c1, σ
′′〉 −→∗ abort. From (c), (e), and the semantics, we

have (f) 〈c; c1, σ〉 −→∗ abort. From (f), we conclude

∗ We consider (e) 〈c1, σ
′′〉 ⇓ 〈c′1, σ′〉 and (f) constraints 2.a to 2.c of Def. 3.33

hold for c′1 and c′2. From (c), (e), and the semantics, we have (g) 〈c; c1, σ〉 ⇓

〈c′1, σ′〉. Instantiating the goal with c′1, from (g) and (f), we conclude

• If (b) 〈c; c2, σ〉 ⇑, then we need to show that either 〈c; c1, σ〉 −→∗ abort or 〈c; c1, σ〉 ⇑.

From (b), and the semantics, we have 2 cases:

– We consider (c) 〈c, σ〉 ⇑. From (c), and the semantics, we know (d) 〈c; c1, σ〉 ⇑.

From (d), we conclude

– We consider (c) 〈c, σ〉 ⇓ 〈skip, σ′〉 and (d) 〈c2, σ
′〉 ⇑. From (a) and (d), by

Def. 3.33 (item 3), we have 2 cases:

∗ We consider (e) 〈c1, σ
′〉 −→∗ abort. From (c), (e), and the semantics, we

have (f) 〈c; c1, σ〉 −→∗ abort. From (f), we conclude

57

∗ We consider (e) 〈c1, σ
′〉 ⇑. From (c), (e), and the semantics, we have (f)

∗ ⇑ 〈c; c1, σ〉. From (f), we conclude

• If (b) 〈c; c2, σ〉 −→∗
δ2

κ2, then we need to show that either 〈c; c1, σ〉 −→∗ abort or there

exists δ1 and κ1 such that 〈c; c1, σ〉 −→∗
δ1

κ1 and δ2 ⊆ δ1. From (b), and the semantics

we have 2 cases:

– We consider (c) 〈c, σ〉 −→∗
δ2
〈c′, σ′〉 and (d) κ2 = 〈c′; c2, σ

′〉. From (c), and the

semantics, we know (e) 〈c; c1, σ〉 −→∗
δ2
〈c′; c1, σ

′〉. We also know (f) δ2 ⊆ δ2.

Instantiating the goal with δ2 and 〈c′; c1, σ
′〉, from (e) and (f), we conclude

– We consider (c) 〈c, σ〉 −→∗
δ′2

〈skip, σ′〉, (d) 〈c2, σ
′〉 −→∗

δ′′2

κ2, and (e) δ2 = δ′2 ∪ δ′′2 .

From (a) and (d), by Def. 3.33 (item 4), we know there exists δ′′1 and κ1 such that

(f) 〈c1, σ
′〉 −→∗

δ′′1

κ1 and (g) δ′′2 ⊆ δ′′1 . From (c), (f), and the semantics, we know

(h) 〈c; c1, σ〉 −→∗
δ′2∪δ′′1

κ1. From (g), we know (i) δ′2 ∪ δ′′2 ⊆ δ′2 ∪ δ′′1 . Instantiating the

goal with δ′2 ∪ δ1 and κ1, from (h) and (i), we conclude

Lemma 3.40. If c1 c2, then (if b then c1 else c) (if b then c2 else c)

Proof. From Def. 3.33, we need to show that for all n, we have (if b then c1 else c) n

(if b then c2 else c). By induction over n, if n = 0, by Def. 3.33, we conclude. If n > 0,

assuming (a) c1 c2, by Def. 3.33, we have 4 cases to consider:

• If (b) 〈if b then c2 else c, σ〉 −→∗ abort, we need to show that

〈if b then c1 else c, σ〉 −→∗ abort. From (b), and the semantics, we have 3 cases:

– We consider (c) if b then c2 else c −→ abort. From (c), and the semantics, we

know (d) @z. JbKσ = z. From (d), and the semantics, we know

(e) if b then c1 else c −→ abort. From (e), we conclude

– We consider (c) if b then c2 else c −→ 〈c2, σ〉, (d) JbKσ = true, and (e) 〈c2, σ〉 −→∗

abort. From (d), and the semantics, we know (f) if b then c1 else c −→ 〈c1, σ〉.

From (a) and (e), by Def. 3.33 (item 1), we have (g) 〈c1, σ〉 −→∗ abort. From (f),

58

(g), and the semantics, we know (h) if b then c1 else c −→∗ abort. From (h), we

conclude

– We consider (c) if b then c2 else c −→ 〈c, σ〉, (d) JbKσ = false, and (e) 〈c, σ〉 −→∗

abort. From (d), and the semantics, we know (f) if b then c1 else c −→ 〈c, σ〉.

From (f), (e), and the semantics, we know (g) if b then c1 else c −→∗ abort.

From (g), we conclude

• If (b) 〈if b then c2 else c, σ〉 ⇓ 〈c′2, σ′〉, we need to show that either

〈if b then c1 else c, σ〉 −→∗ abort or exists c′1 such that 〈if b then c1 else c, σ〉 ⇓ 〈c′1, σ′〉

and constraints 2.a to 2.c of Def. 3.33 hold for c′1 and c′2. From (b), and the semantics,

we have 2 cases:

– We consider (c) 〈if b then c2 else c, σ〉 −→ 〈c2, σ〉, (d) JbKσ = true, and (e)

〈c2, σ〉 ⇓ 〈c′2, σ′〉. From (a) and (e), by Def. 3.33 (item 2), we have 2 cases:

∗ We consider (f) 〈c1, σ〉 −→∗ abort. From (d), and the semantics, we have (g)

〈if b then c1 else c, σ〉 −→ 〈c1, σ〉. From (g), (f), and the semantics, we have

(h) 〈if b then c1 else c, σ〉 −→∗ abort. From (h), we conclude

∗ We consider that exists c′1 such that (f) 〈c1, σ〉 ⇓ 〈c′1, σ′〉 and (g) constrains

2.a to 2.c of Def. 3.33 hold for c′1 and c′2. From (d), and the semantics, we

have (h) 〈if b then c1 else c, σ〉 −→ 〈c1, σ〉. From (g), (f), and the semantics,

we have (i) 〈if b then c1 else c, σ〉 ⇓ 〈c′1, σ′〉. Instantiating the goal with c′1,

from (i) and (g), we conclude

– We consider (c) 〈if b then c2 else c, σ〉 −→ 〈c, σ〉, (d) JbKσ = false, and (e) 〈c, σ〉 ⇓

〈c′2, σ′〉. From (d), and the semantics, we have (f) 〈if b then c1 else c, σ〉 −→

〈c, σ〉. From (f), (e), and the semantics, we have (g) 〈if b then c1 else c, σ〉 ⇓

〈c′2, σ′〉. Using Lemma 3.34, we know that (h) constraints 2.a to 2.c of Def. 3.33

hold for c′2 and c′2. Instantiating the goal with c′2, from (g) and (h), we conclude

• If (b) 〈if b then c2 else c, σ〉 ⇑, then we need to show that either

59

〈if b then c1 else c, σ〉 −→∗ abort or 〈if b then c1 else c, σ〉 ⇑. From (b), and the

semantics, we have 2 cases:

– We consider (c) 〈if b then c2 else c, σ〉 −→ 〈c2, σ〉, (d) JbKσ = true, and (e)

〈c2, σ〉 ⇑. From (a) and (e), by Def. 3.33 (item 3), we have 2 cases:

∗ We consider (f) 〈c1, σ〉 −→∗ abort. From (d), and the semantics, we have (g)

〈if b then c1 else c, σ〉 −→ 〈c1, σ〉. From (g), (f), and the semantics, we have

(h) 〈if b then c1 else c, σ〉 −→∗ abort. From (h), we conclude

∗ We consider (f) 〈c1, σ〉 ⇑. From (d), and the semantics, we have

(g) 〈if b then c1 else c, σ〉 −→ 〈c1, σ〉. From (g), (f), and the semantics, we

have (h) 〈if b then c1 else c, σ〉 ⇑. From (h), we conclude

– We consider (c) 〈if b then c2 else c, σ〉 −→ 〈c, σ〉, (d) JbKσ = false, and (e) 〈c, σ〉 ⇑.

From (d), and the semantics, we have (f) 〈if b then c1 else c, σ〉 −→ 〈c, σ〉. From

(f), (e), and the semantics, we have (g) 〈if b then c1 else c, σ〉 ⇑. From (g), we

conclude

• If (b) 〈if b then c2 else c, σ〉 −→∗
δ2

κ2, then we need to show that either

〈if b then c1 else c, σ〉 −→∗ abort or there exists δ1 and κ1 such that

〈if b then c1 else c, σ〉 −→∗
δ1

κ1 and δ2 ⊆ δ1. From (b), and the semantics, we have 3

cases:

– We consider (c) κ2 = 〈if b then c2 else c, σ〉 and (d) δ2 = emp. From the seman-

tics, we know that (e) 〈if b then c1 else c, σ〉 −→∗
emp

〈if b then c1 else c, σ〉. We

know (f) emp ⊆ emp. Instantiating the goal with emp and 〈if b then c1 else c, σ〉,

from (e) and (f), we conclude

– We consider (c) 〈if b then c2 else c, σ〉 −→
∆b
σ

〈c2, σ〉, (d) JbKσ = true, (e) 〈c2, σ〉 −→∗
δ′2

κ2, and (f) δ2 = ∆b
σ ∪ δ′2. From (a) and (e), by Def. 3.33 (item 4), we have 2 cases:

∗ We consider (g) 〈c1, σ〉 −→∗ abort. From (d), and the semantics, we have

(h) 〈if b then c1 else c, σ〉 −→ 〈c1, σ〉. From (h), (g), and the semantics, we

60

have (i) 〈if b then c1 else c, σ〉 −→∗ abort. From (i), we conclude

∗ We consider that exists δ′1 and κ1 such that (g) 〈c1, σ〉 −→∗
δ′1

κ1 and (h) δ′2 ⊆

δ′1. From (h), we know (i) ∆b
σ∪δ′2 ⊆ ∆b

σ∪δ′1. From (d), and the semantics, we

have (j) 〈if b then c1 else c, σ〉 −→
∆b
σ

〈c1, σ〉. From (j), (g), and the semantics,

we have (k) 〈if b then c1 else c, σ〉 −→∗
∆b
σ∪δ′1

κ1. Instantiating the goal with

∆b
σ ∪ δ′1 and κ1, from (i) and (k), we conclude

– We consider (c) 〈if b then c2 else c, σ〉 −→
∆b
σ

〈c, σ〉, (d) JbKσ = false, (e) 〈c, σ〉 −→∗
δ′2

κ2, and (f) δ2 = ∆b
σ ∪ δ′2. From (d), and the semantics, we have

(g) 〈if b then c1 else c, σ〉 −→
∆b
σ

〈c, σ〉. From (g), (e), and the semantics, we have

(h) 〈if b then c1 else c, σ〉 −→∗
∆b
σ∪δ′2

κ2. We know (i) ∆b
σ ∪ δ′2 ⊆ ∆b

σ ∪ δ′2. Instantiating

the goal with ∆b
σ ∪ δ′2 and κ2, from (h) and (i), we conclude

Lemma 3.41. If c1 c2, then (if b then c else c1) (if b then c else c2)

Proof. From Def. 3.33, we need to show that for all n, we have (if b then c else c1) n

(if b then c else c2). By induction over n, if n = 0, by Def. 3.33, we conclude. If n > 0,

assuming (a) c1 c2, by Def. 3.33, we have 4 cases to consider:

• If (b) 〈if b then c else c2, σ〉 −→∗ abort, we need to show that

〈if b then c else c1, σ〉 −→∗ abort. From (b), and the semantics, we have 3 cases:

– We consider (c) if b then c else c2 −→ abort. From (c), and the semantics, we

know (d) @z. JbKσ = z. From (d), and the semantics, we know

(e) if b then c else c1 −→ abort. From (e), we conclude

– We consider (c) if b then c else c2 −→ 〈c, σ〉, (d) JbKσ = true, and (e) 〈c, σ〉 −→∗

abort. From (d), and the semantics, we know (f) if b then c else c1 −→ 〈c, σ〉.

From (f), (e), and the semantics, we know (g) if b then c else c1 −→∗ abort.

From (g), we conclude

– We consider (c) if b then c else c2 −→ 〈c2, σ〉, (d) JbKσ = false, and (e) 〈c2, σ〉 −→∗

abort. From (d), and the semantics, we know (f) if b then c else c1 −→ 〈c1, σ〉.

61

From (a) and (e), by Def. 3.33 (item 1), we have (g) 〈c1, σ〉 −→∗ abort. From (f),

(g), and the semantics, we know (h) if b then c else c1 −→∗ abort. From (h), we

conclude

• If (b) 〈if b then c else c2, σ〉 ⇓ 〈c′2, σ′〉, we need to show that either

〈if b then c else c1, σ〉 −→∗ abort or exists c′1 such that 〈if b then c else c1, σ〉 ⇓ 〈c′1, σ′〉

and constraints 2.a to 2.c of Def. 3.33 hold for c′1 and c′2. From (b), and the semantics,

we have 2 cases:

– We consider (c) 〈if b then c else c2, σ〉 −→ 〈c, σ〉, (d) JbKσ = true, and (e) 〈c, σ〉 ⇓

〈c′2, σ′〉. From (d), and the semantics, we have (f) 〈if b then c else c1, σ〉 −→

〈c, σ〉. From (f), (e), and the semantics, we have (g) 〈if b then c else c1, σ〉 ⇓

〈c′2, σ′〉. Using Lemma 3.34, we know that (h) constraints 2.a to 2.c of Def. 3.33

hold for c′2 and c′2. Instantiating the goal with c′2, from (g) and (h), we conclude

– We consider (c) 〈if b then c else c2, σ〉 −→ 〈c2, σ〉, (d) JbKσ = false, and (e)

〈c2, σ〉 ⇓ 〈c′2, σ′〉. From (a) and (e), by Def. 3.33 (item 2), we have 2 cases:

∗ We consider (f) 〈c1, σ〉 −→∗ abort. From (d), and the semantics, we have (g)

〈if b then c else c1, σ〉 −→ 〈c1, σ〉. From (g), (f), and the semantics, we have

(h) 〈if b then c else c1, σ〉 −→∗ abort. From (h), we conclude

∗ We consider that exists c′1 such that (f) 〈c1, σ〉 ⇓ 〈c′1, σ′〉 and (g) constrains

2.a to 2.c of Def. 3.33 hold for c′1 and c′2. From (d), and the semantics, we

have (h) 〈if b then c else c1, σ〉 −→ 〈c1, σ〉. From (g), (f), and the semantics,

we have (i) 〈if b then c else c1, σ〉 ⇓ 〈c′1, σ′〉. Instantiating the goal with c′1,

from (i) and (g), we conclude

• If (b) 〈if b then c else c2, σ〉 ⇑, then we need to show that either

〈if b then c else c1, σ〉 −→∗ abort or 〈if b then c else c1, σ〉 ⇑. From (b), and the

semantics, we have 2 cases:

– We consider (c) 〈if b then c else c2, σ〉 −→ 〈c, σ〉, (d) JbKσ = true, and (e) 〈c, σ〉 ⇑.

62

From (d), and the semantics, we have (f) 〈if b then c else c1, σ〉 −→ 〈c, σ〉. From

(f), (e), and the semantics, we have (g) 〈if b then c else c1, σ〉 ⇑. From (g), we

conclude

– We consider (c) 〈if b then c else c2, σ〉 −→ 〈c2, σ〉, (d) JbKσ = false, and (e)

〈c2, σ〉 ⇑. From (a) and (e), by Def. 3.33 (item 3), we have 2 cases:

∗ We consider (f) 〈c1, σ〉 −→∗ abort. From (d), and the semantics, we have (g)

〈if b then c else c1, σ〉 −→ 〈c1, σ〉. From (g), (f), and the semantics, we have

(h) 〈if b then c else c1, σ〉 −→∗ abort. From (h), we conclude

∗ We consider (f) 〈c1, σ〉 ⇑. From (d), and the semantics, we have

(g) 〈if b then c else c1, σ〉 −→ 〈c1, σ〉. From (g), (f), and the semantics, we

have (h) 〈if b then c else c1, σ〉 ⇑. From (h), we conclude

• If (b) 〈if b then c else c2, σ〉 −→∗
δ2

κ2, then we need to show that either

〈if b then c else c1, σ〉 −→∗ abort or there exists δ1 and κ1 such that

〈if b then c else c1, σ〉 −→∗
δ1

κ1 and δ2 ⊆ δ1. From (b), and the semantics, we have 3

cases:

– We consider (c) κ2 = 〈if b then c else c2, σ〉 and (d) δ2 = emp. From the seman-

tics, we know that (e) 〈if b then c else c1, σ〉 −→∗
emp

〈if b then c else c1, σ〉. We

know (f) emp ⊆ emp. Instantiating the goal with emp and 〈if b then c else c1, σ〉,

from (e) and (f), we conclude

– We consider (c) 〈if b then c else c2, σ〉 −→
∆b
σ

〈c, σ〉, (d) JbKσ = true, (e) 〈c, σ〉 −→∗
δ′2

κ2, and (f) δ2 = ∆b
σ ∪ δ′2. From (d), and the semantics, we have

(g) 〈if b then c else c1, σ〉 −→
∆b
σ

〈c, σ〉. From (g), (e), and the semantics, we have

(h) 〈if b then c else c1, σ〉 −→∗
∆b
σ∪δ′2

κ2. We know (i) ∆b
σ ∪ δ′2 ⊆ ∆b

σ ∪ δ′2. Instantiating

the goal with ∆b
σ ∪ δ′2 and κ2, from (h) and (i), we conclude

– We consider (c) 〈if b then c else c2, σ〉 −→
∆b
σ

〈c2, σ〉, (d) JbKσ = false, (e) 〈c2, σ〉 −→∗
δ′2

κ2, and (f) δ2 = ∆b
σ ∪ δ′2. From (a) and (e), by Def. 3.33 (item 4), we have 2 cases:

63

∗ We consider (g) 〈c1, σ〉 −→∗ abort. From (d), and the semantics, we have

(h) 〈if b then c else c1, σ〉 −→ 〈c1, σ〉. From (h), (g), and the semantics, we

have (i) 〈if b then c else c1, σ〉 −→∗ abort. From (i), we conclude

∗ We consider that exists δ′1 and κ1 such that (g) 〈c1, σ〉 −→∗
δ′1

κ1 and (h) δ′2 ⊆

δ′1. From (h), we know (i) ∆b
σ∪δ′2 ⊆ ∆b

σ∪δ′1. From (d), and the semantics, we

have (j) 〈if b then c else c1, σ〉 −→
∆b
σ

〈c1, σ〉. From (j), (g), and the semantics,

we have (k) 〈if b then c else c1, σ〉 −→∗
∆b
σ∪δ′1

κ1. Instantiating the goal with

∆b
σ ∪ δ′1 and κ1, from (i) and (k), we conclude

Lemma 3.42. If c1 c2, then (while b do c1) (while b do c2)

Proof. From Def. 3.33, we need to show for all n, that (while b do c1) n (while b do c2).

By induction over n, if n = 0, by Def. 3.33, we conclude. If n > 0, assuming (a) c1 c2,

by Def. 3.33, we have 4 cases to consider:

• If (b) 〈while b do c2, σ〉 −→∗ abort, we need to show that 〈while b do c1, σ〉 −→∗

abort. We perform a second induction over n′, the number of steps taken in (b), and

we have 2 cases: If n′ = 0, we know (b) is false and conclude; If n′ > 0, from (b), and

the semantics, we have 3 cases:

– We consider n′ = 2 and (c) @z. JbKσ = z. From (c), we know

(d) 〈while b do c1, σ〉 −→2 abort. From (d), we conclude

– We consider (c) JbKσ = true and (d) 〈c2, σ〉 −→n′−2 abort. From (a) and (d),

by Def. 3.33 (item 1), we have (e) 〈c1, σ〉 −→∗ abort. From (c), (e), and the

semantics, we know (e) 〈while b do c1, σ〉 −→∗ abort. From (e), we conclude

– We consider that (c) JbKσ = true and there exists σ′ such that (d) 〈c2, σ〉 ⇓

〈skip, σ′〉 and (e) 〈while b do c2, σ
′〉 −→n′′ abort where n′′ < n′. From (a)

and (d), by Def. 3.33 (item 2.a), we have 2 cases:

∗ We consider (f) 〈c1, σ〉 −→∗ abort. From (c), (f), and the semantics, we know

(g) 〈while b do c1, σ〉 −→∗ abort. From (g), we conclude

64

∗ We consider (f) 〈c1, σ〉 ⇓ 〈skip, σ′〉. From (a) and (e), using the second

induction hypothesis, we have (g) 〈while b do c1, σ
′〉 −→∗ abort From (c),

(f), (g), and the semantics, we know (h) 〈while b do c1, σ〉 −→∗ abort. From

(h), we conclude

• If (b) 〈while b do c2, σ〉 ⇓ 〈c′2, σ′〉, we need to show that either 〈while b do c1, σ〉 −→∗

abort or exists c′1 such that 〈while b do c1, σ〉 ⇓ 〈c′1, σ′〉 and c′1 and c′2 satisfy con-

straints 2.a to 2.c of Def. 3.33. We perform a second induction over n′, the number of

steps taken in (b), and we have 2 cases: If n′ = 0, we know (b) is false and conclude;

If n′ > 0, from (b), and the semantics, we have 3 cases:

– We consider (c) JbKσ = false and (d) 〈c′2, σ′〉 = 〈skip, σ〉. From (c), and the

semantics, we know (e) 〈while b do c1, σ〉 ⇓ 〈skip, σ〉. Instantiating the goal

with skip, from (e), we conclude

– We consider (c) JbKσ = true, (d) 〈c2, σ〉 ⇓ 〈c′′2, σ′〉, and (e) c′2 = (c′′2; while b do c2).

From (a) and (d), by Def. 3.33 (item 2), we have 2 cases:

∗ We consider (f) 〈c1, σ〉 −→∗ abort. From (c), (f), and the semantics, we have

(g) 〈while b do c1, σ〉 −→∗ abort. From (g), we conclude

∗ We consider (f) 〈c1, σ〉 ⇓ 〈c′′1, σ′〉 and (g) constraints 2.b and 2.c of Def. 3.33

hold for c′′1 and c′′2 . From (c), (f), and the semantics, we have

(h) 〈while b do c1, σ〉 ⇓ 〈c′′1; while b do c1, σ
′〉. From (g), using Lemma 3.38,

we know (i) constraints 2.b and 2.c of Def. 3.33 hold for c′′1; while b do c1

and c′′2; while b do c1. From (a), using the induction hypothesis, we know

(j) while b do c1 n−1 while b do c2. From (j), using Lemma 3.39, we

know (k) c′′2; while b do c1 n−1 c′′2; while b do c2. From (i) and (k), us-

ing Lemma 3.35, we know (l) constraints 2.b and 2.c of Def. 3.33 hold

for c′′1; while b do c1 and c′′2; while b do c2. Instantiating the goal with

c′′1; while b do c1, from (h), (l), we conclude

65

– We consider (c) JbKσ = true, (d) 〈c2, σ〉 ⇓ 〈skip, σ′′〉, and (e) 〈while b do c2, σ
′′〉 ⇓

〈c′2, σ′〉where the number of steps is less than n′. From (a) and (d), by Def. 3.33

(item 2), we have 2 cases:

∗ We consider (f) 〈c1, σ〉 −→∗ abort. From (c), (f), and the semantics, we have

(g) 〈while b do c1, σ〉 −→∗ abort. From (g), we conclude

∗ We consider (f) 〈c1, σ〉 ⇓ 〈skip, σ′′〉. From (e), using the second induction

hypothesis, we have 2 cases:

· We consider (g) 〈while b do c1, σ
′′〉 −→∗ abort. From (c), (f), (g), and

the semantics, we have (h) 〈while b do c1, σ〉 −→∗ abort. From (h), we

conclude

· We have (g) 〈while b do c1, σ
′′〉 ⇓ 〈c′2, σ′〉 and (h) c′1 and c′2 satisfy con-

straints 2.a to 2.c of Def. 3.33. From (c), (f), (g), and the semantics, we

have (i) 〈while b do c1, σ〉 ⇓ 〈c′2, σ′〉. Instantiating the goal with c′1, from

(i) and (h), we conclude

• If (b) 〈while b do c2, σ〉 ⇑, we need to show that either 〈while b do c1, σ〉 −→∗ abort

or 〈while b do c1, σ〉 ⇑. From (b), and the semantics, we know exists n′ and σ′ such

that (c) 〈while b do c2, σ〉 −→n′ 〈c2; while b do c2, σ
′〉 and (d) 〈c2, σ

′〉 ⇑. We perform

a second induction over n′ and we have 3 cases: If n′ < 2, we know (c) is false and

conclude; If n′ = 2, from (c), and the semantics, we know (e) JbKσ = true and (f)

〈c2, σ〉 ⇑. From (a) and (f), by Def. 3.33 (item 3), we have 2 cases:

– We consider (g) 〈c1, σ〉 −→∗ abort. From (e), (g), and the semantics, we have (h)

〈while b do c1, σ〉 −→∗ abort. From (h), we conclude

– We consider (g) 〈c1, σ〉 ⇑. From (e), (g), and the semantics, we have

(h) 〈while b do c1, σ〉 ⇑. From (h), we conclude

If n′ > 2, from (c), and the semantics, we know (e) JbKσ = true, (f) 〈c2, σ〉 ⇓ 〈skip, σ′′〉,

and (g) 〈while b do c2, σ
′′〉 −→n′′ 〈c2; while b do c2, σ

′〉 where n′′ < n′. From (a) and

66

(f), by Def. 3.33 (item 2.a), we have 2 cases:

– We consider (h) 〈c1, σ〉 −→∗ abort. From (e), (h), and the semantics, we have (i)

〈while b do c1, σ〉 −→∗ abort. From (i), we conclude

– We consider (h) 〈c1, σ〉 ⇓ 〈skip, σ′′〉. From (g) and (d), using the second induc-

tion hypothesis, we have 2 cases:

∗ We consider (i) 〈while b do c1, σ
′′〉 −→∗ abort. From (e), (h), (i), and the

semantics, we have (j) 〈while b do c1, σ〉 −→∗ abort. From (j), we conclude

∗ We have (i) 〈while b do c1, σ
′′〉 ⇑. From (e), (h), (i), and the semantics, we

have (j) 〈while b do c1, σ〉 ⇑. From (j), we conclude

• If (b) 〈while b do c2, σ〉 −→∗
δ2

κ2, we need to show that either 〈while b do c1, σ〉 −→∗

abort or exists δ1 and κ1 such that 〈while b do c1, σ〉 −→∗
δ1

κ1 and δ2 ⊆ δ1. We perform

a second induction over n′, the number of steps taken in (b), and we have 2 cases: If

n′ = 0, we know (c) δ2 = emp and (d) κ2 = 〈while b do c2, σ〉. From the semantics,

we know (e) 〈while b do c1, σ〉 −→0 〈while b do c1, σ〉. We know (f) emp ⊆ emp.

Instantiating the goal with emp and 〈while b do c1, σ〉, from (e) and (f), we conclude

If n′ > 0, from (b), and the semantics, we have 4 cases:

– We consider (c) JbKσ = false and (d) δ2 = ∆b
σ. From (c), and the semantics, we

know (e) 〈while b do c1, σ〉 −→2

∆b
σ

〈skip, σ〉. We know (f) ∆b
σ ⊆ ∆b

σ. Instantiating

the goal with ∆b
σ and 〈skip, σ〉, from (e) and (f), we conclude

– We consider (c) JbKσ = true, (d) κ2 = abort, (e) δ2 = ∆b
σ ∪ δ′2, and (f) 〈c2, σ〉 −→∗

δ′2

abort. From (a) and (f), by Def. 3.33 (item 4), we know (g) 〈c1, σ〉 −→∗ abort.

From (c), (g), and the semantics, we have (h) 〈while b do c1, σ〉 −→∗ abort.

From (h), we conclude

– We consider (c) JbKσ = true, (d) κ2 = 〈c′2; while b do c2, σ
′〉, (e) δ2 = ∆b

σ ∪ δ′2, and

(f) 〈c2, σ〉 −→∗
δ′2

〈c′2, σ′〉. From (a) and (e), by Def. 3.33 (item 4), we have 2 cases:

67

∗ We consider (g) 〈c1, σ〉 −→∗ abort. From (c), (g), and the semantics, we

have (h) 〈while b do c1, σ〉 −→∗ abort. From (h), we conclude

∗ We consider (g) 〈c1, σ〉 −→∗
δ1
〈c′1, σ′′〉 and (h) δ′2 ⊆ δ1. From (c), (g), and the

semantics, we have (i) 〈while b do c1, σ〉 −→∗
∆b
σ∪δ1
〈c′1; while b do c1, σ

′′〉. From

(h), we know (j) ∆b
σ ∪ δ′2 ⊆ ∆b

σ ∪ δ1. Instantiating the goal with ∆b
σ ∪ δ1 and

〈c′1; while b do c1, σ
′′〉, from (e), (i), (j), we conclude

– We consider (c) JbKσ = true, (d) 〈c2, σ〉 ⇓ 〈skip, σ′〉with footprint δ′2,

(e) 〈while b do c2, σ
′〉 −→n′′

δ′′2

κ2 where n′′ < n′, and (f) δ2 = ∆b
σ ∪ δ′2 ∪ δ′′2 . From

(a) and (d), by Def. 3.33 (items 2.a and 4), we have 2 cases:

∗ We consider (g) 〈c1, σ〉 −→∗ abort. From (c), (g), and the semantics, we

have (g) 〈while b do c1, σ〉 −→∗ abort. From (g), we conclude

∗ We consider (g) 〈c1, σ〉 ⇓ 〈skip, σ′〉 with footprint δ′1, and (h) δ′2 ⊆ δ′1. From

(e), using the second induction hypothesis, we have 2 cases:

· We consider (i) 〈while b do c1, σ
′〉 −→∗ abort. From (c), (g), (i), and

the semantics, we have (j) 〈while b do c1, σ〉 −→∗ abort. From (j), we

conclude

· We have (i) 〈while b do c1, σ
′〉 −→∗

δ′′1

κ1 and (j) δ′′2 ⊆ δ′′1 . From (c), (g), (i),

and the semantics, we have (k) 〈while b do c1, σ〉 −→∗
∆b
σ∪δ′1∪δ′′1

κ1. From (h)

and (j), we know (l) ∆b
σ ∪ δ′2 ∪ δ′′2 ⊆ ∆b

σ ∪ δ′1 ∪ δ′′1 . Instantiating the goal

with ∆b
σ ∪ δ′1 ∪ δ′′1 and κ1, from (f), (k), and (l), we conclude

Lemma 3.43. If c1 c2, then (c1‖c) (c2‖c)

Proof. From Def. 3.33, we need to show for all n, that (c1 ‖ c) n (c2 ‖ c). By induction

over n, if n = 0, by Def. 3.33, we conclude. If n > 0, assuming (a) c1 c2, by Def. 3.33,

we have 4 cases to consider:

• We assume (b) 〈c2 ‖ c, σ〉 −→∗ abort. From the semantics, we know (b) is false and

conclude

68

• If (b) 〈c2 ‖ c, σ〉 ⇓ 〈c′2, σ′〉, we will to show that exists c′1 such that 〈c1 ‖ c, σ〉 ⇓ 〈c′1, σ′〉

and c′1 and c′2 satisfy constraints 2.a to 2.c of Def. 3.33. From (b), and the semantics,

we know (c) c′2 = c2‖c and (d) σ′ = σ. From the semantics, we know (e) 〈c1‖c, σ〉 ⇓

〈c1 ‖ c, σ〉. From (a), and the induction hypothesis, we know that (f) constraints 2.a

to 2.c of Def. 3.33 hold for c1‖c and c2‖c. Instantiating the goal with c1‖c, from (e)

and (f), we conclude

• We assume (b) 〈c2‖c, σ〉 ⇑. From the semantics, we know (b) is false and conclude

• If (b) 〈c2 ‖ c, σ〉 −→∗
δ2

κ2, we will show that there exists δ1 and κ1 such that 〈c1 ‖

c, σ〉 −→∗
δ1

κ1 and δ2 ⊆ δ1. From (b), and the semantics, we know (c) κ2 = 〈c2 ‖ c, σ〉

and (d) δ2 = emp. From the semantics, we know (e) 〈c1‖c, σ〉 −→∗
emp

〈c1‖c, σ〉.

We know (f) emp ⊆ emp. Instantiating the goal with c1 ‖ c, from (e) and (f), we

conclude

Lemma 3.44. If c1 c2, then (c‖c1) (c‖c2)

Proof. From Def. 3.33, we need to show for all n, that (c ‖ c1) n (c ‖ c2). By induction

over n, if n = 0, by Def. 3.33, we conclude. If n > 0, assuming (a) c1 c2, by Def. 3.33,

we have 4 cases to consider:

• We assume (b) 〈c ‖ c2, σ〉 −→∗ abort. From the semantics, we know (b) is false and

conclude

• If (b) 〈c‖ c2, σ〉 ⇓ 〈c′2, σ′〉, we will to show that exists c′1 such that 〈c‖ c1, σ〉 ⇓ 〈c′1, σ′〉

and c′1 and c′2 satisfy constraints 2.a to 2.c of Def. 3.33. From (b), and the semantics,

we know (c) c′2 = c‖c2 and (d) σ′ = σ. From the semantics, we know (e) 〈c‖c1, σ〉 ⇓

〈c ‖ c1, σ〉. From (a), and the induction hypothesis, we know that (f) constraints 2.a

to 2.c of Def. 3.33 hold for c‖c1 and c‖c2. Instantiating the goal with c‖c1, from (e)

and (f), we conclude

• We assume (b) 〈c‖c2, σ〉 ⇑. From the semantics, we know (b) is false and conclude

69

• If (b) 〈c ‖ c2, σ〉 −→∗
δ2

κ2, we will show that there exists δ1 and κ1 such that 〈c ‖

c1, σ〉 −→∗
δ1

κ1 and δ2 ⊆ δ1. From (b), and the semantics, we know (c) κ2 = 〈c‖c2, σ〉

and (d) δ2 = emp. From the semantics, we know (e) 〈c‖c1, σ〉 −→∗
emp

〈c‖c1, σ〉.

We know (f) emp ⊆ emp. Instantiating the goal with c ‖ c1, from (e) and (f), we

conclude

Lemma 3.45. If c1 c2, then (atomic c1) (atomic c2)

Proof. From Def. 3.33, we need to show for all n, that (atomic c1) n (atomic c2). By

induction over n, if n = 0, by Def. 3.33, we conclude. If n > 0, assuming (a) c1 c2, by

Def. 3.33, we have 4 cases to consider:

• We assume (b) 〈atomic c2, σ〉 −→∗ abort. From the semantics, we know (b) is false

and conclude

• If (b) 〈atomic c2, σ〉 ⇓ 〈c′2, σ′〉, we will to show that exists c′1 such that 〈atomic c1, σ〉 ⇓

〈c′1, σ′〉 and c′1 and c′2 satisfy constraints 2.a to 2.c of Def. 3.33. From (b), and the

semantics, we know (c) c′2 = atomic c2 and (d) σ′ = σ. From the semantics, we

know (e) 〈atomic c1, σ〉 ⇓ 〈atomic c1, σ〉. From (a), and the induction hypothesis,

we know that (f) constraints 2.a to 2.c of Def. 3.33 hold for atomic c1 and atomic c2.

Instantiating the goal with atomic c1, from (e) and (f), we conclude

• We assume (b) 〈atomic c2, σ〉 ⇑. From the semantics, we know (b) is false and con-

clude

• If (b) 〈atomic c2, σ〉 −→∗
δ2

κ2, we will show that there exists δ1 and κ1 such that

〈atomic c1, σ〉 −→∗
δ1

κ1 and δ2 ⊆ δ1. From (b), and the semantics, we know (c) κ2 =

〈atomic c2, σ〉 and (d) δ2 = emp. From the semantics, we know (e) 〈atomic c1, σ〉 −→∗
emp

〈atomic c1, σ〉. We know (f) emp ⊆ emp. Instantiating the goal with atomic c1, from

(e) and (f), we conclude

70

3.10 Relaxed Semantics

We obtain our relaxed operational semantics by instantiating Λ from our parameterized

semantics (from Fig. 3.13) with our subsumption relation from Definition 3.33:

[] κ 7−→ κ′

This semantics performs a program transformation, according to our subsumption rela-

tion, at each step. This resembles a dynamic compiler that modifies the program as it

executes. However, as we show in Lemma 3.46, the execution following this semantics

is equivalent to performing one single initial program transformation and then executing

the target program using the interleaving semantics. This resembles a static compiler that

modifies the program prior to execution. Note that in order to establish Lemma 3.46 and

auxiliary Lemma 3.47 and Lemma 3.48, we assume a weaker notion of command equality

where a command c1 is equal to c2 if, and only if, c1 = c2 or c1 = (skip; . . . ; skip; c2), and

vice-versa.

Lemma 3.46. [] 〈T, σ〉 7−→∗ κ holds if, and only if, there exists a T ′ such that T
t
T ′

and 〈T ′, σ〉 7−→∗ κ.

Proof. We have two cases:

• If (a) [] 〈T, σ〉 7−→∗ κ, we have to show that exists T ′ such that T
t
T ′ and

〈T ′, σ〉 7−→∗ κ. Proof by induction over the number of steps n in (a).

– We consider the base case, where (b) n = 0 and (c) κ = 〈T, σ〉. By Def. 3.33 and

Def. 3.23 (and using Lemma 3.34), we have (d) T
t
T . From the semantics,

we know (e) 〈T, σ〉 7−→0 〈T, σ〉. Instantiating the goal with T , from (d) and (e),

we conclude

– In the inductive case, we know (b) [] 〈T, σ〉 7−→ κ′ and (c) [] κ′ 7−→n−1 κ.

From the semantics, we need to consider 3 cases:

71

∗ We consider (d) κ′ = abort, (e) n−1 = 0, and (f) κ = κ′. From (b), and the

semantics, we know that exists T ′ such that (g) T
t
T ′ and (h) 〈T ′, σ〉 7−→

abort. Instantiating the goal with T ′, from (g) and (h), we conclude

∗ We consider (d) κ′ = race, (e) n−1 = 0, and (f) κ = κ′. From (b), and the

semantics, we know that exists T ′ such that (g) T
t
T ′ and (h) 〈T ′, σ〉 7−→

race. Instantiating the goal with T ′, from (g) and (h), we conclude

∗ We consider (d) κ′ = 〈T ′, σ′〉. From (b), (d), and the semantics, we know

there exists T ′′ such that (e) T
t
T ′′ and (f) 〈T ′′, σ〉 7−→ 〈T ′, σ′〉 From (c),

(d), and the induction hypothesis, we know there exists T ′′′ such that (g)

T ′
t
T ′′′ and (h) 〈T ′′′, σ′〉 7−→∗ κ. From (f) and (g), using Lemma 3.48, we

know there exists T ′′′′ such that (i) T ′′
t
T ′′′′ and (j) 〈T ′′′′, σ〉 7−→ 〈T ′′′, σ′〉.

From (e) and (i), by Def. 3.33 and Def. 3.23 (and using Lemma 3.35), we

know (k) T
t
T ′′′′. From (j), (h), and the semantics, we have

(l) 〈T ′′′′, σ〉 7−→∗ κ. Instantiating the goal with T ′′′′, from (k) and (l), we

conclude

• If (a) T
t
T ′ and (b) 〈T ′, σ〉 7−→∗ κ, we have to show that [] 〈T, σ〉 7−→∗ κ. Proof

by induction over the number of steps n in (b).

– We consider the base case, where (c) n = 0 and (d) κ = 〈T ′, σ〉, and we will

show that [] 〈T, σ〉 7−→1 〈T ′, σ〉. We know that (e) T ′ = T[c]. From the

semantics, we know that (f) 〈T[skip; c], σ〉 7−→ 〈T[c], σ〉. It is not hard to

show that (g) c (skip; c). From (g), by Def. 3.33 and Def. 3.23 (and us-

ing Lemma 3.34), we have (h) T[c]
t
T[skip; c]. From (a), (e), and (h), by

Def. 3.33 and Def. 3.23 (and using Lemma 3.35), we have (i) T
t
T[skip; c].

From (i), (f), and (e), we conclude

– In the inductive case, we know (c) 〈T ′, σ〉 7−→ κ′ and (d) κ′ 7−→n−1 κ. From the

semantics, we need to consider 3 cases:

∗ We consider (e) κ′ = abort, (f) n−1 = 0, (g) κ = κ′, and we will show that

72

[] 〈T, σ〉 7−→1 abort. From (a) and (c), we conclude

∗ We consider (e) κ′ = race, (f) n−1 = 0, (g) κ = κ′, and we will show that

[] 〈T, σ〉 7−→1 race. From (a) and (c), we conclude

∗ We consider (e) κ′ = 〈T ′′, σ′〉. By Def. 3.33 and Def. 3.23 (and also using

Lemma 3.34), we have (f) T ′′
t
T ′′. From (e), (f), and (d), using the in-

duction hypothesis, we have (g) [] 〈T ′′, σ′〉 7−→∗ κ. From (a), (c), and

the semantics, we have (h) [] 〈T, σ〉 7−→ 〈T ′′, σ′〉 From (h), (g), and the

semantics, we conclude

The key idea in the proof of Lemma 3.46 is given by Lemma 3.47 that basically says

that a step followed by a transformation can commute; the converse is not possible.

Lemma 3.47. If 〈c1, σ〉 −→ 〈c′1, σ′〉, and c′1 c′2, then there exists c2 such that c1 c2 and

〈c2, σ〉 −→ 〈c′2, σ′〉.

Proof. We assume (a) 〈c1, σ〉 −→ 〈c′1, σ′〉 and (b) c′1 c′2. From (a) we have 5 cases:

• We consider (c) c1 = S[a], (d) c′1 = S[skip], and (e) (σ, σ′)∈ JaK. We instantiate the

goal with a; c′2, and it remains to show that S[a] a; c′2 and 〈a; c′2, σ〉 −→ 〈c′2, σ′〉.

Considering (f) S′ = •; c′2, from (e), and the semantics, we have (g) 〈S′[a], σ〉 −→

〈S′[skip], σ′〉. From (f), and the weaker notion of equality, we have (h) S′[skip] =

c′2. From (b), using Lemma 3.39, we have (i) (a; c′1) (a; c′2). From (d), and the

weaker notion of equality, we have (j) S[a] = a; c′1. From (i), (j), (g), and (h), we

conclude

• We consider (c) c1 = S[skip; c], (d) c′1 = S[c], and (e) σ = σ′. We instantiate the goal

with skip; c′2, and it remains to show that S[skip; c] skip; c′2 and 〈skip; c′2, σ〉 −→

〈c′2, σ〉. From the weaker notion of equality, we know that (f) skip; c = c and (g)

skip; c′2 = c′2. From (b), (f), (g), and the semantics, we conclude

• We consider (c) c1 = S[if b then c else c′], (d) c′1 = S[c], (e) σ = σ′, and (f) JbKσ =

true. We instantiate the goal with if b then c′2 else S[c′], and it remains to show that

73

S[if b then c else c′] if b then c′2 else S[c′] and 〈if b then c′2 else S[c′], σ〉 −→

〈c′2, σ〉. From (b), using Lemma 3.40, we have

(g) if b then S[c] else S[c′] if b then c′2 else S[c′]. It is not hard to show that (h)

S[if b then c else c′] if b then S[c] else S[c′]. From (h) and (g), using Lemma 3.35,

we have (i) S[if b then c else c′] if b then c′2 else S[c′]. From (i), (e), and the

semantics; we conclude

• We consider (c) c1 = S[if b then c′ else c], (d) c′1 = S[c], (e) σ = σ′, and (f) JbKσ =

false. We instantiate the goal with if b then S[c′] else c′2, and it remains to show that

S[if b then c else c′] if b then S[c′] else c′2 and 〈if b then S[c′] else c′2, σ〉 −→

〈c′2, σ〉. From (b), using Lemma 3.41, we have

(g) if b then S[c′] else S[c] if b then S[c′] else c′2. It is not hard to show that (h)

S[if b then c′ else c] if b then S[c′] else S[c]. From (h) and (g), using Lemma 3.35,

we have (i) S[if b then c′ else c] if b then S[c′] else c′2. From (i), (e), and the

semantics; we conclude

• We consider (c) c1 = S[while b do c], (d) c′1 = S[if b then (c; while b do c) else skip],

and (e) σ = σ′. We instantiate the goal with skip; c′2, and it remains to show that

S[while b do c] skip; c′2 and 〈skip; c′2, σ〉 −→ 〈c′2, σ〉. From the weaker no-

tion of equality, we know that (f) skip; c′2 = c′2. It is not hard to show that (g)

while b do c if b then (c; while b do c) else skip. From (g), using Lemma 3.36, we

have (h) S[while b do c] S[if b then (c; while b do c) else skip]. From (b) and (h),

we have (i) S[if b then (c; while b do c) else skip] skip; c′2 From (h) and (i), using

Lemma 3.35, we have (j) S[while b do c] skip; c′2 From (j), and the semantics, we

conclude

Lemma 3.48 extends Lemma 3.47 to handle thread trees and the interleaved semantics.

It is a bit more general, taking a 0-atomic thread tree context T, so that we can have a more

powerful induction hypothesis.

74

Lemma 3.48. If 〈T1, σ〉 7−→ 〈T ′1, σ′〉, and T ′1 t
T ′2, then there exists T2 such that T1 t

T2

and, for all 0-atomic T, we have 〈T[T2], σ〉 7−→ 〈T[T ′2], σ′〉.

Proof. By structural induction over T1, assuming (a) 〈T1, σ〉 7−→ 〈T ′1, σ′〉 and (b) T ′1 t
T ′2,

have 3 cases:

• We consider (c) T1 = c1. From (a), (c), and the semantics, we have 3 cases:

– We consider (d) T ′1 = c′1 and (e) 〈c1, σ〉 −→ 〈c′1, σ′〉. From (b) and (d), by

Def. 3.33 and Def. 3.23, we know (f) T ′2 = c′2. From (e), (d), (f), and (b),

using Lemma 3.47, we know there exists c2 such that (g) c1 c2 and (h)

〈c2, σ〉 −→ 〈c′2, σ′〉. From (g) and (d), by Def. 3.33 and Def. 3.23, we know

(i) T1 t
T2 where (j) T2 = c2. From (h), (j), (f), and the semantics, we know (k)

〈T[T2], σ〉 7−→ 〈T[T ′2], σ′〉. Instantiating the goal with T2, from (i) and (k), we

conclude

– We consider (d) c1 = c′1 ‖ c′′1 , (e) T ′1 = 〈〈 c′1, c′′1 〉〉pskip, and (f) σ = σ′. From

(b) and (e), by Def. 3.33 and Def. 3.23, we know (g) T ′2 = 〈〈 c′2, c′′2 〉〉pc where (h)

c′1 c′2, (i) c′′1 c′′2 , and (j) skip c. From (h), using Lemma 3.43, we know

(k) c′1 ‖ c′′1 c′2 ‖ c′′1 . From (i), using Lemma 3.44, we know (l) c′2 ‖ c′′1 c′2 ‖ c′′2 .

From (k) and (l), using Lemma 3.35, we know (m) c′1 ‖ c′′1 c′2 ‖ c′′2 . From (j),

using Lemma 3.39, we know (n) (c′1 ‖ c′′1); skip (c′1 ‖ c′′1); c. From (m), using

Lemma 3.38, we know (o) (c′1 ‖ c′′1); c (c′2 ‖ c′′2); c. From (n) and (o), using

Lemma 3.35, we know (p) (c′1 ‖ c′′1); skip (c′2 ‖ c′′2); c. From the semantics,

we know (q) 〈T[(c′2‖c′′2); c], σ〉 7−→ 〈T[〈〈 c′2, c′′2 〉〉p(skip; c)], σ〉. From the weaker

notion of equality, we know that (r) skip; c = c. Instantiating the goal with

(c′2‖c′′2); c, from (p), (q), and (r), we conclude

– We consider (d) c1 = atomic c′1, (e) T ′1 = 〈〈 c′1 〉〉askip, and (f) σ = σ′. From (b) and

(e), by Def. 3.33 and Def. 3.23, we know (g) T ′2 = 〈〈 c′2 〉〉ac where (h) c′1 c′2 and

(i) skip c. From (h), using Lemma 3.45, we know (j) atomic c′1 atomic c′2.

75

From (i), using Lemma 3.39, we know (k) (atomic c′1); skip (atomic c′1); c.

From (j), using Lemma 3.38, we know (l) (atomic c′1); c (atomic c′2); c. From

(k) and (l), using Lemma 3.35, we know (m) (atomic c′1); skip (atomic c′2); c.

From the semantics we know (n) 〈T[(atomic c′2); c], σ〉 7−→ 〈T[〈〈 c′2 〉〉a(skip; c)], σ〉.

From the weaker notion of equality, we know that (o) skip; c = c. Instantiating

the goal with (atomic c′2); c, from (m), (n), and (o), we conclude

• We consider (c) T1 = 〈〈T ′′1 , T ′′′1 〉〉pc1. From (a), (c), and the semantics, we have 3 cases:

– We consider (d) T ′′1 = skip, (e) T ′′′1 = skip, (f) T ′1 = c1, (g) and σ = σ′. From

(b) and (f), by Def. 3.33 and Def. 3.23, we know (h) T ′2 = c2 and (i) c1 c2.

Using Lemma 3.34, we know (j) skip skip. From (j) and (i), by Def. 3.33 and

Def. 3.23, we know (k) 〈〈 skip, skip 〉〉pc1 t
〈〈 skip, skip 〉〉pc2 From the semantics,

we know (l) 〈T[〈〈 skip, skip 〉〉pc2], σ〉 7−→ 〈T[c2], σ〉. Instantiating the goal with

〈〈 skip, skip 〉〉pc2, from (k) and (l), we conclude

– We consider (d) T ′1 = 〈〈T ′′′′1 , T ′′′1 〉〉pc1 and (e) 〈T ′′1 , σ〉 7−→ 〈T ′′′′1 , σ′〉. From (b) and

(d), by Def. 3.33 and Def. 3.23, we know (f) T ′2 = 〈〈T ′′′′2 , T ′′′2 〉〉pc2 where (g) T ′′′′1
t

T ′′′′2 , (h) T ′′′1 t
T ′′′2 , and (i) c1 c2. From (e) and (g), using the induction

hypothesis (with context T[〈〈 •, T ′′′2 〉〉pc2]), we know there exists T ′′2 such that (j)

T ′′1 t
T ′′2 and (k) 〈T[〈〈T ′′2 , T ′′′2 〉〉pc2], σ〉 7−→ 〈T[〈〈T ′′′′2 , T ′′′2 〉〉pc2], σ′〉. From (j), (h),

and (i), by Def. 3.33 and Def. 3.23, we know (l) 〈〈T ′′1 , T ′′′1 〉〉pc1 t
〈〈T ′′2 , T ′′′2 〉〉pc2.

Instantiating the goal with 〈〈T ′′2 , T ′′′2 〉〉pc2, from (l) and (k), we conclude

– We consider (d) T ′1 = 〈〈T ′′1 , T ′′′′1 〉〉pc1 and (e) 〈T ′′′1 , σ〉 7−→ 〈T ′′′′1 , σ′〉. From (b) and

(d), by Def. 3.33 and Def. 3.23, we know (f) T ′2 = 〈〈T ′′2 , T ′′′′2 〉〉pc2 where (g) T ′′1 t

T ′′2 , (h) T ′′′′1
t
T ′′′′2 , and (i) c1 c2. From (e) and (h), using the induction

hypothesis (with context T[〈〈T ′′2 , • 〉〉pc2]), we know there exists T ′′′2 such that (j)

T ′′′1 t
T ′′′2 and (k) 〈T[〈〈T ′′2 , T ′′′2 〉〉pc2], σ〉 7−→ 〈T[〈〈T ′′′2 , T

′′′′
2 〉〉pc2], σ′〉. From (g),

(j), and (i), by Def. 3.33 and Def. 3.23, we know (l) 〈〈T ′′1 , T ′′′1 〉〉pc1 t
〈〈T ′′2 , T ′′′2 〉〉pc2.

Instantiating the goal with 〈〈T ′′2 , T ′′′2 〉〉pc2, from (l) and (k), we conclude

76

• We consider (c) T1 = 〈〈T ′′1 〉〉ac1. From (a), (c), and the semantics, we have 2 cases:

– We consider (d) T ′′1 = skip, (e) T ′1 = c1, (f) and σ = σ′. From (b) and (e),

by Def. 3.33 and Def. 3.23, we know (g) T ′2 = c2 and (h) c1 c2. Using

Lemma 3.34, we know (i) skip skip. From (i) and (h), by Def. 3.33 and

Def. 3.23, we know (j) 〈〈 skip 〉〉ac1 t
〈〈 skip 〉〉ac2 From the semantics, we know (k)

〈T[〈〈 skip 〉〉ac2], σ〉 7−→ 〈T[c2], σ〉. Instantiating the goal with 〈〈 skip 〉〉ac2, from (j)

and (k), we conclude

– We consider (d) T ′1 = 〈〈T ′′′1 〉〉ac1 and (e) 〈T ′′1 , σ〉 7−→ 〈T ′′′1 , σ
′〉. From (b) and

(d), by Def. 3.33 and Def. 3.23, we know (f) T ′2 = 〈〈T ′′′2 〉〉pc2 where (g) T ′′′1 t

T ′′′2 , and (h) c1 c2. From (e) and (g), using the induction hypothesis (with

context T[〈〈 • 〉〉ac2]), we know there exists T ′′2 such that (i) T ′′1 t
T ′′2 and (j)

〈T[〈〈T ′′2 〉〉ac2], σ〉 7−→〈T[〈〈T ′′′2 〉〉ac2], σ′〉. From (i) and (h), by Def. 3.33 and Def. 3.23,

we know (k) 〈〈T ′′1 〉〉ac1 t
〈〈T ′′2 〉〉ac2. Instantiating the goal with 〈〈T ′′2 〉〉ac2, from (k)

and (j), we conclude

77

Chapter 4

Relaxed Semantics: Examples

There are different aspects that characterize a particular memory model, including mem-

ory ordering constraints, support for general compiler transformations, write atomicity

constraints, presence of write buffers, cache coherence protocols, availability of memory

barriers, etc. In this section, we show how some of these aspects are reflected in our se-

mantics. Our goal is to familiarize the reader with the relation. The examples are

written using the following naming convention: v1, v2, v3, etc, are variables that hold

values; x, y, z, etc, are variables that hold memory addresses.

Data dependencies

Before we discuss the memory ordering of our model, we need to make it clear that we

can support precise discovery of data dependencies. We do it by showing the following

example:

[x] :=1; v1 := [y]

In this small program, the data dependency between the two statements exists only for

those initial states where x and y are aliased. At a first glance, our definition is too

restrictive since its definition quantifies over all input states. So it does not allow the

78

following:

([x] :=1; v1 := [y]) 6 (v1 := [y]; [x] :=1)

However, through the relation, we can obtain the following transformation:

[x] :=1; v1 := [y] if x=y then ([x] :=1; v1 := [x]) else (v1 := [y]; [x] :=1)

where we insert a dynamic test to see if x is aliased to y. We also replace y by x in one

branch where there is dependency, and reorder the statements in the other branch. Based

on this example, one can convince himself that the relaxed semantics will allow the re-

ordering memory accesses that do not have data dependencies at runtime. But, the reader

should also be aware that the relation does not violate data dependencies, such as the

ones shown below:

v1 := [x]; [x] :=2 6 [x] :=2; v1 := [x]

[x] :=1; v2 := [x] 6 v2 := [x]; [x] :=1

[x] :=1; [x] :=2 6 [x] :=2; [x] :=1

Memory ordering

From the example just shown, it is not hard to see that the relation supports all 4 types

of memory reordering (R,W → R,W). Examples of this can be seen below (we use the

context (if x=y then skip else •) but these are supported in any context where x 6=y can

be inferred):

• Reads with reads:

if x=y then skip else (v1 := [x]; v2 := [y])

if x=y then skip else (v2 := [y]; v1 := [x])

79

• Reads with writes:

if x=y then skip else (v1 := [x]; [y] :=2)

if x=y then skip else ([y] :=2; v1 := [x])

• Writes with reads:

if x=y then skip else ([x] :=1; v2 := [y])

if x=y then skip else (v2 := [y]; [x] :=1)

• Writes with writes:

if x=y then skip else ([x] :=1; [y] :=2)

if x=y then skip else ([y] :=2; [x] :=1)

Write buffer with read bypassing

A write buffer is a hardware feature that delays writes to memory in an attempt to overlap

the latency of writes with subsequent code. The actual behavior obtained is that a proces-

sor might read its own writes earlier, i.e. before they are actually committed to memory.

This can be supported by a simple program transformation as seen in the example below:

[x] :=1; v2 := [x] v2 :=1; [x] :=1

80

Redundancy introduction and elimination

Redundant memory reads and writes can be introduced and eliminated, as shown by the

following examples:

v1 := [x]; v2 :=1 v1 := [x]; v2 := [x]; v2 :=1

v1 := [x]; v2 := [x] v1 := [x]; v2 :=v1

[x] :=v1; v2 := [x] [x] :=v1; v2 :=v1

[x] :=v1 [x] :=1; [x] :=v1

[x] :=1; [x] :=v1 [x] :=v1

Furthermore, we can eliminate dead memory operations when that yields a smaller mem-

ory footprint:

v1 := [x]; v1 :=1 v1 :=1

Note that the reverse is not true. A program can only decrease its footprint given the

relation.

v1 :=1 6 v1 := [x]; v1 :=1

Write atomicity

Given the relation, write atomicity is not preserved. This might not be clear at first, but

can be shown in the example below (here v1 is a temporary, we assume it is reused later

on, by the artifact of assigning an arbitrary value to it):

[x] :=1; v1 :=42

v1 := [x]; [x] :=1; [x] :=v1; [x] :=1; v1 :=42

Here the write is replaced by 3 writes, oscillating between the original write and the write

of the initial value into the memory location. In fact, it might oscillate with any value (not

81

only the initial value) as shown below:

[x] :=1

[x] :=1; [x] :=42; [x] :=1; [x] :=69; [x] :=1

therefore, a write can store arbitrary values to memory before completing; which in prac-

tice means that the memory value is undefined until the write completes.

Compiler optimizations

The relation is general enough to support many sequential compiler optimizations. For

instance, it is not hard to see that we can support instruction scheduling

v3 :=v1+v2; v6 :=v4+v5; v7 :=v3+v6

v6 :=v4+v5; v3 :=v1+v2; v7 :=v3+v6

algebraic transformations (here we assume v4 is a temporary)

v4 :=v1+v2; v5 :=v4+v3; v4 :=42

v4 :=v2+v3; v5 :=v1+v4; v4 :=42

82

register allocation (we have to test for aliasing of z and w)

v1 := [x]; v2 := [y]; v3 :=v1+v2; [w] :=v3;

v1 := [z]; v2 := [w]; v3 :=v1+v2; [w] :=v3

v1 := [x]; v2 := [y]; v3 :=v1+v2;

(if z=w then v1 :=v3 else v1 := [z]);

v2 :=v3; v3 :=v1+v2; [w] :=v3

and many others, including control transformations and redundancy elimination such as

the ones already presented in Sec. 4.

Concurrent behaviors

Here we present some concurrent behaviors of the semantics yielded by . In all exam-

ples, we assume a sequential interleaving of commands according to the standard seman-

tics after considering a program transformation through the relation. We also assume

initial memory values are all 0, unless otherwise noted.

We start with the following example (not supported by Boudol and Petri [15])

(v1 := [x]; [y] :=1) ‖ (v2 := [y]; [x] :=1)

in which we can perceive v1 = v2 = 1 if x 6= y. It can be supported in our semantics by

reordering the commands in the second thread,

v2 := [y]; [x] :=1

if x=y then (v2 := [x]; [x] :=1) else ([x] :=1; v2 := [y])

yielding a new program that produces the desired result through an interleaved schedul-

ing.

83

Similarly, we can support the classic crossover example:

([x] :=1; v1 := [x]) ‖ ([x] :=2; v2 := [x])

in which we can perceive v1 = 2 and v2 = 1. That is achieved by inserting a redundant

write in the right hand side thread:

[x] :=2; v2 := [x] [x] :=2; v2 := [x]; [x] :=2

Yet another similar example is the prescient write test:

(v1 := [x]; [x] :=1) ‖ (v2 := [x]; [x] :=v2)

where we could perceive v1 = v2 = 1. That is also supported by inserting a redundant

write and a redundant read in the right hand side thread:

v2 := [x]; [x] :=v2 v2 := [x]; [x] :=1; [x] :=v2; v2 := [x]

As one can seen, the semantics derived from leads to possibly unwanted behav-

iors of raceful programs. First, a read from a shared location can return any value. For

instance, there is a scheduling of the program below:

v1 := [x] ‖ [x] :=1

where v1 = 33 is allowed. That happens if we consider the following replacement of the

right hand side thread:

[x] :=1 [x] :=33; [x] :=1

This is commonly referred to as “out-of-thin-air” behavior.

84

A similar behavior happens when we have simultaneous write to the same location:

(v1 :=1; [x] :=v1) ‖ [x] :=2

in this case, the final value of [x] can also be arbitrary. For instance, it could be 3 if we

replace the left hand side thread as below

v1 :=1; [x] :=v1 [x] :=0; v1 := [x]; v1 :=v1+1; [x] :=v1

Another unwanted behavior happens when the implementations of mutual exclusions

rely on memory ordering (such as the core of Dekker’s algorithm presented in Chapter 1):

([x] :=1; v1 := [y]) ‖ ([y] :=1; v2 := [x])

In this case, we would not want the behavior v1 = v2 = 0 to happen. However, it may

happen if we consider the reordering of the two commands of the right hand side thread:

[y] :=1; v2 := [x]

if x=y then ([x] :=1; v2 := [x]) else (v2 := [x]; [y] :=1)

Note that, naturally, we are assuming initial values [x] = [y] = 0 and x 6= y.

Many other examples of raceful code can be shown to have unwanted behaviors in

such a relaxed execution. They are obtained by either reordering of memory operations

or relying on the non-atomic undefined nature of raceful reads and writes. On the other

hand, race-free programs do not have unwanted behaviors (see the DRF-guarantee in

Chapter 5). In the example below:

v1 := [x];

if v1=1 then [y] :=1

 ‖
v2 := [y];

if v2=1 then [x] :=1



85

the only behavior allowed is v1 = v2 = 0. Its data-race-freedom might not be obvious, but

there are no sequentially consistent executions of this program that may reach the code

within the branches (again, assuming [x] = [y] = 0 and x 6= y initially). So, the program

never issues a memory write, therefore it is race-free. And, if you consider the code of

each one of the threads in isolation — through the relation — it is impossible to insert

a race when the initial state has [x] = [y] = 0. That is guaranteed from the fact that the

footprints of both threads are disjoint, and they can only decrease through the relation.

In order to preserve the DRF-property, subsumption must disallow some specific types

of transformations such as write speculation as show below

 v1 := [x];

if v1=1 then [x] :=2

 6


v := [x];

[x] :=2;

if v1 6=1 then [x] :=v1


in which the footprint of the program is actually larger after the transformation; given

that if v1 6= 1 the original program does not write to x, while the transformed program

always write to x. Since the footprint has increased, this program transformation might

produce races if the original code was used in the context of a DRF-program.

Strong barrier

In our relaxed semantics, we can enforce both atomicity and ordering by using the atomic c

command. In the following examples we use the macro MF (memory fence) as a syntactic

sugar for atomic skip, a command that does nothing but enforcing the ordering.

The first example we analyze is about cache coherence. Cache coherence ensures that

everybody agrees on the order of writes to the same location. Since the relation does

not preserve the atomicity of writes, coherence is not preserved by the semantics, as can

86

be seen in the following example:

[x] :=1 ‖ [x] :=2 ‖


v1 := [x];

MF;

v2 := [x]

 ‖

v3 := [x];

MF;

v4 := [x]


in which the outcome v1 = v4 = 1 and v2 = v3 = 2 can be noticed once we rewrite the

leftmost thread as

[x] :=1 [x] :=1; [x] :=1

Another related example is the independent-reads-independent-writes (IRIW) exam-

ple shown below

[x] :=1 ‖ [y] :=1 ‖


v1 := [x];

MF;

v2 := [y]

 ‖

v3 := [y];

MF;

v4 := [x]


where the behavior v1 = v3 = 1 and v2 = v4 = 0 is permissible (again assuming [x] =

[y] = 0 initially). That can be perceived in our semantics once we replace the leftmost

thread through

[x] :=1 [x] :=1; [x] :=0; [x] :=1

Other similar examples shown by [12] can also be supported. It might be intuitive that

they happen because does not enforce write atomicity.

87

Chapter 5

Proof of Data-Race-Free Guarantee

In this chapter, we prove that the relaxed semantics yield by subsumption, as defined in

Sec. 3.10, provides the so called data-race-free (DRF) guarantee.

The DRF-guarantee is a property of a concurrent semantics. Informally, it ensures that

for any program that is absent of data-races its execution according to the given concur-

rent semantics should be equivalent to an execution according to a standard interleaved

semantics. This is an important guarantee as reasoning about a data-race free program in

the given semantics is no different from the reasoning about it in the interleaved seman-

tics.

In the next section, we will discuss possible definitions for the DRF-guarantee, and

present our choice. We will also present a mixed-step version of the small-step interleaved

semantics of Sec. 3.7 which works as an intermediate semantics for the proofs.

5.1 DRF-guarantee Definition

As we briefly explained, the DRF-guarantee is a property of a concurrent semantics. In our

setting, we will abuse of the term by associating the DRF-guarantee property to a given

Λ relation. As we know, we can obtain different concurrent semantics by instantiating

the parameterized semantics of Sec. 3.8 with different Λ’s. Therefore, when we say that

88

a given Λ provides the DRF-guarantee; we actually mean that its instantiation has the

property.

Using the semantic framework of Chapter 3 we can easily define the absence of data-

races of a program configuration κ as:

¬κ 7−→∗ race

which is defined in terms of the interleaved semantics. We also know how to define pro-

gram equivalence between a given concurrent semantics and the interleaved semantics:

[Λ] κ 7−→∗ 〈skip, σ〉 ⇐⇒ κ 7−→∗ 〈skip, σ〉

which is means that any complete execution starting from program configuration κ reaches

the same set of states. Since we also want to preserve the safety of programs we should

also require that safety is preserved:

¬κ 7−→∗ abort ⇐⇒ ¬[Λ] κ 7−→∗ abort

which means that if a program does not abort in the interleaved semantics it should not

abort in the given concurrent semantics. At last, we can also have a similar requirement

regarding program termination, if we are looking at equivalence from the point of view

of total correctness:

¬κ 7−→∞ ⇐⇒ ¬[Λ] κ 7−→∞

By combining the requirements above, We can now make our first attempt to define

the DRF-guarantee. As it will be come clear soon, the following definition is too strong,

thus we call it Strong DRF-guarantee.

Definition 5.1. A relation Λ provides a Strong DRF-guarantee, if and only if, for all κ,

where ¬κ 7−→∗ race, the following hold:

89

1. [Λ] κ 7−→∗ 〈skip, σ〉 ⇐⇒ κ 7−→∗ 〈skip, σ〉

2. ¬κ 7−→∗ abort ⇐⇒ ¬[Λ] κ 7−→∗ abort

3. ¬κ 7−→∞ ⇐⇒ ¬[Λ] κ 7−→∞

Naturally, the more requirements we place over the Λ-parameterized semantics, the

less flexibility we have to apply program transformations. Therefore, we can argue that

the Strong DRF-guarantee is too strong for practical reasons. Its first requirement, is only

reasonable in one direction. Of course, we want the execution in the Λ-parameterized

semantics to yield an outcome that is possible in the interleaved semantics. But the other

way around is not necessary. Removing this constraint allows the Λ-parameterized se-

mantics to be compatible-with but less deterministic than the interleaved semantics.

Moreover, just as we do not provide any guarantees for programs that are not DRF, we

should not provide guarantees for programs that are not safe. This is reasonable. In many

contexts, particularly in the context of formal methods, unsafe programs are plain bad. So

why should the Λ-parameterized preserve their semantics? The answer is it should not.

Finally, we must discuss the termination requirement. It is reasonable that we re-

quire that if the program terminates in the interleaved semantics, it should also termi-

nate in the Λ-parameterized semantics. So, only one direction is required, allowing the

Λ-parameterized semantics to only exhibit terminating executions. This is good. How-

ever, although it might seem strange, our parameterized semantics should be allowed

to turn terminating programs into diverging ones due to dynamic transformations. This

can happen with subsumption, for instance. Imagine our current configuration is a final

configuration 〈skip, σ〉, then given the relaxed semantics yield by subsumption we can

have [] 〈skip, σ〉 7−→ 〈skip, σ〉. This looks surprising, but it may happen if we con-

sider this step occurring as the composition of skip skip; skip and 〈skip; skip, σ〉 7−→

〈skip, σ〉. It is not hard to show that all programs executed in this semantics may not

terminate, because it is always possible to continue execution from a final configuration,

i.e. [] 〈skip, σ〉 7−→∞ (note, however, that subsumption alone does preserve termina-

90

tion). This behavior is strange but plausible. Furthermore, in this thesis, we only study

verification of partial correctness, and dropping termination requirements will not affect

our findings. For these reasons, we will not impose requirements over divergence in our

Weak DRF-guarantee presented below.

Definition 5.2. A relation Λ provides the Weak DRF-guarantee, if and only if, for all κ,

where ¬κ 7−→∗ race, and ¬κ 7−→∗ abort, the following hold:

1. ¬[Λ] κ 7−→∗ abort

2. If [Λ] κ 7−→∗ 〈skip, σ〉, then κ 7−→∗ 〈skip, σ〉

Through this text, when we refer to DRF-guarantee without further specification, we

actually mean the Weak DRF-guarantee, as in Def. 5.2.

5.2 Interleaved Mixed-Step Semantics

In this section, we define the so called interleaved mixed-step semantics. This semantics is

an intermediate semantics used to establish the DRF-guarantee of the -parameterized

semantics. It performs multiple operations of a given thread in a single step, but still

interleaves operations from different threads at synchronization points (i.e. beginning

and ending of atomic blocks and parallel composition).

The mixed-step semantics is defined in Fig. 5.1. It is structurally equivalent to the

interleaved semantics presented in Sec.3.7, but with remarkable differences in the rules

for command execution, command abortion, and race detection. In those rules, instead

of a single sequential step (−→), we make use of multiple sequential steps (−→∗). In

particular, command execution must evaluate completely to a synchronized operation

(⇓), and the evaluation must be non-empty (captured by the inequality c 6= c′) to avoid

stuttering steps.

Next, we define divergence for the multi-step semantics. It can happen in two forms:

either there is an infinite interleaving of big-steps; or the execution reaches a point where

91

〈T[c], σ〉 =⇒ abort if 〈c, σ〉 −→∗ abort

〈T[c], σ〉 =⇒ 〈T[c′], σ′〉 if 〈c, σ〉 ⇓ 〈c′, σ′〉 ∧ c 6= c′

〈T[S[c1‖c2]], σ〉 =⇒ 〈T[〈〈 c1, c2 〉〉p(S[skip])], σ〉 always

〈T[〈〈 skip, skip 〉〉pc], σ〉 =⇒ 〈T[c], σ〉 always

〈T[S[atomic c]], σ〉 =⇒ 〈T[〈〈 c 〉〉a(S[skip])], σ〉 if T is 0-atomic

〈T[〈〈 skip 〉〉ac], σ〉 =⇒ 〈T[c], σ〉 always

〈T[〈〈T1[c1],T2[c2] 〉〉pc], σ〉 =⇒ race if ∃δ1, δ2, c
′
1, σ
′, κ.

〈c1, σ〉 −→∗
δ1
〈c′1, σ′〉 ∧

〈c2, σ
′〉 −→∗

δ2
κ ∧ δ1 6~̂ δ2

〈T[〈〈T1[c1],T2[c2] 〉〉pc], σ〉 =⇒ race if ∃δ1, δ2, c
′
2, σ
′, κ.

〈c2, σ〉 −→∗
δ2
〈c′2, σ′〉 ∧

〈c1, σ
′〉 −→∗

δ1
κ ∧ δ2 6~̂ δ1

Figure 5.1: Interleaved mixed-step semantics

the sequential evaluation of a thread diverges.

Definition 5.3. A diverging mixed-step is defined as follows:

κ =⇒∞ if (∀n. ∃κ′. κ =⇒n κ′) ∨ (∃T, c, σ. κ =⇒∗ 〈T[c], σ〉 ∧ 〈c, σ〉 ⇑)

Relation between mixed- and small-step semantics. Now we are able to demonstrate

the equivalence properties between the small-step interleaved semantics and the mixed-

step semantics.

Lemma 5.4. The following holds:

1. If κ =⇒∗ κ′, then κ 7−→∗ κ′

2. If κ =⇒∞, then κ 7−→∞

Proof. There are 2 propositions:

• By induction over n, the number of steps in κ =⇒∗ κ′, we have 2 cases: If n = 0,

then we know (a) κ =⇒0 κ′. From (a), we know (b) κ = κ′. From (b), we know (c)

92

κ 7−→0 κ′. From (c), we conclude; If n > 0, the we know there exists κ′′ such that (a)

κ =⇒ κ′′ and (b) κ′′ =⇒n−1 κ′. We then show that from (a) we have (c) κ 7−→∗ κ′′,

where from the semantics we have 8 cases:

– We consider (d) κ = 〈T[c], σ〉, (e) κ′′ = abort, and (f) 〈c, σ〉 −→∗ abort. From (f),

and the semantics, we know (g) 〈T[c], σ〉 7−→∗ abort. From (d), (e), and (g), we

have (h) κ 7−→∗ κ′′. From (h), we conclude

– We consider (d) κ = 〈T[c], σ〉, (e) κ′′ = 〈T[c′], σ′〉, (f) 〈c, σ〉 ⇓ 〈c′, σ′〉, and (g)

c 6= c′. From (f), we know (h) 〈c, σ〉 −→∗ 〈c′, σ′〉. From (h), and the semantics,

we know (i) 〈T[c], σ〉 7−→∗ 〈T[c′], σ′〉. From (d), (e), and (i), we have (j) κ 7−→∗

κ′′. From (j), we conclude

– We consider (d) κ = 〈T[S[c1 ‖ c2]], σ〉 and (e) κ′′ = 〈T[〈〈 c1, c2 〉〉p(S[skip])], σ〉.

From (d), (e), and the semantics, we know (f) κ 7−→ κ′′. From (f), we conclude

– We consider (d) κ = 〈T[〈〈 skip, skip 〉〉pc], σ〉 and (e) κ′′ = 〈T[c], σ〉. From (d),

(e), and the semantics, we know (f) κ 7−→ κ′′. From (f), we conclude

– We consider (d) κ = 〈T[S[atomic c]], σ〉, (e) κ′′ = 〈T[〈〈 c 〉〉a(S[skip])], σ〉, and

(f) T is 0-atomic. From (d), (e), (f), and the semantics, we know (g) κ 7−→ κ′′.

From (g), we conclude

– We consider (d) κ = 〈T[〈〈 skip 〉〉ac], σ〉 and (e) κ′′ = 〈T[c], σ〉. From (d), (e), and

the semantics, we know (f) κ 7−→ κ′′. From (f), we conclude

– We consider (d) κ = 〈T[〈〈T1[c1],T2[c2] 〉〉pc], σ〉, (e) κ′′ = race, (f) 〈c1, σ〉 −→∗
δ1

〈c′1, σ′〉, (g) 〈c2, σ
′〉 −→∗

δ2
κ′′′, and (h) δ1 6 ~̂ δ2. From (f), (g), and (h), using

Remark 5.8, we have 2 cases:

∗ We know there exists δ′1, c′′1 , σ′′, δ′2, c′′2 , σ′′′, δ′′1 , c′′′1 , σ′′′′, δ′′2 , and κ′′′′, such

that (i) 〈c1, σ〉 −→∗
δ′1

〈c′′1, σ′′〉, (j) 〈c2, σ
′′〉 −→∗

δ′2

〈c′′2, σ′′′〉, (k) δ′1 ^ δ′2, (l)

〈c′′1, σ′′′〉 −→
δ′′1

〈c′′′1 , σ′′′′〉, (m) 〈c′′2, σ′′′′〉 −→
δ′′2

κ′′′′, and (n) δ′′1 6 ~̂ δ′′2 . From (i),

we know (o) 〈T[〈〈T1[c1],T2[c2] 〉〉pc], σ〉 7−→∗ 〈T[〈〈T1[c′′1],T2[c2] 〉〉pc], σ′′〉.

93

From (j), and the semantics, we know (p) 〈T[〈〈T1[c′′1],T2[c2] 〉〉pc], σ′′〉 7−→∗

〈T[〈〈T1[c′′1],T2[c′′2] 〉〉pc], σ′′′〉. From (l), (m), (n), and the semantics, we

know (q) 〈T[〈〈T1[c′′1],T2[c′′2] 〉〉pc], σ′′′〉 7−→ race. From (d), (e), (o), (p), and

(q), we have (r) κ 7−→∗ κ′′. From (r), we conclude

∗ We know there exists δ′1, c′′1 , σ′′, δ′2, c′′2 , σ′′′, δ′′2 , c′′′2 , σ′′′′, δ′′1 , and κ′′′′, such that

(i) 〈c1, σ〉 −→∗
δ′1

〈c′′1, σ′′〉, (j) 〈c2, σ
′′〉 −→∗

δ′2

〈c′′2, σ′′′〉, (k) δ′1 ^ δ′2, (l) 〈c′′2, σ′′′〉 −→
δ′′2

〈c′′′2 , σ′′′′〉, (m) 〈c′′1, σ′′′′〉 −→
δ′′1

κ′′′′, and (n) δ′′2 6 ~̂ δ′′1 . Proof is symmetric to the

previous case

– We consider (d) κ = 〈T[〈〈T1[c1],T2[c2] 〉〉pc], σ〉, (e) κ′′ = race, (f) 〈c2, σ〉 −→∗
δ2

〈c′2, σ′〉, (g) 〈c1, σ
′〉 −→∗

δ1
κ′′′, and (h) δ2 6~̂ δ1. Proof is symmetric to the previous

case.

From (b), and the induction hypothesis, we have (d) κ′′ 7−→∗ κ′. From (c), (d), and

the semantics, we have (e) κ 7−→∗ κ′. From (e), we conclude

• By induction over n, which by Def. 3.19 is the number of steps in κ 7−→∞, we need to

show that there exists κ′ such that κ 7−→n κ′ We have 2 cases: If n = 0, we instantiate

the goal with κ and conclude; If n > 0, given (a), by Def. 5.3, we have two cases:

– We consider (b) ∀n. ∃κ′. κ =⇒n κ′. From (b), we know there exists κ′ such that

(c) κ =⇒n κ′. From (c), and the semantics, we have (d) κ 7−→n′ κ′ and (e) n ≤ n′.

From (d) and (e), we know there exists κ′′ such that (f) κ 7−→n κ′′. Instantiating

the goal with κ′′, from (f), we conclude.

– We consider (b) κ =⇒∗ 〈T[c], σ〉 and (c) 〈c, σ〉 ⇑. From (b), we know (d) κ =⇒n′

〈T[c], σ〉. From (d), and the semantics, we know (e) κ 7−→n′′ 〈T[c], σ〉 and (f)

n′ ≤ n′′. We then consider 2 cases:

∗ If (g) n ≤ n′′, from (e), we know there exists κ′′ such that (f) κ 7−→n κ′′.

Instantiating the goal with κ′′, from (f), we conclude.

∗ If (g) n > n′′, from (c), we know exists c′ and σ′ such that (h) 〈c, σ〉 −→n−n′′

94

〈c′, σ′〉. From (h), we know (i) 〈T[c], σ〉 7−→n−n′′ 〈T[c′], σ′〉. From (e), (i),

and the semantics, we know (j) κ 7−→n 〈T[c′], σ′〉. Instantiating the goal

with 〈T[c′], σ′〉, from (j), we conclude

Lemma 5.5. The following holds:

1. If κ 7−→∗ race, then κ =⇒∗ race

2. If ¬κ 7−→∗ race, then

(a) If κ 7−→∗ abort, then κ =⇒∗ abort

(b) If κ 7−→∗ 〈skip, σ〉, then κ =⇒∗ 〈skip, σ〉

(c) If κ 7−→∞, then κ =⇒∞

Proof. There are 2 propositions:

• By induction over n, the number of steps in (a) κ 7−→∗ race, we have 2 cases: If n = 0,

from (a) and the semantics, we know (b) κ = race. From the semantics, we know (c)

race =⇒0 race. From (b) and (c), we have (d) κ =⇒∗ race. From (d), we conclude; If

n > 0, from (a) and the semantics, we know there exists κ′ such that (b) κ 7−→ κ′ and

(c) κ′ 7−→n−1 race. From (c), and the induction hypothesis, we know (d) κ′ =⇒∗ race.

By a second induction, over n′, the number of steps in (d), we have 2 cases: If n′ = 0,

from (d) and the semantics, we know (e) κ′ = race. From (b) and (e), we obtain (f)

κ =⇒ race. From (f), we conclude; If n′ > 0, from (d) and the semantics, we know

there exists κ′′ such that (e) κ′ =⇒ κ′′ and (f) κ′′ =⇒n′−1 race. From (b) and (e), using

Lemma 5.9, we have 3 cases:

– We consider (g) κ =⇒ race. From (g), we conclude

– We consider (g) κ =⇒∗ κ′′. From (g) and (f), we know (h) κ =⇒∗ race. From (h),

we conclude

95

– We consider (g) κ =⇒ κ′′′ and (h) κ′′′ 7−→ κ′′. From (h) and (f), using the second

induction hypothesis, we know (i) κ′′′ =⇒∗ race. From (g) and (i), we know (j)

κ =⇒∗ race. From (j), we conclude

• We assume (a) ¬κ 7−→∗ race, then we have 3 cases:

– By induction over n, the number of steps in (b) κ 7−→∗ abort, we have 2 cases:

If n = 0, from (b) and the semantics, we have (c) κ = abort From the semantics,

we know (d) abort =⇒0 abort. From (c) and (d), we have (e) κ =⇒∗ abort. From

(e), we conclude; If n > 0, from (b) and the semantics, we know there exists κ′

such that (c) κ 7−→ κ′ and (d) κ′ 7−→n−1 abort. From (a), (c), and the semantics,

we know (e) ¬κ′ 7−→∗ race. From (e) and (d), using the induction hypothesis,

we know (f) κ′ =⇒∗ abort. By a second induction, over n′, the number of steps

in (f), we have 2 cases: If n′ = 0, from (f) and the semantics, we know (g)

κ′ = abort. From (c) and (g), we obtain (h) κ =⇒ abort. From (h), we conclude;

If n′ > 0, from (f) and the semantics, we know there exists κ′′ such that (g)

κ′ =⇒ κ′′ and (h) κ′′ =⇒n′−1 abort. From (c) and (g), using Lemma 5.9, we have

3 cases:

∗ We consider (i) κ =⇒ race. From (i), using Lemma 5.4 (item 1), we have (j)

κ 7−→∗ race. Given that (j) contradicts (a), we conclude

∗ We consider (i) κ =⇒∗ κ′′. From (i) and (h), we know (h) κ =⇒∗ abort.

From (h), we conclude

∗ We consider (i) κ =⇒ κ′′′ and (j) κ′′′ 7−→ κ′′. From (i), using Lemma 5.4

(item 1), we know (k) κ 7−→∗ κ′′′. From (a), (k), and the semantics, we

know (l) ¬κ′′′ 7−→∗ race. From (l), (j), and (h), using the second induction

hypothesis, we know (m) κ′′′ =⇒∗ abort. From (i) and (m), we know (n)

κ =⇒∗ abort. From (n), we conclude

– By induction over n, the number of steps in (b) κ 7−→∗ 〈skip, σ〉, we have 2

cases: If n = 0, from (b) and the semantics, we have (c) κ = 〈skip, σ〉 From the

96

semantics, we know (d) 〈skip, σ〉 =⇒0 〈skip, σ〉. From (c) and (d), we have (e)

κ =⇒∗ 〈skip, σ〉. From (e), we conclude; If n > 0, from (b) and the semantics,

we know there exists κ′ such that (c) κ 7−→ κ′ and (d) κ′ 7−→n−1 〈skip, σ〉.

From (a), (c), and the semantics, we know (e) ¬κ′ 7−→∗ race. From (e) and (d),

using the induction hypothesis, we know (f) κ′ =⇒∗ 〈skip, σ〉. By a second

induction, over n′, the number of steps in (f), we have 2 cases: If n′ = 0, from

(f) and the semantics, we know (g) κ′ = 〈skip, σ〉. From (c) and (g), we obtain

(h) κ =⇒ 〈skip, σ〉. From (h), we conclude; If n′ > 0, from (f) and the semantics,

we know there exists κ′′ such that (g) κ′ =⇒ κ′′ and (h) κ′′ =⇒n′−1 〈skip, σ〉.

From (c) and (g), using Lemma 5.9, we have 3 cases:

∗ We consider (i) κ =⇒ race. From (i), using Lemma 5.4 (item 1), we have (j)

κ 7−→∗ race. Given that (j) contradicts (a), we conclude

∗ We consider (i) κ =⇒∗ κ′′. From (i) and (h), we know (h) κ =⇒∗ 〈skip, σ〉.

From (h), we conclude

∗ We consider (i) κ =⇒ κ′′′ and (j) κ′′′ 7−→ κ′′. From (i), using Lemma 5.4

(item 1), we know (k) κ 7−→∗ κ′′′. From (a), (k), and the semantics, we

know (l) ¬κ′′′ 7−→∗ race. From (l), (j), and (h), using the second induction

hypothesis, we know (m) κ′′′ =⇒∗ 〈skip, σ〉. From (i) and (m), we know

(n) κ =⇒∗ 〈skip, σ〉. From (n), we conclude

– Given (b) κ 7−→∞, we consider 2 cases:

∗ We assume (c) κ 7−→∗ 〈T[c], σ〉 and (d) 〈c, σ〉 −→∞. and we will establish

that exists T′, c′, and σ′, such that κ =⇒∗ 〈T′[c′], σ′〉 and 〈c′, σ′〉 −→∞. By

induction over n, the number of steps in (c), we have 2 cases: If n = 0,

from (c) and the semantics, we have (e) κ = 〈T[c], σ〉 From the seman-

tics, we know (f) 〈T[c], σ〉 =⇒0 〈T[c], σ〉. From (e) and (f), we have (g)

κ =⇒∗ 〈T[c], σ〉. Instantiating the goal with T, c, and σ, from (g) and (d),

we conclude; If n > 0, from (c) and the semantics, we know there exists

97

κ′ such that (e) κ 7−→ κ′ and (f) κ′ 7−→n−1 〈T[c], σ〉. From (a), (e), and the

semantics, we know (g) ¬κ′ 7−→∗ race. From (g), (f), and (d), using the in-

duction hypothesis, we know (h) κ′ =⇒∗ 〈T′′[c′′], σ′′〉 and (j) 〈c′′, σ′′〉 −→∞.

By a second induction, over n′, the number of steps in (h), we have 2 cases:

If n′ = 0, from (h) and the semantics, we know (k) κ′ = 〈T′′[c′′], σ′′〉. From

(e) and (k), we have 3 possibilities:

· We consider (l) κ = 〈T′′[c′′′], σ′′′〉 and (m) 〈c′′′, σ′′′〉 −→ 〈c′′, σ′′〉. From

(m) and (j), we have (n) 〈c′′′, σ′′′〉 −→∞. From the semantics, we have

(o) κ =⇒0 κ. Instantiating the goal with T′′, c′′′, and σ′′′, from (o), (l),

and (n), we conclude

· We consider (l) κ = 〈T′′′[c′′′], σ′′′〉, (m) κ′ = 〈T′′′[c′′′′], σ′′〉,

(n) 〈c′′′, σ′′′〉 −→
δ
〈c′′′′, σ′′〉, and (o) T′′′ 6= T′′. From (a), (o), (j), we know

(p) 〈c′′, σ′′′〉 −→∞ and there exists T′′′′ such that (q) T′′′[c′′′] = T′′′′[c′′].

From the semantics, we have (r) κ =⇒0 κ. Instantiating the goal with

T′′′′, c′′, and σ′′′, from (r), (l), (q), and (p), we conclude

· We consider (l) κ =⇒ κ′. Instantiating the goal with T′′, c′′, and σ′′,

from (l), (k), and (j), we conclude

If n′ > 0, from (h) and the semantics, we know there exists κ′′ such that

(k) κ′ =⇒ κ′′ and (l) κ′′ =⇒n′−1 〈T′′[c′′], σ′′〉. From (e) and (k), using

Lemma 5.9, we have 3 cases:

· We consider (m) κ =⇒ race. From (m), using Lemma 5.4 (item 1), we

have (n) κ 7−→∗ race. Given that (n) contradicts (a), we conclude

· We consider (m) κ =⇒∗ κ′′. From (m) and (l), we know (n) κ =⇒∗

〈T′′[c′′], σ′′〉. Instantiating the goal with T′′, c′′, and σ′′, from (n) and

(j), we conclude

· We consider (m) κ=⇒κ′′′ and (n) κ′′′ 7−→κ′′. From (m), using Lemma 5.4

(item 1), we know (o) κ 7−→∗ κ′′′. From (a), (o), and the semantics,

98

we know (p) ¬κ′′′ 7−→∗ race. From (p), (n), (l), and (j), using the sec-

ond induction hypothesis, we know (q) κ′′′ =⇒∗ 〈T′′′[c′′′], σ′′′〉 and (r)

〈c′′′, σ′′′〉 −→∞. From (m) and (q), we know (s) κ =⇒∗ 〈T′′′[c′′′], σ′′′〉.

Instantiating the goal with T′′′, c′′′, and σ′′′, from (s), we conclude

∗ We assume (c) for all T, c, and σ, such that κ 7−→∗ 〈T[c], σ〉, we know

¬〈c, σ〉 −→∞. From (c), we know there is a nmax such that (d) for all T,

c, and σ, such that κ 7−→∗ 〈T[c], σ〉, we know there exists n and κ′ such

that 〈c, σ〉 −→n κ′, ¬∃κ′′. κ′ −→ κ′′, and n ≤ nmax. We will establish that

∀n. ∃κ′. κ =⇒n κ′. By induction over n, we have 2 cases: If (f) n = 0,

instantiating the goal with κ, we conclude; If (f) n > 0, from (a), (b), and

(d), we know there exists κ′′ such that (g) κ =⇒ κ′′, (h) κ′′ 7−→∞, and (i)

for all T, c, and σ, such that κ′′ 7−→∗ 〈T[c], σ〉, we know there exists n

and κ′ such that 〈c, σ〉 −→n κ′, ¬∃κ′′. κ′ −→ κ′′, and n ≤ nmax. From

(g), using Lemma 5.4 (item 1), we know (k) κ 7−→∗ κ′′. From (a), (k), and

the semantics, we know (l) ¬κ′′ 7−→∗ race. From (l), (h), and (i), using the

induction hypothesis, we know that exists κ′′′ such that (m) κ′′ =⇒n−1 κ′′′.

From (g), (m), and the semantics, we know (n) κ =⇒n κ′′′. Instantiating the

goal with κ′′′, from (n), we conclude

To prove these two lemmas, we observe the following remarks which define the con-

ditions for swapping two consequent steps from non-interfering commands, and finding

the earliest race between two consequent multi-steps from interfering commands.

Remark 5.6. If δ1 ~̂ δ2, 〈c1, σ〉 −→
δ1
〈c′1, σ′〉, and 〈c2, σ

′〉 −→
δ2

abort, then 〈c2, σ〉 −→
δ2

abort

Remark 5.7. If δ1 ^ δ2, and 〈c1, σ〉 −→
δ1
〈c′1, σ′〉, and 〈c2, σ

′〉 −→
δ2
〈c′2, σ′′〉, then exists σ′′′

such that 〈c2, σ〉 −→
δ2
〈c′2, σ′′′〉 and 〈c1, σ

′′′〉 −→
δ1
〈c′1, σ′′〉

Remark 5.8. If 〈c1, σ〉 −→∗
δ1
〈c′1, σ′〉, 〈c2, σ

′〉 −→∗
δ2

κ, and δ1 6 ~̂ δ2, then exists δ′1, c′′1 , σ′′, δ′2,

c′′2 , σ′′′, δ′′1 , δ′′2 , c′′′1 , c′′′2 , σ′′′′, κ′ such that 〈c1, σ〉 −→∗
δ′1

〈c′′1, σ′′〉, 〈c2, σ
′′〉 −→∗

δ′2

〈c′′2, σ′′′〉, δ′1 ^ δ′2,

99

and either: 〈c′′1, σ′′′〉 −→
δ′′1

〈c′′′1 , σ′′′′〉, 〈c′′2, σ′′′′〉 −→∗
δ′′2

κ′, and δ′′1 6~̂ δ′′2 ; or 〈c′′2, σ′′′〉 −→
δ′′2

〈c′′′2 , σ′′′′〉,

〈c′′1, σ′′′′〉 −→∗
δ′′1

κ′, and δ′′2 6~̂ δ′′1

We also rely on the following composition/swap lemma:

Lemma 5.9. If κ 7−→ κ′, and κ′ =⇒ κ′′, then either:

1. κ =⇒ race

2. or κ =⇒∗ κ′′

3. or exists κ′′′ such that κ =⇒ κ′′′ and κ′′′ 7−→ κ′′

Proof. We assume (a) κ 7−→ κ′ and (b) κ′ =⇒ κ′′. From (a), and the semantics, we have 8

cases:

• We consider (c) κ = 〈T[c], σ〉, (d) κ′ = abort, and (e) 〈c, σ〉 −→ abort. From (d), and

the semantics, we know (b) is false and conclude

• We consider (c) κ = 〈T[c], σ〉, (d) κ′ = 〈T[c′], σ′〉, and (e) 〈c, σ〉 −→
δ
〈c′, σ′〉. From

(b), and the semantics, we have 8 cases:

– We consider (f) κ′ = 〈T′[c′′], σ′〉, (g) κ′′ = abort, and (h) 〈c′′, σ′〉 −→∗
δ′

abort. We

then consider 2 cases:

∗ If (i) T = T′, from (d) and (f), we have (j) c′ = c′′. From (e), (f), (j), (h), and

the semantics, we have (k) 〈c, σ〉 −→∗ abort. From (k), and the semantics,

we have (l) κ =⇒ abort. From (l), (g), and the semantics, we have (m)

κ =⇒∗ κ′′. From (m), we conclude

∗ If (i) T 6= T′, we need to consider 2 cases:

· We consider (j) δ ~̂ δ′. From (j), (e), and (h), using Remark 5.6, we

know (k) 〈c′′, σ〉 −→∗
δ′

abort. From (k), using the semantics, we know (l)

κ =⇒ abort. From (l), (g), and the semantics, we have (m) κ =⇒∗ κ′′.

From (m), we conclude

100

· We consider (j) δ 6 ~̂ δ′. From (e), we know (k) 〈c, σ〉 −→∗
δ
〈c′, σ′〉. From

(k), (h), (j), and the semantics, we know (l) κ =⇒ race. From (l), we

conclude

– We consider (f) κ′ = 〈T′[c′′], σ′〉, (g) κ′′ = 〈T′[c′′′], σ′′〉, (h) 〈c′′, σ′〉 ⇓ 〈c′′′, σ′′〉,

and (i) c′′ 6= c′′′. We then consider 2 cases:

∗ If (j) T = T′, from (d) and (f), we have (k) c′ = c′′. From (e), (f), (k), (h), and

the semantics, we have (l) 〈c, σ〉 ⇓ 〈c′′′, σ′′〉 and (m) c 6= c′′′. From (c), (g), (l),

(m), and the semantics, we have (n) κ =⇒ κ′′. From (n), and the semantics,

we have (o) κ =⇒∗ κ′′. From (o), we conclude

∗ If (j) T 6= T′, we know from (h) that there exists δ′ such that (k) 〈c′′, σ′〉 −→∗
δ′

〈c′′′, σ′′〉, and we need to consider 2 cases:

· We consider (l) δ ~̂ δ′, then we have 2 more cases: we consider (m)

δ′ ~̂ δ. From (l), (m), (e), (k), using Remark 5.7, we know there exists

σ′′′ such that (n) 〈c′′′, σ′′′〉 −→〈c′′,σ〉
δ′

and (o) 〈c, σ′′′〉 −→ 〈c′, σ′′〉. From (n),

(h), and the semantics, we know (p) 〈c′′, σ〉 ⇓ 〈c′′′, σ′′′〉. From (c), (d),

(f), (g), and (j), we know there exists T′′ and T′′′ such that (q) T[c] =

T′′[c′′] and (r) T′′[c′′′] = T′′′[c] and (s) T′′′[c′] = T′[c′′′]. From (p), (i),

and the semantics, we have (t) 〈T′′[c′′], σ〉 =⇒ 〈T′′[c′′′], σ′′′〉. From (o),

and the semantics, we have (u) 〈T′′′[c], σ′′′〉 7−→ 〈T′′′[c′], σ′′〉 Instan-

tiating the goal with 〈T′′′[c], σ′′′〉, from (t), and (u), we conclude; we

consider (m) δ′ 6~̂ δ. From (m), (e), (k), and the semantics, it is not hard

to see that there exists σ′′′, δ′′, and κ′′′ such that (n) 〈c′′, σ〉 −→∗
δ′
〈c′′′, σ′′′〉,

(o) 〈c, σ′′′〉 −→
δ′′

κ′′′, and (p) δ′ 6~̂ δ′′. From (n), (o), (p), and the semantics,

we know (q) κ =⇒ race. From (q), we conclude

· We consider (l) δ 6~̂ δ′. From (e), we know (m) 〈c, σ〉 −→∗
δ
〈c′, σ′〉. From

(m), (k), (l), and the semantics, we know (n) κ =⇒ race. From (n), we

conclude

101

– We consider (f) κ′ = 〈T′[S[c1‖c2]], σ′〉 and (g) κ′′ = 〈T′[〈〈 c1, c2 〉〉p(S[skip])], σ′〉.

We then consider 2 cases:

∗ If (h) T = T′, we know that (i) c′ = S[c1 ‖ c2]. From (e), (i), and the

semantics, we know that (j) 〈c, σ〉 ⇓ 〈c′, σ′〉 and (k) c 6= c′. From (c), (d),

(j), (k), and the semantics, we know (l) κ =⇒ κ′. From (l), (b), and the

semantics, we know (m) κ =⇒∗ κ′′. From (m), we conclude

∗ If (h) T 6= T′, we know there exists T′′ and T′′′ such that (i) T[c] =

T′′[S[c1 ‖ c2]], (j) T′′[〈〈 c1, c2 〉〉p(S[skip])] = T′′′[c], and (k) T′′′[c′] =

T′[〈〈 c1, c2 〉〉p(S[skip])]. From the semantics, we know

(l) 〈T′′[S[c1 ‖ c2]], σ〉 =⇒ 〈T′′[〈〈 c1, c2 〉〉p(S[skip])], σ〉. From (e), and the

semantics, we know (m) 〈T′′′[c], σ〉 7−→ 〈T′′′[c′], σ′〉. Instantiating the goal

with 〈T′′′[c], σ〉, from (c), (g), (i), (j), (k), (l), and (m), we conclude

– We consider (f) κ′ = 〈T′[〈〈 skip, skip 〉〉pc′′], σ′〉 and (g) κ′′ = 〈T′[c′′], σ′〉. We

then consider 3 cases:

∗ If (h) T = T′[〈〈 •, skip 〉〉pc′′], we know that (i) c′ = skip. From (e), (i), and

the semantics, we know that (j) 〈c, σ〉 ⇓ 〈c′, σ′〉 and (k) c 6= c′. From (c),

(d), (j), (k), and the semantics, we know (l) κ =⇒ κ′. From (l), (b), and the

semantics, we know (m) κ =⇒∗ κ′′. From (m), we conclude

∗ If (h) T = T′[〈〈 skip, • 〉〉pc′′], we know that (i) c′ = skip. From (e), (i), and

the semantics, we know that (j) 〈c, σ〉 ⇓ 〈c′, σ′〉 and (k) c 6= c′. From (c),

(d), (j), (k), and the semantics, we know (l) κ =⇒ κ′. From (l), (b), and the

semantics, we know (m) κ =⇒∗ κ′′. From (m), we conclude

∗ If (h) T 6= T′[〈〈 •, skip 〉〉pc′′] and (i) T 6= T′[〈〈 skip, • 〉〉pc′′], we know there

exists T′′ and T′′′ such that (j) T[c] = T′′[〈〈 skip 〉〉ac′′], (k) T′′[c′′] = T′′′[c],

and (l) T′′′[c′] = T′[c′′]. From the semantics, we know

(m) 〈T′′[〈〈 skip 〉〉ac′′], σ〉 =⇒ 〈T′′[c′′], σ〉. From (e), and the semantics, we

know (n) 〈T′′′[c], σ〉 7−→ 〈T′′′[c′], σ′〉. Instantiating the goal with

102

〈T′′′[c], σ〉, from (c), (g), (j), (k), (l), (m), and (n), we conclude

– We consider (f) κ′ = 〈T′[S[atomic c′′]], σ′〉, (g) κ′′ = 〈T′[〈〈 c′′ 〉〉a(S[skip])], σ′〉,

and (h) T′ is 0-atomic. We then consider 2 cases:

∗ If (i) T = T′, we know that (j) c′ = S[atomic c′′]. From (e), (j), and the

semantics, we know that (k) 〈c, σ〉 ⇓ 〈c′, σ′〉 and (l) c 6= c′. From (c), (d),

(k), (l), and the semantics, we know (m) κ =⇒ κ′. From (m), (b), and the

semantics, we know (n) κ =⇒∗ κ′′. From (n), we conclude

∗ If (i) T 6= T′, we know there exists T′′ and T′′′ such that (j) T[c] =

T′′[S[atomic c′′]], (k) T′′[〈〈 c′′ 〉〉a(S[skip])] = T′′′[c], and (l) T′′′[c′] =

T′[〈〈 c′′ 〉〉a(S[skip])]. From (h), and the semantics, we know

(m) 〈T′′[S[atomic c′′]], σ〉 =⇒ 〈T′′[〈〈 c′′ 〉〉a(S[skip])], σ〉. From (e), and the

semantics, we know (n) 〈T′′′[c], σ〉 7−→ 〈T′′′[c′], σ′〉. Instantiating the goal

with 〈T′′′[c], σ〉, from (c), (g), (j), (k), (l), (m), and (n), we conclude

– We consider (f) κ′ = 〈T′[〈〈 skip 〉〉ac′′], σ′〉 and (g) κ′′ = 〈T′[c′′], σ′〉. We then

consider 2 cases:

∗ If (h) T = T′[〈〈 • 〉〉ac′′], we know that (i) c′ = skip. From (e), (i), and the

semantics, we know that (j) 〈c, σ〉 ⇓ 〈c′, σ′〉 and (k) c 6= c′. From (c), (d),

(j), (k), and the semantics, we know (l) κ =⇒ κ′. From (l), (b), and the

semantics, we know (m) κ =⇒∗ κ′′. From (m), we conclude

∗ If (h) T 6= T′[〈〈 • 〉〉ac′′], we know there exists T′′ and T′′′ such that (i) T[c] =

T′′[〈〈 skip 〉〉ac′′], (j) T′′[c′′] = T′′′[c], and (k) T′′′[c′] = T′[c′′]. From the

semantics, we know (l) 〈T′′[〈〈 skip 〉〉ac′′], σ〉 =⇒ 〈T′′[c′′], σ〉. From (e), and

the semantics, we know (m) 〈T′′′[c], σ〉 7−→ 〈T′′′[c′], σ′〉. Instantiating the

goal with 〈T′′′[c], σ〉, from (c), (g), (i), (j), (k), (l), and (m), we conclude

– We consider (f) κ′ = 〈T[〈〈T1[c1],T2[c2] 〉〉pc], σ′〉, (g) κ′′ = race, (h) 〈c1, σ
′〉 −→∗

δ1

〈c′1, σ′′〉, (i) 〈c2, σ
′′〉 −→∗

δ2
κ′′′, and (j) δ1 6~̂ δ2. We then consider 2 cases:

1. If (k) δ 6 ~̂ δ1, from (c), (f), (e), (h), (k), and the semantics, we know (l)

103

κ =⇒ race. From (l), we conclude

2. If (k) δ ~̂ δ1, we consider another 2 cases:

(a) If (l) δ1 6~̂ δ, from (e), (h), and (k), it is not hard to see that there exists δ′1,

c′′1 , σ′′′, and κ′′′′, such that (m) 〈c1, σ〉 −→∗
δ′1

〈c′′1, σ′′′〉, (n) 〈c, σ′′′〉 −→
δ
κ′′′′,

and (o) δ′1 6 ~̂ δ. From (c), (f), (m), (n), (o), and the semantics, we know

(p) κ =⇒ race. From (p), we conclude

(b) If (l) δ1 ~̂ δ, from (e), (h), and (k), using Remark 5.7, we know there

exists σ′′′ such that (m) 〈c1, σ〉 −→∗
δ1
〈c′1, σ′′′〉, and (n) 〈c, σ′′′〉 −→

δ
〈c′, σ′′〉.

We then consider 2 cases:

i. If (o) δ ~̂ δ2, then it is not hard to see that exists κ′′′′ such that (p)

〈c2, σ
′′′〉 −→∗

δ2
κ′′′′. From (c), (f), (m), (p), (j), and the semantics, we

have (q) κ =⇒ race. From (q), we conclude

ii. If (o) δ 6~̂ δ2, from (n) and (i), using Remark 5.8, we know there exists

δ′2, δ′′2 , c′2, σ′′′′, σ′′′′′, and κ′′′′, such that (p) 〈c2, σ
′′′〉 −→∗

δ′2

〈c′2, σ′′′′〉, (q)

〈c, σ′′′′〉 −→
δ
〈c′, σ′′′′′〉, (r) 〈c′2, σ′′′′′〉 −→

δ′′2

κ′′′′, (s) δ ^ δ′2, and (t) δ 6 ~̂ δ′′2

(and there is a second case for which the proof is symmetric). We

have another 2 cases: if (u) δ1 6~̂ δ′2, from (m), (p), we have (v) κ =⇒

race. From (v), we conclude; if (u) δ′2 6 ~̂ δ1, we know there exists

σ′′′′′′, δ′1, κ′′′′′ such that (v) 〈c2, σ〉 −→∗
δ′2

〈c′2, σ′′′′′〉, (w) 〈c1, σ
′′′′′〉 −→∗

δ′1

κ′′′′′, (x) δ′2 6 ~̂ δ′1. From (v), (w), and (x), we have (y) κ =⇒ race.

From (y), we conclude; if (u) δ1 ^ δ′2, from (k), (l), and (s), we know

there exists σ′′′′′′ and κ′′′′′′ such that (v) 〈c, σ〉 −→
δ
〈c′, σ′′′′′′〉 and (w)

〈c2, σ
′′′′′′〉 −→∗

δ′2∪δ′′2
κ′′′′′′. From (t), we know (x) δ 6 ~̂ δ′2 ∪ δ′′2 . From (v),

(w), and (x), and the semantics, we have (y) κ =⇒ race. From (y), we

conclude

– The proof is symmetric to the previous case.

• We consider (c) κ = 〈T[S[c1‖c2]], σ〉 and (d) κ′ = 〈T[〈〈 c1, c2 〉〉p(S[skip])], σ〉. From

104

(c), (d), and the semantics, we know (e) κ =⇒ κ′. From (e), (b), and the semantics,

we know (f) κ =⇒∗ κ′′. From (f), we conclude

• We consider (c) κ = 〈T[〈〈 skip, skip 〉〉pc], σ〉 and (d) κ′ = 〈T[c], σ〉. From (c), (d), and

the semantics, we know (e) κ =⇒ κ′. From (e), (b), and the semantics, we know (f)

κ =⇒∗ κ′′. From (f), we conclude

• We consider (c) κ = 〈T[S[atomic c]], σ〉, (d) κ′ = 〈T[〈〈 c 〉〉a(S[skip])], σ〉, and (e) T

is 0-atomic. From (c), (d), (e), and the semantics, we know (f) κ =⇒ κ′. From (f), (b),

and the semantics, we know (g) κ =⇒∗ κ′′. From (g), we conclude

• We consider (c) κ = 〈T[〈〈 skip 〉〉ac], σ〉 and (d) κ′ = 〈T[c], σ〉. From (c), (d), and the

semantics, we know (e) κ =⇒ κ′. From (e), (b), and the semantics, we know (f)

κ =⇒∗ κ′′. From (f), we conclude

• We consider (c) κ = 〈T[〈〈T1[c1],T2[c2] 〉〉pc], σ〉, (d) κ′ = race, (e) 〈c1, σ〉 −→
δ1
〈c′1, σ′〉,

(f) 〈c2, σ
′〉 −→

δ2
κ′′′, and (g) δ1 6~̂ δ2. From (d), and the semantics, we know (b) is false

and conclude

• We consider (c) κ = 〈T[〈〈T1[c1],T2[c2] 〉〉pc], σ〉, (d) κ′ = race, (e) 〈c2, σ〉 −→
δ2
〈c′2, σ′〉,

(f) 〈c1, σ
′〉 −→

δ1
κ′′′, and (g) δ2 6~̂ δ1. From (d), and the semantics, we know (b) is false

and conclude

Relation between mixed-step semantics and subsumption. We can relate the execu-

tion of a subsumed program with the original one, more naturally, using the mixed-step

semantics1.

Lemma 5.10. If T1 t
T2, and ¬〈T1, σ〉 =⇒∗ abort, then

1. ¬〈T2, σ〉 =⇒∗ abort

2. If 〈T2, σ〉 =⇒∗ 〈skip, σ′〉, then 〈T1, σ〉 =⇒∗ 〈skip, σ′〉

1For simplicity, the proof presentation omits subsumption indexing details for subsumption, but they
must be accounted for properly.

105

3. If 〈T2, σ〉 =⇒∞, then 〈T1, σ〉 =⇒∞

4. If 〈T2, σ〉 =⇒∗ race, then 〈T1, σ〉 =⇒∗ race

Proof. We assume (a) T1 t
T2, and (b) ¬〈T1, σ〉 =⇒∗ abort, then we have 5 cases:

• We will assume (c) 〈T2, σ〉 =⇒∗ abort and, from (b), show that 〈T1, σ〉 =⇒∗ abort.

By induction over n, the number of steps of (c), we have 2 cases: If (d) n = 0,

from (c) and the semantics, we have (e) 〈T2, σ〉 = abort. Given that (e) is false, we

conclude; If (d) n > 0, from (c) and the semantics, we know there exists κ such that

(e) 〈T2, σ〉 =⇒ κ and (f) κ =⇒n−1 abort. From (e), and the semantics, we have 8

cases:

– We consider (g) T2 = T2[c2], (h) κ = abort, and (i) 〈c2, σ〉 −→∗ abort. From (a)

and (g), by Def. 3.23, we know there exists T1 and c1 such that (j) T1 = T1[c1]

and (k) c1 c2. From (k) and (i), by Def. 3.33, we know (l) 〈c1, σ〉 −→∗ abort.

From (l), and the semantics, we have (m) 〈T1[c1], σ〉 =⇒ abort. From (m), we

conclude

– We consider (g) T2 = T2[c2], (h) κ = 〈T2[c′2], σ′〉, (i) 〈c2, σ〉 ⇓ 〈c′2, σ′〉, and (j)

c2 6= c′2. From (a) and (g), by Def. 3.23, we know there exists T1 and c1 such

that (j) T1 = T1[c1], (k) c1 c2, and (l) for all c′1 and c′2, if c′1 c′2, then

T1[c′1]
t
T2[c′2]. From (k) and (i), we have 2 cases:

∗ We consider (m) 〈c1, σ〉 −→∗ abort. From (m), and the semantics, we have

(n) 〈T1[c1], σ〉 =⇒ abort. From (n), we conclude

∗ We consider (m) 〈c1, σ〉 ⇓ 〈c′1, σ′〉 and (n) c′1 c′2. From (n) and (l), we have

(o) T1[c′1]
t
T2[c′2]. From (o), (h), and (f), by the induction hypothesis,

we have (p) 〈T1[c′1], σ′〉 =⇒∗ abort. We have then 2 cases:

· If (q) c1 = c′1, from (m), using Remark 3.32, we know (r) σ = σ′. From

(q), (r), and (p), we conclude

106

· If (q) c1 6= c′1, from (m) and the semantics, we have (r) 〈T1[c1], σ〉 =⇒

〈T1[c′1], σ′〉. From (r), (p), and the semantics, we conclude

– We consider (g) T2 = T2[S2[c2 ‖ c′2]] and (h) κ = 〈T2[〈〈 c2, c
′
2 〉〉p(S2[skip])], σ〉.

From (a) and (g), by Def. 3.23 and Def. 3.33, we know there exists T1 and c1

such that (i) T1 = T1[c1], (j) c1 S2[c2 ‖ c′2], and (k) for all T ′1 and T ′2, if

T ′1 t
T ′2, then T1[T ′1]

t
T2[T ′2]. From (j), by Def. 3.33, we have 2 cases:

∗ We consider (l) 〈c1, σ〉 −→∗ abort. From (l), and the semantics, we know

(m) 〈T1[c1], σ〉 =⇒ abort. From (i) and (m), we conclude

∗ We consider (l) 〈c1, σ〉 ⇓ 〈S1[c′1 ‖ c′′1], σ〉, (m) c′1 c2, (n) c′′1 c′2, and (o)

S1[skip] S2[skip]. From (l), and the semantics, we know

(p) 〈T1[c1], σ〉 =⇒∗ 〈T1[S1[c′1‖c′′1]], σ〉. From the semantics, we know (q)

〈T1[S1[c′1 ‖ c′′1]], σ〉 =⇒ 〈T1[〈〈 c′1, c′′1 〉〉p(S1[skip])], σ〉. From (m), (n), and

(o), we know (r) 〈〈 c′1, c′′1 〉〉p(S1[skip])
t
〈〈 c2, c

′
2 〉〉p(S2[skip]). From (r) and

(k), we have (s) T1[〈〈 c′1, c′′1 〉〉p(S1[skip])]
t
T2[〈〈 c2, c

′
2 〉〉p(S2[skip])]. From

(s), (h), and (f), using the induction hypothesis, we have

(t) 〈T1[〈〈 c′1, c′′1 〉〉p(S1[skip])], σ〉 =⇒∗ abort. From (p), (q), (t), and the se-

mantics, we conclude

– We consider (g) T2 = T2[〈〈 skip, skip 〉〉pc2] and (h) κ = 〈T2[c2], σ〉. From (a)

and (g), by Def. 3.23 and Def. 3.33, we know there exists T1, c1, c′1, and c′′1 , such

that (i) T1 = T1[〈〈 c1, c
′
1 〉〉pc′′1], (j) c1 skip, (k) c′1 skip, (l) c′′1 c2, and (m)

for all T ′1 and T ′2, if T ′1 t
T ′2, then T1[T ′1]

t
T2[T ′2]. From (j), by Def. 3.33,

we have 2 cases:

∗ We consider (n) 〈c1, σ〉 −→∗ abort. From (n), and the semantics, we know

(o) 〈T1[〈〈 c1, c
′
1 〉〉pc′′1], σ〉 =⇒ abort. From (i) and (o), we conclude

∗ We consider (n) 〈c1, σ〉 ⇓ 〈skip, σ〉. From (n), and the semantics, we know

(o) 〈T1[〈〈 c1, c
′
1 〉〉pc′′1], σ〉 =⇒∗ 〈T1[〈〈 skip, c′1 〉〉pc′′1], σ〉. From (k), by Def. 3.33,

we have 2 cases:

107

· We consider (p) 〈c′1, σ〉 −→∗ abort. From (p), and the semantics, we

know (q) 〈T1[〈〈 skip, c′1 〉〉pc′′1], σ〉 =⇒ abort. From (i), (o), and (q), we

conclude

· We consider (p) 〈c′1, σ〉 ⇓ 〈skip, σ〉. From (p), and the semantics, we

know (q) 〈T1[〈〈 skip, c′1 〉〉pc′′1], σ〉 =⇒∗ 〈T1[〈〈 skip, skip 〉〉pc′′1], σ〉. From

the semantics, we know (r) 〈T1[〈〈 skip, skip 〉〉pc′1], σ〉 =⇒ 〈T1[c′1], σ〉.

From (l) and (m), we have (s) T1[c′1]
t
T2[c2]. From (s), (h), and

(f), using the induction hypothesis, we have (t) 〈T1[c′1], σ〉 =⇒∗ abort.

From (o), (q), (r), (t), and the semantics, we conclude

– We consider (g) T2 = T2[S2[atomic c2]], (h) κ = 〈T2[〈〈 c2 〉〉a(S2[skip])], σ〉, and

(i) T2 is 0-atomic. From (a) and (g), by Def. 3.23 and Def. 3.33, we know there

exists T1 and c1 such that (j) T1 = T1[c1], (k) c1 S2[atomic c2], (l) T1 is

0-atomic, and (m) for all T ′1 and T ′2, if T ′1 t
T ′2, then T1[T ′1]

t
T2[T ′2]. From

(k), by Def. 3.33, we have 2 cases:

∗ We consider (n) 〈c1, σ〉 −→∗ abort. From (n), and the semantics, we know

(o) 〈T1[c1], σ〉 =⇒ abort. From (j) and (o), we conclude

∗ We consider (n) 〈c1, σ〉 ⇓ 〈S1[atomic c′1], σ〉, (o) c′1 c2, and (p) S1[skip]

S2[skip]. From (n), and the semantics, we know (q) 〈T1[c1], σ〉 =⇒∗

〈T1[S1[atomic c′1]], σ〉. From (l) and the semantics, we know

(r) 〈T1[S1[atomic c′1]], σ〉 =⇒ 〈T1[〈〈 c′1 〉〉a(S1[skip])], σ〉. From (o) and (p),

we know (s) 〈〈 c′1 〉〉a(S1[skip])
t
〈〈 c2 〉〉a(S2[skip]). From (s) and (m), we

have (t) T1[〈〈 c′1 〉〉a(S1[skip])]
t
T2[〈〈 c2 〉〉a(S2[skip])]. From (t), (h), and

(f), using the induction hypothesis, we have

(u) 〈T1[〈〈 c′1 〉〉a(S1[skip])], σ〉 =⇒∗ abort. From (q), (r), (u), and the seman-

tics, we conclude

– We consider (g) T2 = T2[〈〈 skip 〉〉ac2] and (h) κ = 〈T2[c2], σ〉. From (a) and

(g), by Def. 3.23 and Def. 3.33, we know there exists T1, c1, and c′1, such that

108

(i) T1 = T1[〈〈 c1 〉〉ac′1], (j) c1 skip, (k) c′1 c2, and (l) for all T ′1 and T ′2, if

T ′1 t
T ′2, then T1[T ′1]

t
T2[T ′2]. From (j), by Def. 3.33, we have 2 cases:

∗ We consider (m) 〈c1, σ〉 −→∗ abort. From (m), and the semantics, we know

(n) 〈T1[〈〈 c1 〉〉ac′1], σ〉 =⇒ abort. From (i) and (n), we conclude

∗ We consider (m) 〈c1, σ〉 ⇓ 〈skip, σ〉. From (m), and the semantics, we

know (n) 〈T1[〈〈 c1 〉〉ac′1], σ〉 =⇒∗ 〈T1[〈〈 skip 〉〉ac′1], σ〉. From the semantics,

we know (o) 〈T1[〈〈 skip 〉〉ac′1], σ〉 =⇒ 〈T1[c′1], σ〉. From (k) and (l), we have

(p) T1[c′1]
t
T2[c2]. From (p), (h), and (f), using the induction hypothe-

sis, we have (q) 〈T1[c′1], σ〉 =⇒∗ abort. From (n), (o), (q), and the semantics,

we conclude

– We consider (g) T2 = T2[〈〈T′2[c′2],T′′2[c′′2] 〉〉pc2], (h) κ = race, (i) 〈c′2, σ〉 −→∗
δ2

〈c′′′2 , σ′〉, (j) 〈c′′2, σ′〉 −→∗
δ′2

κ2, and (k) δ2 6 ~̂ δ′2. From (h), and the semantics, we

know (f) is false and conclude

– We consider (g) T2 = T2[〈〈T′2[c′2],T′′2[c′′2] 〉〉pc2], (h) κ = race, (i) 〈c′′2, σ〉 −→∗
δ2

〈c′′′2 , σ′〉, (j) 〈c′2, σ′〉 −→∗
δ′2

κ2, and (k) δ2 6 ~̂ δ′2. From (h), and the semantics, we

know (f) is false and conclude

• We assume (c) 〈T2, σ〉 =⇒∗ 〈skip, σ′′〉. By induction over n, the number of steps of

(c), we have 2 cases: If (d) n = 0, from (c) and the semantics, we have (e) 〈T2, σ〉 =

〈skip, σ′′〉. From (a) and (e), by Def. 3.23, we know (f) T1 = c1 and (g) c1 skip.

From (g), by Def. 3.33, we have 2 cases:

– We consider (h) 〈c1, σ〉 −→∗ abort. From (h), and the semantics, we know (i)

〈c1, σ〉 =⇒ abort. From (i), and (b), we find a contradiction and conclude

– We consider (h) 〈c1, σ〉 ⇓ 〈skip, σ〉. From (h), and the semantics, we know (i)

〈c1, σ〉 =⇒∗ 〈skip, σ〉. From (i), we conclude

If (d) n > 0, from (c) and the semantics, we know there exists κ such that (e)

〈T2, σ〉 =⇒ κ and (f) κ =⇒n−1 〈skip, σ′′〉. From (e), and the semantics, we have

109

8 cases:

– We consider (g) T2 = T2[c2], (h) κ = abort, and (i) 〈c2, σ〉 −→∗ abort. From (h),

and the semantics, we know (f) is false and conclude

– We consider (g) T2 = T2[c2], (h) κ = 〈T2[c′2], σ′〉, (i) 〈c2, σ〉 ⇓ 〈c′2, σ′〉, and (j)

c2 6= c′2. From (a) and (g), by Def. 3.23, we know there exists T1 and c1 such

that (j) T1 = T1[c1], (k) c1 c2, and (l) for all c′1 and c′2, if c′1 c′2, then

T1[c′1]
t
T2[c′2]. From (k) and (i), we have 2 cases:

∗ We consider (m) 〈c1, σ〉 −→∗ abort. From (m), and the semantics, we have

(n) 〈T1[c1], σ〉 =⇒ abort. From (n) and (b), we find a contradiction and

conclude

∗ We consider (m) 〈c1, σ〉 ⇓ 〈c′1, σ′〉 and (n) c′1 c′2. From (n) and (l), we have

(o) T1[c′1]
t
T2[c′2]. From (o), (h), and (f), by the induction hypothesis,

we have (p) 〈T1[c′1], σ′〉 =⇒∗ 〈skip, σ′′〉. We have then 2 cases:

· If (q) c1 = c′1, from (m), using Remark 3.32, we know (r) σ = σ′. From

(q), (r), and (p), we conclude

· If (q) c1 6= c′1, from (m) and the semantics, we have (r) 〈T1[c1], σ〉 =⇒

〈T1[c′1], σ′〉. From (r), (p), and the semantics, we conclude

– We consider (g) T2 = T2[S2[c2 ‖ c′2]] and (h) κ = 〈T2[〈〈 c2, c
′
2 〉〉p(S2[skip])], σ〉.

From (a) and (g), by Def. 3.23 and Def. 3.33, we know there exists T1 and c1

such that (i) T1 = T1[c1], (j) c1 S2[c2 ‖ c′2], and (k) for all T ′1 and T ′2, if

T ′1 t
T ′2, then T1[T ′1]

t
T2[T ′2]. From (j), by Def. 3.33, we have 2 cases:

∗ We consider (l) 〈c1, σ〉 −→∗ abort. From (l), and the semantics, we know

(m) 〈T1[c1], σ〉 =⇒ abort. From (i), (m), and (b), we find a contradiction

and conclude

∗ We consider (l) 〈c1, σ〉 ⇓ 〈S1[c′1 ‖ c′′1], σ〉, (m) c′1 c2, (n) c′′1 c′2, and (o)

S1[skip] S2[skip]. From (l), and the semantics, we know

(p) 〈T1[c1], σ〉 =⇒∗ 〈T1[S1[c′1‖c′′1]], σ〉. From the semantics, we know (q)

110

〈T1[S1[c′1 ‖ c′′1]], σ〉 =⇒ 〈T1[〈〈 c′1, c′′1 〉〉p(S1[skip])], σ〉. From (m), (n), and

(o), we know (r) 〈〈 c′1, c′′1 〉〉p(S1[skip])
t
〈〈 c2, c

′
2 〉〉p(S2[skip]). From (r) and

(k), we have (s) T1[〈〈 c′1, c′′1 〉〉p(S1[skip])]
t
T2[〈〈 c2, c

′
2 〉〉p(S2[skip])]. From

(s), (h), and (f), using the induction hypothesis, we have

(t) 〈T1[〈〈 c′1, c′′1 〉〉p(S1[skip])], σ〉 =⇒∗ 〈skip, σ′′〉. From (p), (q), (t), and the

semantics, we conclude

– We consider (g) T2 = T2[〈〈 skip, skip 〉〉pc2] and (h) κ = 〈T2[c2], σ〉. From (a)

and (g), by Def. 3.23 and Def. 3.33, we know there exists T1, c1, c′1, and c′′1 , such

that (i) T1 = T1[〈〈 c1, c
′
1 〉〉pc′′1], (j) c1 skip, (k) c′1 skip, (l) c′′1 c2, and (m)

for all T ′1 and T ′2, if T ′1 t
T ′2, then T1[T ′1]

t
T2[T ′2]. From (j), by Def. 3.33,

we have 2 cases:

∗ We consider (n) 〈c1, σ〉 −→∗ abort. From (n), and the semantics, we know

(o) 〈T1[〈〈 c1, c
′
1 〉〉pc′′1], σ〉 =⇒ abort. From (i), (o), and (b), we find a contra-

diction and conclude

∗ We consider (n) 〈c1, σ〉 ⇓ 〈skip, σ〉. From (n), and the semantics, we know

(o) 〈T1[〈〈 c1, c
′
1 〉〉pc′′1], σ〉 =⇒∗ 〈T1[〈〈 skip, c′1 〉〉pc′′1], σ〉. From (k), by Def. 3.33,

we have 2 cases:

· We consider (p) 〈c′1, σ〉 −→∗ abort. From (p), and the semantics, we

know (q) 〈T1[〈〈 skip, c′1 〉〉pc′′1], σ〉 =⇒ abort. From (i), (o), (q), and (b), we

find a contradiction and conclude

· We consider (p) 〈c′1, σ〉 ⇓ 〈skip, σ〉. From (p), and the semantics, we

know (q) 〈T1[〈〈 skip, c′1 〉〉pc′′1], σ〉 =⇒∗ 〈T1[〈〈 skip, skip 〉〉pc′′1], σ〉. From

the semantics, we know (r) 〈T1[〈〈 skip, skip 〉〉pc′1], σ〉 =⇒ 〈T1[c′1], σ〉.

From (l) and (m), we have (s) T1[c′1]
t
T2[c2]. From (s), (h), and (f),

using the induction hypothesis, we have (t) 〈T1[c′1], σ〉 =⇒∗ 〈skip, σ′′〉.

From (o), (q), (r), (t), and the semantics, we conclude

– We consider (g) T2 = T2[S2[atomic c2]], (h) κ = 〈T2[〈〈 c2 〉〉a(S2[skip])], σ〉, and

111

(i) T2 is 0-atomic. From (a) and (g), by Def. 3.23 and Def. 3.33, we know there

exists T1 and c1 such that (j) T1 = T1[c1], (k) c1 S2[atomic c2], (l) T1 is

0-atomic, and (m) for all T ′1 and T ′2, if T ′1 t
T ′2, then T1[T ′1]

t
T2[T ′2]. From

(k), by Def. 3.33, we have 2 cases:

∗ We consider (n) 〈c1, σ〉 −→∗ abort. From (n), and the semantics, we know

(o) 〈T1[c1], σ〉 =⇒ abort. From (j), (o), and (b), we find a contradiction and

conclude

∗ We consider (n) 〈c1, σ〉 ⇓ 〈S1[atomic c′1], σ〉, (o) c′1 c2, and (p) S1[skip]

S2[skip]. From (n), and the semantics, we know (q) 〈T1[c1], σ〉 =⇒∗

〈T1[S1[atomic c′1]], σ〉. From (l) and the semantics, we know

(r) 〈T1[S1[atomic c′1]], σ〉 =⇒ 〈T1[〈〈 c′1 〉〉a(S1[skip])], σ〉. From (o) and (p),

we know (s) 〈〈 c′1 〉〉a(S1[skip])
t
〈〈 c2 〉〉a(S2[skip]). From (s) and (m), we

have (t) T1[〈〈 c′1 〉〉a(S1[skip])]
t
T2[〈〈 c2 〉〉a(S2[skip])]. From (t), (h), and

(f), using the induction hypothesis, we have

(u) 〈T1[〈〈 c′1 〉〉a(S1[skip])], σ〉 =⇒∗ 〈skip, σ′′〉. From (q), (r), (u), and the

semantics, we conclude

– We consider (g) T2 = T2[〈〈 skip 〉〉ac2] and (h) κ = 〈T2[c2], σ〉. From (a) and

(g), by Def. 3.23 and Def. 3.33, we know there exists T1, c1, and c′1, such that

(i) T1 = T1[〈〈 c1 〉〉ac′1], (j) c1 skip, (k) c′1 c2, and (l) for all T ′1 and T ′2, if

T ′1 t
T ′2, then T1[T ′1]

t
T2[T ′2]. From (j), by Def. 3.33, we have 2 cases:

∗ We consider (m) 〈c1, σ〉 −→∗ abort. From (m), and the semantics, we know

(n) 〈T1[〈〈 c1 〉〉ac′1], σ〉 =⇒ abort. From (i), (n), and (b), we find a contradiction

and conclude

∗ We consider (m) 〈c1, σ〉 ⇓ 〈skip, σ〉. From (m), and the semantics, we

know (n) 〈T1[〈〈 c1 〉〉ac′1], σ〉 =⇒∗ 〈T1[〈〈 skip 〉〉ac′1], σ〉. From the semantics,

we know (o) 〈T1[〈〈 skip 〉〉ac′1], σ〉 =⇒ 〈T1[c′1], σ〉. From (k) and (l), we have

(p) T1[c′1]
t
T2[c2]. From (p), (h), and (f), using the induction hypoth-

112

esis, we have (q) 〈T1[c′1], σ〉 =⇒∗ 〈skip, σ′′〉. From (n), (o), (q), and the

semantics, we conclude

– We consider (g) T2 = T2[〈〈T′2[c′2],T′′2[c′′2] 〉〉pc2], (h) κ = race, (i) 〈c′2, σ〉 −→∗
δ2

〈c′′′2 , σ′〉, (j) 〈c′′2, σ′〉 −→∗
δ′2

κ2, and (k) δ2 6 ~̂ δ′2. From (h), and the semantics, we

know (f) is false and conclude

– We consider (g) T2 = T2[〈〈T′2[c′2],T′′2[c′′2] 〉〉pc2], (h) κ = race, (i) 〈c′′2, σ〉 −→∗
δ2

〈c′′′2 , σ′〉, (j) 〈c′2, σ′〉 −→∗
δ′2

κ2, and (k) δ2 6 ~̂ δ′2. From (h), and the semantics, we

know (f) is false and conclude

• From 〈T2, σ〉 =⇒∞, by Def. 5.3, we assume (c) 〈T2, σ〉 =⇒∞, and will show that, for

all n, there exists κ′′1 such that 〈T1, σ〉 =⇒n κ′′1 . By induction over n, the number of

steps of (c), we have 2 cases: If n = 0, from (c) and the semantics, we instantiating

the goal with 〈T1, σ〉 and conclude If n > 0, from (c) and the semantics, we know

there exists κ such that (e) 〈T2, σ〉 =⇒ κ and (f) κ =⇒∞. From (e), and the semantics,

we have 8 cases:

– We consider (g) T2 = T2[c2], (h) κ = abort, and (i) 〈c2, σ〉 −→∗ abort. From (h),

and the semantics, we know (f) is false and conclude

– We consider (g) T2 = T2[c2], (h) κ = 〈T2[c′2], σ′〉, (i) 〈c2, σ〉 ⇓ 〈c′2, σ′〉, and (j)

c2 6= c′2. From (a) and (g), by Def. 3.23, we know there exists T1 and c1 such

that (j) T1 = T1[c1], (k) c1 c2, and (l) for all c′1 and c′2, if c′1 c′2, then

T1[c′1]
t
T2[c′2]. From (k) and (i), we have 2 cases:

∗ We consider (m) 〈c1, σ〉 −→∗ abort. From (m), and the semantics, we have

(n) 〈T1[c1], σ〉 =⇒ abort. From (n) and (b), we find a contradiction and

conclude

∗ We consider (m) 〈c1, σ〉 ⇓ 〈c′1, σ′〉 and (n) c′1 c′2. From (n) and (l), we have

(o) T1[c′1]
t
T2[c′2]. From (o), (h), and (f), by the induction hypothesis,

we have (p) 〈T1[c′1], σ′〉 =⇒n−1 κ′′1 . We have then 2 cases:

113

· If (q) c1 = c′1, from (m), using Remark 3.32, we know (r) σ = σ′. Instan-

tiating the goal with κ′′1 , from (q), (r), and (p), we conclude

· If (q) c1 6= c′1, from (m) and the semantics, we have (r) 〈T1[c1], σ〉 =⇒

〈T1[c′1], σ′〉. Instantiating the goal with κ′′1 , from (r), (p), and the se-

mantics, we conclude

– We consider (g) T2 = T2[S2[c2 ‖ c′2]] and (h) κ = 〈T2[〈〈 c2, c
′
2 〉〉p(S2[skip])], σ〉.

From (a) and (g), by Def. 3.23 and Def. 3.33, we know there exists T1 and c1

such that (i) T1 = T1[c1], (j) c1 S2[c2 ‖ c′2], and (k) for all T ′1 and T ′2, if

T ′1 t
T ′2, then T1[T ′1]

t
T2[T ′2]. From (j), by Def. 3.33, we have 2 cases:

∗ We consider (l) 〈c1, σ〉 −→∗ abort. From (l), and the semantics, we know

(m) 〈T1[c1], σ〉 =⇒ abort. From (i), (m), and (b), we find a contradiction

and conclude

∗ We consider (l) 〈c1, σ〉 ⇓ 〈S1[c′1 ‖ c′′1], σ〉, (m) c′1 c2, (n) c′′1 c′2, and (o)

S1[skip] S2[skip]. From (l), and the semantics, we know

(p) 〈T1[c1], σ〉 =⇒∗ 〈T1[S1[c′1‖c′′1]], σ〉. From the semantics, we know (q)

〈T1[S1[c′1 ‖ c′′1]], σ〉 =⇒ 〈T1[〈〈 c′1, c′′1 〉〉p(S1[skip])], σ〉. From (m), (n), and

(o), we know (r) 〈〈 c′1, c′′1 〉〉p(S1[skip])
t
〈〈 c2, c

′
2 〉〉p(S2[skip]). From (r) and

(k), we have (s) T1[〈〈 c′1, c′′1 〉〉p(S1[skip])]
t
T2[〈〈 c2, c

′
2 〉〉p(S2[skip])]. From

(s), (h), and (f), using the induction hypothesis, we have

(t) 〈T1[〈〈 c′1, c′′1 〉〉p(S1[skip])], σ〉 =⇒n−1 κ′′1 . Instantiating the goal with κ′′1 ,

from (p), (q), (t), and the semantics, we conclude

– We consider (g) T2 = T2[〈〈 skip, skip 〉〉pc2] and (h) κ = 〈T2[c2], σ〉. From (a)

and (g), by Def. 3.23 and Def. 3.33, we know there exists T1, c1, c′1, and c′′1 , such

that (i) T1 = T1[〈〈 c1, c
′
1 〉〉pc′′1], (j) c1 skip, (k) c′1 skip, (l) c′′1 c2, and (m)

for all T ′1 and T ′2, if T ′1 t
T ′2, then T1[T ′1]

t
T2[T ′2]. From (j), by Def. 3.33,

we have 2 cases:

∗ We consider (n) 〈c1, σ〉 −→∗ abort. From (n), and the semantics, we know

114

(o) 〈T1[〈〈 c1, c
′
1 〉〉pc′′1], σ〉 =⇒ abort. From (i), (o), and (b), we find a contra-

diction and conclude

∗ We consider (n) 〈c1, σ〉 ⇓ 〈skip, σ〉. From (n), and the semantics, we know

(o) 〈T1[〈〈 c1, c
′
1 〉〉pc′′1], σ〉 =⇒∗ 〈T1[〈〈 skip, c′1 〉〉pc′′1], σ〉. From (k), by Def. 3.33,

we have 2 cases:

· We consider (p) 〈c′1, σ〉 −→∗ abort. From (p), and the semantics, we

know (q) 〈T1[〈〈 skip, c′1 〉〉pc′′1], σ〉 =⇒ abort. From (i), (o), (q), and (b), we

find a contradiction and conclude

· We consider (p) 〈c′1, σ〉 ⇓ 〈skip, σ〉. From (p), and the semantics, we

know (q) 〈T1[〈〈 skip, c′1 〉〉pc′′1], σ〉 =⇒∗ 〈T1[〈〈 skip, skip 〉〉pc′′1], σ〉. From

the semantics, we know (r) 〈T1[〈〈 skip, skip 〉〉pc′1], σ〉 =⇒ 〈T1[c′1], σ〉.

From (l) and (m), we have (s) T1[c′1]
t
T2[c2]. From (s), (h), and (f),

using the induction hypothesis, we have

(t) 〈T1[c′1], σ〉 =⇒∗ κ′′1 . Instantiating the goal with κ′′1 , from (o), (q), (r),

(t), and the semantics, we conclude

– We consider (g) T2 = T2[S2[atomic c2]], (h) κ = 〈T2[〈〈 c2 〉〉a(S2[skip])], σ〉, and

(i) T2 is 0-atomic. From (a) and (g), by Def. 3.23 and Def. 3.33, we know there

exists T1 and c1 such that (j) T1 = T1[c1], (k) c1 S2[atomic c2], (l) T1 is

0-atomic, and (m) for all T ′1 and T ′2, if T ′1 t
T ′2, then T1[T ′1]

t
T2[T ′2]. From

(k), by Def. 3.33, we have 2 cases:

∗ We consider (n) 〈c1, σ〉 −→∗ abort. From (n), and the semantics, we know

(o) 〈T1[c1], σ〉 =⇒ abort. From (j), (o), and (b), we find a contradiction and

conclude

∗ We consider (n) 〈c1, σ〉 ⇓ 〈S1[atomic c′1], σ〉, (o) c′1 c2, and (p) S1[skip]

S2[skip]. From (n), and the semantics, we know (q) 〈T1[c1], σ〉 =⇒∗

〈T1[S1[atomic c′1]], σ〉. From (l) and the semantics, we know

(r) 〈T1[S1[atomic c′1]], σ〉 =⇒ 〈T1[〈〈 c′1 〉〉a(S1[skip])], σ〉. From (o) and (p),

115

we know (s) 〈〈 c′1 〉〉a(S1[skip])
t
〈〈 c2 〉〉a(S2[skip]). From (s) and (m), we

have (t) T1[〈〈 c′1 〉〉a(S1[skip])]
t
T2[〈〈 c2 〉〉a(S2[skip])]. From (t), (h), and

(f), using the induction hypothesis, we have

(u) 〈T1[〈〈 c′1 〉〉a(S1[skip])], σ〉 =⇒n−1 κ′′1 . Instantiating the goal with κ′′1 ,

from (q), (r), (u), and the semantics, we conclude

– We consider (g) T2 = T2[〈〈 skip 〉〉ac2] and (h) κ = 〈T2[c2], σ〉. From (a) and

(g), by Def. 3.23 and Def. 3.33, we know there exists T1, c1, and c′1, such that

(i) T1 = T1[〈〈 c1 〉〉ac′1], (j) c1 skip, (k) c′1 c2, and (l) for all T ′1 and T ′2, if

T ′1 t
T ′2, then T1[T ′1]

t
T2[T ′2]. From (j), by Def. 3.33, we have 2 cases:

∗ We consider (m) 〈c1, σ〉 −→∗ abort. From (m), and the semantics, we know

(n) 〈T1[〈〈 c1 〉〉ac′1], σ〉 =⇒ abort. From (i), (n), and (b), we find a contradiction

and conclude

∗ We consider (m) 〈c1, σ〉 ⇓ 〈skip, σ〉. From (m), and the semantics, we

know (n) 〈T1[〈〈 c1 〉〉ac′1], σ〉 =⇒∗ 〈T1[〈〈 skip 〉〉ac′1], σ〉. From the semantics,

we know (o) 〈T1[〈〈 skip 〉〉ac′1], σ〉 =⇒ 〈T1[c′1], σ〉. From (k) and (l), we have

(p) T1[c′1]
t
T2[c2]. From (p), (h), and (f), using the induction hypothe-

sis, we have (q) 〈T1[c′1], σ〉 =⇒n−1 κ′′1 . Instantiating the goal with κ′′1 , from

(n), (o), (q), and the semantics, we conclude

– We consider (g) T2 = T2[〈〈T′2[c′2],T′′2[c′′2] 〉〉pc2], (h) κ = race, (i) 〈c′2, σ〉 −→∗
δ2

〈c′′′2 , σ′〉, (j) 〈c′′2, σ′〉 −→∗
δ′2

κ2, and (k) δ2 6 ~̂ δ′2. From (h), and the semantics, we

know (f) is false and conclude

– We consider (g) T2 = T2[〈〈T′2[c′2],T′′2[c′′2] 〉〉pc2], (h) κ = race, (i) 〈c′′2, σ〉 −→∗
δ2

〈c′′′2 , σ′〉, (j) 〈c′2, σ′〉 −→∗
δ′2

κ2, and (k) δ2 6 ~̂ δ′2. From (h), and the semantics, we

know (f) is false and conclude

• From 〈T2, σ〉 =⇒∞, by Def. 5.3, we assume (c) 〈T2, σ〉 =⇒∗ 〈T′′2[c′′2], σ′′〉 and (d)

〈c′′2, σ′′〉 ⇑, and will show there exists T′′1 and c′′1 such that 〈T1, σ〉 =⇒∗ 〈T′′1[c′′1], σ′′〉

and 〈c′′1, σ′′〉 ⇑. By induction over n, the number of steps of (c), we have 2 cases: If

116

n = 0, from (c) and the semantics, we have (e) 〈T2, σ〉 = 〈T′′2[c′′2], σ′′〉. From (a) and

(e), by Def. 3.23, we know (f) T1 = T′′1[c′′1] and (g) c′′1 c′′2 . From (g), by Def. 3.33,

we have 2 cases:

– We consider (h) 〈c′′1, σ〉 −→∗ abort. From (h), and the semantics, we know (i)

〈T′′1[c′′1], σ〉 =⇒ abort. From (i), and (b), we find a contradiction and conclude

– We consider (h) 〈c′′1, σ〉 ⇑. From (h), and the semantics, we know (i) 〈T1, σ〉 =⇒0

〈T1, σ〉. Instantiating the goal with T′′1 and c′′1 , from (i) and (h), we conclude

If n > 0, from (c) and the semantics, we know there exists κ such that (e) 〈T2, σ〉 =⇒

κ and (f) κ =⇒n−1 〈T′′2[c′′2], σ′′〉. From (e), and the semantics, we have 8 cases:

– We consider (g) T2 = T2[c2], (h) κ = abort, and (i) 〈c2, σ〉 −→∗ abort. From (h),

and the semantics, we know (f) is false and conclude

– We consider (g) T2 = T2[c2], (h) κ = 〈T2[c′2], σ′〉, (i) 〈c2, σ〉 ⇓ 〈c′2, σ′〉, and (j)

c2 6= c′2. From (a) and (g), by Def. 3.23, we know there exists T1 and c1 such

that (j) T1 = T1[c1], (k) c1 c2, and (l) for all c′1 and c′2, if c′1 c′2, then

T1[c′1]
t
T2[c′2]. From (k) and (i), we have 2 cases:

∗ We consider (m) 〈c1, σ〉 −→∗ abort. From (m), and the semantics, we have

(n) 〈T1[c1], σ〉 =⇒ abort. From (n) and (b), we find a contradiction and

conclude

∗ We consider (m) 〈c1, σ〉 ⇓ 〈c′1, σ′〉 and (n) c′1 c′2. From (n) and (l), we have

(o) T1[c′1]
t
T2[c′2]. From (o), (h), and (f), by the induction hypothesis,

we have (p) 〈T1[c′1], σ′〉 =⇒∗ 〈T′′1[c′′1], σ′′〉 and (q) 〈c′′1, σ′′〉 ⇑. We have then

2 cases:

· If (r) c1 = c′1, from (m), using Remark 3.32, we know (s) σ = σ′. Instan-

tiating the goal with T′′1 and c′′1 , from (r), (s), (p), and (q), we conclude

· If (r) c1 6= c′1, from (m) and the semantics, we have (s) 〈T1[c1], σ〉 =⇒

〈T1[c′1], σ′〉. Instantiating the goal with T′′1 and c′′1 , from (s), (p), (q),

117

and the semantics, we conclude

– We consider (g) T2 = T2[S2[c2 ‖ c′2]] and (h) κ = 〈T2[〈〈 c2, c
′
2 〉〉p(S2[skip])], σ〉.

From (a) and (g), by Def. 3.23 and Def. 3.33, we know there exists T1 and c1

such that (i) T1 = T1[c1], (j) c1 S2[c2 ‖ c′2], and (k) for all T ′1 and T ′2, if

T ′1 t
T ′2, then T1[T ′1]

t
T2[T ′2]. From (j), by Def. 3.33, we have 2 cases:

∗ We consider (l) 〈c1, σ〉 −→∗ abort. From (l), and the semantics, we know

(m) 〈T1[c1], σ〉 =⇒ abort. From (i), (m), and (b), we find a contradiction

and conclude

∗ We consider (l) 〈c1, σ〉 ⇓ 〈S1[c′1 ‖ c′′1], σ〉, (m) c′1 c2, (n) c′′1 c′2, and (o)

S1[skip] S2[skip]. From (l), and the semantics, we know

(p) 〈T1[c1], σ〉 =⇒∗ 〈T1[S1[c′1‖c′′1]], σ〉. From the semantics, we know (q)

〈T1[S1[c′1 ‖ c′′1]], σ〉 =⇒ 〈T1[〈〈 c′1, c′′1 〉〉p(S1[skip])], σ〉. From (m), (n), and

(o), we know (r) 〈〈 c′1, c′′1 〉〉p(S1[skip])
t
〈〈 c2, c

′
2 〉〉p(S2[skip]). From (r) and

(k), we have (s) T1[〈〈 c′1, c′′1 〉〉p(S1[skip])]
t
T2[〈〈 c2, c

′
2 〉〉p(S2[skip])]. From

(s), (h), and (f), using the induction hypothesis, we have

(t) 〈T1[〈〈 c′1, c′′1 〉〉p(S1[skip])], σ〉 =⇒∗ 〈T′′1[c′′1], σ′′〉 and (u) 〈c′′1, σ′′〉 ⇑. Instan-

tiating the goal with T′′1 and c′′1 , from (p), (q), (t), (u), and the semantics, we

conclude

– We consider (g) T2 = T2[〈〈 skip, skip 〉〉pc2] and (h) κ = 〈T2[c2], σ〉. From (a)

and (g), by Def. 3.23 and Def. 3.33, we know there exists T1, c1, c′1, and c′′1 , such

that (i) T1 = T1[〈〈 c1, c
′
1 〉〉pc′′1], (j) c1 skip, (k) c′1 skip, (l) c′′1 c2, and (m)

for all T ′1 and T ′2, if T ′1 t
T ′2, then T1[T ′1]

t
T2[T ′2]. From (j), by Def. 3.33,

we have 2 cases:

∗ We consider (n) 〈c1, σ〉 −→∗ abort. From (n), and the semantics, we know

(o) 〈T1[〈〈 c1, c
′
1 〉〉pc′′1], σ〉 =⇒ abort. From (i), (o), and (b), we find a contra-

diction and conclude

∗ We consider (n) 〈c1, σ〉 ⇓ 〈skip, σ〉. From (n), and the semantics, we know

118

(o) 〈T1[〈〈 c1, c
′
1 〉〉pc′′1], σ〉 =⇒∗ 〈T1[〈〈 skip, c′1 〉〉pc′′1], σ〉. From (k), by Def. 3.33,

we have 2 cases:

· We consider (p) 〈c′1, σ〉 −→∗ abort. From (p), and the semantics, we

know (q) 〈T1[〈〈 skip, c′1 〉〉pc′′1], σ〉 =⇒ abort. From (i), (o), (q), and (b), we

find a contradiction and conclude

· We consider (p) 〈c′1, σ〉 ⇓ 〈skip, σ〉. From (p), and the semantics, we

know (q) 〈T1[〈〈 skip, c′1 〉〉pc′′1], σ〉 =⇒∗ 〈T1[〈〈 skip, skip 〉〉pc′′1], σ〉. From

the semantics, we know (r) 〈T1[〈〈 skip, skip 〉〉pc′1], σ〉 =⇒ 〈T1[c′1], σ〉.

From (l) and (m), we have (s) T1[c′1]
t
T2[c2]. From (s), (h), and (f),

using the induction hypothesis, we have

(t) 〈T1[c′1], σ〉 =⇒∗ 〈T′′1[c′′1], σ′′〉 and (u) 〈c′′1, σ′′〉 ⇑. Instantiating the

goal with T′′1 and c′′1 , from (o), (q), (r), (t), (u), and the semantics, we

conclude

– We consider (g) T2 = T2[S2[atomic c2]], (h) κ = 〈T2[〈〈 c2 〉〉a(S2[skip])], σ〉, and

(i) T2 is 0-atomic. From (a) and (g), by Def. 3.23 and Def. 3.33, we know there

exists T1 and c1 such that (j) T1 = T1[c1], (k) c1 S2[atomic c2], (l) T1 is

0-atomic, and (m) for all T ′1 and T ′2, if T ′1 t
T ′2, then T1[T ′1]

t
T2[T ′2]. From

(k), by Def. 3.33, we have 2 cases:

∗ We consider (n) 〈c1, σ〉 −→∗ abort. From (n), and the semantics, we know

(o) 〈T1[c1], σ〉 =⇒ abort. From (j), (o), and (b), we find a contradiction and

conclude

∗ We consider (n) 〈c1, σ〉 ⇓ 〈S1[atomic c′1], σ〉, (o) c′1 c2, and (p) S1[skip]

S2[skip]. From (n), and the semantics, we know (q) 〈T1[c1], σ〉 =⇒∗

〈T1[S1[atomic c′1]], σ〉. From (l) and the semantics, we know

(r) 〈T1[S1[atomic c′1]], σ〉 =⇒ 〈T1[〈〈 c′1 〉〉a(S1[skip])], σ〉. From (o) and (p),

we know (s) 〈〈 c′1 〉〉a(S1[skip])
t
〈〈 c2 〉〉a(S2[skip]). From (s) and (m), we

have (t) T1[〈〈 c′1 〉〉a(S1[skip])]
t
T2[〈〈 c2 〉〉a(S2[skip])]. From (t), (h), and

119

(f), using the induction hypothesis, we have

(u) 〈T1[〈〈 c′1 〉〉a(S1[skip])], σ〉 =⇒∗ 〈T′′1[c′′1], σ′′〉 and (v) 〈c′′1, σ′′〉 ⇑. Instanti-

ating the goal with T′′1 and c′′1 , from (q), (r), (u), (v), and the semantics, we

conclude

– We consider (g) T2 = T2[〈〈 skip 〉〉ac2] and (h) κ = 〈T2[c2], σ〉. From (a) and

(g), by Def. 3.23 and Def. 3.33, we know there exists T1, c1, and c′1, such that

(i) T1 = T1[〈〈 c1 〉〉ac′1], (j) c1 skip, (k) c′1 c2, and (l) for all T ′1 and T ′2, if

T ′1 t
T ′2, then T1[T ′1]

t
T2[T ′2]. From (j), by Def. 3.33, we have 2 cases:

∗ We consider (m) 〈c1, σ〉 −→∗ abort. From (m), and the semantics, we know

(n) 〈T1[〈〈 c1 〉〉ac′1], σ〉 =⇒ abort. From (i), (n), and (b), we find a contradiction

and conclude

∗ We consider (m) 〈c1, σ〉 ⇓ 〈skip, σ〉. From (m), and the semantics, we

know (n) 〈T1[〈〈 c1 〉〉ac′1], σ〉 =⇒∗ 〈T1[〈〈 skip 〉〉ac′1], σ〉. From the semantics,

we know (o) 〈T1[〈〈 skip 〉〉ac′1], σ〉 =⇒ 〈T1[c′1], σ〉. From (k) and (l), we have

(p) T1[c′1]
t
T2[c2]. From (p), (h), and (f), using the induction hypothe-

sis, we have (q) 〈T1[c′1], σ〉 =⇒∗ 〈T′′1[c′′1], σ′′〉 and (r) c′′1 ⇑ σ′′. Instantiating

the goal with T′′1 and c′′1 , from (n), (o), (q), (r), and the semantics, we con-

clude

– We consider (g) T2 = T2[〈〈T′2[c′2],T′′2[c′′2] 〉〉pc2], (h) κ = race, (i) 〈c′2, σ〉 −→∗
δ2

〈c′′′2 , σ′〉, (j) 〈c′′2, σ′〉 −→∗
δ′2

κ2, and (k) δ2 6 ~̂ δ′2. From (h), and the semantics, we

know (f) is false and conclude

– We consider (g) T2 = T2[〈〈T′2[c′2],T′′2[c′′2] 〉〉pc2], (h) κ = race, (i) 〈c′′2, σ〉 −→∗
δ2

〈c′′′2 , σ′〉, (j) 〈c′2, σ′〉 −→∗
δ′2

κ2, and (k) δ2 6 ~̂ δ′2. From (h), and the semantics, we

know (f) is false and conclude

• We assume (c) 〈T2, σ〉 =⇒∗ race. By induction over n, the number of steps of (c), we

have 2 cases: If (d) n = 0, from (c) and the semantics, we have (e) 〈T2, σ〉 = race. We

know (e) is false and conclude; If (d) n > 0, from (c) and the semantics, we know

120

there exists κ such that (e) 〈T2, σ〉 =⇒ κ and (f) κ =⇒n−1 race. From (e), and the

semantics, we have 8 cases:

– We consider (g) T2 = T2[c2], (h) κ = abort, and (i) 〈c2, σ〉 −→∗ abort. From (h),

and the semantics, we know (f) is false and conclude

– We consider (g) T2 = T2[c2], (h) κ = 〈T2[c′2], σ′〉, (i) 〈c2, σ〉 ⇓ 〈c′2, σ′〉, and (j)

c2 6= c′2. From (a) and (g), by Def. 3.23, we know there exists T1 and c1 such

that (j) T1 = T1[c1], (k) c1 c2, and (l) for all c′1 and c′2, if c′1 c′2, then

T1[c′1]
t
T2[c′2]. From (k) and (i), we have 2 cases:

∗ We consider (m) 〈c1, σ〉 −→∗ abort. From (m), and the semantics, we have

(n) 〈T1[c1], σ〉 =⇒ abort. From (n) and (b), we find a contradiction and

conclude

∗ We consider (m) 〈c1, σ〉 ⇓ 〈c′1, σ′〉 and (n) c′1 c′2. From (n) and (l), we have

(o) T1[c′1]
t
T2[c′2]. From (o), (h), and (f), by the induction hypothesis,

we have (p) 〈T1[c′1], σ′〉 =⇒∗ race. We have then 2 cases:

· If (q) c1 = c′1, from (m), using Remark 3.32, we know (r) σ = σ′. From

(q), (r), and (p), we conclude

· If (q) c1 6= c′1, from (m) and the semantics, we have (r) 〈T1[c1], σ〉 =⇒

〈T1[c′1], σ′〉. From (r), (p), and the semantics, we conclude

– We consider (g) T2 = T2[S2[c2 ‖ c′2]] and (h) κ = 〈T2[〈〈 c2, c
′
2 〉〉p(S2[skip])], σ〉.

From (a) and (g), by Def. 3.23 and Def. 3.33, we know there exists T1 and c1

such that (i) T1 = T1[c1], (j) c1 S2[c2 ‖ c′2], and (k) for all T ′1 and T ′2, if

T ′1 t
T ′2, then T1[T ′1]

t
T2[T ′2]. From (j), by Def. 3.33, we have 2 cases:

∗ We consider (l) 〈c1, σ〉 −→∗ abort. From (l), and the semantics, we know

(m) 〈T1[c1]σ,
〉
=⇒abort. From (i), (m), and (b), we find a contradiction and

conclude

∗ We consider (l) 〈c1, σ〉 ⇓ 〈S1[c′1 ‖ c′′1], σ〉, (m) c′1 c2, (n) c′′1 c′2, and (o)

S1[skip] S2[skip]. From (l), and the semantics, we know

121

(p) 〈T1[c1], σ〉 =⇒∗ 〈T1[S1[c′1‖c′′1]], σ〉. From the semantics, we know (q)

〈T1[S1[c′1 ‖ c′′1]], σ〉 =⇒ 〈T1[〈〈 c′1, c′′1 〉〉p(S1[skip])], σ〉. From (m), (n), and

(o), we know (r) 〈〈 c′1, c′′1 〉〉p(S1[skip])
t
〈〈 c2, c

′
2 〉〉p(S2[skip]). From (r) and

(k), we have (s) T1[〈〈 c′1, c′′1 〉〉p(S1[skip])]
t
T2[〈〈 c2, c

′
2 〉〉p(S2[skip])]. From

(s), (h), and (f), using the induction hypothesis, we have

(t) 〈T1[〈〈 c′1, c′′1 〉〉p(S1[skip])], σ〉 =⇒∗ race. From (p), (q), (t), and the seman-

tics, we conclude

– We consider (g) T2 = T2[〈〈 skip, skip 〉〉pc2] and (h) κ = 〈T2[c2], σ〉. From (a)

and (g), by Def. 3.23 and Def. 3.33, we know there exists T1, c1, c′1, and c′′1 , such

that (i) T1 = T1[〈〈 c1, c
′
1 〉〉pc′′1], (j) c1 skip, (k) c′1 skip, (l) c′′1 c2, and (m)

for all T ′1 and T ′2, if T ′1 t
T ′2, then T1[T ′1]

t
T2[T ′2]. From (j), by Def. 3.33,

we have 2 cases:

∗ We consider (n) 〈c1, σ〉 −→∗ abort. From (n), and the semantics, we know

(o) 〈T1[〈〈 c1, c
′
1 〉〉pc′′1], σ〉 =⇒ abort. From (i), (o), and (b), we find a contra-

diction and conclude

∗ We consider (n) 〈c1, σ〉 ⇓ 〈skip, σ〉. From (n), and the semantics, we know

(o) 〈T1[〈〈 c1, c
′
1 〉〉pc′′1], σ〉 =⇒∗ 〈T1[〈〈 skip, c′1 〉〉pc′′1], σ〉. From (k), by Def. 3.33,

we have 2 cases:

· We consider (p) 〈c′1, σ〉 −→∗ abort. From (p), and the semantics, we

know (q) 〈T1[〈〈 skip, c′1 〉〉pc′′1], σ〉 =⇒ abort. From (i), (o), (q), and (b), we

find a contradiction and conclude

· We consider (p) 〈c′1, σ〉 ⇓ 〈skip, σ〉. From (p), and the semantics, we

know (q) 〈T1[〈〈 skip, c′1 〉〉pc′′1], σ〉 =⇒∗ 〈T1[〈〈 skip, skip 〉〉pc′′1], σ〉. From

the semantics, we know (r) 〈T1[〈〈 skip, skip 〉〉pc′1], σ〉 =⇒ 〈T1[c′1], σ〉.

From (l) and (m), we have (s) T1[c′1]
t
T2[c2]. From (s), (h), and

(f), using the induction hypothesis, we have (t) 〈T1[c′1], σ〉 =⇒∗ race.

From (o), (q), (r), (t), and the semantics, we conclude

122

– We consider (g) T2 = T2[S2[atomic c2]], (h) κ = 〈T2[〈〈 c2 〉〉a(S2[skip])], σ〉, and

(i) T2 is 0-atomic. From (a) and (g), by Def. 3.23 and Def. 3.33, we know there

exists T1 and c1 such that (j) T1 = T1[c1], (k) c1 S2[atomic c2], (l) T1 is

0-atomic, and (m) for all T ′1 and T ′2, if T ′1 t
T ′2, then T1[T ′1]

t
T2[T ′2]. From

(k), by Def. 3.33, we have 2 cases:

∗ We consider (n) 〈c1, σ〉 −→∗ abort. From (n), and the semantics, we know

(o) 〈T1[c1], σ〉 =⇒ abort. From (j), (o), and (b), we find a contradiction and

conclude

∗ We consider (n) 〈c1, σ〉 ⇓ 〈S1[atomic c′1], σ〉, (o) c′1 c2, and (p) S1[skip]

S2[skip]. From (n), and the semantics, we know (q) 〈T1[c1], σ〉 =⇒∗

〈T1[S1[atomic c′1]], σ〉. From (l) and the semantics, we know

(r) 〈T1[S1[atomic c′1]], σ〉 =⇒ 〈T1[〈〈 c′1 〉〉a(S1[skip])], σ〉. From (o) and (p),

we know (s) 〈〈 c′1 〉〉a(S1[skip])
t
〈〈 c2 〉〉a(S2[skip]). From (s) and (m), we

have (t) T1[〈〈 c′1 〉〉a(S1[skip])]
t
T2[〈〈 c2 〉〉a(S2[skip])]. From (t), (h), and

(f), using the induction hypothesis, we have

(u) 〈T1[〈〈 c′1 〉〉a(S1[skip])], σ〉 =⇒∗ race. From (q), (r), (u), and the seman-

tics, we conclude

– We consider (g) T2 = T2[〈〈 skip 〉〉ac2] and (h) κ = 〈T2[c2], σ〉. From (a) and

(g), by Def. 3.23 and Def. 3.33, we know there exists T1, c1, and c′1, such that

(i) T1 = T1[〈〈 c1 〉〉ac′1], (j) c1 skip, (k) c′1 c2, and (l) for all T ′1 and T ′2, if

T ′1 t
T ′2, then T1[T ′1]

t
T2[T ′2]. From (j), by Def. 3.33, we have 2 cases:

∗ We consider (m) 〈c1, σ〉 −→∗ abort. From (m), and the semantics, we know

(n) 〈T1[〈〈 c1 〉〉ac′1], σ〉 =⇒ abort. From (i), (n), and (b), we find a contradiction

and conclude

∗ We consider (m) 〈c1, σ〉 ⇓ 〈skip, σ〉. From (m), and the semantics, we

know (n) 〈T1[〈〈 c1 〉〉ac′1], σ〉 =⇒∗ 〈T1[〈〈 skip 〉〉ac′1], σ〉. From the semantics,

we know (o) 〈T1[〈〈 skip 〉〉ac′1], σ〉 =⇒ 〈T1[c′1], σ〉. From (k) and (l), we have

123

(p) T1[c′1]
t
T2[c2]. From (p), (h), and (f), using the induction hypothe-

sis, we have (q) 〈T1[c′1], σ〉 =⇒∗ race. From (n), (o), (q), and the semantics,

we conclude

– We consider (g) T2 = T2[〈〈T′2[c′2],T′′2[c′′2] 〉〉pc2], (h) κ = race, (i) 〈c′2, σ〉 −→∗
δ2

〈c′′′2 , σ′〉, (j) 〈c′′2, σ′〉 −→∗
δ′2

κ2, and (k) δ2 6 ~̂ δ′2. From (a) and (g), by Def. 3.23

and Def. 3.33, we know there exists T1, T′1, c′1, T′′1 , c′′1 , and c1, such that (l)

T1 = T1[〈〈T′1[c′1],T′′1[c′′1] 〉〉pc1], (m) c′1 c′2, and (n) c′′1 c′′2 . From (i) and (m),

by Def. 3.33, we have 2 cases:

∗ We consider (o) 〈c′1, σ〉 −→∗ abort. From (o), and the semantics, we know

(p) 〈T1[〈〈T′1[c′1],T′′1[c′′1] 〉〉pc1], σ〉 =⇒ abort. From (l), (p), and (b), we find a

contradiction and conclude

∗ We consider (o) 〈c′1, σ〉 7−→∗
δ1
〈c′′′1 , σ′′〉 and (p) δ2 ⊆ δ1. From (j), (k), (p), and

the semantics we know there exists δ′′2 and κ′2 such that (q) 〈c′′2, σ′′〉 −→∗
δ′′2

κ′2

and (r) δ1 6~̂ δ′′2 . From (q) and (n), by Def. 3.33, we have 2 cases:

· We consider (s) 〈c′′1, σ′′〉 −→∗
δ′1

abort and (t) δ1 ~̂ δ′1. From (t), (o), and

(s), using Remark 5.6, we know (u) 〈c′′1, σ〉 −→∗ abort From (u), and the

semantics, we know (v) 〈T1[〈〈T′1[c′1],T′′1[c′′1] 〉〉pc1], σ〉 =⇒ abort. From

(l), (v), and (b), we find a contradiction and conclude

· We consider (s) 〈c′′1, σ′′〉 7−→∗
δ′1

κ1 and (t) δ′′2 ⊆ δ′1. From (t) and (r), we

know (u) δ1 6 ~̂ δ′1. From (o), (s), (u), and the semantics, we know (v)

〈T1[〈〈T′1[c′1],T′′1[c′′1] 〉〉pc1], σ〉 =⇒ race. From (l) and (v), we conclude

– We consider (g) T2 = T2[〈〈T′2[c′2],T′′2[c′′2] 〉〉pc2], (h) κ = race, (i) 〈c′′2, σ〉 −→∗
δ2

〈c′′′2 , σ′〉, (j) 〈c′2, σ′〉 −→∗
δ′2

κ2, and (k) δ2 6 ~̂ δ′2. Proof is symmetric to the previous

case

And, finally, we can combine Lemma 5.10 with Lemmas 5.5 and 5.4, to obtain the

following corollary:

124

Corollary 5.11. If T1 t
T2, ¬〈T1, σ〉 7−→∗ abort, and ¬〈T1, σ〉 7−→∗ race, then

1. ¬〈T2, σ〉 7−→∗ race

2. ¬〈T2, σ〉 7−→∗ abort

3. If 〈T2, σ〉 7−→∗ 〈skip, σ′〉, then 〈T1, σ〉 7−→∗ 〈skip, σ′〉

4. If 〈T2, σ〉 7−→∞, then 〈T1, σ〉 7−→∞

Proof. We assume (a) T1 t
T2, (b) 〈T1, σ〉 7−→∗ abort is false, and (c) 〈T1, σ〉 7−→∗ race is

false. We know (d) 〈T1, σ〉 =⇒∗ abort is false

• Let us assume (e) 〈T1, σ〉 =⇒∗ abort is true. From (e), using Lemma 5.4 (item 1), we

have (d) 〈T1, σ〉 7−→∗ abort. From (b) and (d), we find a contradiction and conclude

We know (e) 〈T2, σ〉 7−→∗ race is false

• Let us assume (f) 〈T2, σ〉 7−→∗ race is true. From (f), using Lemma 5.5 (item 1),

we have (g) 〈T2, σ〉 =⇒∗ race. From (a), (d), and (g), using Lemma 5.10 (item 4),

we have (h) 〈T1, σ〉 =⇒∗ race. From (h), using Lemma 5.4 (item 1), we have (i)

〈T1, σ〉 7−→∗ race. From (c) and (i), we find a contradiction conclude

Then we consider the 4 cases:

• From (e), we conclude

• Let us assume (f) 〈T2, σ〉 7−→∗ abort is true. From (a), and (d), using Lemma 5.10

(item 1), we know (g) 〈T2, σ〉 =⇒∗ abort is false. From (e), and (f), using Lemma 5.5

(item 2.a), we know (h) 〈T2, σ〉 =⇒∗ abort. From (g) and (h), we find a contradiction

and conclude

• If (f) 〈T2, σ〉 7−→∗ 〈skip, σ′〉, then we need to show that 〈T1, σ〉 7−→∗ 〈skip, σ′〉. From

(e) and (f), using Lemma 5.5 (item 2.b), we have (g) 〈T2, σ〉 =⇒∗ 〈skip, σ′〉. From (a),

(d) and (g), using Lemma 5.10 (item 2), we know (h) 〈T1, σ〉 =⇒∗ 〈skip, σ′〉. From

(h), using Lemma 5.4 (item 1), we conclude

125

• If (f) 〈T2, σ〉 7−→∞, then we need to show that 〈T1, σ〉 7−→∞. From (e) and (f), us-

ing Lemma 5.5 (item 2.c), we have (g) 〈T2, σ〉 =⇒∞. From (a), (d) and (g), using

Lemma 5.10 (item 3), we know (h) 〈T1, σ〉 =⇒∞. From (h), using Lemma 5.4 (item

2), we conclude

5.3 Proof of the DRF-guarantee

We can now prove the DRF-guarantee of the relaxed -parameterized semantics pre-

sented in Sec. 3.10. Based on Def.5.2, Theorem 5.12 says that a race-free program configu-

ration has the same behavior in the relaxed semantics as it has in the interleaved seman-

tics:

1. if it is safe in the interleaved semantics, then it is safe in the relaxed semantics;

2. if it is safe in the interleaved semantics, then it will reach a final state through the

relaxed semantics that is reachable through the interleaved semantics.

Theorem 5.12 (DRF-guarantee). The relation provides the DRF-guarantee

Proof. From Def. 5.2, given (a) κ 7−→∗ abort is false, (b) κ 7−→∗ race is false, we have 2

cases:

• Let us assume (c) [Λ] κ 7−→∗ abort is true. From (a) and (b), and the semantics, we

know κ = 〈T, σ〉. From (c), using Lemma 3.46, we know exists T ′ such that (d)

T
t
T ′ and (e) 〈T ′, σ〉 7−→∗ abort. From (d), (a), and (b), using Corollary 5.11 (item

2), we know (f) 〈T ′, σ〉 7−→∗ abort is false. From (e) and (f), we find a contradiction

and conclude

• If (c) [Λ] κ 7−→∗ 〈skip, σ〉, then we need to show that κ 7−→∗ 〈skip, σ〉. From (a) and

(b), and the semantics, we know κ = 〈T, σ′〉. From (c), using Lemma 3.46, we know

exists T ′ such that (d) T
t
T ′ and (e) 〈T ′, σ′〉 7−→∗ 〈skip, σ〉. From (d), (a), (b), and

(e), using Corollary 5.11 (item 3), we conclude

126

Chapter 6

Concurrent Separation Logic

In this chapter, we present a logic for concurrent program verification similar to Con-

current Separation Logic (CSL). We prove its soundness with regard to the interleaved

semantics of Sec. 3.7. Then, using the DRF-guarantee results of Chapter 5, we establish its

soundness with regard to the -parameterized relaxed semantics of Sec. 3.10.

CSL keeps an invariant about the shared memory. When no thread is accessing the

shared memory, it is guaranteed that the invariant holds. When a thread is accessing the

shared memory — which the logic enforces by mutual exclusion — the invariant does not

need to be preserved, but it has to be reinstated once the operation ceases. An interesting

aspect about CSL is that it allows ownership transfer to happen during shared memory

access. When a thread starts a shared memory access, it gets a hold on the complete shared

memory. When it finishes, it does not necessarily need to release the shared memory with

the exact footprint. It may be increased or decreased. That is the ownership transfer that

happens. This is because CSL only requires the shared-memory invariant to be preserved,

and memories with different sizes may very well satisfy the requirement. For instance, if

we have a list in shared memory, we may have an invariant that describes precisely the

structure of the list, but does not specify its length. Therefore during shared-memory

access any thread could insert or remove elements in the list, as long as the list structure is

preserved. This ownership transfer of list nodes is dynamic, during program execution,

127

even though the invariant that describes the list structure is static.

There are two important aspects of our semantics that needed special treatment when

developing this logic and its soundness:

1. The dynamic semantics of the language execute atomic blocks in small steps. There-

fore shared memory modification is not performed in a single-shot, and it can inter-

leave with non-atomic code;

2. Memory allocation and deallocation have to be protected by an atomic block in order

to establish race freedom. This is enforced, syntactically, by the inference rules.

Note also that standard CSL, such as the one presented here, does not support sharing

read-only memory, that will be addressed in Chapter 7.

6.1 Assertion Language

We define assertions as sets of states as show in Fig. 6.1. There is no special syntax for

writing them, we phrase them using set operators borrowed from the meta-logic (e.g. ∩

for conjunction,∪for disjunction,⊆for implication, an so forth). We also provide support

for assertion formulae, to explicitly characterize assertions that have a free metavariable

of polymorphic type α.

(Assertion) P,Q, I ⊆ State
(AssertionFormula) P,Q, I ⊆ α→ Assertion

Figure 6.1: Assertions and assertion formulae

Common operations on assertions not captured by the standard set operators are de-

fined by a shallow embedding in the meta-logic. They are presented in Fig. 6.2.

To lift conditions into sets of states we use the notation bbc, it defines the set of states

where b evaluates to true. To get the set of states where b evaluates to false, we usually

write b¬bc. Note that this is very different from ¬bbc, which gets the set of states where b

128

bbc def
= {σ | JbKσ = true}

P1∗P2
def
= {σ1] σ2 | σ1∈P1 ∧ σ2∈P2}

Emp
def
= {∅}

` 7→ i
def
= {{` i}}

Figure 6.2: Auxiliary assertion definitions

evaluates to false or it is undefined. Therefore to get the set of states where b evaluation is

defined we usually write bbc∪b¬bc.

In Fig. 6.2, we also define the separating conjunction, the∗ from standard separation

logic. P1∗P2 defines the set of states that can be partitioned into two sub-states, the first

belonging to P1, and the second belonging to P2.] represents the disjoint union operator

for partial functions. We define Emp as the singleton set containing the empty state. Sim-

ilarly, we define ` 7→ i as the singleton set containing the singleton state where ` maps to i.

We write ` 7→ as a shorthand for ∃i.` 7→ i.

We also need to define precise assertions. An assertion P is precise if for any state,

there is at most one sub-state that belongs to P .

Definition 6.1. An assertion P is precise if, and only if, for all σ, σ1 ⊆ σ, and σ2 ⊆ σ, such

that σ1∈P and σ2∈P , we have σ1 = σ2

6.2 Inference Rules

In Fig. 6.3, we present the set of inference rules for CSL. Informally, the judgment I `

{P} c {Q} says that the state can be split implicitly into a shared part and a private part.

The private part can be accessed only by c. P and Q are pre- and post-conditions for the

private state. The shared part can be accessed by both c and its environment, but only

when within atomic blocks. Accesses to the shared state must preserve its invariant I .

Most of the rules are standard Hoare Logic rules adorned with an invariant I , which is

not by used the rule. Therefore, we will only explain those rules that we think are peculiar

to CSL.

129

Emp `{Q◦Jν :=eK} ν :=e {Q}
(ASSIGNMENT)

Emp `{Q◦JaK} 〈a〉 {Q}
(ACTION)

I `{P} c1 {P ′} I `{P ′} c2 {Q}
I `{P} c1; c2 {Q}

(SEQUENTIAL)
Emp `{P} skip {P}

(SKIP)

P ⊆bbc∪b¬bc I `{P∩bbc} c1 {Q} I `{P∩b¬bc} c2 {Q}
I `{P} if b then c1 else c2 {Q}

(CONDITIONAL)

P ⊆bbc∪b¬bc I `{P∩bbc} c {P}
I `{P}while b do c {P∩b¬bc} (LOOP)

I `{P1} c1 {Q1} I `{P2} c2 {Q2}
I `{P1∗P2} c1‖c2 {Q1∗Q2}

(PARALLEL)
Emp `{I∗P} c {I∗Q}
I `{P} atomic c {Q}

(ATOMIC)

P ⊆P ′ I `{P ′} c {Q′} Q′⊆Q
I `{P} c {Q}

(CONSEQUENCE)

∀x. I `{P(x)} c {Q(x)}
I `{∃x. P(x)} c {∃x. Q(x)}

(EXISTENTIAL)

I `{P} c {Q}
I ′∗I `{P} c {Q}

(FRAME)
I ′∗I `{P} c {Q}

I `{I ′∗P} c {I ′∗Q}
(RESOURCE)

I `{P1} c {Q1} I `{P2} c {Q2} I is precise
I `{P1∩P2} c {Q1∩Q2}

(CONJUNCTION)

I `{P1} c {Q1} I `{P2} c {Q2}
I `{P1∪P2} c {Q1∪Q2}

(DISJUNCTION)

Figure 6.3: CSL inference rules

130

The first two rules, ASSIGNMENT and ACTION, are general rules to verify actions. We

use the notation Q◦JaK to specify the weakest pre-condition of a, given post-condition Q.

Definition 6.2. Q◦JaK is a set of states where, for each state σ, we have:

1. exists σ′ such that (σ, σ′)∈JaK

2. for all σ′, such that (σ, σ′)∈JaK, we have σ′∈Q

Specific rules that are not based explicitly on the definition of J−K can be derived based

on this rule. For instance, we can derive the following rule where p and i are integers:

Emp `{p 7→ } [p] := i {p 7→ i}

The ACTION rule is similar, but specialized for synchronized actions (we write 〈a〉which is

syntactic sugar for atomic a). This rule is designed to be used for memory allocation and

deallocation, given that those operations must be placed inside an atomic block to avoid

races (according to the definition of race from Chapter 3). As one can deduct, CSL en-

forces, syntactically, that all memory allocation and deallocation is protected by an atomic

block.

The PARALLEL rule is used to verify parallel composition. It allows it to be done mod-

ularly by splitting the private memory into two parts that must be rejoined once the exe-

cution finishes. An associated rule is the RESOURCE rule that demotes shared memory to

private memory. From these two we can derive a fancier version of the parallel rule that

creates extra memory for threads to share:

I ′∗I `{P1} c1 {Q1} I ′∗I `{P2} c2 {Q2}

I `{I ′∗P1∗P2} c1‖c2 {I ′∗Q1∗Q2}

Another important rule is the ATOMIC rule. It allows the exclusive access to the shared

memory during the execution of the atomic block. During the verification of an atomic

block the shared invariant becomes Emp therefore the actual invariant I does not need to

131

be maintained. It must be restored back when the atomic block execution completes.

We also have a frame rule for the shared memory FRAME. It allows abstracting away

extra memory when it is not needed. A more traditional frame rule, for the private mem-

ory, can be derived directly from this rule and the RESOURCE rule:

I `{P ′} c {Q′}

I `{I ′∗P} c {I ′∗Q}

Finally, we would like to point out that the only rule that requires I to be precise is the

CONJUNCTION rule. This is needed for proving soundness, in particular Lemma 6.29. A

fancier version of the CONJUNCTION rule can also be incorporated, this is discussed in

Sec. 6.4.

6.3 Soundness

In the following sections, we present the soundness proof of CSL regarding all three con-

current semantics from Chapter 3. The soundness proof to be presented uses a semantic

approach with indexing.

6.3.1 With Regard to the Interleaved Semantics

In this section, we present the soundness proof with regard to the interleaved semantics

from Sec. 3.7. The proof is structured around the following definition:

Definition 6.3. I |= 〈T, σ〉 B0 Q always holds; I |= 〈T, σ〉 Bn+1 Q holds if, and only if, the

following are true:

1. T is either 0- or 1-atomic

2. ¬〈T, σ〉 7−→ abort

3. ¬〈T, σ〉 7−→ race

132

4. If 〈T, σ〉 7−→ 〈T ′, σ′〉, then

(a) If both T and T ′ are 1-atomic, then I |= 〈T ′, σ′〉Bn Q

(b) If both T and T ′ are 0-atomic, then dom(σ) = dom(σ′) and I |= 〈T ′, σ′〉Bn Q

(c) If T is 0-atomic and T ′ is 1-atomic, then for all σ1 and σ2, such that σ2 = σ1] σ′

and σ1∈I , we have I |= 〈T ′, σ2〉Bn Q

(d) If T is 1-atomic and T ′ is 0-atomic, then exists σ1 and σ2, such that σ′ = σ1]σ2,

σ1∈I , and I |= 〈T ′, σ2〉Bn Q

5. If T = skip, then σ∈Q

We define I |= 〈T, σ〉B Q as ∀n. I |= 〈T, σ〉Bn Q.

The triple I |= 〈T, σ〉BQ ensures that each step performed by a program configuration

has at most one ongoing atomic block execution (item 1), does not abort (item 2), and is

not at a race condition (item 3). Furthermore, if it reaches a final configuration 〈skip, σ′〉,

then σ′ must satisfy post-condition Q (item 5). This definition also manages proper access

to private memory (item 4). If the current configuration has an ongoing atomic block exe-

cution (item (a)), then it already has a hold of the shared memory, and it can perform the

step with out constraints. If the current configuration does not have an ongoing atomic

block execution (item (b)), then no memory allocation or deallocation must happen to

avoid a race-condition with the environment, which may have an ongoing atomic block

execution performing memory allocation or deallocation. This constraint is enforced by

the condition dom(σ) = dom(σ′). If the current program configuration is starting to ex-

ecute a top-level atomic block (item (c)), then it must get a hold on the shared memory,

assuming it satisfies I . If the current program configuration is completing the execution

of a top-level atomic block (item (d)), then it must return the shared memory ensuring

that it satisfies I .

We present the soundness proof in three sections, following the order:

1. Auxiliary lemmas for CSL triples, as in Def. 6.3

133

2. Semantic rules, each corresponding to a syntactic rule from Fig. 6.3

3. Top level soundness theorem

Auxiliary lemmas. Given that programs may diverge, and since I |= 〈T, σ〉BQ is defined

in terms of itself, we used indexing to ensure this definition is well-founded. Lemma 6.4

allows greater flexibility when dealing with indexing.

Lemma 6.4. If I |= 〈T, σ〉Bn1 Q, and n2 ≤ n1, then I |= 〈T, σ〉Bn2 Q

Proof. By induction over n1. If n1 = 0, then n2 = 0 as well, by Def. 6.3, we conclude. If

n1 > 0, by Def. 6.3, assuming (a) I |= 〈T, σ〉Bn1 Q and (b) n2 ≤ n1, we have 5 cases:

• From (a), by Def. 6.3 (item 1), we know that T is 0- or 1-atomic

• From (a), by Def. 6.3 (item 2), we know that 〈T, σ〉 7−→ abort is false

• From (a), by Def. 6.3 (item 3), we know that 〈T, σ〉 7−→ race is false

• If (c) 〈T, σ〉 7−→ 〈T ′, σ′〉, then we have 4 cases:

– If both T and T ′ are 1-atomic, we need to show that I |= 〈T ′, σ′〉 B(n2−1) Q.

From (a) and (c), by Def. 6.3 (item 4.a), we know that (d) I |= 〈T ′, σ′〉B(n1−1) Q.

Trivially, from (b), we know that (e) n2−1 ≤ n1−1. From (d) and (e), by the

induction hypothesis, we conclude

– If both T and T ′ are 0-atomic, we need to show that dom(σ) = dom(σ′) and I |=

〈T ′, σ′〉B(n2−1)Q. From (a) and (c), by Def. 6.3 (item 4.b), we know already that

dom(σ) = dom(σ′), and also that (d) I |= 〈T ′, σ′〉 B(n1−1) Q. Trivially, from (b),

we know that (e) n2−1 ≤ n1−1. From (d) and (e), by the induction hypothesis,

we conclude

– If T is 0-atomic and T ′ is 1-atomic, we need to show that for all σ1 and σ2, such

that (d) σ2 = σ1] σ′ and (e) σ1 ∈ I , we have I |= 〈T ′, σ2〉 B(n2−1) Q. From (a),

(c), (d), and (e), by Def. 6.3 (item 4.c), we know that (f) I |= 〈T ′, σ2〉 B(n1−1) Q.

134

Trivially, from (b), we know that (g) n2−1 ≤ n1−1. From (f) and (g), by the

induction hypothesis, we conclude

– If T is 1-atomic and T ′ is 0-atomic, we need to show that exists σ1 and σ2, such

that σ′ = σ1] σ2, σ1 ∈ I , and I |= 〈T ′, σ2〉 B(n2−1) Q. From (a) and (c), by

Def. 6.3 (item 4.d), we know there exists σ′1 and σ′2, such that (d) σ′ = σ′1] σ′2,

(e) σ′1 ∈ I , and (f) I |= 〈T ′, σ′2〉 B(n1−1) Q. Trivially, from (b), we know that (g)

n2−1 ≤ n1−1. From (f) and (g), by the induction hypothesis, we have (h)

I |= 〈T ′, σ′2〉 B(n2−1) Q. Instantiating the goal with σ′1 and σ′2, from (d), (e), and

(h), we conclude

• We assume (c) T = skip. From (a) and (c), by Def. 6.3 (item 5), we know that σ∈Q

and conclude

The following lemma allows the weakening of Q in a CSL triple.

Lemma 6.5. If I |= 〈T, σ〉Bn Q, and Q⊆Q′, then I |= 〈T, σ〉Bn Q′

Proof. By induction over n. If n = 0, by Def. 6.3, we conclude. If n > 0, by Def. 6.3,

assuming (a) I |= 〈T, σ〉Bn Q and (b) Q⊆Q′, we have 5 cases:

• From (a), by Def. 6.3 (item 1), we know that T is 0- or 1-atomic

• From (a), by Def. 6.3 (item 2), we know that 〈T, σ〉 7−→ abort is false

• From (a), by Def. 6.3 (item 3), we know that 〈T, σ〉 7−→ race is false

• If (c) 〈T, σ〉 7−→ 〈T ′, σ′〉, then we have 4 cases:

– If both T and T ′ are 1-atomic, we need to show that I |= 〈T ′, σ′〉Bn−1 Q
′. From

(a) and (c), by Def. 6.3 (item 4.a), we know that (d) I |= 〈T ′, σ′〉 Bn−1 Q. From

(b) and (d), by the induction hypothesis, we conclude

– If both T and T ′ are 0-atomic, we need to show that dom(σ) = dom(σ′) and

I |= 〈T ′, σ′〉 Bn−1 Q
′. From (a) and (c), by Def. 6.3 (item 4.b), we know already

135

that dom(σ) = dom(σ′), and also that (d) I |= 〈T ′, σ′〉Bn−1 Q. From (b) and (d),

by the induction hypothesis, we conclude

– If T is 0-atomic and T ′ is 1-atomic, we need to show that for all σ1 and σ2, such

that (d) σ2 = σ1] σ′ and (e) σ1∈I , we have I |= 〈T ′, σ2〉Bn−1 Q
′. From (a), (c),

(d), and (e), by Def. 6.3 (item 4.c), we know that (f) I |= 〈T ′, σ2〉 Bn−1 Q. From

(b) and (f), by the induction hypothesis, we conclude

– If T is 1-atomic and T ′ is 0-atomic, we need to show that exists σ1 and σ2, such

that σ′ = σ1] σ2, σ1∈I , and I |= 〈T ′, σ2〉Bn−1 Q
′. From (a) and (c), by Def. 6.3

(item 4.d), we know there exists σ′1 and σ′2, such that (d) σ′ = σ′1] σ′2, (e) σ′1∈I ,

and (f) I |= 〈T ′, σ′2〉 Bn−1 Q. From (b) and (f), by the induction hypothesis, we

have (g) I |= 〈T ′, σ′2〉 Bn−1 Q
′. Instantiating the goal with σ′1 and σ′2, from (d),

(e), and (g), we conclude

• We assume (c) T = skip. From (a) and (c), by Def. 6.3 (item 5), we know that (d)

σ∈Q. From (b) and (d), we know that σ∈Q′ and conclude

We can construct a CSL triple from skip using the following lemma.

Lemma 6.6. If σ∈Q, then I |= 〈skip, σ〉Bn Q

Proof. If n = 0, by Def. 6.3, we conclude. If n > 0, by Def. 6.3, we have 5 cases:

• By Def. 3.1, we know that skip is 0-atomic

• From the semantics, we know that 〈skip, σ〉 7−→ abort is false

• From the semantics, we know that 〈skip, σ〉 7−→ race is false

• From the semantics, we know that 〈skip, σ〉 7−→ 〈T ′, σ′〉 is false

• Since skip = skip, and σ∈Q, we conclude

The following lemma is used for sequential composition of triples.

136

Lemma 6.7. If I |= 〈T, σ〉Bn P , and, for all σ′∈P , we have I |= 〈c′, σ′〉Bn Q, then

1. If T = c, then I |= 〈c; c′, σ〉Bn Q

2. If T = 〈〈T1, T2 〉〉pc, and 〈〈T1, T2 〉〉pc is 0- or 1-atomic, then I |= 〈〈〈T1, T2 〉〉p(c; c′), σ〉Bn Q

3. If T = 〈〈T ′ 〉〉ac, then I |= 〈〈〈T ′ 〉〉a(c; c′), σ〉Bn Q

Proof. By induction over n. If n = 0, by Def. 6.3, we conclude. If n > 0, we assume (a)

I |= 〈T, σ〉 Bn P and (b) for all σ′ ∈ P , we have I |= 〈c′, σ′〉 Bn Q. We establish (c) for all

σ′∈P , we have I |= 〈c′, σ′〉Bn−1 Q:

• We assume σ′∈P , from (b), using Lemma 6.4, we conclude

Then we consider 3 cases:

• If T = c, then we need to show that I |= 〈c; c′, σ〉Bn Q. By Def. 6.3, we have 5 cases:

– By Def. 3.1, we know that c; c′ is 0-atomic

– From (a), by Def. 6.3 (item 2), we know that (d) 〈c, σ〉 7−→ abort is false. From

(d), and the semantics, we know that 〈c; c′, σ〉 7−→ abort is also false

– From the semantics, we know that 〈c; c′, σ〉 7−→ race is false

– If (d) 〈c; c′, σ〉 7−→ 〈T ′, σ′〉, from the semantics, we have 4 cases:

∗ If c = skip, T ′ = c′, and σ′ = σ, since both skip; c′ and c′ are 0-atomic,

we need to show that dom(σ) = dom(σ′), which holds trivially, and I |=

〈c′, σ′〉Bn−1 Q. From (a), by Def. 6.3 (item 5), we know that (e) σ∈P . From

(e) and (c), we conclude

∗ If T ′ = c′′; c′, and (e) 〈c, σ〉 7−→ 〈c′′, σ′〉, given that both c; c′ and c′′; c′ are

0-atomic, we need to show dom(σ) = dom(σ′) and I |= 〈c′′; c′, σ′〉 Bn−1 Q.

From (a) and (e), by Def. 6.3 (item 4.b), we have (f) dom(σ) = dom(σ′) and

(g) I |= 〈c′′, σ′〉 Bn−1 P . From (g) and (c), using the induction hypothesis

(item 1), we have (h) I |= 〈c′′; c′, σ′〉Bn−1 Q. From (f) and (h), we conclude

137

∗ If c = S[c1‖c2], T ′ = 〈〈 c1, c2 〉〉p(S[skip]; c′), and σ′ = σ, since both c; c′ and

〈〈 c1, c2 〉〉p(S[skip]; c′) are 0-atomic, we need to show that dom(σ) = dom(σ′),

which holds trivially, and I |= 〈〈〈 c1, c2 〉〉p(S[skip]; c′), σ〉 Bn−1 Q. From the

semantics, we know that (e) 〈c, σ〉 7−→ 〈〈〈 c1, c2 〉〉p(S[skip]), σ〉. From (a)

and (e), by Def. 6.3 (item 4.b), we know that (f) dom(σ) = dom(σ) and (g)

I |= 〈〈〈 c1, c2 〉〉p(S[skip]), σ〉 Bn−1 P . From (g) and (c), using the induction

hypothesis (item 2), we conclude

∗ If c = S[atomic c′′], T ′ = 〈〈 c′′ 〉〉a(S[skip]; c′), and σ′ = σ, since c; c′ is 0-

atomic and 〈〈 c′′ 〉〉a(S[skip]; c′) is 1-atomic, we need to show that for all σ1

and σ2, such that (e) σ2 = σ1]σ, and (f) σ1∈I , we have I |= 〈T ′, σ2〉Bn−1Q.

From the semantics, we know that (g) 〈c, σ〉 7−→ 〈〈〈 c′′ 〉〉a(S[skip]), σ〉. From

(a), (g), (e), and (f), by Def. 6.3 (item 4.c), we have

(h) I |= 〈〈〈 c′′ 〉〉a(S[skip]), σ2〉Bn−1 P . From (h) and (c), using the induction

hypothesis (item 3), we conclude

– We know that c; c′ 6= skip

• If T = 〈〈T1, T2 〉〉pc, and (d) 〈〈T1, T2 〉〉pc is 0- or 1-atomic, then we need to show that

I |= 〈〈〈T1, T2 〉〉p(c; c′), σ〉Bn Q. By Def. 6.3, we have 5 cases:

– From (d), by Def. 3.1, we know that 〈〈T1, T2 〉〉p(c; c′) is 0- or 1-atomic

– From (a), by Def. 6.3 (item 2), we know that (e) 〈〈〈T1, T2 〉〉pc, σ〉 7−→ abort is false.

From (e), and the semantics, we know that 〈〈〈T1, T2 〉〉p(c; c′), σ〉 7−→ abort is also

false

– From (a), by Def. 6.3 (item 3), we know that (e) 〈〈〈T1, T2 〉〉pc, σ〉 7−→ race is false.

From (e), and the semantics, we know that 〈〈〈T1, T2 〉〉p(c; c′), σ〉 7−→ race is also

false

– If (e) 〈〈〈T1, T2 〉〉p(c; c′), σ〉 7−→ 〈T ′, σ′〉, from the semantics, we have 3 cases:

∗ If T1 = skip, T2 = skip, T ′ = c; c′, and σ′ = σ, since both 〈〈 skip, skip 〉〉p(c; c′)

138

and c; c′ are 0-atomic, we need to show that dom(σ) = dom(σ′), which holds

trivially, and I |= 〈c; c′, σ〉 Bn−1 Q. From the semantics, we know that (f)

〈〈〈 skip, skip 〉〉pc, σ〉 7−→ 〈c, σ〉. From (a) and (f), by Def. 6.3 (item 4.b), we

know that (g) dom(σ) = dom(σ) and (h) I |= 〈c, σ〉Bn−1 P . From (h), (c), by

the induction hypothesis (item 1), we conclude

∗ If T ′ = 〈〈T ′1, T2 〉〉p(c; c′), and (f) 〈T1, σ〉 7−→ 〈T ′1, σ′〉, we have 4 cases:

· If both T1 and T ′1 are 1-atomic, we have to show that

I |= 〈〈〈T ′1, T2 〉〉p(c; c′), σ′〉Bn−1 Q. From (f), and the semantics, we know

(g) 〈〈〈T1, T2 〉〉pc, σ〉 7−→ 〈〈〈T ′1, T2 〉〉pc, σ′〉. From (a) and (g), by Def. 6.3

(item 4.a), we know (h) I |= 〈〈〈T ′1, T2 〉〉pc, σ′〉 Bn−1 P . From (h) and (c),

using the induction hypothesis (item 2), we conclude

· If both T1 and T ′1 are 0-atomic, we have to show that dom(σ) = dom(σ′)

and I |= 〈〈〈T ′1, T2 〉〉p(c; c′), σ′〉 Bn−1 Q. From (f), and the semantics,

we know (g) 〈〈〈T1, T2 〉〉pc, σ〉 7−→ 〈〈〈T ′1, T2 〉〉pc, σ′〉. From (a) and (g), by

Def. 6.3 (item 4.b), we know (h) dom(σ) = dom(σ′) and

(i) I |= 〈〈〈T ′1, T2 〉〉pc, σ′〉 Bn−1 P . From (i) and (c), using the induction

hypothesis (item 2), we know (j) I |= 〈〈〈T ′1, T2 〉〉p(c; c′), σ′〉Bn−1 Q. From

(h) and (j), we conclude

· If T1 is 0-atomic and T ′1 is 1-atomic, we need to show that for all σ1

and σ2, such that (g) σ2 = σ1] σ′ and (h) σ1 ∈ I , we have I |=

〈〈〈T ′1, T2 〉〉p(c; c′), σ2〉 Bn−1 Q. From (f), and the semantics, we know (i)

〈〈〈T1, T2 〉〉pc, σ〉 7−→ 〈〈〈T ′1, T2 〉〉pc, σ′〉. From (a), (i), (g), and (h), by Def. 6.3

(item 4.c), we know that (j) I |= 〈〈〈T ′1, T2 〉〉pc, σ2〉 Bn−1 P . From (j) and

(c), using the induction hypothesis (item 2), we conclude

· If T1 is 1-atomic and T ′1 is 0-atomic, we need to show that exists σ1 and

σ2, such that σ′ = σ1] σ2, σ1∈ I , and I |= 〈〈〈T ′1, T2 〉〉p(c; c′), σ2〉 Bn−1 Q.

From (f), and the semantics, we know

139

(g) 〈〈〈T1, T2 〉〉pc, σ〉 7−→ 〈〈〈T ′1, T2 〉〉pc, σ′〉. From (a) and (g), by Def. 6.3

(item 4.d), we know there exists σ′1 and σ′2 such that (i) σ′ = σ′1] σ′2, (j)

σ′1∈I , and (k) I |= 〈〈〈T ′1, T2 〉〉pc, σ′2〉Bn−1P . From (k) and (c), using the in-

duction hypothesis (item 2), we know (l) I |= 〈〈〈T ′1, T2 〉〉p(c; c′), σ′2〉Bn−1

Q. Instantiating the goal with σ′1 and σ′2, from (i), (j), and (l), we con-

clude

∗ If T ′ = 〈〈T1, T
′
2 〉〉p(c; c′), and (f) 〈T2, σ〉 7−→ 〈T ′2, σ′〉, the proof is symmetric to

the previous case

– We know that 〈〈T1, T2 〉〉p(c; c′) 6= skip

• If T = 〈〈T ′ 〉〉ac, then we need to show that I |= 〈〈〈T ′ 〉〉a(c; c′), σ〉 Bn Q. By Def. 6.3, we

have 5 cases:

– By Def. 3.1, we know that 〈〈T ′ 〉〉a(c; c′) is 1-atomic

– From (a), by Def. 6.3 (item 2), we know that (d) 〈〈〈T ′ 〉〉ac, σ〉 7−→ abort is false.

From (d), and the semantics, we know that 〈〈〈T ′ 〉〉a(c; c′), σ〉 7−→ abort is also

false

– From (a), by Def. 6.3 (item 3), we know that (d) 〈〈〈T ′ 〉〉ac, σ〉 7−→ race is false.

From (d), and the semantics, we know that 〈〈〈T ′ 〉〉a(c; c′), σ〉 7−→ race is also false

– If (d) 〈〈〈T ′ 〉〉a(c; c′), σ〉 7−→ 〈T ′′, σ′〉, from the semantics, we have 2 cases:

∗ If T ′ = skip, T ′′ = c; c′, and σ′ = σ, since 〈〈 skip 〉〉a(c; c′) is 1-atomic and c; c′

is 0-atomic, we need to show that exists σ1 and σ2 such that σ′ = σ1] σ2,

σ1 ∈ I , and I |= 〈c; c′, σ2〉 Bn−1 Q. From the semantics, we know that (e)

〈〈〈 skip 〉〉ac, σ〉 7−→ 〈c, σ〉. From (a) and (e), by Def. 6.3 (item 4.d), we know

that exists σ′1 and σ′2 such that (f) σ = σ′1] σ′2, (g) σ′1 ∈ I , and (h) I |=

〈c, σ′2〉Bn−1 P . From (h), (c), by the induction hypothesis (item 1), we have

(i) I |= 〈c; c′, σ′2〉Bn−1 Q. Instantiating the goal with σ′1 and σ′2, from (f), (g),

and (i), we conclude

140

∗ If T ′′ = 〈〈T ′′′ 〉〉a(c; c′), and (e) 〈T ′, σ〉 7−→ 〈T ′′′, σ′〉, given that both 〈〈T ′ 〉〉a(c; c′)

and 〈〈T ′′′ 〉〉a(c; c′) are 1-atomic, we need to show I |= 〈〈〈T ′′′ 〉〉a(c; c′), σ′〉 Bn−1

Q. From (e), and the semantics, we know (f) 〈〈〈T ′ 〉〉ac, σ〉 7−→ 〈〈〈T ′′′ 〉〉ac, σ′〉.

From (a) and (f), by Def. 6.3 (item 4.a), then (g) I |= 〈〈〈T ′′′ 〉〉ac, σ′〉 Bn−1 P .

From (g) and (c), using the induction hypothesis (item 3), we conclude

– We know that 〈〈T ′ 〉〉a(c; c′) 6= skip

Conditional commands can be introduced using the following lemma.

Lemma 6.8. If I |= 〈c, σ〉Bn Q, then

1. If σ∈bbc, then I |= 〈if b then c else c′, σ〉Bn Q

2. If σ∈b¬bc, then I |= 〈if b then c′ else c, σ〉Bn Q

Proof. From assumption (a) I |= 〈c, σ〉Bn Q we have 2 cases:

• We assume (b) σ ∈ bbc. If n = 0, by Def. 6.3, we conclude. If n > 0, by Def. 6.3, we

have 5 cases:

– By Def. 3.1, we know that (c) if b then c else c′ is 0-atomic

– From the semantics, we know that 〈if b then c else c′, σ〉 7−→ abort is false if

〈if b then c else c′, σ〉 −→ abort is false. From the sequential semantics, we

know 〈if b then c else c′, σ〉 −→ abort is false if there exists z such that JbKσ = z.

From (b), we know JbKσ = true and conclude

– From the semantics, we know that 〈if b then c else c′, σ〉 7−→ race is false

– From the semantics, given (b), we know that 〈if b then c else c′, σ〉 7−→ 〈c, σ〉.

From (c), and since c is 0-atomic, we need to show that dom(σ) = dom(σ) and

I |= 〈c, σ〉Bn−1 Q. From (a), using Lemma 6.4, we conclude

– We know that if b then c else c′ 6= skip

• We assume (b) σ∈b¬bc. If n = 0, by Def. 6.3, we conclude. If n > 0, by Def. 6.3, we

have 5 cases:

141

– By Def. 3.1, we know that (c) if b then c′ else c is 0-atomic

– From the semantics, we know that 〈if b then c′ else c, σ〉 7−→ abort is false if

〈if b then c′ else c, σ〉 −→ abort is false. From the sequential semantics, we

know 〈if b then c′ else c, σ〉 −→ abort is false if there exists z such that JbKσ = z.

From (b), we know JbKσ = false and conclude

– From the semantics, we know that 〈if b then c′ else c, σ〉 7−→ race is false

– From the semantics, given (b), we know that 〈if b then c′ else c, σ〉 7−→ 〈c, σ〉.

From (c), and since c is 0-atomic, we need to show that dom(σ) = dom(σ) and

I |= 〈c, σ〉Bn−1 Q. From (a), using Lemma 6.4, we conclude

– We know that if b then c′ else c 6= skip

A loop command can be introduced using the following lemma.

Lemma 6.9. If P ⊆bbc∪b¬bc, σ∈P , and, for all σ′∈P∩bbc, we have I |= 〈c, σ′〉Bn P , then

I |= 〈while b do c, σ〉Bn (P∩b¬bc)

Proof. By induction over n. If n = 0, by Def. 6.3, we conclude. If n > 0, by Def. 6.3,

assuming (a) P ⊆bbc∪b¬bc, (b) σ∈P , and, (c) for all σ′∈P∩bbc, we have I |= 〈c, σ′〉Bn P ,

we have 5 cases:

• By Def. 3.1, we know that (d) while b do c is 0-atomic

• From the semantics, we know that 〈while b do c, σ〉 7−→ abort is false

• From the semantics, we know that 〈while b do c, σ〉 7−→ race is false

• From the semantics, 〈while b do c, σ〉 7−→ 〈if b then (c; while b do c) else skip, σ〉.

From (d), and since if b then (c; while b do c) else skip is 0-atomic, we need to show

that dom(σ) = dom(σ) and I |= 〈if b then (c; while b do c) else skip, σ〉Bn−1(P∩b¬bc).

From (a) and (b), we know (e) σ∈bbc∪b¬bc. From (e), we have two cases:

– We assume (f) σ ∈ bbc. From (b) and (f), we know (g) σ ∈P ∩bbc. We establish

(h) for all σ′∈P∩bbc, we have I |= 〈c, σ′〉Bn−1 P :

142

∗ We assume σ′∈P∩bbc, from (c), using Lemma 6.4, we conclude

From (g) and (h), we know (i) I |= 〈c, σ〉 Bn−1 P . We establish (j) for all σ′∈P ,

we have I |= 〈while b do c, σ′〉Bn−1 (P∩b¬bc):

∗ We assume σ′ ∈ P , with (a) and (h), using the induction hypothesis, we

conclude

From (i) and (j), using Lemma 6.7 (item 1), we get (k) I |= 〈c; while b do c, σ〉Bn−1

(P∩b¬bc). From (f) and (k), using Lemma 6.8 (item 1), we conclude

– We assume (f) σ ∈ b¬bc. From (b) and (f), we know (g) σ ∈P ∩b¬bc. From (g),

using Lemma 6.6, we know (h) I |= 〈skip, σ〉Bn−1 (P∩b¬bc). From (f) and (h),

using Lemma 6.8 (item 2), we conclude

• We know that while b do c 6= skip

The following lemma is used for parallel composition of triples.

Lemma 6.10. If I |= 〈T1, σ1〉BnQ1, I |= 〈T2, σ2〉BnQ2, and 〈〈T1, T2 〉〉pskip is 0- or 1-atomic,

then I |= 〈〈〈T1, T2 〉〉pskip, σ1] σ2〉Bn (Q1∗Q2)

Proof. By induction over n. If n = 0, by Def. 6.3, we conclude. If n > 0, by Def. 6.3,

assuming (a) I |= 〈T1, σ1〉 Bn Q1, (b) I |= 〈T2, σ2〉 Bn Q2, and (c) 〈〈T1, T2 〉〉pskip is 0- or

1-atomic, we have 5 cases:

• From (c), we conclude

• From the semantics, we know that 〈〈〈T1, T2 〉〉pskip, σ1] σ2〉 7−→ abort if either:

– 〈T1, σ1] σ2〉 7−→ abort. From (a), by Def. 6.3 (item 2), we know (d) 〈T1, σ1〉 7−→

abort is false. From (d), using Lemma 3.22 (item 1), we conclude

– or, 〈T2, σ1]σ2〉 7−→ abort. From (b), by Def. 6.3 (item 2), we know (e) 〈T2, σ2〉 7−→

abort is false. From (e), using Lemma 3.22 (item 1), we conclude

• From the semantics, we know that 〈〈〈T1, T2 〉〉pskip, σ1] σ2〉 7−→ race if either:

143

– 〈T1, σ1] σ2〉 7−→ race. From (a), by Def. 6.3 (item 3), we know (f) 〈T1, σ1〉 7−→

race is false. From (d) and (f), using Lemma 3.22 (item 2), we conclude

– or, 〈T2, σ1]σ2〉 7−→ race. From (b), by Def. 6.3 (item 3), we know (g) 〈T2, σ2〉 7−→

race is false. From (e) and (g), using Lemma 3.22 (item 2), we conclude

– or, T1 = T1[c1], T2 = T2[c2], 〈c1, σ1] σ2〉 −→
δ1
〈c′1, σ′〉, 〈c2, σ

′〉 −→
δ2

κ and

δ1 6 ~̂ δ2. By contradiction, we will assume (f) 〈c1, σ1] σ2〉 −→
δ1
〈c′1, σ′〉, and (g)

〈c2, σ
′〉 −→

δ2
κ in order to obtain δ1 ~̂ δ2. From the semantics, and (d), we know

(h) 〈c1, σ1〉 −→ abort is false. From (h) and (f), using Lemma 3.16 (item 2), we

know there exists σ′1 such that (i) σ′ = σ′1] σ2 and (j) 〈c1, σ1〉 −→
δ1
〈c′1, σ′1〉. From

the semantics, and (e), we know (k) 〈c2, σ2〉 −→ abort is false. From (k), using

Lemma 3.16 (item 1), we know (l) 〈c2, σ′1] σ2〉 −→ abort is false. From (g), (i),

and (l), we know there exists c′2 and σ′′ such that (m) κ = 〈c′2, σ′′〉. From (k),

(g) and (m), using Lemma 3.16 (item 2), we know there exists σ′2 such that (n)

σ′′ = σ′1] σ′2 and (o) 〈c2, σ2〉 −→
δ2
〈c′2, σ′2〉. From (j), using Remark 3.10 (item

2), by Def. 3.4, we know that (p) δ1 ⊆ (∅, dom(σ1) ∪ dom(σ′1)). From (o), using

Remark 3.10 (item 2), by Def. 3.4, we know that (q) δ2 ⊆ (∅, dom(σ2)∪dom(σ′2)).

Then, we have 2 cases:

∗ If T1[c1] is 0-atomic, then from (a) and (j), by Def. 6.3 (item 4.b), we know

that (r) dom(σ1) = dom(σ′1). From (p) and (r), we know that (s) δ1 ⊆

(∅, dom(σ′1)). From (i), (n), we know that (t) dom(σ′1)∩(dom(σ2)∪dom(σ′2)) =

∅. From (t), (s), and (q), we know that δ1.ws ∩ (δ2.rs ∪ δ2.ws) = ∅ and con-

clude

∗ If T1[c1] is 1-atomic, from (c) we know that (r) T2[c2] is 0-atomic. From

(b), (o), and (r), by Def. 6.3 (item 4.b), we know that (s) dom(σ2) = dom(σ′2).

From (q) and (s), we know that (t) δ2 ⊆ (∅, dom(σ2)). From (i), we know

that (u) (dom(σ1)∪dom(σ′1))∩dom(σ2) = ∅. From (u), (p), and (t), we know

that δ1.ws ∩ (δ2.rs ∪ δ2.ws) = ∅ and conclude

144

– or, T1 = T1[c1], T2 = T2[c2], 〈c2, σ1]σ2〉 −→
δ2
〈c′2, σ′〉, 〈c1, σ

′〉 −→
δ1

κ and δ2 6~̂ δ1.

The proof is symmetric to the previous case

• From the semantics, if (f) 〈〈〈T1, T2 〉〉pskip, σ1] σ2〉 7−→ 〈T ′, σ′〉, then either:

– T1 = skip, T2 = skip, T ′ = skip, and σ′ = σ1]σ2. Since both 〈〈 skip, skip 〉〉pskip

and skip are 0-atomic, we need to show that dom(σ′) = dom(σ1] σ2), which

holds trivially, and that I |= 〈skip, σ′〉Bn−1 (Q1∗Q2). From (a), by Def. 6.3 (item

5), we know (g) σ1 ∈Q1. From (b), by Def. 6.3 (item 5), we know (h) σ2 ∈Q2.

From (g) and (h), we know (i) σ′ ∈ Q1 ∗Q2. From (i), using Lemma 6.6, we

conclude

– or, T ′ = 〈〈T ′1, T2 〉〉pskip and (g) 〈T1, σ1] σ2〉 7−→ 〈T ′1, σ′〉. From (d) and (g), using

Lemma 3.22 (item 3), we know that exists σ′1 such that σ′ = σ′1] σ2 and (h)

〈T1, σ1〉 7−→ 〈T ′1, σ′1〉. From (c), and (f), using Remark 3.17, we have 5 cases:

∗ If both T1 and T ′1 are 1-atomic, and T2 is 0-atomic, we have to show that

I |= 〈〈〈T ′1, T2 〉〉pskip, σ′1]σ2〉Bn−1(Q1∗Q2). From (a) and (h), by Def. 6.3 (item

4.a), we know that (i) I |= 〈T ′1, σ′1〉Bn−1 Q1. From (b), using Lemma 6.4, we

know that (j) I |= 〈T2, σ2〉 Bn−1 Q2. From (i) and (j), using the induction

hypothesis, we conclude

∗ If both T1 and T ′1 are 0-atomic, and T2 is 1-atomic, we have to show that

I |= 〈〈〈T ′1, T2 〉〉pskip, σ′1] σ2〉 Bn−1 (Q1∗Q2). From (a) and (h), by Def. 6.3

(item 4.b), we know that (i) dom(σ1) = dom(σ′1) and (j) I |= 〈T ′1, σ′1〉Bn−1Q1.

From (b), using Lemma 6.4, we know that (k) I |= 〈T2, σ2〉 Bn−1 Q2. From

(j) and (k), using the induction hypothesis, we conclude

∗ If all T1, T ′1, and T2 are 0-atomic, we have to show that dom(σ1] σ2) =

dom(σ′1] σ2) and I |= 〈〈〈T ′1, T2 〉〉pskip, σ′1] σ2〉 Bn−1 (Q1 ∗Q2). From (a)

and (h), by Def. 6.3 (item 4.b), we know that (i) dom(σ1) = dom(σ′1) and

(j) I |= 〈T ′1, σ′1〉 Bn−1 Q1. From (b), using Lemma 6.4, we know that (k)

I |= 〈T2, σ2〉Bn−1 Q2. From (j) and (k), using the induction hypothesis, we

145

know (l) I |= 〈〈〈T ′1, T2 〉〉pskip, σ′1]σ2〉Bn−1 (Q1∗Q2). From (i), we know that

(m) dom(σ1] σ2) = dom(σ′1] σ2). From (l) and (m), we conclude

∗ If both T1 and T2 are 0-atomic, and T ′1 is 1-atomic, we have to show that

for all σ′′1 and σ′′2 , such that (i) σ′′2 = σ′′1] σ′ and (j) σ′′1 ∈ I , we have I |=

〈〈〈T ′1, T2 〉〉pskip, σ′′2〉 Bn−1 (Q1 ∗Q2). From (a), (j) and (h), by Def. 6.3 (item

4.c), we know that (k) I |= 〈T ′1, σ′′1]σ′1〉Bn−1Q1. From (b), using Lemma 6.4,

we know that (l) I |= 〈T2, σ2〉 Bn−1 Q2. From (k) and (l), by the induction

hypothesis, we conclude

∗ If both T ′1 and T2 are 0-atomic, and T1 is 1-atomic, we have to show that ex-

ists σ′′1 and σ′′2 , such that σ′ = σ′′1]σ′′2 , σ′′1 ∈I , and I |= 〈〈〈T ′1, T2 〉〉pskip, σ′′2〉Bn−1

(Q1∗Q2). From (a) and (h), by Def. 6.3 (item 4.d), we know there exists σ′′′1

and σ′′′2 such that (i) σ′1 = σ′′′1] σ′′′2 , (j) σ′′′1 ∈I , and (k) I |= 〈T ′1, σ′′′2 〉Bn−1 Q1.

From (b), using Lemma 6.4, we know that (l) I |= 〈T2, σ2〉Bn−1Q2. From (k),

and (l), by the induction hypothesis, we have (m) I |= 〈〈〈T ′1, T2 〉〉pskip, σ′′′2]

σ2〉Bn−1 (Q1∗Q2). Instantiating the goal with σ′′′1 and σ′′′2]σ2, from (j), and

(m), we conclude

– or, T ′ = 〈〈T1, T
′
2 〉〉pskip and 〈T2, σ1] σ2〉 7−→ 〈T ′2, σ′〉. The proof is symmetric to

the previous case

• 〈〈T1, T2 〉〉pskip 6= skip

An atomic block can be introduced using the following lemma.

Lemma 6.11. If Emp |= 〈T, σ〉Bn (I∗Q), then I |= 〈〈〈T 〉〉askip, σ〉Bn Q

Proof. By induction over n. If n = 0, by Def. 6.3, we conclude. If n > 0, by Def. 6.3,

assuming (a) Emp |= 〈T, σ〉Bn (I∗Q), we have 5 cases:

• By Def. 3.1, we know that (b) 〈〈T 〉〉askip is 1-atomic

• From the semantics, if we assume 〈〈〈T 〉〉askip, σ〉 7−→ abort, then we know that (c)

〈T, σ〉 7−→ abort. From (a), by Def. 6.3 (item 2), we know that (c) is false

146

• From the semantics, if we assume 〈〈〈T 〉〉askip, σ〉 7−→ race, then we know that (c)

〈T, σ〉 7−→ race. From (a), by Def. 6.3 (item 3), we know that (c) is false

• If (c) 〈〈〈T 〉〉askip, σ〉 7−→ 〈T ′, σ′〉, given (b) and from the semantics, we have 2 cases:

– We have T ′ = 〈〈T ′′ 〉〉askip, which is 1-atomic, (d) 〈T, σ〉 7−→ 〈T ′′, σ′〉, and we

need to show that I |= 〈〈〈T ′′ 〉〉askip, σ′〉 Bn−1 Q. From (a) and (d), by Def. 6.3

(items 4.a through 4.b), we know that (e) Emp |= 〈T ′′, σ′〉Bn−1 (I∗Q). From (e),

by the induction hypothesis, we conclude

– We have (d) T = skip, T ′ = skip which is 0-atomic, σ = σ′, and we need to

show that exists σ1 and σ2, such that σ = σ1]σ2, σ1∈I , and I |= 〈skip, σ2〉Bn−1

Q. From (a) and (d), by Def. 6.3 (item 5), we know that (e) σ ∈ I ∗Q. From (e),

we know that there exists σ′1 and σ′2 such that (f) σ = σ′1] σ′2, (g) σ′1 ∈ I , and

(h) σ′2 ∈ Q. From (h), using Lemma 6.6, we know (i) I |= 〈skip, σ′2〉 Bn−1 Q.

Instantiating the goal with σ′1 and σ′2, from (f), (g), and (h), we conclude

• We know that 〈〈T 〉〉askip 6= skip

The following lemma is used for framing a triple into a larger shared memory.

Lemma 6.12. If I |= 〈T, σ〉Bn Q, then

1. If T is 0-atomic, then I ′∗I |= 〈T, σ〉Bn Q

2. If T is 1-atomic, and σ′∈I ′, then I ′∗I |= 〈T, σ′] σ〉Bn Q

Proof. By induction over n. If n = 0, by Def. 6.3, we conclude. If n > 0, assuming (a)

I |= 〈T, σ〉Bn Q, we have 2 cases:

• If (b) T is 0-atomic, we need to show I ′∗I |= 〈T, σ〉BnQ. By Def. 6.3, we have 5 cases:

– From (b), we know that T is 0-atomic

– From (a), by Def. 6.3 (item 2), we know that 〈T, σ〉 7−→ abort is false

– From (a), by Def. 6.3 (item 3), we know that 〈T, σ〉 7−→ race is false

147

– If (c) 〈T, σ〉 7−→ 〈T ′, σ′〉, given (b) the we have 2 cases:

∗ If T ′ is 0-atomic, we need to show that dom(σ) = dom(σ′) and I ′ ∗ I |=

〈T ′, σ′〉 Bn−1 Q. From (a) and (c), by Def. 6.3 (item 4.b), we know that (d)

dom(σ) = dom(σ′) and (e) I |= 〈T ′, σ′〉 Bn−1 Q. From (e), by the induction

hypothesis (item 1), we know that (f) I ′∗I |= 〈T ′, σ′〉Bn−1 Q. From (d) and

(f) we conclude

∗ If T ′ is 1-atomic, we need to show that for all σ1 and σ2, such that (d)

σ2 = σ1] σ′ and (e) σ1 ∈ I ′ ∗I , we have I ′ ∗I |= 〈T ′, σ2〉 Bn−1 Q. From

(e), we know exists σ′1 and σ′′1 , such that σ1 = σ′1] σ′′1 , (f) σ′1 ∈ I ′, and

(g) σ′′1 ∈ I . From (a), (c), and (g), by Def. 6.3 (item 4.c), we know that (h)

I |= 〈T ′, σ′′1] σ′〉 Bn−1 Q. From (h) and (f), by the induction hypothesis

(item 2), we conclude

– We assume (c) T = skip. From (a) and (c), by Def. 6.3 (item 5), we know σ∈Q

and conclude

• If (b) T is 1-atomic, and (c) σ′ ∈ I ′, we need to show I ′ ∗I |= 〈T, σ′] σ〉 Bn Q. By

Def. 6.3, we have 5 cases:

– From (b), we know that T is 1-atomic

– From (a), by Def. 6.3 (item 2), we know that (d) 〈T, σ〉 7−→ abort is false. From

(d), using Lemma 3.22 (item 1), we conclude

– From (a), by Def. 6.3 (item 3), we know that (e) 〈T, σ〉 7−→ race is false. From (d)

and (e), using Lemma 3.22 (item 2), we conclude

– We know (f) 〈T, σ′] σ〉 7−→ 〈T ′, σ′′〉. From (d) and (f), using Lemma 3.22 (item

3), we know exists σ′′′ such that (g) σ′′ = σ′] σ′′′ and (h) 〈T, σ〉 7−→ 〈T ′, σ′′′〉.

Then we have 2 cases:

∗ If T ′ is 1-atomic, we need to show that I ′∗I |= 〈T ′, σ′]σ′′′〉Bn−1Q. From (a)

and (h), by Def. 6.3 (item 4.a), we know that (i) I |= 〈T ′, σ′′′〉Bn−1 Q. From

148

(i) and (c), by the induction hypothesis (item 2), we conclude

∗ If T ′ is 0-atomic, we need to show that exists σ1 and σ2, such that σ′′ =

σ1] σ2, σ1∈I ′∗I , and I ′∗I |= 〈T ′, σ2〉Bn−1 Q. From (a) and (h), by Def. 6.3

(item 4.d), we know there exists σ′1 and σ′2, such that (i) σ′′′ = σ′1] σ′2, (j)

σ′1 ∈ I , and (k) I |= 〈T ′, σ′2〉 Bn−1 Q. From (k), by the induction hypothesis

(item 1), we have (l) I ′∗I |= 〈T ′, σ′2〉 Bn−1 Q. From (c), (g), (i), and (j), we

have (m) σ′] σ′1∈I ′∗I . Instantiating the goal with σ′] σ′1 and σ′2, from (g),

(i), (m), and (l), we conclude

– From (b), we know that T 6= skip

The following lemma is used to transfer a resource from shared to private in a triple.

Lemma 6.13. If I ′∗I |= 〈T, σ〉Bn Q, then

1. If T is 0-atomic, and σ′∈I ′, then I |= 〈T, σ′] σ〉Bn (I ′∗Q)

2. If T is 1-atomic, then I |= 〈T, σ〉Bn (I ′∗Q)

Proof. By induction over n. If n = 0, by Def. 6.3, we conclude. If n > 0, assuming (a)

I ′∗I |= 〈T, σ〉Bn Q, we have 2 cases:

• If (b) T is 0-atomic, and (c) σ′ ∈ I ′, we need to show I |= 〈T, σ′] σ〉 Bn (I ′∗Q). By

Def. 6.3, we have 5 cases:

– From (b), we know that T is 0-atomic

– From (a), by Def. 6.3 (item 2), we know that (d) 〈T, σ〉 7−→ abort is false. From

(d), using Lemma 3.22 (item 1), we conclude

– From (a), by Def. 6.3 (item 3), we know that (e) 〈T, σ〉 7−→ race is false. From (d)

and (e), using Lemma 3.22 (item 2), we conclude

– We know (f) 〈T, σ′] σ〉 7−→ 〈T ′, σ′′〉. From (d) and (f), using Lemma 3.22 (item

3), we know exists σ′′′ such that (g) σ′′ = σ′] σ′′′ and (h) 〈T, σ〉 7−→ 〈T ′, σ′′′〉.

Then we have 2 cases:

149

∗ If T ′ is 0-atomic, we need to show that dom(σ′] σ) = dom(σ′] σ′′′) and

I |= 〈T ′, σ′] σ′′′〉 Bn−1 (I ′∗Q). From (a) and (h), by Def. 6.3 (item 4.b), we

know that (i) dom(σ) = dom(σ′′′) and (j) I ′∗I |= 〈T ′, σ′′′〉 Bn−1 Q. From (j)

and (c), by the induction hypothesis (item 1), we know (k) I |= 〈T ′, σ′]

σ′′′〉Bn−1 (I ′∗Q). From (i) and (k), we conclude

∗ If T ′ is 1-atomic, we need to show that for all σ1 and σ2, such that (i) σ2 =

σ1] σ′] σ′′′ and (j) σ1∈I , we have I |= 〈T ′, σ2〉Bn−1 (I ′∗Q). From (c) and

(j), we know (k) σ′] σ1 ∈ I ′∗I . From (a), (h), (i), and (k), by Def. 6.3 (item

4.c), we know that (l) I ′ ∗I |= 〈T ′, σ2〉 Bn−1 Q. From (l), by the induction

hypothesis (item 2), we conclude

– We assume (d) T = skip. From (a) and (d), by Def. 6.3 (item 5), we know that

(e) σ∈Q. From (c) and (e) we know that σ′] σ∈I ′∗Q and conclude

• If (b) T is 1-atomic, we need to show I |= 〈T, σ〉 Bn (I ′∗Q). By Def. 6.3, we have 5

cases:

– From (b), we know that T is 1-atomic

– From (a), by Def. 6.3 (item 2), we know that 〈T, σ〉 7−→ abort is false

– From (a), by Def. 6.3 (item 3), we know that 〈T, σ〉 7−→ race is false

– If (c) 〈T, σ〉 7−→ 〈T ′, σ′〉, given (b) the we have 2 cases:

∗ If T ′ is 1-atomic, we need to show that I |= 〈T ′, σ′〉 Bn−1 (I ′∗Q). From (a)

and (c), by Def. 6.3 (item 4.a), we know that (d) I ′ ∗I |= 〈T ′, σ′〉 Bn−1 Q.

From (d), by the induction hypothesis (item 2), we conclude

∗ If T ′ is 0-atomic, we need to show that exists σ1 and σ2, such that σ′ =

σ1] σ2, σ1 ∈ I , and I |= 〈T ′, σ2〉 Bn−1 (I ′∗Q). From (a) and (c), by Def. 6.3

(item 4.d), we know there exists σ′1 and σ′2, such that (d) σ′ = σ′1] σ′2, (e)

σ′1∈I ′∗I , and (f) I ′∗I |= 〈T ′, σ′2〉Bn−1Q. From (e) we know exists σ′′1 and σ′′′1

such that (g) σ′1 = σ′′1] σ′′′1 , (h) σ′′1 ∈ I ′, and (i) σ′′′1 ∈ I . From (f) and (h), by

150

the induction hypothesis (item 1), we have (j) I |= 〈T ′, σ′′1]σ′2〉Bn−1 (I ′∗Q).

Instantiating the goal with σ′′′1 and σ′′1] σ′2, from (d), (g), (i), and (j), we

conclude

– From (b), we know that T 6= skip

The following lemma is used for the conjunction of triples.

Lemma 6.14. If I |= 〈T, σ〉 Bn Q1, I |= 〈T, σ〉 Bn Q2, and I is precise, then I |= 〈T, σ〉 Bn

(Q1∩Q2)

Proof. By induction over n. If n = 0, by Def. 6.3, we conclude. If n > 0, by Def. 6.3,

assuming (a) I |= 〈T, σ〉Bn Q1 and (b) I |= 〈T, σ〉Bn Q2, we have 5 cases:

• From (a), by Def. 6.3 (item 1), we know that T is 0- or 1-atomic

• From (a), by Def. 6.3 (item 2), we know that 〈T, σ〉 7−→ abort is false

• From (a), by Def. 6.3 (item 3), we know that 〈T, σ〉 7−→ race is false

• If (c) 〈T, σ〉 7−→ 〈T ′, σ′〉, then we have 4 cases:

– If both T and T ′ are 1-atomic, we need to show that I |= 〈T ′, σ′〉Bn−1 (Q1∩Q2).

From (a) and (c), by Def. 6.3 (item 4.a), we know that (d) I |= 〈T ′, σ′〉 Bn−1 Q1.

From (b) and (c), by Def. 6.3 (item 4.a), we know that (e) I |= 〈T ′, σ′〉 Bn−1 Q2.

From (d) and (e), by the induction hypothesis, we conclude

– If both T and T ′ are 0-atomic, we need to show that dom(σ) = dom(σ′) and

I |= 〈T ′, σ′〉 Bn−1 (Q1∩Q2). From (a) and (c), by Def. 6.3 (item 4.b), we know

already that dom(σ) = dom(σ′), and also that (d) I |= 〈T ′, σ′〉 Bn−1 Q1. From

(b) and (c), by Def. 6.3 (item 4.b), we also know that dom(σ) = dom(σ′) and

(e) I |= 〈T ′, σ′〉 Bn−1 Q2. From (d) and (e), by the induction hypothesis, we

conclude

151

– If T is 0-atomic and T ′ is 1-atomic, we need to show that for all σ1 and σ2, such

that (d) σ2 = σ1] σ′ and (e) σ1∈ I , we have I |= 〈T ′, σ2〉 Bn−1 (Q1∩Q2). From

(a), (c), (d), and (e), by Def. 6.3 (item 4.c), we know that (f) I |= 〈T ′, σ2〉 Bn−1

Q1. From (b), (c), (d), and (e), by Def. 6.3 (item 4.c), we know that (g) I |=

〈T ′, σ2〉Bn−1 Q2. From (f) and (g), by the induction hypothesis, we conclude

– If T is 1-atomic and T ′ is 0-atomic, we need to show that exists σ1 and σ2, such

that σ′ = σ1] σ2, σ1 ∈ I , and I |= 〈T ′, σ2〉 Bn−1 (Q1∩Q2). From (a) and (c), by

Def. 6.3 (item 4.d), we know there exists σ′1 and σ′2, such that (d) σ′ = σ′1] σ′2,

(e) σ′1∈ I , and (f) I |= 〈T ′, σ′2〉 Bn−1 Q1. From (b) and (c), by Def. 6.3 (item 4.d),

we know there exists σ′′1 and σ′′2 , such that (g) σ′ = σ′′1] σ′′2 , (h) σ′′1 ∈ I , and (i)

I |= 〈T ′, σ′′2〉Bn−1Q2. From (d), (e), (g), and (h), given that I is precise, we know

that σ′1 = σ′′1 and σ′2 = σ′′2 . From (f) and (i), by the induction hypothesis, we

have (j) I |= 〈T ′, σ′2〉Bn−1 (Q1∩Q2). Instantiating the goal with σ′1 and σ′2, from

(d), (e), and (j), we conclude

• We assume (c) T = skip. From (a) and (c), by Def. 6.3 (item 5), we know that (d)

σ∈Q1. From (b) and (c), by Def. 6.3 (item 5), we know that (e) σ∈Q2. From (d) and

(e), we know that σ∈Q1∩Q2 and conclude

Semantics rules. The quadruple I |= {P} c {Q} is the semantic correspondent to I `

{P} c {Q}. It is defined in terms of I |= 〈T, σ〉B Q as show below:

Definition 6.15. I |= {P} c {Q}, if and only if, for all σ, such that σ ∈ P , we have I |=

〈c, σ〉B Q

From Def. 6.15, we can prove Lemma 6.16 which states more explicitly the proper-

ties guaranteed by the semantic quadruple: safety, race-freedom, and partial correctness

(items 1, 2, and 3, respectively).

Lemma 6.16. If I |= {P} c {Q}, then for all σ, such that σ∈I∗P , we have:

152

1. ¬〈c, σ〉 7−→∗ abort

2. ¬〈c, σ〉 7−→∗ race

3. If 〈c, σ〉 7−→∗ 〈skip, σ′〉, then σ′∈I∗Q

Proof. From I |= {P} c {Q}, using Lemma 6.281, we obtain (a) Emp |= {I∗P} c {I∗Q}. Given

(a), and σ∈ I∗P , from Def. 6.15, we obtain (b) Emp |= 〈c, σ〉 B (I∗Q). We then generalize

the proof from command c to any 0- or 1-atomic thread tree T . Now we can consider each

one of the goals:

• For goal 1, we need to show that for all n, (c) 〈T, σ〉 7−→n abort is false. From (b), we

obtain (d) Emp |= 〈T, σ〉Bn (I∗Q), which is our sole assumption. By induction over

n, we have two cases. The base case, where n = 0, is trivial as 〈T, σ〉 6= abort. In

the inductive case, where n > 0, we know there exists a configuration κ, such that

(e) 〈T, σ〉 7−→ κ and (f) κ 7−→n−1 abort. From (d), given that n > 0, we know, from

items 2 and 3 of Def. 6.3, that by exclusion there must exists T ′ and σ′, such that

κ = 〈T ′, σ′〉; therefore we obtain (g) 〈T, σ〉 7−→ 〈T ′, σ′〉. From (g), using Remark 3.17,

we know that T ′ is either 0- or 1-atomic. Given (g), and (d), from items 4.a through

4.d of Def. 6.3, we know that (h) Emp |= 〈T ′, σ′〉Bn−1 (I∗Q). From (h), and (f), using

the induction hypothesis, we know that (i) 〈T ′, σ′〉 7−→n−1 abort is false. From (g),

and (i), we know 〈T, σ〉 7−→n−1 abort is false, which was our goal.

• For goal 2, we need to show that for all n, (c) 〈T, σ〉 7−→n race is false. From (b),

we obtain (d) Emp |= 〈T, σ〉 Bn (I ∗Q), which is our sole assumption. By induction

over n, we have two cases. The base case, where n = 0, is trivial as 〈T, σ〉 6= race. In

the inductive case, where n > 0, we know there exists a configuration κ, such that

(e) 〈T, σ〉 7−→ κ and (f) κ 7−→n−1 race. From (d), given that n > 0, we know, from

items 2 and 3 of Def. 6.3, that by exclusion there must exists T ′ and σ′, such that

κ = 〈T ′, σ′〉; therefore we obtain (g) 〈T, σ〉 7−→ 〈T ′, σ′〉. From (g), using Remark 3.17,

1Although Lemma 6.28 is defined later on the text, there is no circularity.

153

we know that T ′ is either 0- or 1-atomic. Given (g), and (d), from items 4.a through

4.d of Def. 6.3, we know that (h) Emp |= 〈T ′, σ′〉Bn−1 (I∗Q). From (h), and (f), using

the induction hypothesis, we know that (i) 〈T ′, σ′〉 7−→n−1 race is false. From (g),

and (i), we know 〈T, σ〉 7−→n−1 race is false, which was our goal.

• For goal 3, we need to show that for all n, if (c) 〈T, σ〉 7−→n 〈skip, σ′〉, then σ′∈I∗Q.

From (b), we obtain (d) Emp |= 〈T, σ〉 Bn (I ∗Q), which is our sole assumption. By

induction over n, we have two cases. In base case, where n = 0, we know that

T = skip and σ′ = σ; given (d), from item 5 of Def. 6.3, we obtain the goal σ′∈I∗Q.

In the inductive case, where n > 0, we know there exists a configuration κ, such

that (e) 〈T, σ〉 7−→ κ and (f) κ 7−→n−1 〈skip, σ′〉. From (d), given that n > 0, we

know, from items 2 and 3 of Def. 6.3, that by exclusion there must exists T ′ and σ′′,

such that κ = 〈T ′, σ′′〉; therefore we obtain (g) 〈T, σ〉 7−→ 〈T ′, σ′′〉. From (g), using

Remark 3.17, we know that T ′ is either 0- or 1-atomic. Given (g), and (d), from items

4.a through 4.d of Def. 6.3, we know that (h) Emp |= 〈T ′, σ′′〉 Bn−1 (I ∗Q). From (h),

and (f), using the induction hypothesis, we obtain the goal σ′∈I∗Q.

In the following sequence of lemmas, Lemma 6.17 through Lemma 6.30, we show the

correspondence between the CSL rules from Fig. 6.3, and their semantic equivalent using

definition Def. 6.15.

Lemma 6.17.

Emp |= {Q◦Jν :=eK} ν :=e {Q}

Proof. From Def. 6.15, we assume there exist σ and n, such that (a) σ∈Q◦Jν :=eK, and we

need to show that Emp |= 〈ν := e, σ〉 Bn Q. If n = 0, by Def. 6.3, we conclude. If n > 0, by

Def. 6.3, we have 5 cases:

• By Def. 3.1, we know that (b) ν :=e is 0-atomic

• From the semantics, we know that 〈ν :=e, σ〉 7−→ abort is false if 〈ν :=e, σ〉 −→ abort

154

is false. From the sequential semantics, we know 〈ν :=e, σ〉 −→ abort is false if there

exists σ′ such that (σ, σ′)∈JaK. From (a), by Def. 6.2 (item 1), we conclude

• From the semantics, we know that 〈ν :=e, σ〉 7−→ race is false

• From the semantics, we know that 〈ν :=e, σ〉 7−→ 〈skip, σ′〉, where (c) 〈ν :=e, σ〉 −→

〈skip, σ′〉. From (b), and since skip is 0-atomic, we need to show that dom(σ) =

dom(σ′) and Emp |= 〈skip, σ′〉 Bn−1 Q. From the sequential semantics, and (c), we

know (d) (σ, σ′) ∈ Jν :=eK. From (d), using Remark 3.13, we know (e) dom(σ) =

dom(σ′). From (a) and (d), by Def. 6.2 (item 2), we know that (f) σ′∈Q. From (f), and

Lemma 6.6, we know (g) Emp |= 〈skip, σ′〉Bn−1 Q. From (e) and (g) we conclude

• We know that (ν :=e) 6= skip

Lemma 6.18.

Emp |= {Q◦JaK} 〈a〉 {Q}

Proof. From Def. 6.15, we assume there exist σ and n, such that (a) σ∈Q◦JaK, and we need

to show that Emp |= 〈atomic a, σ〉 Bn Q. If n = 0, by Def. 6.3, we conclude. If n > 0, by

Def. 6.3, we have 5 cases:

• By Def. 3.1, we know that (b) atomic a is 0-atomic

• From the semantics, we know that 〈atomic a, σ〉 7−→ abort is false

• From the semantics, we know that 〈atomic a, σ〉 7−→ race is false

• From the semantics, we know that 〈atomic a, σ〉 7−→ 〈〈〈 a 〉〉askip, σ〉, given that • is 0-

atomic. From (b), and since 〈〈 a 〉〉askip is 1-atomic, we need to show that for all σ1 and

σ2, such that (c) σ2 = σ1] σ and (d) σ1 ∈Emp, Emp |= 〈〈〈 a 〉〉askip, σ2〉 Bn−1 Q. From

(d), we know σ1 = ∅, therefore, from (c), we know σ2 = σ. If n = 1, by Def. 6.3, we

conclude. If n > 1, by Def. 6.3, we have 5 cases:

– By Def. 3.1, we know that (e) 〈〈 a 〉〉askip is 1-atomic

155

– From the semantics, we know that 〈〈〈 a 〉〉askip, σ〉 7−→ abort is false if 〈〈〈 a 〉〉askip, σ〉 −→

abort is false. From the sequential semantics, we know 〈〈〈 a 〉〉askip, σ〉 −→ abort

is false if there exists σ′ such that (σ, σ′)∈JaK. From (a), by Def. 6.2 (item 1), we

conclude

– From the semantics, we know that 〈〈〈 a 〉〉askip, σ〉 7−→ race is false

– From the semantics, we know that 〈〈〈 a 〉〉askip, σ〉 7−→ 〈〈〈 skip 〉〉askip, σ′〉, where

(f) 〈a, σ〉 −→ 〈skip, σ′〉. From (e), and since 〈〈 skip 〉〉askip is 1-atomic, we need to

show that Emp |= 〈〈〈 skip 〉〉askip, σ′〉B(n−2)Q. If n = 2, by Def. 6.3, we conclude.

If n > 2, by Def. 6.3, we have 5 cases:

∗ By Def. 3.1, we know that (g) 〈〈 skip 〉〉askip is 1-atomic

∗ From the semantics, we know that 〈〈〈 skip 〉〉askip, σ′〉 7−→ abort is false

∗ From the semantics, we know that 〈〈〈 skip 〉〉askip, σ′〉 7−→ race is false

∗ From the semantics, we know that 〈〈〈 skip 〉〉askip, σ′〉 7−→ 〈skip, σ′〉. From

(g), and since skip is 0-atomic, we need to show there exists σ′1 and σ′2 such

that σ′ = σ′1] σ′2, σ′1∈Emp, and Emp |= 〈skip, σ′2〉B(n−3) Q. We instantiate

σ′1 as ∅ and σ′2 as σ′, as we know that σ′ = ∅] σ′ and ∅∈Emp; it remains

to show that Emp |= 〈skip, σ′〉 B(n−3) Q. From the sequential semantics,

and (f), we know (h) (σ, σ′)∈ JaK. From (a) and (h), by Def. 6.2 (item 2), we

know that (i) σ′∈Q. From (i), and Lemma 6.6, we conclude

∗ We know that 〈〈 skip 〉〉askip 6= skip

– We know that 〈〈 a 〉〉askip 6= skip

• We know that atomic a 6= skip

Lemma 6.19.

I |= {P} c1 {P ′} I |= {P ′} c2 {Q}

I |= {P} c1; c2 {Q}

156

Proof. From Def. 6.15, we assume there exist σ and n, such that (a) σ∈P , and we need to

show that I |= 〈c1; c2, σ〉 Bn Q. From (a), and I |= {P} c1 {P ′}, by Def. 6.15, we know that

(b) I |= 〈c1, σ〉 Bn P ′. From I |= {P ′} c2 {Q}, by Def. 6.15, we know that (c) for all σ′ ∈P ′,

we have I |= 〈c2, σ
′〉Bn Q. From (b) and (c), using Lemma 6.7 (item 1), we conclude

Lemma 6.20.

Emp |= {P} skip {P}

Proof. From Def. 6.15, we assume there exist σ and n, such that (a) σ∈P , and we need to

show that Emp |= 〈skip, σ〉Bn P . From (a), using Lemma 6.6, we conclude

Lemma 6.21.

P ⊆bbc∪b¬bc I |= {P∩bbc} c1 {Q} I |= {P∩b¬bc} c2 {Q}

I |= {P} if b then c1 else c2 {Q}

Proof. From Def. 6.15, we assume there exist σ and n, such that (a) σ∈P , and we need to

show that I |= 〈if b then c1 else c2, σ〉 Bn Q. From (a), and P ⊆ bbc∪b¬bc, we know (b)

σ∈bbc∪b¬bc. From (b) we can consider two cases:

• If (c) σ ∈ bbc, with (a), we know (d) σ ∈P ∩bbc. From (d), and I |= {P ∩bbc} c1 {Q},

by Def. 6.15, we know that (e) I |= 〈c1, σ〉 Bn Q. From (e) and (c), using Lemma 6.8

(item 1), we conclude

• If (c) σ∈b¬bc, with (a), we know (d) σ∈P∩b¬bc. From (d), and I |= {P∩b¬bc} c2 {Q},

by Def. 6.15, we know that (e) I |= 〈c2, σ〉 Bn Q. From (e) and (c), using Lemma 6.8

(item 2), we conclude

Lemma 6.22.

P ⊆bbc∪b¬bc I |= {P∩bbc} c {P}

I |= {P}while b do c {P∩b¬bc}

Proof. From Def. 6.15, we assume there exist σ and n, such that (a) σ∈P , and we need to

show that I |= 〈while b do c, σ〉 Bn (P ∩b¬bc). From I |= {P ∩bbc} c {P}, by Def. 6.15, we

157

know that (b) for all σ′∈P∩bbc, we have I |= 〈c, σ′〉Bn P . From (a), (b), and P ⊆bbc∪b¬bc,

using Lemma 6.9, we conclude

Lemma 6.23.

I |= {P1} c1 {Q1} I |= {P2} c2 {Q2}

I |= {P1∗P2} c1‖c2 {Q1∗Q2}

Proof. From Def. 6.15, we assume there exist σ and n, such that (a) σ∈P1∗P2, and we need

to show that I |= 〈c1 ‖ c2, σ〉 Bn (Q1∗Q2). If n = 0, by Def. 6.3, we conclude. If n > 0, by

Def. 6.3, we have 5 cases:

• By Def. 3.1, we know that (b) c1‖c2 is 0-atomic

• From the semantics, we know that 〈c1‖c2, σ〉 7−→ abort is false

• From the semantics, we know that 〈c1‖c2, σ〉 7−→ race is false

• From the semantics, we know that 〈c1 ‖ c2, σ〉 7−→ 〈〈〈 c1, c2 〉〉pskip, σ〉. By Def. 3.1, we

know (c) 〈〈 c1, c2 〉〉pskip is 0-atomic. From (b) and (c), we need to show that σ = σ,

which is trivial, and that I |= 〈〈〈 c1, c2 〉〉pskip, σ〉 Bn−1 (Q1∗Q2). From (a), we know

there exists σ1 and σ2, such that σ = σ1] σ2, (d) σ1 ∈P1, and (e) σ2 ∈P2. From (d),

and I |= {P1} c1 {Q1}, by Def. 6.15, we know that (f) I |= 〈c1, σ1〉Bn−1 Q1. From (e),

and I |= {P2} c2 {Q2}, by Def. 6.15, we know that (g) I |= 〈c2, σ2〉Bn−1 Q2. From (f),

(g), and (c), using Lemma 6.10, we conclude

• We know that c1‖c2 6= skip

Lemma 6.24.

Emp |= {I∗P} c {I∗Q}

I |= {P} atomic c {Q}

Proof. From Def. 6.15, we assume there exist σ and n, such that (a) σ∈P , and we need to

show that I |= 〈atomic c, σ〉Bn Q. If n = 0, by Def. 6.3, we conclude. If n > 0, by Def. 6.3,

we have 5 cases:

158

• By Def. 3.1, we know that (b) atomic c is 0-atomic

• From the semantics, we know that 〈atomic c, σ〉 7−→ abort is false

• From the semantics, we know that 〈atomic c, σ〉 7−→ race is false

• From the semantics, we know that 〈atomic c, σ〉 7−→ 〈〈〈 c 〉〉askip, σ〉, given that • is

0-atomic. From (b), and since 〈〈 c 〉〉askip is 1-atomic, we need to show that for all σ1

and σ2, such that (c) σ2 = σ1] σ and (d) σ1 ∈ I , I |= 〈〈〈 c 〉〉askip, σ2〉 Bn−1 Q. From

(a), (c), and (d), we know (e) σ2 ∈ I ∗P . From (e), and Emp |= {I ∗P} c {I ∗Q}, by

Def. 6.15, we know that (f) Emp |= 〈c, σ2〉 Bn−1 (I ∗Q). From (f), using Lemma 6.11,

we conclude

• We know that atomic c 6= skip

Lemma 6.25.

P ⊆P ′ I |= {P ′} c {Q′} Q′⊆Q

I |= {P} c {Q}

Proof. From Def. 6.15, we assume there exist σ and n, such that (a) σ ∈ P , and we need

to show that I |= 〈c, σ〉 Bn Q. From (a), and P ⊆ P ′, we get (b) σ ∈ P ′. From (b), and

I |= {P ′} c {Q′}, by Def. 6.15, we know that (c) I |= 〈c, σ〉 Bn Q′. From (c), and Q′ ⊆ Q,

using Lemma 6.5, we conclude

Lemma 6.26.

∀x. I |= {P(x)} c {Q(x)}

I |= {∃x. P(x)} c {∃x. Q(x)}

Proof. From Def. 6.15, we assume there exist σ, n, and x, such that (a) σ ∈ P(x), and

we need to show that I |= 〈c, σ〉Bn (∃x. Q(x)). From (a), and ∀x. I |= {P(x)} c {Q(x)}, by

Def. 6.15, we know that (b) I |= 〈c, σ〉Bn (Q(x)). We also know that (c) (Q(x))⊆(∃x.Q(x)).

From (b) and (c), using Lemma 6.5, we conclude

159

Lemma 6.27.

I |= {P} c {Q}

I ′∗I |= {P} c {Q}

Proof. From Def. 6.15, we assume there exist σ and n, such that (a) σ∈P , and we need to

show that I ′∗I |= 〈c, σ〉Bn Q. From (a), and I |= {P} c {Q}, by Def. 6.15, we know that (b)

I |= 〈c, σ〉Bn Q. We also know that (c) c is 0-atomic. From (b), and (c), using Lemma 6.12

(item 1), we conclude

Lemma 6.28.

I ′∗I |= {P} c {Q}

I |= {I ′∗P} c {I ′∗Q}

Proof. From Def. 6.15, we assume there exist σ and n, such that (a) σ∈I ′∗P , and we need

to show that I |= 〈c, σ〉Bn (I ′∗Q). From (a) we know that there exists σ1 and σ2 such that

σ = σ1] σ2, (b) σ1 ∈ I ′, and (c) σ2 ∈P . From (c), and I ′∗I |= {P} c {Q}, by Def. 6.15, we

know that (d) I ′∗I |= 〈c, σ2〉 Bn Q. We also know that (e) c is 0-atomic. From (d), (e), and

(b), using Lemma 6.13 (item 1), we conclude

Lemma 6.29.

I |= {P1} c {Q1} I |= {P2} c {Q2} I is precise

I |= {P1∩P2} c {Q1∩Q2}

Proof. From Def. 6.15, we assume there exist σ and n, such that (a) σ ∈ P1∩P2, and we

need to show that I |= 〈c, σ〉Bn (Q1∩Q2). From (a) we know that (b) σ∈P1 and (c) σ∈P2.

From (b), and I |= {P1} c {Q1}, by Def. 6.15, we know that (d) I |= 〈c, σ〉 Bn Q1. From (c),

and I |= {P2} c {Q2}, by Def. 6.15, we know that (e) I |= 〈c, σ〉 Bn Q2. From (d), (e), and

knowing that I is precise, using Lemma 6.14, we conclude

Lemma 6.30.

I |= {P1} c {Q1} I |= {P2} c {Q2}

I |= {P1∪P2} c {Q1∪Q2}

160

Proof. From Def. 6.15, we assume there exist σ and n, such that (a) σ ∈ P1∪P2, and we

need to show that I |= 〈c, σ〉 Bn (Q1∪Q2). From (a) we know that either (b) σ ∈ P1 or

(c) σ ∈ P2. If we assume (b), then from I |= {P1} c {Q1}, by Def. 6.15, we know that (d)

I |= 〈c, σ〉Bn Q1. We also know that (e) Q1⊆Q1∪Q2. From (d) and (e), using Lemma 6.5,

we conclude. Similarly, if we assume (c), then from I |= {P2} c {Q2}, by Def. 6.15, we

know that (f) I |= 〈c, σ〉Bn Q2. We also know that (g) Q2⊆Q1∪Q2. From (f) and (g), using

Lemma 6.5, we conclude

Soundness theorem. The proof structure of Theorem 6.31 is similar for all CSL rules. It

uses all lemmas from Lemma 6.17 to Lemma 6.30, one for each corresponding CSL rule.

The proof structure is modular, if an extra rule is added to Fig. 6.3, we just need to prove

an extra lemma for its correspondent semantic rule.

Theorem 6.31. If I `{P} c {Q}, then I |= {P} c {Q}

Proof. By strong induction over the derivation tree depth of (a) I `{P} c {Q}. After inver-

sion of (a), we have one case for each rule:

• ASSIGNMENT: we know I = Emp, P = Q◦Jν :=eK, and c = (ν :=e), using Lemma 6.17,

we conclude

• ACTION: we know I = Emp, P = Q ◦ JaK, and c = 〈a〉, using Lemma 6.18, we

conclude.

• SEQUENTIAL: we know c = (c1; c2) and that there exists P ′ such that

(a) I `{P} c1 {P ′} and (b) I `{P ′} c2 {Q}. From (a), using the induction hypothesis,

we obtain (c) I |= {P} c1 {P ′}. From (b), using the induction hypothesis, we obtain

(d) I |= {P ′} c2 {Q}. From (c), and (d), using Lemma 6.19, we conclude

• SKIP: we know I = Emp, P = Q, and c = skip, using Lemma 6.20, we conclude.

• CONDITIONAL: we know c = (if b then c1 else c2) and that (a) P ⊆ bbc∪ b¬bc,

(b) I ` {P ∩bbc} c1 {Q}, and (c) I ` {P ∩b¬bc} c2 {Q}. From (b), using the induction

161

hypothesis, we obtain (d) I |= {P∩bbc} c1 {Q}. From (c), using the induction hypoth-

esis, we obtain (e) I |= {P ∩b¬bc} c2 {Q}. From (a), (d), and (e), using Lemma 6.21,

we conclude

• LOOP: we know c = (while b do c), Q = (P ∩b¬bc), (a) P ⊆ bbc∪b¬bc, and (b)

I ` {P ∩bbc} c {P}. From (b), using the induction hypothesis, we obtain (c) I |=

{P∩bbc} c {P}. From (a), and (c), using Lemma 6.22, we conclude

• PARALLEL: we know P = (P1 ∗P2), c = (c1 ‖ c2), Q = (Q1 ∗Q2), and that (a)

I ` {P1} c1 {Q1} and (b) I ` {P2} c2 {Q2}. From (a), using the induction hypothesis,

we obtain (c) I |= {P1} c1 {Q1}. From (b), using the induction hypothesis, we obtain

(d) I |= {P2} c2 {Q2}. From (c), and (d), using Lemma 6.23, we conclude

• ATOMIC: we know c = (atomic c), and (a) Emp ` {I ∗P} c {I ∗Q}. From (a), using

the induction hypothesis, we obtain (b) Emp |= {I ∗P} c {I ∗Q}. From (b), using

Lemma 6.24, we conclude

• CONSEQUENCE: we know that there exists P ′ andQ′, such that (a) P ⊆P ′, (b)Q′⊆Q,

and (c) I ` {P ′} c {Q′}. From (c), using the induction hypothesis, we obtain (d)

I |= {P ′} c {Q′}. From (a), (b), and (d), using Lemma 6.25, we conclude

• EXISTENTIAL: we know that P = (∃x. P(x)), Q = (∃x. Q(x)), and (a) ∀x. I `

{P(x)} c {Q(x)}. From (a), using the induction hypothesis, we obtain (b) ∀x. I |=

{P(x)} c {Q(x)}. From (b), using Lemma 6.26, we conclude

• FRAME: we know I = (I ′′∗I ′), and (a) I ′ ` {P} c {Q}. From (a), using the induction

hypothesis, we obtain (b) I ′ |= {P} c {Q}. From (b), using Lemma 6.27, we conclude

• RESOURCE: we know P = (I ′∗P ′), Q = (I ′∗Q′), and (a) I ′∗I `{P ′} c {Q′}. From (a),

using the induction hypothesis, we obtain (b) I ′∗I |= {P ′} c {Q′}. From (b), using

Lemma 6.28, we conclude

162

• CONJUNCTION: we know P = (P1∩P2), Q = (Q1∩Q2), and that (a) I ` {P1} c {Q1},

(b) I `{P2} c {Q2}, and (c) I is precise. From (a), using the induction hypothesis, we

obtain (d) I |= {P1} c {Q1}. From (b), using the induction hypothesis, we obtain (e)

I |= {P2} c {Q2}. From (d), (e), and (c), using Lemma 6.29, we conclude

• DISJUNCTION: we know P = (P1∪P2), Q = (Q1∪Q2), and that (a) I ` {P1} c {Q1}

and (b) I ` {P2} c {Q2}. From (a), using the induction hypothesis, we obtain (c)

I |= {P1} c {Q1}. From (b), using the induction hypothesis, we obtain (d) I |=

{P2} c {Q2}. From (c), and (d), using Lemma 6.30, we conclude

6.3.2 With Regard to the Parameterized Semantics

In this section, we proof the soundness of CSL with regard to the parameterized semantics

of Sec. 3.8. First, we need to define the semantic meaning of a Λ-parameterized CSL

quadruple.

Definition 6.32. I |=[Λ] {P} c {Q}, if and only if, for all σ, such that σ∈I∗P , we have:

1. ¬[Λ] 〈c, σ〉 7−→∗ abort

2. If [Λ] 〈c, σ〉 7−→∗ 〈skip, σ′〉, then σ′∈I∗Q

This definition is straightforward. The I |=[Λ] {P} c {Q} quadruple ensures that for any

state satisfying the pre-condition I∗P will not abort, and, if it the execution completes, the

final state will satisfy I∗Q. Given this definition, we can phrase and prove the soundness

theorem below:

Theorem 6.33. If I `{P} c {Q}, and Λ provides the DRF-guarantee, then I |=[Λ] {P} c {Q}

Proof. From I ` {P} c {Q}, using Theorem 6.31, we obtain (a) I |= {P} c {Q}. From

Def. 6.32, we can prove the goal if, by assuming there is a state σ, such that (b) σ ∈ I ∗P ,

we can establish the following two conditions:

(c) ¬[Λ] 〈c, σ〉 7−→∗ abort

163

(d) If [Λ] 〈c, σ〉 7−→∗ 〈skip, σ′〉, then σ′∈I∗Q

From (a), and (b), using Lemma 6.16, we know that:

(e) ¬〈c, σ〉 7−→∗ abort

(f) ¬〈c, σ〉 7−→∗ race

(g) If 〈c, σ〉 7−→∗ 〈skip, σ′〉, then σ′∈I∗Q

Since Λ provides the DRF-guarantee, from (e), and (f), based on Def. 5.2, we establish (c)

and we know

(h) If [Λ] 〈c, σ〉 7−→∗ 〈skip, σ′〉, then 〈c, σ〉 7−→∗ 〈skip, σ′〉

From (h), and (g), we can establish (d)

6.3.3 With Regard to the Relaxed Semantics

The proof of soundness regarding the -parameterized relaxed semantics of Sec. 3.10 is

straightforward.

Theorem 6.34. If I `{P} c {Q}, then I |=[] {P} c {Q}

Proof. From Theorem 5.12, we know that (a) provides the DRF-guarantee. From I `

{P} c {Q}, and (a), using Theorem 6.33, we prove our goal I |=[] {P} c {Q}

6.4 Extension Rules

In section Sec. 6.2, we have presented the standard CSL rules. Here we present some

extensions.

In Fig. 6.3, we have presented the following CONJUNCTION rule

I `{P1} c {Q1} I `{P2} c {Q2} I is precise

I `{P1∩P2} c {Q1∩Q2}

164

which has the constraint that I is precise. We can generalize this rule to the following

I1 `{P1} c {Q1} I2 `{P2} c {Q2} I1 and I2 coincide

I1∩I2 `{P1∩P2} c {Q1∩Q2}

which has a generalized notion of precision: coincidence.

Definition 6.35. Two assertions P1 and P2 coincide if, and only if, for all σ, σ1 ⊆ σ, and

σ2 ⊆ σ, such that σ1∈P1 and σ2∈P2, we have σ1 = σ2

Comparing the precision, by Def. 6.1, with Def. 6.35, we observe that an assertion is

precise then it coincides with itself, an vice-versa.

Remark 6.36. An assertion I is precise if, and only if, I and I coincide

Remark 6.37. If (P1∪P2) is precise, then P1 and P2 coincide

Remark 6.38. If P1 and P2 coincide, then (P1∩P2) is precise

In order to prove the soundness of this generalized rule, we need the following two

lemmas:

Lemma 6.39. If I1 |= 〈T, σ〉BnQ1, I2 |= 〈T, σ〉BnQ2, and I1 and I2 coincide, then I1∩I2 |=

〈T, σ〉Bn (Q1∩Q2)

Proof. By induction over n. If n = 0, by Def. 6.3, we conclude. If n > 0, by Def. 6.3,

assuming (a) I1 |= 〈T, σ〉Bn Q1 and (b) I2 |= 〈T, σ〉Bn Q2, we have 5 cases:

• From (a), by Def. 6.3 (item 1), we know that T is 0- or 1-atomic

• From (a), by Def. 6.3 (item 2), we know that 〈T, σ〉 7−→ abort is false

• From (a), by Def. 6.3 (item 3), we know that 〈T, σ〉 7−→ race is false

• If (c) 〈T, σ〉 7−→ 〈T ′, σ′〉, then we have 4 cases:

165

– If both T and T ′ are 1-atomic, we need to show that I1∩ I2 |= 〈T ′, σ′〉 Bn−1

(Q1 ∩Q2). From (a) and (c), by Def. 6.3 (item 4.a), we know that (d) I1 |=

〈T ′, σ′〉Bn−1 Q1. From (b) and (c), by Def. 6.3 (item 4.a), we know that (e) I2 |=

〈T ′, σ′〉Bn−1 Q2. From (d) and (e), by the induction hypothesis, we conclude

– If both T and T ′ are 0-atomic, we need to show that dom(σ) = dom(σ′) and

I1∩I2 |= 〈T ′, σ′〉 Bn−1 (Q1∩Q2). From (a) and (c), by Def. 6.3 (item 4.b), we

know already that dom(σ) = dom(σ′), and also that (d) I1 |= 〈T ′, σ′〉 Bn−1 Q1.

From (b) and (c), by Def. 6.3 (item 4.b), we also know that dom(σ) = dom(σ′)

and (e) I2 |= 〈T ′, σ′〉Bn−1Q2. From (d) and (e), by the induction hypothesis, we

conclude

– If T is 0-atomic and T ′ is 1-atomic, we need to show that for all σ1 and σ2, such

that (d) σ2 = σ1]σ′ and (e) σ1∈I1∩I2, we have I1∩I2 |= 〈T ′, σ2〉Bn−1 (Q1∩Q2).

From (e), we know that (f) σ1 ∈ I1 and (g) σ1 ∈ I2. From (a), (c), (d), and (f), by

Def. 6.3 (item 4.c), we know that (h) I1 |= 〈T ′, σ2〉 Bn−1 Q1. From (b), (c), (d),

and (g), by Def. 6.3 (item 4.c), we know that (i) I2 |= 〈T ′, σ2〉Bn−1 Q2. From (h)

and (i), by the induction hypothesis, we conclude

– If T is 1-atomic and T ′ is 0-atomic, we need to show that exists σ1 and σ2, such

that σ′ = σ1] σ2, σ1 ∈ I1∩I2, and I1∩I2 |= 〈T ′, σ2〉 Bn−1 (Q1∩Q2). From (a)

and (c), by Def. 6.3 (item 4.d), we know there exists σ′1 and σ′2, such that (d)

σ′ = σ′1] σ′2, (e) σ′1 ∈ I1, and (f) I1 |= 〈T ′, σ′2〉 Bn−1 Q1. From (b) and (c), by

Def. 6.3 (item 4.d), we know there exists σ′′1 and σ′′2 , such that (g) σ′ = σ′′1] σ′′2 ,

(h) σ′′1 ∈ I2, and (i) I2 |= 〈T ′, σ′′2〉 Bn−1 Q2. From (d), (e), (g), and (h), given that

I1 and I2 coincide, we know that σ′1 = σ′′1 and σ′2 = σ′′2 . From (f) and (i), by the

induction hypothesis, we have (j) I1∩I2 |= 〈T ′, σ′2〉Bn−1 (Q1∩Q2). Instantiating

the goal with σ′1 and σ′2, from (d), (e), and (j), we conclude

• We assume (c) T = skip. From (a) and (c), by Def. 6.3 (item 5), we know that (d)

σ∈Q1. From (b) and (c), by Def. 6.3 (item 5), we know that (e) σ∈Q2. From (d) and

166

(e), we know that σ∈Q1∩Q2 and conclude

Lemma 6.40.

I1 |= {P1} c {Q1} I2 |= {P2} c {Q2} I1 and I2 coincide

I1∩I2 |= {P1∩P2} c {Q1∩Q2}

Proof. From Def. 6.15, we assume there exist σ and n, such that (a) σ∈P1∩P2, and we need

to show that I1∩I2 |= 〈c, σ〉Bn (Q1∩Q2). From (a) we know that (b) σ∈P1 and (c) σ∈P2.

From (b), and I1 |= {P1} c {Q1}, by Def. 6.15, we know that (d) I1 |= 〈c, σ〉BnQ1. From (c),

and I2 |= {P2} c {Q2}, by Def. 6.15, we know that (e) I2 |= 〈c, σ〉 Bn Q2. From (d), (e), and

knowing that I1 and I2 coincide, using Lemma 6.39, we conclude

6.5 Verification Examples

In this section, we verify some sample code using the logic presented in this chapter.

Since our language does not support procedures, we use macros to organize the code

when necessary, knowing that they are actually inlined. These macros only take program

variables as argument. Since the language also does not support local variables, when we

write local v it means that v is implicitly passed along as macro parameter.

6.5.1 Compare-And-Swap

Our first example of verification using CSL is the compare-and-swap (CAS) operation, wide-

ly available in hardware to perform atomic changes to memory. The code for CAS is

presented in Fig. 6.4.

We verify CAS using the following polymorphic invariant (∃v. p 7→v∗I(v)) where I(v)

is supposed to describe the contents of the shared memory when the cell at location p has

value v. In the proof below, p and I are free meta-variables.

167

CAS(location, oldvalue, newvalue, result)
atomic

if [location]=oldvalue then
[location] :=newvalue;
result :=1

else
result :=0

Figure 6.4: Compare-and-swap

∀p, v1, v2, I. CAS(loc, old, new, res)

(∃v. p 7→v∗I(v)) `{
loc 7→p∗old 7→v1∗new 7→v2∗res 7→ ∗I(v2)

}
atomic{

(∃v. p 7→v∗I(v))∗loc 7→p∗old 7→v1∗new 7→v2∗res 7→ ∗I(v2)
}

if [loc]=old then{
p 7→v1∗I(v1)∗loc 7→p∗old 7→v1∗new 7→v2∗res 7→ ∗I(v2)

}
[loc] :=new;{
p 7→v2∗I(v1)∗loc 7→p∗old 7→v1∗new 7→v2∗res 7→ ∗I(v2)

}
res :=1{
p 7→v2∗I(v1)∗loc 7→p∗old 7→v1∗new 7→v2∗res 7→1∗I(v2)

}{
(∃v. p 7→v∗I(v))∗loc 7→p∗old 7→v1∗new 7→v2∗res 7→1∗I(v1)

}
else
res :=0{

(∃v. p 7→v∗I(v))∗loc 7→p∗old 7→v1∗new 7→v2∗res 7→0∗I(v2)
}{

loc 7→p∗old 7→v1∗new 7→v2∗(res 7→1∗I(v1))∪(res 7→0∗I(v2))
}

Note that this polymorphic proof for CAS can be used whenever the invariant for

different values v1 and v1 are separated, i.e. I(v1)∗I(v2). Since we use CAS usually to

acquire and release memory, one of them is typically Emp.

6.5.2 Single-Entry Mutex

Our next example is a simple, single entry mutex with three operations: lock, trylock, and

unlock. The code is shown in Fig. 6.5.

In this implementation, lock busy waits until the mutex is 0, and then sets is to 1, which

works as a mutex acquire. Unlock simply releases the mutex by setting it to 0. Trylock

simply tests if the acquire is free, if so it sets it to 1, otherwise do nothing. We use CAS to

implement the trylock code.

168

LOCK(mutex)
atomic

wait [mutex]=0;
[mutex] :=1

UNLOCK(mutex)
atomic [mutex] :=0

TRYLOCK(mutex, result)
local t0, t1
t0 :=0;
t1 :=1;
CAS(mutex, t0, t1, result)

Figure 6.5: Single-entry mutex

In order to write specifications about mutexes, we describe a mutex at location p, pro-

tecting shared memory invariant I , as the following definition:

mux(p, I)
def
= (p 7→0∗I)∪p 7→1

Naturally, all three operations assume a mutex is placed in shared memory.

We present below the proof for lock and unlock. Unlock does not test the mutex before

proceeding, therefore we require I to be precise in order to verify it. This is because we

know that if I is precise, then I∗I is true only if, and only if, I = Emp.

∀p, I. LOCK(mux)
mux(p, I) `{

mux 7→p
}

atomic{
mux(p, I)∗mux 7→p

}
wait [mux]=0;{
p 7→0∗I∗mux 7→p

}
[mux] :=1{
p 7→1∗I∗mux 7→p

}{
mux(p, I)∗I∗mux 7→p

}{
I∗mux 7→p

}

∀p, I. UNLOCK(mux)
mux(p, I) `{

I∗mux 7→p
}

atomic{
mux(p, I)∗I∗mux 7→p

}{
((p 7→0∗I)∪p 7→1)∗I∗mux 7→p

}{
((p 7→0∗I∗I)∪(p 7→1∗I))∗mux 7→p

}{
((p 7→0∩I=Emp)∪(p 7→1∗I))∗mux 7→p

}
[mux] :=0{
p 7→0∗I∗mux 7→p

}{
mux(p, I)∗mux 7→p

}{
mux 7→p

}
We also show the verification of trylock based on the already verified code for CAS,

from Sec. 6.5.1.

169

∀p, I. TRYLOCK(mux, res)
local t0, t1
mux(p, I) `{

mux 7→p∗res 7→ ∗t0 7→ ∗t1 7→
}

t0 :=0;{
mux 7→p∗res 7→ ∗t0 7→0∗t1 7→

}
t1 :=1;{
mux 7→p∗res 7→ ∗t0 7→0∗t1 7→1

}
[p, 0, 1, λv. (v=0∗I)∪(v=1∗Emp)] CAS(mux, t0, t1, res){
mux 7→p∗((res 7→1∗I)∪res 7→0)∗t0 7→ ∗t1 7→

}
Alternatively, we could also implement the lock operation using CAS, in this case the

busy wait loop is outside of the atomic block, as shown below:

∀p, I. LOCK(mux)
local t0, t1, res
mux(p, I) `{

mux 7→p∗t0 7→ ∗t1 7→ ∗res 7→
}

t0 :=0;{
mux 7→p∗t0 7→0∗t1 7→ ∗res 7→

}
t1 :=1;
repeat{

mux 7→p∗t0 7→0∗t1 7→1∗res 7→
}

[p, 0, 1, λv. (v=0∗I)∪(v=1∗Emp)] CAS(mux, t0, t1, res){
mux 7→p∗t0 7→ ∗t1 7→ ∗((res 7→1∗I)∪res 7→0)

}
until res=1{
mux 7→p∗I∗t0 7→ ∗t1 7→ ∗res 7→

}

170

Chapter 7

CSL with Partial Permissions

In this chapter, we present a version of CSL that allows verifying programs with concur-

rent shared read-only operations. This is done using by assigning permissions to memory

locations. These permissions specify whether the location can be written or not. The logic

enforces that threads only write to a memory location if it has permission to. Just like

standard CSL, the logic will allow adjusting permissions during shared-memory access.

It is just a generalization of ownership transfer.

In order to maintain permissions of memory cells, we extend the definition of program

states. As show in Fig. 7.1, a state σ̄ is a map from memory location to a pair of value and

permission. We also define Π which is a finite map from memory location to permission.

A permission π is fractional, it must be a rational number greater than 0 and less than

equal to 1. A permission of value 1 is a full permission. A permission of value less than

1 is a partial permission. A full permission allows read and write accesses. A partial

permission only allows read accesses.

(PermState) σ̄ ∈ Location ⇀fin (Integer× Permission)

(Permissions) Π ∈ Location ⇀fin Permission
(Permission) π ∈ (0, 1]

Figure 7.1: Program state with permissions

We use fractional permissions, instead of simply binary (read or write) permissions,

171

in order to allow a more flexible splitting the state without losing track of permissions.

Differently from simply partitioning the state into two sub-states of non-overlapping do-

mains, we allow some overlapping as long as their combined permissions add up to the

original permissions. The definition of disjoin union for states with permissions is shown

below.

Definition 7.1. The disjoint union σ̄ = σ̄1]σ̄2, is defined if, and only if, dom(σ̄1) ⊆ dom(σ̄),

dom(σ̄2) ⊆ dom(σ̄), and for all `∈dom(σ̄), we have either

• σ̄(`) = σ̄1(`) and ` /∈dom(σ̄2)

• or, σ̄(`) = σ̄2(`) and ` /∈dom(σ̄1)

• or, σ̄1(`) = (i, π1), σ̄2(`) = (i, π2), and σ̄(`) = (i, π1+π2) (by definition π1+π2∈(0, 1])

We define σ̄1 ⊆ σ̄2 as ∃σ̄′1. σ̄2 = σ̄1] σ̄′1

We also define a special operation to map states without permissions to states with

permissions, and vice versa. We use Π to record all the locations with partial permissions.

Definition 7.2. The operation σ = σ̄|Π, is defined if, and only if, dom(σ) = dom(σ̄),

dom(Π) ⊆ dom(σ̄), and for all `∈dom(σ̄), we have

• If σ̄(`) = (i, 1), then σ(`) = i and ` /∈dom(Π)

• If σ̄(`) = (i, π), where π < 1, then σ(`) = i and Π(`) = π

We also define a function to extract the largest footprint compatible with a states with

permissions.

Definition 7.3. The function∇(σ̄) is defined as (dom(Π), dom(σ)\dom(Π)), where σ = σ̄|Π

The remaining sections have an structure very similar to Chapter 6, we will point out

what are the key differences as they appear.

172

7.1 Assertion Language

The assertion language for CSL with permissions is similar to the assertion language of

CSL (from Sec. 6.1). However, instead of sets of states, we use sets of states with permis-

sions. This is shown in Fig. 7.2.

(Assertion) P,Q, I ⊆ PermState
(AssertionFormula) P,Q ⊆ α→ Assertion

Figure 7.2: Assertions and assertion formulae

Similarly, in Fig. 7.3, we provide auxiliary definitions for the assertion language. We

extend the syntax of ` 7→ i to carry the permission for the location ` π7→ i. The default

permission is 1. Note also that the separating conjunction can be used to split permissions,

e.g. l 7→v = (l .57→v∗l .57→v).

bbc def
= {σ̄ | JbK(σ̄|Π) = true}

P1∗P2
def
= {σ̄1] σ̄2 | σ̄1∈P1 ∧ σ̄2∈P2}

Emp
def
= {∅}

` π7→ i
def
= {{` (i, π)}}

` 7→ i
def
= ` 17→ i

Figure 7.3: Auxiliary assertion definitions

We also need to define precision for this assertion language.

Definition 7.4. An assertion P is precise if, and only if, for all σ̄, σ̄1 ⊆ σ̄, and σ̄2 ⊆ σ̄, such

that σ̄1∈P and σ̄2∈P , we have σ̄1 = σ̄2

7.2 Inference Rules

The inference rules for CSL with permissions are presented in Fig. 7.4. These rules are

exactly the same as the ones presented in Fig. 6.3, however, all definitions are overloaded.

As in CSL, the judgment I ` {P} c {Q} for says that the state can be split implicitly into

a shared part and a private part. The private part can be accessed only by c. The shared

173

Emp `{Q◦Jν :=eK} ν :=e {Q}
(ASSIGNMENT)

Emp `{Q◦JaK} 〈a〉 {Q}
(ACTION)

I `{P} c1 {P ′} I `{P ′} c2 {Q}
I `{P} c1; c2 {Q}

(SEQUENTIAL)
Emp `{P} skip {P}

(SKIP)

P ⊆bbc∪b¬bc I `{P∩bbc} c1 {Q} I `{P∩b¬bc} c2 {Q}
I `{P} if b then c1 else c2 {Q}

(CONDITIONAL)

P ⊆bbc∪b¬bc I `{P∩bbc} c {P}
I `{P}while b do c {P∩b¬bc} (LOOP)

I `{P1} c1 {Q1} I `{P2} c2 {Q2}
I `{P1∗P2} c1‖c2 {Q1∗Q2}

(PARALLEL)
Emp `{I∗P} c {I∗Q}
I `{P} atomic c {Q}

(ATOMIC)

P ⊆P ′ I `{P ′} c {Q′} Q′⊆Q
I `{P} c {Q}

(CONSEQUENCE)

∀x. I `{P(x)} c {Q(x)}
I `{∃x. P(x)} c {∃x. Q(x)}

(EXISTENTIAL)

I `{P} c {Q}
I ′∗I `{P} c {Q}

(FRAME)
I ′∗I `{P} c {Q}

I `{I ′∗P} c {I ′∗Q}
(RESOURCE)

I `{P1} c {Q1} I `{P2} c {Q2} I is precise
I `{P1∩P2} c {Q1∩Q2}

(CONJUNCTION)

I `{P1} c {Q1} I `{P2} c {Q2}
I `{P1∪P2} c {Q1∪Q2}

(DISJUNCTION)

Figure 7.4: CSL with partial permissions

part can be accessed by both c and its environment. Accesses to the shared state must

preserve its invariant I . Furthermore, since assertions carry permissions, we can have

shared read-only memory as part of P ’s and Q’s. The logic will prevent those locations

from being modified by either c or its environment. Using the PARALLEL, ATOMIC, and

RESOURCE rules, one can transfer manage memory with permissions just like in CSL. The

fractions help keeping accurate track of permissions throughout these transfers.

Below, we present an alternate definition of Q◦JaK, it checks whether the action a can

be executed without violating the permissions (item 1), and if it does, the new state σ̄′ has

174

the same read permissions as σ̄, and it must satisfy Q. As one may observe, the dynamic

semantics does not know about permissions. Permission accounting is done solely in the

logic, statically.

Definition 7.5. Q◦JaK is a set of states with permissions where, for each state σ̄, we have:

1. ∆a
(σ̄|Π) ⊆ ∇(σ̄)

2. for all σ̄′, such that (σ̄|Π, σ̄′|Π)∈JaK, we have σ̄′∈Q

Remark 7.6 establishes that Def. 7.5 is not weaker than Def. 6.2.

Remark 7.6. If ∆a
(σ̄|Π) ⊆ ∇(σ̄), then

1. exists σ′ such that (σ̄|Π, σ′)∈JaK

2. for all σ′, such that (σ̄|Π, σ′)∈JaK, exists σ̄′ such that σ′ = σ̄′|Π

Remark 7.7. If ∆a
(σ̄1|Π1

) ⊆ ∇(σ̄1), then ∆a
(σ̄1]σ̄2|Π1]Π2

) ⊆ ∇(σ̄1] σ̄2)

7.3 Soundness

In this section, we present the soundness of CSL with partial permissions with regard to

the semantics of Chapter 3. It follows a similar structure of Sec. 6.3

7.3.1 With Regard to the Interleaved Semantics

In this section, we present the soundness proof with regard to the interleaved semantics

from Sec. 3.7. The proof is structured around the following definition:

Definition 7.8. I |= 〈T, σ̄〉 B0 Q always holds; I |= 〈T, σ̄〉 Bn+1 Q holds if, and only if, the

following are true:

1. T is either 0- or 1-atomic

2. ¬〈T, σ̄|Π〉 7−→ abort

3. ¬〈T, σ̄|Π〉 7−→ race

175

4. If 〈T, σ̄|Π〉 7−→ 〈T ′, σ̄′|Π〉, then

(a) If both T and T ′ are 1-atomic, then I |= 〈T ′, σ̄′〉Bn Q

(b) If both T and T ′ are 0-atomic, then dom(σ̄) = dom(σ̄′) and I |= 〈T ′, σ̄′〉Bn Q

(c) If T is 0-atomic and T ′ is 1-atomic, then for all σ̄1 and σ̄2, such that σ̄2 = σ̄1] σ̄′

and σ̄1∈I , we have I |= 〈T ′, σ̄2〉Bn Q

(d) If T is 1-atomic and T ′ is 0-atomic, then exists σ̄1 and σ̄2, such that σ̄′ = σ̄1] σ̄2,

σ̄1∈I , and I |= 〈T ′, σ̄2〉Bn Q

5. If T = skip, then σ̄∈Q

6. If T = T[S[a]], then ∆a
(σ̄|Π) ⊆ ∇(σ̄)

We define I |= 〈T, σ̄〉B Q as ∀n. I |= 〈T, σ̄〉Bn Q.

The triple I |= 〈T, σ̄〉BQ ensures that each step performed by a program configuration

has at most one ongoing atomic block execution (item 1), does not abort (item 2), and is

not at a race condition (item 3). Furthermore, if it reaches a final configuration 〈skip, σ̄′〉,

then σ̄′ must satisfy post-condition Q (item 5). This definition also manages proper access

to private memory (item 4). If the current configuration has an ongoing atomic block exe-

cution (item (a)), then it already has a hold of the shared memory, and it can perform the

step with out constraints. If the current configuration does not have an ongoing atomic

block execution (item (b)), then no memory allocation or deallocation must happen to

avoid a race-condition with the environment, which may have an ongoing atomic block

execution performing memory allocation or deallocation. This constraint is enforced by

the condition dom(σ̄) = dom(σ̄′). If the current program configuration is starting to ex-

ecute a top-level atomic block (item (c)), then it must get a hold on the shared memory,

assuming it satisfies I . If the current program configuration is completing the execution

of a top-level atomic block (item (d)), then it must return the shared memory ensuring

that it satisfies I . Notice that this definition strips the permissions from the state (σ̄|Π)

whenever it refers to the dynamic semantics (7−→). This seems natural, as the permis-

sions are logical and not carried out by the execution. Nevertheless, we must enforce,

176

additionally, that read-only locations are not modified by the dynamic semantics, which

could only happen through the execution of an action a. Therefore, we check whether the

footprint of any a, that is in the imminence of being executed, is smaller than the largest

compatible footprint of the current state σ̄ (item 6).

We present the soundness proof in three sections, following the order:

1. Auxiliary lemmas for CSL triples, as in Def. 7.8

2. Semantic rules, each corresponding to a syntactic rule from Fig. 7.4

3. Top level soundness theorem

Auxiliary lemmas. Given that programs may diverge, and since I |= 〈T, σ̄〉BQ is defined

in terms of itself, we used indexing to ensure this definition is well-founded. Lemma 7.9

allows greater flexibility when dealing with indexing.

Lemma 7.9. If I |= 〈T, σ̄〉Bn1 Q, and n2 ≤ n1, then I |= 〈T, σ̄〉Bn2 Q

Proof. By induction over n1. If n1 = 0, then n2 = 0 as well, by Def. 7.8, we conclude. If

n1 > 0, by Def. 7.8, assuming (a) I |= 〈T, σ̄〉Bn1 Q and (b) n2 ≤ n1, we have 6 cases:

• From (a), by Def. 7.8 (item 1), we know that T is 0- or 1-atomic

• From (a), by Def. 7.8 (item 2), we know that 〈T, σ̄|Π〉 7−→ abort is false

• From (a), by Def. 7.8 (item 3), we know that 〈T, σ̄|Π〉 7−→ race is false

• If (c) 〈T, σ̄|Π〉 7−→ 〈T ′, σ̄′|Π〉, then we have 4 cases:

– If both T and T ′ are 1-atomic, we need to show that I |= 〈T ′, σ̄′〉 B(n2−1) Q.

From (a) and (c), by Def. 7.8 (item 4.a), we know that (d) I |= 〈T ′, σ̄′〉B(n1−1) Q.

Trivially, from (b), we know that (e) n2−1 ≤ n1−1. From (d) and (e), by the

induction hypothesis, we conclude

– If both T and T ′ are 0-atomic, we need to show that dom(σ̄) = dom(σ̄′) and I |=

〈T ′, σ̄′〉B(n2−1)Q. From (a) and (c), by Def. 7.8 (item 4.b), we know already that

177

dom(σ̄) = dom(σ̄′), and also that (d) I |= 〈T ′, σ̄′〉 B(n1−1) Q. Trivially, from (b),

we know that (e) n2−1 ≤ n1−1. From (d) and (e), by the induction hypothesis,

we conclude

– If T is 0-atomic and T ′ is 1-atomic, we need to show that for all σ̄1 and σ̄2, such

that (d) σ̄2 = σ̄1] σ̄′ and (e) σ̄1 ∈ I , we have I |= 〈T ′, σ̄2〉 B(n2−1) Q. From (a),

(c), (d), and (e), by Def. 7.8 (item 4.c), we know that (f) I |= 〈T ′, σ̄2〉 B(n1−1) Q.

Trivially, from (b), we know that (g) n2−1 ≤ n1−1. From (f) and (g), by the

induction hypothesis, we conclude

– If T is 1-atomic and T ′ is 0-atomic, we need to show that exists σ̄1 and σ̄2, such

that σ̄′ = σ̄1] σ̄2, σ̄1 ∈ I , and I |= 〈T ′, σ̄2〉 B(n2−1) Q. From (a) and (c), by

Def. 7.8 (item 4.d), we know there exists σ̄′1 and σ̄′2, such that (d) σ̄′ = σ̄′1] σ̄′2,

(e) σ̄′1 ∈ I , and (f) I |= 〈T ′, σ̄′2〉 B(n1−1) Q. Trivially, from (b), we know that (g)

n2−1 ≤ n1−1. From (f) and (g), by the induction hypothesis, we have (h)

I |= 〈T ′, σ̄′2〉 B(n2−1) Q. Instantiating the goal with σ̄′1 and σ̄′2, from (d), (e), and

(h), we conclude

• We assume (c) T = skip. From (a) and (c), by Def. 7.8 (item 5), we know that σ̄∈Q

and conclude

• We assume (c) T = T[S[a]]. From (a) and (c), by Def. 7.8 (item 6), we know that

∆a
(σ̄|Π) ⊆ ∇(σ̄) and conclude

The following lemma allows the weakening of Q in a CSL triple.

Lemma 7.10. If I |= 〈T, σ̄〉Bn Q, and Q⊆Q′, then I |= 〈T, σ̄〉Bn Q′

Proof. By induction over n. If n = 0, by Def. 7.8, we conclude. If n > 0, by Def. 7.8,

assuming (a) I |= 〈T, σ̄〉Bn Q and (b) Q⊆Q′, we have 6 cases:

• From (a), by Def. 7.8 (item 1), we know that T is 0- or 1-atomic

• From (a), by Def. 7.8 (item 2), we know that 〈T, σ̄|Π〉 7−→ abort is false

• From (a), by Def. 7.8 (item 3), we know that 〈T, σ̄|Π〉 7−→ race is false

178

• If (c) 〈T, σ̄|Π〉 7−→ 〈T ′, σ̄′|Π〉, then we have 4 cases:

– If both T and T ′ are 1-atomic, we need to show that I |= 〈T ′, σ̄′〉Bn−1 Q
′. From

(a) and (c), by Def. 7.8 (item 4.a), we know that (d) I |= 〈T ′, σ̄′〉 Bn−1 Q. From

(b) and (d), by the induction hypothesis, we conclude

– If both T and T ′ are 0-atomic, we need to show that dom(σ̄) = dom(σ̄′) and

I |= 〈T ′, σ̄′〉 Bn−1 Q
′. From (a) and (c), by Def. 7.8 (item 4.b), we know already

that dom(σ̄) = dom(σ̄′), and also that (d) I |= 〈T ′, σ̄′〉Bn−1 Q. From (b) and (d),

by the induction hypothesis, we conclude

– If T is 0-atomic and T ′ is 1-atomic, we need to show that for all σ̄1 and σ̄2, such

that (d) σ̄2 = σ̄1] σ̄′ and (e) σ̄1∈I , we have I |= 〈T ′, σ̄2〉Bn−1 Q
′. From (a), (c),

(d), and (e), by Def. 7.8 (item 4.c), we know that (f) I |= 〈T ′, σ̄2〉 Bn−1 Q. From

(b) and (f), by the induction hypothesis, we conclude

– If T is 1-atomic and T ′ is 0-atomic, we need to show that exists σ̄1 and σ̄2, such

that σ̄′ = σ̄1] σ̄2, σ̄1∈I , and I |= 〈T ′, σ̄2〉Bn−1 Q
′. From (a) and (c), by Def. 7.8

(item 4.d), we know there exists σ̄′1 and σ̄′2, such that (d) σ̄′ = σ̄′1] σ̄′2, (e) σ̄′1∈I ,

and (f) I |= 〈T ′, σ̄′2〉 Bn−1 Q. From (b) and (f), by the induction hypothesis, we

have (g) I |= 〈T ′, σ̄′2〉 Bn−1 Q
′. Instantiating the goal with σ̄′1 and σ̄′2, from (d),

(e), and (g), we conclude

• We assume (c) T = skip. From (a) and (c), by Def. 7.8 (item 5), we know that (d)

σ̄∈Q. From (b) and (d), we know that σ̄∈Q′ and conclude

• We assume (c) T = T[S[a]]. From (a) and (c), by Def. 7.8 (item 6), we know that

∆a
(σ̄|Π) ⊆ ∇(σ̄) and conclude

We can construct a CSL triple from skip using the following lemma.

Lemma 7.11. If σ̄∈Q, then I |= 〈skip, σ̄〉Bn Q

Proof. If n = 0, by Def. 7.8, we conclude. If n > 0, by Def. 7.8, we have 6 cases:

• By Def. 3.1, we know that skip is 0-atomic

179

• From the semantics, we know that 〈skip, σ̄|Π〉 7−→ abort is false

• From the semantics, we know that 〈skip, σ̄|Π〉 7−→ race is false

• From the semantics, we know that 〈skip, σ̄|Π〉 7−→ 〈T ′, σ̄′|Π〉 is false

• Since skip = skip, and σ̄∈Q, we conclude

• We know that skip 6= T[S[a]]

The following lemma is used for sequential composition of triples.

Lemma 7.12. If I |= 〈T, σ̄〉Bn P , and, for all σ̄′∈P , we have I |= 〈c′, σ̄′〉Bn Q, then

1. If T = c, then I |= 〈c; c′, σ̄〉Bn Q

2. If T = 〈〈T1, T2 〉〉pc, then I |= 〈〈〈T1, T2 〉〉p(c; c′), σ̄〉Bn Q

3. If T = 〈〈T ′ 〉〉ac, then I |= 〈〈〈T ′ 〉〉a(c; c′), σ̄〉Bn Q

Proof. By induction over n. If n = 0, by Def. 7.8, we conclude. If n > 0, we assume (a)

I |= 〈T, σ̄〉 Bn P and (b) for all σ̄′ ∈ P , we have I |= 〈c′, σ̄′〉 Bn Q. We establish (c) for all

σ̄′∈P , we have I |= 〈c′, σ̄′〉Bn−1 Q:

• We assume σ̄′∈P , from (b), using Lemma 7.9, we conclude

Then we consider 3 cases:

• If T = c, then we need to show that I |= 〈c; c′, σ̄〉Bn Q. By Def. 7.8, we have 6 cases:

– By Def. 3.1, we know that c; c′ is 0-atomic

– From (a), by Def. 7.8 (item 2), we know that (d) 〈c, σ̄|Π〉 7−→ abort is false. From

(d), and the semantics, we know that 〈c; c′, σ̄|Π〉 7−→ abort is also false

– From the semantics, we know that 〈c; c′, σ̄|Π〉 7−→ race is false

– If (d) 〈c; c′, σ̄|Π〉 7−→ 〈T ′, σ̄′|Π〉, from the semantics, we have 4 cases:

180

∗ If c = skip, T ′ = c′, and σ̄′|Π = σ̄|Π, since both skip; c′ and c′ are 0-atomic,

we need to show that dom(σ̄) = dom(σ̄′), which holds trivially, and I |=

〈c′, σ̄′〉Bn−1 Q. From (a), by Def. 7.8 (item 5), we know that (e) σ̄∈P . From

(e) and (c), we conclude

∗ If T ′ = c′′; c′, and (e) 〈c, σ̄|Π〉 7−→ 〈c′′, σ̄′|Π〉, given that both c; c′ and c′′; c′ are

0-atomic, we need to show dom(σ̄) = dom(σ̄′) and I |= 〈c′′; c′, σ̄′〉 Bn−1 Q.

From (a) and (e), by Def. 7.8 (item 4.b), we have (f) dom(σ̄) = dom(σ̄′) and

(g) I |= 〈c′′, σ̄′〉 Bn−1 P . From (g) and (c), using the induction hypothesis

(item 1), we have (h) I |= 〈c′′; c′, σ̄′〉Bn−1 Q. From (f) and (h), we conclude

∗ If c = S[c1 ‖ c2], T ′ = 〈〈 c1, c2 〉〉p(S[skip]; c′), and σ̄′|Π = σ̄|Π, since both

c; c′ and 〈〈 c1, c2 〉〉p(S[skip]; c′) are 0-atomic, we need to show that dom(σ̄) =

dom(σ̄′), which holds trivially, and I |= 〈〈〈 c1, c2 〉〉p(S[skip]; c′), σ̄〉 Bn−1 Q.

From the semantics, we know that (e) 〈c, σ̄|Π〉 7−→ 〈〈〈 c1, c2 〉〉p(S[skip]), σ̄|Π〉.

From (a) and (e), by Def. 7.8 (item 4.b), we know that (f) dom(σ̄) = dom(σ̄)

and (g) I |= 〈〈〈 c1, c2 〉〉p(S[skip]), σ̄〉 Bn−1 P . From (g) and (c), using the

induction hypothesis (item 2), we conclude

∗ If c = S[atomic c′′], T ′ = 〈〈 c′′ 〉〉a(S[skip]; c′), and σ̄′|Π = σ̄|Π, since c; c′ is

0-atomic and 〈〈 c′′ 〉〉a(S[skip]; c′) is 1-atomic, we need to show that for all σ̄1

and σ̄2, such that (e) σ̄2 = σ̄1] σ̄, and (f) σ̄1∈I , we have I |= 〈T ′, σ̄2〉Bn−1Q.

From the semantics, we know that (g) 〈c, σ̄|Π〉 7−→ 〈〈〈 c′′ 〉〉a(S[skip]), σ̄|Π〉.

From (a), (g), (e), and (f), by Def. 7.8 (item 4.c), we have

(h) I |= 〈〈〈 c′′ 〉〉a(S[skip]), σ̄2〉Bn−1 P . From (h) and (c), using the induction

hypothesis (item 3), we conclude

– We know that c; c′ 6= skip

– If c; c′ = T[S[a]], then we know that (d) T = • and exists S′ such that (e)

S = (S′; c′) and (f) c = S′[a]. From (d), (f), and (a), by Def. 7.8 (item 6), we

know that ∆a
(σ̄|Π) ⊆ ∇(σ̄) and conclude

• If T = 〈〈T1, T2 〉〉pc, and (d) 〈〈T1, T2 〉〉pc is 0- or 1-atomic, then we need to show that

181

I |= 〈〈〈T1, T2 〉〉p(c; c′), σ̄〉Bn Q. By Def. 7.8, we have 6 cases:

– From (d), by Def. 3.1, we know that 〈〈T1, T2 〉〉p(c; c′) is 0- or 1-atomic

– From (a), by Def. 7.8 (item 2), we know that (e) 〈〈〈T1, T2 〉〉pc, σ̄|Π〉 7−→ abort is

false. From (e), and the semantics, we know that 〈〈〈T1, T2 〉〉p(c; c′), σ̄|Π〉 7−→ abort

is also false

– From (a), by Def. 7.8 (item 3), we know that (e) 〈〈〈T1, T2 〉〉pc, σ̄|Π〉 7−→ race is

false. From (e), and the semantics, we know that 〈〈〈T1, T2 〉〉p(c; c′), σ̄|Π〉 7−→ race

is also false

– If (e) 〈〈〈T1, T2 〉〉p(c; c′), σ̄|Π〉 7−→ 〈T ′, σ̄′|Π〉, from the semantics, we have 3 cases:

∗ If T1 = skip, T2 = skip, T ′ = c; c′, and σ̄′|Π = σ̄|Π, since both

〈〈 skip, skip 〉〉p(c; c′) and c; c′ are 0-atomic, we need to show that dom(σ̄) =

dom(σ̄′), which holds trivially, and I |= 〈c; c′, σ̄〉 Bn−1 Q. From the se-

mantics, we know that (f) 〈〈〈 skip, skip 〉〉pc, σ̄|Π〉 7−→ 〈c, σ̄|Π〉. From (a) and

(f), by Def. 7.8 (item 4.b), we know that (g) dom(σ̄) = dom(σ̄) and (h)

I |= 〈c, σ̄〉 Bn−1 P . From (h), (c), by the induction hypothesis (item 1),

we conclude

∗ If T ′ = 〈〈T ′1, T2 〉〉p(c; c′), and (f) 〈T1, σ̄|Π〉 7−→ 〈T ′1, σ̄′|Π〉, we have 4 cases:

· If both T1 and T ′1 are 1-atomic, we have to show that

I |= 〈〈〈T ′1, T2 〉〉p(c; c′), σ̄′〉Bn−1 Q. From (f), and the semantics, we know

(g) 〈〈〈T1, T2 〉〉pc, σ̄|Π〉 7−→ 〈〈〈T ′1, T2 〉〉pc, σ̄′|Π〉. From (a) and (g), by Def. 7.8

(item 4.a), we know (h) I |= 〈〈〈T ′1, T2 〉〉pc, σ̄′〉 Bn−1 P . From (h) and (c),

using the induction hypothesis (item 2), we conclude

· If both T1 and T ′1 are 0-atomic, we have to show that dom(σ̄) = dom(σ̄′)

and I |= 〈〈〈T ′1, T2 〉〉p(c; c′), σ̄′〉 Bn−1 Q. From (f), and the semantics,

we know (g) 〈〈〈T1, T2 〉〉pc, σ̄|Π〉 7−→ 〈〈〈T ′1, T2 〉〉pc, σ̄′|Π〉. From (a) and (g),

by Def. 7.8 (item 4.b), we know (h) dom(σ̄) = dom(σ̄′) and (i) I |=

〈〈〈T ′1, T2 〉〉pc, σ̄′〉 Bn−1 P . From (i) and (c), using the induction hypothe-

sis (item 2), we know (j) I |= 〈〈〈T ′1, T2 〉〉p(c; c′), σ̄′〉Bn−1 Q. From (h) and

182

(j), we conclude

· If T1 is 0-atomic and T ′1 is 1-atomic, we need to show that for all σ̄1

and σ̄2, such that (g) σ̄2 = σ̄1] σ̄′ and (h) σ̄1 ∈ I , we have I |=

〈〈〈T ′1, T2 〉〉p(c; c′), σ̄2〉 Bn−1 Q. From (f), and the semantics, we know (i)

〈〈〈T1, T2 〉〉pc, σ̄|Π〉 7−→ 〈〈〈T ′1, T2 〉〉pc, σ̄′|Π〉. From (a), (i), (g), and (h), by

Def. 7.8 (item 4.c), we know that (j) I |= 〈〈〈T ′1, T2 〉〉pc, σ̄2〉 Bn−1 P . From

(j) and (c), using the induction hypothesis (item 2), we conclude

· If T1 is 1-atomic and T ′1 is 0-atomic, we need to show that exists σ̄1 and

σ̄2, such that σ̄′ = σ̄1] σ̄2, σ̄1 ∈ I , and I |= 〈〈〈T ′1, T2 〉〉p(c; c′), σ̄2〉 Bn−1

Q. From (f), and the semantics, we know (g) 〈〈〈T1, T2 〉〉pc, σ̄|Π〉 7−→

〈〈〈T ′1, T2 〉〉pc, σ̄′|Π〉. From (a) and (g), by Def. 7.8 (item 4.d), we know

there exists σ̄′1 and σ̄′2 such that (i) σ̄′ = σ̄′1] σ̄′2, (j) σ̄′1 ∈ I , and (k)

I |= 〈〈〈T ′1, T2 〉〉pc, σ̄′2〉 Bn−1 P . From (k) and (c), using the induction hy-

pothesis (item 2), we know (l) I |= 〈〈〈T ′1, T2 〉〉p(c; c′), σ̄′2〉Bn−1 Q. Instan-

tiating the goal with σ̄′1 and σ̄′2, from (i), (j), and (l), we conclude

∗ If T ′ = 〈〈T1, T
′
2 〉〉p(c; c′), and (f) 〈T2, σ̄|Π〉 7−→ 〈T ′2, σ̄′|Π〉, the proof is symmet-

ric to the previous case

– We know that 〈〈T1, T2 〉〉p(c; c′) 6= skip

– If 〈〈T1, T2 〉〉p(c; c′) = T[S[a]], we have 2 cases:

∗ we know that exists T1 such that (d) T = 〈〈T1, T2 〉〉p(c; c′) and (e) T1 =

T1[S[a]]. From (e) and (a), by Def. 7.8 (item 6), we know that ∆a
(σ̄|Π) ⊆

∇(σ̄) and conclude

∗ we know that exists T2 such that (d) T = 〈〈T1,T2 〉〉p(c; c′) and (e) T2 =

T2[S[a]]. From (e) and (a), by Def. 7.8 (item 6), we know that ∆a
(σ̄|Π) ⊆

∇(σ̄) and conclude

• If T = 〈〈T ′ 〉〉ac, then we need to show that I |= 〈〈〈T ′ 〉〉a(c; c′), σ̄〉 Bn Q. By Def. 7.8, we

have 6 cases:

– By Def. 3.1, we know that 〈〈T ′ 〉〉a(c; c′) is 1-atomic

183

– From (a), by Def. 7.8 (item 2), we know that (d) 〈〈〈T ′ 〉〉ac, σ̄|Π〉 7−→ abort is false.

From (d), and the semantics, we know that 〈〈〈T ′ 〉〉a(c; c′), σ̄|Π〉 7−→ abort is also

false

– From (a), by Def. 7.8 (item 3), we know that (d) 〈〈〈T ′ 〉〉ac, σ̄|Π〉 7−→ race is false.

From (d), and the semantics, we know that 〈〈〈T ′ 〉〉a(c; c′), σ̄|Π〉 7−→ race is also

false

– If (d) 〈〈〈T ′ 〉〉a(c; c′), σ̄|Π〉 7−→ 〈T ′′, σ̄′|Π〉, from the semantics, we have 2 cases:

∗ If T ′ = skip, T ′′ = c; c′, and σ̄′|Π = σ̄|Π, since 〈〈 skip 〉〉a(c; c′) is 1-atomic and

c; c′ is 0-atomic, we need to show that exists σ̄1 and σ̄2 such that σ̄′ = σ̄1]σ̄2,

σ̄1 ∈ I , and I |= 〈c; c′, σ̄2〉 Bn−1 Q. From the semantics, we know that (e)

〈〈〈 skip 〉〉ac, σ̄|Π〉 7−→ 〈c, σ̄|Π〉. From (a) and (e), by Def. 7.8 (item 4.d), we

know that exists σ̄′1 and σ̄′2 such that (f) σ̄ = σ̄′1] σ̄′2, (g) σ̄′1 ∈ I , and (h)

I |= 〈c, σ̄′2〉 Bn−1 P . From (h), (c), by the induction hypothesis (item 1), we

have (i) I |= 〈c; c′, σ̄′2〉 Bn−1 Q. Instantiating the goal with σ̄′1 and σ̄′2, from

(f), (g), and (i), we conclude

∗ If T ′′ = 〈〈T ′′′ 〉〉a(c; c′), and (e) 〈T ′, σ̄|Π〉 7−→ 〈T ′′′, σ̄′|Π〉, given that both

〈〈T ′ 〉〉a(c; c′) and 〈〈T ′′′ 〉〉a(c; c′) are 1-atomic, we need to show

I |= 〈〈〈T ′′′ 〉〉a(c; c′), σ̄′〉 Bn−1 Q. From (e), and the semantics, we know (f)

〈〈〈T ′ 〉〉ac, σ̄|Π〉 7−→ 〈〈〈T ′′′ 〉〉ac, σ̄′|Π〉. From (a) and (f), by Def. 7.8 (item 4.a),

then (g) I |= 〈〈〈T ′′′ 〉〉ac, σ̄′〉 Bn−1 P . From (g) and (c), using the induction

hypothesis (item 3), we conclude

– We know that 〈〈T ′ 〉〉a(c; c′) 6= skip

– If 〈〈T ′ 〉〉a(c; c′) = T[S[a]], then we know that exists T′ such that (d) T =

〈〈T′ 〉〉a(c; c′) and (e) T ′ = T′[S[a]]. From (e) and (a), by Def. 7.8 (item 6), we

know that ∆a
(σ̄|Π) ⊆ ∇(σ̄) and conclude

Conditional commands can be introduced using the following lemma.

Lemma 7.13. If I |= 〈c, σ̄〉Bn Q, then

184

1. If σ̄∈bbc, then I |= 〈if b then c else c′, σ̄〉Bn Q

2. If σ̄∈b¬bc, then I |= 〈if b then c′ else c, σ̄〉Bn Q

Proof. From assumption (a) I |= 〈c, σ̄〉Bn Q we have 2 cases:

• We assume (b) σ̄ ∈ bbc. If n = 0, by Def. 7.8, we conclude. If n > 0, by Def. 7.8, we

have 6 cases:

– By Def. 3.1, we know that (c) if b then c else c′ is 0-atomic

– From the semantics, we know that 〈if b then c else c′, σ̄|Π〉 7−→ abort is false

if 〈if b then c else c′, σ̄|Π〉 −→ abort is false. From the sequential semantics,

we know 〈if b then c else c′, σ̄|Π〉 −→ abort is false if there exists z such that

JbK(σ̄|Π) = z. From (b), we know JbK(σ̄|Π) = true and conclude

– From the semantics, we know that 〈if b then c else c′, σ̄|Π〉 7−→ race is false

– From the semantics, given (b), we know that 〈if b then c else c′, σ̄|Π〉 7−→

〈c, σ̄|Π〉. From (c), and since c is 0-atomic, we need to show that dom(σ̄) =

dom(σ̄) and I |= 〈c, σ̄〉Bn−1 Q. From (a), using Lemma 7.9, we conclude

– We know that if b then c else c′ 6= skip

– We know that if b then c else c′ 6= T[S[a]]

• We assume (b) σ̄∈b¬bc. If n = 0, by Def. 7.8, we conclude. If n > 0, by Def. 7.8, we

have 6 cases:

– By Def. 3.1, we know that (c) if b then c′ else c is 0-atomic

– From the semantics, we know that 〈if b then c′ else c, σ̄|Π〉 7−→ abort is false

if 〈if b then c′ else c, σ̄|Π〉 −→ abort is false. From the sequential semantics,

we know 〈if b then c′ else c, σ̄|Π〉 −→ abort is false if there exists z such that

JbK(σ̄|Π) = z. From (b), we know JbK(σ̄|Π) = false and conclude

– From the semantics, we know that 〈if b then c′ else c, σ̄|Π〉 7−→ race is false

185

– From the semantics, given (b), we know that 〈if b then c′ else c, σ̄|Π〉 7−→

〈c, σ̄|Π〉. From (c), and since c is 0-atomic, we need to show that dom(σ̄) =

dom(σ̄) and I |= 〈c, σ̄〉Bn−1 Q. From (a), using Lemma 7.9, we conclude

– We know that if b then c′ else c 6= skip

– We know that if b then c else c′ 6= T[S[a]]

A loop command can be introduced using the following lemma.

Lemma 7.14. If P ⊆bbc∪b¬bc, σ̄∈P , and, for all σ̄′∈P∩bbc, we have I |= 〈c, σ̄′〉Bn P , then

I |= 〈while b do c, σ̄〉Bn (P∩b¬bc)

Proof. By induction over n. If n = 0, by Def. 7.8, we conclude. If n > 0, by Def. 7.8,

assuming (a) P ⊆bbc∪b¬bc, (b) σ̄∈P , and, (c) for all σ̄′∈P∩bbc, we have I |= 〈c, σ̄′〉Bn P ,

we have 6 cases:

• By Def. 3.1, we know that (d) while b do c is 0-atomic

• From the semantics, we know that 〈while b do c, σ̄|Π〉 7−→ abort is false

• From the semantics, we know that 〈while b do c, σ̄|Π〉 7−→ race is false

• From the semantics, 〈while b do c, σ̄|Π〉 7−→ 〈if b then (c; while b do c) else skip, σ̄|Π〉.

From (d), and since if b then (c; while b do c) else skip is 0-atomic, we need to show

that dom(σ̄) = dom(σ̄) and I |= 〈if b then (c; while b do c) else skip, σ̄〉Bn−1(P∩b¬bc).

From (a) and (b), we know (e) σ̄∈bbc∪b¬bc. From (e), we have two cases:

– We assume (f) σ̄ ∈ bbc. From (b) and (f), we know (g) σ̄ ∈P ∩bbc. We establish

(h) for all σ̄′∈P∩bbc, we have I |= 〈c, σ̄′〉Bn−1 P :

∗ We assume σ̄′∈P∩bbc, from (c), using Lemma 7.9, we conclude

From (g) and (h), we know (i) I |= 〈c, σ̄〉 Bn−1 P . We establish (j) for all σ̄′∈P ,

we have I |= 〈while b do c, σ̄′〉Bn−1 (P∩b¬bc):

∗ We assume σ̄′ ∈ P , with (a) and (h), using the induction hypothesis, we

conclude

186

From (i) and (j), using Lemma 7.12 (item 1), we get

(k) I |= 〈c; while b do c, σ̄〉Bn−1 (P∩b¬bc). From (f) and (k), using Lemma 7.13

(item 1), we conclude

– We assume (f) σ̄ ∈ b¬bc. From (b) and (f), we know (g) σ̄ ∈P ∩b¬bc. From (g),

using Lemma 7.11, we know (h) I |= 〈skip, σ̄〉Bn−1 (P∩b¬bc). From (f) and (h),

using Lemma 7.13 (item 2), we conclude

• We know that while b do c 6= skip

• We know that while b do c 6= T[S[a]]

The following lemma is used for parallel composition of triples.

Lemma 7.15. If I |= 〈T1, σ̄1〉BnQ1, I |= 〈T2, σ̄2〉BnQ2, and 〈〈T1, T2 〉〉pskip is 0- or 1-atomic,

then I |= 〈〈〈T1, T2 〉〉pskip, σ̄1] σ̄2〉Bn (Q1∗Q2)

Proof. By induction over n. If n = 0, by Def. 7.8, we conclude. If n > 0, by Def. 7.8,

assuming (a) I |= 〈T1, σ̄1〉 Bn Q1, (b) I |= 〈T2, σ̄2〉 Bn Q2, and (c) 〈〈T1, T2 〉〉pskip is 0- or

1-atomic, we have 6 cases:

• From (c), we conclude

• From the semantics, we know that 〈〈〈T1, T2 〉〉pskip, σ̄1] σ̄2|Π1]Π2〉 7−→ abort if either:

– 〈T1, σ̄1] σ̄2|Π1]Π2〉 7−→ abort. From (a), by Def. 7.8 (item 2), we know (d)

〈T1, σ̄1|Π1〉 7−→ abort is false. From (d), using Lemma 3.22 (item 1), we con-

clude

– or, 〈T2, σ̄1] σ̄2|Π1]Π2〉 7−→ abort. From (b), by Def. 7.8 (item 2), we know (e)

〈T2, σ̄2|Π2〉 7−→ abort is false. From (e), using Lemma 3.22 (item 1), we conclude

• From the semantics, we know that 〈〈〈T1, T2 〉〉pskip, σ̄1] σ̄2|Π1]Π2〉 7−→ race if either:

– 〈T1, σ̄1] σ̄2|Π1]Π2〉 7−→ race. From (a), by Def. 7.8 (item 3), we know

(f) 〈T1, σ̄1|Π1〉 7−→ race is false. From (d) and (f), using Lemma 3.22 (item 2), we

conclude

187

– or, 〈T2, σ̄1] σ̄2|Π1]Π2〉 7−→ race. From (b), by Def. 7.8 (item 3), we know (g)

〈T2, σ̄2|Π2〉 7−→ race is false. From (e) and (g), using Lemma 3.22 (item 2), we

conclude

– or, T1 = T1[c1], T2 = T2[c2], 〈c1, σ̄1] σ̄2|Π1]Π2〉 −→
δ1
〈c′1, σ′〉, 〈c2, σ

′〉 −→
δ2

κ and

δ1 6~̂ δ2. By contradiction, we will assume (f) 〈c1, σ̄1] σ̄2|Π1]Π2〉 −→
δ1
〈c′1, σ′〉, and

(g) 〈c2, σ
′〉 −→

δ2
κ in order to obtain δ1 ~̂ δ2. From the semantics, and (d), we

know (h) 〈c1, σ̄1|Π1〉 −→ abort is false. From (h) and (f), using Lemma 3.16 (item

2), we know there exists σ̄′1 such that (i) σ′ = σ̄′1]σ̄2|Π1]Π2 and (j) 〈c1, σ̄1|Π1〉 −→
δ1

〈c′1, σ̄′1|Π1〉. From the semantics, and (e), we know (k) 〈c2, σ̄2|Π2〉 −→ abort is

false. From (k), using Lemma 3.16 (item 1), we know (l) 〈c2, σ̄′1] σ̄2|Π1]Π2〉 −→

abort is false. From (g), (i), and (l), we know there exists c′2 and σ′′ such that (m)

κ = 〈c′2, σ′′〉. From (k), (g) and (m), using Lemma 3.16 (item 2), we know there

exists σ̄′2 such that (n) σ′′ = σ̄′1] σ̄′2|Π1]Π2 and (o) 〈c2, σ̄2|Π2〉 −→
δ2
〈c′2, σ̄′2|Π2〉.

From (j), using Remark 3.10 (item 2), by Def. 7.3, we know that

(p) δ1 ⊆ (dom(Π1), dom(σ1|Π1)\dom(Π1)). From (o), using Remark 3.10 (item 2),

by Def. 7.3, we know that (q) δ2 ⊆ (dom(Π2), dom(σ2|Π2)\dom(Π2)). Then, we

have 2 cases:

∗ If T1[c1] is 0-atomic, then from (a) and (j), by Def. 6.3 (item 4.b), we know

that (r) dom(σ1) = dom(σ′1). From (p) and (r), we know that (s) δ1 ⊆

(∅, dom(σ′1)). From (i), (n), we know that (t) dom(σ′1)∩(dom(σ2)∪dom(σ′2)) =

∅. From (t), (s), and (q), we know that δ1.ws ∩ (δ2.rs ∪ δ2.ws) = ∅ and con-

clude

∗ If T1[c1] is 1-atomic, from (c) we know that (r) T2[c2] is 0-atomic. From

(b), (o), and (r), by Def. 6.3 (item 4.b), we know that (s) dom(σ2) = dom(σ′2).

From (q) and (s), we know that (t) δ2 ⊆ (∅, dom(σ2)). From (i), we know

that (u) (dom(σ1)∪dom(σ′1))∩dom(σ2) = ∅. From (u), (p), and (t), we know

that δ1.ws ∩ (δ2.rs ∪ δ2.ws) = ∅ and conclude

– or, T1 = T1[c1], T2 = T2[c2], 〈c2, σ̄1] σ̄2|Π1]Π2〉 −→
δ2
〈c′2, σ′〉, 〈c1, σ

′〉 −→
δ1

κ and

δ2 6~̂ δ1. The proof is symmetric to the previous case

188

• From the semantics, if (f) 〈〈〈T1, T2 〉〉pskip, σ̄1] σ̄2|Π1]Π2〉 7−→ 〈T ′, σ̄′|Π1]Π2〉, then ei-

ther:

– T1 = skip, T2 = skip, T ′ = skip, and σ̄′|Π1]Π2 = σ̄1] σ̄2|Π1]Π2 . Since both

〈〈 skip, skip 〉〉pskip and skip are 0-atomic, we need to show that dom(σ̄′) =

dom(σ̄1] σ̄2), which holds trivially, and that I |= 〈skip, σ̄′〉 Bn−1 (Q1 ∗Q2).

From (a), by Def. 7.8 (item 5), we know (g) σ̄1∈Q1. From (b), by Def. 7.8 (item

5), we know (h) σ̄2 ∈Q2. From (g) and (h), we know (i) σ̄′ ∈Q1∗Q2. From (i),

using Lemma 7.11, we conclude

– or, T ′ = 〈〈T ′1, T2 〉〉pskip and (g) 〈T1, σ̄1] σ̄2|Π1]Π2〉 7−→ 〈T ′1, σ̄′|Π1]Π2〉. From (d)

and (g), using Lemma 3.22 (item 3), we know that exists σ̄′1 such that σ̄′ = σ̄′1]σ̄2

and (h) 〈T1, σ̄1|Π1〉 7−→ 〈T ′1, σ̄′1|Π1〉. From (c), and (f), using Remark 3.17, we

have 5 cases:

∗ If both T1 and T ′1 are 1-atomic, and T2 is 0-atomic, we have to show that

I |= 〈〈〈T ′1, T2 〉〉pskip, σ̄′1]σ̄2〉Bn−1(Q1∗Q2). From (a) and (h), by Def. 7.8 (item

4.a), we know that (i) I |= 〈T ′1, σ̄′1〉Bn−1 Q1. From (b), using Lemma 7.9, we

know that (j) I |= 〈T2, σ̄2〉 Bn−1 Q2. From (i) and (j), using the induction

hypothesis, we conclude

∗ If both T1 and T ′1 are 0-atomic, and T2 is 1-atomic, we have to show that

I |= 〈〈〈T ′1, T2 〉〉pskip, σ̄′1] σ̄2〉 Bn−1 (Q1∗Q2). From (a) and (h), by Def. 7.8

(item 4.b), we know that (i) dom(σ̄1) = dom(σ̄′1) and (j) I |= 〈T ′1, σ̄′1〉Bn−1Q1.

From (b), using Lemma 7.9, we know that (k) I |= 〈T2, σ̄2〉 Bn−1 Q2. From

(j) and (k), using the induction hypothesis, we conclude

∗ If all T1, T ′1, and T2 are 0-atomic, we have to show that dom(σ̄1] σ̄2) =

dom(σ̄′1] σ̄2) and I |= 〈〈〈T ′1, T2 〉〉pskip, σ̄′1] σ̄2〉 Bn−1 (Q1 ∗Q2). From (a)

and (h), by Def. 7.8 (item 4.b), we know that (i) dom(σ̄1) = dom(σ̄′1) and

(j) I |= 〈T ′1, σ̄′1〉 Bn−1 Q1. From (b), using Lemma 7.9, we know that (k)

I |= 〈T2, σ̄2〉Bn−1 Q2. From (j) and (k), using the induction hypothesis, we

know (l) I |= 〈〈〈T ′1, T2 〉〉pskip, σ̄′1] σ̄2〉Bn−1 (Q1∗Q2). From (i), we know that

189

(m) dom(σ̄1] σ̄2) = dom(σ̄′1] σ̄2). From (l) and (m), we conclude

∗ If both T1 and T2 are 0-atomic, and T ′1 is 1-atomic, we have to show that

for all σ̄′′1 and σ̄′′2 , such that (i) σ̄′′2 = σ̄′′1] σ̄′ and (j) σ̄′′1 ∈ I , we have I |=

〈〈〈T ′1, T2 〉〉pskip, σ̄′′2〉 Bn−1 (Q1 ∗Q2). From (a), (j) and (h), by Def. 7.8 (item

4.c), we know that (k) I |= 〈T ′1, σ̄′′1]σ̄′1〉Bn−1Q1. From (b), using Lemma 7.9,

we know that (l) I |= 〈T2, σ̄2〉 Bn−1 Q2. From (k) and (l), by the induction

hypothesis, we conclude

∗ If both T ′1 and T2 are 0-atomic, and T1 is 1-atomic, we have to show that ex-

ists σ̄′′1 and σ̄′′2 , such that σ̄′ = σ̄′′1]σ̄′′2 , σ̄′′1 ∈I , and I |= 〈〈〈T ′1, T2 〉〉pskip, σ̄′′2〉Bn−1

(Q1∗Q2). From (a) and (h), by Def. 7.8 (item 4.d), we know there exists σ̄′′′1

and σ̄′′′2 such that (i) σ̄′1 = σ̄′′′1] σ̄′′′2 , (j) σ̄′′′1 ∈I , and (k) I |= 〈T ′1, σ̄′′′2 〉Bn−1 Q1.

From (b), using Lemma 7.9, we know that (l) I |= 〈T2, σ̄2〉Bn−1Q2. From (k),

and (l), by the induction hypothesis, we have (m) I |= 〈〈〈T ′1, T2 〉〉pskip, σ̄′′′2]

σ̄2〉Bn−1 (Q1∗Q2). Instantiating the goal with σ̄′′′1 and σ̄′′′2] σ̄2, from (j), and

(m), we conclude

– or, T ′ = 〈〈T1, T
′
2 〉〉pskip and 〈T2, σ̄1] σ̄2|Π1]Π2〉 7−→ 〈T ′2, σ̄′|Π1]Π2〉. The proof is

symmetric to the previous case

• 〈〈T1, T2 〉〉pskip 6= skip

• If 〈〈T1, T2 〉〉pskip = T[S[a]], we have 2 cases:

– there exists T1 such that (d) T1 = T1[S[a]] and (e) T = 〈〈T1, T2 〉〉pskip. From

(d) and (a), by Def. 7.8 (item 6), we conclude

– there exists T2 such that (d) T2 = T2[S[a]] and (e) T = 〈〈T1,T2 〉〉pskip. From

(d) and (b), by Def. 7.8 (item 6), we conclude

An atomic block can be introduced using the following lemma.

Lemma 7.16. If Emp |= 〈T, σ̄〉Bn (I∗Q), then I |= 〈〈〈T 〉〉askip, σ̄〉Bn Q

Proof. By induction over n. If n = 0, by Def. 7.8, we conclude. If n > 0, by Def. 7.8,

assuming (a) Emp |= 〈T, σ̄〉Bn (I∗Q), we have 6 cases:

190

• By Def. 3.1, we know that (b) 〈〈T 〉〉askip is 1-atomic

• From the semantics, if we assume 〈〈〈T 〉〉askip, σ̄|Π〉 7−→ abort, then we know that (c)

〈T, σ̄|Π〉 7−→ abort. From (a), by Def. 7.8 (item 2), we know that (c) is false

• From the semantics, if we assume 〈〈〈T 〉〉askip, σ̄|Π〉 7−→ race, then we know that (c)

〈T, σ̄|Π〉 7−→ race. From (a), by Def. 7.8 (item 3), we know that (c) is false

• If (c) 〈〈〈T 〉〉askip, σ̄|Π〉 7−→ 〈T ′, σ̄′|Π〉, given (b) and from the semantics, we have 2

cases:

– We have T ′ = 〈〈T ′′ 〉〉askip, which is 1-atomic, (d) 〈T, σ̄|Π〉 7−→ 〈T ′′, σ̄′|Π〉, and we

need to show that I |= 〈〈〈T ′′ 〉〉askip, σ̄′〉 Bn−1 Q. From (a) and (d), by Def. 7.8

(items 4.a through 4.b), we know that (e) Emp |= 〈T ′′, σ̄′〉Bn−1 (I∗Q). From (e),

by the induction hypothesis, we conclude

– We have (d) T = skip, T ′ = skip which is 0-atomic, σ̄|Π = σ̄′|Π, and we need to

show that exists σ̄1 and σ̄2, such that σ̄ = σ̄1] σ̄2, σ̄1∈I , and I |= 〈skip, σ̄2〉Bn−1

Q. From (a) and (d), by Def. 7.8 (item 5), we know that (e) σ̄ ∈ I ∗Q. From (e),

we know that there exists σ̄′1 and σ̄′2 such that (f) σ̄ = σ̄′1] σ̄′2, (g) σ̄′1 ∈ I , and

(h) σ̄′2 ∈ Q. From (h), using Lemma 7.11, we know (i) I |= 〈skip, σ̄′2〉 Bn−1 Q.

Instantiating the goal with σ̄′1 and σ̄′2, from (f), (g), and (h), we conclude

• We know that 〈〈T 〉〉askip 6= skip

• If 〈〈T 〉〉askip = T[S[a]], then we know that exists T′ such that (c) T = 〈〈T′ 〉〉askip and

(d) T = T′[S[a]]. From (d) and (a), by Def. 7.8 (item 6), we know that ∆a
(σ̄|Π) ⊆ ∇(σ̄)

and conclude

The following lemma is used for framing a triple into a larger shared memory.

Lemma 7.17. If I |= 〈T, σ̄〉Bn Q, then

1. If T is 0-atomic, then I ′∗I |= 〈T, σ̄〉Bn Q

2. If T is 1-atomic, and σ̄′∈I ′, then I ′∗I |= 〈T, σ̄′] σ̄〉Bn Q

191

Proof. By induction over n. If n = 0, by Def. 7.8, we conclude. If n > 0, assuming (a)

I |= 〈T, σ̄〉Bn Q, we have 2 cases:

• If (b) T is 0-atomic, we need to show I ′∗I |= 〈T, σ̄〉BnQ. By Def. 7.8, we have 6 cases:

– From (b), we know that T is 0-atomic

– From (a), by Def. 7.8 (item 2), we know that 〈T, σ̄|Π〉 7−→ abort is false

– From (a), by Def. 7.8 (item 3), we know that 〈T, σ̄|Π〉 7−→ race is false

– If (c) 〈T, σ̄|Π〉 7−→ 〈T ′, σ̄′|Π〉, given (b) the we have 2 cases:

∗ If T ′ is 0-atomic, we need to show that dom(σ̄) = dom(σ̄′) and I ′ ∗ I |=

〈T ′, σ̄′〉 Bn−1 Q. From (a) and (c), by Def. 7.8 (item 4.b), we know that (d)

dom(σ̄) = dom(σ̄′) and (e) I |= 〈T ′, σ̄′〉 Bn−1 Q. From (e), by the induction

hypothesis (item 1), we know that (f) I ′∗I |= 〈T ′, σ̄′〉Bn−1 Q. From (d) and

(f) we conclude

∗ If T ′ is 1-atomic, we need to show that for all σ̄1 and σ̄2, such that (d)

σ̄2 = σ̄1] σ̄′ and (e) σ̄1 ∈ I ′ ∗I , we have I ′ ∗I |= 〈T ′, σ̄2〉 Bn−1 Q. From

(e), we know exists σ̄′1 and σ̄′′1 , such that σ̄1 = σ̄′1] σ̄′′1 , (f) σ̄′1 ∈ I ′, and

(g) σ̄′′1 ∈ I . From (a), (c), and (g), by Def. 7.8 (item 4.c), we know that (h)

I |= 〈T ′, σ̄′′1] σ̄′〉 Bn−1 Q. From (h) and (f), by the induction hypothesis

(item 2), we conclude

– We assume (c) T = skip. From (a) and (c), by Def. 7.8 (item 5), we know σ̄∈Q

and conclude

– We assume (c) T = T[S[a]]. From (a) and (c), by Def. 7.8 (item 6), we know

∆a
(σ̄|Π) ⊆ ∇(σ̄) and conclude

• If (b) T is 1-atomic, and (c) σ̄′ ∈ I ′, we need to show I ′ ∗I |= 〈T, σ̄′] σ̄〉 Bn Q. By

Def. 7.8, we have 6 cases:

– From (b), we know that T is 1-atomic

– From (a), by Def. 7.8 (item 2), we know that (e) 〈T, σ̄|Π〉 7−→ abort is false. From

(e), using Lemma 3.22 (item 1), we conclude

192

– From (a), by Def. 7.8 (item 3), we know that (f) 〈T, σ̄|Π〉 7−→ race is false. From

(e) and (f), using Lemma 3.22 (item 2), we conclude

– We know (g) 〈T, σ̄′] σ̄|Π′]Π〉 7−→ 〈T ′, σ̄′′|Π′]Π〉. From (e) and (g), using

Lemma 3.22 (item 3), we know exists σ̄′′′ such that (h) σ̄′′|Π′]Π = σ̄′] σ̄′′′|Π′]Π

and (i) 〈T, σ̄|Π〉 7−→ 〈T ′, σ̄′′′|Π〉. Then we have 2 cases:

∗ If T ′ is 1-atomic, we need to show that I ′∗I |= 〈T ′, σ̄′] σ̄′′′〉Bn−1Q. From (a)

and (i), by Def. 7.8 (item 4.a), we know that (j) I |= 〈T ′, σ̄′′′〉 Bn−1 Q. From

(j) and (c), by the induction hypothesis (item 2), we conclude

∗ If T ′ is 0-atomic, we need to show that exists σ̄1 and σ̄2, such that σ̄′′ =

σ̄1] σ̄2, σ̄1∈I ′∗I , and I ′∗I |= 〈T ′, σ̄2〉Bn−1 Q. From (a) and (i), by Def. 7.8

(item 4.d), we know there exists σ̄′1 and σ̄′2, such that (j) σ̄′′′ = σ̄′1] σ̄′2, (k)

σ̄′1 ∈ I , and (l) I |= 〈T ′, σ̄′2〉 Bn−1 Q. From (l), by the induction hypothesis

(item 1), we have (m) I ′∗I |= 〈T ′, σ̄′2〉Bn−1 Q. From (c), (h), (j), and (k), we

have (n) σ̄′] σ̄′1∈I ′∗I . Instantiating the goal with σ̄′] σ̄′1 and σ̄′2, from (h),

(j), (n), and (m), we conclude

– From (b), we know that T 6= skip

– We assume (e) T = T[S[a]]. From (a) and (e), by Def. 7.8 (item 6), we know (f)

∆a
(σ̄|Π) ⊆ ∇(σ̄). From (f), using Remark 7.7, we conclude

The following lemma is used to transfer a resource from shared to private in a triple.

Lemma 7.18. If I ′∗I |= 〈T, σ̄〉Bn Q, then

1. If T is 0-atomic, and σ̄′∈I ′, then I |= 〈T, σ̄′] σ̄〉Bn (I ′∗Q)

2. If T is 1-atomic, then I |= 〈T, σ̄〉Bn (I ′∗Q)

Proof. By induction over n. If n = 0, by Def. 7.8, we conclude. If n > 0, assuming (a)

I ′∗I |= 〈T, σ̄〉Bn Q, we have 2 cases:

• If (b) T is 0-atomic, and (c) σ̄′ ∈ I ′, we need to show I |= 〈T, σ̄′] σ̄〉 Bn (I ′∗Q). By

Def. 6.3, we have 6 cases:

193

– From (b), we know that T is 0-atomic

– From (a), by Def. 7.8 (item 2), we know that (e) 〈T, σ̄|Π〉 7−→ abort is false. From

(e), using Lemma 3.22 (item 1), we conclude

– From (a), by Def. 7.8 (item 3), we know that (f) 〈T, σ̄|Π〉 7−→ race is false. From

(e) and (f), using Lemma 3.22 (item 2), we conclude

– We know (g) 〈T, σ̄′] σ̄|Π′]Π〉 7−→ 〈T ′, σ̄′′|Π′]Π〉. From (e) and (g), using

Lemma 3.22 (item 3), we know exists σ̄′′′ such that (h) σ̄′′|Π′]Π = σ̄′] σ̄′′′|Π′]Π

and (i) 〈T, σ̄|Π〉 7−→ 〈T ′, σ̄′′′|Π〉. Then we have 2 cases:

∗ If T ′ is 0-atomic, we need to show that dom(σ̄′] σ̄) = dom(σ̄′] σ̄′′′) and

I |= 〈T ′, σ̄′] σ̄′′′〉 Bn−1 (I ′∗Q). From (a) and (g), by Def. 7.8 (item 4.b), we

know that (j) dom(σ̄) = dom(σ̄′′′) and (k) I ′ ∗I |= 〈T ′, σ̄′′′〉 Bn−1 Q. From

(k) and (c), by the induction hypothesis (item 1), we know (l) I |= 〈T ′, σ̄′]

σ̄′′′〉Bn−1 (I ′∗Q). From (j) and (l), we conclude

∗ If T ′ is 1-atomic, we need to show that for all σ̄1 and σ̄2, such that (j) σ̄2 =

σ̄1] σ̄′] σ̄′′′ and (k) σ̄1∈I , we have I |= 〈T ′, σ̄2〉Bn−1 (I ′∗Q). From (c) and

(k), we know (l) σ̄′] σ̄1 ∈ I ′∗I . From (a), (i), (j), and (l), by Def. 7.8 (item

4.c), we know that (m) I ′∗I |= 〈T ′, σ̄2〉Bn−1 Q. From (m), by the induction

hypothesis (item 2), we conclude

– We assume (e) T = skip. From (a) and (e), by Def. 7.8 (item 5), we know that

(f) σ̄∈Q. From (c) and (f) we know that σ̄′] σ̄∈I ′∗Q and conclude

– We assume (e) T = T[S[a]]. From (a) and (e), by Def. 7.8 (item 6), we know (f)

∆a
(σ̄|Π) ⊆ ∇(σ̄). From (f), using Remark 7.7, we conclude

• If (b) T is 1-atomic, we need to show I |= 〈T, σ̄〉 Bn (I ′∗Q). By Def. 7.8, we have 6

cases:

– From (b), we know that T is 1-atomic

– From (a), by Def. 7.8 (item 2), we know that 〈T, σ̄|Π〉 7−→ abort is false

– From (a), by Def. 7.8 (item 3), we know that 〈T, σ̄|Π〉 7−→ race is false

194

– If (c) 〈T, σ̄|Π〉 7−→ 〈T ′, σ̄′|Π〉, given (b) the we have 2 cases:

∗ If T ′ is 1-atomic, we need to show that I |= 〈T ′, σ̄′〉 Bn−1 (I ′∗Q). From (a)

and (c), by Def. 7.8 (item 4.a), we know that (d) I ′ ∗I |= 〈T ′, σ̄′〉 Bn−1 Q.

From (d), by the induction hypothesis (item 2), we conclude

∗ If T ′ is 0-atomic, we need to show that exists σ̄1 and σ̄2, such that σ̄′ =

σ̄1] σ̄2, σ̄1 ∈ I , and I |= 〈T ′, σ̄2〉 Bn−1 (I ′∗Q). From (a) and (c), by Def. 7.8

(item 4.d), we know there exists σ̄′1 and σ̄′2, such that (d) σ̄′ = σ̄′1] σ̄′2, (e)

σ̄′1∈I ′∗I , and (f) I ′∗I |= 〈T ′, σ̄′2〉Bn−1Q. From (e) we know exists σ̄′′1 and σ̄′′′1

such that (g) σ̄′1 = σ̄′′1] σ̄′′′1 , (h) σ̄′′1 ∈ I ′, and (i) σ̄′′′1 ∈ I . From (f) and (h), by

the induction hypothesis (item 1), we have (j) I |= 〈T ′, σ̄′′1] σ̄′2〉Bn−1 (I ′∗Q).

Instantiating the goal with σ̄′′′1 and σ̄′′1] σ̄′2, from (d), (g), (i), and (j), we

conclude

– From (b), we know that T 6= skip

– We assume (c) T = T[S[a]]. From (a) and (c), by Def. 7.8 (item 6), we know

∆a
(σ̄|Π) ⊆ ∇(σ̄) and conclude

The following lemma is used for the conjunction of triples.

Lemma 7.19. If I |= 〈T, σ̄〉 Bn Q1, I |= 〈T, σ̄〉 Bn Q2, and I is precise, then I |= 〈T, σ̄〉 Bn

(Q1∩Q2)

Proof. By induction over n. If n = 0, by Def. 7.8, we conclude. If n > 0, by Def. 7.8,

assuming (a) I |= 〈T, σ̄〉Bn Q1 and (b) I |= 〈T, σ̄〉Bn Q2, we have 6 cases:

• From (a), by Def. 7.8 (item 1), we know that T is 0- or 1-atomic

• From (a), by Def. 7.8 (item 2), we know that 〈T, σ̄|Π〉 7−→ abort is false

• From (a), by Def. 7.8 (item 3), we know that 〈T, σ̄|Π〉 7−→ race is false

• If (c) 〈T, σ̄|Π〉 7−→ 〈T ′, σ̄′|Π〉, then we have 4 cases:

– If both T and T ′ are 1-atomic, we need to show that I |= 〈T ′, σ̄′〉Bn−1 (Q1∩Q2).

From (a) and (c), by Def. 7.8 (item 4.a), we know that (d) I |= 〈T ′, σ̄′〉 Bn−1 Q1.

195

From (b) and (c), by Def. 7.8 (item 4.a), we know that (e) I |= 〈T ′, σ̄′〉 Bn−1 Q2.

From (d) and (e), by the induction hypothesis, we conclude

– If both T and T ′ are 0-atomic, we need to show that dom(σ̄) = dom(σ̄′) and

I |= 〈T ′, σ̄′〉 Bn−1 (Q1∩Q2). From (a) and (c), by Def. 7.8 (item 4.b), we know

already that dom(σ̄) = dom(σ̄′), and also that (d) I |= 〈T ′, σ̄′〉 Bn−1 Q1. From

(b) and (c), by Def. 7.8 (item 4.b), we also know that dom(σ̄) = dom(σ̄′) and

(e) I |= 〈T ′, σ̄′〉 Bn−1 Q2. From (d) and (e), by the induction hypothesis, we

conclude

– If T is 0-atomic and T ′ is 1-atomic, we need to show that for all σ̄1 and σ̄2, such

that (d) σ̄2 = σ̄1] σ̄′ and (e) σ̄1∈ I , we have I |= 〈T ′, σ̄2〉 Bn−1 (Q1∩Q2). From

(a), (c), (d), and (e), by Def. 7.8 (item 4.c), we know that (f) I |= 〈T ′, σ̄2〉 Bn−1

Q1. From (b), (c), (d), and (e), by Def. 7.8 (item 4.c), we know that (g) I |=

〈T ′, σ̄2〉Bn−1 Q2. From (f) and (g), by the induction hypothesis, we conclude

– If T is 1-atomic and T ′ is 0-atomic, we need to show that exists σ̄1 and σ̄2, such

that σ̄′ = σ̄1] σ̄2, σ̄1 ∈ I , and I |= 〈T ′, σ̄2〉 Bn−1 (Q1∩Q2). From (a) and (c), by

Def. 7.8 (item 4.d), we know there exists σ̄′1 and σ̄′2, such that (d) σ̄′ = σ̄′1] σ̄′2,

(e) σ̄′1∈ I , and (f) I |= 〈T ′, σ̄′2〉 Bn−1 Q1. From (b) and (c), by Def. 7.8 (item 4.d),

we know there exists σ̄′′1 and σ̄′′2 , such that (g) σ̄′ = σ̄′′1] σ̄′′2 , (h) σ̄′′1 ∈ I , and (i)

I |= 〈T ′, σ̄′′2〉Bn−1Q2. From (d), (e), (g), and (h), given that I is precise, we know

that σ̄′1 = σ̄′′1 and σ̄′2 = σ̄′′2 . From (f) and (i), by the induction hypothesis, we

have (j) I |= 〈T ′, σ̄′2〉Bn−1 (Q1∩Q2). Instantiating the goal with σ̄′1 and σ̄′2, from

(d), (e), and (j), we conclude

• We assume (c) T = skip. From (a) and (c), by Def. 7.8 (item 5), we know that (d)

σ̄∈Q1. From (b) and (c), by Def. 7.8 (item 5), we know that (e) σ̄∈Q2. From (d) and

(e), we know that σ̄∈Q1∩Q2 and conclude

• We assume (c) T = T[S[a]]. From (a) and (c), by Def. 7.8 (item 6), we know ∆a
(σ̄|Π) ⊆

∇(σ̄) and conclude

196

Semantics rules. The quadruple I |= {P} c {Q} is the semantic correspondent to I `

{P} c {Q}. It is defined in terms of I |= 〈T, σ̄〉B Q as show below:

Definition 7.20. I |= {P} c {Q}, if and only if, for all σ̄, such that σ̄ ∈ P , we have I |=

〈c, σ̄〉B Q

From Def. 7.20, we can prove Lemma 7.21 which states more explicitly the proper-

ties guaranteed by the semantic quadruple: safety, race-freedom, and partial correctness

(items 1, 2, and 3, respectively).

Lemma 7.21. If I |= {P} c {Q}, then for all σ̄, such that σ̄∈I∗P , we have:

1. ¬〈c, σ̄|Π〉 7−→∗ abort

2. ¬〈c, σ̄|Π〉 7−→∗ race

3. If 〈c, σ̄|Π〉 7−→∗ 〈skip, σ̄′|Π〉, then σ̄′∈I∗Q

Proof. From I |= {P} c {Q}, using Lemma 7.331, we obtain (a) Emp |= {I∗P} c {I∗Q}. Given

(a), and σ̄∈ I∗P , from Def. 7.20, we obtain (b) Emp |= 〈c, σ̄〉 B (I∗Q). We then generalize

the proof from command c to any 0- or 1-atomic thread tree T . Now we can consider each

one of the goals:

• For goal 1, we need to show that for all n, (c) 〈T, σ̄|Π〉 7−→n abort is false. From (b),

we obtain (d) Emp |= 〈T, σ̄〉 Bn (I ∗Q), which is our sole assumption. By induction

over n, we have two cases. The base case, where n = 0, is trivial as 〈T, σ̄|π〉 6= abort.

In the inductive case, where n > 0, we know there exists a configuration κ, such

that (e) 〈T, σ̄|Π〉 7−→ κ and (f) κ 7−→n−1 abort. From (d), given that n > 0, we know,

from items 2, 3, and 6, of Def. 7.8, that by exclusion, and using Remark 7.6, there

must exists T ′ and σ̄′, such that κ = 〈T ′, σ̄′|Π〉; therefore we obtain (g) 〈T, σ̄|Π〉 7−→

〈T ′, σ̄′|Π〉. From (g), using Remark 3.17, we know that T ′ is either 0- or 1-atomic.

Given (g), and (d), from items 4.a through 4.d of Def. 7.8, we know that (h) Emp |=

〈T ′, σ̄′〉Bn−1 (I∗Q). From (h), and (f), using the induction hypothesis, we know that

1Although Lemma 7.33 is defined later on the text, there is no circularity.

197

(i) 〈T ′, σ̄′|Π〉 7−→n−1 abort is false. From (g), and (i), we know 〈T, σ̄|Π〉 7−→n−1 abort

is false, which was our goal.

• For goal 2, we need to show that for all n, (c) 〈T, σ̄|Π〉 7−→n race is false. From (b),

we obtain (d) Emp |= 〈T, σ̄〉 Bn (I ∗Q), which is our sole assumption. By induction

over n, we have two cases. The base case, where n = 0, is trivial as 〈T, σ̄|Π〉 6= race.

In the inductive case, where n > 0, we know there exists a configuration κ, such

that (e) 〈T, σ̄|Π〉 7−→ κ and (f) κ 7−→n−1 race. From (d), given that n > 0, we know,

from items 2, 3, and 6, of Def. 7.8, that by exclusion, and using Remark 7.6, there

must exists T ′ and σ̄′, such that κ = 〈T ′, σ̄′|Π〉; therefore we obtain (g) 〈T, σ̄|Π〉 7−→

〈T ′, σ̄′|Π〉. From (g), using Remark 3.17, we know that T ′ is either 0- or 1-atomic.

Given (g), and (d), from items 4.a through 4.d of Def. 7.8, we know that (h) Emp |=

〈T ′, σ̄′〉Bn−1 (I∗Q). From (h), and (f), using the induction hypothesis, we know that

(i) 〈T ′, σ̄′|Π〉 7−→n−1 race is false. From (g), and (i), we know 〈T, σ̄|Π〉 7−→n−1 race is

false, which was our goal.

• For goal 3, we need to show that for all n, if (c) 〈T, σ̄|Π〉 7−→n 〈skip, σ̄′|Π〉, then

σ̄′∈I∗Q. From (b), we obtain (d) Emp |= 〈T, σ̄〉Bn(I∗Q), which is our sole assumption.

By induction over n, we have two cases. In base case, where n = 0, we know that

T = skip and σ̄′|Π = σ̄|Π; given (d), from item 5 of Def. 7.8, we obtain the goal

σ̄′ ∈ I ∗Q. In the inductive case, where n > 0, we know there exists a configuration

κ, such that (e) 〈T, σ̄|Π〉 7−→ κ and (f) κ 7−→n−1 〈skip, σ̄′|Π〉. From (d), given that

n > 0, we know, from items 2, 3, and 6, of Def. 6.3, that by exclusion, and using

Remark 7.6, there must exists T ′ and σ̄′′, such that κ = 〈T ′, σ̄′′|Π〉; therefore we

obtain (g) 〈T, σ̄|Π〉 7−→ 〈T ′, σ̄′′|Π〉. From (g), using Remark 3.17, we know that T ′ is

either 0- or 1-atomic. Given (g), and (d), from items 4.a through 4.d of Def. 7.8, we

know that (h) Emp |= 〈T ′, σ̄′′〉 Bn−1 (I ∗Q). From (h), and (f), using the induction

hypothesis, we obtain the goal σ̄′∈I∗Q.

In the following sequence of lemmas, Lemma 7.22 through Lemma 7.35, we show the

correspondence between the CSL rules from Fig. 7.4, and their semantic equivalent using

198

definition Def. 7.20.

Lemma 7.22.

Emp |= {Q◦Jν :=eK} ν :=e {Q}

Proof. From Def. 7.20, we assume there exist σ̄ and n, such that (a) σ̄∈Q◦Jν :=eK, and we

need to show that Emp |= 〈ν := e, σ̄〉 Bn Q. If n = 0, by Def. 7.8, we conclude. If n > 0, by

Def. 7.8, we have 6 cases:

• By Def. 3.1, we know that (b) ν :=e is 0-atomic

• From the semantics, we know that 〈ν := e, σ̄|Π〉 7−→ abort is false if 〈ν := e, σ̄|Π〉 −→

abort is false. From the sequential semantics, we know 〈ν :=e, σ̄|Π〉 −→ abort is false

if there exists σ′ such that (σ̄|Π, σ′)∈ JaK. From (a), by Def. 7.5 (item 1), we have (c)

∆a
(σ̄|Π) ⊆ ∇(σ̄). From (c), using Remark 7.6, we conclude

• From the semantics, we know that 〈ν :=e, σ̄|Π〉 7−→ race is false

• From the semantics, assuming 〈ν := e, σ̄|Π〉 7−→ 〈skip, σ̄′|Π〉, we have (c) 〈ν :=

e, σ̄|Π〉 −→ 〈skip, σ̄′|Π〉. From (b), and since skip is 0-atomic, we need to show that

dom(σ̄) = dom(σ̄′) and Emp |= 〈skip, σ̄′〉 Bn−1 Q. From the sequential semantics,

and (c), we know (d) (σ̄|Π, σ̄′|Π) ∈ Jν :=eK. From (d), using Remark 3.13, we know

(e) dom(σ̄|Π) = dom(σ̄′|Π). From (a) and (d), by Def. 7.5 (item 2), we know that (f)

σ̄′ ∈Q. From (f), and Lemma 7.11, we know (g) Emp |= 〈skip, σ̄′〉 Bn−1 Q. From (e)

and (g) we conclude

• We know that (ν :=e) 6= skip

• If (c) (ν := e) = T[S[a]], we know that (d) T = •, (e) S = •, and (f) a = (ν := e).

From (a), by Def. 7.5 (item 1), we conclude

Lemma 7.23.

Emp |= {Q◦JaK} 〈a〉 {Q}

199

Proof. From Def. 7.20, we assume there exist σ̄ and n, such that (a) σ̄∈Q◦JaK, and we need

to show that Emp |= 〈atomic a, σ̄〉 Bn Q. If n = 0, by Def. 7.8, we conclude. If n > 0, by

Def. 7.8, we have 6 cases:

• By Def. 3.1, we know that (b) atomic a is 0-atomic

• From the semantics, we know that 〈atomic a, σ̄|Π〉 7−→ abort is false

• From the semantics, we know that 〈atomic a, σ̄|Π〉 7−→ race is false

• From the semantics, we know that 〈atomic a, σ̄|Π〉 7−→ 〈〈〈 a 〉〉askip, σ̄|Π〉, given that •

is 0-atomic. From (b), and since 〈〈 a 〉〉askip is 1-atomic, we need to show that for all

σ̄1 and σ̄2, such that (c) σ̄2 = σ̄1] σ̄ and (d) σ̄1∈Emp, Emp |= 〈〈〈 a 〉〉askip, σ̄2〉Bn−1 Q.

From (d), we know σ̄1 = ∅, therefore, from (c), we know σ̄2 = σ̄. If n = 1, by

Def. 7.8, we conclude. If n > 1, by Def. 7.8, we have 6 cases:

– By Def. 3.1, we know that (e) 〈〈 a 〉〉askip is 1-atomic

– From the semantics, we know that 〈〈〈 a 〉〉askip, σ̄|Π〉 7−→ abort is false if

〈〈〈 a 〉〉askip, σ̄|Π〉 −→ abort is false. From the sequential semantics, we know

〈〈〈 a 〉〉askip, σ̄|Π〉 −→ abort is false if there exists σ′ such that (σ̄|Π, σ′)∈JaK. From

(a), by Def. 7.5 (item 1), we have (f) ∆a
(σ̄|Π) ⊆ ∇(σ̄). From (f), using Remark 7.6,

we conclude

– From the semantics, we know that 〈〈〈 a 〉〉askip, σ̄|Π〉 7−→ race is false

– From the semantics, assuming 〈〈〈 a 〉〉askip, σ̄|Π〉 7−→ 〈〈〈 skip 〉〉askip, σ̄′|Π〉, we have

(f) 〈a, σ̄|Π〉 −→ 〈skip, σ̄′|Π〉. From (e), and since 〈〈 skip 〉〉askip is 1-atomic, we

need to show that Emp |= 〈〈〈 skip 〉〉askip, σ̄′〉 B(n−2) Q. If n = 2, by Def. 7.8, we

conclude. If n > 2, by Def. 7.8, we have 6 cases:

∗ By Def. 3.1, we know that (g) 〈〈 skip 〉〉askip is 1-atomic

∗ From the semantics, we know that 〈〈〈 skip 〉〉askip, σ̄′|Π〉 7−→ abort is false

∗ From the semantics, we know that 〈〈〈 skip 〉〉askip, σ̄′|Π〉 7−→ race is false

∗ From the semantics, we know that 〈〈〈 skip 〉〉askip, σ̄′|Π〉 7−→ 〈skip, σ̄′|Π〉.

From (g), and since skip is 0-atomic, we need to show there exists σ̄′1 and

200

σ̄′2 such that σ̄′ = σ̄′1] σ̄′2, σ̄′1 ∈ Emp, and Emp |= 〈skip, σ̄′2〉 B(n−3) Q. We

instantiate σ̄′1 as ∅ and σ̄′2 as σ̄′, as we know that σ̄′ = ∅] σ̄′ and ∅∈Emp;

it remains to show that Emp |= 〈skip, σ̄′〉B(n−3) Q. From the sequential se-

mantics, and (f), we know (h) (σ̄|Π, σ̄′|Π)∈JaK. From (a) and (h), by Def. 7.5

(item 2), we know that (i) σ̄′∈Q. From (i), and Lemma 7.11, we conclude

∗ We know that 〈〈 skip 〉〉askip 6= skip

∗ We know that 〈〈 skip 〉〉askip 6= T[S[a]]

– We know that 〈〈 a 〉〉askip 6= skip

– If (f) 〈〈 a 〉〉askip = T[S[a′]], we know that (g) T = 〈〈 • 〉〉askip, (h) S = •, and (i)

a = a′. From (a), by Def. 7.5 (item 1), we conclude

• We know that atomic a 6= skip

• We know that atomic a 6= T[S[a]]

Lemma 7.24.
I |= {P} c1 {P ′} I |= {P ′} c2 {Q}

I |= {P} c1; c2 {Q}

Proof. From Def. 7.20, we assume there exist σ̄ and n, such that (a) σ̄∈P , and we need to

show that I |= 〈c1; c2, σ̄〉 Bn Q. From (a), and I |= {P} c1 {P ′}, by Def. 7.20, we know that

(b) I |= 〈c1, σ̄〉 Bn P ′. From I |= {P ′} c2 {Q}, by Def. 7.20, we know that (c) for all σ̄′ ∈P ′,

we have I |= 〈c2, σ̄
′〉Bn Q. From (b) and (c), using Lemma 7.12 (item 1), we conclude

Lemma 7.25.

Emp |= {P} skip {P}

Proof. From Def. 7.20, we assume there exist σ̄ and n, such that (a) σ̄∈P , and we need to

show that Emp |= 〈skip, σ̄〉Bn P . From (a), using Lemma 7.11, we conclude

Lemma 7.26.

P ⊆bbc∪b¬bc I |= {P∩bbc} c1 {Q} I |= {P∩b¬bc} c2 {Q}
I |= {P} if b then c1 else c2 {Q}

201

Proof. From Def. 7.20, we assume there exist σ̄ and n, such that (a) σ̄∈P , and we need to

show that I |= 〈if b then c1 else c2, σ̄〉 Bn Q. From (a), and P ⊆ bbc∪b¬bc, we know (b)

σ̄∈bbc∪b¬bc. From (b) we can consider two cases:

• If (c) σ̄ ∈ bbc, with (a), we know (d) σ̄ ∈P ∩bbc. From (d), and I |= {P ∩bbc} c1 {Q},

by Def. 7.20, we know that (e) I |= 〈c1, σ̄〉Bn Q. From (e) and (c), using Lemma 7.13

(item 1), we conclude

• If (c) σ̄∈b¬bc, with (a), we know (d) σ̄∈P∩b¬bc. From (d), and I |= {P∩b¬bc} c2 {Q},

by Def. 7.20, we know that (e) I |= 〈c2, σ̄〉Bn Q. From (e) and (c), using Lemma 7.13

(item 2), we conclude

Lemma 7.27.
P ⊆bbc∪b¬bc I |= {P∩bbc} c {P}
I |= {P}while b do c {P∩b¬bc}

Proof. From Def. 7.20, we assume there exist σ̄ and n, such that (a) σ̄∈P , and we need to

show that I |= 〈while b do c, σ̄〉 Bn (P ∩b¬bc). From I |= {P ∩bbc} c {P}, by Def. 7.20, we

know that (b) for all σ̄′∈P∩bbc, we have I |= 〈c, σ̄′〉Bn P . From (a), (b), and P ⊆bbc∪b¬bc,

using Lemma 7.14, we conclude

Lemma 7.28.
I |= {P1} c1 {Q1} I |= {P2} c2 {Q2}

I |= {P1∗P2} c1‖c2 {Q1∗Q2}

Proof. From Def. 7.20, we assume there exist σ̄ and n, such that (a) σ̄∈P1∗P2, and we need

to show that I |= 〈c1 ‖ c2, σ̄〉 Bn (Q1∗Q2). If n = 0, by Def. 7.8, we conclude. If n > 0, by

Def. 7.8, we have 6 cases:

• By Def. 3.1, we know that (b) c1‖c2 is 0-atomic

• From the semantics, we know that 〈c1‖c2, σ̄|Π〉 7−→ abort is false

• From the semantics, we know that 〈c1‖c2, σ̄|Π〉 7−→ race is false

202

• From the semantics, we know that 〈c1‖c2, σ̄|Π〉 7−→ 〈〈〈 c1, c2 〉〉pskip, σ̄|Π〉. By Def. 3.1,

we know (c) 〈〈 c1, c2 〉〉pskip is 0-atomic. From (b) and (c), we need to show that σ̄|Π =

σ̄|Π, which is trivial, and that I |= 〈〈〈 c1, c2 〉〉pskip, σ̄〉 Bn−1 (Q1 ∗Q2). From (a), we

know there exists σ̄1 and σ̄2, such that σ̄ = σ̄1] σ̄2, (d) σ̄1∈P1, and (e) σ̄2∈P2. From

(d), and I |= {P1} c1 {Q1}, by Def. 7.20, we know that (f) I |= 〈c1, σ̄1〉Bn−1 Q1. From

(e), and I |= {P2} c2 {Q2}, by Def. 7.20, we know that (g) I |= 〈c2, σ̄2〉Bn−1 Q2. From

(f), (g), and (c), using Lemma 7.15, we conclude

• We know that c1‖c2 6= skip

• We know that c1‖c2 6= T[S[a]]

Lemma 7.29.
Emp |= {I∗P} c {I∗Q}
I |= {P} atomic c {Q}

Proof. From Def. 7.20, we assume there exist σ̄ and n, such that (a) σ̄∈P , and we need to

show that I |= 〈atomic c, σ̄〉Bn Q. If n = 0, by Def. 7.8, we conclude. If n > 0, by Def. 7.8,

we have 6 cases:

• By Def. 3.1, we know that (b) atomic c is 0-atomic

• From the semantics, we know that 〈atomic c, σ̄|Π〉 7−→ abort is false

• From the semantics, we know that 〈atomic c, σ̄|Π〉 7−→ race is false

• From the semantics, we know that 〈atomic c, σ̄|Π〉 7−→ 〈〈〈 c 〉〉askip, σ̄|Π〉, given that •

is 0-atomic. From (b), and since 〈〈 c 〉〉askip is 1-atomic, we need to show that for all

σ̄1 and σ̄2, such that (c) σ̄2 = σ̄1] σ̄ and (d) σ̄1∈ I , I |= 〈〈〈 c 〉〉askip, σ̄2〉 Bn−1 Q. From

(a), (c), and (d), we know (e) σ̄2 ∈ I ∗P . From (e), and Emp |= {I ∗P} c {I ∗Q}, by

Def. 7.20, we know that (f) Emp |= 〈c, σ̄2〉 Bn−1 (I ∗Q). From (f), using Lemma 7.16,

we conclude

• We know that atomic c 6= skip

• We know that atomic c 6= T[S[a]]

203

Lemma 7.30.
P ⊆P ′ I |= {P ′} c {Q′} Q′⊆Q

I |= {P} c {Q}

Proof. From Def. 7.20, we assume there exist σ̄ and n, such that (a) σ̄ ∈ P , and we need

to show that I |= 〈c, σ̄〉 Bn Q. From (a), and P ⊆ P ′, we get (b) σ̄ ∈ P ′. From (b), and

I |= {P ′} c {Q′}, by Def. 7.20, we know that (c) I |= 〈c, σ̄〉 Bn Q′. From (c), and Q′ ⊆ Q,

using Lemma 7.10, we conclude

Lemma 7.31.
∀x. I |= {P(x)} c {Q(x)}

I |= {∃x. P(x)} c {∃x. Q(x)}

Proof. From Def. 7.20, we assume there exist σ̄, n, and x, such that (a) σ̄ ∈ P(x), and

we need to show that I |= 〈c, σ̄〉Bn (∃x. Q(x)). From (a), and ∀x. I |= {P(x)} c {Q(x)}, by

Def. 7.20, we know that (b) I |= 〈c, σ̄〉Bn (Q(x)). We also know that (c) (Q(x))⊆(∃x.Q(x)).

From (b) and (c), using Lemma 7.10, we conclude

Lemma 7.32.
I |= {P} c {Q}

I ′∗I |= {P} c {Q}

Proof. From Def. 7.20, we assume there exist σ̄ and n, such that (a) σ̄∈P , and we need to

show that I ′∗I |= 〈c, σ̄〉Bn Q. From (a), and I |= {P} c {Q}, by Def. 7.20, we know that (b)

I |= 〈c, σ̄〉Bn Q. We also know that (c) c is 0-atomic. From (b), and (c), using Lemma 7.17

(item 1), we conclude

Lemma 7.33.
I ′∗I |= {P} c {Q}

I |= {I ′∗P} c {I ′∗Q}

Proof. From Def. 7.20, we assume there exist σ̄ and n, such that (a) σ̄∈I ′∗P , and we need

to show that I |= 〈c, σ̄〉Bn (I ′∗Q). From (a) we know that there exists σ̄1 and σ̄2 such that

σ̄ = σ̄1] σ̄2, (b) σ̄1 ∈ I ′, and (c) σ̄2 ∈P . From (c), and I ′∗I |= {P} c {Q}, by Def. 7.20, we

know that (d) I ′∗I |= 〈c, σ̄2〉 Bn Q. We also know that (e) c is 0-atomic. From (d), (e), and

(b), using Lemma 7.18 (item 1), we conclude

204

Lemma 7.34.
I |= {P1} c {Q1} I |= {P2} c {Q2} I is precise

I |= {P1∩P2} c {Q1∩Q2}

Proof. From Def. 7.20, we assume there exist σ̄ and n, such that (a) σ̄ ∈ P1∩P2, and we

need to show that I |= 〈c, σ̄〉Bn (Q1∩Q2). From (a) we know that (b) σ̄∈P1 and (c) σ̄∈P2.

From (b), and I |= {P1} c {Q1}, by Def. 7.20, we know that (d) I |= 〈c, σ̄〉 Bn Q1. From (c),

and I |= {P2} c {Q2}, by Def. 7.20, we know that (e) I |= 〈c, σ̄〉 Bn Q2. From (d), (e), and

knowing that I is precise, using Lemma 7.19, we conclude

Lemma 7.35.
I |= {P1} c {Q1} I |= {P2} c {Q2}

I |= {P1∪P2} c {Q1∪Q2}

Proof. From Def. 7.20, we assume there exist σ̄ and n, such that (a) σ̄ ∈ P1∪P2, and we

need to show that I |= 〈c, σ̄〉 Bn (Q1∪Q2). From (a) we know that either (b) σ̄ ∈ P1 or

(c) σ̄ ∈ P2. If we assume (b), then from I |= {P1} c {Q1}, by Def. 7.20, we know that (d)

I |= 〈c, σ̄〉Bn Q1. We also know that (e) Q1⊆Q1∪Q2. From (d) and (e), using Lemma 7.10,

we conclude. Similarly, if we assume (c), then from I |= {P2} c {Q2}, by Def. 7.20, we

know that (f) I |= 〈c, σ̄〉Bn Q2. We also know that (g) Q2⊆Q1∪Q2. From (f) and (g), using

Lemma 7.10, we conclude

Soundness theorem. The proof structure of Theorem 7.36 is similar for all CSL rules. It

uses all lemmas from Lemma 7.22 to Lemma 7.35, one for each corresponding CSL rule.

The proof structure is modular, if an extra rule is added to Fig. 7.4, we just need to prove

an extra lemma for its correspondent semantic rule.

Theorem 7.36. If I `{P} c {Q}, then I |= {P} c {Q}

Proof. By strong induction over the derivation tree depth of (a) I `{P} c {Q}. After inver-

sion of (a), we have one case for each rule:

• ASSIGNMENT: we know I = Emp, P = Q◦Jν :=eK, and c = (ν :=e), using Lemma 7.22,

we conclude

205

• ACTION: we know I = Emp, P = Q ◦ JaK, and c = 〈a〉, using Lemma 7.23, we

conclude.

• SEQUENTIAL: we know c = (c1; c2) and that there exists P ′ such that

(a) I `{P} c1 {P ′} and (b) I `{P ′} c2 {Q}. From (a), using the induction hypothesis,

we obtain (c) I |= {P} c1 {P ′}. From (b), using the induction hypothesis, we obtain

(d) I |= {P ′} c2 {Q}. From (c), and (d), using Lemma 7.24, we conclude

• SKIP: we know I = Emp, P = Q, and c = skip, using Lemma 7.25, we conclude.

• CONDITIONAL: we know c = (if b then c1 else c2) and that (a) P ⊆ bbc∪ b¬bc,

(b) I ` {P ∩bbc} c1 {Q}, and (c) I ` {P ∩b¬bc} c2 {Q}. From (b), using the induction

hypothesis, we obtain (d) I |= {P∩bbc} c1 {Q}. From (c), using the induction hypoth-

esis, we obtain (e) I |= {P ∩b¬bc} c2 {Q}. From (a), (d), and (e), using Lemma 7.26,

we conclude

• LOOP: we know c = (while b do c), Q = (P ∩b¬bc), (a) P ⊆ bbc∪b¬bc, and (b)

I ` {P ∩bbc} c {P}. From (b), using the induction hypothesis, we obtain (c) I |=

{P∩bbc} c {P}. From (a), and (c), using Lemma 7.27, we conclude

• PARALLEL: we know P = (P1 ∗P2), c = (c1 ‖ c2), Q = (Q1 ∗Q2), and that (a)

I ` {P1} c1 {Q1} and (b) I ` {P2} c2 {Q2}. From (a), using the induction hypothesis,

we obtain (c) I |= {P1} c1 {Q1}. From (b), using the induction hypothesis, we obtain

(d) I |= {P2} c2 {Q2}. From (c), and (d), using Lemma 7.28, we conclude

• ATOMIC: we know c = (atomic c), and (a) Emp ` {I ∗P} c {I ∗Q}. From (a), using

the induction hypothesis, we obtain (b) Emp |= {I ∗P} c {I ∗Q}. From (b), using

Lemma 7.29, we conclude

• CONSEQUENCE: we know that there exists P ′ andQ′, such that (a) P ⊆P ′, (b)Q′⊆Q,

and (c) I ` {P ′} c {Q′}. From (c), using the induction hypothesis, we obtain (d)

I |= {P ′} c {Q′}. From (a), (b), and (d), using Lemma 7.30, we conclude

206

• EXISTENTIAL: we know that P = (∃x. P(x)), Q = (∃x. Q(x)), and (a) ∀x. I `

{P(x)} c {Q(x)}. From (a), using the induction hypothesis, we obtain (b) ∀x. I |=

{P(x)} c {Q(x)}. From (b), using Lemma 7.31, we conclude

• FRAME: we know I = (I ′′∗I ′), and (a) I ′ ` {P} c {Q}. From (a), using the induction

hypothesis, we obtain (b) I ′ |= {P} c {Q}. From (b), using Lemma 7.32, we conclude

• RESOURCE: we know P = (I ′∗P ′), Q = (I ′∗Q′), and (a) I ′∗I `{P ′} c {Q′}. From (a),

using the induction hypothesis, we obtain (b) I ′∗I |= {P ′} c {Q′}. From (b), using

Lemma 7.33, we conclude

• CONJUNCTION: we know P = (P1∩P2), Q = (Q1∩Q2), and that (a) I ` {P1} c {Q1},

(b) I `{P2} c {Q2}, and (c) I is precise. From (a), using the induction hypothesis, we

obtain (d) I |= {P1} c {Q1}. From (b), using the induction hypothesis, we obtain (e)

I |= {P2} c {Q2}. From (d), (e), and (c), using Lemma 7.34, we conclude

• DISJUNCTION: we know P = (P1∪P2), Q = (Q1∪Q2), and that (a) I ` {P1} c {Q1}

and (b) I ` {P2} c {Q2}. From (a), using the induction hypothesis, we obtain (c)

I |= {P1} c {Q1}. From (b), using the induction hypothesis, we obtain (d) I |=

{P2} c {Q2}. From (c), and (d), using Lemma 7.35, we conclude

7.3.2 With Regard to the Parameterized Semantics

In this section, we proof the soundness of CSL with partial permissions with regard to the

parameterized semantics of Sec. 3.8. First, we need to define the semantic meaning of a

Λ-parameterized CSL quadruple.

Definition 7.37. I |=[Λ] {P} c {Q}, if and only if, for all σ̄, such that σ̄∈I∗P , we have:

1. ¬[Λ] 〈c, σ̄|Π〉 7−→∗ abort

2. If [Λ] 〈c, σ̄|Π〉 7−→∗ 〈skip, σ̄′|Π〉, then σ̄′∈I∗Q

This definition is straightforward. The I |=[Λ] {P} c {Q} quadruple ensures that for any

state satisfying the pre-condition I∗P will not abort, and, if it the execution completes, the

207

final state will satisfy I∗Q. Given this definition, we can phrase and prove the soundness

theorem below:

Theorem 7.38. If I `{P} c {Q}, and Λ provides the DRF-guarantee, then I |=[Λ] {P} c {Q}

Proof. From I ` {P} c {Q}, using Theorem 7.36, we obtain (a) I |= {P} c {Q}. From

Def. 7.37, we can prove the goal if, by assuming there is a state σ̄, such that (b) σ̄ ∈ I ∗P ,

we can establish the following two conditions:

(c) ¬[Λ] 〈c, σ̄|Π〉 7−→∗ abort

(d) If [Λ] 〈c, σ̄|Π〉 7−→∗ 〈skip, σ̄′|Π〉, then σ̄′∈I∗Q

From (a), and (b), using Lemma 7.21, we know that:

(e) ¬〈c, σ̄|Π〉 7−→∗ abort

(f) ¬〈c, σ̄|Π〉 7−→∗ race

(g) If 〈c, σ̄|Π〉 7−→∗ 〈skip, σ̄′|Π〉, then σ̄′∈I∗Q

Since Λ provides the DRF-guarantee, from (e), and (f), based on Def. 5.2, we establish (c)

and we know

(h) If [Λ] 〈c, σ̄|Π〉 7−→∗ 〈skip, σ̄′|Π〉, then 〈c, σ̄|Π〉 7−→∗ 〈skip, σ̄′|Π〉

From (h), and (g), we can establish (d)

7.3.3 With Regard to the Relaxed Semantics

The proof of soundness regarding the -parameterized relaxed semantics of Sec. 3.10 is

straightforward.

Theorem 7.39. If I `{P} c {Q}, then I |=[] {P} c {Q}

Proof. From Theorem 5.12, we know that (a) provides the DRF-guarantee. From I `

{P} c {Q}, and (a), using Theorem 7.38, we prove our goal I |=[] {P} c {Q}

208

7.4 Verification Examples

In this section, we present some examples of code verified using CSL with permissions.

7.4.1 Dijkstra Semaphore

The first example is the well know Dijkstra semaphore, presented in Fig. 7.5. The semapho-

re is made of a single memory cell that has two operations P and V. It allows at most n

number of threads to execute the code block between a pair of P and V, where n is the

initial value of the semaphore.

P(sem)
atomic

wait [sem]>0;
[sem] := [sem]−1

V(sem)
atomic [sem] := [sem]+1

Figure 7.5: Dijkstra semaphore

Here we will verify the semaphore implementation as working as a way to access a

shared read-only cell of memory. In the specification the semaphore is at location p, and

the data it protects is in location d. The initial value for the semaphore is assumed to be n.

∀p, n, d. P(sem)

(∃v. (0≤v≤n)∩(p 7→v∗d v/n7→)) `{
sem 7→p

}
atomic{

(∃v. (0≤v≤n)∩(p 7→v∗d v/n7→))∗sem 7→p
}

wait [sem]>0;{
(∃v. (0<v≤n)∩(p 7→v∗d v/n7→))∗sem 7→p

}
[sem] := [sem]−1{

(∃v. (0<v≤n)∩(p 7→(v−1)∗d v/n7→))∗sem 7→p
}{

(∃v. (0≤v≤n)∩(p 7→v∗d v/n7→))∗d 1/n7→ ∗sem 7→p
}{

d
1/n7→ ∗sem 7→p

}
Just like the mutex unlock operations (from Sec. 6.5.2), the semaphore V operation does

not make any check. From the precondition, we know that the value v of the semaphore

is less than n (we already have 1/n part of the data), because otherwise there is no initial

209

state that satisfies the separating conjunction of the invariant and the precondition. That

would mean, in practice, that the precondition is false and we would never be able to use

V.

∀p, n, d. V(sem)

(∃v. (0≤v≤n)∩(p 7→v∗d v/n7→)) `{
d

1/n7→ ∗sem 7→p
}

atomic{
(∃v. (0≤v≤n)∩(p 7→v∗d v/n7→))∗d 1/n7→ ∗sem 7→p

}{
(∃v. (0≤v<n)∩(p 7→v∗d (v+1)/n7→))∗sem 7→p

}
[sem] := [sem]+1{

(∃v. (0≤v<n)∩(p 7→(v+1)∗d (v+1)/n7→))∗sem 7→p
}{

(∃v. (0≤v≤n)∩(p 7→v∗d v/n7→))∗sem 7→p
}{

sem 7→p
}

7.4.2 Dekker’s Algorithm

Dekker’s algorithm is a primitive synchronization algorithm that implements mutual ex-

clusion between two threads. The code for Dekker’s algorithm is shown in Fig. 7.6.

atomic [a1] :=1;
atomic v1 := [a2];
if v1=0 then

/* critical section */ ;
atomic [a1] :=0

‖

atomic [a2] :=1;
atomic v2 := [a1];
if v2=0 then

/* critical section */ ;
atomic [a2] :=0

Figure 7.6: Dekker’s algorithm

In order to verify Dekker’s algorithm, we use two auxiliary variables, cs1 and cs2,

which are used to mark the boundaries of the critical section. cs1 is 1 when the left hand

side thread is inside the critical section, and 0 otherwise; cs2 works analogously.

210

The invariant for Dekker’s algorithm is defined below:

dekkers(I)
def
= ∃v1, v2, c1, c2. cs1

.57→c1∗cs2 .57→c2

∗ ((c1 6=0∪c2 6=0)∩Emp∪(c1 =0∩c2 =0)∩I)

∗ (∃p. a1 .57→p∗p .57→v1)∗(∃p. a2 .57→p∗p .57→v2)

∩ (v1 =0∩c1 =0∪v1 =1)∩(v2 =0∩c2 =0∪v2 =1)

The invariant ensures that the memory locations pointed by a1 and a2 are either 0 or

1. Also, it ensures that cs1 is always 0 when the memory location pointed by a1 is 0;

similarly, it ensures that cs2 is always 0 when the memory location pointed by a2 is 0.

The ownership of shared memory described by I depends on the values cs1 and cs2. If

they are both 0, it means that none of them is in the critical section, therefore I is part of the

invariant. If any of them is 1, it means that one of them is in the critical section and own

the shared memory protected by I . We use partial permissions to protect the variables

cs1, a1 and the memory location pointed by a1 from being written by the right hand side

thread; and, conversely, to protect the variables cs2, a2 and the memory location pointed

by a2 from being written by the left hand side thread.

Now we are ready to lay down the proof for Dekker’s algorithm, which is shown

below

211

∀I. dekkers(I) `{
(∃p. a1 .57→p∗p .57→0)∗v1 7→ ∗cs1 .57→0∗(∃p. a2 .57→p∗p .57→0)∗v2 7→ ∗cs2 .57→0

}{
∃p. a1 .57→p∗p .57→0∗v1 7→ ∗cs1 .57→0

}
atomic [a1] :=1;{
∃p. a1 .57→p∗p .57→1∗v1 7→ ∗cs1 .57→0

}
atomic (v1 := [a2]; cs1 :=−(v1−1));{
∃p. a1 .57→p∗p .57→1∗(v1 7→1∗cs1 .57→0)

∪(v1 7→0∗cs1 .57→1∗I)

}
if v1=0 then{
∃p. a1 .57→p∗p .57→1∗v1 7→ ∗cs1 .57→1∗I

}
/* critical section */ ;{
∃p. a1 .57→p∗p .57→1∗v1 7→ ∗cs1 .57→1∗I

}{
∃p. a1 .57→p∗p .57→1∗v1 7→
∗ cs1 .57→0∪(cs1 .57→1∗I)

}
atomic ([a1] :=0; cs1 :=0){
∃p. a1 .57→p∗p .57→0∗v1 7→ ∗cs1 .57→0

}

‖

{
∃p. a2 .57→p∗p .57→0∗v2 7→ ∗cs2 .57→0

}
atomic [a2] :=1;{
∃p. a2 .57→p∗p .57→1∗v2 7→ ∗cs2 .57→0

}
atomic (v2 := [a1]; cs2 :=−(v2−1));{
∃p. a2 .57→p∗p .57→1∗(v2 7→1∗cs2 .57→0)

∪(v2 7→0∗cs2 .57→1∗I)

}
if v2=0 then{
∃p. a2 .57→p∗p .57→1∗v2 7→ ∗cs2 .57→1∗I

}
/* critical section */ ;{
∃p. a2 .57→p∗p .57→1∗v2 7→ ∗cs2 .57→1∗I

}{
∃p. a2 .57→p∗p .57→1∗v2 7→
∗ cs2 .57→0∪(cs2 .57→1∗I)

}
atomic ([a2] :=0; cs2 :=0){
∃p. a2 .57→p∗p .57→0∗v2 7→ ∗cs2 .57→0

}{
(∃p. a1 .57→p∗p .57→0)∗v1 7→ ∗cs1 .57→0∗(∃p. a2 .57→p∗p .57→0)∗v2 7→ ∗cs2 .57→0

}
7.4.3 Two-Lock Queue

The code displayed in Fig. 7.7 implements the two-lock concurrent queue algorithm pre-

sented by Michael and Scott [55]. The data structures are simple. The queue is a quadruple

composed, in displacement order, by a mutex protecting the head pointer, a mutex pro-

tecting the tail pointer, the head pointer and the tail pointer. A node is a pair composed

by value and next pointer fields.

The algorithm keeps a queue with two pointers, one to the head and the other to the

tail. To simplify operations, an extra node is always present in the queue. Whenever the

queue is empty, the next field of that node is nil. Otherwise, if the queue is non-empty, it

points to the node holding the first value, and the next field of the last node is nil.

Concurrent insertions synchronize through a mutex. In the same way, concurrent dele-

tions synchronize through another mutex. A concurrent insertion can happen without

synchronization. However, enqueue updates the next field of the last node, and dequeue

checks the next field of the first node to tell whether the queue is empty of not. When

the queue is empty, both ends point to a single node, and both operations will refer to the

same next field. To avoid races, we need to wrap those two operations inside an atomic

212

block, as can be seen in Fig. 7.7.

INIT(queue)
local node
〈node :=cons(0, 0)〉;
〈queue :=cons(0, 0, node, node)〉

ENQUEUE(queue, value)
local node, tail, mutex
〈node :=cons(value, 0)〉;
mutex :=queue+1;
LOCK(mutex);
tail := [queue+3];
atomic [tail+1] :=node;
[queue+3] :=node;
UNLOCK(mutex)

DEQUEUE(queue, value, result)
local node, head, mutex
mutex :=queue;
LOCK(mutex);
head := [queue+2];
atomic node := [head+1];
if node=0 then
UNLOCK(mutex);
result :=0

else
value := [node];
[queue+2] :=node;
UNLOCK(mutex);
〈dispose(head, 2)〉;
result :=1

Figure 7.7: Two-lock concurrent queue

In order to verify the two-lock queue, we add two extra fields to the queue record,

which are auxiliary for the proof and are not read by the code. Those fields are supposed

to contain the most current head and and tail pointers even when the queue is being in

the middle of an update and in an inconsistent state.

In order to describe a two-lock queue, we use the following definitions (we will reuse

the mutex description and proofs from Sec. 6.5.2).

twolock(q)
def
= ∃h, t, n. (q+4) .57→(h, t)∗listn(h+1, t+1)∗(t+1) 7→0

∗mux(q, (q+2) 7→h∗(q+4) .57→h∗h 7→)

∗mux(q+1, (q+3) 7→ t∗(q+5) .57→ t)

listn(h, t)
def
=

h = t∩Emp when n = 0

∃p. p 6= 0∩h 7→p∗p 7→ ∗listn−1(p+1, t) when n > 0

The twolock(q) is defined in terms of two mutexes. When the mutexes are not owned, the

queue has six fields: head mutex, tail mutex, head, tail, head mirror, and tail mirror. Both

mutexes will have value 0, both the head and head mirror point to the first node, and both

213

tail and tail mirror point to the last node. There are n + 1 nodes which we define as the

head cell of the first node, a n-length ragged list of pointer and values, and finally the next

pointer field of the last node.

When the tail pointer mutex is locked (by enqueue) the tail pointer becomes private

memory. When the head pointer mutex is locked (by dequeue) both the head pointer

and the value field of the cell it points to become private memory. In both cases, the

tail/head pointer mirror also become available as shared read only; but that is used only

by the proof to maintain coherence between the shared memory invariant and the private

assertions. We use partial permissions to achieve that.

We are now ready to present the proof, starting with the init routine which creates a

two lock queue in the private memory.

INIT(queue)
local node
Emp `{

queue 7→ ∗node 7→
}

〈node :=cons(0, 0)〉;{
queue 7→ ∗(∃p. node 7→p∗p 7→(0, 0))

}
queue :=cons(0, 0, node, node, node, node){
∃q, p. queue 7→q∗node 7→p∗p 7→(0, 0)∗q 7→(0, 0, p, p, p, p)

}{
∃q. queue 7→q∗node 7→ ∗twolock(q)

}
Next we present the verification of the enqueue operation. The interesting thing about

the proof is that lock and unlock just get exclusive access to the list tail. It is actually the

atomic write that performs the enqueueing of the new node. Just after that operation the

tail pointer mirror points to the new node while tail pointer still points to the previous

node, and is updated before the unlock. The question is what if, concurrently, there is a

dequeue at that point? As we know there is always one node in the queue, and no one

else is enqueueing (we have the lock) so the tail pointer mirror is always valid.

214

∀q, v. ENQUEUE(queue, val)
local node, tail, mux
twolock(q) `{

queue 7→q∗val 7→v∗node 7→ ∗tail 7→ ∗mux 7→
}

〈node :=cons(val, 0)〉;{
∃p. queue 7→q∗val 7→v∗node 7→p∗tail 7→ ∗mux 7→ ∗p 7→(v, 0)

}
mux :=queue+1;{
∃p. queue 7→q∗val 7→v∗node 7→p∗tail 7→ ∗mux 7→(q+1)∗p 7→(v, 0)

}
[q+1, ∃t. (q+3) 7→ t∗(q+5) .57→ t] LOCK(mux);{
∃p. queue 7→q∗val 7→v∗node 7→p∗tail 7→ ∗mux 7→(q+1)∗p 7→(v, 0)

∗ (∃t. (q+3) 7→ t∗(q+5) .57→ t)

}
tail := [queue+3];{
∃p, t. queue 7→q∗val 7→v∗node 7→p∗tail 7→ t∗mux 7→(q+1)∗p 7→(v, 0)

∗ (q+3) 7→ t∗(q+5) .57→ t

}
atomic ([tail+1] :=node; [queue+5] :=node);{
∃p, t. queue 7→q∗val 7→v∗node 7→p∗tail 7→ t∗mux 7→(q+1)

∗ (q+3) 7→ t∗(q+5) .57→p

}
[queue+3] :=node;{
∃p. queue 7→q∗val 7→v∗node 7→p∗tail 7→ ∗mux 7→(q+1)

∗ (q+3) 7→p∗(q+5) .57→p

}
[q+1, ∃t. (q+3) 7→ t∗(q+5) .57→ t] UNLOCK(mux){
queue 7→q∗val 7→v∗node 7→ ∗tail 7→ ∗mux 7→

}
The dequeue operation follows the same ideas as enqueue. Similarly, the lock and

unlock do not actually perform the dequeue operation. The node is acquired in the atomic

block.

215

∀q. DEQUEUE(queue, val, res)
local node, head, mux
twolock(q) `{

queue 7→q∗val 7→ ∗res 7→ ∗node 7→ ∗head 7→ ∗mux 7→
}

mux :=queue;{
queue 7→q∗val 7→ ∗res 7→ ∗node 7→ ∗head 7→ ∗mux 7→q

}
[q,∃h. (q+2) 7→h∗(q+4) .57→h∗h 7→] LOCK(mux);{
queue 7→q∗val 7→ ∗res 7→ ∗node 7→ ∗head 7→ ∗mux 7→q

∗ (∃h. (q+2) 7→h∗(q+4) .57→h∗h 7→)

}
head := [queue+2];{
∃h. queue 7→q∗val 7→ ∗res 7→ ∗node 7→ ∗head 7→h∗mux 7→q

∗ (q+2) 7→h∗(q+4) .57→h∗h 7→

}
atomic (node := [head+1]; if node 6=0 then [queue+4] :=node);{
∃h. queue 7→q∗val 7→ ∗res 7→ ∗head 7→h∗mux 7→q∗(q+2) 7→h∗h 7→
∗ ((node 7→0∗(q+4) .57→h)∪(∃n 6=0. node 7→n∗(q+4) .57→n∗(h+1) 7→n∗n 7→))

}
if node=0 then{
∃h. queue 7→q∗val 7→ ∗res 7→ ∗head 7→h∗mux 7→q∗(q+2) 7→h∗h 7→
∗ node 7→0∗(q+4) .57→h

}
[q,∃h. (q+2) 7→h∗(q+4) .57→h∗h 7→] UNLOCK(mux);{
queue 7→q∗val 7→ ∗res 7→ ∗node 7→ ∗head 7→ ∗mux 7→

}
res :=0{
queue 7→q∗val 7→ ∗res 7→0∗node 7→ ∗head 7→ ∗mux 7→

}
else{
∃h, n. queue 7→q∗val 7→ ∗res 7→ ∗head 7→h∗mux 7→q∗(q+2) 7→h∗h 7→
∗ node 7→n∗(q+4) .57→n∗(h+1) 7→n∗n 7→

}
val := [node];{
∃h, n, v. queue 7→q∗val 7→v∗res 7→ ∗head 7→h∗mux 7→q∗(q+2) 7→h∗h 7→
∗ node 7→n∗(q+4) .57→n∗(h+1) 7→n∗n 7→v

}
[queue+2] :=node;{
∃h, n, v. queue 7→q∗val 7→v∗res 7→ ∗head 7→h∗mux 7→q∗(q+2) 7→n∗h 7→
∗ node 7→n∗(q+4) .57→n∗(h+1) 7→n∗n 7→v

}
[q,∃h. (q+2) 7→h∗(q+4) .57→h∗h 7→] UNLOCK(mux);{
∃h, n. queue 7→q∗val 7→ ∗res 7→ ∗head 7→h∗mux 7→q∗h 7→
∗ node 7→n∗(h+1) 7→n

}
〈dispose(head, 2)〉;{
queue 7→q∗val 7→ ∗res 7→ ∗head 7→ ∗mux 7→ ∗node 7→

}
res :=1{
queue 7→q∗val 7→ ∗res 7→1∗head 7→ ∗mux 7→ ∗node 7→

}{
queue 7→q∗val 7→ ∗res 7→ ∗head 7→ ∗mux 7→ ∗node 7→

}

216

Chapter 8

Separated Assume-Guarantee Logic

In this chapter, we present the Separated Assume-Guarantee Logic (SAGL) [30, 71], a logic

for concurrent programming that combines the idea of memory separation from CSL with

assume-guarantee reasoning [48].

8.1 Assertion Language

We present SAGL using the same assertion language from Sec. 6.1, but we define some

extensions. As presented earlier (in Fig. 6.1), assertions are sets of states in the meta-logic.

We extend the notion of assertion to a pair of states. The definition of a binary assertion is

shown in Fig. 8.1. As for assertions, set operators also apply to binary assertions (e.g. ∩

for conjunction,∪ for disjunction,⊆ for implication, etc). Since we use binary assertions as

a way to represent state transitions, we also call them actions.

(BinaryAssertion) A,G ⊆ State× State

Figure 8.1: Binary assertions

In Fig. 8.2, we define common operations and constants related to binary assertions.

To create a binary assertion from a pair of assertions we take the cartesian product P ×Q.

We use the notation P 2, to describe the cartesian product of P and itself. We use the

notation P ◦Q to describe the set of states for which the image from G is in P . We also

217

define a separating conjunction for binary assertions, and the identity binary assertion.

P ×Q def
= {(σ, σ′) | σ∈P ∧ σ′∈Q}

P 2 def
= P × P

P ◦G def
= {σ | ∀σ′. (σ, σ′)∈G → σ′∈P}

G1∗G2
def
= {(σ1] σ2, σ

′
1] σ′2) | (σ1, σ

′
1)∈G1 ∧ (σ2, σ

′
2)∈G2}

Id
def
= {(σ, σ)}

Figure 8.2: Auxiliary binary assertion definitions

8.2 Inference Rules

The inference rules for SAGL are shown in Figure 8.3. Informally, the judgment A,G `

{Ps, P} c {Qs, Q} says that the state can be split implicitly into a shared part and a private

part. The private part can be accessed only by c. P and Q are pre- and post-conditions for

the private state. The shared part can be accessed by both c, when within atomic blocks,

and its environment. Ps and Qs are pre- and post-conditions for the shared state. The

binary assertions A and G are used to coordinate shared memory access using an assume-

guarantee methodology.

Assume-Guarantee reasoning is a modular way of reasoning about a shared resource.

In Assume-Guarantee, each participant has a requirement over the shared resource, which

is not know globally. In order to maintain its requirement, the participant has to pub-

lish an assumption about the resource, for which the requirement is stable, i.e. does not

change. On the other hand, a participant might want to modify the shared resource. It

is possible to do that as long as the participant publishes a guarantee about the changes.

Having all participants publishing their assumptions and guarantees, we can combine

them as long as the guarantee of every participant is stronger than the assumptions of the

others. A and G are c’s assumption and guarantee, respectively.

The first six rules are sequential rules adorned with assumptions, guarantees, and

assertions over the shared memory which do not play any important role in these rules.

As for CSL, we have a special rule ACTION which must be used to verify allocation and

218

Emp2,Emp2 `{Emp, Q◦Jν :=eK} ν :=e {Emp, Q}
(ASSIGNMENT)

Emp2,Emp2 `{Emp, Q◦JaK} 〈a〉 {Emp, Q}
(ACTION)

A,G `{Ps, P} c1 {P ′s, P ′} A,G `{P ′s, P ′} c2 {Qs, Q}
A,G `{Ps, P} c1; c2 {Qs, Q}

(SEQUENTIAL)

Emp2,Emp2 `{Emp, P} skip {Emp, P}
(SKIP)

A,G `{Ps, P∩bbc} c1 {Qs, Q}
P ⊆bbc∪b¬bc A,G `{Ps, P∩b¬bc} c2 {Qs, Q}
A,G `{Ps, P} if b then c1 else c2 {Qs, Q}

(CONDITIONAL)

P ⊆bbc∪b¬bc A,G `{Ps, P∩bbc} c {Ps, P}
A,G `{Ps, P}while b do c {Ps, P∩b¬bc}

(LOOP)

A1, G∩A2 `{Ps1, P1} c1 {Qs1, Q1} Ps1⊆Ps1◦A1

A2, G∩A1 `{Ps2, P2} c2 {Qs2, Q2} Ps2⊆Ps2◦A2

A1∩A2, G `{Ps1∩Ps2, P1∗P2} c1‖c2 {Qs1∩Qs2, Q1∗Q2}
(PARALLEL)

Emp2,Emp2 `{Emp, Ps∗P} c {Emp, Qs∗Q} Ps ×Qs⊆G Qs⊆Qs◦A
A,G `{Ps, P} atomic c {Qs, Q}

(ATOMIC)

A′, G′ `{P ′s, P ′} c {Q′s, Q′}
A⊆A′ Ps⊆P ′s P ⊆P ′ G′⊆G Q′s⊆Qs Q′⊆Q

A,G `{Ps, P} c {Qs, Q}
(CONSEQUENCE)

∀x. A,G `{Ps,P(x)} c {Qs,Q(x)}
A,G `{Ps,∃x. P(x)} c {Qs,∃x. Q(x)}

(EXISTENTIAL)

A,G `{Ps, P} c {Qs, Q}
I is precise or img(G) and dom(A) coincide

I2∗A, I2∗G `{I∗Ps, P} c {I∗Qs, Q}
(FRAME)

A,G `{Ps, P} c {Qs, Q}
Emp2,Emp2 `{Emp, Ps∗P} c {Emp, Qs∗Q}

(RESOURCE)

img(G) is precise
A,G `{Ps, P1} c {Qs, Q1} A,G `{Ps, P2} c {Qs, Q2}

A,G `{Ps, P1∩P2} c {Qs, Q1∩Q2}
(CONJUNCTION)

A,G `{Ps, P1} c {Qs, Q1} A,G `{Ps, P2} c {Qs, Q2}
A,G `{Ps, P1∪P2} c {Qs, Q1∪Q2}

(DISJUNCTION)

Figure 8.3: SAGL inference rules

219

deallocation. Regular memory accesses can be verified using the ASSIGNMENT instead.

They alter private memory solely. Sequential composition, conditional commands, and

looping are just composition rules very similar to Hoare logic.

The PARALLEL rule set constraints over parallel composition. As we know, the state in

SAGL is separated into shared and private parts. For parallel composition, we can split

the private part in two, one for each thread. The shared state is of course shared, but in

a coordinated way. The shared state must belong to a conjunction of the pre-conditions

of the threads. Each precondition must be stable regarding the respective assumption (

Ps1 ⊆ Ps2 ◦A1 and Ps2 ⊆ Ps2 ◦A2). Furthermore, each thread must be verified using a

strengthened guarantee that is compatible with the other thread’s assumption (G∩A2 for

c1 and G∩A2 for c2).

In order to fully understand SAGL, we must also take a look ate the ATOMIC rule. As

in CSL, we also require using an atomic block to modify shared memory. In the same

fashion, during the access we get a hold on the shared memory portion (Ps) which must

be reinstated afterwards (Qs). During the transition not only the shared memory might

change but also its description, from Ps to Qs. But there are two constraints: first, after

the shared memory access the changes must satisfy the thread’s guarantee (Ps × Qs⊆G

), and the new assertion over the shared memory must be stable regarding the thread’s

assumption (QS⊆Qs◦A). As in CSL, during shared memory access, ownership transfer

may occur.

SAGL also provide FRAME and RESOURCE rules. The frame rule allows abstracting

away part of the shared memory. The resource rule allows moving some memory from

private to shared. There are some peculiarities about these two rules. The FRAME rule

requires I to be precise, or, alternatively, img(G) and dom(A) to coincide. This required

in order to establish the stability of I ∗Ps with regard to I2 ∗A given the stability of Ps

with regard to A (See Lemma 8.10). The RESOURCE rule for SAGL is limited. In order to

promote memory from private to shared, you must have no shared memory. This means

that you can only create shared memory from private memory once you abstract away the

shared memory you had. A version of SAGL with a complete resource rule exists [29], but

220

requires carrying an extra precise invariant to “mark” the boundaries of shared memory.

It is interesting that at least we can support this FRAME rule without the need of a heavier

framework. Because of this limitation of the RESOURCE rule we cannot derive a flexible

frame rule for private memory, as we did for CSL. We can support such rule which is

presented in Sec. 8.4.

8.3 Soundness

In this section, we present the soundness of SAGL with regard to the semantics of Chap-

ter 3. It follows a similar structure of Sec. 6.3

8.3.1 With Regard to the Interleaved Semantics

In this section, we present the soundness proof with regard to the interleaved semantics

from Sec. 3.7. The proof is structured around the following definition:

Definition 8.1. A,G, Ps, Qs |= 〈T, σ〉B0Q always holds; A,G, Ps, Qs |= 〈T, σ〉Bn+1Q holds

if, and only if, the following are true:

1. T is either 0- or 1-atomic

2. ¬〈T, σ〉 7−→ abort

3. ¬〈T, σ〉 7−→ race

4. If 〈T, σ〉 7−→ 〈T ′, σ′〉, then

(a) If both T and T ′ are 1-atomic, then A,G, Ps, Qs |= 〈T ′, σ′〉Bn Q

(b) If both T and T ′ are 0-atomic, then dom(σ) = dom(σ′) and A,G, Ps, Qs |=

〈T ′, σ′〉Bn Q

(c) If T is 0-atomic and T ′ is 1-atomic, then for all σ1 and σ2, such that σ2 = σ1] σ′

and σ1∈Ps, we have A,G, Ps, Qs |= 〈T ′, σ2〉Bn Q

221

(d) If T is 1-atomic and T ′ is 0-atomic, then for all σ′′, such that σ′′ ∈ Ps, there exists

P ′s, where Ps × P ′s⊆G and P ′s⊆P ′s◦A, and a pair of states, σ1 and σ2, such that

σ′ = σ1] σ2, σ1∈P ′s, and A,G, P ′s, Qs |= 〈T ′, σ2〉Bn Q

5. If T = skip, then Ps⊆Qs and σ∈Q

We define A,G, Ps, Qs |= 〈T, σ〉B Q as ∀n. A,G, Ps, Qs |= 〈T, σ〉Bn Q.

The sixtuple A,G, Ps, Qs |= 〈T, σ〉B Q ensures that each step performed by a program

configuration has at most one ongoing atomic block execution (item 1), does not abort

(item 2), and is not at a race condition (item 3). Furthermore, if it reaches a final configu-

ration 〈skip, σ′〉, then σ′ must satisfy post-condition Q, and shared pre-condition Ps must

imply shared post-condition Qs (item 5). This definition also manages proper access to

private memory (item 4). If the current configuration has an ongoing atomic block exe-

cution (item (a)), then it already has a hold of the shared memory, and it can perform the

step with out constraints. If the current configuration does not have an ongoing atomic

block execution (item (b)), then no memory allocation or deallocation must happen to

avoid a race-condition with the environment, which may have an ongoing atomic block

execution performing memory allocation or deallocation. This constraint is enforced by

the condition dom(σ) = dom(σ′). If the current program configuration is starting to ex-

ecute a top-level atomic block (item (c)), then it must get a hold on the shared memory,

assuming it satisfies Ps. If the current program configuration is completing the execution

of a top-level atomic block (item (d)), then it must return the shared memory ensuring

that it satisfies some P ′s that together with Ps implyG and is stable with regard toA (same

constraints of the ATOMIC rule).

We present the soundness proof in three sections, following the order:

1. Auxiliary lemmas for SAGL sixtuples, as in Def. 8.1

2. Semantic rules, each corresponding to a syntactic rule from Fig. 8.3

3. Top level soundness theorem

222

Auxiliary lemmas. Given that programs may diverge, and since A,G, Ps, Qs |= 〈T, σ〉B

Q is defined in terms of itself, we used indexing to ensure this definition is well-founded.

Lemma 8.2 allows greater flexibility when dealing with indexing.

Lemma 8.2. If A,G, Ps, Qs |= 〈T, σ〉Bn1 Q, and n2 ≤ n1, then A,G, Ps, Qs |= 〈T, σ〉Bn2 Q

Proof. By induction over n1. If n1 = 0, then n2 = 0 as well, by Def. 8.1, we conclude. If

n1 > 0, by Def. 8.1, assuming (a) A,G, Ps, Qs |= 〈T, σ〉 Bn1 Q and (b) n2 ≤ n1, we have 5

cases:

• From (a), by Def. 8.1 (item 1), we know that T is 0- or 1-atomic

• From (a), by Def. 8.1 (item 2), we know that 〈T, σ〉 7−→ abort is false

• From (a), by Def. 8.1 (item 3), we know that 〈T, σ〉 7−→ race is false

• If (c) 〈T, σ〉 7−→ 〈T ′, σ′〉, then we have 4 cases:

– If both T and T ′ are 1-atomic, we need to show thatA,G, Ps, Qs |= 〈T ′, σ′〉B(n2−1)

Q. From (a) and (c), by Def. 8.1 (item 4.a), we know that (d) A,G, Ps, Qs |=

〈T ′, σ′〉B(n1−1) Q. Trivially, from (b), we know that (e) n2−1 ≤ n1−1. From (d)

and (e), by the induction hypothesis, we conclude

– If both T and T ′ are 0-atomic, we need to show that dom(σ) = dom(σ′) and

A,G, Ps, Qs |= 〈T ′, σ′〉 B(n2−1) Q. From (a) and (c), by Def. 8.1 (item 4.b),

we know already that dom(σ) = dom(σ′), and also that (d) A,G, Ps, Qs |=

〈T ′, σ′〉B(n1−1) Q. Trivially, from (b), we know that (e) n2−1 ≤ n1−1. From (d)

and (e), by the induction hypothesis, we conclude

– If T is 0-atomic and T ′ is 1-atomic, we need to show that for all σ1 and σ2, such

that (d) σ2 = σ1] σ′ and (e) σ1∈Ps, we have A,G, Ps, Qs |= 〈T ′, σ2〉 B(n2−1) Q.

From (a), (c), (d), and (e), by Def. 8.1 (item 4.c), we know that (f) A,G, Ps, Qs |=

〈T ′, σ2〉B(n1−1) Q. Trivially, from (b), we know that (g) n2−1 ≤ n1−1. From (f)

and (g), by the induction hypothesis, we conclude

223

– If T is 1-atomic and T ′ is 0-atomic, we need to show that for all σ′′, such that (d)

σ′′∈Ps, there exists P ′s, where Ps × P ′s⊆G and P ′s⊆P ′s◦A, and a pair of states,

σ1 and σ2, such that σ′ = σ1] σ2, σ1∈P ′s, and A,G, P ′s, Qs |= 〈T ′, σ2〉B(n2−1) Q.

From (a), (c), and (d), by Def. 8.1 (item 4.d), we know there exists P ′′s , where (e)

Ps × P ′′s ⊆G and (f) P ′′s ⊆P ′′s ◦A, and σ′1 and σ′2, such that (g) σ′ = σ′1] σ′2, (h)

σ′1 ∈P ′′s , and (i) A,G, P ′′s , Qs |= 〈T ′, σ′2〉 B(n1−1) Q. Trivially, from (b), we know

that (j) n2−1 ≤ n1−1. From (i) and (j), by the induction hypothesis, we have

(h) A,G, P ′′s , Qs |= 〈T ′, σ′2〉B(n2−1)Q. Instantiating the goal with P ′′s , σ′1, and σ′2,

from (e), (f), (g), (h), and (i), we conclude

• We assume (c) T = skip. From (a) and (c), by Def. 8.1 (item 5), we know that Ps⊆Qs

and σ∈Q, and we conclude

The following lemma allows the strengthening of A and Ps, as well as the weakening

of G, Qs, and Q in a SAGL sixtuple.

Lemma 8.3. If A,G, Ps, Qs |= 〈T, σ〉 Bn Q, A′ ⊆A, G⊆G′, P ′s ⊆ Ps, Qs ⊆Q′s, and Q⊆Q′,

then A′, G′, P ′s, Q′s |= 〈T, σ〉Bn Q′

Proof. By induction over n. If n = 0, by Def. 8.1, we conclude. If n > 0, by Def. 8.1,

assuming (a) A,G, Ps, Qs |= 〈T, σ〉Bn Q, (b) A′⊆A, (c) G⊆G′, (d) P ′s⊆Ps, (e) Qs⊆Q′s, and

(f) Q⊆Q′, we have 5 cases:

• From (a), by Def. 8.1 (item 1), we know that T is 0- or 1-atomic

• From (a), by Def. 8.1 (item 2), we know that 〈T, σ〉 7−→ abort is false

• From (a), by Def. 8.1 (item 3), we know that 〈T, σ〉 7−→ race is false

• If (g) 〈T, σ〉 7−→ 〈T ′, σ′〉, then we have 4 cases:

– If both T and T ′ are 1-atomic, we need to show thatA′, G′, P ′s, Q′s |= 〈T ′, σ′〉Bn−1

Q′. From (a) and (g), by Def. 8.1 (item 4.a), we know that (h) A,G, Ps, Qs |=

〈T ′, σ′〉 Bn−1 Q. From (b), (c), (d), (e), (f), and (h), by the induction hypothesis,

we conclude

224

– If both T and T ′ are 0-atomic, we need to show that dom(σ) = dom(σ′) and

A′, G′, P ′s, Q
′
s |= 〈T ′, σ′〉 Bn−1 Q

′. From (a) and (g), by Def. 8.1 (item 4.b), we

know already that dom(σ) = dom(σ′), and also that

(h) A,G, Ps, Qs |= 〈T ′, σ′〉 Bn−1 Q. From (b), (c), (d), (e), (f), and (h), by the

induction hypothesis, we conclude

– If T is 0-atomic and T ′ is 1-atomic, we need to show that for all σ1 and σ2, such

that (h) σ2 = σ1] σ′ and (i) σ1 ∈P ′s, we have A′, G′, P ′s, Q′s |= 〈T ′, σ2〉 Bn−1 Q
′.

From (i), and (d), we have (j) σ1∈Ps. From (a), (g), (h), and (j), by Def. 8.1 (item

4.c), we know that (h) A,G, Ps, Qs |= 〈T ′, σ2〉 Bn−1 Q. From (b), (c), (d), (e), (f),

and (h), by the induction hypothesis, we conclude

– If T is 1-atomic and T ′ is 0-atomic, we need to show that for all σ′′, such that (h)

σ′′∈P ′s, there exists P ′′s , where P ′s×P ′′s ⊆G′ and P ′′s ⊆P ′′s ◦A′, and a pair of states,

σ1 and σ2, such that σ′ = σ1] σ2, σ1∈P ′′s , and A′, G′, P ′′s , Q′s |= 〈T ′, σ2〉Bn−1 Q
′.

From (h), and (d), we have (i) σ′′ ∈ Ps. From (a), (g), and (i), by Def. 8.1 (item

4.d), we know there exists P ′′′s , where (j) Ps × P ′′′s ⊆ G and (k) P ′′′s ⊆ P ′′′s ◦A,

and σ′1 and σ′2, such that (l) σ′ = σ′1] σ′2, (m) σ′1 ∈P ′′′s , and (n) A,G, P ′′′s , Qs |=

〈T ′, σ′2〉Bn−1 Q. From (j), (d), and (c), we have (o) P ′s × P ′′′s ⊆G′. From (k), and

(b), we have (p) P ′′′s ⊆ P ′′′s ◦A′. From (b), (c), (e), (f), and (n), by the induction

hypothesis, we have (q)A′, G′, P ′′′s , Q′s |= 〈T ′, σ′2〉Bn−1Q
′. Instantiating the goal

with P ′′′s , σ′1, and σ′2, from (o), (p), (l), (m), and (q), we conclude

• We assume (g) T = skip. From (a) and (g), by Def. 8.1 (item 5), we know that (h)

Ps⊆Qs and (i) σ∈Q. From (d), (e), and (h), we know that (j) P ′s⊆Q′s. From (f) and

(i), we know that (k) σ∈Q′. From (j) and (k), we conclude

We can construct a SAGL sixtuple from skip using the following lemma.

Lemma 8.4. If σ∈Q, then A,G,Qs, Qs |= 〈skip, σ〉Bn Q

Proof. If n = 0, by Def. 8.1, we conclude. If n > 0, by Def. 8.1, we have 5 cases:

• By Def. 3.1, we know that skip is 0-atomic

225

• From the semantics, we know that 〈skip, σ〉 7−→ abort is false

• From the semantics, we know that 〈skip, σ〉 7−→ race is false

• From the semantics, we know that 〈skip, σ〉 7−→ 〈T ′, σ′〉 is false

• Since skip = skip, Qs⊆Qs, and σ∈Q, we conclude

The following lemma is used for sequential composition of sixtuples.

Lemma 8.5. If A,G, Ps, P ′s |= 〈T, σ〉Bn P ′, and, for all σ′∈P ′, we have

A,G, P ′s, Qs |= 〈c′, σ′〉Bn Q, then

1. If T = c, then A,G, Ps, Qs |= 〈c; c′, σ〉Bn Q

2. If T = 〈〈T1, T2 〉〉pc, and 〈〈T1, T2 〉〉pc is 0- or 1-atomic,

then A,G, Ps, Qs |= 〈〈〈T1, T2 〉〉p(c; c′), σ〉Bn Q

3. If T = 〈〈T ′ 〉〉ac, then A,G, Ps, Qs |= 〈〈〈T ′ 〉〉a(c; c′), σ〉Bn Q

Proof. By induction over n. If n = 0, by Def. 8.1, we conclude. If n > 0, we assume (a)

A,G, Ps, P
′
s |= 〈T, σ〉Bn P ′ and (b) for all σ′∈P ′, we have A,G, P ′s, Qs |= 〈c′, σ′〉Bn Q. We

establish (c) for all σ′∈P ′, we have A,G, P ′s, Qs |= 〈c′, σ′〉Bn−1 Q:

• We assume σ′∈P ′, from (b), using Lemma 8.2, we conclude

Then we consider 3 cases:

• If T = c, then we need to show that A,G, Ps, Qs |= 〈c; c′, σ〉 Bn Q. By Def. 8.1, we

have 5 cases:

– By Def. 3.1, we know that c; c′ is 0-atomic

– From (a), by Def. 8.1 (item 2), we know that (d) 〈c, σ〉 7−→ abort is false. From

(d), and the semantics, we know that 〈c; c′, σ〉 7−→ abort is also false

– From the semantics, we know that 〈c; c′, σ〉 7−→ race is false

– If (d) 〈c; c′, σ〉 7−→ 〈T ′, σ′〉, from the semantics, we have 4 cases:

226

∗ If c = skip, T ′ = c′, and σ′ = σ, since both skip; c′ and c′ are 0-atomic, we

need to show that dom(σ) = dom(σ′), which holds trivially, and

A,G, Ps, Qs |= 〈c′, σ′〉Bn−1 Q. From (a), by Def. 8.1 (item 5), we know that

(e) Ps ⊆ P ′s and (f) σ′ ∈ P ′. From (f) and (c), we have (g) A,G, P ′s, Qs |=

〈c′, σ′〉Bn−1 Q. From (e), and (g), using Lemma 8.3, we conclude

∗ If T ′ = c′′; c′, and (e) 〈c, σ〉 7−→ 〈c′′, σ′〉, given that both c; c′ and c′′; c′

are 0-atomic, we need to show dom(σ) = dom(σ′) and A,G, Ps, Qs |=

〈c′′; c′, σ′〉 Bn−1 Q. From (a) and (e), by Def. 8.1 (item 4.b), we have (f)

dom(σ) = dom(σ′) and (g) A,G, Ps, P ′s |= 〈c′′, σ′〉 Bn−1 P
′. From (g) and

(c), using the induction hypothesis (item 1), we have (h) A,G, Ps, Qs |=

〈c′′; c′, σ′〉Bn−1 Q. From (f) and (h), we conclude

∗ If c = S[c1‖c2], T ′ = 〈〈 c1, c2 〉〉p(S[skip]; c′), and σ′ = σ, since both c; c′ and

〈〈 c1, c2 〉〉p(S[skip]; c′) are 0-atomic, we need to show that dom(σ) = dom(σ′),

which holds trivially, and A,G, Ps, Qs |= 〈〈〈 c1, c2 〉〉p(S[skip]; c′), σ〉Bn−1 Q.

From the semantics, we know that (e) 〈c, σ〉 7−→ 〈〈〈 c1, c2 〉〉p(S[skip]), σ〉.

From (a) and (e), by Def. 8.1 (item 4.b), we know that (f) dom(σ) = dom(σ)

and (g) A,G, Ps, P ′s |= 〈〈〈 c1, c2 〉〉p(S[skip]), σ〉 Bn−1 P
′. From (g) and (c),

using the induction hypothesis (item 2), we conclude

∗ If c = S[atomic c′′], T ′ = 〈〈 c′′ 〉〉a(S[skip]; c′), and σ′ = σ, since c; c′ is 0-

atomic and 〈〈 c′′ 〉〉a(S[skip]; c′) is 1-atomic, we need to show that for all σ1

and σ2, such that (e) σ2 = σ1] σ, and (f) σ1 ∈ Ps, we have A,G, Ps, Qs |=

〈T ′, σ2〉Bn−1 Q. From the semantics, we know that

(g) 〈c, σ〉 7−→ 〈〈〈 c′′ 〉〉a(S[skip]), σ〉. From (a), (g), (e), and (f), by Def. 8.1

(item 4.c), we have (h) A,G, Ps, P ′s |= 〈〈〈 c′′ 〉〉a(S[skip]), σ2〉 Bn−1 P
′. From

(h) and (c), using the induction hypothesis (item 3), we conclude

– We know that c; c′ 6= skip

• If T = 〈〈T1, T2 〉〉pc, and (d) 〈〈T1, T2 〉〉pc is 0- or 1-atomic, then we need to show that

A,G, Ps, Qs |= 〈〈〈T1, T2 〉〉p(c; c′), σ〉Bn Q. By Def. 8.1, we have 5 cases:

227

– From (d), by Def. 3.1, we know that 〈〈T1, T2 〉〉p(c; c′) is 0- or 1-atomic

– From (a), by Def. 6.3 (item 2), we know that (e) 〈〈〈T1, T2 〉〉pc, σ〉 7−→ abort is false.

From (e), and the semantics, we know that 〈〈〈T1, T2 〉〉p(c; c′), σ〉 7−→ abort is also

false

– From (a), by Def. 6.3 (item 3), we know that (e) 〈〈〈T1, T2 〉〉pc, σ〉 7−→ race is false.

From (e), and the semantics, we know that 〈〈〈T1, T2 〉〉p(c; c′), σ〉 7−→ race is also

false

– If (e) 〈〈〈T1, T2 〉〉p(c; c′), σ〉 7−→ 〈T ′, σ′〉, from the semantics, we have 3 cases:

∗ If T1 = skip, T2 = skip, T ′ = c; c′, and σ′ = σ, since both 〈〈 skip, skip 〉〉p(c; c′)

and c; c′ are 0-atomic, we need to show that dom(σ) = dom(σ′), which holds

trivially, and A,G, Ps, Qs |= 〈c; c′, σ〉Bn−1Q. From the semantics, we know

that (f) 〈〈〈 skip, skip 〉〉pc, σ〉 7−→ 〈c, σ〉. From (a) and (f), by Def. 8.1 (item 4.b),

we know that (g) dom(σ) = dom(σ) and (h) A,G, Ps, P ′s |= 〈c, σ〉 Bn−1 P
′.

From (h), (c), by the induction hypothesis (item 1), we conclude

∗ If T ′ = 〈〈T ′1, T2 〉〉p(c; c′), and (f) 〈T1, σ〉 7−→ 〈T ′1, σ′〉, we have 4 cases:

· If both T1 and T ′1 are 1-atomic, we have to show that A,G, Ps, Qs |=

〈〈〈T ′1, T2 〉〉p(c; c′), σ′〉 Bn−1 Q. From (f), and the semantics, we know (g)

〈〈〈T1, T2 〉〉pc, σ〉 7−→ 〈〈〈T ′1, T2 〉〉pc, σ′〉. From (a) and (g), by Def. 8.1 (item

4.a), we know (h) A,G, Ps, P ′s |= 〈〈〈T ′1, T2 〉〉pc, σ′〉 Bn−1 P
′. From (h) and

(c), using the induction hypothesis (item 2), we conclude

· If both T1 and T ′1 are 0-atomic, we have to show that dom(σ) = dom(σ′)

and A,G, Ps, Qs |= 〈〈〈T ′1, T2 〉〉p(c; c′), σ′〉 Bn−1 Q. From (f), and the se-

mantics, we know (g) 〈〈〈T1, T2 〉〉pc, σ〉 7−→ 〈〈〈T ′1, T2 〉〉pc, σ′〉. From (a)

and (g), by Def. 8.1 (item 4.b), we know (h) dom(σ) = dom(σ′) and

(i) A,G, Ps, P ′s |= 〈〈〈T ′1, T2 〉〉pc, σ′〉 Bn−1 P
′. From (i) and (c), using the

induction hypothesis (item 2), we know

(j) A,G, Ps, Qs |= 〈〈〈T ′1, T2 〉〉p(c; c′), σ′〉Bn−1 Q. From (h) and (j), we con-

clude

228

· If T1 is 0-atomic and T ′1 is 1-atomic, we need to show that for all σ1 and

σ2, such that (g) σ2 = σ1] σ′ and (h) σ1 ∈ Ps, we have A,G, Ps, Qs |=

〈〈〈T ′1, T2 〉〉p(c; c′), σ2〉 Bn−1 Q. From (f), and the semantics, we know (i)

〈〈〈T1, T2 〉〉pc, σ〉 7−→ 〈〈〈T ′1, T2 〉〉pc, σ′〉. From (a), (i), (g), and (h), by Def. 8.1

(item 4.c), we know that (j)A,G, Ps, P ′s |= 〈〈〈T ′1, T2 〉〉pc, σ2〉Bn−1P
′. From

(j) and (c), using the induction hypothesis (item 2), we conclude

· If T1 is 1-atomic and T ′1 is 0-atomic, we need to show that for all σ′′, such

that (g) σ′′ ∈ Ps, there exists P ′′s , where Ps × P ′′s ⊆G and P ′′s ⊆ P ′′s ◦A,

and a pair of states, σ1 and σ2, such that σ′ = σ1] σ2, σ1 ∈ P ′′s , and

A,G, P ′′s , Qs |= 〈〈〈T ′1, T2 〉〉p(c; c′), σ2〉Bn−1Q. From (f), and the semantics,

we know (h) 〈〈〈T1, T2 〉〉pc, σ〉 7−→ 〈〈〈T ′1, T2 〉〉pc, σ′〉. From (a), (h), and (g),

by Def. 8.1 (item 4.d), we know there exists P ′′′s , where (i) Ps × P ′′′s ⊆G

and (j) P ′′′s ⊆P ′′′s ◦A, and a pair of states, σ′1 and σ′2, such that (k) σ′ =

σ′1] σ′2, (l) σ′1 ∈ P ′′′s , and (m) A,G, P ′′′s , P ′s |= 〈〈〈T ′1, T2 〉〉pc, σ′2〉 Bn−1 P
′.

From (m) and (c), using the induction hypothesis (item 2), we know

(n) A,G, P ′′′s , Qs |= 〈〈〈T ′1, T2 〉〉p(c; c′), σ′2〉 Bn−1 Q. Instantiating the goal

with P ′′′s , σ′1, and σ′2, from (i), (j), (k), (l), and (n), we conclude

∗ If T ′ = 〈〈T1, T
′
2 〉〉p(c; c′), and (f) 〈T2, σ〉 7−→ 〈T ′2, σ′〉, the proof is symmetric to

the previous case

– We know that 〈〈T1, T2 〉〉p(c; c′) 6= skip

• If T = 〈〈T ′ 〉〉ac, then we need to show that A,G, Ps, Qs |= 〈〈〈T ′ 〉〉a(c; c′), σ〉 Bn Q. By

Def. 6.3, we have 5 cases:

– By Def. 3.1, we know that 〈〈T ′ 〉〉a(c; c′) is 1-atomic

– From (a), by Def. 6.3 (item 2), we know that (d) 〈〈〈T ′ 〉〉ac, σ〉 7−→ abort is false.

From (d), and the semantics, we know that 〈〈〈T ′ 〉〉a(c; c′), σ〉 7−→ abort is also

false

– From (a), by Def. 6.3 (item 3), we know that (d) 〈〈〈T ′ 〉〉ac, σ〉 7−→ race is false.

From (d), and the semantics, we know that 〈〈〈T ′ 〉〉a(c; c′), σ〉 7−→ race is also false

229

– If (d) 〈〈〈T ′ 〉〉a(c; c′), σ〉 7−→ 〈T ′′, σ′〉, from the semantics, we have 2 cases:

∗ If T ′ = skip, T ′′ = c; c′, and σ′ = σ, since 〈〈 skip 〉〉a(c; c′) is 1-atomic and

c; c′ is 0-atomic, we need to show that for all σ′′, such that (e) σ′′∈Ps, there

exists P ′′s , where Ps×P ′′s ⊆G and P ′′s ⊆P ′′s ◦A, and a pair of states, σ1 and σ2,

such that σ′ = σ1] σ2, σ1∈P ′′s , and A,G, P ′′s , Qs |= 〈c; c′, σ2〉Bn−1 Q. From

the semantics, we know that (f) 〈〈〈 skip 〉〉ac, σ〉 7−→ 〈c, σ〉. From (a), (f), and

(e), by Def. 8.1 (item 4.d), we know that exists P ′′′s , where (g) Ps × P ′′′s ⊆G

and (h) P ′′′s ⊆P ′′′s ◦A, and a pair of states, σ′1 and σ′2, such that (i) σ = σ′1]σ′2,

(j) σ′1 ∈ P ′′′s , and (k) A,G, P ′′′s , P ′s |= 〈c, σ′2〉 Bn−1 P
′. From (k), (c), by the

induction hypothesis (item 1), we have (l) A,G, P ′′′s , Qs |= 〈c; c′, σ′2〉Bn−1Q.

Instantiating the goal with P ′′′s , σ′1, and σ′2, from (g), (h), (i), (j), and (l), we

conclude

∗ If T ′′ = 〈〈T ′′′ 〉〉a(c; c′), and (e) 〈T ′, σ〉 7−→ 〈T ′′′, σ′〉, given that both 〈〈T ′ 〉〉a(c; c′)

and 〈〈T ′′′ 〉〉a(c; c′) are 1-atomic, we need to show

A,G, Ps, Qs |= 〈〈〈T ′′′ 〉〉a(c; c′), σ′〉 Bn−1 Q. From (e), and the semantics, we

know (f) 〈〈〈T ′ 〉〉ac, σ〉 7−→ 〈〈〈T ′′′ 〉〉ac, σ′〉. From (a) and (f), by Def. 8.1 (item

4.a), then (g) A,G, Ps, P ′s |= 〈〈〈T ′′′ 〉〉ac, σ′〉 Bn−1 P
′. From (g) and (c), using

the induction hypothesis (item 3), we conclude

– We know that 〈〈T ′ 〉〉a(c; c′) 6= skip

Conditional commands can be introduced using the following lemma.

Lemma 8.6. If A,G, Ps, Qs |= 〈c, σ〉Bn Q, then

1. If σ∈bbc, then A,G, Ps, Qs |= 〈if b then c else c′, σ〉Bn Q

2. If σ∈b¬bc, then A,G, Ps, Qs |= 〈if b then c′ else c, σ〉Bn Q

Proof. From assumption (a) A,G, Ps, Qs |= 〈c, σ〉Bn Q we have 2 cases:

• We assume (b) σ ∈ bbc. If n = 0, by Def. 8.1, we conclude. If n > 0, by Def. 8.1, we

have 5 cases:

230

– By Def. 3.1, we know that (c) if b then c else c′ is 0-atomic

– From the semantics, we know that 〈if b then c else c′, σ〉 7−→ abort is false if

〈if b then c else c′, σ〉 −→ abort is false. From the sequential semantics, we

know 〈if b then c else c′, σ〉 −→ abort is false if there exists z such that JbKσ = z.

From (b), we know JbKσ = true and conclude

– From the semantics, we know that 〈if b then c else c′, σ〉 7−→ race is false

– From the semantics, given (b), we know that 〈if b then c else c′, σ〉 7−→ 〈c, σ〉.

From (c), and since c is 0-atomic, we need to show that dom(σ) = dom(σ) and

A,G, Ps, Qs |= 〈c, σ〉Bn−1 Q. From (a), using Lemma 8.2, we conclude

– We know that if b then c else c′ 6= skip

• We assume (b) σ∈b¬bc. If n = 0, by Def. 8.1, we conclude. If n > 0, by Def. 8.1, we

have 5 cases:

– By Def. 3.1, we know that (c) if b then c′ else c is 0-atomic

– From the semantics, we know that 〈if b then c′ else c, σ〉 7−→ abort is false if

〈if b then c′ else c, σ〉 −→ abort is false. From the sequential semantics, we

know 〈if b then c′ else c, σ〉 −→ abort is false if there exists z such that JbKσ = z.

From (b), we know JbKσ = false and conclude

– From the semantics, we know that 〈if b then c′ else c, σ〉 7−→ race is false

– From the semantics, given (b), we know that 〈if b then c′ else c, σ〉 7−→ 〈c, σ〉.

From (c), and since c is 0-atomic, we need to show that dom(σ) = dom(σ) and

A,G, Ps, Qs |= 〈c, σ〉Bn−1 Q. From (a), using Lemma 8.2, we conclude

– We know that if b then c′ else c 6= skip

A loop command can be introduced using the following lemma.

Lemma 8.7. If P ⊆ bbc∪b¬bc, σ ∈ P , and, for all σ′ ∈ P ∩bbc, we have A,G, Ps, Ps |=

〈c, σ′〉Bn P , then A,G, Ps, Ps |= 〈while b do c, σ〉Bn (P∩b¬bc)

231

Proof. By induction over n. If n = 0, by Def. 8.1, we conclude. If n > 0, by Def. 8.1,

assuming (a) P ⊆bbc∪b¬bc, (b) σ ∈P , and, (c) for all σ′ ∈P ∩bbc, we have A,G, Ps, Ps |=

〈c, σ′〉Bn P , we have 5 cases:

• By Def. 3.1, we know that (d) while b do c is 0-atomic

• From the semantics, we know that 〈while b do c, σ〉 7−→ abort is false

• From the semantics, we know that 〈while b do c, σ〉 7−→ race is false

• From the semantics, 〈while b do c, σ〉 7−→ 〈if b then (c; while b do c) else skip, σ〉.

From (d), and since if b then (c; while b do c) else skip is 0-atomic, we need to show

that dom(σ) = dom(σ) andA,G, Ps, Ps |= 〈if b then (c; while b do c) else skip, σ〉Bn−1

(P∩b¬bc). From (a) and (b), we know (e) σ∈bbc∪b¬bc. From (e), we have two cases:

– We assume (f) σ ∈ bbc. From (b) and (f), we know (g) σ ∈P ∩bbc. We establish

(h) for all σ′∈P∩bbc, we have A,G, Ps, Ps |= 〈c, σ′〉Bn−1 P :

∗ We assume σ′∈P∩bbc, from (c), using Lemma 8.2, we conclude

From (g) and (h), we know (i) A,G, Ps, Ps |= 〈c, σ〉 Bn−1 P . We establish (j) for

all σ′∈P , we have A,G, Ps, Ps |= 〈while b do c, σ′〉Bn−1 (P∩b¬bc):

∗ We assume σ′ ∈ P , with (a) and (h), using the induction hypothesis, we

conclude

From (i) and (j), using Lemma 8.5 (item 1), we get

(k) A,G, Ps, Ps |= 〈c; while b do c, σ〉 Bn−1 (P ∩b¬bc). From (f) and (k), using

Lemma 8.6 (item 1), we conclude

– We assume (f) σ ∈ b¬bc. From (b) and (f), we know (g) σ ∈P ∩b¬bc. From (g),

using Lemma 8.4, we know (h) A,G, Ps, Ps |= 〈skip, σ〉 Bn−1 (P ∩b¬bc). From

(f) and (h), using Lemma 8.6 (item 2), we conclude

• We know that while b do c 6= skip

The following lemma is used for parallel composition of sixtuples.

232

Lemma 8.8. If Ps1⊆Ps1◦A1, Ps2⊆Ps2◦A2, A1, G∩A2, Ps1, Ps2 |= 〈T1, σ1〉 Bn Q1, A2, G∩

A1, Ps2, Qs2 |= 〈T2, σ2〉 Bn Q2, and 〈〈T1, T2 〉〉pskip is 0- or 1-atomic, then A1∩A2, G, Ps1∩

Ps2, Qs1∩Qs2 |= 〈〈〈T1, T2 〉〉pskip, σ1] σ2〉Bn (Q1∗Q2)

Proof. By induction over n. If n = 0, by Def. 8.1, we conclude. If n > 0, by Def. 8.1,

assuming (a) Ps1 ⊆ Ps1 ◦A1, (b) Ps2 ⊆ Ps2 ◦A2, (c) A1, G∩A2, Ps1, Qs1 |= 〈T1, σ1〉 Bn Q1,

(d) A2, G∩A1, Ps2, Qs2 |= 〈T2, σ2〉Bn Q2, and (e) 〈〈T1, T2 〉〉pskip is 0- or 1-atomic, we have 5

cases:

• From (e), we conclude

• From the semantics, we know that 〈〈〈T1, T2 〉〉pskip, σ1] σ2〉 7−→ abort if either:

– 〈T1, σ1] σ2〉 7−→ abort. From (c), by Def. 8.1 (item 2), we know (f) 〈T1, σ1〉 7−→

abort is false. From (f), using Lemma 3.22 (item 1), we conclude

– or, 〈T2, σ1]σ2〉 7−→ abort. From (d), by Def. 8.1 (item 2), we know (g) 〈T2, σ2〉 7−→

abort is false. From (g), using Lemma 3.22 (item 1), we conclude

• From the semantics, we know that 〈〈〈T1, T2 〉〉pskip, σ1] σ2〉 7−→ race if either:

– 〈T1, σ1] σ2〉 7−→ race. From (c), by Def. 8.1 (item 3), we know (h) 〈T1, σ1〉 7−→

race is false. From (f) and (h), using Lemma 3.22 (item 2), we conclude

– or, 〈T2, σ1]σ2〉 7−→ race. From (d), by Def. 8.1 (item 3), we know (i) 〈T2, σ2〉 7−→

race is false. From (g) and (i), using Lemma 3.22 (item 2), we conclude

– or, T1 = T1[c1], T2 = T2[c2], 〈c1, σ1] σ2〉 −→
δ1
〈c′1, σ′〉, 〈c2, σ

′〉 −→
δ2

κ and

δ1 6 ~̂ δ2. By contradiction, we will assume (h) 〈c1, σ1] σ2〉 −→
δ1
〈c′1, σ′〉, and (i)

〈c2, σ
′〉 −→

δ2
κ in order to obtain δ1 ~̂ δ2. From the semantics, and (f), we know

(j) 〈c1, σ1〉 −→ abort is false. From (j) and (h), using Lemma 3.16 (item 2), we

know there exists σ′1 such that (k) σ′ = σ′1]σ2 and (l) 〈c1, σ1〉 −→
δ1
〈c′1, σ′1〉. From

the semantics, and (g), we know (m) 〈c2, σ2〉 −→ abort is false. From (m), using

Lemma 3.16 (item 1), we know (n) 〈c2, σ′1] σ2〉 −→ abort is false. From (i), (k),

and (n), we know there exists c′2 and σ′′ such that (o) κ = 〈c′2, σ′′〉. From (m),

233

(i) and (o), using Lemma 3.16 (item 2), we know there exists σ′2 such that (p)

σ′′ = σ′1] σ′2 and (q) 〈c2, σ2〉 −→
δ2
〈c′2, σ′2〉. From (l), using Remark 3.10 (item

2), by Def. 3.4, we know that (r) δ1 ⊆ (∅, dom(σ1) ∪ dom(σ′1)). From (q), using

Remark 3.10 (item 2), by Def. 3.4, we know that (s) δ2 ⊆ (∅, dom(σ2)∪dom(σ′2)).

Then, we have 2 cases:

∗ If T1[c1] is 0-atomic, then from (c) and (l), by Def. 8.1 (item 4.b), we know

that (t) dom(σ1) = dom(σ′1). From (r) and (t), we know that (u) δ1 ⊆

(∅, dom(σ′1)). From (k), (p), we know that (v) dom(σ′1)∩(dom(σ2)∪dom(σ′2)) =

∅. From (v), (u), and (s), we know that δ1.ws ∩ (δ2.rs ∪ δ2.ws) = ∅ and con-

clude

∗ If T1[c1] is 1-atomic, from (e) we know that (t) T2[c2] is 0-atomic. From

(d), (q), and (t), by Def. 8.1 (item 4.b), we know that (u) dom(σ2) = dom(σ′2).

From (s) and (u), we know that (v) δ2 ⊆ (∅, dom(σ2)). From (k), we know

that (x) (dom(σ1)∪dom(σ′1))∩dom(σ2) = ∅. From (x), (r), and (v), we know

that δ1.ws ∩ (δ2.rs ∪ δ2.ws) = ∅ and conclude

– or, T1 = T1[c1], T2 = T2[c2], 〈c2, σ1]σ2〉 −→
δ2
〈c′2, σ′〉, 〈c1, σ

′〉 −→
δ1

κ and δ2 6~̂ δ1.

The proof is symmetric to the previous case

• From the semantics, if (h) 〈〈〈T1, T2 〉〉pskip, σ1] σ2〉 7−→ 〈T ′, σ′〉, then either:

– T1 = skip, T2 = skip, T ′ = skip, and σ′ = σ1]σ2. Since both 〈〈 skip, skip 〉〉pskip

and skip are 0-atomic, we need to show that dom(σ′) = dom(σ1] σ2), which

holds trivially, and thatA1∩A2, G, Ps1∩Ps2, Qs1∩Qs2 |= 〈skip, σ′〉Bn−1 (Q1∗Q2).

From (c), by Def. 8.1 (item 5), we know (i) Ps1⊆Qs1 and (j) σ1 ∈Q1. From (d),

by Def. 8.1 (item 5), we know (k) Ps2⊆Qs2 and (l) σ2∈Q2. From (i) and (k), we

know (m) Ps1∩Ps2⊆Qs1∩Qs2 From (j) and (l), we know (n) σ′∈Q1∗Q2. From (b),

using Lemma 8.4, we have (o) A1∩A2, G,Qs1∩Qs2, Qs1∩Qs2 |= 〈skip, σ′〉Bn−1

(Q1∗Q2). From (o), and (m), using Lemma 8.3, we conclude.

– or, T ′ = 〈〈T ′1, T2 〉〉pskip and (i) 〈T1, σ1] σ2〉 7−→ 〈T ′1, σ′〉. From (f) and (i), using

Lemma 3.22 (item 3), we know that exists σ′1 such that σ′ = σ′1] σ2 and (j)

234

〈T1, σ1〉 7−→ 〈T ′1, σ′1〉. From (e), and (i), using Remark 3.17, we have 5 cases:

∗ If both T1 and T ′1 are 1-atomic, and T2 is 0-atomic, we have to show that

A1∩A2, G, Ps1∩Ps2, Qs1∩Qs2 |= 〈〈〈T ′1, T2 〉〉pskip, σ′1]σ2〉Bn−1 (Q1∗Q2). From

(c) and (j), by Def. 8.1 (item 4.a), we know that (k) A1, G∩A2, Ps1, Qs1 |=

〈T ′1, σ′1〉 Bn−1 Q1. From (d), using Lemma 8.2, we know that (l) A2, G∩

A1, Ps2, Qs2 |= 〈T2, σ2〉Bn−1 Q2. From (a), (b), (k), and (l), using the induc-

tion hypothesis, we conclude

∗ If both T1 and T ′1 are 0-atomic, and T2 is 1-atomic, we have to show that

A1∩A2, G, Ps1∩Ps2, Qs1∩Qs2 |= 〈〈〈T ′1, T2 〉〉pskip, σ′1]σ2〉Bn−1 (Q1∗Q2). From

(c) and (j), by Def. 8.1 (item 4.b), we know that (k) dom(σ1) = dom(σ′1) and

(l) A1, G∩A2, Ps1, Qs1 |= 〈T ′1, σ′1〉 Bn−1 Q1. From (d), using Lemma 8.2, we

know that (m) A2, G∩A1, Ps2, Qs2 |= 〈T2, σ2〉Bn−1Q2. From (a), (b), (l), and

(m), using the induction hypothesis, we conclude

∗ If all T1, T ′1, and T2 are 0-atomic, we have to show that dom(σ1] σ2) =

dom(σ′1] σ2) and A1 ∩A2, G, Ps1 ∩Ps2, Qs1 ∩Qs2 |= 〈〈〈T ′1, T2 〉〉pskip, σ′1]

σ2〉Bn−1 (Q1∗Q2). From (c) and (j), by Def. 8.1 (item 4.b), we know that (k)

dom(σ1) = dom(σ′1) and (l)A1, G∩A2, Ps1, Qs1 |= 〈T ′1, σ′1〉Bn−1Q1. From (d),

using Lemma 8.2, we know that (m)A2, G∩A1, Ps2, Qs2 |= 〈T2, σ2〉Bn−1Q2.

From (a), (b), (l), and (m), using the induction hypothesis, we know (n)

A1∩A2, G, Ps1∩Ps2, Qs1∩Qs2 |= 〈〈〈T ′1, T2 〉〉pskip, σ′1] σ2〉 Bn−1 (Q1 ∗Q2).

From (k), we know that (o) dom(σ1] σ2) = dom(σ′1] σ2). From (n) and (o),

we conclude

∗ If both T1 and T2 are 0-atomic, and T ′1 is 1-atomic, we have to show that

for all σ′′1 and σ′′2 , such that (k) σ′′2 = σ′′1] σ′ and (l) σ′′1 ∈Ps1∩Ps2, we have

A1∩A2, G, Ps1∩Ps2, Qs1∩Qs2 |= 〈〈〈T ′1, T2 〉〉pskip, σ′′2〉Bn−1 (Q1∗Q2). From (c),

(l) and (j), by Def. 8.1 (item 4.c), we know that (m) A1, G∩A2, Ps1, Qs1 |=

〈T ′1, σ′′1]σ′1〉Bn−1Q1. From (d), using Lemma 8.2, we know that (n) A2, G∩

A1, Ps2, Qs2 |= 〈T2, σ2〉Bn−1Q2. From (a), (b), (m), and (n), by the induction

hypothesis, we conclude

235

∗ If both T ′1 and T2 are 0-atomic, and T1 is 1-atomic, we have to show that for

all σ′′, such that (k) σ′′∈Ps1∩Ps2, there exists P ′s, where (Ps1∩Ps2)×P ′s⊆G

and P ′s⊆P ′s◦(A1∩A2), and a pair of states, σ′′1 and σ′′2 , such that σ′ = σ′′1]σ′′2 ,

σ′′1 ∈P ′s, and A1∩A2, G, P
′
s, Qs1∩Qs2 |= 〈〈〈T ′1, T2 〉〉pskip, σ′′2〉 Bn−1 (Q1∗Q2).

From (c), (k), and (j), by Def. 8.1 (item 4.d), we know there exists Ps′1, where

(l) Ps1 × Ps′1 ⊆G∩A2 and (m) Ps′1 ⊆ Ps′1◦A1, and a pair of states, σ′′′1 and

σ′′′2 , such that (n) σ′1 = σ′′′1] σ′′′2 , (o) σ′′′1 ∈Ps′1, and (p) A1, G∩A2, P
′
s1, Qs1 |=

〈T ′1, σ′′′2 〉 Bn−1 Q1. From (d), using Lemma 8.2, we know that (q) A2, G∩

A1, Ps2, Qs2 |= 〈T2, σ2〉Bn−1Q2. From (l), we have (r) (Ps1∩Ps2)×(Ps
′
1∩Ps2)⊆

G. From (b), and (m), we have (s) (Ps
′
1∩Ps2)⊆ (Ps

′
1∩Ps2)◦(A1∩A2). From

(k), (o), (l), and (b), we have (t) σ′′′1 ∈ Ps2. From (m), (b), (p), and (q), by

the induction hypothesis, we have (u) A1∩A2, G, Ps
′
1∩Ps2, Qs1∩Qs2 |=

〈〈〈T ′1, T2 〉〉pskip, σ′′′2]σ2〉Bn−1 (Q1∗Q2). Instantiating the goal with Ps′1∩Ps2,

σ′′′1 , and σ′′′2] σ2, from (r), (s), (n), (o), (t), and (u), we conclude

– or, T ′ = 〈〈T1, T
′
2 〉〉pskip and 〈T2, σ1] σ2〉 7−→ 〈T ′2, σ′〉. The proof is symmetric to

the previous case

• 〈〈T1, T2 〉〉pskip 6= skip

An atomic block can be introduced using the following lemma.

Lemma 8.9. If Emp2,Emp2,Emp,Emp |= 〈T, σ〉 Bn (Qs∗Q), Ps × Qs⊆G, and Qs⊆Qs◦A,

then A,G, Ps, Qs |= 〈〈〈T 〉〉askip, σ〉Bn Q

Proof. By induction over n. If n = 0, by Def. 8.1, we conclude. If n > 0, by Def. 8.1,

assuming (a) Emp2,Emp2,Emp,Emp |= 〈T, σ〉Bn (Qs∗Q), (b) Ps×Qs⊆G, and (c)Qs⊆Qs◦A,

we have 5 cases:

• By Def. 3.1, we know that (d) 〈〈T 〉〉askip is 1-atomic

• From the semantics, if we assume 〈〈〈T 〉〉askip, σ〉 7−→ abort, then we know that (e)

〈T, σ〉 7−→ abort. From (a), by Def. 8.1 (item 2), we know that (e) is false

236

• From the semantics, if we assume 〈〈〈T 〉〉askip, σ〉 7−→ race, then we know that (e)

〈T, σ〉 7−→ race. From (a), by Def. 8.1 (item 3), we know that (e) is false

• If (e) 〈〈〈T 〉〉askip, σ〉 7−→ 〈T ′, σ′〉, given (d) and from the semantics, we have 2 cases:

– We have T ′ = 〈〈T ′′ 〉〉askip, which is 1-atomic, (f) 〈T, σ〉 7−→ 〈T ′′, σ′〉, and we

need to show that A,G, Ps, Qs |= 〈〈〈T ′′ 〉〉askip, σ′〉 Bn−1 Q. From (a) and (f),

by Def. 8.1 (items 4.a through 4.b), we know that (g) Emp2,Emp2,Emp,Emp |=

〈T ′′, σ′〉Bn−1 (Qs∗Q). From (g), by the induction hypothesis, we conclude

– We have (f) T = skip, T ′ = skip which is 0-atomic, σ = σ′, and we need to

show that for all σ′′, such that (g) σ′′ ∈ Ps, there exists P ′s, where Ps × P ′s ⊆G

and P ′s⊆P ′s◦A, and a pair of states, σ1 and σ2, such that σ = σ1] σ2, σ1 ∈P ′s,

and A,G, P ′s, Qs |= 〈skip, σ2〉Bn−1 Q. From (a) and (f), by Def. 8.1 (item 5), we

know that (h) σ ∈Qs∗Q. From (h), we know that there exists σ′1 and σ′2 such

that (i) σ = σ′1] σ′2, (j) σ′1 ∈Qs, and (k) σ′2 ∈Q. From (k), using Lemma 8.4, we

know (l) A,G,Qs, Qs |= 〈skip, σ′2〉 Bn−1 Q. Instantiating the goal with Qs, σ′1,

and σ′2, from (b), (c), (i), (j), and (l), we conclude

• We know that 〈〈T 〉〉askip 6= skip

The following lemma is used for framing a sixtuple into a larger shared memory.

Lemma 8.10. If A,G, Ps, Qs |= 〈T, σ〉 Bn Q, and either I is precise or img(G) and dom(A)

coincide, then

1. If T is 0-atomic, then I2∗A, I2∗G, I∗Ps, I∗Qs |= 〈T, σ〉Bn Q

2. If T is 1-atomic, and σ′∈I , then I2∗A, I2∗G, I∗Ps, I∗Qs |= 〈T, σ′] σ〉Bn Q

Proof. By induction over n. If n = 0, by Def. 8.1, we conclude. If n > 0, assuming (a)

A,G, Ps, Qs |= 〈T, σ〉Bn Q, and (b) I is precise or img(G) and dom(A) coincide, we have 2

cases:

• If (c) T is 0-atomic, we need to show I2 ∗A, I2 ∗G, I ∗Ps, I ∗Qs |= 〈T, σ〉 Bn Q. By

Def. 8.1, we have 5 cases:

237

– From (c), we know that T is 0-atomic

– From (a), by Def. 8.1 (item 2), we know that 〈T, σ〉 7−→ abort is false

– From (a), by Def. 8.1 (item 3), we know that 〈T, σ〉 7−→ race is false

– If (d) 〈T, σ〉 7−→ 〈T ′, σ′〉, given (c) the we have 2 cases:

∗ If T ′ is 0-atomic, we need to show that dom(σ) = dom(σ′) and I2∗A, I2∗

G, I ∗Ps, I ∗Qs |= 〈T ′, σ′〉 Bn−1 Q. From (a) and (d), by Def. 8.1 (item 4.b),

we know that (e) dom(σ) = dom(σ′) and (f) A,G, Ps, Qs |= 〈T ′, σ′〉 Bn−1 Q.

From (f) and (b), by the induction hypothesis (item 1), we know that (g)

I2∗A, I2∗G, I∗Ps, I∗Qs |= 〈T ′, σ′〉Bn−1 Q. From (e) and (g) we conclude

∗ If T ′ is 1-atomic, we need to show that for all σ1 and σ2, such that (e) σ2 =

σ1]σ′ and (f) σ1∈I∗Ps, we have I2∗A, I2∗G, I∗Ps, I∗Qs |= 〈T ′, σ2〉Bn−1Q.

From (f), we know exists σ′1 and σ′′1 , such that σ1 = σ′1] σ′′1 , (g) σ′1∈ I , and

(h) σ′′1 ∈ Ps. From (a), (d), and (h), by Def. 8.1 (item 4.c), we know that (i)

A,G, Ps, Qs |= 〈T ′, σ′′1] σ′〉Bn−1 Q. From (i), (b), and (g), by the induction

hypothesis (item 2), we conclude

– We assume (d) T = skip. From (a) and (d), by Def. 8.1 (item 5), we know (e)

Ps⊆Qs and (f) σ∈Q. From (e), we have (g) I∗Ps⊆I∗Qs. From (g), and (f), we

conclude

• If (c) T is 1-atomic, and (d) σ′ ∈ I ′, we need to show I2 ∗A, I2 ∗G, I ∗Ps, I ∗Qs |=

〈T, σ′] σ〉Bn Q. By Def. 8.1, we have 5 cases:

– From (c), we know that T is 1-atomic

– From (a), by Def. 8.1 (item 2), we know that (e) 〈T, σ〉 7−→ abort is false. From

(e), using Lemma 3.22 (item 1), we conclude

– From (a), by Def. 8.1 (item 3), we know that (f) 〈T, σ〉 7−→ race is false. From (e)

and (f), using Lemma 3.22 (item 2), we conclude

– We know (g) 〈T, σ′] σ〉 7−→ 〈T ′, σ′′〉. From (e) and (g), using Lemma 3.22 (item

3), we know exists σ′′′ such that (h) σ′′ = σ′] σ′′′ and (i) 〈T, σ〉 7−→ 〈T ′, σ′′′〉.

238

Then we have 2 cases:

∗ If T ′ is 1-atomic, we need to show that I2∗A, I2∗G, I∗Ps, I∗Qs |= 〈T ′, σ′]

σ′′′〉 Bn−1 Q. From (a) and (i), by Def. 8.1 (item 4.a), we know that (j)

A,G, Ps, Qs |= 〈T ′, σ′′′〉 Bn−1 Q. From (j), (b), and (d), by the induction

hypothesis (item 2), we conclude

∗ If T ′ is 0-atomic, we need to show that for all σ′′′′, such that (j) σ′′′′∈ I ∗Ps,

there exists P ′s, where (I∗Ps)×P ′s⊆(I2∗G) and P ′s⊆P ′s◦(I2∗A), and a pair

of states, σ1 and σ2, such that σ′′ = σ1] σ2, σ1∈P ′s, and I2∗A, I2∗G,P ′s, I∗

Qs |= 〈T ′, σ2〉 Bn−1 Q. From (j), we know there exists σ′1 and σ′2, such that

σ′′′′ = σ′1]σ′2, (k) σ′1∈I , and (l) σ′2∈Ps. From (a), (i) and (l), by Def. 8.1 (item

4.d), we know there exists P ′′s , where (m) Ps × P ′′s ⊆G and (n) P ′′s ⊆P ′′s ◦A,

and a pair of states, σ′′1 and σ′′2 , such that (o) σ′′′ = σ′′1] σ′′2 , (p) σ′′1 ∈ P ′′s ,

and (q) A,G, P ′′s , Qs |= 〈T ′, σ′′2〉 Bn−1 Q. From (q) and (b), by the induction

hypothesis (item 1), we have (r) I2∗A, I2∗G, I∗P ′′s , I∗Qs |= 〈T ′, σ′′2〉Bn−1 Q.

From (m), we have (s) (I ∗Ps) × (I ∗P ′′s)⊆ (I2∗G). From (b), (l), and (m),

we have (t) (I ∗P ′′s)⊆ (I ∗P ′′s)◦(I2∗A). From (d), (o), and (p), we have (u)

σ′] σ′′1 ∈ I∗Ps. Instantiating the goal with I∗P ′′s , σ′] σ′′1 , and σ′′2 , from (s),

(t), (u), and (r), we conclude

– From (c), we know that T 6= skip

The following lemma is used to transfer a resource from shared to private in a sixtuple.

Lemma 8.11. If A,G, Ps, Qs |= 〈T, σ〉Bn Q, then

1. If T is 0-atomic, and σ′∈Ps, then Emp2,Emp2,Emp,Emp |= 〈T, σ′] σ〉Bn (Qs∗Q)

2. If T is 1-atomic, and Ps 6= ∅ , then Emp2,Emp2,Emp,Emp |= 〈T, σ〉Bn (Qs∗Q)

Proof. By induction over n. If n = 0, by Def. 8.1, we conclude. If n > 0, assuming (a)

A,G, Ps, Qs |= 〈T, σ〉Bn Q, we have 2 cases:

• If (b) T is 0-atomic, and (c) σ′∈Ps, we need to show Emp2,Emp2,Emp,Emp |= 〈T, σ′]

σ〉Bn (Qs∗Q). By Def. 8.1, we have 5 cases:

239

– From (b), we know that T is 0-atomic

– From (a), by Def. 8.1 (item 2), we know that (d) 〈T, σ〉 7−→ abort is false. From

(d), using Lemma 3.22 (item 1), we conclude

– From (a), by Def. 8.1 (item 3), we know that (e) 〈T, σ〉 7−→ race is false. From (d)

and (e), using Lemma 3.22 (item 2), we conclude

– We know (f) 〈T, σ′] σ〉 7−→ 〈T ′, σ′′〉. From (d) and (f), using Lemma 3.22 (item

3), we know exists σ′′′ such that (g) σ′′ = σ′] σ′′′ and (h) 〈T, σ〉 7−→ 〈T ′, σ′′′〉.

Then we have 2 cases:

∗ If T ′ is 0-atomic, we need to show that dom(σ′] σ) = dom(σ′] σ′′′) and

Emp2,Emp2,Emp,Emp |= 〈T ′, σ′] σ′′′〉 Bn−1 (Qs∗Q). From (a) and (h), by

Def. 8.1 (item 4.b), we know that (i) dom(σ) = dom(σ′′′) and (j)A,G, Ps, Qs |=

〈T ′, σ′′′〉Bn−1 Q. From (j) and (c), by the induction hypothesis (item 1), we

know (k) Emp2,Emp2,Emp,Emp |= 〈T ′, σ′] σ′′′〉Bn−1 (Qs∗Q). From (i) and

(k), we conclude

∗ If T ′ is 1-atomic, we need to show that for all σ1 and σ2, such that (i) σ2 =

σ1]σ′]σ′′′ and (j) σ1∈Emp, we have Emp2,Emp2,Emp,Emp |= 〈T ′, σ2〉Bn−1

(Qs∗Q). From (i), and (j), we have (k) σ2 = σ′. From (a), (h), (c), and (k), by

Def. 8.1 (item 4.c), we know that (l) A,G, Ps, Qs |= 〈T ′, σ′′〉 Bn−1 Q. From

(l) and (c), by the induction hypothesis (item 2), we conclude

– We assume (d) T = skip. From (a) and (d), by Def. 8.1 (item 5), we know that

(e) Ps⊆Qs and (f) σ∈Q. From (c), (e), and (f) we know that σ′] σ∈Qs∗Q and

conclude

• If (b) T is 1-atomic, and (c) Ps 6= ∅, we need to show Emp2,Emp2,Emp,Emp |=

〈T, σ〉Bn (Qs∗Q). By Def. 8.1, we have 5 cases:

– From (b), we know that T is 1-atomic

– From (a), by Def. 8.1 (item 2), we know that 〈T, σ〉 7−→ abort is false

– From (a), by Def. 8.1 (item 3), we know that 〈T, σ〉 7−→ race is false

240

– If (d) 〈T, σ〉 7−→ 〈T ′, σ′〉, given (b) the we have 2 cases:

∗ If T ′ is 1-atomic, we need to show that Emp2,Emp2,Emp,Emp |= 〈T ′, σ′〉Bn−1

(Qs∗Q). From (a) and (d), by Def. 8.1 (item 4.a), we know that

(d) A,G, Ps, Qs |= 〈T ′, σ′〉 Bn−1 Q. From (d) and (c), by the induction hy-

pothesis (item 2), we conclude

∗ If T ′ is 0-atomic, we need to show that for all σ′′, such that (e) σ′′ ∈ Emp,

exists P ′s, where Emp × P ′s⊆Emp2 and P ′s⊆P ′s◦Emp2, and a pair of states,

σ1 and σ2, such that σ′ = σ1] σ2, σ1 ∈ P ′s, and Emp2,Emp2, P ′s,Emp |=

〈T ′, σ2〉Bn−1 (Qs∗Q). From (a), (d), and (c), by Def. 8.1 (item 4.d), we know

there exists P ′′s , where (f) Ps × P ′′s ⊆ G and (g) P ′′s ⊆ P ′′s ◦A, and a pair of

states, σ′1 and σ′2, such that (h) σ′ = σ′1]σ′2, (i) σ′1∈P ′′s , and (j)A,G, P ′′s , Qs |=

〈T ′, σ′2〉 Bn−1 Q. From (j) and (i), by the induction hypothesis (item 1), we

have (j) Emp2,Emp2,Emp,Emp |= 〈T ′, σ′〉Bn−1(Qs∗Q). Instantiating the goal

with Emp, ∅, and σ′, from (j), and knowing that trivially Emp×Emp⊆Emp2,

Emp⊆Emp◦Emp2, σ′ = ∅] σ′, and ∅∈Emp hold, we conclude

– From (b), we know that T 6= skip

The following lemma is used for the conjunction of triples.

Lemma 8.12. If A,G, Ps, Qs |= 〈T, σ〉 Bn Q1, A,G, Ps, Qs |= 〈T, σ〉 Bn Q2, and img(G) is

precise, then A,G, Ps, Qs |= 〈T, σ〉Bn (Q1∩Q2)

Proof. By induction over n. If n = 0, by Def. 8.1, we conclude. If n > 0, by Def. 8.1,

assuming (a) A,G, Ps, Qs |= 〈T, σ〉BnQ1, (b) A,G, Ps, Qs |= 〈T, σ〉BnQ2, and (c) img(G) is

precise, we have 5 cases:

• From (a), by Def. 8.1 (item 1), we know that T is 0- or 1-atomic

• From (a), by Def. 8.1 (item 2), we know that 〈T, σ〉 7−→ abort is false

• From (a), by Def. 8.1 (item 3), we know that 〈T, σ〉 7−→ race is false

• If (d) 〈T, σ〉 7−→ 〈T ′, σ′〉, then we have 4 cases:

241

– If both T and T ′ are 1-atomic, we need to show thatA,G, Ps, Qs |= 〈T ′, σ′〉Bn−1

(Q1∩Q2). From (a) and (d), by Def. 8.1 (item 4.a), we know that (e)A,G, Ps, Qs |=

〈T ′, σ′〉 Bn−1 Q1. From (b) and (d), by Def. 8.1 (item 4.a), we know that (f)

A,G, Ps, Qs |= 〈T ′, σ′〉Bn−1 Q2. From (e), (f), and (c), by the induction hypoth-

esis, we conclude

– If both T and T ′ are 0-atomic, we need to show that dom(σ) = dom(σ′) and

A,G, Ps, Qs |= 〈T ′, σ′〉 Bn−1 (Q1 ∩Q2). From (a) and (d), by Def. 8.1 (item

4.b), we know already that dom(σ) = dom(σ′), and also that (e) A,G, Ps, Qs |=

〈T ′, σ′〉 Bn−1 Q1. From (b) and (d), by Def. 8.1 (item 4.b), we also know that

dom(σ) = dom(σ′) and (f) A,G, Ps, Qs |= 〈T ′, σ′〉Bn−1 Q2. From (e), (f), and (c),

by the induction hypothesis, we conclude

– If T is 0-atomic and T ′ is 1-atomic, we need to show that for all σ1 and σ2, such

that (e) σ2 = σ1]σ′ and (f) σ1∈Ps, we haveA,G, Ps, Qs |= 〈T ′, σ2〉Bn−1(Q1∩Q2).

From (a), (d), (e), and (f), by Def. 8.1 (item 4.c), we know that (g) A,G, Ps, Qs |=

〈T ′, σ2〉 Bn−1 Q1. From (b), (d), (e), and (f), by Def. 8.1 (item 4.c), we know

that (h) A,G, Ps, Qs |= 〈T ′, σ2〉Bn−1 Q2. From (g), (h), and (c), by the induction

hypothesis, we conclude

– If T is 1-atomic and T ′ is 0-atomic, we need to show that for all σ′′, such that (e)

σ′′∈Ps, there exists P ′s, where Ps×P ′s⊆G and P ′s⊆P ′s◦A, and a pair of states, σ1

and σ2, such that σ′ = σ1]σ2, σ1∈P ′s, andA,G, P ′s, Qs |= 〈T ′, σ2〉Bn−1 (Q1∩Q2).

From (a), (d), and (e), by Def. 8.1 (item 4.d), we know there exists Ps′1, where

(f) Ps × Ps′1⊆G and (g) Ps′1⊆Ps′1◦A, and a pair of states, σ′1 and σ′2, such that

(h) σ′ = σ′1] σ′2, (i) σ′1 ∈ Ps′1, and (j) A,G, Ps′1, Qs |= 〈T ′, σ′2〉 Bn−1 Q1. From

(b), (d), and (e), by Def. 8.1 (item 4.d), we know there exists Ps′2, where (k)

Ps × Ps
′
2 ⊆ G and (l) Ps′2 ⊆ Ps′2 ◦A, and a pair of states, σ′′1 and σ′′2 , such that

(m) σ′ = σ′′1] σ′′2 , (n) σ′′1 ∈Ps′2, and (o) A,G, Ps′2, Qs |= 〈T ′, σ′′2〉 Bn−1 Q2. From

(j), using Lemma 8.3, we have (p) A,G, Ps′1∩Ps′2, Qs |= 〈T ′, σ′2〉 Bn−1 Q1. From

(o), using Lemma 8.3, we have (q) A,G, Ps′1∩Ps′2, Qs |= 〈T ′, σ′′2〉Bn−1 Q2. From

(f), we have (r) Ps × (Ps
′
1∩Ps′2)⊆G. From (g) and (l), we have (s) (Ps

′
1∩Ps′2)⊆

242

(Ps
′
1∩Ps′2)◦A. From (e), (i), (n), (f), (k), (h), (m), and (c), we know that σ′1 = σ′′1

and σ′2 = σ′′2 . From (p), (q), and (c), by the induction hypothesis, we have (t)

A,G, Ps
′
1∩Ps′2, Qs |= 〈T ′, σ′2〉Bn−1 (Q1∩Q2). Instantiating the goal with Ps′1∩Ps′2,

σ′1, and σ′2, from (r), (s), (h), (i), (n), and (t), we conclude

• We assume (d) T = skip. From (a) and (d), by Def. 8.1 (item 5), we know that (e)

Ps ⊆ Qs and (f) σ ∈ Q1. From (b) and (d), by Def. 8.1 (item 5), we know that (g)

Ps⊆Qs and (h) σ∈Q2. From (f) and (h), we know that (i) σ∈Q1∩Q2. From (e) and

(i), we conclude

Semantics rules. The septuple A,G |= {Ps, P} c {Qs, Q} is the semantic correspondent

to a SAGL judgement A,G ` {Ps, P} c {Qs, Q}. It is defined in terms of A,G, Ps, Qs |=

〈T, σ〉B Q as show below:

Definition 8.13. A,G |= {Ps, P} c {Qs, Q}, if and only if, for all σ, such that σ∈P , we have

A,G, Ps, Qs |= 〈c, σ〉B Q

From Def. 8.13, we can prove Lemma 8.14 which states more explicitly the properties

guaranteed by the semantic septuple: safety, race-freedom, and partial correctness (items

1, 2, and 3, respectively).

Lemma 8.14. If A,G |= {Ps, P} c {Qs, Q}, then for all σ, such that σ∈Ps∗P , we have:

1. ¬〈c, σ〉 7−→∗ abort

2. ¬〈c, σ〉 7−→∗ race

3. If 〈c, σ〉 7−→∗ 〈skip, σ′〉, then σ′∈Qs∗Q

Proof. From A,G |= {Ps, P} c {Qs, Q}, using Lemma 8.261, we obtain (a) Emp2,Emp2 |=

{Emp, Ps ∗P} c {Emp, Qs ∗Q}. Given (a), and σ ∈ Ps ∗P , from Def. 8.13, we obtain (b)

Emp2,Emp2,Emp,Emp |= 〈c, σ〉B (Qs∗Q). We then generalize the proof from command c

to any 0- or 1-atomic thread tree T . Now we can consider each one of the goals:

1Although Lemma 8.26 is defined later on the text, there is no circularity.

243

• For goal 1, we need to show that for all n, (c) 〈T, σ〉 7−→n abort is false. From (b),

we obtain (d) Emp2,Emp2,Emp,Emp |= 〈T, σ〉Bn (Qs∗Q), which is our sole assump-

tion. By induction over n, we have two cases. The base case, where n = 0, is

trivial as 〈T, σ〉 6= abort. In the inductive case, where n > 0, we know there ex-

ists a configuration κ, such that (e) 〈T, σ〉 7−→ κ and (f) κ 7−→n−1 abort. From

(d), given that n > 0, we know, from items 2 and 3 of Def. 8.1, that by exclu-

sion there must exists T ′ and σ′, such that κ = 〈T ′, σ′〉; therefore we obtain (g)

〈T, σ〉 7−→ 〈T ′, σ′〉. From (g), using Remark 3.17, we know that T ′ is either 0- or

1-atomic. Given (g), and (d), from items 4.a through 4.d of Def. 8.1, we know that

(h) Emp2,Emp2,Emp,Emp |= 〈T ′, σ′〉 Bn−1 (Qs∗Q). From (h), and (f), using the in-

duction hypothesis, we know that (i) 〈T ′, σ′〉 7−→n−1 abort is false. From (g), and (i),

we know 〈T, σ〉 7−→n−1 abort is false, which was our goal.

• For goal 2, we need to show that for all n, (c) 〈T, σ〉 7−→n race is false. From (b),

we obtain (d) Emp2,Emp2,Emp,Emp |= 〈T, σ〉 Bn (Qs ∗Q), which is our sole as-

sumption. By induction over n, we have two cases. The base case, where n = 0,

is trivial as 〈T, σ〉 6= race. In the inductive case, where n > 0, we know there

exists a configuration κ, such that (e) 〈T, σ〉 7−→ κ and (f) κ 7−→n−1 race. From

(d), given that n > 0, we know, from items 2 and 3 of Def. 8.1, that by exclu-

sion there must exists T ′ and σ′, such that κ = 〈T ′, σ′〉; therefore we obtain (g)

〈T, σ〉 7−→ 〈T ′, σ′〉. From (g), using Remark 3.17, we know that T ′ is either 0- or

1-atomic. Given (g), and (d), from items 4.a through 4.d of Def. 8.1, we know that

(h) Emp2,Emp2,Emp,Emp |= 〈T ′, σ′〉 Bn−1 (Qs∗Q). From (h), and (f), using the in-

duction hypothesis, we know that (i) 〈T ′, σ′〉 7−→n−1 race is false. From (g), and (i),

we know 〈T, σ〉 7−→n−1 race is false, which was our goal.

• For goal 3, we need to show that for all n, if (c) 〈T, σ〉 7−→n 〈skip, σ′〉, then σ′∈Qs∗Q.

From (b), we obtain (d) Emp2,Emp2,Emp,Emp |= 〈T, σ〉Bn (Qs∗Q), which is our sole

assumption. By induction over n, we have two cases. In base case, where n = 0, we

know that T = skip and σ′ = σ; given (d), from item 5 of Def. 8.1, we obtain the goal

244

σ′∈Qs∗Q. In the inductive case, where n > 0, we know there exists a configuration

κ, such that (e) 〈T, σ〉 7−→ κ and (f) κ 7−→n−1 〈skip, σ′〉. From (d), given that n > 0,

we know, from items 2 and 3 of Def. 8.1, that by exclusion there must exists T ′ and

σ′′, such that κ = 〈T ′, σ′′〉; therefore we obtain (g) 〈T, σ〉 7−→ 〈T ′, σ′′〉. From (g),

using Remark 3.17, we know that T ′ is either 0- or 1-atomic. Given (g), and (d),

from items 4.a through 4.d of Def. 8.1, we know that (h) Emp2,Emp2,Emp,Emp |=

〈T ′, σ′′〉 Bn−1 (Qs∗Q). From (h), and (f), using the induction hypothesis, we obtain

the goal σ′∈Qs∗Q.

In the following sequence of lemmas, Lemma 8.15 through Lemma 8.28, we show

the correspondence between the SAGL rules from Fig. 8.3, and their semantic equivalent

using definition Def. 8.13.

Lemma 8.15.

Emp2,Emp2 |= {Emp, Q◦Jν :=eK} ν :=e {Emp, Q}

Proof. From Def. 8.13, we assume there exist σ and n, such that (a) σ ∈ Q◦Jν :=eK, and

we need to show that Emp2,Emp2Emp,Emp |= 〈ν := e, σ〉 Bn Q. If n = 0, by Def. 8.1, we

conclude. If n > 0, by Def. 8.1, we have 5 cases:

• By Def. 3.1, we know that (b) ν :=e is 0-atomic

• From the semantics, we know that 〈ν :=e, σ〉 7−→ abort is false if 〈ν :=e, σ〉 −→ abort

is false. From the sequential semantics, we know 〈ν :=e, σ〉 −→ abort is false if there

exists σ′ such that (σ, σ′)∈JaK. From (a), by Def. 6.2 (item 1), we conclude

• From the semantics, we know that 〈ν :=e, σ〉 7−→ race is false

• From the semantics, we know that 〈ν :=e, σ〉 7−→ 〈skip, σ′〉, where (c) 〈ν :=e, σ〉 −→

〈skip, σ′〉. From (b), and since skip is 0-atomic, we need to show that dom(σ) =

dom(σ′) and Emp2,Emp2,Emp,Emp |= 〈skip, σ′〉Bn−1Q. From the sequential seman-

tics, and (c), we know (d) (σ, σ′) ∈ Jν :=eK. From (d), using Remark 3.13, we know

(e) dom(σ) = dom(σ′). From (a) and (d), by Def. 6.2 (item 2), we know that (f) σ′∈Q.

245

From (f), and Lemma 8.4, we know (g) Emp2,Emp2,Emp,Emp |= 〈skip, σ′〉 Bn−1 Q.

From (e) and (g) we conclude

• We know that (ν :=e) 6= skip

Lemma 8.16.

Emp2,Emp2 |= {Emp, Q◦JaK} 〈a〉 {Emp, Q}

Proof. From Def. 8.13, we assume there exist σ and n, such that (a) σ ∈ Q◦ JaK, and we

need to show that Emp2,Emp2,Emp,Emp |= 〈atomic a, σ〉 Bn Q. If n = 0, by Def. 8.1, we

conclude. If n > 0, by Def. 8.1, we have 5 cases:

• By Def. 3.1, we know that (b) atomic a is 0-atomic

• From the semantics, we know that 〈atomic a, σ〉 7−→ abort is false

• From the semantics, we know that 〈atomic a, σ〉 7−→ race is false

• From the semantics, we know that 〈atomic a, σ〉 7−→ 〈〈〈 a 〉〉askip, σ〉, given that • is

0-atomic. From (b), and since 〈〈 a 〉〉askip is 1-atomic, we need to show that for all

σ1 and σ2, such that (c) σ2 = σ1] σ and (d) σ1 ∈ Emp, Emp2,Emp2,Emp,Emp |=

〈〈〈 a 〉〉askip, σ2〉 Bn−1 Q. From (d), we know σ1 = ∅, therefore, from (c), we know

σ2 = σ. If n = 1, by Def. 8.1, we conclude. If n > 1, by Def. 8.1, we have 5 cases:

– By Def. 3.1, we know that (e) 〈〈 a 〉〉askip is 1-atomic

– From the semantics, we know that 〈〈〈 a 〉〉askip, σ〉 7−→ abort is false if

〈〈〈 a 〉〉askip, σ〉 −→ abort is false. From the sequential semantics, we know

〈〈〈 a 〉〉askip, σ〉 −→ abort is false if there exists σ′ such that (σ, σ′)∈JaK. From (a),

by Def. 6.2 (item 1), we conclude

– From the semantics, we know that 〈〈〈 a 〉〉askip, σ〉 7−→ race is false

– From the semantics, we know that 〈〈〈 a 〉〉askip, σ〉 7−→ 〈〈〈 skip 〉〉askip, σ′〉, where

(f) 〈a, σ〉 −→ 〈skip, σ′〉. From (e), and since 〈〈 skip 〉〉askip is 1-atomic, we need

to show that Emp2,Emp2,Emp,Emp |= 〈〈〈 skip 〉〉askip, σ′〉 B(n−2) Q. If n = 2, by

Def. 8.1, we conclude. If n > 2, by Def. 8.1, we have 5 cases:

246

∗ By Def. 3.1, we know that (g) 〈〈 skip 〉〉askip is 1-atomic

∗ From the semantics, we know that 〈〈〈 skip 〉〉askip, σ′〉 7−→ abort is false

∗ From the semantics, we know that 〈〈〈 skip 〉〉askip, σ′〉 7−→ race is false

∗ From the semantics, we know that 〈〈〈 skip 〉〉askip, σ′〉 7−→ 〈skip, σ′〉. From

(g), and since skip is 0-atomic, we need to show that for all σ′′, such that

σ′′ ∈ Emp, there exists P ′s, where Emp × P ′s ⊆ Emp2 and P ′s ⊆ P ′s ◦Emp2,

and a pair of states, σ′1 and σ′2, such that σ′ = σ′1] σ′2, σ′1 ∈ P ′s, and

Emp2,Emp2, P ′s,Emp |= 〈skip, σ′2〉B(n−3) Q.

We instantiate P ′s as Emp, σ′1 as ∅, and σ′2 as σ′, as we know that Emp ×

Emp⊆ Emp2, Emp⊆ Emp◦Emp2, σ′ = ∅] σ′, and ∅ ∈ Emp; it remains to

show that Emp2,Emp2,Emp,Emp |= 〈skip, σ′〉B(n−3)Q. From the sequential

semantics, and (f), we know (h) (σ, σ′)∈ JaK. From (a) and (h), by Def. 6.2

(item 2), we know that (i) σ′∈Q. From (i), and Lemma 8.4, we conclude

∗ We know that 〈〈 skip 〉〉askip 6= skip

– We know that 〈〈 a 〉〉askip 6= skip

• We know that atomic a 6= skip

Lemma 8.17.
A,G |= {Ps, P} c1 {P ′s, P ′} A,G |= {P ′s, P ′} c2 {Qs, Q}

A,G |= {Ps, P} c1; c2 {Qs, Q}

Proof. From Def. 8.13, we assume there exist σ and n, such that (a) σ ∈ P , and we need

to show that A,G, Ps, Qs |= 〈c1; c2, σ〉 Bn Q. From (a), and A,G |= {Ps, P} c1 {P ′s, P ′}, by

Def. 8.13, we know that (b) A,G, Ps, P ′s |= 〈c1, σ〉 Bn P ′. From A,G |= {P ′s, P ′} c2 {Qs, Q},

by Def. 8.13, we know that (c) for all σ′ ∈P ′, we have A,G, P ′s, Qs |= 〈c2, σ
′〉 Bn Q. From

(b) and (c), using Lemma 8.5 (item 1), we conclude

Lemma 8.18.

Emp2,Emp2 |= {Emp, P} skip {Emp, P}

247

Proof. From Def. 8.13, we assume there exist σ and n, such that (a) σ ∈ P , and we need

to show that Emp2,Emp2,Emp,Emp |= 〈skip, σ〉 Bn P . From (a), using Lemma 8.4, we

conclude

Lemma 8.19.

P ⊆bbc∪b¬bc A,G |= {Ps, P∩bbc} c1 {Qs, Q} A,G |= {Ps, P∩b¬bc} c2 {Qs, Q}
A,G |= {Ps, P} if b then c1 else c2 {Qs, Q}

Proof. From Def. 8.13, we assume there exist σ and n, such that (a) σ∈P , and we need to

show that A,G, Ps, Qs |= 〈if b then c1 else c2, σ〉 Bn Q. From (a), and P ⊆ bbc∪b¬bc, we

know (b) σ∈bbc∪b¬bc. From (b) we can consider two cases:

• If (c) σ ∈ bbc, with (a), we know (d) σ ∈ P ∩bbc. From (d), and A,G |= {Ps, P ∩

bbc} c1 {Qs, Q}, by Def. 8.13, we know that (e) A,G, Ps, Qs |= 〈c1, σ〉 Bn Q. From (e)

and (c), using Lemma 8.6 (item 1), we conclude

• If (c) σ ∈ b¬bc, with (a), we know (d) σ ∈ P ∩b¬bc. From (d), and A,G |= {Ps, P ∩

b¬bc} c2 {Qs, Q}, by Def. 8.13, we know that (e) A,G, Ps, Qs |= 〈c2, σ〉BnQ. From (e)

and (c), using Lemma 8.6 (item 2), we conclude

Lemma 8.20.
P ⊆bbc∪b¬bc A,G |= {Ps, P∩bbc} c {Ps, P}
A,G |= {Ps, P}while b do c {Ps, P∩b¬bc}

Proof. From Def. 8.13, we assume there exist σ and n, such that (a) σ∈P , and we need to

show thatA,G, Ps, Ps |= 〈while b do c, σ〉Bn (P∩b¬bc). FromA,G |= {Ps, P∩bbc} c {Ps, P},

by Def. 8.13, we know that (b) for all σ′∈P∩bbc, we have A,G, Ps, Ps |= 〈c, σ′〉Bn P . From

(a), (b), and P ⊆bbc∪b¬bc, using Lemma 8.7, we conclude

Lemma 8.21.

Ps1⊆Ps1◦A1 Ps2⊆Ps2◦A2

A1, G∩A2 |= {Ps1, P1} c1 {Qs1, Q1} A2, G∩A1 |= {Ps2, P2} c2 {Qs2, Q2}
A1∩A2, G |= {Ps1∩Ps2, P1∗P2} c1‖c2 {Qs1∩Qs2, Q1∗Q2}

248

Proof. From Def. 8.13, we assume there exist σ and n, such that (a) σ∈P1∗P2, and we need

to show that A1∩A2, G, Ps1∩Ps2, Qs1∩Qs2 |= 〈c1‖c2, σ〉Bn (Q1∗Q2). If n = 0, by Def. 8.1,

we conclude. If n > 0, by Def. 8.1, we have 5 cases:

• By Def. 3.1, we know that (b) c1‖c2 is 0-atomic

• From the semantics, we know that 〈c1‖c2, σ〉 7−→ abort is false

• From the semantics, we know that 〈c1‖c2, σ〉 7−→ race is false

• From the semantics, we know that 〈c1 ‖ c2, σ〉 7−→ 〈〈〈 c1, c2 〉〉pskip, σ〉. By Def. 3.1, we

know (c) 〈〈 c1, c2 〉〉pskip is 0-atomic. From (b) and (c), we need to show that σ = σ,

which is trivial, and that A1∩A2, G, Ps1∩Ps2, Qs1∩Qs2 |= 〈〈〈 c1, c2 〉〉pskip, σ〉Bn−1 (Q1∗

Q2). From (a), we know there exists σ1 and σ2, such that σ = σ1] σ2, (d) σ1 ∈ P1,

and (e) σ2 ∈ P2. From (d), and A1, G∩A2 |= {Ps1, P1} c1 {Qs1, Q1}, by Def. 8.13,

we know that (f) A1, G∩A2, Ps1, Qs1 |= 〈c1, σ1〉 Bn−1 Q1. From (e), and A2, G∩

A1 |= {Ps2, P2} c2 {Qs2, Q2}, by Def. 8.13, we know that (g) A2, G∩A1, Ps2, Qs2 |=

〈c2, σ2〉Bn−1Q2. From Ps1⊆Ps1◦A1, Ps2⊆Ps2◦A2, (f), (g), and (c), using Lemma 8.8,

we conclude

• We know that c1‖c2 6= skip

Lemma 8.22.

Emp2,Emp2 |= {Emp, Ps∗P} c {Emp, Qs∗Q} Ps ×Qs⊆G Qs⊆Qs◦A
A,G |= {Ps, P} atomic c {Qs, Q}

Proof. From Def. 8.13, we assume there exist σ and n, such that (a) σ∈P , and we need to

show that A,G, Ps, Qs |= 〈atomic c, σ〉 Bn Q. If n = 0, by Def. 8.1, we conclude. If n > 0,

by Def. 8.1, we have 5 cases:

• By Def. 3.1, we know that (b) atomic c is 0-atomic

• From the semantics, we know that 〈atomic c, σ〉 7−→ abort is false

• From the semantics, we know that 〈atomic c, σ〉 7−→ race is false

249

• From the semantics, we know that 〈atomic c, σ〉 7−→ 〈〈〈 c 〉〉askip, σ〉, given that • is

0-atomic. From (b), and since 〈〈 c 〉〉askip is 1-atomic, we need to show that for all σ1

and σ2, such that (c) σ2 = σ1] σ and (d) σ1∈Ps, A,G, Ps, Qs |= 〈〈〈 c 〉〉askip, σ2〉 Bn−1

Q. From (a), (c), and (d), we know (e) σ2 ∈ Ps ∗P . From (e), and Emp2,Emp2 |=

{Emp, Ps∗P} c {Emp, Qs∗Q}, by Def. 8.13, we know that (f) Emp2,Emp2,Emp,Emp |=

〈c, σ2〉 Bn−1 (Qs∗Q). From (f), Ps × Qs⊆G, and Qs⊆Qs◦A, using Lemma 8.9, we

conclude

• We know that atomic c 6= skip

Lemma 8.23.

A⊆A′ Ps⊆P ′s P ⊆P ′ A′, G′ |= {P ′s, P ′} c {Q′s, Q′} G′⊆G Q′s⊆Qs Q′⊆Q
A,G |= {Ps, P} c {Qs, Q}

Proof. From Def. 8.13, we assume there exist σ and n, such that (a) σ∈P , and we need to

show that A,G, Ps, Qs |= 〈c, σ〉BnQ. From (a), and P ⊆P ′, we get (b) σ∈P ′. From (b), and

A′, G′, P ′s, Q
′
s |= {P ′} c {Q′}, by Def. 8.13, we know that (c) A′, G′, P ′s, Q′s |= 〈c, σ〉 Bn Q′.

From (c), A⊆A′, G′⊆G, Ps⊆P ′s, Q′s⊆Qs, and Q′⊆Q, using Lemma 8.3, we conclude

Lemma 8.24.
∀x. A,G |= {Ps,P(x)} c {Qs,Q(x)}

A,G |= {Ps,∃x. P(x)} c {Qs, ∃x. Q(x)}

Proof. From Def. 8.13, we assume there exist σ, n, and x, such that (a) σ ∈ P(x), and

we need to show that A,G, Ps, Qs |= 〈c, σ〉 Bn (∃x. Q(x)). From (a), and ∀x. A,G |=

{Ps,P(x)} c {Qs,Q(x)}, by Def. 8.13, we know that (b) A,G, Ps, Qs |= 〈c, σ〉Bn (Q(x)). We

also know that (c) (Q(x))⊆ (∃x. Q(x)). From (b) and (c), using Lemma 8.3, we conclude

Lemma 8.25.

A,G |= {Ps, P} c {Qs, Q} I is precise or img(G) and dom(A) coincide

I2∗A, I2∗G |= {I∗Ps, P} c {I∗Qs, Q}

250

Proof. From Def. 8.13, we assume there exist σ and n, such that (a) σ∈P , and we need to

show that I2∗A, I2∗G, I∗Ps, I∗Qs |= 〈c, σ〉Bn Q. From (a), and A,G |= {Ps, P} c {Qs, Q},

by Def. 8.13, we know that (b) A,G, Ps, Qs |= 〈c, σ〉 Bn Q. We also know that (c) c is 0-

atomic. From (b), and (c), given that I is precise or img(G) and dom(A) coincide, using

Lemma 8.10 (item 1), we conclude

Lemma 8.26.
A,G |= {Ps, P} c {Qs, Q}

Emp2,Emp2 |= {Emp, Ps∗P} c {Qs∗Q}

Proof. From Def. 8.13, we assume there exist σ and n, such that (a) σ ∈ Ps ∗P , and we

need to show that Emp2,Emp2,Emp,Emp |= 〈c, σ〉 Bn (Qs ∗Q). From (a) we know that

there exists σ1 and σ2 such that σ = σ1] σ2, (b) σ1 ∈ Ps, and (c) σ2 ∈ P . From (c), and

A,G |= {Ps, P} c {Qs, Q}, by Def. 8.13, we know that (d) A,G, Ps, Qs |= 〈c, σ2〉 Bn Q. We

also know that (e) c is 0-atomic. From (d), (e), and (b), using Lemma 8.11 (item 1), we

conclude

Lemma 8.27.

A,G |= {Ps, P1} c {Qs, Q1} A,G |= {Ps, P2} c {Qs, Q2} img(G) is precise

A,G |= {Ps, P1∩P2} c {Qs, Q1∩Q2}

Proof. From Def. 8.13, we assume there exist σ and n, such that (a) σ ∈ P1∩P2, and we

need to show that A,G, Ps, Qs |= 〈c, σ〉 Bn (Q1∩Q2). From (a) we know that (b) σ ∈ P1

and (c) σ ∈ P2. From (b), and A,G |= {Ps, P1} c {Qs, Q1}, by Def. 8.13, we know that

(d) A,G, Ps, Qs |= 〈c, σ〉 Bn Q1. From (c), and A,G |= {Ps, P2} c {Qs, Q2}, by Def. 8.13,

we know that (e) A,G, Ps, Qs |= 〈c, σ〉 Bn Q2. From (d), (e), and knowing that img(G) is

precise, using Lemma 8.12, we conclude

Lemma 8.28.
A,G |= {Ps, P1} c {Qs, Q1} A,G |= {Ps, P2} c {Qs, Q2}

A,G |= {Ps, P1∪P2} c {Qs, Q1∪Q2}

Proof. From Def. 8.13, we assume there exist σ and n, such that (a) σ ∈ P1∪P2, and we

need to show that A,G, Ps, Qs |= 〈c, σ〉 Bn (Q1∪Q2). From (a) we know that either (b)

251

σ ∈P1 or (c) σ ∈P2. If we assume (b), then from A,G |= {Ps, P1} c {Qs, Q1}, by Def. 8.13,

we know that (d) A,G, Ps, Qs |= 〈c, σ〉 Bn Q1. We also know that (e) Q1⊆Q1∪Q2. From

(d) and (e), using Lemma 8.3, we conclude. Similarly, if we assume (c), then from A,G |=

{Ps, P2} c {Qs, Q2}, by Def. 8.13, we know that (f) A,G, Ps, Qs |= 〈c, σ〉 Bn Q2. We also

know that (g) Q2⊆Q1∪Q2. From (f) and (g), using Lemma 8.3, we conclude

Soundness theorem. The proof structure of Theorem 8.29 is similar for all SAGL rules.

It uses all lemmas from Lemma 8.15 to Lemma 8.28, one for each corresponding SAGL

rule. The proof structure is modular, if an extra rule is added to Fig. 8.3, we just need to

prove an extra lemma for its correspondent semantic rule.

Theorem 8.29. If A,G `{Ps, P} c {Qs, Q}, then A,G |= {Ps, P} c {Qs, Q}

Proof. By strong induction over the derivation tree depth of (a) A,G ` {Ps, P} c {Qs, Q}.

After inversion of (a), we have one case for each rule:

• ASSIGNMENT: we knowA = Emp2,G = Emp2, Ps = Emp,Qs = Emp, P = Q◦Jν :=eK,

and c = (ν :=e), using Lemma 8.15, we conclude

• ACTION: we know A = Emp2, G = Emp2, Ps = Emp, Qs = Emp, P = Q◦JaK, and

c = 〈a〉, using Lemma 8.16, we conclude.

• SEQUENTIAL: we know c = (c1; c2) and that there exists P ′s and P ′ such that (a)

A,G ` {Ps, P} c1 {P ′s, P ′} and (b) A,G ` {P ′s, P ′} c2 {Qs, Q}. From (a), using the

induction hypothesis, we obtain (c) A,G |= {Ps, P} c1 {P ′s, P ′}. From (b), using the

induction hypothesis, we obtain (d) A,G |= {P ′s, P ′} c2 {Qs, Q}. From (c), and (d),

using Lemma 8.17, we conclude

• SKIP: we know A = Emp2, G = Emp2, Ps = Emp, Qs = Emp, P = Q, and c = skip,

using Lemma 8.18, we conclude.

• CONDITIONAL: we know c = (if b then c1 else c2) and that (a) P ⊆ bbc∪b¬bc, (b)

A,G ` {Ps, P ∩bbc} c1 {Qs, Q}, and (c) A,G ` {Ps, P ∩b¬bc} c2 {Qs, Q}. From (b),

using the induction hypothesis, we obtain (d) A,G |= {Ps, P ∩bbc} c1 {Qs, Q}. From

252

(c), using the induction hypothesis, we obtain (e) A,G |= {Ps, P ∩b¬bc} c2 {Qs, Q}.

From (a), (d), and (e), using Lemma 8.19, we conclude

• LOOP: we know c = (while b do c), Q = (P ∩b¬bc), (a) P ⊆ bbc∪b¬bc, and (b)

A,G ` {Ps, P ∩bbc} c {Ps, P}. From (b), using the induction hypothesis, we obtain

(c) A,G |= {Ps, P∩bbc} c {Ps, P}. From (a), and (c), using Lemma 8.20, we conclude

• PARALLEL: we know A = (A1∩A2), Ps = (Ps1∩Ps2), Qs = (Qs1∩Qs2), P = (P1∗P2),

c = (c1‖c2),Q = (Q1∗Q2), and that (a) Ps1⊆Ps1◦A1, (b) Ps2⊆Ps2◦A2, (c)A1, G∩A2 `

{Ps1, P1} c1 {Qs1, Q1} and (d) A2, G∩A1 `{Ps2, P2} c2 {Qs2, Q2}. From (a), using the

induction hypothesis, we obtain (e) A1, G∩A2 |= {Ps1, P1} c1 {Qs1, Q1}. From (b),

using the induction hypothesis, we obtain (f) A2, G∩A1 |= {Ps2, P2} c2 {Qs2, Q2}.

From (a), (b), (e), and (f), using Lemma 8.21, we conclude

• ATOMIC: we know c = (atomic c), (a) Emp2,Emp2,Emp,Emp ` {Ps ∗P} c {Qs ∗Q},

(b) Ps × Qs ⊆G, and (c) Qs ⊆Qs◦A. From (a), using the induction hypothesis, we

obtain (d) Emp2,Emp2,Emp,Emp |= {Ps∗P} c {Qs∗Q}. From (d), (b), and (c), using

Lemma 8.22, we conclude

• CONSEQUENCE: we know that there exists A′, P ′s, P ′, G′, Q′s, and Q′, such that (a)

A⊆A′, (b) Ps ⊆ P ′s, (c) P ⊆ P ′, (d) G′ ⊆G, (e) Q′s ⊆Qs, (f) Q′ ⊆Q, and (g) A′, G′ `

{P ′s, P ′} c {Q′s, Q′}. From (g), using the induction hypothesis, we obtain (h) A′, G′ |=

{P ′s, P ′} c {Q′s, Q′}. From (a), (b), (c), (d), (e), (f), and (f), using Lemma 8.23, we

conclude

• EXISTENTIAL: we know that P = (∃x. P(x)), Q = (∃x. Q(x)), and (a) ∀x. A,G `

{Ps,P(x)} c {Qs,Q(x)}. From (a), using the induction hypothesis, we obtain (b)

∀x. A,G |= {P∫ ,P(x)} c {Qs,Q(x)}. From (b), using Lemma 8.24, we conclude

• FRAME: we know A = (I2∗A′), G = (I2∗G′), Ps = (I ∗P ′s), Qs = (I ∗Q′s), and (a)

A′, G′ `{P ′s, P} c {Q′s, Q} and (b) either I ′ is precise or img(G′) and dom(A′) coincide.

From (a), using the induction hypothesis, we obtain (c) A′, G′ |= {P ′s, P} c {Q′s, Q}.

From (c) and (b), using Lemma 8.25, we conclude

253

• RESOURCE: we know A = Emp2, G = Emp2, Ps = Emp, Qs = Emp, P = (P ′s∗P ′),

Q = (Q′s ∗Q′), and (a) A′, G′ ` {P ′s, P ′} c {Q′s, Q′}. From (a), using the induction

hypothesis, we obtain (b) A′, G′ |= {P ′s, P ′} c {Q′s, Q′}. From (b), using Lemma 8.26,

we conclude

• CONJUNCTION: we know P = (P1 ∩ P2), Q = (Q1 ∩Q2), and that (a) A,G `

{Ps, P1} c {Qs, Q1}, (b) A,G ` {Ps, P2} c {Qs, Q2}, and (c) img(G) is precise. From

(a), using the induction hypothesis, we obtain (d) A,G |= {Ps, P1} c {Qs, Q1}. From

(b), using the induction hypothesis, we obtain (e) A,G |= {Ps, P2} c {Qs, Q2}. From

(d), (e), and (c), using Lemma 8.27, we conclude

• DISJUNCTION: we know P = (P1∪P2), Q = (Q1∪Q2), and that

(a) A,G ` {Ps, P1} c {Qs, Q1} and (b) A,G ` {Ps, P2} c {Qs, Q2}. From (a), using the

induction hypothesis, we obtain (c) A,G |= {Ps, P1} c {Qs, Q1}. From (b), using the

induction hypothesis, we obtain (d) A,G |= {Ps, P2} c {Qs, Q2}. From (c), and (d),

using Lemma 8.28, we conclude

8.3.2 With Regard to the Parameterized Semantics

In this section, we proof the soundness of SAGL with regard to the parameterized seman-

tics of Sec. 3.8. First, we need to define the semantic meaning of a Λ-parameterized CSL

quadruple.

Definition 8.30. A,G |=[Λ] {Ps, P} c {Qs, Q}, if and only if, for all σ, such that σ ∈ Ps∗P ,

we have:

1. ¬[Λ] 〈c, σ〉 7−→∗ abort

2. If [Λ] 〈c, σ〉 7−→∗ 〈skip, σ′〉, then σ′∈Qs∗Q

This definition is straightforward. The A,G |=[Λ] {Ps, P} c {Qs, Q} septuple ensures

that for any state satisfying the pre-condition Ps∗P will not abort, and, if it the execution

completes, the final state will satisfyQs∗Q. Given this definition, we can phrase and prove

the soundness theorem below:

254

Theorem 8.31. If A,G `{Ps, P} c {Qs, Q}, and Λ provides the DRF-guarantee,

then A,G |=[Λ] {Ps, P} c {Qs, Q}

Proof. From A,G `{Ps, P} c {Qs, Q}, using Theorem 8.29, we obtain

(a) A,G |= {Ps, P} c {Qs, Q}. From Def. 8.30, we can prove the goal if, by assuming there

is a state σ, such that (b) σ∈Ps∗P , we can establish the following two conditions:

(c) ¬[Λ] 〈c, σ〉 7−→∗ abort

(d) If [Λ] 〈c, σ〉 7−→∗ 〈skip, σ′〉, then σ′∈Qs∗Q

From (a), and (b), using Lemma 8.14, we know that:

(e) ¬〈c, σ〉 7−→∗ abort

(f) ¬〈c, σ〉 7−→∗ race

(g) If 〈c, σ〉 7−→∗ 〈skip, σ′〉, then σ′∈Qs∗Q

Since Λ provides the DRF-guarantee, from (e), and (f), based on Def. 5.2, we establish (c)

and we know

(h) If [Λ] 〈c, σ〉 7−→∗ 〈skip, σ′〉, then 〈c, σ〉 7−→∗ 〈skip, σ′〉

From (h), and (g), we can establish (d)

8.3.3 With Regard to the Relaxed Semantics

The proof of soundness regarding the -parameterized relaxed semantics of Sec. 3.10 is

straightforward.

Theorem 8.32. If A,G `{Ps, P} c {Qs, Q}, then A,G |=[] {Ps, P} c {Qs, Q}

Proof. From Theorem 5.12, we know that (a) provides the DRF-guarantee. FromA,G `

{Ps, P} c {Qs, Q}, and (a), using Theorem 8.31, we prove our goal

255

8.4 Extension Rules

In section Sec. 8.2, we have presented the SAGL rules that match the standard rules of

CSL from Sec. 6.2. Here we present some extensions.

In Fig. 8.3, we have presented the following FRAME rule, that allows abstracting away

a piece of shared memory

A,G `{Ps, P} c {Qs, Q} img(I) is precise or img(G) and dom(A) coincide

I2∗A, I2∗G `{I∗Qs, P} c {I∗Qs, Q}

In CSL, in order to obtain a frame rule for the private memory, we combine the FRAME

rule with the RESOURCE rule. However, in SAGL, since both rules have some limitation,

we would end up with the following derived rule

Emp2,Emp2 `{Emp, P} c {Emp, Q}

Emp2,Emp2 `{Emp, I∗P} c {Emp, I∗Q}

This rule is not very flexible as it requires the shared memory to be empty. We can, how-

ever, prove a better frame rule for the private memory directly from the semantic rule of

Lemma 8.34 (which uses Lemma 8.33 as auxiliary).

Lemma 8.33. IfA,G, Ps, Qs |= 〈T, σ〉BnQ, and σ′∈I , thenA,G, Ps, Qs |= 〈T, σ′]σ〉Bn I∗Q

Proof. By induction over n. If n = 0, by Def. 8.1, we conclude. If n > 0, by Def. 8.1,

assuming (a) A,G, Ps, Qs |= 〈T, σ〉Bn Q and (b) σ′∈I , we have 5 cases:

• From (a), by Def. 8.1 (item 1), we know that T is 0- or 1-atomic

• From (a), by Def. 8.1 (item 2), we know that (c) 〈T, σ〉 7−→ abort is false. From (c),

using Lemma 3.22 (item 1), we conclude

• From (a), by Def. 8.1 (item 3), we know that (d) 〈T, σ〉 7−→ race is false. From (c) and

(d), using Lemma 3.22 (item 2), we conclude

• From (c), and 〈T, σ′] σ〉 7−→ 〈T ′, σ′′〉, using Lemma 3.22 (item 3), we know there

exists σ′′′ such that σ′′ = σ′] σ′′′ and (e) 〈T, σ〉 7−→ 〈T ′, σ′′′〉. Then we have 4 cases:

256

– If both T and T ′ are 1-atomic, we need to show that A,G, Ps, Qs |= 〈T ′, σ′]

σ′′′〉 Bn−1 (I ∗Q). From (a) and (e), by Def. 8.1 (item 4.a), we know that (f)

A,G, Ps, Qs |= 〈T ′, σ′′′〉 Bn−1 Q. From (f) and (b), by the induction hypothesis,

we conclude

– If both T and T ′ are 0-atomic, we need to show that dom(σ′]σ) = dom(σ′]σ′′′)

and A,G, Ps, Qs |= 〈T ′, σ′] σ′′′〉Bn−1 (I∗Q). From (a) and (e), by Def. 8.1 (item

4.b), we know that (f) dom(σ) = dom(σ′′′), and also that (g) A,G, Ps, Qs |=

〈T ′, σ′′′〉 Bn−1 Q. From (g) and (b), by the induction hypothesis, we have (h)

A,G, Ps, Qs |= 〈T ′, σ′] σ′′′〉Bn−1 Q. From (f) and (h), we conclude

– If T is 0-atomic and T ′ is 1-atomic, we need to show that for all σ1 and σ2, such

that (f) σ2 = σ1]σ′]σ′′′ and (g) σ1∈Ps, we haveA,G, Ps, Qs |= 〈T ′, σ2〉Bn−1 (I∗

Q). From (a), (e), and (g), by Def. 8.1 (item 4.c), we know that (h)A,G, Ps, Qs |=

〈T ′, σ1]σ′′′〉Bn−1Q. From (h) and (b), by the induction hypothesis, we conclude

– If T is 1-atomic and T ′ is 0-atomic, we need to show that for all σ′′′′, such that (f)

σ′′′′∈Ps, there exists P ′s, where Ps×P ′s⊆G and P ′s⊆P ′s◦A, and a pair of states, σ1

and σ2, such that σ′]σ′′′ = σ1]σ2, σ1∈P ′s, andA,G, P ′s, Qs |= 〈T ′, σ2〉Bn−1(I∗Q).

From (a), (e), and (f), by Def. 8.1 (item 4.d), we know there exists P ′′s , where (g)

Ps × P ′′s ⊆G and (h) P ′′s ⊆ P ′′s ◦A, and a pair of states, σ′1 and σ′2, such that (i)

σ′′′ = σ′1]σ′2, (j) σ′1∈P ′′s , and (k)A,G, P ′′s , Qs |= 〈T ′, σ′2〉Bn−1Q. From (k) and (b),

by the induction hypothesis, we have (l)A,G, P ′′s , Qs |= 〈T ′, σ′]σ′2〉Bn−1 (I∗Q).

Instantiating the goal with P ′′s , σ′1, and σ′] σ′2, from (g), (h), (i), (j), and (l), we

conclude

• We assume (c) T = skip. From (a) and (c), by Def. 8.1 (item 5), we know that (d)

Ps⊆Qs and (e) σ∈Q. From (b) and (e), we know that (f) σ′] σ∈I∗Q. From (d) and

(f), we conclude

Lemma 8.34.
A,G |= {Ps, P} c {Qs, Q}

A,G |= {Ps, I∗P} c {Qs, I∗Q}

257

Proof. From Def. 8.13, we assume there exist σ and n, such that (a) σ∈I∗P , and we need to

show that A,G, Ps, Qs |= 〈c, σ〉Bn (I∗Q). From (a) we know that exists σ1 and σ2 such that

σ = σ1] σ2, (b) σ1∈I , and (c) σ2∈P . From (c), and A,G |= {Ps, P} c {Qs, Q}, by Def. 8.13,

we know that (d) A,G, Ps, Qs |= 〈c, σ2〉 Bn Q. From (d), and (a), using Lemma 8.33, we

conclude

In Fig. 8.3, we have presented the following CONJUNCTION rule

A,G `{Ps, P1} c {Qs, Q1} A,G `{Ps, P2} c {Qs, Q2} img(G) is precise

A,G `{Ps, P1∩P2} c {Qs, Q1∩Q2}

which has the constraint that img(G) is precise. We can generalize this rule to the follow-

ing

A1, G1 `{Ps1, P1} c {Qs1, Q1} A2, G2 `{Ps2, P2} c {Qs2, Q2}

img(G1) and img(G2) coincide

A1∩A2, G1∩G2 `{Ps1∩Ps2, P1∩P2} c {Qs1∩Qs2, Q1∩Q2}
(CONJUNCTION)

which requires the image of G1 and G2 to coincide (as in Def. 6.35).

In order to prove the soundness of this generalized rule, we need the following two

lemmas:

Lemma 8.35. If A1, G1, Ps1, Qs1 |= 〈T, σ〉 Bn Q1, A2, G2, Ps2, Qs2 |= 〈T, σ〉 Bn Q2, and

img(G1) and img(G2) coincide, thenA1∩A2, G1∩G2, Ps1∩Ps2, Qs1∩Qs2 |= 〈T, σ〉Bn (Q1∩Q2)

Proof. By induction over n. If n = 0, by Def. 8.1, we conclude. If n > 0, by Def. 8.1,

assuming (a) A1, G1, Ps1, Qs1 |= 〈T, σ〉 Bn Q1 and (b) A2, G2, Ps2, Qs2 |= 〈T, σ〉 Bn Q2, we

have 5 cases:

• From (a), by Def. 8.1 (item 1), we know that T is 0- or 1-atomic

• From (a), by Def. 8.1 (item 2), we know that 〈T, σ〉 7−→ abort is false

• From (a), by Def. 8.1 (item 3), we know that 〈T, σ〉 7−→ race is false

258

• If (c) 〈T, σ〉 7−→ 〈T ′, σ′〉, then we have 4 cases:

– If both T and T ′ are 1-atomic, we need to show thatA1∩A2, G1∩G2, Ps1∩Ps2, Qs1∩

Qs2 |= 〈T ′, σ′〉Bn−1 (Q1∩Q2). From (a) and (c), by Def. 8.1 (item 4.a), we know

that (d) A1, G1, Ps1, Qs1 |= 〈T ′, σ′〉 Bn−1 Q1. From (b) and (c), by Def. 8.1 (item

4.a), we know that (e) A2, G2, Ps2, Qs2 |= 〈T ′, σ′〉Bn−1 Q2. From (d) and (e), by

the induction hypothesis, we conclude

– If both T and T ′ are 0-atomic, we need to show that dom(σ) = dom(σ′) and

A1∩A2, G1∩G2, Ps1∩Ps2, Qs1∩Qs2 |= 〈T ′, σ′〉Bn−1 (Q1∩Q2). From (a) and (c), by

Def. 8.1 (item 4.b), we know already that dom(σ) = dom(σ′), and also that (d)

A1, G1, Ps1, Qs1 |= 〈T ′, σ′〉Bn−1 Q1. From (b) and (c), by Def. 8.1 (item 4.b), we

also know that dom(σ) = dom(σ′) and (e) A2, G2, Ps2, Qs2 |= 〈T ′, σ′〉 Bn−1 Q2.

From (d) and (e), by the induction hypothesis, we conclude

– If T is 0-atomic and T ′ is 1-atomic, we need to show that for all σ1 and σ2, such

that (d) σ2 = σ1] σ′ and (e) σ1 ∈ Ps1∩Ps2, we have A1∩A2, G1∩G2, Ps1∩

Ps2, Qs1∩Qs2 |= 〈T ′, σ2〉Bn−1 (Q1∩Q2). From (e), we know that (f) σ1∈Ps1 and

(g) σ1 ∈Ps2. From (a), (c), (d), and (f), by Def. 8.1 (item 4.c), we know that (h)

A1, G1, Ps1, Qs1 |= 〈T ′, σ2〉Bn−1 Q1. From (b), (c), (d), and (g), by Def. 8.1 (item

4.c), we know that (i) A2, G2, Ps2, Qs2 |= 〈T ′, σ2〉 Bn−1 Q2. From (h) and (i), by

the induction hypothesis, we conclude

– If T is 1-atomic and T ′ is 0-atomic, we need to show that for all σ′′, such that

(d) σ′′ ∈ Ps1∩Ps2, there exists P ′s, where (Ps1∩Ps2) × P ′s ⊆ (G1∩G2) and P ′s ⊆

P ′s ◦(A1∩A2), and a pair of states, σ1 and σ2, such that σ′ = σ1] σ2, σ1 ∈ P ′s,

and A1 ∩A2, G1 ∩G2, P
′
s, Qs1 ∩Qs2 |= 〈T ′, σ2〉 Bn−1 (Q1 ∩Q2). From (d), we

know (e) σ′′ ∈ Ps1 and (f) σ′′ ∈ Ps2. From (a), (c), and (e), by Def. 8.1 (item

4.d), we know there exists Ps′1, where (g) Ps1 × Ps′1⊆G1 and (h) Ps′1⊆Ps′1◦A1,

and a pair of states, σ′1 and σ′2, such that (i) σ′ = σ′1] σ′2, (j) σ′1 ∈ Ps′1, and (k)

A1, G1, Ps
′
1, Qs1 |= 〈T ′, σ′2〉Bn−1 Q1. From (b), (c), and (f), by Def. 8.1 (item 4.d),

we know there exists Ps′2, where (l) Ps2 × Ps′2⊆G2 and (m) Ps′2⊆Ps′2◦A2, and

259

a pair of states, σ′′1 and σ′′2 , such that (n) σ′ = σ′′1] σ′′2 , (o) σ′′1 ∈ Ps′2, and (p)

A2, G2, Ps
′
2, Qs2 |= 〈T ′, σ′′2〉 Bn−1 Q2. From (e), (f), (j), (o), (g), (l), (i), and (n)

given that img(G1) and img(G2) coincide, we know that σ′1 = σ′′1 and σ′2 = σ′′2 .

From (g) and (l), we have (q) (Ps1∩Ps2) × (Ps
′
1∩Ps′2) ⊆ (G1∩G2). From (h)

and (m), we have (r) (Ps
′
1∩Ps′2)⊆ (Ps

′
1∩Ps′2)◦(A1∩A2). From (k) and (p), by

the induction hypothesis, we have (s) A1∩A2, G1∩G2, Ps
′
1∩Ps′2, Qs1∩Qs2 |=

〈T ′, σ′2〉Bn−1 (Q1∩Q2). Instantiating the goal with (Ps
′
1∩Ps′2), σ′1, and σ′2, from

(q), (r), (i), (j), (o), and (s), we conclude

• We assume (c) T = skip. From (a) and (c), by Def. 8.1 (item 5), we know that (d)

Ps1 ⊆ Qs1 and (e) σ ∈ Q1. From (b) and (c), by Def. 8.1 (item 5), we know that (f)

Ps2⊆Qs2 and (g) σ∈Q2. From (d) and (f), we know that (h) (Ps1∩Ps2)⊆(Qs1∩Qs2).

From (e) and (g), we know that (i) σ∈Q1∩Q2. From (h) and (i), we conclude

Lemma 8.36.

A1, G1 |= {Ps1, P1} c {Qs1, Q1} A2, G2 |= {Ps2, P2} c {Qs2, Q2}

img(G1) and img(G2) coincide

A1∩A2, G1∩G2 |= {Ps1∩Ps2, P1∩P2} c {Qs1∩Qs2, Q1∩Q2}

Proof. From Def. 8.13, we assume there exist σ and n, such that (a) σ∈P1∩P2, and we need

to show thatA1∩A2, G1∩G2, Ps1∩Ps2, Qs1∩Qs2 |= 〈c, σ〉Bn (Q1∩Q2). From (a) we know that

(b) σ ∈ P1 and (c) σ ∈ P2. From (b), and A1, G1 |= {Ps1, P1} c {Qs1, Q1}, by Def. 8.13, we

know that (d)A1, G1, Ps1, Qs1 |= 〈c, σ〉BnQ1. From (c), andA2, G2 |= {Ps2, P2} c {Qs2, Q2},

by Def. 8.13, we know that (e) A2, G2, Ps2, Qs2 |= 〈c, σ〉Bn Q2. From (d), (e), and knowing

that img(G1) and img(G2) coincide, using Lemma 8.35, we conclude

8.5 Embedding CSL in SAGL

It turns out that SAGL is a generalization of CSL. Many of the CSL rules from Fig. 6.3 can

be embedded in SAGL by providing a simple interpretation of CSL judgments into SAGL

judgements as show in Fig. 8.4.

260

JI `{P} c {Q}K def
= I2, I2 `{I, P} c {I,Q}

Figure 8.4: Interpretation of CSL into SAGL

We can then prove most of CSL rules as lemmas, just as they are.

Lemma 8.37.

JEmp `{Q◦Jν :=eK} ν :=e {Q}K

Proof. If we unfold the interpretation, we need to show that Emp2,Emp2 ` {Emp, Q ◦

Jν :=eK} ν :=e {Emp, Q}, which we obtain directly from rule ASSIGNMENT

Lemma 8.38.

JEmp `{Q◦JaK} 〈a〉 {Q}K

Proof. If we unfold the interpretation, we need to show that Emp2,Emp2 ` {Emp, Q ◦

JaK} 〈a〉 {Emp, Q}, which we obtain directly from rule ACTION

Lemma 8.39.
JI `{P} c1 {P ′}K JI `{P ′} c2 {Q}K

JI `{P} c1; c2 {Q}K

Proof. If we unfold the interpretation, we need to show that I2, I2 ` {I, P} c1; c2 {I,Q}.

From JI `{P} c1 {P ′}K, unfolding the interpretation, we have (a) I2, I2 `{I, P} c1 {I, P ′}.

From JI `{P ′} c2 {Q}K, unfolding the interpretation, we have (b) I2, I2 `{I, P ′} c2 {I,Q}.

From (a) and (b), using rule SEQUENTIAL, we conclude

Lemma 8.40.

JEmp `{P} skip {P}K

Proof. If we unfold the interpretation, we need to show that

Emp2,Emp2 `{Emp, P} skip {Emp, P}, which we obtain directly from rule SKIP

Lemma 8.41.

P ⊆bbc∪b¬bc JI `{P∩bbc} c1 {Q}K JI `{P∩b¬bc} c2 {Q}K
JI `{P} if b then c1 else c2 {Q}K

261

Proof. If we unfold the interpretation, we need to show that

I2, I2 ` {I, P} if b then c1 else c2 {I,Q}. From JI `{P∩bbc} c1 {Q}K, unfolding the in-

terpretation, we have (a) I2, I2 ` {I, P ∩bbc} c1 {I,Q}. From JI `{P∩b¬bc} c2 {Q}K, un-

folding the interpretation, we have (b) I2, I2 ` {I, P ∩b¬bc} c2 {I,Q}. From (a), (b), and

P ⊆bbc∪b¬bc, using rule CONDITIONAL, we conclude

Lemma 8.42.
P ⊆bbc∪b¬bc JI `{P∩bbc} c {P}K
JI `{P}while b do c {P∩b¬bc}K

Proof. If we unfold the interpretation, we need to show that

I2, I2 ` {I, P}while b do c {I, P ∩b¬bc}. From JI `{P∩bbc} c {P}K, unfolding the inter-

pretation, we have (a) I2, I2 ` {I, P ∩bbc} c {I, P}. From (a) and P ⊆bbc∪b¬bc, using rule

LOOP, we conclude

Lemma 8.43.
JI `{P1} c1 {Q1}K JI `{P2} c2 {Q2}K

JI `{P1∗P2} c1‖c2 {Q1∗Q2}K

Proof. If we unfold the interpretation, we need to show that I2, I2 ` {I, P1 ∗P2} c1 ‖

c2 {I,Q1 ∗Q2}, which is equivalent to I2∩I2, I2 ` {I ∩I, P1 ∗P2} c1 ‖ c2 {I ∩I,Q1 ∗Q2}.

From JI `{P1} c1 {Q1}K, unfolding the interpretation, we have I2, I2 ` {I, P1} c1 {I,Q1},

which is equivalent to (a) I2, I2 ∩ I2 ` {I, P1} c1 {I,Q1}. From JI `{P2} c2 {Q2}K, un-

folding the interpretation, we have I2, I2 ` {I, P2} c2 {I,Q2}, which is equivalent to (b)

I2, I2 ∩ I2 ` {I, P2} c2 {I,Q2}. From (a), (b), and I ⊆ I ◦ I2, using rule PARALLEL, we

conclude

Lemma 8.44.
JEmp `{I∗P} c {I∗Q}K
JI `{P} atomic c {Q}K

Proof. If we unfold the interpretation, we need to show that I2, I2 `{I, P} atomic c {I,Q}.

From JEmp `{I∗P} c {I∗Q}K, unfolding the interpretation, we have (a) Emp2,Emp2 `

{Emp, I ∗P} c {Emp, I ∗Q}. From (a), I × I ⊆ I2, and I ⊆ I ◦I2, using rule ATOMIC, we

conclude

262

Lemma 8.45.
P ⊆P ′ JI `{P ′} c {Q′}K Q′⊆Q

JI `{P} c {Q}K

Proof. If we unfold the interpretation, we need to show that I2, I2 ` {I, P} c {I,Q}. From

JI `{P ′} c {Q′}K, unfolding the interpretation, we have (a) I2, I2 ` {I, P ′} c {I,Q′}. From

(a), P ⊆P ′, and Q′⊆Q, using rule CONSEQUENCE, we conclude

Lemma 8.46.
∀x. JI `{P(x)} c {Q(x)}K

JI `{∃x. P(x)} c {∃x. Q(x)}K

Proof. If we unfold the interpretation, we need to show that

I2, I2 ` {I, ∃x. P(x)} c {I, ∃x. Q(x)}. From ∀x. JI `{P(x)} c {Q(x)}K, unfolding the inter-

pretation, we have (a) ∀x. I2, I2 `{I,P(x)} c {I,Q(x)}. From (a), using rule EXISTENTIAL,

we conclude

The CSL frame rule can be embedded but needs and extra precision requirement over

I ′ or I .

Lemma 8.47.
JI `{P} c {Q}K I’ is precise or I is precise

JI ′∗I `{P} c {Q}K

Proof. If we unfold the interpretation, we need to show that (I ′∗I)2, (I ′∗I)2 `{I ′∗I, P} c {I ′∗

I,Q}, which is equivalent to I ′2∗I2, I ′2∗I2 ` {I ′∗I, P} c {I ′∗I,Q}. From JI `{P} c {Q}K,

unfolding the interpretation, we have (a) I2, I2 ` {I, P} c {I,Q}. Given that I ′ is precise

or I is precise, using Remark 6.36, we know that (b) either I ′ is precise or img(I2) and

dom(I2) coincide. From (a), and (b), using rule FRAME, we conclude

Due to the limited SAGL resource rule, the embedding of the CSL resource rule also

needs to be limited.

Lemma 8.48.
JI `{P} c {Q}K

JEmp `{I∗P} c {I∗Q}K

263

Proof. If we unfold the interpretation, we need to show that Emp2,Emp2 ` {Emp, I ∗

P} c {Emp, I∗Q}. From JI `{P} c {Q}K, unfolding the interpretation, we have (a) I2, I2 `

{I, P} c {I,Q}. From (a), using rule RESOURCE, we conclude

Lemma 8.49.
JI `{P1} c {Q1}K JI `{P2} c {Q2}K I is precise

JI `{P1∩P2} c {Q1∩Q2}K

Proof. If we unfold the interpretation, we need to show that I2, I2 ` {I, P1∩P2} c {I,Q1∩

Q2}. From JI `{P1} c {Q1}K, unfolding the interpretation, we have

(a) I2, I2 `{I, P1} c {I,Q1}. From JI `{P2} c {Q2}K, unfolding the interpretation, we have

(b) I2, I2 ` {I, P2} c {I,Q2}. Given that I is precise, we know that (c) img(I2) is precise.

From (a), (b), and (c), using rule CONJUNCTION, we conclude

Lemma 8.50.
JI `{P1} c {Q1}K JI `{P2} c {Q2}K

JI `{P1∪P2} c {Q1∪Q2}K

Proof. If we unfold the interpretation, we need to show that I2, I2 ` {I, P1∪P2} c {I,Q1∪

Q2}. From JI `{P1} c {Q1}K, unfolding the interpretation, we have

(a) I2, I2 `{I, P1} c {I,Q1}. From JI `{P2} c {Q2}K, unfolding the interpretation, we have

(b) I2, I2 `{I, P2} c {I,Q2}. From (a), and (b), using rule DISJUNCTION, we conclude

8.6 Verification Examples

In this section, we provide some examples of programs verified using SAGL.

8.6.1 Dekker’s Algorithm

Here we provide a proof for the Dekker’s algorithm implementation presented in Fig. 7.6

in Sec. 7.4.2. The proof idea is similar but, instead of using partial permissions to prevent

some of the memory locations from being modified, we use rely-guarantee instead.

In order to define the assume and guarantee conditions for both threads, we de-

fine dekkers(I) which is a shared-memory invariant very similar to the one presented in

264

Sec. 7.4.2, except that we discarded the partial permissions. We carry out this invari-

ant through out the verification of both threads, however we strengthen it, by perform

a conjunction, where required. Based on the shared invariant we define the rely for the

left hand side thread (A1) by simply forcing the maintenance of the invariant plus the

preservation of cs1, a1, and the location pointed by a1. The guarantee of the left hand

side thread (G1) also forces the maintenance of the invariant plus the preservation of

cs2, a2, and the location pointed by a2. Naturally, the assumption of the left hand side

thread is the guarantee of the right hand side thread, and vice versa.

dekkers(I)
def
= ∃v1, v2, c1, c2. cs1 7→c1∗cs2 7→c2

∗ ((c1 6=0∪c2 6=0)∩Emp∪(c1 =0∩c2 =0)∩I)

∗ (∃p. a1 7→p∗p 7→v1)∗(∃p. a2 7→p∗p 7→v2)

∩ (v1 =0∩c1 =0∪v1 =1)∩(v2 =0∩c2 =0∪v2 =1)

A1(I),G2(I)
def
= ∃p1, v1, c1. (a1 7→p1∗p1 7→v1∗cs1 7→c1∗True)

× ((a1 7→p1∗p1 7→v1∗cs1 7→c1∗True)∩dekkers(I))

A2(I),G1(I)
def
= ∃p2, v2, c2. (a2 7→p2∗p2 7→v2∗cs2 7→c2∗True)

× ((a2 7→p2∗p2 7→v2∗cs2 7→c2∗True)∩dekkers(I))

Now, with these definitions in mind, we can show the verification of Dekker’s algo-

rithm using SAGL. Note that precision is required for I . Here we only show the veri-

fication for the left hand side thread. The verification of the right hand side thread is

symmetric.

265

∀I. A1(I),G1(I) `{
(∃p. a1 7→p∗p 7→0∗cs1 7→0∗True)∩dekkers(I), v1 7→

}
atomic [a1] :=1;{

(∃p. a1 7→p∗p 7→1∗cs1 7→0∗True)∩dekkers(I), v1 7→
}

atomic (v1 := [a2]; cs1 :=−(v1−1));{
(∃p. a1 7→p∗p 7→1∗cs1 7→ ∗True)∩dekkers(I), v1 7→1∪(v1 7→0∗I)

}
if v1=0 then{

(∃p. a1 7→p∗p 7→1∗cs1 7→ ∗True)∩dekkers(I), v1 7→0∗I
}

/* critical section */ ;{
(∃p. a1 7→p∗p 7→1∗cs1 7→ ∗True)∩dekkers(I), v1 7→0∗I

}{
(∃p. a1 7→p∗p 7→1∗cs1 7→ ∗True)∩dekkers(I), v1 7→1∪(v1 7→0∗I)

}
atomic ([a1] :=0; cs1 :=0){

(∃p. a1 7→p∗p 7→0∗cs1 7→0∗True)∩dekkers(I), v1 7→
}

266

Chapter 9

Cross Rewriting and Partial Barriers

In this chapter, we provide a summary of two extensions to our framework. These are

here to enlighten the reader by showing that the ideas presented can be supported for

more sophisticated goals. The first extension is cross rewriting that allows private values

to be propagated around an atomic block or parallel composition. The second extension

is the support for partial barriers where a command might be swapped with an atomic

block in one direction.

9.1 Cross Rewriting

Before we present partial barriers we need to present cross rewriting. Cross rewriting

allows the rewriting an atomic block based on the private operations that precede it. Or

the other way around, it allows rewriting private operations based on the atomic block

that precedes them. For example, subsumption (as defined in Def. 3.33) does not allow

the following kind of transformations:

(x :=3; 〈y :=x〉; z :=y) 6 (x :=3; 〈y :=3〉; z :=3)

Here we provide an extended version of subsumption, which we call cross-rewrite

subsumption. Def. 9.2 redefines the semantics of in order to support on cross-rewrite.

Def. 9.1 defines φc which is the set of states that result from the evaluation of c′s private

267

“tail”, i.e. the commands that follow the last barrier of c.

Definition 9.1. σ∈φc if, and only if, either

1. exists σ′ such that 〈c, σ′〉 ⇓ 〈skip, σ〉

2. exists σ′, S, c′, and σ′′ such that 〈c, σ′〉 ⇓ 〈S[atomic c′], σ′′〉 and σ∈φ
S[skip]

3. exists σ′, S, c1, c2, and σ′′ such that 〈c, σ′〉 ⇓ 〈S[c1‖c2], σ′′〉 and σ∈φ
S[skip]

Definition 9.2. c1 σ
0 c2 always holds; c1 σ

n+1 c2 holds if, and only if, the following are

true:

1. If 〈c2, σ〉 −→∗ abort, then 〈c1, σ〉 −→∗ abort;

2. If 〈c2, σ〉 ⇓ 〈c′2, σ′〉, then either 〈c1, σ〉 −→∗ abort,

or there exists c′1 such that 〈c1, σ〉 ⇓ 〈c′1, σ′〉 and the following constraints hold:

(a) if c′2 = skip, then c′1 = skip;

(b) if c′2 = S2[c′′2 ‖c′′′2], there exist S1, c′′1 and c′′′1 such that

i. c′1 = S1[c′′1 ‖c′′′1];

ii. c′′1
σ′
n c′′2 ;

iii. c′′′1
σ′
n c′′′2 ;

iv. If σ′′∈φc′′2 ∩ φc′′′2 , then S1[skip] σ′′
n S2[skip];

(c) if c′2 = S2[atomic c′′2], there exist S1 and c′′1 such that

i. c′1 = S1[atomic c′′1];

ii. c′′1
σ′
n c′′2 ;

iii. If σ′′∈φc′′2 , then S1[skip] σ′′
n S2[skip];

3. If 〈c2, σ〉 ⇑, then either 〈c1, σ〉 −→∗ abort, or 〈c1, σ〉 ⇑.

4. If 〈c2, σ〉 −→∗
δ2

κ2, then either 〈c1, σ〉 −→∗ abort, or there exists δ1 and κ1 such that

〈c1, σ〉 −→∗
δ1

κ1 and δ2 ⊆ δ1.

We define c1 σ c2 as ∀n. c1 σ
n c2. We define c1 c2 as ∀σ. c1 σ c2.

268

We also need lift cross-rewriting subsumption to thread trees in order to define the

relaxed semantics.

Definition 9.3. σ∈ΦT if, and only if, either

1. T = c and σ∈φc

2. T = 〈〈T1, T2 〉〉pc and σ∈φc

3. T = 〈〈T 〉〉ac and σ∈φc

Definition 9.4. The binary relation between thread trees σ
t

is defined as follows:

c1 σ c2

c1 σ
t
c2

T1 σ
t
T2 T ′1

σ
t
T ′2

(∀σ′∈ΦT2 ∩ ΦT ′2
. c1 σ′ c2)

〈〈T1, T ′1 〉〉pc1 σ
t
〈〈T2, T ′2 〉〉pc2

T1 σ T2

(∀σ′∈ΦT2 . c1 σ′ c2)

〈〈T1 〉〉ac1 σ
t
〈〈T2 〉〉ac2

We believe that the properties of subsumption also hold for cross-rewrite subsump-

tion, however we leave it as future work.

9.2 Partial Barriers

Partial barriers, are memory barriers that enforce partial ordering of operations. In the

semantics presented in Chapter 3, we can see that atomic blocks work as a total barrier. In

this section, we present the semantic extension to support partial barriers. In particular,

we are interested in acquire and release barriers.

An acquire barrier, is used when the footprint of the private memory increases, i.e. the

program performs a shared memory operation to acquire some of that memory to its pri-

vate use. Similarly, a release barrier is used to do the reverse, transfer a portion of private

memory to shared memory, decreasing the private footprint. Here we assume acquire

barriers are implemented by annotating atomic blocks with a .a modifier. Similarly, we

use a .r for release.

269

Emp `{I∗P} c {I∗Q} P EQ

I `{P} atomic.a c {Q}
(ACQUIRE)

Emp `{I∗P} c {I∗Q} P DQ

I `{P} atomic.r c {Q}
(RELEASE)

Figure 9.1: CSL inference rules for partial barriers

CSL rules. In Figure 9.1, we present the prototype CSL inference rules for acquire and

release. These rules are exactly like the rule presented in Chapter 6, except that we have

an extra constraint over the pre- and post-conditions.

The constraint P E Q ensures the footprint increase or decrease based on the domain

of the states described by P and Q.

Definition 9.5. P EQ, if and only if, for all σ and σ′, if σ∈P and σ′∈Q, then∇(σ)⊆∇(σ′).

We define P DQ as QE P .

Subsumption extensions. The following two definitions are used to extend the sub-

sumption relation to support the reordering with regard to partial barriers. We only re-

order commands that are purely sequential and completely data independent from the

code of the barrier.

Definition 9.6. A command c is sequential if, and only if,

1. c = a or c = skip

2. c = (c1; c2) or c = (if b then c1 else c2), where both c1 and c2 are sequential

3. c = (while b do c′), where c′ is also sequential

Definition 9.7. Two commands c1 and c2 are independent if, and only if,

1. If 〈c1, σ〉 7−→∗
δ1
〈c′1, σ′〉, and 〈c2, σ

′〉 7−→∗
δ2

κ, then δ1 ~̂ δ2

2. If 〈c2, σ〉 7−→∗
δ2
〈c′2, σ′〉, and 〈c1, σ

′〉 7−→∗
δ1

κ, then δ2 ~̂ δ1

270

In the dynamic semantics, we allow operations to be reordered with atomics following

their acquire or release semantics. A new command relation
∂

is defined below

c1 c2

c1 ∂ c2

c′1 is sequential c′1 and c′2 are independent

c1 ∂ C[c′1; atomic.a c′2] C[atomic.a c′2; c′1]
∂
c2

c1 ∂ c2

c′2 is sequential c′1 and c′2 are independent

c1 ∂ C[atomic.r c′1; c′2] C[c′2; atomic.r c′1]
∂
c2

c1 ∂ c2

In order to establish the soundness of CSL given the extended semantics of partial bar-

riers, one must either extend the definition of DRF-program to account for partial barriers,

or establish that the
∂

relation preserves the DRF of a program verified using CSL.

In the first case, we must observe that, differently from other memory models such as

Release-Consistency [36] and the Java Memory Model [54], the definition of DRF needs

to be extended to consider the .a and .r modifiers. This is due to the fact that, in our

setting, acquire and release can implement arbitrary communication protocols. The tech-

nical reason for that cannot be explained trivially but we can give a intuition based on the

JMM. In the JMM, a lock operation has acquire semantics, i.e. when we lock an object we

gain access to some memory. Naturally, to embed the lock operations in our language we

would have to use the .a modifier. However, if by mistake we label lock with a .r modifier,

we might have an operation, that is accessing the memory acquired by the lock, being

executed prior to the lock. This “early” access might easily become race, even when the

program is DRF according to the current definition. Such effect does not happen in the

JMM because the shared-memory operations, such as lock, unlock, and volatile read and

write, are built-in operations designed to be compatible with the usual notion of DRF. In

our case, we must extend this definition. By extending the definition, we can keep the or-

thogonality of current soundness proof structure where we establish the soundness with

271

regard to the interleaved semantics and rely solely in the DRF-guarantee to establish the

soundness with regard to the relaxed semantics.

In the second case, if we show that the
∂

relation preserves the DRF property of pro-

grams verified with CSL, we can establish the soundness of CSL in the presence of par-

tial barriers without the need to redefine the DRF-guarantee. This will produce a mixed

soundness proof that will need an auxiliary lemma in the same grounds of Hypothesis 9.8.

Hypothesis 9.8. If I `{P} c {Q}, σ∈I∗P , and c
∂
c′, then ¬〈c′, σ〉 7−→∗ race

272

Chapter 10

Related Work and Conclusion

This thesis connects two previously unconnected related fields: memory consistency mod-

els and program verification.

The first field, memory consistency models, was usually related to the implementation

of shared memory multi-processors, and more recently connected to language semantics

to encompass for compiler optimizations as well. Memory model descriptions are tradi-

tionally axiomatic and trace-based.

The second field, program verification, involves proving properties of programs, stat-

ically, before they execute. Most of the work in program verification uses some form

of operational semantics and assume a non-deterministic interleaving to capture concur-

rency.

It is not hard to see there is a gap between the two fields: first, the way memory mod-

els are described makes them harder to reason about as we are used to think of programs

semantics as state transitions described operationally; second, when we reason about con-

currency as an interleaved execution we neglect many aspects of the execution that might

very easily compromise the reasoning.

273

10.1 Related Work

Here we will present the most significant work, on both memory consistency models and

concurrency verification, that inspired this thesis work. We will try be comprehensive and

point-out connections as we do the presentation.

10.1.1 Memory Consistency Models

The memory consistency model defines how a machine deals with concurrent memory

accesses. Early on, the models were very specific to machine features like write buffers

and cache coherence. Later on, more abstract, axiomatic, descriptions appeared. More re-

cently, as the memory model becomes part of language semantics, we have seen attempts

to describe them operationally.

Tutorials and Terminology. Adve and Gharachorloo [3] provide a good tutorial describ-

ing the relationship between architecture features and hardware memory models. A more

recent update to the tutorial is provided by Adve et al. [6].

Mostberger [57] provides a good survey of hardware memory models. Higham et

al. [40] and de Melo [23] both present formalizations of memory hardware memory mod-

els within the same framework.

The definition of the term sequential consistency is due to Lamport [51]. Both the

happens-before relation and the term causality were proposed also by Lamport [50].

Weak Consistency. Adve and Hill [4] describe weak ordering, which is also called weak

consistency. Their work is presented as a refinement of ideas introduced by Dubois et

al. [26, 27].

Release Consistency. Gharachorloo et al. [36] present an extension of weak consistency

that classifies synchronized accesses further into acquire and release. Their model is re-

ferred to as release consistency, and serves as base for describing partial barriers and the

DRF-guarantee when such barriers are available. Partial barriers are interesting from the

274

point of view of performance as it gives to the hardware better opportunities for buffering

and pipelining.

Java Memory Model. The Java Memory Model (JMM) [54] attempts to draw a line be-

tween acceptable and unacceptable behaviors coming from high-level memory models in

the context of a typed language. It attempts to define the legal effects of optimizations

in the presence of races. It is based on the happens-before model with extra constrains.

The happens-before model is clearly undesirable as it allows self-justified executions to

happen, breaking causality which is not intuitive for programming language semantics.

Most of the effort and complications of the JMM are due to the fact that raceful programs

must not break the language safety. The solution is ad-hoc and does not capture some

reasonable sequential optimizations. The official description of the JMM was carried out

as a Java community process [47].

Aspinall and Sevcik [10, 11] formalized the JMM in Isabelle/HOL and provide a dis-

cussion about JMM idiosyncrasies with many examples. Huisman and Petri [43] provide

a formalization of the JMM in Coq, also discussing curious aspects of the model.

Pietro et al. [21] present a framework that captures the JMM combining operational,

denotational and axiomatic semantic approaches. They separate the memory model speci-

fication from the runtime semantics and within the same framework show their interplay.

Some examples of optimizations not supported by the JMM are described and possible

modifications to the memory model are suggested.

Saraswat et al. [65] provide a theory for memory models based on similar require-

ments as the JMM. Their framework approaches the problem from the program transfor-

mation point of view. Is is not clearly connected to an operational semantics though. The

term fundamental property is used to refer to the DRF-guarantee.

Itanium/x86 Memory Model. Both Intel and AMD have recently released documents

describing their memory models [45, 1] which are informal and ambiguous. It turns out

that in practice x86 machines uses a TSO like memory model as advocated by Owens et

275

al. [59]. They provide both an operational and axiomatic model, formalized in HOL4.

Their model is much simpler then previous attempts to formalized the x86 memory mod-

els [66]. Intel has also released a memory model for the Itanium Architecture [44], which

was based in release consistency and described using a less informal framework.

Semantic Approach. Recently, Boudol and Petri [15] presented an operational semantics

for a functional language with explicit store buffers. Their semantics have a very concrete

feature and therefore captures a very constrained set of relaxations. The presentation is

very nice and they prove the DRF-guarantee of their semantics following an approach

that is more familiar to the program verification community.

Other Literature. Both Shasha and Snir [67] and Krishnamurthy and Yelick [49] pre-

sented early approaches to the problem of memory reordering affecting concurrent exe-

cution by finding program cycles when accessing memory.

Hill [41] advocates for hardware implementing sequential consistency to avoid prob-

lems with relaxed memory models.

Lipton and Sandberg [53] introduced the PRAM memory model.

Processor consistency was proposed by Goodman [37], and its characteristics are dis-

cussed by Ahamad et al. [7].

Ahamad and Hutto [8], introduced causal consistency for distributed shared memory

and proved the DRF-guarantee of the model.

Modern ideas on hardware memory models where presented by Adve [2] and Ghara-

chorloo [34] in their Ph.D. theses. Gharachorloo et al. [35] present reasoning techniques to

program various memory consistency models.

Gao and Sarkar [32] define a hardware memory model that does not rely on cache co-

herence called location consistency which they claim to be weaker than any existing models.

Yang [74] presented a formalization of memory models for program analysis as his

Ph.D. thesis. With others he introduced Nemos [77], a parameterized operational frame-

work for describing and analyzing memory models suitable for model checking, and us-

276

ing it to study both Itanium [76] and Java [75] concurrency issues. Park and Dill [60, 25]

presented executable specifications for relaxed memory models. Roychoudhury [64] im-

plemented executable specifications to test programs under the JMM and other hardware

memory models.

Condon et al. [22] used Lamport clocks to reason about relaxed memory model at the

architectural level. Shen et al [68] introduced the commit-reconcile fences as a new memory

model. Arvind and Maessen [9] present a graph-based framework to define hardware

memory models in terms of two aspects: memory ordering and store atomicity.

Adve and Hill [5] provide an unified description for four shared-memory models.

Steinke and Nutt [69] also provide an unified theory to describe shared memory consis-

tency.

Boehm [13] discusses the importance of having the memory model as part of the lan-

guage semantics.

Midkiff et al. [56] present a compiler that produces code for multiple memory models.

Sura et al. [70] and Fang et al. [28] study approaches for automatic fence insertion by the

compiler.

Burckhardt et al [19] describe a static approach to check the proper use of memory

fences in C code.

Bronevetsky and de Supinski [16] provide an operational semantics for the OpenMP

memory model.

Boehm and Adve [12] describe the key aspects of the new C++ memory model. Differ-

ently from Java, C++ is not a safe language, therefore programs with races have undefined

behavior. This simplifies the memory model in a great deal.

10.1.2 Program Verification

Concurrency semantics. The CSL operational semantics [18] assumes sequential con-

sistency. It has explicit race detection, and raceful programs are regarded as unsafe.

Vafeiadis and Parkinson [71] present a semantics with explicit memory separation; also

avoiding races. Brookes [17] presented a grainless semantics that merges adjacent ac-

277

tions into larger-steps; inspired by earlier work on a concurrent grainless semantics by

Reynolds [63]. Hobor et al. [42] presents an oracle semantics for CSL. Gastin and Mis-

love [33] provide a deterministic operational semantics for a concurrent language with a

notion of weak sequential composition, which allows actions that do not share resources

to be executed concurrently. Unfortunately, none of these semantics attempted to address

objectively memory model issues.

Concurrency verification. Separation logic was developed by Reynolds [62]. CSL [58,

18] was the result of extending separation logic principles to a concurrent setting. The

incorporation of permission accounting into CSL to support shared-read only accesses

was presented by Bornat et al. [14]. Logics that combine CSL and rely-guarantee reasoning

[48, 72] were developed recently [30, 71]. Work on concurrency verification of assembly

code using rely-guarantee is available [79, 31] as extensions of certified assembly programing

(CAP) [39, 78].

Program equivalence. Leroy [52] introduces some intuitive notions of program equiva-

lence required to define the correctness of an optimizing compiler. Calcagno and O’Hearn

[20] define a semantic hoare triple that captures programs for which some notion of equiv-

alence can be derived. The command subsumption relation was inspired and can be re-

lated by these work.

10.2 Conclusion

In this thesis, we have presented a simple operational semantics to formalize memory

models. First, we present a footprint sequential semantics and and interleaved concur-

rent semantics which are used to define sequential consistency and what we regard as

race-free programs. The semantics allow free nesting of atomic blocks and parallel com-

position. Furthermore, it is a small-step semantics that exhibits weak atomicity behaviors

where unprotected code may interleave with atomic block execution. Then, we present a

very simple semantics which is parameterized on a binary relation over programs. This

278

semantics is based on the interleaved semantics but chooses any program from the binary

relation to execute, which in fact simulates the execution of any of them. This binary re-

lation should be seen as a compiler or hardware that is optimizing the program on the

fly. Naturally, for a given parameter, i.e. a given set of program transformations, we will

obtain a given memory model.

By instantiating the parameter with a specific relation, which we call subsumption

(), we have obtained a particular memory model that is weaker than many existing

ones. This memory model also captures many optimizations that maintain some notion

of sequential equivalence, and preserve the displacement of atomic blocks in the code.

We show that the relaxed semantics obtained from subsumption has the DRF-guarantee.

This means that programs that originally are absent of data-races, according to the in-

terleaved semantics, will not exhibit new behaviors when optimized. This proof uses an

intermediate mixed-step semantics that executes sequential code in big-steps, making a

very intuitive connection between the interleaved semantics and the subsumption defini-

tion.

Finally, we prove the soundness of CSL and extensions with regard to the relaxed

semantics. This is simply done by first establishing the soundness with regard to the

interleaved semantics, and later using the DRF-guarantee theorem. However, in order to

use the DRF-guarantee, the CSL semantic model must also prevent races, which is an extra

condition carried over the soundness proof. In practical terms, we observe that as long as

we properly synchronize the program, such that concurrent allocation and deallocation

are always protected by an atomic block, CSL is indeed race-free.

279

Appendix A

Notation Summary

Syntactic Category Description Where Page
c command Fig. 3.1 18
a action Fig. 3.1 18
ν l-value Fig. 3.1 18
e expression Fig. 3.1 18
b condition Fig. 3.1 18
κ program configuration Fig. 3.3 20
σ program state Fig. 3.3 20
σ̄ program state with permissions Fig. 7.1 171
Π state permissions Fig. 7.1 171
π location permission Fig. 7.1 171
` memory location Fig. 3.3 20
T thread tree Fig. 3.3 20
δ memory footprint Fig. 3.4 22
rs/ws read/write set of locations Fig. 3.4 22
C program context Sec. 3.4 23
S sequential context Fig. 3.6 23
T thread three context Fig. 3.6 23
Λ command transformation Sec. 3.8 42

Notation Description Where Page
〈T, σ〉 normal program configuration Fig. 3.3 20
abort abort program configuration Fig. 3.3 20
race race program configuration Fig. 3.3 20
〈〈T1, T2 〉〉pc thread tree node for parallel composition Fig. 3.3 20
〈〈T 〉〉ac thread tree node for atomic block Fig. 3.3 20
• program hole Sec. 3.4 23

280

Notation Description Where Page
T is n-atomic thread tree class Def. 3.1 21
T is n-atomic thread tree context class Def. 3.3 24
emp empty footprint Fig. 3.5 22
δ1 ∪ δ2 footprint union Fig. 3.5 22
δ1 ⊆ δ2 sub-footprint relation Fig. 3.5 22
δ1 ≡ δ2 footprint equivalence Fig. 3.5 22
δ1 ⊂ δ2 proper sub-footprint relation Fig. 3.5 22
δ1 ~̂ δ2 unidirectional footprint non-interference Fig. 3.5 22
δ1 ^ δ2 bidirectional footprint non-interference Fig. 3.5 22
σ̄1] σ̄2 disjoint union of states with permissions Def. 7.1 172
σ̄1 ⊆ σ̄2 subs Tate relation for states with permissions Def. 7.1 172
σ̄|Π permissions extraction Def. 7.2 172
C[−] program context substitution Sec. 3.4 23
S[−] sequential context substitution Sec. 3.4 23
T[−] thread tree context substitution Sec. 3.4 23
JνK l-value interpretation Fig. 3.7 25
JeK expression interpretation Fig. 3.7 25
JbK condition interpretation Fig. 3.7 25
JaK action interpretation Fig. 3.7 25
Lνσ l-value location set Fig. 3.8 26
∆ν
σ l-value footprint Fig. 3.8 26

∆e
σ expression footprint Fig. 3.8 26

∆b
σ condition footprint Fig. 3.8 26

∆a
σ action footprint Fig. 3.8 26
∇(σ) largest compatible footprint for state Def. 3.4 27
∇(σ̄) largest compatible footprint for state with permissions Def. 7.3 172
bΛc lift transformation from command to tree Def. 3.23 43
Λ provides the DRF-guarantee DRF-guarantee property Def. 5.2 91

Notation Description Where Page
κ −→ κ′ sequential small-step Fig. 3.9 28

κ −→
δ
κ′ sequential small-step with footprint Fig. 3.10 30

κ −→n

δ
κ′ sequential multi-step with footprint Def. 3.7 32

κ −→∗
δ

κ′ reflexive transitive closure of step with footprint Def. 3.7 32

κ 7−→ κ′ concurrent small-step Fig. 3.11 36

κ 7−→∞ concurrent small-step divergence Def. 3.19 39
κ 7−→n

δ
κ′ concurrent multi-step with footprint Def. 3.20 39

κ 7−→∗
δ

κ′ reflexive transitive closure of step with footprint Def. 3.20 39

[Λ] κ 7−→ κ′ parameterized small-step Fig. 3.13 42

[Λ] κ 7−→n κ′ parameterized multi-step Def. 3.24 43

[Λ] κ 7−→∗ κ′ reflexive transitive closure of parameterized step Def. 3.24 43

[Λ] κ 7−→∞ parameterized small-step divergence Def. 3.25 43
κ ⇓ κ′ sequential evaluation Fig. 3.14 45
κ ⇑ sequential divergence Fig. 3.14 45
c1 n c2 indexed command subsumption Def. 3.33 47
c1 c2 command subsumption Def. 3.33 47
T1 t

T2 thread tree subsumption Def. 3.33 47
κ =⇒ κ′ concurrent mixed-step Fig. 5.1 92

κ =⇒∞ concurrent mixed-step divergence Def. 5.3 92

Syntactic Category Description Where Page
P,Q, I assertions Fig. 6.1/Fig. 7.2 128/173
P,Q, I assertion formulae Fig. 6.1/Fig. 7.2 128/173
A,G binary assertions Fig. 8.1 217

281

Notation Description Where Page
bbc condition lifted to assertion Fig. 6.2/Fig. 7.3 129/173
P1∗P2 separating conjunction for assertions Fig. 6.2/Fig. 7.3 129/173
G1∗G2 separating conjunction for binary assertions Fig. 8.2 218
P ×Q cartesian product of assertions Fig. 8.2 218
P 2 cartesian product with itself Fig. 8.2 218
P ◦G assertion composition Fig. 8.2 218
Emp assertion for empty state Fig. 6.2/Fig. 7.3 129/173
Id identity binary assertion Fig. 8.2 218
` 7→ i assertion for singleton state Fig. 6.2/Fig. 7.3 129/173
` π7→ i assertion for singleton state with permission Fig. 7.3 173
P is precise precision for assertions Def. 6.1/Def. 7.4 129/173
Q◦JaK weakest pre-condition for action Def. 6.2/Def. 7.5 131/175
P1 and P2 coincide coincidence for assertions Def. 6.35 165

Notation Description Where Page
I `{P} c {Q} CSL judgement Fig. 6.3/Fig. 7.4 130/174
A,G `{Ps, P} c {Qs, Q} SAGL judgement Fig. 8.3 219
I |= 〈T, σ〉Bn Q indexed CSL semantic triple Def. 6.3 132
I |= 〈T, σ〉B Q CSL semantic triple Def. 6.3 132
I |= 〈T, σ̄〉Bn Q indexed CSL with permissions semantic triple Def. 7.8 175
I |= 〈T, σ̄〉B Q CSL with permissions semantic triple Def. 7.8 175
A,G, Ps, Qs |= 〈T, σ〉Bn Q indexed SAGL semantic sixtuple Def. 8.1 221
A,G, Ps, Qs |= 〈T, σ〉B Q SAGL semantic sixtuple Def. 8.1 221
I |= {P} c {Q} CSL semantic model Def. 6.15/Def. 7.20 152/197
A,G |= {Ps, P} c {Qs, Q} SAGL semantic model Def. 8.13 243
I |=[Λ] {P} c {Q} parameterized CSL semantic model Def. 6.32/Def. 7.37 163/207
A,G |=[Λ] {Ps, P} c {Qs, Q} parameterized SAGL semantic model Def. 8.30 254

282

Appendix B

Guide to Coq Proofs

In this appendix, we provide a high-level guide to the Coq implementation of the the-

ory presented in this thesis. We have formalized the theory for the language syntax and

semantics (Chapter 3), the proof of the DRF-guarantee (Chapter 5), and the soundness

proofs for both CSL (Chapter 6) and SAGL (Chapter 8).

B.1 Organization

The Coq proof is organized into several files. Here we present the file name and a descrip-

tion of its contents:

• cntx.v: sequential context definitions, on page 288

• csl.v: CSL inference rules, on page 308

• csl in sagl.v: Embedding of CSL in SAGL, on page 321

• csl soundness.v: CSL soundness proof, on page 310

• deltasem.v: definition of footprint functions, on page 294

• denosem.v: semantics of expressions and actions, on page 295

• foot.v: footprint definitions, on page 291

283

• lang.v: language syntax, on page 287

• loc.v: location definitions, on page 290

• locset.v: location set definitions, on page 291

• logic common.v: definitions common to both CSL and SAGL, on page 308

• map.v: finite partial map definitions, on page 286

• mixsem.v: mixed-step semantics, on page 303

• multi.v: multi-step semantics, on page 293

• prmsem.v: parameterized semantics, on page 305

• rlxsem.v: relaxed semantics, on page 306

• runtime.v: runtime constructs, on page 288

• sagl.v: SAGL inference rules, on page 314

• sagl soundness.v: SAGL soundness proof, on page 316

• seqsem.v: sequential semantics, on page 296

• seqsemfoot.v: sequential semantics with footprints, on page 297

• set.v: finite set definitions, on page 285

• smlsem.v: interleaved semantics, on page 302

• specs.v: shallow embedding of assertions, on page 307

• state.v: program state definitions, on page 292

• subsump.v: subsumption definition, on page 300

• subsumpn.v: indexed subsumption definition, on page 299

• tntx.v: thread three context definitions, on page 301

284

B.2 Contents

In this section, we present, for each Coq file, a summary of important definitions and

associated theory. We only describe here the most relevant parts of the implementation

in order to keep the presentation concise. Whenever possible, we will provide pointers to

their counterparts as introduced in the preceding chapters.

set.v

In this file, we define a library of operations and properties to manipulate a finite set of

elements of polymorphic type A. Here we present the opaque interface to this library, the

actual implementation uses a sorted list as encoding for the finite set.

Section set.

(* requirements over polymorphic type A *)
Variable A: Set.
Variable cmp_A: A -> A -> comparison.
Variable cmp_A_equ: forall a1 a2, a1 = a2 <-> cmp_A a1 a2 = Eq.
Variable cmp_A_rev: forall a1 a2, CompOpp (cmp_A a1 a2) = cmp_A a2 a1.

(* sample definitions *)
Definition set: Set. (* set type *)
Definition emp: set. (* empty set *)
Definition sin (a: A): set. (* singleton set *)
Definition ins (s: set) (a : A): set. (* insertion *)
Definition del (s: set) (a : A): set. (* deletion *)
Definition has (s: set) (a : A): bool. (* membership check *)
Definition cup (s1 s2: set): set. (* union *)
Definition cap (s1 s2: set): set. (* intersection *)
Definition min (s1 s2: set): set. (* subtraction *)
Definition dis (s1 s2: set): Prop. (* disjoint relation *)
Definition sub (s1 s2: set): Prop. (* subset relation *)

(* sample properties *)
Lemma cup_ident: forall s, cup emp s = s.
Lemma cup_equal: forall s, cup s s = s.
Lemma cup_commu: forall s1 s2, cup s1 s2 = cup s2 s1.
Lemma cup_assoc: forall s1 s2 s3,

cup (cup s1 s2) s3 = cup s1 (cup s2 s3).
Lemma cap_empty: forall s, cap emp s = emp.
Lemma cap_equal: forall s, cap s s = s.
Lemma cap_commu: forall s1 s2, cap s1 s2 = cap s2 s1.
Lemma cap_assoc: forall s1 s2 s3,

cap (cap s1 s2) s3 = cap s1 (cap s2 s3).
Lemma dis_empty: forall s, dis emp s.
Lemma dis_commu: forall s1 s2, dis s1 s2 -> dis s2 s1.

285

Lemma sub_empty: forall s, sub emp s.
Lemma sub_reflx: forall s, sub s s.
Lemma sub_trans: forall s1 s2 s3, sub s1 s2 -> sub s2 s3 -> sub s1 s3.
Lemma sub_cup: forall s1 s2 s1’ s2’,

sub s1 s1’ -> sub s2 s2’ ->
sub (cup s1 s2) (cup s1’ s2’).

Lemma sub_cup2: forall s1 s2, sub s1 (cup s1 s2).
Lemma sub_dis: forall s1 s2 s1’ s2’,

sub s1 s1’ -> sub s2 s2’ -> dis s1’ s2’ -> dis s1 s2.
Lemma sub_min: forall s1 s2, sub (min s1 s2) s1.

End set.

map.v

In this file, we define a library of operations and properties to manipulate a finite partial

map of elements of polymorphic type A to elements of polymorphic type B. Here we

present the opaque interface to this library, the actual implementation uses a sorted list as

encoding for the finite map.

Section map.

(* requirements over polymorphic types A and B *)
Variable A B: Set.
Variable cmp_A: A -> A -> comparison.
Variable cmp_A_equ: forall a1 a2, a1 = a2 <-> cmp_A a1 a2 = Eq.
Variable cmp_A_rev: forall a1 a2, CompOpp (cmp_A a1 a2) = cmp_A a2 a1.
Variable uni_B: B -> B -> B.
Variable uni_B_commu: forall b1 b2, uni_B b1 b2 = uni_B b2 b1.
Variable dis_B: B -> B -> Prop.
Variable dis_B_commu: forall b1 b2, dis_B b1 b2 -> dis_B b2 b1.

(* sample definitions *)
Definition map: Set. (* map type *)
Definition emp: map. (* empty map *)
Definition sin (a: A) (b: B): map. (* singleton map *)
Definition ins (m: map) (a: A) (b: B): map. (* insertion *)
Definition del (m: map) (a: A): map. (* deletion *)
Definition get (m: map) (a: A): option B. (* retrieval *).
Definition has (m: map) (a: A): bool. (* membership check *)
Definition dom (m: map): set A. (* domain extraction *)
Definition uni (m1 m2: map): map. (* union *)
Definition dis (m1 m2: map): Prop. (* disjoint relation *)

(* sample properties *)
Lemma uni_ident: forall m, uni emp m = m.
Lemma uni_commu: forall m1 m2, uni m1 m2 = uni m2 m1.
Lemma uni_assoc: forall m1 m2 m3,

286

uni (uni m1 m2) m3 = uni m1 (uni m2 m3).
Lemma dis_empty: forall m, dis emp m.
Lemma dis_commu: forall m1 m2, dis m1 m2 -> dis m2 m1.

End map.

lang.v

In this file, we define the syntax of our programming language as close as possible to the

one presented in Fig. 3.1. There is only one simplification: instead of ν :=cons(e1, . . . , en),

that takes a arbitrary number of arguments and initialize each new memory location with

the result of evaluation of the respective argument, we define a simpler primitive that

only allocates a pair of uninitialized memory cells.

Inductive Expr: Set := (* expressions *)
| econ (n: nat)
| elod (lv: Lval)
| eadd (e1 e2: Expr)
| eneg (e: Expr)

with Lval: Set := (* l-values *)
| lvar (v: string)
| lmem (e: Expr).

Inductive Cond: Set := (* conditions *)
| bcon (z: bool)
| band (b1 b2: Cond)
| bneg (b: Cond)
| bequ (e1 e2: Expr)
| bltn (e1 e2: Expr).

Inductive Actn: Set := (* actions *)
| asgn (lv: Lval) (e: Expr)
| allc (lv: Lval)
| free (lv: Lval).

Inductive Comm: Set := (* commands *)
| actn (a: Actn)
| sequ (c1 c2: Comm)
| skip
| cond (b: Cond) (c1 c2: Comm)
| loop (b: Cond) (c: Comm)
| para (c1 c2: Comm)
| atom (c: Comm).

In this file, we also define the syntactic sugar presented in Fig. 3.2.

Definition esub (e1 e2: Expr): Expr := eadd e1 (eneg e2).

287

Definition bor (b1 b2: Cond): Cond := bneg (band (bneg b1) (bneg b2)).
Definition bneq (e1 e2: Expr): Cond := bneg (bequ e1 e2).
Definition bleq (e1 e2: Expr): Cond := bltn e1 (eadd e2 (econ 1)).
Definition bgeq (e1 e2: Expr): Cond := bneg (bltn e1 e2).
Definition bgtn (e1 e2: Expr): Cond :=

bneg (bltn e1 (eadd e2 (econ 1))).
Definition pcnd (b: Cond) (c: Comm): Comm := cond b c skip.
Definition repe (c: Comm) (b: Cond): Comm := sequ c (loop (bneg b) c).
Definition forv (lv: Lval) (e1 e2: Expr) (c: Comm): Comm :=

sequ (actn (asgn lv e1))
(loop (bltn (elod lv) (eadd e2 (econ 1)))

(sequ c (actn (asgn lv (eadd (elod lv) (econ 1)))))).
Definition wait (b: Cond): Comm := loop (bneg b) skip.
Definition when (b: Cond) (c: Comm): Comm :=

atom (sequ (loop (bneg b) skip) c).

runtime.v

In this file, we define thread trees and program configurations as shown in Fig. 3.3.

Inductive Tree: Set := (* thread trees *)
| tcomm (c: Comm)
| tpara (t1 t2: Tree) (c: Comm)
| tatom (t: Tree) (c: Comm).

Inductive Conf : Set := (* program configurations *)
| conf (t: Tree) (s: State)
| abrt
| race.

We also define a predicate to characterize n-atomic thread trees (Def. 3.1).

Inductive ATOM : nat -> Tree -> Prop := (* n-atomic predicate *)
| ATOM_tcomm : forall c, ATOM 0 (tcomm c)
| ATOM_tatom : forall t c, ATOM 1 (tatom t c)
| ATOM_tpara : forall n1 n2 t1 t2 c,

ATOM n1 t1 ->
ATOM n2 t2 ->
ATOM (n1+n2) (tpara t1 t2 c).

cntx.v

In this file, we define command contexts and associated properties. We also define com-

mand transformations as a relation.

(* command transformations *)
Definition Trfrm: Type := Comm -> Comm -> Prop.

288

Inductive Cntx: Set := (* command contexts *)
| hole
| sequ_1 (C: Cntx) (c: Comm)
| sequ_2 (c: Comm) (C: Cntx)
| cond_1 (b: Cond) (C: Cntx) (c: Comm)
| cond_2 (b: Cond) (c: Comm) (C: Cntx)
| loop_1 (b: Cond) (C: Cntx)
| para_1 (C: Cntx) (c: Comm)
| para_2 (c: Comm) (C: Cntx)
| atom_1 (C: Cntx).

(* context/command substitution *)
Fixpoint Subst (C: Cntx) (c’: Comm): Comm :=

match C with
| hole => c’
| sequ_1 C c => sequ (Subst C c’) c
| sequ_2 c C => sequ c (Subst C c’)
| cond_1 b C c => cond b (Subst C c’) c
| cond_2 b c C => cond b c (Subst C c’)
| loop_1 b C => loop b (Subst C c’)
| para_1 C c => para (Subst C c’) c
| para_2 c C => para c (Subst C c’)
| atom_1 C => atom (Subst C c’)
end.

(* context/context substitution *)
Fixpoint Substx (C: Cntx) (C’: Cntx): Cntx :=

match C with
| hole => C’
| sequ_1 C c => sequ_1 (Substx C C’) c
| sequ_2 c C => sequ_2 c (Substx C C’)
| cond_1 b C c => cond_1 b (Substx C C’) c
| cond_2 b c C => cond_2 b c (Substx C C’)
| loop_1 b C => loop_1 b (Substx C C’)
| para_1 C c => para_1 (Substx C C’) c
| para_2 c C => para_2 c (Substx C C’)
| atom_1 C => atom_1 (Substx C C’)
end.

Fixpoint Flat (C: Cntx): Comm := (* context flattening *)
match C with
| hole => skip
| sequ_1 hole c => c
| sequ_1 C’ c => sequ (Flat C’) c
| sequ_2 c hole => c
| sequ_2 c C’ => sequ c (Flat C’)
| cond_1 b C’ c => cond b (Flat C’) c
| cond_2 b c C’ => cond b c (Flat C’)
| loop_1 b C’ => loop b (Flat C’)
| para_1 C’ c => para (Flat C’) c
| para_2 c C’ => para c (Flat C’)
| atom_1 C’ => atom (Flat C’)
end.

289

The following predicate, characterizes sequential contexts as defined in Fig 3.6.

Inductive SEQU : Cntx -> Prop := (* sequential contexts *)
| SEQU_hole : SEQU hole
| SEQU_sequ : forall S c, SEQU S -> SEQU (sequ_1 S c).

We define the weaker notion of command equality, used to establish Lemma 3.46, that

allows a command to be considered equal to itself prepended with skip.

Inductive c_eq_n: nat -> Comm -> Comm -> Prop :=
| c_eq_O: forall c, c_eq_n O c c
| c_eq_S1: forall n c1 c2,

(exists S, SEQU S /\
c1 = Subst S skip /\ c_eq_n n (Flat S) c2) ->
c_eq_n (S n) c1 c2.

| c_eq_S2: forall n c1 c2,
(exists S, SEQU S /\
c2 = Subst S skip /\ c_eq_n n c1 (Flat S)) ->
c_eq_n (S n) c1 c2.

Definition c_eq (c1 c2: Comm): Prop := exists n, c_eq_n n c1 c2.

We also define a generalized proof of contextualization that takes a relation R as parame-

ter. This is the basis for the proof of Lemma 3.36.

Theorem CntxEquiv:
forall (R: Trfrm) C c1 c2,
(forall c1 c2 c, R c1 c2 -> R (sequ c1 c) (sequ c2 c)) ->
(forall c1 c2 c, R c1 c2 -> R (sequ c c1) (sequ c c2)) ->
(forall c1 c2 b c, R c1 c2 -> R (cond b c1 c) (cond b c2 c)) ->
(forall c1 c2 b c, R c1 c2 -> R (cond b c c1) (cond b c c2)) ->
(forall c1 c2 b, R c1 c2 -> R (loop b c1) (loop b c2)) ->
(forall c1 c2 c, R c1 c2 -> R (para c1 c) (para c2 c)) ->
(forall c1 c2 c, R c1 c2 -> R (para c c1) (para c c2)) ->
(forall c1 c2, R c1 c2 -> R (atom c1) (atom c2)) ->
R c1 c2 ->
R (Subst C c1) (Subst C c2).

loc.v

In this file, we define locations as shown in Fig. 3.3. We also define operations for com-

parison of locations, as well as helper injection functions.

Definition Loc: Set := (Z + string)%type. (* locations *)

Definition beq (l1 l2: Loc): bool := (* equality *)
match l1,l2 with
| inl i1,inl i2 => Zeq_bool i1 i2

290

| inr v1,inr v2 => prefix v1 v2 && prefix v2 v1
| _,_ => false
end.

Definition cmp (l1 l2: Loc): comparison := (* comparison *)
match l1,l2 with
| inl i,inr v => Lt
| inl i1,inl i2 => Zcompare i1 i2
| inr v1,inr v2 => cmp_string v1 v2
| inr v,inl i => Gt
end.

Definition inl (i: Z): Loc := inl string i. (* left injection *)
Definition inr (v: string): Loc := inr Z v. (* right injection *)

locset.v

In this file, we conveniently define a location set as a specialization of a set as defined in

file set.v.

(* common definitions *)
Definition LocSet: Set := set Loc. (* location set type *)

foot.v

In this file, we define a footprint as show in Fig 3.4, and the associated definitions as

shown in Fig 3.5.

(* common definitions *)
Definition Foot: Set := (LocSet * LocSet)%type. (* footprint type *)
Definition emp: Foot := (locset.emp,locset.emp). (* empty footprint *)
Definition cup (f1 f2: Foot): Foot := (* footprint union *)
match f1,f2 with
| (rs1,ws1),(rs2,ws2) => (locset.cup rs1 rs2,locset.cup ws1 ws2)
end.

Definition sub (f1 f2: Foot): Prop := (* sub-footprint relation *)
match f1,f2 with
| (rs1,ws1),(rs2,ws2) => locset.sub rs1 (locset.cup rs2 ws2)

/\ locset.sub ws1 ws2
end.

(* unidirectional non-interference *)
Definition rni (f1 f2: Foot): Prop :=

match f1,f2 with
| (rs1,ws1),(rs2,ws2) => locset.dis ws1 (locset.cup rs2 ws2)
end.

(* bidirectional non-interference *)
Definition ni (f1 f2: Foot): Prop :=

rni f1 f2 /\ rni f2 f1.

291

(* common properties *)
Lemma cup_ident: forall f, cup emp f = f.
Lemma cup_equal: forall f, cup f f = f.
Lemma cup_commu: forall f1 f2, cup f1 f2 = cup f2 f1.
Lemma cup_assoc: forall f1 f2 f3,

cup (cup f1 f2) f3 = cup f1 (cup f2 f3).
Lemma sub_empty: forall f, sub emp f.
Lemma sub_reflx: forall f, sub f f.
Lemma sub_trans: forall f1 f2 f3, sub f1 f2 -> sub f2 f3 -> sub f1 f3.
Lemma sub_cup: forall f1 f2 f1’ f2’,

sub f1 f1’ -> sub f2 f2’ ->
sub (cup f1 f2) (cup f1’ f2’).

Lemma sub_cup2: forall f1 f2, sub f1 (cup f1 f2).
Lemma rni_dec: forall f1 f2, rni f1 f2 \/ ˜rni f1 f2.
Lemma rni_sub: forall f1 f1’ f2 f2’,

sub f1 f1’ -> sub f2 f2’ -> rni f1’ f2’ -> rni f1 f2.
Lemma rni_cup_left: forall f1 f2 f,

rni f1 f -> rni f2 f -> rni (cup f1 f2) f.
Lemma rni_cup_rght: forall f1 f2 f,

rni f f1 -> rni f f2 -> rni f (cup f1 f2).
Lemma ni_emp: forall f, ni f emp.

state.v

In this file, we define the program state as a finite partial map from locations to integers

(as shown in Fig 3.3). We also define the largest compatible footprint of a state (Def. 3.4)

and associated properties.

(* common definitions *)
Definition State: Set := map Loc Z. (* state type *)
(* splitting *)
Definition spl (s s1 s2: State): Prop := s = uni s1 s2 /\ dis s1 s2.
(* largest compatible footprint *)
Definition footstate (s: State): Foot := (locset.emp,dom s).

(* common properties *)
Lemma spl_commu: forall s s1 s2, spl s s1 s2 -> spl s s2 s1.
Lemma spl_assoc: forall s s1 s2 s3,

(exists s23, spl s s1 s23 /\ spl s23 s2 s3) ->
(exists s12, spl s s12 s3 /\ spl s12 s1 s2).

Lemma spl_det2: forall s s1 s2 s2’,
spl s s1 s2 -> spl s s1 s2’ -> s2 = s2’.

Lemma spl_emp: forall s, spl s emp s.
Lemma spl_emp_det: forall s s’, spl s emp s’ -> s = s’.
Lemma dom_footstate: forall s s’,

dom s = dom s’ -> footstate s = footstate s’.
Lemma rni_footstate: forall s s’,

locset.dis (dom s) (dom s’) ->

292

rni (footstate s) (footstate s’).

multi.v

In this file, we define multi-step, evaluation, and divergence, in a general way for both

labeled and unlabeled transitions.

Definition Strel: Type := (* unlabeled transition type *)
Conf -> Conf -> Prop.

Definition LbStrel: Type := (* labeled transition type *)
Conf -> Foot -> Conf -> Prop.

Definition Lb (Step: Strel): LbStrel := (* lifting *)
fun k l k’ => Step k k’.

Definition Un (Step: LbStrel): Strel := (* flattening *)
fun k k’ => exists l, Step k l k’.

(* labeled transition definitions *)
Section lb.

(* polymorphic labeled stepping *)
Variable Step: LbStrel.

Inductive LbMultin: nat -> LbStrel := (* fixed size multi-step *)
| LbMultin_O: forall k,

LbMultin O k emp k
| LbMultin_S: forall n k l1 l2 k’,

(exists k’’, Step k l1 k’’ /\ LbMultin n k’’ l2 k’) ->
LbMultin (S n) k (cup l1 l2) k’.

Definition LbMulti: LbStrel := (* arbitrary size multi-step *)
fun k l k’ => exists n, LbMultin n k l k’.

Definition LbEvalu: LbStrel := (* evaluation *)
fun k l k’ => LbMulti k l k’

/\ ˜exists l’, exists k’’, Step k’ l’ k’’.
Definition LbDiver: Conf -> Prop := (* divergence *)
fun k => forall n, exists l, exists k’, LbMultin n k l k’.

End lb.

(* unlabeled transition definitions *)
Section un.

(* polymorphic unlabeled stepping *)
Variable Step: Strel.

Definition Multin: nat -> Strel := (* fixed size multi-step *)
fun n => Un (LbMultin (Lb Step) n).

Definition Multi: Strel := (* arbitrary size multi-step *)
Un (LbMulti (Lb Step)).

Definition Evalu: Strel := (* evaluation *)
Un (LbEvalu (Lb Step)).

293

Definition Diver: Conf -> Prop := (* divergence *)
LbDiver (Lb Step).

End un.

deltasem.v

In this file, we define the footprint extraction functions as shown in Fig. 3.8.

Definition L_l (lv: Lval) (s: State): LocSet :=
match Deno_l lv s with
| Some l => locset.sin l
| None => locset.emp
end.

Fixpoint Delta_e (e: Expr) (s: State): Foot :=
match e with
| econ i => emp
| elod lv => cup (Delta_l lv s) (L_l lv s,locset.emp)
| eadd e1 e2 => cup (Delta_e e1 s) (Delta_e e2 s)
| eneg e => Delta_e e s
end

with Delta_l (lv: Lval) (s: State): Foot :=
match lv with
| lvar v => emp
| lmem e => Delta_e e s
end.

Fixpoint Delta_b (b: Cond) (s: State): Foot :=
match b with
| bcon z => emp
| band b1 b2 => cup (Delta_b b1 s) (Delta_b b2 s)
| bneg b => Delta_b b s
| bequ e1 e2 => cup (Delta_e e1 s) (Delta_e e2 s)
| bltn e1 e2 => cup (Delta_e e1 s) (Delta_e e2 s)
end.

Fixpoint Delta_a (a: Actn) (s: State): Foot :=
match a with
| asgn lv e => cup (Delta_l lv s)

(cup (Delta_e e s) (locset.emp,L_l lv s))
| allc lv => cup (Delta_l lv s) (locset.emp,L_l lv s)
| free lv => cup (Delta_l lv s) (locset.emp,L_l lv s)
end.

We also establish the framing properties of the footprint extraction functions as stated by

Remark 3.15 and Remark 3.14, respectively.

Lemma Delta_b_framing: forall b s s1 s2,
spl s s1 s2 ->
(exists z, Deno_b b s2 = Some z) ->
Delta_b b s = Delta_b b s2.

294

Lemma Delta_a_framing: forall a s s1 s2,
spl s s1 s2 ->
(exists s2’, Deno_a a s2 s2’) ->
Delta_a a s = Delta_a a s2.

denosem.v

In this file, we define the semantics of l-values, expressions, conditions, and actions, as

shown in Fig. 3.7.

Fixpoint Deno_e (e: Expr) (s: State): option Z :=
match e with
| econ n => Some (Z_of_nat n)
| elod lv => match Deno_l lv s with

| Some l => get s l
| None => None
end

| eadd e1 e2 => match Deno_e e1 s,Deno_e e2 s with
| Some i1,Some i2 => Some (i1+i2)%Z
| _,_ => None
end

| eneg e => match Deno_e e s with
| Some i => Some (-i)%Z
| None => None
end

end
with Deno_l (lv: Lval) (s: State): option Loc :=

match lv with
| lvar v => Some (inr v)
| lmem e => match Deno_e e s with

| Some i => Some (inl i)
| None => None
end

end.
Fixpoint Deno_b (b: Cond) (s: State): option bool :=

match b with
| bcon z => Some z
| band b1 b2 => match Deno_b b1 s,Deno_b b2 s with

| Some z1,Some z2 => Some (z1 && z2)
| _,_ => None
end

| bneg b => match Deno_b b s with
| Some z => Some (negb z)
| None => None
end

| bequ e1 e2 => match Deno_e e1 s,Deno_e e2 s with
| Some i1,Some i2 => Some (Zeq_bool i1 i2)
| _,_ => None
end

| bltn e1 e2 => match Deno_e e1 s,Deno_e e2 s with

295

| Some i1,Some i2 => Some (Zlt_bool i1 i2)
| _,_ => None
end

end.
Inductive Deno_a: Actn -> State -> State -> Prop :=

| Deno_asgn: forall lv e s l i,
Deno_l lv s = Some l ->
(exists i, get s l = Some i) ->
Deno_e e s = Some i ->
Deno_a (asgn lv e) s (ins s l i)

| Deno_allc: forall lv s l p i1 i2,
Deno_l lv s = Some l ->
(exists i, get s l = Some i) ->
p > 0 ->
get s (inl (Z_of_nat p)) = None ->
get s (inl (Z_of_nat (p+1))) = None ->
Deno_a (allc lv) s

(ins (ins (ins s
(inl (Z_of_nat (p+1))) i2)
(inl (Z_of_nat p)) i1) l (Z_of_nat p))

| Deno_free: forall lv s l,
Deno_l lv s = Some l ->
(exists i, get s l = Some i) ->
Deno_a (free lv) s (del s l).

We also establish Remark 3.13, as well as the framing properties stated by Remark 3.12

and Remark 3.11, respectively.

Lemma Deno_asgn_dom: forall lv e s s’,
Deno_a (asgn lv e) s s’ -> dom s = dom s’.

Lemma Deno_b_framing: forall b s s1 s2 z,
spl s s1 s2 ->
Deno_b b s2 = Some z -> Deno_b b s = Some z.

Lemma Deno_a_framing: forall a s s1 s2,
spl s s1 s2 ->
(exists s2’, Deno_a a s2 s2’) ->
(exists s’, Deno_a a s s’) /\
(forall s’, Deno_a a s s’ ->

exists s2’, spl s’ s1 s2’ /\ Deno_a a s2 s2’).

seqsem.v

In this file, we define the sequential semantics as shown in Fig 3.9.

Inductive Seqstep: Strel :=
| Seqstep_actn_1:

forall S a s,
SEQU S ->
˜(exists s’, Deno_a a s s’) ->

296

Seqstep (conf (tcomm (Subst S (actn a))) s) abrt
| Seqstep_actn_2:

forall S a s s’,
SEQU S ->
Deno_a a s s’ ->
Seqstep (conf (tcomm (Subst S (actn a))) s)

(conf (tcomm (Subst S skip)) s’)
| Seqstep_skip_1:

forall S c s,
SEQU S ->
Seqstep (conf (tcomm (Subst S (sequ skip c))) s)

(conf (tcomm (Subst S c)) s)
| Seqstep_cond_1:

forall S b c1 c2 s,
SEQU S ->
˜(exists z, Deno_b b s = Some z) ->
Seqstep (conf (tcomm (Subst S (cond b c1 c2))) s) abrt

| Seqstep_cond_2:
forall S b c1 c2 s,
SEQU S ->
Deno_b b s = Some true ->
Seqstep (conf (tcomm (Subst S (cond b c1 c2))) s)

(conf (tcomm (Subst S c1)) s)
| Seqstep_cond_3:

forall S b c1 c2 s,
SEQU S ->
Deno_b b s = Some false ->
Seqstep (conf (tcomm (Subst S (cond b c1 c2))) s)

(conf (tcomm (Subst S c2)) s)
| Seqstep_loop_1:

forall S b c s,
SEQU S ->
Seqstep (conf (tcomm (Subst S (loop b c))) s)

(conf (tcomm (Subst S (cond b (sequ c (loop b c)) skip))) s).

seqsemfoot.v

In this file, we define the sequential semantics with footprints as shown in Fig 3.10.

Inductive Seqstepfoot: LbStrel :=
| Seqstepfoot_actn_1:

forall S a s,
SEQU S ->
˜(exists s’, Deno_a a s s’) ->
Seqstepfoot (conf (tcomm (Subst S (actn a))) s)

(Delta_a a s) abrt
| Seqstepfoot_actn_2:

forall S a s s’,
SEQU S ->
Deno_a a s s’ ->
Seqstepfoot (conf (tcomm (Subst S (actn a))) s)

297

(cup (Delta_a a s) (locset.emp,locset.min (dom s’) (dom s)))
(conf (tcomm (Subst S skip)) s’)

| Seqstepfoot_skip_1:
forall S c s,
SEQU S ->
Seqstepfoot (conf (tcomm (Subst S (sequ skip c))) s)

emp (conf (tcomm (Subst S c)) s)
| Seqstepfoot_cond_1:

forall S b c1 c2 s,
SEQU S ->
˜(exists z, Deno_b b s = Some z) ->
Seqstepfoot (conf (tcomm (Subst S (cond b c1 c2))) s)

(Delta_b b s) abrt
| Seqstepfoot_cond_2:

forall S b c1 c2 s,
SEQU S ->
Deno_b b s = Some true ->
Seqstepfoot (conf (tcomm (Subst S (cond b c1 c2))) s)

(Delta_b b s) (conf (tcomm (Subst S c1)) s)
| Seqstepfoot_cond_3:

forall S b c1 c2 s,
SEQU S ->
Deno_b b s = Some false ->
Seqstepfoot (conf (tcomm (Subst S (cond b c1 c2))) s)

(Delta_b b s) (conf (tcomm (Subst S c2)) s)
| Seqstepfoot_loop_1:

forall S b c s,
SEQU S ->
Seqstepfoot (conf (tcomm (Subst S (loop b c))) s) emp

(conf (tcomm (Subst S (cond b (sequ c (loop b c)) skip))) s).

We establish Remark 3.9, as well as the framing properties given by Lemma 3.16.

Lemma Seqstep_equiv:
forall k k’, Seqstep k k’ <-> exists f, Seqstepfoot k f k’.

Lemma Seqstep_framing:
forall c s s1 s2,
spl s s1 s2 ->
˜Seqstep (conf (tcomm c) s2) abrt ->
˜Seqstep (conf (tcomm c) s) abrt /\
(forall f c’ s’,

Seqstepfoot (conf (tcomm c) s) f (conf (tcomm c’) s’) ->
exists s2’, spl s’ s1 s2’ /\
Seqstepfoot (conf (tcomm c) s2) f (conf (tcomm c’) s2’)).

We also define the auxiliary properties required to establish the DRF-guarantee.

Lemma Seq_foot:
forall c s f c’ s’,
Seqstepfoot (conf (tcomm c) s) f (conf (tcomm c’) s’) ->
sub f (cup (footstate s) (footstate s’)).

298

Lemma Seq_Seq_rni_abrt:
forall c1 c1’ c2 s f1 f2,
(exists s’, Seqstepfoot (conf (tcomm c1) s) f1 (conf (tcomm c1’) s’)

/\ Seqstepfoot (conf (tcomm c2) s’) f2 abrt) ->
rni f1 f2 ->
Seqstepfoot (conf (tcomm c2) s) f2 abrt.

Lemma Seq_Seq_ni:
forall c1 c1’ c2 c2’ s s’’ f1 f2,
(exists s’, Seqstepfoot (conf (tcomm c1) s) f1 (conf (tcomm c1’) s’)

/\ Seqstepfoot (conf (tcomm c2) s’) f2 (conf (tcomm c2’) s’’)) ->
ni f1 f2 ->
(exists s’, Seqstepfoot (conf (tcomm c2) s) f2 (conf (tcomm c2’) s’)

/\ Seqstepfoot (conf (tcomm c1) s’) f1 (conf (tcomm c1’) s’’)).
Lemma MultiSeq_MultiSeq_earliest_race:

forall c1 c1’ c2 s s’ f1 f2 k2,
LbMulti Seqstepfoot (conf (tcomm c1) s) f1 (conf (tcomm c1’) s’) ->
LbMulti Seqstepfoot (conf (tcomm c2) s’) f2 k2 ->
˜rni f1 f2 ->
exists c1’, exists c2’, exists s’,
(exists f1, exists f2, exists s’’,
LbMulti Seqstepfoot (conf (tcomm c1) s) f1 (conf (tcomm c1’) s’’) /\
LbMulti Seqstepfoot (conf (tcomm c2) s’’) f2 (conf (tcomm c2’) s’)
/\ ni f1 f2) /\

((exists f1, exists c1’’, exists s’’, exists f2, exists k2,
Seqstepfoot (conf (tcomm c1’) s’) f1 (conf (tcomm c1’’) s’’) /\
Seqstepfoot (conf (tcomm c2’) s’’) f2 k2 /\ ˜rni f1 f2) \/

(exists f2, exists c2’’, exists s’’, exists f1, exists k1,
Seqstepfoot (conf (tcomm c2’) s’) f2 (conf (tcomm c2’’) s’’) /\
Seqstepfoot (conf (tcomm c1’) s’’) f1 k1 /\ ˜rni f2 f1)).

subsumpn.v

In this file, we define the indexed subsumption relation (Def. 3.33).

(* indexed command subsumption *)
Inductive Subsumpn: nat -> Comm -> Comm -> Prop :=

| Subsumpn_O:
forall c1 c2, Subsumpn O c1 c2

| Subsumpn_S:
forall n c1 c2,
(forall s, Multi Seqstep (conf (tcomm c2) s) abrt ->

Multi Seqstep (conf (tcomm c1) s) abrt) ->
(forall s c2’ s’,
Evalu Seqstep (conf (tcomm c2) s) (conf (tcomm c2’) s’) ->
Multi Seqstep (conf (tcomm c1) s) abrt
\/ exists c1’,

Evalu Seqstep (conf (tcomm c1) s) (conf (tcomm c1’) s’) /\
((c1’ = skip /\ c2’ = skip) \/
(exists S1’, exists c1’’, exists c1’’’,
exists S2’, exists c2’’, exists c2’’’,
SEQU S1’ /\ SEQU S2’ /\

299

c1’ = Subst S1’ (para c1’’ c1’’’) /\
c2’ = Subst S2’ (para c2’’ c2’’’) /\
Subsumpn n c1’’ c2’’ /\ Subsumpn n c1’’’ c2’’’ /\
Subsumpn n (Subst S1’ skip) (Subst S2’ skip)) \/

(exists S1’, exists c1’’, exists S2’, exists c2’’,
SEQU S1’ /\ SEQU S2’ /\
c1’ = Subst S1’ (atom c1’’) /\
c2’ = Subst S2’ (atom c2’’) /\
Subsumpn n c1’’ c2’’ /\
Subsumpn n (Subst S1’ skip) (Subst S2’ skip)))) ->

(forall s, Diver Seqstep (conf (tcomm c2) s) ->
Multi Seqstep (conf (tcomm c1) s) abrt
\/ Diver Seqstep (conf (tcomm c1) s)) ->

(forall s f2 k2, LbMulti Seqstepfoot (conf (tcomm c2) s) f2 k2 ->
Multi Seqstep (conf (tcomm c1) s) abrt
\/ exists f1, exists k1,

LbMulti Seqstepfoot (conf (tcomm c1) s) f1 k1
/\ sub f2 f1) ->

Subsumpn (S n) c1 c2.

We also establish many auxiliary properties of indexed subsumption, in special Lemma 3.37.

Lemma Subsumpn_le:
forall n n’ c1 c2, Subsumpn n c1 c2 -> n’ <= n -> Subsumpn n’ c1 c2.

subsump.v

In this file, we define the subsumption relation (Def. 3.33).

(* command subsumption *)
Definition Subsump (c1 c2: Comm): Prop := forall n, Subsumpn n c1 c2.

We establish the important properties of subsumption such as reflexitivity (Lemma 3.34),

transitivity (Lemma 3.35), and contextualization (Lemma 3.36).

Lemma Subsump_reflx:
forall c, Subsump c c.

Lemma Subsump_trans:
forall c1 c2 c3, Subsump c1 c2 -> Subsump c2 c3 -> Subsump c1 c3.

Theorem Subsump_cntxequiv:
forall C c1 c2, Subsump c1 c2 -> Subsump (Subst C c1) (Subst C c2).

We also establish Lemma 3.47.

Lemma Subsump_commu:
forall c s c’ s’,
(exists c’’, Seqstep (conf (tcomm c) s) (conf (tcomm c’’) s’) /\
Subsump c’’ c’) ->

300

(exists c’’, exists c’’’, Subsump c c’’ /\
Seqstep (conf (tcomm c’’) s) (conf (tcomm c’’’) s’) /\
c_eq c’’’ c’).

tntx.v

In this file, we define thread tree contexts, as shown in Fig. 3.6, and associated properties.

Inductive Tntx: Set := (* thread tree contexts *)
| hole
| tpara_1 (T: Tntx) (t: Tree) (c: Comm)
| tpara_2 (t: Tree) (T: Tntx) (c: Comm)
| tatom_1 (T: Tntx) (c: Comm).

(* context/tree substitution *)
Fixpoint Subst (T: Tntx) (t’: Tree): Tree :=

match T with
| hole => t’
| tpara_1 T t c => tpara (Subst T t’) t c
| tpara_2 t T c => tpara t (Subst T t’) c
| tatom_1 T c => tatom (Subst T t’) c
end.

(* context/context substitution *)
Fixpoint Substx (T: Tntx) (T’: Tntx): Tntx :=

match T with
| hole => T’
| tpara_1 T t c => tpara_1 (Substx T T’) t c
| tpara_2 t T c => tpara_2 t (Substx T T’) c
| tatom_1 T c => tatom_1 (Substx T T’) c
end.

We define a predicate to characterize n-atomic thread tree contexts (Def. 3.3).

Inductive ATOM: nat -> Tntx -> Prop :=
| ATOM_hole: ATOM 0 hole
| ATOM_tpara_1: forall n1 n2 T t c,

ATOM n1 T ->
runtime.ATOM n2 t ->
ATOM (n1+n2) (tpara_1 T t c)

| ATOM_tpara_2: forall n1 n2 t T c,
runtime.ATOM n1 t ->
ATOM n2 T ->
ATOM (n1+n2) (tpara_2 t T c)

| ATOM_tatom_1: forall n T c,
ATOM n T ->
ATOM n (tatom_1 T c).

And we also extend the weaker notion of equality to thread trees and configurations.

301

Fixpoint t_eq (t1 t2: Tree): Prop :=
match t1,t2 with
| tcomm c1,tcomm c2 => c_eq c1 c2
| tpara t1 t1’ c1,tpara t2 t2’ c2 => t_eq t1 t2 /\ t_eq t1’ t2’

/\ c_eq c1 c2
| tatom t1 c1,tatom t2 c2 => t_eq t1 t2 /\ c_eq c1 c2
| _,_ => False
end.

Definition k_eq (k1 k2: Conf): Prop :=
match k1,k2 with
| conf t1 s1,conf t2 s2 => t_eq t1 t2 /\ s1 = s2
| abrt,abrt => True
| race,race => True
| _,_ => False
end.

smlsem.v

In this file, we define the small-step interleaved semantics as shown in Fig 3.11.

Inductive Smlstep: Strel :=
| Smlstep_comm_1:

forall T c s,
Seqstep (conf (tcomm c) s) abrt ->
Smlstep (conf (Subst T (tcomm c)) s) abrt

| Smlstep_comm_2:
forall T c s c’ s’,
Seqstep (conf (tcomm c) s) (conf (tcomm c’) s’) ->
Smlstep (conf (Subst T (tcomm c)) s)

(conf (Subst T (tcomm c’)) s’)
| Smlstep_para_1:

forall T S c1 c2 s,
SEQU S ->
Smlstep (conf (Subst T (tcomm (cntx.Subst S (para c1 c2)))) s)

(conf (Subst T (tpara (tcomm c1)
(tcomm c2) (cntx.Subst S skip))) s)

| Smlstep_para_2:
forall T c s,
Smlstep (conf (Subst T (tpara (tcomm skip) (tcomm skip) c)) s)

(conf (Subst T (tcomm c)) s)
| Smlstep_atom_1:

forall T S c s,
ATOM 0 T ->
SEQU S ->
Smlstep (conf (Subst T (tcomm (cntx.Subst S (atom c)))) s)

(conf (Subst T (tatom (tcomm c) (cntx.Subst S skip))) s)
| Smlstep_atom_2:

forall T c s,
Smlstep (conf (Subst T (tatom (tcomm skip) c)) s)

(conf (Subst T (tcomm c)) s)
| Smlstep_race_1:

302

forall T T1 c1 T2 c2 c s,
(exists f1, exists c1’, exists s’, exists f2, exists k,
Seqstepfoot (conf (tcomm c1) s) f1 (conf (tcomm c1’) s’) /\
Seqstepfoot (conf (tcomm c2) s’) f2 k /\ ˜rni f1 f2) ->

Smlstep (conf (Subst T (tpara (Subst T1 (tcomm c1))
(Subst T2 (tcomm c2)) c)) s) race

| Smlstep_race_2:
forall T T1 c1 T2 c2 c s,
(exists f2, exists c2’, exists s’, exists f1, exists k,
Seqstepfoot (conf (tcomm c2) s) f2 (conf (tcomm c2’) s’) /\
Seqstepfoot (conf (tcomm c1) s’) f1 k /\ ˜rni f2 f1) ->

Smlstep (conf (Subst T (tpara (Subst T1 (tcomm c1))
(Subst T2 (tcomm c2)) c)) s) race.

We also define Remark 3.17 and Lemma 3.22.

Lemma Smlstep_ATOM:
forall t s t’ s’,
(runtime.ATOM 0 t \/ runtime.ATOM 1 t) ->
Smlstep (conf t s) (conf t’ s’) ->
(runtime.ATOM 0 t’ \/ runtime.ATOM 1 t’).

Lemma Smlstep_framing:
forall t s s1 s2,
spl s s1 s2 ->
˜Smlstep (conf t s2) abrt ->
˜Smlstep (conf t s) abrt /\
(˜Smlstep (conf t s2) race -> ˜Smlstep (conf t s) race) /\
(forall t’ s’, Smlstep (conf t s) (conf t’ s’) ->

exists s2’, spl s’ s1 s2’ /\ Smlstep (conf t s2) (conf t’ s2’)).

mixsem.v

In this file, we define the mixed-step interleaved semantics, as shown in Fig 5.1, and the

mixed-step divergence (Def. 5.3).

Inductive Mixstep: Strel :=
| Mixstep_comm_1:

forall T c s,
Multi Seqstep (conf (tcomm c) s) abrt ->
Mixstep (conf (Subst T (tcomm c)) s) abrt

| Mixstep_comm_2:
forall T c s c’ s’,
Evalu Seqstep (conf (tcomm c) s) (conf (tcomm c’) s’) ->
c <> c’ ->
Mixstep (conf (Subst T (tcomm c)) s)

(conf (Subst T (tcomm c’)) s’)
| Mixstep_para_1:

forall T S c1 c2 s,
SEQU S ->

303

Mixstep (conf (Subst T (tcomm (cntx.Subst S (para c1 c2)))) s)
(conf (Subst T (tpara (tcomm c1)

(tcomm c2) (cntx.Subst S skip))) s)
| Mixstep_para_2:

forall T c s,
Mixstep (conf (Subst T (tpara (tcomm skip) (tcomm skip) c)) s)

(conf (Subst T (tcomm c)) s)
| Mixstep_atom_1:

forall T S c s,
ATOM 0 T ->
SEQU S ->
Mixstep (conf (Subst T (tcomm (cntx.Subst S (atom c)))) s)

(conf (Subst T (tatom (tcomm c) (cntx.Subst S skip))) s)
| Mixstep_atom_2:

forall T c s,
Mixstep (conf (Subst T (tatom (tcomm skip) c)) s)

(conf (Subst T (tcomm c)) s)
| Mixstep_race_1:

forall T T1 c1 T2 c2 c s,
(exists f1, exists c1’, exists s’, exists f2, exists k,
LbMulti Seqstepfoot (conf (tcomm c1) s) f1 (conf (tcomm c1’) s’)

/\ LbMulti Seqstepfoot (conf (tcomm c2) s’) f2 k
/\ ˜rni f1 f2) ->

Mixstep (conf (Subst T (tpara (Subst T1 (tcomm c1))
(Subst T2 (tcomm c2)) c)) s) race

| Mixstep_race_2:
forall T T1 c1 T2 c2 c s,
(exists f2, exists c2’, exists s’, exists f1, exists k,
LbMulti Seqstepfoot (conf (tcomm c2) s) f2 (conf (tcomm c2’) s’)

/\ LbMulti Seqstepfoot (conf (tcomm c1) s’) f1 k
/\ ˜rni f2 f1) ->

Mixstep (conf (Subst T (tpara (Subst T1 (tcomm c1))
(Subst T2 (tcomm c2)) c)) s) race.

Definition DiverMixstep (k: Conf): Prop :=
Diver Mixstep k \/
exists T, exists c, exists s,
Multi Mixstep k (conf (Subst T (tcomm c)) s)

/\ Diver Seqstep (conf (tcomm c) s).

We also establish many important properties such as the ones given by Lemma 5.4, Lemma 5.9,

and Lemma 5.5.

Lemma MultiMix_MultiSml:
forall k k’, Multi Mixstep k k’ -> Multi Smlstep k k’.

Lemma DiverMix_DiverSml:
forall k, DiverMixstep k -> Diver Smlstep k.

Lemma Sml_Mix_compo:
forall k k’ k’’,
Smlstep k k’ ->

304

Mixstep k’ k’’ ->
Mixstep k race

\/ Multi Mixstep k k’’
\/ (exists k’, Mixstep k k’ /\ Smlstep k’ k’’).

Lemma MultiSml_MultiMix_race:
forall k,
Multi Smlstep k race ->
Multi Mixstep k race.

Lemma MultiSml_MultiMix_abrt:
forall k,
˜Multi Smlstep k race ->
Multi Smlstep k abrt ->
Multi Mixstep k abrt.

Lemma MultiSml_MultiMix_skip:
forall k s,
˜Multi Smlstep k race ->
Multi Smlstep k (conf (tcomm skip) s) ->
Multi Mixstep k (conf (tcomm skip) s).

Lemma DiverSml_DiverMix:
forall k,
˜Multi Smlstep k race ->
Diver Smlstep k ->
DiverMixstep k.

prmsem.v

In this file, we define the lifting of transformations from commands to thread trees (Def. 3.23),

the parameterized semantics (Figure. 3.13), and the DRF-guarantee (Def. 5.2).

Definition TrfrmT: Type := Tree -> Tree -> Prop.

Fixpoint Lift (L: Trfrm) (t1 t2: Tree): Prop :=
match t1,t2 with
| tcomm c1,tcomm c2 => L c1 c2
| tpara t1 t1’ c1,tpara t2 t2’ c2 => Lift L t1 t2

/\ Lift L t1’ t2’ /\ L c1 c2
| tatom t1 c1,tatom t2 c2 => Lift L t1 t2 /\ L c1 c2
| _,_ => False
end.

Inductive Prmstep: Trfrm -> Strel :=
| Prmstep_trfrm:

forall L t s k,
(exists t’, Lift L t t’ /\ Smlstep (conf t’ s) k) ->
Prmstep L (conf t s) k.

Definition DRF (L: Trfrm): Prop :=
forall k, ˜Multi Smlstep k abrt ->

˜Multi Smlstep k race ->

305

˜Multi (Prmstep L) k abrt /\
(forall s, Multi (Prmstep L) k (conf (tcomm skip) s) ->

Multi Smlstep k (conf (tcomm skip) s)).

rlxsem.v

In this file, we establish the important properties of the relaxed semantics given by Lemma 5.10,

Corollary 5.11, Lemma 3.46, and Theorem 5.12.

Definition SubsumpT: TrfrmT := Lift Subsump.

Lemma MultiMix_MultiMix_abrt:
forall t1 t2 s,
SubsumpT t1 t2 ->
˜Multi Mixstep (conf t1 s) abrt ->
˜Multi Mixstep (conf t2 s) abrt.

Lemma MultiMix_MultiMix_race:
forall t1 t2 s,
SubsumpT t1 t2 ->
˜Multi Mixstep (conf t1 s) abrt ->
Multi Mixstep (conf t2 s) race ->
Multi Mixstep (conf t1 s) race.

Lemma MultiMix_MultiMix_skip:
forall t1 t2 s s’,
SubsumpT t1 t2 ->
˜Multi Mixstep (conf t1 s) abrt ->
Multi Mixstep (conf t2 s) (conf (tcomm skip) s’) ->
Multi Mixstep (conf t1 s) (conf (tcomm skip) s’).

Lemma DiverMix_DiverMix_dive:
forall t1 t2 s,
SubsumpT t1 t2 ->
˜Multi Mixstep (conf t1 s) abrt ->
DiverMixstep (conf t2 s) ->
DiverMixstep (conf t1 s).

Lemma MultiSml_MultiSml_race:
forall t1 t2 s,
SubsumpT t1 t2 ->
˜Multi Smlstep (conf t1 s) abrt ->
˜Multi Smlstep (conf t1 s) race ->
˜Multi Smlstep (conf t2 s) race.

Lemma MultiSml_MultiSml_abrt:
forall t1 t2 s,
SubsumpT t1 t2 ->
˜Multi Smlstep (conf t1 s) race ->
˜Multi Smlstep (conf t1 s) abrt ->
˜Multi Smlstep (conf t2 s) abrt.

Lemma MultiSml_MultiSml_skip:
forall t1 t2 s s’,
SubsumpT t1 t2 ->

306

˜Multi Smlstep (conf t1 s) abrt ->
˜Multi Smlstep (conf t1 s) race ->
Multi Smlstep (conf t2 s) (conf (tcomm skip) s’) ->
Multi Smlstep (conf t1 s) (conf (tcomm skip) s’).

Lemma DiverSml_DiverSml:
forall t1 t2 s,
SubsumpT t1 t2 ->
˜Multi Smlstep (conf t1 s) abrt ->
˜Multi Smlstep (conf t1 s) race ->
Diver Smlstep (conf t2 s) ->
Diver Smlstep (conf t1 s).

Lemma MultiRlx_equiv:
forall t s k,
Multi (Prmstep Subsump) (conf t s) k <->

exists t’, exists k’, SubsumpT t t’ /\
Multi Smlstep (conf t’ s) k’ /\ k_eq k’ k.

Theorem DRF_Subsump: DRF Subsump.

specs.v

In this file, we define the assertion language used by both CSL (Fig. 6.1 and Fig. 6.2) and

SAGL (Fig. 8.1 and Fig. 8.2) as a shallow embedding in the Coq metalogic.

Definition Assert: Type := State -> Prop. (* assertions *)
Definition Action: Type := State -> State -> Prop. (* bin assertions *)

(* common definitions *)
Definition crs (p q: Assert): Action := fun s s’ => p s /\ q s’.
Definition dom (g: Action): Assert := fun s => exists s’, g s s’.
Definition img (g: Action): Assert := fun s’ => exists s, g s s’.
Definition land (p1 p2: Assert): Assert := fun s => p1 s /\ p2 s.
Definition lor (p1 p2: Assert): Assert := fun s => p1 s \/ p2 s.
Definition lex (A: Type) (P: A -> Assert): Assert :=

fun s => exists a, P a s.
Definition dand (p1 p2: Assert): Assert :=

fun s => exists s1, exists s2, spl s s1 s2 /\ p1 s1 /\ p2 s2.
Definition land2 (g1 g2: Action): Action :=

fun s s’ => g1 s s’ /\ g2 s s’.
Definition lor2 (g1 g2: Action): Action :=

fun s s’ => g1 s s’ \/ g2 s s’.
Definition lex2 (A: Type) (G: A -> Action): Action :=

fun s s’ => exists a, G a s s’.
Definition dand2 (g1 g2: Action): Action :=

fun s s’ => exists s1, exists s2, exists s1’, exists s2’,
spl s s1 s2 /\ spl s’ s1’ s2’ /\ g1 s1 s1’ /\ g2 s2 s2’.

Definition pog (p: Assert) (g: Action) : Assert :=
fun s => forall s’, g s s’ -> p s’.

Definition gog (g2 g1: Action): Action :=

307

fun s s’ => exists s’’, g1 s s’’ /\ g2 s’’ s’.

(* constants *)
Definition ID: Action := fun s s’ => s = s’.
Definition TRUE: Assert := fun s => True.
Definition FALSE: Assert := fun s => False.
Definition EMP: Assert := fun s => s = emp.
Definition EMP2: Action := crs EMP EMP.

(* implication *)
Definition aimp (p1 p2: Assert): Prop := forall s, p1 s -> p2 s.
Definition aimp2 (g1 g2: Action): Prop := forall s s’, g1 s s’ -> g2 s s’.

We also define the notions of precision (Def. 6.1) and coincidence (Def. 6.35).

Definition Prec (p: Assert): Prop := (* precision *)
forall s s1 s2 s1’ s2’,
spl s s1 s2 -> spl s s1’ s2’ -> p s1 -> p s1’ -> s1 = s1’.

Definition Coin (p1 p2: Assert): Prop := (* coincidence *)
forall s s1 s2 s1’ s2’,
spl s s1 s2 -> spl s s1’ s2’ -> p1 s1 -> p2 s1’ -> s1 = s1’.

logic common.v

In this file, we define common logic constructs and properties that are tied to the language

and shared by both CSL and SAGL. In particular, we define lifting of conditions into

assertions (Fig. 6.2) and the weakest precondition of an action (Def. 6.2).

Definition lfb (b: Cond): Assert :=
fun s => Deno_b b s = Some true.

Definition qoa (q: Assert) (a: Actn): Assert :=
land (dom (Deno_a a)) (pog q (Deno_a a)).

csl.v

In this file, we define the set of inference rules for CSL, as presented in Fig 6.3 (including

the generalized conjunction rule presented in Sec. 6.4). The definition carries the max-

imum depth of the derivation tree, which is useful when performing induction in the

proofs.

Inductive WFCommn: nat -> Assert -> Assert -> Comm -> Assert -> Prop :=
| Rulen_asgn:

forall lv e q,
WFCommn O EMP (qoa q (asgn lv e)) (actn (asgn lv e)) q

308

| Rulen_actn:
forall a q,
WFCommn O EMP (qoa q a) (atom (actn a)) q

| Rulen_sequ:
forall n1 n2 I p c1 c2 q,
(exists p’, WFCommn n1 I p c1 p’ /\ WFCommn n2 I p’ c2 q) ->
WFCommn (S (max n1 n2)) I p (sequ c1 c2) q

| Rulen_skip:
forall I p,
WFCommn O I p skip p

| Rulen_cond:
forall n1 n2 I p b c1 c2 q,
aimp p (lor (lfb b) (lfb (bneg b))) ->
WFCommn n1 I (land p (lfb b)) c1 q ->
WFCommn n2 I (land p (lfb (bneg b))) c2 q ->
WFCommn (S (max n1 n2)) I p (cond b c1 c2) q

| Rulen_loop:
forall n I p b c,
aimp p (lor (lfb b) (lfb (bneg b))) ->
WFCommn n I (land p (lfb b)) c p ->
WFCommn (S n) I p (loop b c) (land p (lfb (bneg b)))

| Rulen_para:
forall n1 n2 I p1 p2 c1 c2 q1 q2,
WFCommn n1 I p1 c1 q1 ->
WFCommn n2 I p2 c2 q2 ->
WFCommn (S (max n1 n2)) I (dand p1 p2) (para c1 c2) (dand q1 q2)

| Rulen_atom:
forall n I p c q,
WFCommn n EMP (dand I p) c (dand I q) ->
WFCommn (S n) I p (atom c) q

| Rulen_cons:
forall n I p c q,
(exists p’, exists q’,
aimp p p’ /\ WFCommn n I p’ c q’ /\ aimp q’ q) ->

WFCommn (S n) I p c q
| Rulen_exst:

forall n A I P c Q,
(forall x : A, WFCommn n I (P x) c (Q x)) ->
WFCommn (S n) I (lex P) c (lex Q)

| Rulen_fram:
forall n I’ I p c q,
WFCommn n I p c q ->
WFCommn (S n) (dand I’ I) p c q

| Rulen_resr:
forall n I’ I p c q,
WFCommn n (dand I’ I) p c q ->
WFCommn (S n) I (dand I’ p) c (dand I’ q)

| Rulen_conj:
forall n1 n2 I p1 p2 c q1 q2,
Prec I ->
WFCommn n1 I p1 c q1 ->
WFCommn n2 I p2 c q2 ->
WFCommn (S (max n1 n2)) I (land p1 p2) c (land q1 q2)

309

| Rulen_conj2:
forall n1 n2 I1 I2 p1 p2 c q1 q2,
Coin I1 I2 ->
WFCommn n1 I1 p1 c q1 ->
WFCommn n2 I2 p2 c q2 ->
WFCommn (S (max n1 n2)) (land I1 I2) (land p1 p2) c (land q1 q2)

| Rulen_disj:
forall n1 n2 I p1 p2 c q1 q2,
WFCommn n1 I p1 c q1 ->
WFCommn n2 I p2 c q2 ->
WFCommn (S (max n1 n2)) I (lor p1 p2) c (lor q1 q2).

Definition WFComm (I p: Assert) (c: Comm) (q: Assert): Prop :=
exists n, WFCommn n I p c q.

csl soundness.v

In this file, we implement the soundness proof for CSL, as described in Sec. 6.3. Below, we

define the semantic triple (Def. 6.3), semantic judgement (Def. 6.15), and parameterized

semantic judgement (Def. 6.32) for CSL. Note that in this implementation, when defining

triples, we removed the constraint that a thread tree must be either 0- or 1-atomic, given

by Def. 6.3 (item 1), as it is an invariant of the semantics as given by Remark 3.17.

Inductive SSConfn: nat -> Assert -> Conf -> Assert -> Prop :=
| SSConfn_O:

forall I t s q,
SSConfn O I (conf t s) q

| SSConfn_S:
forall n I t s q,
˜Smlstep (conf t s) abrt ->
˜Smlstep (conf t s) race ->
(forall t’ s’, Smlstep (conf t s) (conf t’ s’) ->

(ATOM 0 t -> ((ATOM 0 t’ -> state.dom s = state.dom s’
/\ SSConfn n I (conf t’ s’) q) /\

(ATOM 1 t’ -> forall sx’ ss’,
spl sx’ ss’ s’ -> I ss’ ->
SSConfn n I (conf t’ sx’) q))) /\

(ATOM 1 t -> ((ATOM 1 t’ -> SSConfn n I (conf t’ s’) q) /\
(ATOM 0 t’ -> exists s1’, exists s2’,

spl s’ s1’ s2’ /\ I s1’ /\
SSConfn n I (conf t’ s2’) q)))) ->

(t = tcomm skip -> q s) ->
SSConfn (S n) I (conf t s) q.

Definition SSConf (I: Assert) (k: Conf) (q: Assert): Prop :=
forall n, SSConfn n I k q.

Definition SSComm (I p: Assert) (c: Comm) (q: Assert): Prop :=
forall s, p s -> SSConf I (conf (tcomm c) s) q.

310

Definition SSComm_prm (L: Trfrm) (I p: Assert)
(c: Comm) (q: Assert) : Prop :=

forall s, dand I p s ->
˜Multi (Prmstep L) (conf (tcomm c) s) abrt /\
forall s’, Multi (Prmstep L) (conf (tcomm c) s)

(conf (tcomm skip) s’) -> dand I q s’.

We establish the auxiliary properties of semantic triples (Lemma 6.4 through Lemma 6.14,

and Lemma 6.39).

Lemma SSConf_n:
forall n1 n2 I t s q,
n2 <= n1 ->
SSConfn n1 I (conf t s) q ->
SSConfn n2 I (conf t s) q.

Lemma SSConf_cons:
forall n I t s q’ q,
aimp q’ q ->
SSConfn n I (conf t s) q’ ->
SSConfn n I (conf t s) q.

Lemma SSConf_resr:
forall n I’ I t s q,
(ATOM 0 t \/ ATOM 1 t) ->
(ATOM 0 t -> exists s1, exists s2, spl s s1 s2 /\ I’ s1

/\ SSConfn n (dand I’ I) (conf t s2) q) /\
(ATOM 1 t -> SSConfn n (dand I’ I) (conf t s) q) ->
SSConfn n I (conf t s) (dand I’ q).

Lemma SSConf_fram:
forall n I’ I t s q,
(ATOM 0 t \/ ATOM 1 t) ->
(ATOM 0 t -> SSConfn n I (conf t s) q) /\
(ATOM 1 t -> exists s1, exists s2, spl s s1 s2 /\ I’ s1

/\ SSConfn n I (conf t s2) q) ->
SSConfn n (dand I’ I) (conf t s) q.

Lemma SSConf_conj:
forall n I t s q1 q2,
Prec I ->
SSConfn n I (conf t s) q1 ->
SSConfn n I (conf t s) q2 ->
SSConfn n I (conf t s) (land q1 q2).

Lemma SSConf_conj2:
forall n I1 I2 t s q1 q2,
Coin I1 I2 ->
SSConfn n I1 (conf t s) q1 ->
SSConfn n I2 (conf t s) q2 ->
SSConfn n (land I1 I2) (conf t s) (land q1 q2).

Lemma SSConf_skip:
forall I s (q : Assert),
q s ->
SSConf I (conf (tcomm skip) s) q.

Lemma SSConf_asgn:

311

forall lv e s q,
qoa q (asgn lv e) s ->
SSConf EMP (conf (tcomm (actn (asgn lv e))) s) q.

Lemma SSConf_actn:
forall a s q,
qoa q a s ->
SSConf EMP (conf (tcomm (atom (actn a))) s) q.

Lemma SSConf_atom:
forall n (I : Assert) c s q,
(forall ss sx, spl sx ss s -> I ss ->

SSConfn n EMP (conf (tcomm c) sx) (dand I q)) ->
SSConfn (S n) I (conf (tcomm (atom c)) s) q.

Lemma SSConf_sequ:
forall n I t c’ t’ s (p : Assert) q,
((exists c, t = tcomm c /\ t’ = tcomm (sequ c c’)) \/
(exists t1, exists t2, exists c, t = tpara t1 t2 c

/\ t’ = tpara t1 t2 (sequ c c’)) \/
(exists t’’, exists c, t = tatom t’’ c

/\ t’ = tatom t’’ (sequ c c’))) ->
SSConfn n I (conf t s) p ->
(forall s, p s -> SSConfn n I (conf (tcomm c’) s) q) ->
SSConfn n I (conf t’ s) q.

Lemma SSConf_cond:
forall n I b c c’ s q,
SSConfn n I (conf (tcomm c) s) q ->
(lfb b s -> SSConfn n I (conf (tcomm (cond b c c’)) s) q) /\
(lfb (bneg b) s -> SSConfn n I (conf (tcomm (cond b c’ c)) s) q).

Lemma SSConf_loop:
forall n I b c s p,
aimp p (lor (lfb b) (lfb (bneg b))) ->
p s ->
(forall s’, land p (lfb b) s’ ->

SSConfn n I (conf (tcomm c) s’) p) ->
SSConfn n I (conf (tcomm (loop b c)) s) (land p (lfb (bneg b))).

Lemma SSConf_para:
forall n I t1 t2 s s1 s2 q1 q2,
(ATOM 0 (tpara t1 t2 skip) \/ ATOM 1 (tpara t1 t2 skip)) ->
spl s s1 s2 ->
SSConfn n I (conf t1 s1) q1 ->
SSConfn n I (conf t2 s2) q2 ->
SSConfn n I (conf (tpara t1 t2 skip) s) (dand q1 q2).

We establish the semantic rules (Lemma 6.17 through Lemma 6.30, and Lemma 6.40).

Lemma SemRule_asgn:
forall lv e q,
SSComm EMP (qoa q (asgn lv e)) (actn (asgn lv e)) q.

Lemma SemRule_actn:
forall a q,
SSComm EMP (qoa q a) (atom (actn a)) q.

Lemma SemRule_sequ:
forall I p c1 c2 q,

312

(exists p’, SSComm I p c1 p’ /\ SSComm I p’ c2 q) ->
SSComm I p (sequ c1 c2) q.

Lemma SemRule_skip:
forall I q,
SSComm I q skip q.

Lemma SemRule_cond:
forall I p b c1 c2 q,
aimp p (lor (lfb b) (lfb (bneg b))) ->
SSComm I (land p (lfb b)) c1 q ->
SSComm I (land p (lfb (bneg b))) c2 q ->
SSComm I p (cond b c1 c2) q.

Lemma SemRule_loop:
forall I p b c,
aimp p (lor (lfb b) (lfb (bneg b))) ->
SSComm I (land p (lfb b)) c p ->
SSComm I p (loop b c) (land p (lfb (bneg b))).

Lemma SemRule_para:
forall I p1 p2 c1 c2 q1 q2,
SSComm I p1 c1 q1 ->
SSComm I p2 c2 q2 ->
SSComm I (dand p1 p2) (para c1 c2) (dand q1 q2).

Lemma SemRule_atom:
forall I p c q,
SSComm EMP (dand I p) c (dand I q) ->
SSComm I p (atom c) q.

Lemma SemRule_cons:
forall I p c q,
(exists p’, exists q’, aimp p p’ /\ SSComm I p’ c q’ /\ aimp q’ q) ->
SSComm I p c q.

Lemma SemRule_exst:
forall A I P c Q,
(forall x: A, SSComm I (P x) c (Q x)) ->
SSComm I (lex P) c (lex Q).

Lemma SemRule_fram:
forall I’ I p c q,
SSComm I p c q ->
SSComm (dand I’ I) p c q.

Lemma SemRule_resr:
forall I’ I p c q,
SSComm (dand I’ I) p c q ->
SSComm I (dand I’ p) c (dand I’ q).

Lemma SemRule_conj:
forall I p1 p2 c q1 q2,
Prec I ->
SSComm I p1 c q1 ->
SSComm I p2 c q2 ->
SSComm I (land p1 p2) c (land q1 q2).

Lemma SemRule_conj2:
forall I1 I2 p1 p2 c q1 q2,
Coin I1 I2 ->
SSComm I1 p1 c q1 ->
SSComm I2 p2 c q2 ->
SSComm (land I1 I2) (land p1 p2) c (land q1 q2).

313

Lemma SemRule_disj:
forall I p1 p2 c q1 q2,
SSComm I p1 c q1 ->
SSComm I p2 c q2 ->
SSComm I (lor p1 p2) c (lor q1 q2).

And, finally, we establish the soundness with regard to the interleaved (Theorem 6.31 and

Lemma 6.16), parameterized (Theorem 6.33), and relaxed semantics (Theorem 6.34).

Theorem Soundness:
forall I p c q,
WFComm I p c q ->
SSComm I p c q.

Lemma Explicit_Soundness:
forall I p c s q,
SSComm I p c q ->
dand I p s ->
˜Multi Smlstep (conf (tcomm c) s) abrt /\
˜Multi Smlstep (conf (tcomm c) s) race /\
(forall s’, Multi Smlstep (conf (tcomm c) s) (conf (tcomm skip) s’) ->

dand I q s’).
Theorem Soundness_prm:

forall L I p c q,
WFComm I p c q ->
DRF L ->
SSComm_prm L I p c q.

Theorem Soundness_rlx:
forall I p c q,
WFComm I p c q ->
SSComm_prm Subsump I p c q.

sagl.v

In this file, we define the set of inference rules for SAGL, as presented in Fig 8.3. The defi-

nition carries the maximum depth of the derivation tree, which is useful when performing

induction in the proofs.

Inductive WFCommn: nat -> (Action * Action) -> (Assert * Assert) ->
Comm -> (Assert * Assert) -> Prop :=

| Rulen_asgn:
forall lv e q,
WFCommn O (EMP2,EMP2)

(EMP,qoa q (asgn lv e)) (actn (asgn lv e)) (EMP,q)
| Rulen_actn:

forall a q,
WFCommn O (EMP2,EMP2) (EMP,qoa q a) (atom (actn a)) (EMP,q)

| Rulen_sequ:
forall n1 n2 E p_s p c1 c2 q_s q,

314

(exists p_s’, exists p’, WFCommn n1 E (p_s,p) c1 (p_s’,p’)
/\ WFCommn n2 E (p_s’,p’) c2 (q_s,q)) ->

WFCommn (S (max n1 n2)) E (p_s,p) (sequ c1 c2) (q_s,q)
| Rulen_skip:

forall E p_s p,
WFCommn O E (p_s,p) skip (p_s,p)

| Rulen_cond:
forall n1 n2 E p_s p b c1 c2 q_s q,
aimp p (lor (lfb b) (lfb (bneg b))) ->
WFCommn n1 E (p_s,land p (lfb b)) c1 (q_s,q) ->
WFCommn n2 E (p_s,land p (lfb (bneg b))) c2 (q_s,q) ->
WFCommn (S (max n1 n2)) E (p_s,p) (cond b c1 c2) (q_s,q)

| Rulen_loop:
forall n E p_s p b c,
aimp p (lor (lfb b) (lfb (bneg b))) ->
WFCommn n E (p_s,land p (lfb b)) c (p_s,p) ->
WFCommn (S n) E (p_s,p) (loop b c) (p_s,land p (lfb (bneg b)))

| Rulen_para:
forall n1 n2 A1 A2 G p_s1 p1 p_s2 p2 c1 c2 q_s1 q1 q_s2 q2,
aimp p_s1 (pog p_s1 A1) ->
aimp p_s2 (pog p_s2 A2) ->
WFCommn n1 (A1,land2 G A2) (p_s1,p1) c1 (q_s1,q1) ->
WFCommn n2 (A2,land2 G A1) (p_s2,p2) c2 (q_s2,q2) ->
WFCommn (S (max n1 n2)) (land2 A1 A2,G)

(land p_s1 p_s2,dand p1 p2) (para c1 c2)
(land q_s1 q_s2,dand q1 q2)

| Rulen_atom:
forall n A G p_s p c q_s q,
WFCommn n (EMP2,EMP2) (EMP,dand p_s p) c (EMP,dand q_s q) ->
aimp2 (crs p_s q_s) G ->
aimp q_s (pog q_s A) ->
WFCommn (S n) (A,G) (p_s,p) (atom c) (q_s,q)

| Rulen_cons:
forall n A G p_s p c q_s q,
(exists A’, exists G’, exists p_s’, exists p’,
exists q_s’, exists q’, aimp2 A A’ /\ aimp p_s p_s’
/\ aimp p p’ /\ WFCommn n (A’,G’) (p_s’,p’) c (q_s’,q’)
/\ aimp2 G’ G /\ aimp q_s’ q_s /\ aimp q’ q) ->

WFCommn (S n) (A,G) (p_s,p) c (q_s,q)
| Rulen_exst:

forall n X A G p_s P c q_s Q,
(forall x: X, WFCommn n (A,G) (p_s,P x) c (q_s,Q x)) ->
WFCommn (S n) (A,G) (p_s,lex P) c (q_s,lex Q)

| Rulen_fram:
forall n I A G p_s p c q_s q,
Prec I \/ Coin (img G) (dom A) ->
WFCommn n (A,G) (p_s,p) c (q_s,q) ->
WFCommn (S n) (dand2 (crs I I) A,dand2 (crs I I) G)

(dand I p_s,p) c (dand I q_s,q)
| Rulen_resr:

forall n A G p_s p c q_s q,
WFCommn n (A,G) (p_s,p) c (q_s,q) ->
WFCommn (S n) (EMP2,EMP2) (EMP,dand p_s p) c (EMP,dand q_s q)

315

| Rulen_conj:
forall n1 n2 A1 A2 G1 G2 p_s1 p1 p_s2 p2 c q_s1 q1 q_s2 q2,
Coin (img G1) (img G2) ->
WFCommn n1 (A1,G1) (p_s1,p1) c (q_s1,q1) ->
WFCommn n2 (A2,G2) (p_s2,p2) c (q_s2,q2) ->
WFCommn (S (max n1 n2)) (land2 A1 A2,land2 G1 G2)

(land p_s1 p_s2,land p1 p2) c (land q_s1 q_s2,land q1 q2)
| Rulen_disj:

forall n1 n2 A G p_s p1 p2 c q_s q1 q2,
WFCommn n1 (A,G) (p_s,p1) c (q_s,q1) ->
WFCommn n2 (A,G) (p_s,p2) c (q_s,q2) ->
WFCommn (S (max n1 n2)) (A,G) (p_s,lor p1 p2) c (q_s,lor q1 q2).

Definition WFComm (E: Action * Action) (P: Assert * Assert)
(c: Comm) (Q: Assert * Assert): Prop :=

exists n, WFCommn n E P c Q.

sagl soundness.v

In this file, we implement the soundness proof for SAGL, as described in Sec. 8.3. Be-

low, we define the semantic sixtuple (Def. 8.1), semantic judgement (Def. 8.13), and pa-

rameterized semantic judgement (Def. 8.30) for SAGL. Note that in this implementation,

when defining sixtuples, we removed the constraint that a thread tree must be either 0-

or 1-atomic, given by Def. 8.1 (item 1), as it is an invariant of the semantics as given by

Remark 3.17.

Inductive SSConfn: nat -> (Action * Action) -> Assert -> Assert ->
Conf -> Assert -> Prop :=

| SSConfn_O:
forall A G p_s q_s t s q,
SSConfn O (A,G) p_s q_s (conf t s) q

| SSConfn_S:
forall n A G p_s q_s t s q,
˜Smlstep (conf t s) abrt ->
˜Smlstep (conf t s) race ->
(forall t’ s’, Smlstep (conf t s) (conf t’ s’) ->

(ATOM 0 t ->
((ATOM 0 t’ -> state.dom s = state.dom s’

/\ SSConfn n (A,G) p_s q_s (conf t’ s’) q) /\
(ATOM 1 t’ -> forall sx’ ss’, spl sx’ ss’ s’ -> p_s ss’ ->

SSConfn n (A,G) p_s q_s (conf t’ sx’) q))) /\
(ATOM 1 t ->

((ATOM 1 t’ -> SSConfn n (A,G) p_s q_s (conf t’ s’) q) /\
(ATOM 0 t’ -> forall s1, p_s s1 ->

exists p_s’, exists s1’, exists s2’,
aimp2 (crs p_s p_s’) G /\
aimp p_s’ (pog p_s’ A) /\
spl s’ s1’ s2’ /\ p_s’ s1’ /\

316

SSConfn n (A,G) p_s’ q_s (conf t’ s2’) q)))) ->
(t = tcomm skip -> aimp p_s q_s /\ q s) ->
SSConfn (S n) (A,G) p_s q_s (conf t s) q.

Definition SSConf (E: Action * Action) (p_s q_s: Assert)
(k: Conf) (q: Assert): Prop :=

forall n, SSConfn n E p_s q_s k q.

Definition SSComm (E: Action * Action) (p_s p: Assert)
(c: Comm) (q_s q: Assert): Prop :=

forall s, p s -> SSConf E p_s q_s (conf (tcomm c) s) q.

Definition SSComm_prm (L: Trfrm) (A G: Action) (p_s p: Assert)
(c: Comm) (q_s q: Assert): Prop :=

forall s, dand p_s p s ->
˜Multi (Prmstep L) (conf (tcomm c) s) abrt /\
forall s’,

Multi (Prmstep L) (conf (tcomm c) s) (conf (tcomm skip) s’) ->
dand q_s q s’.

We establish the auxiliary properties of semantic sixtuples (Lemma 8.2 through Lemma 8.12).

Lemma SSConf_n:
forall n1 n2 E p_s q_s t s q,
n2 <= n1 ->
SSConfn n1 E p_s q_s (conf t s) q ->
SSConfn n2 E p_s q_s (conf t s) q.

Lemma SSConf_cons:
forall n A A’ G’ G p_s p_s’ q_s’ q_s t s q’ q,
aimp2 A A’ ->
aimp2 G’ G ->
aimp p_s p_s’ ->
aimp q_s’ q_s ->
aimp q’ q ->
SSConfn n (A’,G’) p_s’ q_s’ (conf t s) q’ ->
SSConfn n (A,G) p_s q_s (conf t s) q.

Lemma SSConf_resr:
forall n A G p_s q_s t s q,
(ATOM 0 t \/ ATOM 1 t) ->
(ATOM 0 t -> exists s1, exists s2, spl s s1 s2 /\ p_s s1 /\

SSConfn n (A,G) p_s q_s (conf t s2) q) /\
(ATOM 1 t -> (exists s, p_s s) /\

SSConfn n (A,G) p_s q_s (conf t s) q) ->
SSConfn n (crs EMP EMP,crs EMP EMP) EMP EMP (conf t s) (dand q_s q).

Lemma SSConf_fram:
forall n I A G p_s q_s t s q,
(ATOM 0 t \/ ATOM 1 t) ->
Prec I \/ Coin (img G) (dom A) ->
(ATOM 0 t -> SSConfn n (A,G) p_s q_s (conf t s) q) /\
(ATOM 1 t -> exists s1, exists s2, spl s s1 s2 /\ I s1 /\

SSConfn n (A,G) p_s q_s (conf t s2) q) ->
SSConfn n (dand2 (crs I I) A,dand2 (crs I I) G)

(dand I p_s) (dand I q_s) (conf t s) q.

317

Lemma SSConf_pfram:
forall n I A G p_s q_s t s q,
(exists s1, exists s2, spl s s1 s2 /\ I s1

/\ SSConfn n (A,G) p_s q_s (conf t s2) q) ->
SSConfn n (A,G) p_s q_s (conf t s) (dand I q).

Lemma SSConf_conj:
forall n A1 A2 G1 G2 p_s1 p_s2 t s q_s1 q_s2 q1 q2,
Coin (img G1) (img G2) ->
SSConfn n (A1,G1) p_s1 q_s1 (conf t s) q1 ->
SSConfn n (A2,G2) p_s2 q_s2 (conf t s) q2 ->
SSConfn n (land2 A1 A2,land2 G1 G2)

(land p_s1 p_s2) (land q_s1 q_s2) (conf t s) (land q1 q2).
Lemma SSConf_skip:

forall E q_s s (q : Assert),
q s ->
SSConf E q_s q_s (conf (tcomm skip) s) q.

Lemma SSConf_asgn:
forall lv e s q,
qoa q (asgn lv e) s ->
SSConf (EMP2,EMP2) EMP EMP (conf (tcomm (actn (asgn lv e))) s) q.

Lemma SSConf_actn:
forall a s q,
qoa q a s ->
SSConf (EMP2,EMP2) EMP EMP (conf (tcomm (atom (actn a))) s) q.

Lemma SSConf_atom:
forall n A G (p_s q_s : Assert) c s q,
aimp2 (crs p_s q_s) G ->
aimp q_s (pog q_s A) ->
(forall ss sx, spl sx ss s -> p_s ss ->

SSConfn n (EMP2,EMP2) EMP EMP (conf (tcomm c) sx) (dand q_s q)) ->
SSConfn (S n) (A,G) p_s q_s (conf (tcomm (atom c)) s) q.

Lemma SSConf_sequ:
forall n E t c’ t’ s p_s p_s’ q_s (p’ : Assert) q,
((exists c, t = tcomm c /\ t’ = tcomm (sequ c c’)) \/
(exists t1, exists t2, exists c, t = tpara t1 t2 c

/\ t’ = tpara t1 t2 (sequ c c’)) \/
(exists t’’, exists c, t = tatom t’’ c

/\ t’ = tatom t’’ (sequ c c’))) ->
SSConfn n E p_s p_s’ (conf t s) p’ ->
(forall s, p’ s -> SSConfn n E p_s’ q_s (conf (tcomm c’) s) q) ->
SSConfn n E p_s q_s (conf t’ s) q.

Lemma SSConf_cond:
forall n E p_s q_s b c c’ s q,
SSConfn n E p_s q_s (conf (tcomm c) s) q ->
(lfb b s ->

SSConfn n E p_s q_s (conf (tcomm (cond b c c’)) s) q) /\
(lfb (bneg b) s ->

SSConfn n E p_s q_s (conf (tcomm (cond b c’ c)) s) q).
Lemma SSConf_loop:

forall n A G b c s p_s p,
aimp p (lor (lfb b) (lfb (bneg b))) ->
p s ->
(forall s’, land p (lfb b) s’ ->

318

SSConfn n (A, G) p_s p_s (conf (tcomm c) s’) p) ->
SSConfn n (A, G)

p_s p_s (conf (tcomm (loop b c)) s) (land p (lfb (bneg b))).
Lemma SSConf_para:

forall n A1 A2 G p_s1 p_s2 q_s1 q_s2 t1 t2 s s1 s2 q1 q2,
(ATOM 0 (tpara t1 t2 skip) \/ ATOM 1 (tpara t1 t2 skip)) ->
spl s s1 s2 ->
aimp p_s1 (pog p_s1 A1) ->
aimp p_s2 (pog p_s2 A2) ->
SSConfn n (A1,land2 G A2) p_s1 q_s1 (conf t1 s1) q1 ->
SSConfn n (A2,land2 G A1) p_s2 q_s2 (conf t2 s2) q2 ->
SSConfn n (land2 A1 A2,G) (land p_s1 p_s2) (land q_s1 q_s2)

(conf (tpara t1 t2 skip) s) (dand q1 q2).

We establish the semantic rules (Lemma 8.15 through Lemma 8.28).

Lemma SemRule_asgn:
forall lv e q,
SSComm (crs EMP EMP,crs EMP EMP)

EMP (qoa q (asgn lv e)) (actn (asgn lv e)) EMP q.
Lemma SemRule_actn:

forall a q,
SSComm (crs EMP EMP,crs EMP EMP) EMP (qoa q a) (atom (actn a)) EMP q.

Lemma SemRule_sequ:
forall E p_s p c1 c2 q_s q,
(exists p_s’, exists p’,

SSComm E p_s p c1 p_s’ p’ /\ SSComm E p_s’ p’ c2 q_s q) ->
SSComm E p_s p (sequ c1 c2) q_s q.

Lemma SemRule_skip:
forall E q_s q,
SSComm E q_s q skip q_s q.

Lemma SemRule_cond:
forall E p_s p b c1 c2 q_s q,
aimp p (lor (lfb b) (lfb (bneg b))) ->
SSComm E p_s (land p (lfb b)) c1 q_s q ->
SSComm E p_s (land p (lfb (bneg b))) c2 q_s q ->
SSComm E p_s p (cond b c1 c2) q_s q.

Lemma SemRule_loop:
forall E p_s p b c,
aimp p (lor (lfb b) (lfb (bneg b))) ->
SSComm E p_s (land p (lfb b)) c p_s p ->
SSComm E p_s p (loop b c) p_s (land p (lfb (bneg b))).

Lemma SemRule_para:
forall A1 A2 G p_s1 p1 p_s2 p2 c1 c2 q_s1 q1 q_s2 q2,
aimp p_s1 (pog p_s1 A1) ->
aimp p_s2 (pog p_s2 A2) ->
SSComm (A1,land2 G A2) p_s1 p1 c1 q_s1 q1 ->
SSComm (A2,land2 G A1) p_s2 p2 c2 q_s2 q2 ->
SSComm (land2 A1 A2,G) (land p_s1 p_s2) (dand p1 p2)

(para c1 c2) (land q_s1 q_s2) (dand q1 q2).
Lemma SemRule_atom:

forall A G p_s p c q_s q,

319

SSComm (crs EMP EMP,crs EMP EMP) EMP (dand p_s p) c EMP (dand q_s q) ->
aimp2 (crs p_s q_s) G ->
aimp q_s(pog q_s A) ->
SSComm (A,G) p_s p (atom c) q_s q.

Lemma SemRule_cons:
forall A G p_s p c q_s q,
(exists A’, exists G’, exists p_s’, exists p’, exists q_s’, exists q’,

aimp2 A A’ /\ aimp p_s p_s’ /\ aimp p p’ /\
SSComm (A’,G’) p_s’ p’ c q_s’ q’ /\ aimp2 G’ G /\ aimp q_s’ q_s /\
aimp q’ q) ->

SSComm (A,G) p_s p c q_s q.
Lemma SemRule_exst:

forall X A G p_s P c q_s Q,
(forall x: X, SSComm (A,G) p_s (P x) c q_s (Q x)) ->
SSComm (A,G) p_s (lex P) c q_s (lex Q).

Lemma SemRule_fram:
forall I A G p_s p c q_s q,
Prec I \/ Coin (img G) (dom A) ->
SSComm (A,G) p_s p c q_s q ->
SSComm (dand2 (crs I I) A,dand2 (crs I I) G)

(dand I p_s) p c (dand I q_s) q.
Lemma SemRule_pfram:

forall I A G p_s p c q_s q,
SSComm (A,G) p_s p c q_s q ->
SSComm (A,G) p_s (dand I p) c q_s (dand I q).

Lemma SemRule_resr:
forall A G p_s p c q_s q,
SSComm (A,G) p_s p c q_s q ->
SSComm (crs EMP EMP,crs EMP EMP) EMP (dand p_s p) c EMP (dand q_s q).

Lemma SemRule_conj:
forall A1 A2 G1 G2 p_s1 p_s2 p1 p2 c q_s1 q_s2 q1 q2,
Coin (img G1) (img G2) ->
SSComm (A1,G1) p_s1 p1 c q_s1 q1 ->
SSComm (A2,G2) p_s2 p2 c q_s2 q2 ->
SSComm (land2 A1 A2,land2 G1 G2)

(land p_s1 p_s2) (land p1 p2) c (land q_s1 q_s2) (land q1 q2).
Lemma SemRule_disj:

forall A G p_s q_s p1 p2 c q1 q2,
SSComm (A,G) p_s p1 c q_s q1 ->
SSComm (A,G) p_s p2 c q_s q2 ->
SSComm (A,G) p_s (lor p1 p2) c q_s (lor q1 q2).

And, finally, we establish the soundness with regard to the interleaved (Theorem 8.29 and

Lemma 8.14), parameterized (Theorem 8.31), and relaxed semantics (Theorem 8.32).

Theorem Soundness:
forall E p_s p c q_s q,
WFComm E (p_s,p) c (q_s,q) ->
SSComm E p_s p c q_s q.

Lemma Explicit_Soundness:

320

forall E p_s p c s q_s q,
SSComm E p_s p c q_s q ->
dand p_s p s ->
˜Multi Smlstep (conf (tcomm c) s) abrt /\
˜Multi Smlstep (conf (tcomm c) s) race /\
(forall s’, Multi Smlstep (conf (tcomm c) s) (conf (tcomm skip) s’) ->

dand q_s q s’).

Theorem Soundness_prm:
forall L A G p_s p c q_s q,
WFComm (A,G) (p_s,p) c (q_s,q) ->
DRF L ->
SSComm_prm L A G p_s p c q_s q.

Theorem Soundness_rlx:
forall A G p_s p c q_s q,
WFComm (A,G) (p_s,p) c (q_s,q) ->
SSComm_prm Subsump A G p_s p c q_s q.

csl in sagl.v

In this file, we establish that SAGL is a generalization of CSL, by giving a translation of

a CSL judgment into a SAGL judgement (Fig. 8.4) and proving the CSL rules as lemmas

(Lemma 8.37 through Lemma 8.50).

Definition WFComm (I p: Assert) (c: Comm) (q: Assert): Prop :=
sagl.WFComm (crs I I,crs I I) (I,p) c (I,q).

Lemma Rule_asgn: forall lv e q,
WFComm EMP (qoa q (asgn lv e)) (actn (asgn lv e)) q.

Lemma Rule_actn: forall a q,
WFComm EMP (qoa q a) (atom (actn a)) q.

Lemma Rule_sequ: forall I p c1 c2 q,
(exists p’, WFComm I p c1 p’ /\ WFComm I p’ c2 q) ->
WFComm I p (sequ c1 c2) q.

Lemma Rule_skip: forall I p,
WFComm I p skip p.

Lemma Rule_cond: forall I p b c1 c2 q,
aimp p (lor (lfb b) (lfb (bneg b))) ->
WFComm I (land p (lfb b)) c1 q ->
WFComm I (land p (lfb (bneg b))) c2 q ->
WFComm I p (cond b c1 c2) q.

Lemma Rule_loop: forall I p b c,
aimp p (lor (lfb b) (lfb (bneg b))) ->
WFComm I (land p (lfb b)) c p ->
WFComm I p (loop b c) (land p (lfb (bneg b))).

Lemma Rule_para: forall I p1 p2 c1 c2 q1 q2,
WFComm I p1 c1 q1 ->
WFComm I p2 c2 q2 ->

321

WFComm I (dand p1 p2) (para c1 c2) (dand q1 q2).
Lemma Rule_atom: forall I p c q,

WFComm EMP (dand I p) c (dand I q) ->
WFComm I p (atom c) q.

Lemma Rule_cons: forall I p c q,
(exists p’, exists q’, aimp p p’

/\ WFComm I p’ c q’ /\ aimp q’ q) ->
WFComm I p c q.

Lemma Rule_fram: forall I’ I p c q,
Prec I’ \/ Prec I ->
WFComm I p c q ->
WFComm (dand I’ I) p c q.

Lemma Rule_resr: forall I p c q,
WFComm I p c q ->
WFComm EMP (dand I p) c (dand I q).

Lemma Rule_conj: forall I p1 p2 c q1 q2,
Prec I ->
WFComm I p1 c q1 ->
WFComm I p2 c q2 ->
WFComm I (land p1 p2) c (land q1 q2).

Lemma Rule_conj2: forall I1 I2 p1 p2 c q1 q2,
Coin I1 I2 ->
WFComm I1 p1 c q1 ->
WFComm I2 p2 c q2 ->
WFComm (land I1 I2) (land p1 p2) c (land q1 q2).

Lemma Rule_disj: forall I p1 p2 c q1 q2,
WFComm I p1 c q1 ->
WFComm I p2 c q2 ->
WFComm I (lor p1 p2) c (lor q1 q2).

322

Bibliography

[1] Advanced Micro Devices. AMD64 Architecture Programmer’s Manual, Volume 2: Sys-

tem Programming, Sep. 2007.

[2] S. Adve. Designing Memory Consistency Models for Shared-Memory Multiprocessors.

PhD thesis, University of Wisconsin-Madison, Dec. 1993.

[3] S. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial. IEEE

Computer, 29(12):66–76, Dec. 1996.

[4] S. Adve and M. Hill. Weak ordering — a new definition. In 17th ISCA, pages 2–14,

Seattle, Washington, May 1990.

[5] S. Adve and M. Hill. A unified formalization of four shared-memory models. IEEE

Transactions on Parallel and Distributed Systems, 4(6):613–624, Jun. 1993.

[6] S. Adve, V. Pai, and P. Ranganathan. Recent advances in memory consistency mod-

els for hardware shared memory systems. Proceedings of the IEEE, Special Issue on

Distributed Shared Memory, 87(3):445–455, Mar. 1999.

[7] M. Ahamad, R. Bazzi, R. John, P. Kohli, and G. Neiger. The power of processor

consistency. In 5th ACM Symposium on Parallel Algorithms and Architectures, pages

251–260, Velen, Germany, Jul. 1993.

[8] M. Ahamad, G. Neiger, J. Burns, P. Kohli, and P. Hutto. Causal memory: Definitions,

implementation and programming. Distributed Computing, 9(1):37–49, Mar. 1995.

323

[9] Arvind and J.-W. Maessen. Memory model = instruction reordering + store atomicity.

In ISCA, pages 29–40, Washington, DC, May 2006.

[10] D. Aspinall and J. S̆evc̆ı́k. Formalising java’s data-race-free guarantee. In 20th

TPHOLS, pages 22–37, Kaiserslautern, Germany, Sep. 2007.

[11] D. Aspinall and J. S̆evc̆ı́k. Java memory model examples: Good, bad and ugly. In

VAMP, Lisbon, Sep. 2007.

[12] H. Boehm and S. Adve. The foundations of the C++ concurrency memory model. In

PLDI, pages 68–78, Tucson, Arizona, Jun. 2008.

[13] H.-J. Boehm. Threads cannot be implemented as a library. In PLDI, pages 261–268,

Chicago, Jun. 2005.

[14] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting in

separation logic. In 32nd POPL, pages 259–270, Long Beach, California, Jan. 2005.

[15] G. Boudol and G. Petri. Relaxed memory models: an operational approach. In 36th

POPL, pages 392–403, Savannah, Georgia, USA, Jan. 2009.

[16] G. Bronevetsky and B. de Supinski. Complete formal specification of the OpenMP

memory model. International Journal of Parallel Programming, 35(4):335–392, Jul. 2007.

[17] S. Brookes. A grainless semantics for parallel programs with shared mutable data.

Theoretical Comp. Sci., 155:277–307, May 2006.

[18] S. Brookes. A semantics for concurrent separation logic. Theoretical Comp. Sci., 375(1–

3):227–270, May 2007.

[19] S. Burckhardt, R. Alur, and M. Martin. Checkfence: Checking consistency of con-

current data types on relaxed memory models. In PLDI, pages 12–21, San Diego,

California, Jun. 2007.

[20] C. Calcagno, P. O’Hearn, and H. Yang. Local action and abstract separation logic. In

22nd LICS, pages 366–378, Wroclaw, Poland, July 2007.

324

[21] P. Cenciarelli, A. Knapp, and E. Sibilio. The java memory model: Operationally,

denotationally, axiomatically. In ESOP, pages 331–346, Braga, Mar. 2007.

[22] A. Condon, M. Hill, M. Plakal, and D. Sorin. Using lamport clocks to reason about

relaxed memory models. In 5th International Symposium on High Performance Computer

Architecture, pages 270–278, Washington, DC, Jan. 1999.

[23] A. de Melo. Defining uniform and hybrid memory consistency models on a unified

framework. In 32nd Annual Hawaii International Conference on System Sciences, Volume

8, Maui, Hawaii, Jan. 1999.

[24] E. Dijkstra. Cooperating sequential processes. In F. Genuys, editor, Programming

Languages, pages 43–112. Academic Press, London, 1968.

[25] D. Dill, S. Park, and A. Nowatzyk. Formal specification of abstract memory models.

In Research on Integrated Systems, pages 38–52, Seattle, Washington, Mar. 1993.

[26] M. Dubois, C. Scheurich, and F. Briggs. Memory access buffering in multiprocessors.

In 13th ISCA, pages 434–442, Tokyo, Jun. 1986.

[27] M. Dubois, C. Scheurich, and F. Briggs. Synchronization, coherence, and event or-

dering. IEEE Computer, 21(2):9–21, Feb. 1988.

[28] X. Fang, J. Lee, and S. Midkiff. Automatic fence insertion for shared memory mul-

tiprocessing. In 17th International Conference on Supercomputing, pages 285–294, San

Francisco, California, Jun. 2003.

[29] X. Feng. Local rely-guarantee reasoning. In 36th POPL, pages 315–327, Savannah,

Georgia, USA, Jan. 2009.

[30] X. Feng, R. Ferreira, and Z. Shao. On the relationship between concurrent separation

logic and assume-guarantee reasoning. In ESOP, pages 173–188, Braga, Mar. 2007.

[31] X. Feng and Z. Shao. Modular verification of concurrent assembly code with dynamic

thread creation and termination. In ICFP, pages 254–267, Tallinn, Estonia, Sep. 2005.

325

[32] G. Gao and V. Sarkar. Location consistency – a new memory model and cache con-

sistency protocol. IEEE TC, 49(8):798–813, Aug. 2000.

[33] P. Gastin and M. Mislove. A truly concurrent semantics for a simple parallel pro-

gramming language. In 8th Annual Conference of the EACSL on Computer Science Logic,

pages 515–529, Madrid, Sep. 1999.

[34] K. Gharachorloo. Memory Consistency Models for Shared-Memory Multiprocessors. PhD

thesis, Department of Electrical Engineering, Stanford University, Dec. 1995.

[35] K. Gharachorloo, S. Adve, A. Gupta, J. Hennessy, and M. Hill. Programming for

different memory consistency models. Journal of Parallel and Distributed Computing,

15(4):399–407, Aug. 1992.

[36] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy.

Memory consistency and event ordering in scalable shared-memory multiprocessors.

SIGARCH News, 18(3):15–26, Jun. 1990.

[37] J. Goodman. Cache consistency and sequential consistency. Technical Report 61,

IEEE Scalable Coherence Interface Committee, Mar. 1989.

[38] D. Grossman, J. Manson, and W. Pugh. What do high-level memory models mean

for transactions? In Workshop on Memory System Performance and Correctness, pages

62–69, San Jose, Jun. 2006.

[39] N. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. A syntactic approach to

foundational proof carrying-code. Journal of Automated Reasoning (Special issue on

Proof-Carrying Code), 31(3–4):191–229, Dec. 2003.

[40] L. Higham, J. Kawash, and N. Verwaal. Defining and comparing memory consis-

tency models. In International Conference on Parallel and Distributed Computing Systems,

pages 349–356, New Orleans, Louisiana, Oct. 1997.

[41] M. Hill. Multiprocessors should support simple memory-consistency models. IEEE

Computer, 31(8):28–34, Aug. 1998.

326

[42] A. Hobor, A. Appel, and F. Nardelli. Oracle semantics for concurrent separation

logic. In ESOP, pages 353–367, Budapest, Hungary, Mar. 2008.

[43] M. Huisman and G. Petri. The java memory model: A formal explanation. In VAMP,

Lisbon, Sep. 2007.

[44] Intel Corporation. A Formal Specification of Intel Itanium Processor Family Memory Or-

dering, Oct. 2002.

[45] Intel Corporation. Intel 64 Architecture Memory Ordering White Paper, Aug. 2007.

[46] R. Jagadeesan, C. Pitcher, and J. Riely. Generative operational semantics for relaxed

memory models. In 19th ESOP, pages 307–326, Paphos, Cyprus, Mar. 2010.

[47] Java Community Process. JSR-133: Java Memory Model and Thread Specification, Aug.

2004.

[48] C. Jones. Tentative steps toward a development method for interfering programs.

TOPLAS, 5(4):596–619, Oct. 1983.

[49] A. Krishnamurthy and K. Yelick. Optimizing parallel programs with explicit syn-

chronization. In PLDI, pages 196–204, La Jolla, California, Jun. 1995.

[50] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Com-

munications of the ACM, 21(7):558–565, Jul. 1978.

[51] L. Lamport. How to make a multiprocessor computer that correctly executes multi-

process programs. IEEE TC, 28(9):690–691, Sep. 1979.

[52] X. Leroy. Formal certification of a compiler back-end, or: Programming a compiler

with a proof assistant. In POPL, pages 42–54, Charleston, South Carolina, Jan. 2006.

[53] R. Lipton and J. Sandberg. PRAM: A scalable shared memory. Technical Report

CS-TR-180-88, Department of Computer Science, Princeton University, Sep. 1988.

[54] J. Manson, W. Pugh, and S. Adve. The java memory model. In 32nd POPL, pages

378–391, Long Beach, California, Jan. 2005.

327

[55] M. Michael and M. Scott. Simple, fast, and practical non-blocking and blocking con-

current queue algorithms. In 15th ACM Symposium on Principles of Distributed Com-

puting, pages 267–275, Philadelphia, Pennsylvania, May 1996.

[56] S. Midkiff, J. Lee, and D. Padua. A compiler for multiple memory models. Concur-

rency and Computation: Practice and Experience, 16(2–3):197–220, Mar. 2004.

[57] D. Mosberger. Memory consistency models. Operating Systems Review, 27(1):18–26,

Jan. 1993.

[58] P. O’Hearn. Resources, concurrency, and local reasoning. Theoretical Comp. Sci.,

375(1–3):271–307, May 2007.

[59] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-TSO. In 22nd

TPHOLS, pages 391–407, Munich, Germany, Aug. 2009.

[60] S. Park and D. Dill. An executable specification and verifier for relaxed memory

order. IEEE TC, 48(2):227–235, Feb. 1999.

[61] M. Parkinson, R. Bornat, and C. Calcagno. Variables as resources in hoare logics. In

LICS, pages 137–146, Seattle, Washington, Aug. 2006.

[62] J. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS,

pages 55–74, Copenhagen, Jul. 2002.

[63] J. Reynolds. Towards a grainless semantics for shared-variable concurrency. In

FSTTCS, pages 37–48, Chennai, India, Dec. 2004.

[64] A. Roychoudhury. Formal reasoning about hardware and software memory models.

In 4th International Conference on Formal Engineering Methods, pages 423–434, Shang-

hai, China, Oct. 2002.

[65] V. Saraswat, R. Jagadeesan, M. Michael, and C. von Praun. A theory of memory

models. In 12th PPoPP, pages 161–172, San Jose, Mar. 2007.

328

[66] S. Sarkar, P. Sewell, F. Nardelli, S. Owens, T. Ridge, T. Braibant, M. Myreen, and

J. Alglave. The semantics of x86-cc multiprocessor machine code. In 36th POPL,

pages 379–391, Savannah, Georgia, USA, Jan. 2009.

[67] D. Shasha and M. Snir. Efficient and correct execution of parallel programs that share

memory. TOPLAS, 10(2):282–312, Apr. 1988.

[68] X. Shen, Arvind, and L. Rudolph. Commit-reconcile & fences (CRF): A new memory

model for architects and compiler writers. In 26th ISCA, pages 150–161, Atlanta,

Georgia, May 1999.

[69] R. Steinke and G. Nutt. A unified theory of shared memory consistency. Journal of

the ACM, 51(5):800–849, Jun. 2004.

[70] Z. Sura, C.-L. Wong, X. Fang, J. Lee, S. Midkiff, and D. Padua. Automatic imple-

mentation of programming language consistency models. In 15th Workshop on Lan-

guages and Compilers for Parallel Computing, pages 172–187, College Park, Maryland,

Jul. 2002.

[71] V. Vafeiadis and M. Parkinson. A marriage of rely/guarantee and separation logic.

In CONCUR, pages 256–271, Lisbon, Sep. 2007.

[72] Q. Xu, W. de Roever, and J. He. The rely-guarantee method for veryfing shared

variable concurrent programs. Formal Aspects of Computing, 9(2):149–174, 1997.

[73] H. Yang and P. O’Hearn. A semantic basis for local reasoning. In 5th FOSSACS, pages

402–416, Grenoble, France, Apr. 2002.

[74] Y. Yang. Formalizing Shared-Memory Consistency Models for Program Analysis. PhD

thesis, School of Computing, University of Utah, May 2005.

[75] Y. Yang, G. Gopalakrishnan, and G. Lindstrom. Specifying java thread semantics

using a uniform memory model. In Java Grande Conference, pages 192–201, Seattle,

Washington, Nov. 2002.

329

[76] Y. Yang, G. Gopalakrishnan, G. Lindstrom, and K. Slind. Analyzing the Intel Itanium

memory ordering rules using logic programming and SAT. In 12th Advanced Research

Working Conference on Correct Hardware Design and Verification Methods, pages 81–95,

L’Aquila, Italy, Oct. 2003.

[77] Y. Yang, G. Gopalakrishnan, G. Lindstrom, and K. Slind. Nemos: A framework for

axiomatic and executable specifications of memory consistency models. In 18th In-

ternational Parallel and Distributed Processing Symposium, Santa Fe, New Mexico, Apr.

2004.

[78] D. Yu, N. Hammid, and Z. Shao. Building certified libraries for pcc: Dynamic storage

allocation. In ESOP, pages 363–379, Warsaw, Apr. 2003.

[79] D. Yu and Z. Shao. Verification of safety properties for concurrent assembly code. In

ICFP, pages 175–188, Snowbird, Utah, Sep. 2004.

330

