
Abstract

The Atomic Distributed Object Model for Distributed System Verification
Wolf Honoré

2022

Distributed systems are at the heart of most web-based applications and are responsible

for replicating and maintaining critical data. Unfortunately, their inherent concurrency

combined with an asynchronous and unreliable network makes them prone to implemen-

tation bugs that can have serious real-world consequences. Formal verification can offer

strong assurances of correctness; however, despite recent advances, reasoning directly

about a system’s implementation remains prohibitively complex. The key is to find the

right abstraction that faithfully models a system’s behaviors, while avoiding irrelevant

implementation details.

This dissertation presents such an abstraction called the atomic distributed object

(ADO) model, which hides the existence of the network and reduces all behaviors to three

atomic operations. This not only makes the ADO model simpler, which enables more

scalable verification, but it also means it is general enough to capture a wide variety

of systems. We describe three verification frameworks built around the ADO model,

each implemented in the Coq proof assistant and targeted at different problems. The

first, Advert, supports compositional reasoning about distributed objects, which can be

combined to build more complex applications. The second, Adore, proves the safety of

a general class of reconfiguration schemes, which is an essential, but often overlooked,

operation for practical distributed systems. Finally, AdoB shows that the ADO model can

be used for liveness reasoning, and can express both benign and byzantine failure models

in a unified manner.

The Atomic Distributed Object Model for Distributed System Verification

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Wolf Honoré

Dissertation Director: Zhong Shao

December 2022

© 2022 by Wolf Honoré
All rights reserved.

iii

Contents

Contents iv

List of Figures x

List of Tables xiv

1 Introduction 1

1.1 Distributed System Abstractions . 3

1.2 Challenges . 6

1.3 Contributions . 10

1.4 Organization . 11

2 Background and Motivation 15

2.1 Consensus . 15

2.1.1 Benign Consensus . 15

2.1.2 Byzantine Consensus . 18

2.1.3 Safety and Liveness . 20

2.1.4 Protocol Examples . 23

iv

2.2 Distributed System Abstractions . 28

2.2.1 State Machine Replication . 28

2.2.2 Network-Based Models . 30

3 Atomic Distributed Object Overview 32

3.1 Inspiration . 32

3.2 State and Operations . 35

3.2.1 Cache Tree . 35

3.2.2 Atomic Interface . 37

3.2.3 Examples . 39

3.3 Advantages . 42

4 Advert: Atomic Distributed Objects for Composition and Partial Failures 45

4.1 Motivation . 46

4.2 Advert Formal Semantics . 47

4.3 Single-ADO Reasoning . 52

4.3.1 Programming with ADOs . 53

4.3.2 Proving with ADOs . 56

4.4 ADO Composition . 57

4.4.1 Case-Study: Key-Value Stores . 58

4.4.2 Alternate Method-Calling Patterns 64

4.5 Refinement . 67

4.5.1 Network-Based Specifications . 67

4.5.2 Relating Network and ADO Models 71

v

4.5.3 Safety Proof Template . 74

4.5.4 Primary Backup . 77

4.5.5 C Implementations . 78

4.6 Evaluation . 79

4.7 Summary . 82

5 Adore: Atomic Distributed Objects with Reconfiguration 84

5.1 Motivation . 85

5.2 Overview . 89

5.3 Adore Formal Semantics . 92

5.4 Safety Proof . 99

5.4.1 Breaking Circularity with rdist . 99

5.4.2 Base Cases . 102

5.4.3 General Case . 104

5.5 Refinement . 105

5.6 Instantiating Reconfiguration Schemes . 110

5.7 Evaluation and Discussion . 113

5.8 Summary . 115

6 AdoB: Atomic Distributed Objects for Benign and Byzantine Consensus 116

6.1 Motivation . 117

6.2 Overview . 118

6.3 AdoB for Benign Consensus . 120

6.3.1 Semantics . 120

vi

6.3.2 Safety and Liveness Proofs . 130

6.4 AdoB for Generalized Consensus . 135

6.4.1 Adapting to Byzantine Consensus 135

6.4.2 Merging the Models . 142

6.4.3 Adjusting Safety and Liveness Proofs 144

6.5 Refinement . 146

6.5.1 Network-Based Specification . 146

6.5.2 Refinement Proof . 149

6.5.3 Extraction to OCaml . 151

6.6 Discussion . 152

6.6.1 Refinement as a Sanity Check . 152

6.6.2 AdoB Generality . 154

6.7 Summary . 156

7 Related Work 157

7.1 Abstract Models . 157

7.2 Formal Verification . 159

7.2.1 Consensus . 159

7.2.2 Proof Automation . 163

7.2.3 Composition . 164

7.3 Partial Failures . 165

7.4 Reconfiguration . 166

7.4.1 Alternate Reconfiguration Schemes 166

vii

7.4.2 Formal Verification . 168

7.5 Connecting Benign and Byzantine Consensus 170

8 Conclusions and Future Work 172

8.1 Combining ADO Variants . 173

8.2 Alternate Consistency Models . 174

8.3 Proof Automation . 174

8.4 Addressing Implementation Inefficiencies 177

Bibliography 179

A Additional ADO Examples 191

A.1 ADO Lock Alternatives . 191

A.2 2PC with Recovery . 194

B Additional Refinement Details 197

B.1 Advert Refinement Details . 198

B.2 Adore Refinement Details . 199

B.2.1 SRaft and Adore . 199

B.2.2 Raft and SRaft . 200

B.3 AdoB Refinement Details . 203

C Additional Safety Proof Details 206

C.1 Advert Safety Proof Details . 206

C.2 Adore Safety Proof Details . 209

viii

C.3 AdoB Safety and Liveness Proof Details . 216

ix

List of Figures

1.1 The spectrum of distributed system models. 4

2.1 Benign consensus pseudocode. 16

2.2 Byzantine consensus pseudocode. 19

2.3 Pseudocode for updating a distributed key-value store in three models. . . 29

3.1 Pseudocode of a FIFO Queue implemented as an ADO. 33

3.2 A cache tree’s evolution in the ADO model without failures. 40

3.3 A fork in the cache tree. 41

4.1 Different layers of reasoning with Advert. 46

4.2 Advert state definitions. 48

4.3 Advert operations. 49

4.4 Advert auxiliary definitions. 49

4.5 Semantics of Advert operations. 50

4.6 Valid pull and push oracle conditions. 51

4.7 Distributed bank account object. 53

4.8 Single ADO key-value store. 59

x

4.9 Lock-based composite ADO key-value store. 60

4.10 Lock-free composite key-value store. 62

4.11 Two-Phase Commit with replicated RMs. 65

4.12 Transaction ADO. 66

4.13 Generalized Paxos network-based state and operations. 68

4.14 Generalized Paxos parameters. 68

4.15 The elect, invoke, and commit network state transition functions. 70

4.16 Selected deliver request handlers. 70

4.17 Linearizing asynchronous network events. 71

4.18 Completing network events. 73

4.19 Performance of different key-value store (KVS) and 2PC designs. 81

5.1 Raft’s reconfiguration can violate safety. 87

5.2 Sample Adore behaviors. 90

5.3 Adore state definitions. 92

5.4 Configuration/quorum parameters and definitions. 93

5.5 Adore operations. 94

5.6 Adore auxiliary definitions. 95

5.7 Semantics of Adore operations. 96

5.8 Valid pull and push oracle conditions. 96

5.9 An example of a breach of safety without R3. 103

5.10 Selected Raft network-based state and operations. 106

5.11 Raft to SRaft to Adore refinement. 108

xi

5.12 Correspondence between replicas’ local logs and active branches. 109

5.13 OCaml Raft performance with reconfiguration. 114

6.1 Benign AdoB configuration and quorum parameters and assumptions. . . 120

6.2 Benign AdoB state definitions. 121

6.3 Benign AdoB operations. 122

6.4 Benign AdoB auxiliary definitions. 123

6.5 Semantics of benign AdoB operations. 124

6.6 Valid benign AdoB oracle conditions. 125

6.7 An example of a timeout in AdoB. 129

6.8 Byzantine AdoB configuration and quorum parameters and assumptions. . 136

6.9 Semantics of byzantine AdoB operations. 136

6.10 Valid byzantine AdoB oracle conditions. 137

6.11 Allowed behaviors in byzantine AdoB. 139

6.12 Disallowed behaviors in byzantine AdoB. 141

6.13 Method quorum (mquorum) parameters and assumptions. 143

6.14 Oinvoke replaces super quorums with mquorums. 143

6.15 Quorum instantiations for benign and byzantine settings. 144

6.16 Abstract network-based state and operations. 147

6.17 The commit network state transition function and request handler. 148

6.18 The byzantine commit request handler. 149

6.19 The LogMatch component of the refinement relation. 150

6.20 An incorrect early attempt at modeling timeouts. 153

xii

A.1 More complex ADO locks. 192

A.2 Two-Phase Commit with recovery. 195

B.1 The general local log-ADO branch correspondence of R. 197

B.2 The network-equivalence relation, Rnet. 200

C.1 Abridged proof dependencies. 207

xiii

List of Tables

7.1 Comparison of selected consensus verification projects. 159

xiv

Acknowledgments

I am deeply grateful to my advisor, Prof. Zhong Shao, for his invaluable guidance and

constant support. His passion for research and his dedication to furthering his students’

development as researchers are inspiring. I am also thankful to Profs. Ruzica Piskac,

James Aspnes, and Benjamin Pierce for graciously agreeing to serve on my dissertation

committee.

I would also like to thank the members of the Yale FLINT group for their feedback,

camaraderie, and many fruitful discussions. Special thanks go to my frequent collaborators,

Jieung Kim and Ji-Yong Shin, without whom this work would not have been possible. It is

largely by their example that I learned to write effective research papers. I am also grateful

to Longfei Qiu and Yoonseung Kim, who, in our short time working together, have already

greatly improved this work through their feedback and assistance.

Finally, my appreciation goes out to my friends and family for their faith, encourage-

ment, and guidance, and especially to my wife, Becky, for her love, support, and patience.

Thank you for taking care of Real Life and making the last six years possible.

xv

Chapter 1

Introduction

Distributed systems are programs that are cooperatively executed simultaneously by

multiple processes, potentially on different, physically distant servers. They are often used

in applications such as databases [Chang et al. 2006] or file systems [Ghemawat et al. 2003]

to replicate important information and reduce the risk of data loss or corruption from a

failed hard drive. The physical separation between processes necessitates a communication

channel of some kind, such as the Internet, or a datacenter’s local intranet. However, these

networks can be unreliable as they typically use TCP/IP protocols, which are inherently

asynchronous and prone to errors such as dropped or delayed packets [Cachin et al. 2011].

Tomaintain data consistency under these conditions, distributed systems often rely on a

class of algorithms called consensus protocols [Burrows 2006; etcd Developers 2013–2022],

which are able to reach agreement among some sufficiently large subset of participants

despite some amount of failures. Unfortunately, these protocols are notoriously difficult to

understand and easy to implement incorrectly [Gill et al. 2011; Gunawi et al. 2014; Meza

et al. 2018]. Even when written by experts, bugs are sometimes introduced that can cause

1

disruptions to major online services [AWS Team 2011; Treynor 2014].

Testing and model checking can reduce, but never fully eliminate, the risk of these bugs

because the search space is too large to cover exhaustively. The only way to completely

guarantee correctness is formal verification, which produces a mathematical proof that all

allowed behaviors of a program satisfy some property. However, manual pen-and-paper

proofs are susceptible to invalid logical steps or overlooked cases [Berger et al. 2021;

Cachin and Vukolic 2017; Momose and Cruz 2020; Ongaro 2015; Whittaker 2020]. A more

reliable option is to use a mechanized proof assistant, such as Coq [Coq Development

Team 1999–2022]. This provides an expressive dependently typed language for writing

specifications and proofs along with a type checker to validate them (an extreme version

of “well-typed programs cannot go wrong” [Milner 1978]). Recent years have seen an

abundance of research on this topic and the development of many useful verification

frameworks and techniques [Hawblitzel et al. 2015a; Krogh-Jespersen et al. 2020; Ma et al.

2019; Padon et al. 2016; Sergey et al. 2017; Shin et al. 2019; Wilcox et al. 2015]; however,

these often struggle to scale to larger or more complex systems as the number of cases to

consider becomes overwhelming.

Generally in computer science, when a problem is too complex to reason about, the

solution is to find the correct abstraction that distills it down to only its essential elements.

The research question addressed by this dissertation is what does this abstraction look

like for distributed systems, with a particular focus on consensus protocols. The proposed

solution is the novel atomic distributed object (ADO) model, whose main features are

a tree-based data structure to represent temporary data inconsistencies, and a simple,

but expressive atomic interface. The remainder of this section discusses shortcomings of

2

existing abstractions, the challenges in designing a new one, and a summary of the ADO

model’s contributions.

1.1 Distributed System Abstractions

Abstraction Layers When reasoning about distributed systems there are three main

layers of abstraction to consider. On top is an application, which provides some client-

facing interface for a replicated object (e.g., Chubby [Burrows 2006] or ZooKeeper [Hunt

et al. 2010]). Under that is a distributed protocol like Paxos [Lamport 1998; van Renesse

and Altinbuken 2015] or Raft [Ongaro and Ousterhout 2014], which manages replication

and consistency. At the bottom is the network level, which implements the communication

primitives used by the protocol and handles issues such as server crashes and network

asynchrony. Each layer has different goals and challenges, so it is important to model the

state of a distributed system in a way that suits the properties being proved.

For example, the purpose of an application like a distributed key-value store is to give

the illusion of being a standard object and satisfy properties, such as that reading a key

immediately after setting it returns the new value. Ideally, the proof of such properties

should not need to consider network failures or even the existence of separate servers.

Instead, one should be able to reason purely about the object’s state and methods just as in

a non-distributed setting.

An example of a protocol-level correctness property is that there always exists a latest

committed snapshot of the replicated state from which all later versions of the state evolve.

This is completely orthogonal to whatever application is built on top of the protocol, so

3

M1

A
pp
lic
at
io
n

Pr
ot
oc
ol

N
et
w
or
k

M2SMR

Network-
Based

M3

M5

{S1,S2}

S1

{S1,S2}
S2

{S2,S3}

M1 M2

M1 M2

M1

S1

S2

S3

M3

M5

M4

M4

M
Committed

Method
M

Uncommitted
Method

S

{voters}
Election
Marker
{voters}
Commit
Marker

Key

M1 M2ADO

Figure 1.1: The spectrum of distributed system models. Each shows a snapshot of the same
distributed state at a different level of abstraction. Network-based represents each server (𝑆1, 𝑆2,
𝑆3) as a separate object. SMR merges them into a single log and exposes only committed methods.
The ADO model also merges the logs, but preserves uncommitted methods as branches of a tree. It
also contain additional logical metadata in the form of election and commit markers that serve as
evidence of the system’s safety.

the details of the replicated state do not matter. Likewise, the same protocol might have

many possible low-level implementations with different optimizations and communication

patterns, but these details are also irrelevant as long as they do not change the high-level

invariants that the protocol satisfies.

Finally, a network-level proof might show that a reliable broadcast function guarantees

all participants will eventually receive a message. This layer is about providing efficient

and correct communication primitives that the protocol layer can use as building blocks

without worrying about the internal details.

There is no clear divide between different abstraction layers, but rather a continuous

spectrum. Figure 1.1 shows some of the most commonly used models and how the ADO

model fits into their hierarchy.

4

Network-Based At one end is the class of network-based models, which represent a

protocol’s behavior in terms of a set of servers passing messages over an abstract network.

This is very flexible and can express any protocol along with all of its optimizations

and extensions. It also closely mirrors the actual implementation, which means that

properties proved about the abstraction are likely to hold for the implementation as well.

Unfortunately, it fails to isolate network and protocol-level logic, which means one must

consider both at the same time. This makes reasoning more challenging, and it also tightly

couples the protocol and implementation, making proofs less reusable.

State Machine Replication On the opposite end of the spectrum is state machine repli-

cation (SMR) [Schneider 1990], which gives the illusion of a single, atomically-accessible

object (represented by a log of committed commands) rather than a collection of indi-

vidual servers. It hides internal communication details and the existence of intermediate

inconsistent states behind a remote procedure call (RPC) interface. This makes it ideal

for application-level reasoning, but much too abstract to prove anything at the protocol

level. It is also unable to model applications that take advantage of, instead of hiding, their

distributed nature by relying on certain features of their underlying protocols [Gray and

Lamport 2006; Zhang et al. 2015].

Atomic Distributed Objects The goal of the ADO model is to fill the gap between these

abstractions and target the protocol layer as well as systems that straddle the protocol-

application border. Like SMR it models the distributed state as a single object with an atomic

object-oriented interface. However, it unfolds RPC calls into three steps that correspond

5

to the general structure of most consensus protocols. Each step can fail, which exposes

intermediate states where servers may temporarily disagree on the replicated state.

These partial failures are modeled by representing the state as a tree comprised of a

sequence of committed methods with uncommitted branches. To enable protocol-level

reasoning, the tree also contains logical markers that indicate how in-agreement the

participating servers are at certain times. This provides vital information that allows one

to reason about not just the current state of the system, but the history of how it arrived

there, while still maintaining a clean separation from network-level details.

1.2 Challenges

As a protocol-level abstraction, the ADO model is able to reduce unnecessary complex-

ity and more effectively support reasoning about optimizations and properties that are

impractical in network-based or SMR models. The following are examples of important

aspects of distributed systems that the ADO model can cleanly express, but that prior work

has struggled to address.

Composition Modern distributed applications are typically not a single, monolithic

system, but rather a collection of interacting components [Dean 2009]. When combined

with the already intricate behaviors of individual systems, it is clear that attempting to

reason about the entire system at once would quickly become hopelessly complex. Instead,

this problem requires a compositional abstraction that allows one to reason about an

individual component’s internal behaviors in isolation as well prove properties about the

6

interactions between components. This also provides an additional level of modularity as

a component can be verified once and reused by multiple applications.

Many verification frameworks simply do not support reasoning about multiple compo-

nents. This is insufficient for practical applications, because even if two components are

verified separately, an incorrect interface between them can introduce serious bugs that

threaten the whole system [Fonseca et al. 2017]. The majority of the few frameworks that

do handle composition describe the interactions at the network level [Krogh-Jespersen et al.

2020; Sergey et al. 2017]. This makes it difficult to scale to larger systems, but it also ties the

proofs to a particular implementation. This can be a problem because different components

may have varying performance and reliability requirements, so the application could be

implemented by a heterogeneous collection of protocols. If, for example, a developer

decided to swap one protocol for another for performance reasons, the proof would break

even if they are both consensus protocols that satisfy the same high-level properties.

Reconfiguration In practical systems, the set of participating replicas may not be

constant as old servers are taken down for maintenance and new ones are added to cope

with increased load. This process is called reconfiguration, and it is necessary for realistic

distributed systems, but it deeply interacts with a protocol’s core invariants in a way that

makes it difficult to verify. Adding or removing a server at the wrong time can easily

compromise the consistency of the replicated data by allowing committed data to be

overwritten, or even rendering the entire system inoperable [Gunawi et al. 2014]. The

fundamental challenge is that reconfiguration changes the metadata that protocols rely

on to achieve consensus (e.g., membership, quorum sizes), but it itself also depends on

7

consensus to ensure the changes are applied consistently.

This circularity creates subtle dependencies among different aspects of the protocol,

such that it can be difficult even for experts to fully anticipate how reconfiguration influ-

ences the correctness properties. For example, Ongaro [2014] proposed a reconfiguration

scheme for the Raft protocol that, despite extensive peer review and several implemen-

tations, was found to have a critical bug nearly a year later [Ongaro 2015]. A fix was

proposed along with a loose sketch of its correctness, but no formal proof was given. In

fact, there is extremely little prior work on formal verification of reconfiguration, which

we expect is largely due to the lack of an appropriate abstraction to manage the complexity.

An additional challenge that a good protocol-level abstraction should solve is supporting

general classes of reconfiguration schemes. As with consensus protocols, there are many

implementations, but most follow common patterns that, if abstracted properly, could

allow proofs to be easily reused.

Time Time is very important in distributed systems. Communication over a network

is unreliable, so servers cannot simply wait forever for a response or the system might

deadlock. Instead, there is typically some timeout after which they abandon the attempt

and try something else. Servers are generally not assumed to have exactly synchronized

local clocks so timeouts may occur at different times, which, if not handled carefully, can

make it very difficult for servers to coordinate.

Temporal properties (e.g., a server eventually acknowledges a message) are often more

challenging to prove than consistency because they require considering everything that

could happen rather than just what has already happened in a given case. Many prior veri-

8

fication efforts simply ignore these properties, and those that do handle them often require

a special temporal logic separate from what is used for consistency proofs [Hawblitzel

et al. 2015a; Losa and Dodds 2020].

Generalized Failure Models Failures are inevitable in a distributed setting, so protocols

must be prepared to handle them. How they do this depends on the failure model; i.e.,

the assumptions about what effects failures can have. For example, under the benign, or

fail-stop, model [Cachin et al. 2011] servers may become unresponsive, but the byzantine

model [Lamport et al. 1982] allows certain servers to actively work against the others. The

former case only needs to guard against waiting indefinitely for a response from a crashed

server, but in the latter servers cannot necessarily even trust the messages they receive.

It is not immediately clear that the gap between byzantine protocols and their benign

counterparts can be bridged. The lack of trust between servers seems to require fundamen-

tal changes to the communication patterns, and indeed, early byzantine protocols such

as PBFT [Castro and Liskov 1999] differ in many ways from their benign predecessors.

Surprisingly, it turns out that these differences are not insurmountable and that, at its core,

consensus works on the same basic principles regardless of failure model. Therefore, with

some clever parameterizations, it is possible to unify the byzantine and benign cases into a

single model [Lamport 2011; Rütti et al. 2010].

This generalized approach has not been applied in any mechanized verification work,

likely because it is difficult to express in the standard network-based models where the

implementation-level differences are more pronounced. This is an ideal problem for a

protocol-level abstraction like the ADOmodel since it strips away these details, and instead

9

highlights the common features. The advantage of doing so is it allows one to prove a

property once and for all and reuse it for a large variety of protocols.

1.3 Contributions

The primary contribution of this dissertation is a formal definition of the novel, protocol-

level abstraction called the atomic distributed object (ADO) model, along with an empirical

evaluation of the practical effectiveness of the model through case studies. Each study

presents a version of the ADO model, implemented in Coq, as a novel solution to a

previously unsolved challenge in distributed system verification.

• Advert (atomic distributed object verification toolchain) is an abstraction designed

for reasoning about distributed applications that take advantage of protocol-level

features such as partial failures, as well as the composition of such systems. This

enables the verification of applications that prior work was either too restrictive to

express, or insufficiently abstract to manage the complexity.

• Adore (atomic distributed objects with reconfiguration) enables reasoning about

dynamically reconfigurable consensus protocols in terms of abstract ADO state and

atomic interface instead of asynchronous network events. This greatly simplifies

proving correctness properties, which is essential because reconfiguration introduces

many subtle dependencies that are only made clear when irrelevant details are

stripped away. Prior to Adore, no mechanized proofs of the safety of a consensus

protocol handled reconfiguration.

10

• AdoB (atomic distributed objects for benign/byzantine consensus) extends the ADO

model’s capabilities with support for temporal reasoning and a common specification

for both benign and byzantine consensus. The former makes it possible to prove

that not only does a protocol never cause the replicated state to appear inconsistent,

but it will, in fact, eventually converge on a consistent state. The latter allows one

such proof to hold for an extremely broad class of protocols.

1.4 Organization

The remainder of the dissertation is organized as follows. Chapter 2 gives important

background on consensus and existing distributed system abstractions. Chapter 3 presents

an informal overview of the key features of the ADO model. Chapters 4 to 6 cover the

Advert, Adore, and AdoB case studies, including formal definitions and evaluations.

Chapter 7 provides a comparison with related work. Chapter 8 discusses future work and

concludes. The following is a brief summary of each of the ADO variants.

Advert Advert defines an atomic semantics that faithfully captures the common

high-level behaviors of consensus protocols, while abstracting away unnecessary protocol-

specific details such as packet interleaving and quorum sizes. This allows one to write

ADO-level specifications and proofs for an application that are completely independent

from the specifics of its implementation.

In particular, we prove correctness properties about several distributed key-value store

designs that support partitioning and replication via ADO composition. This includes a

11

“lock-free” design that composes two objects without any centralized coordinator. We also

show a version of Two-Phase Commit [Cachin et al. 2011] with replicated resource man-

agers that demonstrates how the additional details exposed by Advert enable reasoning

about optimizations that cannot be expressed in an SMR-like model.

Finally, we prove a refinement between Advert and network-based specifications of

several protocols including Single Paxos [Lamport 2001], Multi Paxos [van Renesse and

Altinbuken 2015], Vertical Paxos [Lamport et al. 2009], CASPaxos [Rystsov 2018], and

Chain Replication [van Renesse and Schneider 2004]. The Multi Paxos specification is

formally linked to a C implementation using certified concurrent abstraction layers [Gu

et al. 2018] and an executable binary is generated by a verified compiler [Leroy 2009].

Advert was originally published in Honoré et al. [2021a]. A Coq artifact is available

on Zenodo [Honoré et al. 2021b].

Adore Adore supports proving correctness guarantees of consensus protocols with

reconfiguration. In particular, it targets the safety of the challenging class of “hot” algo-

rithms, which dynamically adjust the membership while also processing client requests.

The reconfiguration scheme is quite general and admits a variety of implementations as

long as they satisfy a few basic invariants.

We prove that Adore satisfies the key safety property that committed states are never

lost or overwritten. This guarantee applies to any benign fault tolerant consensus protocol

with a compatible hot reconfiguration scheme that refines Adore. The proof also brings to

light subtle circularity issues that were not apparent in previous informal proof sketches,

but we demonstrate that an elegant solution naturally arises from the ADO model’s tree-

12

based state representation.

We also show the generality of the model by instantiating the generic reconfiguration

scheme with several practical algorithms including Raft single-server [Ongaro 2014],

Raft joint consensus [Ongaro and Ousterhout 2014], primary backup [van Renesse and

Schneider 2004], and dynamic quorum sizes [Lamport et al. 2009]. Finally, we demonstrate

the validity of the model by proving it is implemented by a network-based specification of

a version of Raft, which can automatically extracted to executable OCaml code.

Adore was originally published in Honoré et al. [2022a]. A Coq artifact is available on

Zenodo [Honoré et al. 2022b].

AdoB AdoB explores ADO-based temporal reasoning and bridging benign and byzantine

models. It demonstrates that benign and byzantine consensus use the same basic mecha-

nisms and that by maintaining a clear separation between network-level communication

details and core protocol-level behaviors, one can paper over the superficial differences to

obtain a unified model.

We prove that this generic model guarantees that the state is replicated consistently

among the replicas and that, under partial synchrony assumptions [Dwork et al. 1988],

progress is eventually made towards committing new commands. These proofs hold under

both the benign and byzantine failure models and highlight the essential similarities and

differences between them.

To demonstrate AdoB’s relevance to actual protocols, we proved that a network-based

specification of a variant of the Jolteon byzantine consensus protocol [Gelashvili et al.

2022] refines AdoB. We call this variant GenJolteon because it can be configured to handle

13

either a benign or byzantine setting by instantiating a few parameters. As with Adore,

we also leveraged Coq’s support for extraction to produce a verified, executable OCaml

implementation of this protocol.

Funding This work was supported in part by NSF grants 1521523, 1763399, 1945541,

2019285, and 2118851, and by the Defense Advanced Research Projects Agency (DARPA)

and Naval Information Warfare Center Pacific (NIWC Pacific) under Contract No. N66001-

21-C-4018. Any opinions, findings, and conclusions or recommendations expressed in

this material are those of the authors and do not necessarily reflect the views of the NSF,

DARPA, and NIWC Pacific.

14

Chapter 2

Background and Motivation

2.1 Consensus

The goal of consensus is to facilitate agreement across a set of servers (or replicas). In par-

ticular, we focus on the replicated state machine [Schneider 1990] approach in which each

replica maintains a log of commands. Once a command is determined to be committed, repli-

cas execute it locally. Therefore, to ensure consistency between the replicas, a consensus

protocol must guarantee that they agree on the order of the committed commands.

2.1.1 Benign Consensus

There are many consensus protocols, but they broadly fall into categories depending

on their failure models; i.e., what kind of errors the protocol is capable of handling while

still functioning correctly. One of the simpler, but more common, failure models is the

benign, or fail-stop, setting. This allows replicas to become unresponsive, but not to send

invalid messages or otherwise behave incorrectly [Cachin et al. 2011]. The network is also

15

1 // Leader
2 elect() {
3 self.time += 1;
4 broadcast(Elect, self.time, self.log);
5 self.votes := wait_for_votes();
6 return isQuorum(self.votes);
7 }
8 local_update() {
9 self.log.append(new_command(self.time));
10 return true;
11 }
12 commit() {
13 broadcast(Commit, self.time, self.log);
14 self.votes := wait_for_votes();
15 return isQuorum(self.votes);
16 }
17 // Replicas
18 handle_elect(ldr, time, log) {
19 if (self.time < time) && (self.log.last.time <= log.last.time) {
20 self.time := time;
21 send(ldr, ElectAck);
22 }
23 }
24 handle_commit(ldr, time, log) {
25 if (self.time <= time) && (self.log.last.time <= log.last.time) {
26 self.time := time;
27 self.log := log;
28 send(ldr, CommitAck);
29 }
30 }

Figure 2.1: Benign consensus pseudocode.

typically assumed to be unreliable in the sense that it may delay, duplicate, reorder, or drop

messages, but not corrupt their contents. The challenge of benign consensus is to reach

agreement with the participation of only some subset of the replicas (called a quorum).

Different protocols have different methods of accomplishing this task, but they gen-

erally work by repeating three phases: election, local update, and commit (represented

in pseudocode in Figure 2.1 as elect, local_update, and commit, respectively). The goal

of the election phase is for a replica, known as a candidate, to get permission to add new

log entries by confirming that its has all of the existing committed entries. This requires a

16

way to determine which of two logs is more “up to date”. Replicas do not have access to a

synchronized global clock, so instead, every command is assigned a logical timestamp and

logs are compared by the timestamps of their last entries (e.g., Line 19 in handle_elect).1

A candidate solicits votes from the other replicas (in some protocols the candidate may

also vote for itself), who decide whether to vote by comparing the candidate’s timestamp

and log to their own. If the candidate collects a quorum of votes then it becomes the leader

and can be confident that, at the moment, it has the most up-to-date log among its voters.

The size of a quorum varies by protocol, but it must be at least large enough to ensure that

any two quorums must share at least one replica, so a simple majority is common. The

importance of quorum overlap is discussed further in Section 2.1.3.

In the local update phase, the leader simply appends a new command to its log, typically

at the request of an external client. Some protocols allowmultiple consecutive local updates,

but eventually the leader attempts to replicate the new entries in the commit phase.

Here again, the leader’s goal is to share its log and convince at least a quorum of

replicas that it is sufficiently up-to-date. This second check is necessary because in the

time since its election, the leader may have been preempted by another, more recent leader,

in which case the old leader’s log cannot be trusted to contain all committed entries. If a

replica determines that the leader has not been preempted, then it updates its own log to

match the leader’s. If a quorum do so then the new commands are now committed. Now

the cycle repeats with a new election; however, some protocols simply continue with the

same leader and use the previous successful commit as an implicit quorum of votes.
1For simplicity, the pseudocode assumes there is at most one entry per timestamp. If this is not the case,

ties may be broken using the log length.

17

2.1.2 Byzantine Consensus

Benign failure assumptions are appropriate for controlled environments such as data

centers, but in more open settings (e.g., blockchains) participants cannot always be trusted.

Protocols that operate under this failure model are called byzantine [Lamport et al. 1982].

Byzantine consensus has the same goal as benign consensus: to allow a collection of

replicas to eventually reach agreement on a log of commands. The critical difference is

that certain replicas may now behave maliciously, e.g., by lying about local state.

As with benign consensus, the protocol breaks down into three phases (Figure 2.2). The

election and commit phases serve the same purpose as before, but an important difference

is that replicas can no longer trust the leader or each other. For instance, they cannot be

sure during the commit phase that the log that the leader proposes is the same log being

proposed to everyone else. If it were not and the replicas simply accepted the different

logs, a byzantine leader could cause the committed states to diverge.

Since no individual can be believed, the only way to gain trust is through a quorum.

However, it is no longer sufficient to simply require that quorums overlap, as there is no

guarantee the common replica is honest. Instead, operations now require a super quorum

of voters, which must have at least one honest replica in common with every other super

quorum. For example, if at most 𝑓 out of 3𝑓 + 1 replicas are byzantine then a super quorum

could be any set of 2𝑓 + 1, as at least 𝑓 + 1 must be honest.

Aside from the larger quorums, elect and commitwork mostly as before, broadcasting

requests containing the leader’s current log, and waiting to collect votes. However, as

another consequence of the reduced trust between replicas, the second phase, formerly a

18

1 // Leader
2 elect() {
3 self.time += 1;
4 broadcast(Elect, self.time, self.log);
5 self.votes := wait_for_votes();
6 // NEW: isSQuorum = "super quorum"
7 return isSQuorum(self.votes);
8 }
9 precommit() {
10 self.log.append(new_command(self.time));
11 // NEW: Include votes as evidence of successful election
12 broadcast(PreCommit, self.time, self.log, self.votes);
13 self.votes := wait_for_votes();
14 return isSQuorum(self.votes);
15 }
16 commit() {
17 // NEW: Include votes as evidence of successful pre-commit
18 broadcast(Commit, self.time, self.log, self.votes);
19 self.votes := wait_for_votes();
20 return isSQuorum(self.votes);
21 }
22 // Replicas
23 handle_elect(ldr, time, log) {
24 if (self.time < time) && (self.log.last.time <= log.last.time) {
25 self.time := time;
26 send(ldr, ElectAck);
27 }
28 }
29 // NEW: Confirm that ldr has enough votes, and that log is safe to commit
30 handle_precommit(ldr, time, log, elect_votes) {
31 if (self.time <= time) && (self.log.last.time <= log.last.time)
32 && validate(elect_votes) {
33 self.time := time;
34 send(ldr, PreCommitAck);
35 }
36 }
37 handle_commit(ldr, time, log, precommit_votes) {
38 if (self.time <= time) && (self.log.last.time <= log.last.time)
39 // NEW: Confirm that ldr did precommit
40 && validate(precommit_votes) {
41 self.time := time;
42 self.log := log;
43 send(ldr, CommitAck);
44 }
45 }

Figure 2.2: Byzantine consensus pseudocode. Comments beginning with NEW mark changes from
the benign case.

19

local update in the benign case, now also requires a super quorum of votes and is called

the pre-commit phase. The purpose of this step is for a super quorum of replicas to attest

that they would be willing to commit a particular command if the leader can prove that it

has sufficient support. This rules out the scenario in which a byzantine leader proposes

different logs during the commit phase.

In both the pre-commit and commit phases, the leader must demonstrate that it com-

pleted the previous round with the requisite number of votes by including them collected

votes in their requests (hence the self.votes argument to broadcast on Lines 12 and 18).

The recipients then independently validate the votes (Lines 32 and 40 in handle_precommit

and handle_commit). To ensure that the votes are genuine and cannot be forged by mali-

cious leaders, they are typically cryptographically signed. Section 2.1.3 discusses this and

other necessary assumptions further.

Note that although the byzantine failure model subsumes the benign case, the larger

quorum sizes and additional rounds of communication comewith an increased performance

cost. Therefore, benign consensus protocols are still preferable when appropriate.

2.1.3 Safety and Liveness

Safety There are two primary correctness properties that a consensus protocol should

satisfy. The first is replicated state safety, or simply safety, which states that clients observe

the committed commands in the same order regardless of which replica they contact. This

implies that if two replicas commit a command in a certain slot, the prefixes of their logs

20

up to that slot are equal.2

The key to maintaining this property for both benign and byzantine consensus is to

ensure that concurrent commit requests can be linearized (i.e., their effect on the replicated

state appears as if they executed in a sequential order). This is why elections and commits

require a (super) quorum of voters, and why quorums are defined such that any two

quorums have a common honest replica. The common voter must have received one of

the commit requests before the other, and because replicas only vote for requests with

monotonically increasing timestamps, the only way both requests could succeed is if the

one with the smaller timestamp arrived first. This fixes the ordering for these two requests,

and by continuing this reasoning, we can do the same for every commit.

As previously mentioned, replicas must be able to trust the authenticity of the messages

they receive. Therefore, byzantine replicas cannot be allowed to forge messages from other

replicas or tamper with the content of a message. In practice, this is often enforced with

cryptographic methods such as threshold signatures [Shoup 2000].

Liveness Safety, while necessary, is not sufficient to guarantee that a system is useful.

For example, a trivial protocol that ignores all messages is vacuously safe, but will never

commit any commands. Therefore, the second essential correctness property is liveness,

which guarantees that meaningful progress (i.e., committing a new command) is eventually

made. This is complicated by the fact that replicas may crash (become unresponsive) and

network messages may be lost or delayed arbitrarily. In fact, in the general case, liveness

is impossible to guarantee [Fischer et al. 1985].
2Certain protocols allow a slot to be committed while earlier entries are still undecided, but this property

still holds once the gaps are filled in.

21

Despite this impossibility result, all is not lost if we simply introduce a few assumptions

that can reasonably be expected to hold in practice. Unless otherwise specified, the

following are required for both benign and byzantine protocols; however, note that none

of the following are necessary for safety.

• There exists at least a quorum of non-faulty replicas that never crash for the benign

case and a super quorum of honest replicas for the byzantine. For a typical benign

majority quorum, this means at most 𝑓 out of 2𝑓 + 1 replicas may crash. Likewise,

for the standard definition of a super quorum this means less than 1/3 of replicas

can act maliciously. We assume faulty, non-faulty, honest, and byzantine replicas

are arbitrarily fixed in advance, but replicas are not aware of these assignments.

• Instead of total asynchrony, we assume a partially synchronous network [Dwork

et al. 1988]; i.e., after some unknown point, called the global stabilization time (GST),

all messages are delivered to honest, non-faulty replicas within some bounded time.

• There is a fair rotating leader schedule; i.e., for every logical timestamp, there is

exactly one replica that may initiate an election. Here, fairness means there is always

a finite number of rounds before some honest, non-faulty replica has a turn.

• Honest, non-faulty replicas follow a productive strategy; i.e., they perform operations

in a timely manner whenever they are able. For example, an honest leader will

attempt to commit new log entries after creating them within some finite time.

It is not difficult to guarantee liveness after GST as we can assume a (super) quorum

of honest, non-faulty replicas will be active. Combined with the fair election rotation we

22

know that eventually an honest, non-faulty leader will be elected, at which point a new

command can easily be committed. The challenge is to ensure that the system does not

reach deadlock before this leader can be elected, for example by entering a state where no

replica can be elected leader.

To avoid this, replicas maintain local timers that reset after every election. If they do

not hear from the leader in that time they broadcast a timeout message. Upon observing a

quorum of timeout messages, a replica knows that no command can ever be committed in

the current round (as it would also require a quorum of votes), so it advances its logical

timestamp and prompts the next leader to begin an election. This ensures that even if no

progress is made on committing new commands, replicas are constantly advancing to new

rounds and will not become stuck before GST.

2.1.4 Protocol Examples

Figures 2.1 and 2.2 give a high-level overview of the basic elements of consensus protocols,

but they omit many implementation details. This section fills in some of these gaps by

summarizing a few popular consensus protocols for both the benign and byzantine settings.

Paxos Paxos [Lamport 1998, 2001] is a classic benign consensus protocol that has inspired

many variations [Gafni and Lamport 2003; Lamport 2006; Lamport et al. 2009; Malkhi et al.

2008; Rystsov 2018]. The original version is only capable of reaching consensus on a single

value, but it is extended to a log of values by Multi Paxos [van Renesse and Altinbuken

2015]. Unless otherwise specified, we use Paxos to mean Multi Paxos and write Single

Paxos for the original.

23

As in Figure 2.1, Paxos begins with a kind of election (called the prepare phase), in

which a leader with a sufficiently up-to-date log is chosen. The candidate broadcasts its

request with a new logical timestamp (called a ballot number) and potential voters compare

it against the largest timestamp they have observed thus far; however, rather than having

replicas compare their logs against the candidate’s, the candidate collects its voters’ logs

and chooses the latest.

The latest log can either be decided entry-by-entry, where, for each slot, the candi-

date chooses the one with the largest timestamp, or more holistically by comparing the

timestamp of just the last entry and the log length. The former makes sense when the

log entries are independent values, but, in the case where they are commands for a state

machine, there is a dependency between consecutive slots that should be preserved by

using the latter option.

Upon receiving a quorum of votes, the candidate becomes the leader and adds new

commands to its log. Note that the log may also include uncommitted commands from

previous rounds. The leader then attempts to commit these as well as its own commands

in the commit (or accept) phase. Logically, this is achieved by broadcasting the new log

to the replicas, who update their own logs after confirming the leader’s timestamp is still

the most recent they have seen. In practice, sending the entire log over the network is

inefficient, so various optimizations are employed to reduce the packet size.

One option is to send each uncommitted command individually along with its intended

position in the log. If a replica find it is missing the previous entry, it requests it from the

leader, thereby filling any gaps. In this approach, it is possible that only some of the new

commands are committed if the leader crashes or is preempted before finishing. The risk

24

of this can be reduced by batching some or all of the uncommitted commands into a single

message. The ideal choice is application-specific and depends on the size and frequency

of the commands. Regardless, the end result is that some prefix of the new commands is

committed by replicating them across at least a quorum of replicas.

Raft Raft [Ongaro 2014; Ongaro and Ousterhout 2014] was designed to be more easily

understood than Paxos and to more precisely define certain practical aspects of the protocol

that Paxos leaves unspecified. For example, Paxos describes how elections work, but does

not dictate when they should begin. This is irrelevant for safety, but if every replica were

constantly competing for leadership it could hinder liveness by preventing any leader from

running long enough to commit new commands. Raft solves this by assigning each replica

a randomized timeout, only after which does it begin an election. Active leaders also send

periodic heartbeats that reset the election timers.

The primary difference between Paxos and Raft elections is that Raft candidates propose

their own logs instead of collecting them from their voters. Raft also requires that logs

are compared using the timestamp of the last entry, with the log length as a tie-breaker.

Although this shifts the burden of the log comparison from the candidate to the voters,

the end result is the same: the leader’s log is guaranteed to be the most recent among a

quorum of replicas.

Raft leaders replicate their new log entries by tracking what entries each replica is

missing and sending only the necessary suffix of the log. If a leader successfully commits

its commands and receives a quorum of acknowledgements, it continues accepting client

requests for new commands without another election.

25

Another area where Raft is much more explicit than Paxos is reconfiguration, which is

the process by which participating replicas can be added or removed. This is essential in

practice as replicas may crash or be brought down for maintenance. Paxos treats this as an

orthogonal extension, but Raft defines it as a first-class operation of the protocol. This turns

out to be a surprisingly challenging feature to implement correctly with subtle implications

for a protocol’s safety. Reconfiguration is one of the primary topics of Chapter 5, so we

defer an explanation of Raft’s reconfiguration scheme to Section 5.1.

HotStuff and Jolteon One of the first byzantine consensus protocols was PBFT [Castro

and Liskov 1999], but the more recent HotStuff [Yin et al. 2019] and Jolteon [Gelashvili

et al. 2022] protocols make certain interesting implementation choices that influenced the

ADO model’s design (see Chapter 6).

HotStuff (in particular, a two-phase variant [Bravo et al. 2020]) and Jolteon follow the

usual sequence of operations: election, pre-commit, commit. In order to overcome the

lack of trust between replicas, leaders include quorum certificates (𝑄𝐶𝑠) in their requests

as evidence that the operation is approved (similar to self.votes in Figure 2.2). A 𝑄𝐶

is a collection of a super quorum of votes, containing the identity of the voter, their

current timestamp, and the 𝑄𝐶 for its latest log entry. Votes are cryptographically signed

and combined using threshold signatures, which ensure that 𝑄𝐶𝑠 cannot be forged. By

attaching a 𝑄𝐶 to every request the replicas build up a trusted chain of evidence that

guarantees byzantine replicas cannot break the safety guarantees.

Once a 𝑄𝐶 is formed the round ends and the next leader begins (leaders are decided in

advance using some deterministic scheme such as round-robin). However, rather than a

26

Paxos or Raft-style election where the leader solicits votes, in HotStuff and Jolteon any

replica can send the previous round’s 𝑄𝐶 to the next leader. The effect is the same, i.e., a

successful leader is guaranteed to have the most recent state snapshot among at least a

super quorum of replicas.

The leader may then attach a new entry to its log and attempt to pre-commit it by

proposing it to the other replicas. As in a commit round, the replicas check that the log is

sufficiently up-to-date and that the accompanying 𝑄𝐶 is valid. If it is satisfied, it sends

back its vote, but does not yet update its own log because it cannot know if the leader is

trustworthy. If the leader receives a super quorum of votes, it forms a pre-commit 𝑄𝐶 ,

which it then uses in the commit phase to convince the replicas that it is safe to update

their logs. Note that, unlike Paxos and Raft, HotStuff and Jolteon only allow one new

command per round.

Under good conditions, the chain of 𝑄𝐶𝑠 continues to grow, but if a round ends in

timeout either due to network failures or malicious replicas, there is a break in the evidence

chain. The solution is to construct a timeout certificate (𝑇𝐶). This serves a similar role as

a 𝑄𝐶 , but instead of containing a super quorum of votes, it contains a super quorum of

timeout messages, each of which contains the timed-out replica’s latest 𝑄𝐶 . If a 𝑇𝐶 can be

formed it guarantees no 𝑄𝐶 can also be formed for the current round, which fills in the

gap and assures the replicas it is safe to move to the next round.

Upon timing out, a replica cannot know if the leader is honest or responsive, so it

broadcasts its timeout message to all other replicas, and any replica can construct a 𝑇𝐶

once it sees enough messages. Once constructed, the 𝑇𝐶 is then sent to the next leader,

who then begins the next round by selecting the most recent 𝑄𝐶 among those in the 𝑇𝐶 .

27

To prove that it did indeed choose the most recent, it also includes the 𝑇𝐶 in its requests

for other replicas to independently verify.

Some versions of HotStuff and Jolteon additionally implement an optimization called

pipelining that takes advantage of the close correspondence between the pre-commit and

commit phases to combine them. A round in a pipelined protocol has only two phases:

an election, followed by a commit phase. However, the danger of a malicious leader still

exists, so a command is not actually considered committed until there are two consecutive

committed commands (a two-chain commit in blockchain terminology). Essentially, every

commit phase is simultaneously a pre-commit for the current round and a commit for the

previous round.

2.2 Distributed System Abstractions

In order to verify properties of a distributed system, one needs a formal model to represent

the possible behaviors. These models can vary in their level of abstraction (Figure 1.1),

which affects what properties are simple, difficult, or even impossible to prove. This section

discusses two of the most common abstractions, their strengths and weaknesses, and where

the ADO model is necessary to cover their shortcomings.

2.2.1 State Machine Replication

The purpose of consensus is to provide the illusion of single object that is, in reality, spread

across multiple replicas. State machine replication (SMR) [Schneider 1990] commits to

this goal by modeling a system as a single, atomically-updatable log of commands. Clients

28

1 // SMR
2 return rpc_call(["put", "a", 1]);

1 // Network
2 self.time += 1;
3 broadcast(Elect, self.time, self.log);
4 self.votes := wait_for_votes();
5 if !isQuorum(votes) { return FAIL; }
6 self.log.append((["put", "a", 1], self.time));
7 broadcast(COMMIT, self.time, self.log);
8 self.votes = wait_for_votes();
9 if isQuorum(votes) { return OK; } else { return FAIL; }

Figure 2.3: Pseudocode representing the client-facing interfaces for updating a distributed key-
value store in an SMR and (benign) network-based model.

extend the log through an opaque remote procedure call (RPC) [Tanenbaum and van Steen

2006; Wollrath et al. 1996] interface, which internally relies on a consensus protocol.

This model hides the internal communication details and the existence of intermediate

states with uncommitted commands, which makes it very convenient for applications that

are not concerned with the inner workings of the distributed system. For example, consider

a distributed key-value store with a put command to create a new key-value mapping.

From a client’s perspective, put("a", 1) is an atomic action that either immediately

updates the state or times out and fails (SMR in Figure 2.3). Internally, however, this illusion

is achieved by a sequence of steps, each of which may fail and restart several times before

the final result is reached.

Hiding these intermediate states certainly simplifies the model, but it also makes it

impossible to reason about anything that happens “under the hood”. For example, one

cannot use SMR to prove the safety of a consensus protocol because it does not have

any concept of separate replicas with their own logs, so it is meaningless to talk about

agreement among a quorum.

29

Even if one is interested only in the high-level behaviors of a distributed application

rather than the protocol that implements it, there can be advantages to opening the black

box and exposing certain intermediate steps. Temporary failures and inconsistencies are

inevitable in distributed settings, and a model that hides their existence rules out certain

applications and optimizations that take advantage of them. These are discussed further in

Chapter 4.

2.2.2 Network-Based Models

At the other end of the abstraction spectrum are network-based models, which more

closely follow the real implementations by treating the system as a set of replicas that

maintain their own local states and communicate over some abstract network. The model

may take a simplified view of the network, for example by assuming messages are never

duplicated, but the distinguishing feature from SMR is that communication is asynchronous

and non-atomic.

For example, consider put("a", 1), which is no longer an atomic operation, but a

long sequence of steps (Network in Figure 2.3). The broadcast operation marks the point

where the request is sent, but it may not be received until potentially much later. Therefore,

between sending the request and receiving the acknowledgements in wait_for_votes,

another client might call put("a", 2). This broadcasts a new request that can interleave

with the previous one and may even be delivered before it.

This is a real possibility that consensus protocols must be prepared to handle, so it

makes sense that a model for verification should also take it into account. However, doing

30

so naïvely can quickly create an intractable situation as various network failures multiply

and interleave, creating an explosion in the number of cases to consider. The key to

designing an abstraction that can scale effectively while still being faithful to the protocols

it models is to draw a distinction between protocol and implementation-level details.

For instance, it is a basic requirement of a consensus protocol that it handle the case

where a request is not accepted by all replicas. However, why this happens, whether

because a message was delayed, or a replica crashed, is purely a technicality of the network

and is irrelevant to the protocol. Network-level models are ideal for checking a high-level

model against a specific implementation, but they unnecessarily complicate proofs of

high-level properties like safety by mixing protocol and implementation-level logic.

31

Chapter 3

Atomic Distributed Object Overview

3.1 Inspiration

The distributed setting has much in common with the shared-memory concurrent

world, in which multiple threads run simultaneously on the same machine. Therefore,

when designing the ADO model we drew inspiration from concurrent object models, and

the push/pull model [Gu et al. 2016, 2018] in particular, because it is compositional and has

an interface that maps nicely onto the three-phase design of many consensus protocols.

This section summarizes how we transformed ideas from the push/pull model into the

ADO model by identifying the key differences between concurrent and distributed objects.

We use the pseudocode of a simple FIFO Queue in Figure 3.1 as a running example of an

ADO. Section 4.3 explains the notation further, but for now it is sufficient to understand

that this represents a queue with atomic methods that is implemented by a replicated

Vector (resizable array).

32

1 ADO Queue {
2 shared data : Vector[Z] := [];
3 method enqueue(val) { this.data.append(val); }
4 method dequeue() {
5 if (this.data.length > 0) {
6 val := this.data.pop(0);
7 return Some(val);
8 } else { return None; }
9 }
10 }

Figure 3.1: Pseudocode of a FIFO Queue implemented as an ADO.

Push/Pull Basics The push/pull model represents an object’s state as a logical history

of the methods called up to that point (e.g., enqueue(1) • enqueue(2) represents the queue

{1, 2}). The concrete value can be recovered by replaying the methods in the history, but

for reasoning purposes it is convenient to remember the steps that led to the current state.

Note that this is related to, but distinct from, the log of commands stored by replicas in

many consensus protocols. Those represent runtime states that are actually stored in

memory or on disk, but the push/pull method history is a logical abstraction that may or

may not have a corresponding physical log in the implementation. For example, instead

of a log of commands, an object may simply maintain the latest state and apply updates

in-place (e.g., CASPaxos [Rystsov 2018]).

In order to interact with an object, the push/pull model allows clients to apply one of

the object’s methods (e.g., enqueue) or use two special operations for managing concurrent

access: pull and push. To avoid data races, a client first calls pull, which creates a local

copy of the shared state and takes ownership of the object. This also locks the state so that,

during this time, other clients cannot access the object. The client then applies the method

locally with invoke, which appends a new method to the copy of the history. Finally, it

33

commits the change by calling push to copy back the updates and release ownership. Note

that there is a distinction between a method invocation, which only locally adds a method

to the history, and a method call, which makes the effect globally visible by performing the

entire sequence of pull, invoke, push.

Distributed SystemChallenges The push/pull model provides a straightforward frame-

work for designing concurrent objects and reasoning about their atomicity, but there are

some aspects that are clearly inadequate for handling distributed objects. For one, with-

out atomic shared memory primitives like fetch-and-increment or compare-and-swap, a

distributed replica cannot atomically claim exclusive ownership of an object. Instead, the

best that can be achieved is a preemptible ownership that must be reconfirmed before

committing an update (similar to the load-linked/store-conditional instructions).

Second, the potential for network failures mean that updates are not guaranteed to

succeed. In fact, because in consensus success is determined by reaching agreement among

a quorum, it is possible for a method call to partially fail, updating the logs of some non-

quorum subset of replicas. These methods are not committed, so they are not guaranteed

to persist, but they may still influence later operations.

The ADO model addresses these problem by keeping the push/pull model’s three-step

structure, but adjusting the behavior of each step. First, to represent network errors,

pull and push may fail at any time. The precise reason for the failure is not modeled

because it is not important for protocol-level reasoning. Second, pull no longer grants a

replica exclusive ownership of the object, but instead marks it as only a temporary leader.

If, between calling pull and push, another replica calls pull and succeeds, the original

34

leader’s push will fail because its permission to update the state has been revoked.

Finally, to support partial failures, the logical history is changed to a logical tree of

methods. Each node of the tree represents a method from some replica’s log, and a fork

in the tree represents a point where a partial failure created a transient disagreement.

One can imagine constructing this tree by overlaying every replica’s log, aligning the

elements when they agree, and branching out where they do not. By analogy with memory

models we refer to nodes of the tree as caches because they may contain volatile state that

is waiting to be flushed to persistent storage (i.e., committed by a quorum of replicas).

The cache tree keeps track of committed caches and ensures that they form a linear path

through the tree, which guarantees the consistency of the replicated data.

3.2 State and Operations

3.2.1 Cache Tree

The central data structure of the ADO model’s state representation is the cache tree, which

models the current and previous local states of every replica in the system. Caches are

classified into different types to represent different events. An election cache (𝐸𝐶𝑎𝑐ℎ𝑒)

indicates that a successful election occurred, a method cache (𝑀𝐶𝑎𝑐ℎ𝑒) records that a

method was invoked, and a commit cache (𝐶𝐶𝑎𝑐ℎ𝑒) is created when a method is committed.

Every cache stores the identity of the replica that created it along with a logical

timestamp. Caches may also store additional metadata depending on what properties one

wishes to prove. For example, Adore (Chapter 5) and AdoB (Chapter 6) are designed for

35

proving the safety of consensus, so the caches remember the quorum of replicas that voted

for them. Advert (Chapter 4) is targeted at slightly higher-level properties where this

information is unnecessary, so it is omitted.

Dependencies between caches are represented by their parent-child relation. For

example, a 𝐶𝐶𝑎𝑐ℎ𝑒 marks all of its𝑀𝐶𝑎𝑐ℎ𝑒 ancestors as committed. One can reconstruct

a replica’s local log by following a particular branch of the tree from the root to a leaf,

collecting all of the𝑀𝐶𝑎𝑐ℎ𝑒𝑠 and ignoring 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 and𝐶𝐶𝑎𝑐ℎ𝑒𝑠 , which are purely logical

markers. This transformation from cache tree to local logs is the basis of the refinement

proofs between low-level network-based protocol specifications and the ADO model (see

Sections 4.5.2, 5.5, and 6.5).

A fork in the tree represents a point where a network failure caused some replicas’

local logs to temporarily diverge. However, recall that replicated state safety ensures that

there exists a common prefix of committed commands shared by at least a quorum of the

replicas’ logs. The corresponding property for cache trees guarantees that, given any two

𝐶𝐶𝑎𝑐ℎ𝑒𝑠 , one is an ancestor of the other. In other words, every 𝐶𝐶𝑎𝑐ℎ𝑒 , and therefore

every committed method, lies on the same linear path through the tree, which implies the

existence of a common prefix of committed methods.

In addition to the cache tree, the ADO state tracks the largest logical timestamp observed

by each replica. As in the consensus pseudocode (Figures 2.1 and 2.2), this is used to filter

out stale operations and ensure that log entries follow a strictly increasing total order.

36

3.2.2 Atomic Interface

Like the push/pull model, the ADO model provides three atomic operations for updating

the cache tree. Each operation corresponds to one of the three consensus phases and is

associated with a type of cache.

Pull Like the election phase, the purpose of pull is to elect a leader with a unique

timestamp and an up-to-date state snapshot. In a consensus protocol, this involves broad-

casting a request and waiting for a quorum of responses, but this view is both non-atomic

(other events may occur between the broadcast and the responses) and exposes too many

low-level details. Instead, the ADO model abstracts over all of the network communication

details by assuming the existence of a logical oracle that nondeterministically returns either

a successful or failed outcome.

One can think of this oracle as an omniscient observer that watches all network traffic

until it knows that enough replicas have accepted or rejected a request. On success, the

oracle chooses a unique timestamp for the leader and selects a cache to serve as its active

cache. The active cache represents the up-to-date snapshot that the leader will build on

during its term. If there are multiple equally up-to-date options, the oracle may choose

one arbitrarily. This models the fact that a leader’s choice of log may depend on which

replicas reply to its request.

A failed pull represents a candidate that did not receive a quorum of votes, so no

cache is added to the tree; however, it may still update the timestamps of some replicas.

This could have a significant effect on the system because if enough replicas increase their

timestamps, the previous leader may no longer have enough supporters to successfully

37

commit its methods.

Invoke Method invocation models the local update of benign consensus, or the pre-

commit phase for byzantine. Depending on the failure model, the behavior is slightly

different, but we will show in Chapter 6 how it can be generalized to work for both. For

the moment, we consider only the benign case for simplicity.

As invoke is a local operation, there is no need for an oracle to decide the result. It

simply creates an 𝑀𝐶𝑎𝑐ℎ𝑒 and adds it to the leader’s active cache, which sets the new

cache as active. A leader may invoke several methods, each of which continues to append

𝑀𝐶𝑎𝑐ℎ𝑒𝑠 to the same branch. These methods are currently only in the leader’s local log

and have not yet been replicated.

Push The push operation attempts to commit all of the methods on the leader’s active

branch (the ancestors of the active cache). Like pull, an oracle hides the communication

and possible network failures by nondeterministically deciding the outcome. On success,

the oracle selects one of the newly created 𝑀𝐶𝑎𝑐ℎ𝑒𝑠 and adds a 𝐶𝐶𝑎𝑐ℎ𝑒 after it, which

commits all of the 𝑀𝐶𝑎𝑐ℎ𝑒 ancestors. The reason the oracle is allowed to choose an

𝑀𝐶𝑎𝑐ℎ𝑒 other than the last one is to cover certain protocols that also allow this behavior.

Suppose a leader has appended three new log entries and is preparing to commit them.

In order to do so, it must decide how to share the entries with the other replicas. One

option is to send all three entries in a single message, in which case either all or none of the

entries will be received. However, it may instead choose to send each entry individually,

in which case network failures may cause only some to be delivered. As we only consider

38

protocols that do not allow gaps in their logs, a replica that misses one entry will reject all

of the following entries as well (e.g., if a replica receives the first and third entries, but not

the second, it will only accept the first). Therefore, to model this case, the oracle chooses

an arbitrary prefix of the𝑀𝐶𝑎𝑐ℎ𝑒𝑠 to commit.

Note that, while push requires at least one 𝑀𝐶𝑎𝑐ℎ𝑒 from the current leader in order

to succeed, it may simultaneously commit 𝑀𝐶𝑎𝑐ℎ𝑒𝑠 from previous rounds as well. For

example, suppose a leader has invoked a method, but before it manages to commit it, it

is preempted by another replica’s pull. The new leader’s active cache will be set to the

most up-to-date cache, which could be the previous leader’s uncommitted𝑀𝐶𝑎𝑐ℎ𝑒 . The

new leader then invokes its own methods, and because they are all on the same branch, a

𝐶𝐶𝑎𝑐ℎ𝑒 will commit both the new and old leaders’𝑀𝐶𝑎𝑐ℎ𝑒𝑠 .

Once a 𝐶𝐶𝑎𝑐ℎ𝑒 is added to a branch, all sibling branches are effectively dead. The

𝐶𝐶𝑎𝑐ℎ𝑒 is currently the most up-to-date cache in the tree, so a subsequent pull is forced

to select it as the active cache, which ensures that all future 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 descend from it.

3.2.3 Examples

Figure 3.2 shows an example of a cache tree growing under good conditions with the

corresponding network-based state of a Paxos or Raft-like protocol on the right. Each type

of cache is represented by a different shape: hexagons for 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 , circles for𝑀𝐶𝑎𝑐ℎ𝑒𝑠 ,

and squares for 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 . Some details are omitted for simplicity, such as the replicas’

current timestamps and the 𝑀𝐶𝑎𝑐ℎ𝑒 and 𝐶𝐶𝑎𝑐ℎ𝑒 timestamps. The example considers a

system with three replicas (𝑆1, 𝑆2, and 𝑆3) and each starts with an empty log.

39

E

ldr

time

M

method C

LogReplica

ADO
Caches

Network-
Based State

Log

LogLeader Log

LogReplica

(a) The different cache types are represented on the left by different shapes. The
network-based state on the right consists of each replica and its local log. The
current leader is marked with a dotted border.

E

S1

1

⊥S1

S2

S3

⊥

⊥

(b) pull elects 𝑆1 and creates an 𝐸𝐶𝑎𝑐ℎ𝑒 .

E

S1

1

M

M1

M1S1

S2

S3

⊥

⊥

(c) invoke adds an uncommitted𝑀𝐶𝑎𝑐ℎ𝑒 .

E

S1

1

M

M1

C

M1S1

S2

S3

M1

M1

(d) push commits the method and creates a 𝐶𝐶𝑎𝑐ℎ𝑒 .

Figure 3.2: A cache tree’s evolution in the ADO model without failures. Newly created caches are
marked with a thick outline.

40

M

M2

C

M1S1

S2

S3

M1

M1

...
E

S2

2

M2

(a) 𝑆2 is elected and invokes𝑀2. The cloud symbol abbreviates the 𝐸𝐶𝑎𝑐ℎ𝑒 ,𝑀𝐶𝑎𝑐ℎ𝑒 prefix
from Figure 3.2.

M

M2

C

M1S1

S2

S3

M1

M1

...

E

S2

2

E

S1

3

M2

(b) Before 𝑆2 commits𝑀2, 𝑆1 calls pull and succeeds, creating a fork.

M

M2

C

M1S1

S2

S3

M1

M1

...

E

S2

2

E

S1

3

M2

M

M3

C

M3

M3

(c) 𝑆1 invokes and commits𝑀3, making 𝑆3’s branch unreachable.

Figure 3.3: A fork in the cache tree.

In the first step 𝑆1 calls pull and succeeds, creating an 𝐸𝐶𝑎𝑐ℎ𝑒 in the cache tree and

marking itself as the leader on the network side (indicated by the dotted outline). It then

invokes method𝑀1, which creates an𝑀𝐶𝑎𝑐ℎ𝑒 and adds an entry to its local log. Finally,

𝑆1 commits𝑀1 with push, which replicates the entry to 𝑆2 and 𝑆3.

Under normal conditions, the tree may continue growing linearly in this way. For ex-

ample, 𝑆2 might call pull and then invoke𝑀2, which would add an 𝐸𝐶𝑎𝑐ℎ𝑒 and an𝑀𝐶𝑎𝑐ℎ𝑒

directly after the 𝐶𝐶𝑎𝑐ℎ𝑒 . Figure 3.3 demonstrates what happens if 𝑆2 is preempted before

it has a chance to commit𝑀2. Suppose that before 𝑆2 calls push, it crashes. Eventually, 𝑆1

41

times out and begins a new election and succeeds. The only replicas that can vote for 𝑆1 are

𝑆1 itself and 𝑆3, neither of which has𝑀2 in its log yet. Therefore, the most up-to-date log

contains just𝑀1, and the corresponding cache is the 𝐶𝐶𝑎𝑐ℎ𝑒 , so the 𝑆1’s 𝐸𝐶𝑎𝑐ℎ𝑒 creates a

fork in the tree at this point.

From here, 𝑆1 can proceed as normal, invoking and committing 𝑀3 by replicating it

among itself and 𝑆3. Note that, although 𝑆2’s log still contains 𝑀2 instead of 𝑀3 in the

second slot, because 𝑀3 is in a quorum of logs (𝑆1 and 𝑆3), any outside observer of the

system is guaranteed to see 𝑀3 instead of 𝑀2. 𝑀2 is stale state that will eventually be

overwritten if 𝑆2 recovers from its crash. In the cache tree, this means the branch with𝑀2

will never grow any further.

3.3 Advantages

Simplicity Compared to network-based models, one significant advantage of the ADO

model is it abstracts away the details and complexities of network-based communication.

Operations either succeed or fail immediately, significantly reducing the number of out-

comes to consider. This allows verification efforts to scale to more complicated systems

because one only has to handle complexity from one abstraction layer at a time.

Representing the replicas’ local states as a tree instead of a set of independent logs also

better captures the global dependencies and invariants. For instance, the primary safety

property can be expressed as an intuitive structural invariant about the tree, rather than an

implicit relation between log prefixes. Likewise, temporary inconsistencies appear as forks

in the tree, which makes it simple to find the point where the replicas diverged. Merging

42

the replicated state into a single data structure makes it much easier to visualize, which is

useful for both formal and informal reasoning.

Expressiveness Despite hiding many network-level details, the ADOmodel is also much

more expressive that SMR. By unfolding the RPC operation into separate pull, invoke,

and push steps, it exposes partial failures, which are essential for proving protocol-level

properties like safety and liveness. Without these intermediate steps, it is meaningless to

even discuss safety because all methods are already assumed to be committed.

The ADO interface is also useful for application-level reasoning because it allows for

more flexibility in defining method call patterns. Partial failures still exist in SMR, but they

are hidden by automatically re-running an operation until it succeeds. This is also possible

in the ADO model, but, for example, one could also define a method call that only tries

once, or that performs some cleanup operation on failure (see Section 4.3.1 for more on

these patterns). Having these additional options opens up the possibility for verifying a

wider range of distributed applications.

Generality The ADO model provides a uniform, generic interface for consensus that

can be implemented by many different protocols. For example, as far as it is concerned,

there is no distinction between a Paxos or Raft election. Any differences are hidden by

the cache tree and the oracle, which leaves only the core essence captured by pull. This

means challenging proofs can be performed once at the ADO level and then reused for

many protocols by proving a refinement relation.

The ADOmodel as presented thus far is actually a general framework for protocol-level

43

abstractions. The state is always represented by a cache tree and the pull, invoke, and

push operations have the same basic effect, but the contents of the caches can be augmented

depending on what information is required. This allows it to adapt to a variety of use

cases, from compositional application-level reasoning (Chapter 4), to proving safety with

reconfiguration (Chapter 5), to reasoning about liveness under a unified benign-byzantine

failure model (Chapter 6).

44

Chapter 4

Advert: Atomic Distributed Objects

for Composition and Partial Failures

This chapter describes the Advert abstraction and how it supports modular reasoning

about distributed applications at different abstraction layers (Figure 4.1). It begins with

a summary of the challenges of working with distributed objects (Section 4.1), followed

by a formal presentation of the semantics of the Advert variant of the ADO model

(Section 4.2). The following sections discuss different levels of end-to-end distributed

system verification: constructing and reasoning about individual ADOs (Section 4.3),

composing ADOs (Section 4.4), and verifying executable implementations against ADO

specifications (Section 4.5). Finally, Section 4.6 evaluates the proof effort and performance

of the verified code, and Section 4.7 summarizes the results.

45

ADO

DApp

ADO 1 ADO 2 ADO 3

Atomic Distributed Object Model

Net-based Spec
Paxos-like

Net-based Spec
Primary-backup

Sys Spec
Multi Paxos

Sys Spec
Vertical Paxos

Network
refinement proofs

Network
refinement proofs

ADO refinement proofs

Invariant proofs Invariant proofs

CCAL refinement
proofs

CCAL refinement
proofs

C Code
Multi Paxos

C Code
Vertical Paxos

Other
protocols

Compose ADOs

Assign DApps
atomic

specifications

Implement with
different protocols

Other
variants

Instantiate
generic protocols

with C
implementations

Sy
st

em
-in

de
pe

nd
en

t
Sy

st
em

-s
pe

ci
fic

Figure 4.1: Different layers of reasoning with Advert, ranging from the composition of abstract
objects to C code refinement proofs.

4.1 Motivation

Distributed applications are difficult to reason about because they are built from multiple

distributed components, each with their own internal communication and failure han-

dling methods. Modeling these components as self-contained objects with a well-defined

boundary between their private state and public interface allows for much more mod-

ular reasoning. There are, however, fundamental differences between concurrent and

distributed objects [Waldo et al. 1994] that must be taken into account.

The most significant of these differences is the possibility for methods to fail. Failures

in distributed systems are much more common than in shared-memory settings [Gill et al.

2011; Gunawi et al. 2014; Meza et al. 2018]. Therefore, partially committed states are

46

inevitable, which, despite being transient, can influence later committed states. The SMR

model treats these intermediate states as internal details and hides them from clients by

waiting to reply until the system settles and consensus is reached.

This works well for the common case, but it can be overly restrictive. For example, if a

call fails, rather than retry, an application might prefer to abort and execute a different

operation. Exposing the individual steps of a method call along with the resulting interme-

diate states gives applications more freedom to choose how to handle failures. Section 4.3.1

describes some common method-calling patterns for various application requirements and

shows how each is supported by Advert.

Certain systems even use partially committed states in order to optimize performance,

but SMR is unable to accurately capture their behaviors. As a simple example, an application

can execute a “fast read” by only running the election phase and skipping the commit step

that guarantees the returned state is consistent. This is a kind of speculative execution so

the application must implement some type of rollback mechanism, but, if the risk is low

relative to the time saved, it could be a valuable optimization. Another interesting case is

consensus combined with distributed transactions, where partially committed states can

be used as hints to speed up transaction decisions (see Section 4.4.2).

4.2 Advert Formal Semantics

This section provides formal definitions of the types and operations of Advert, along with

their semantics. For the most part these follow their intuitive descriptions from Section 3.2.

47

Cache ≜ 𝐸𝐶𝑎𝑐ℎ𝑒 (Nnid ∗ Ntime)
| 𝑀𝐶𝑎𝑐ℎ𝑒 (Nnid ∗ Ntime ∗Method)
| 𝐶𝐶𝑎𝑐ℎ𝑒 (Nnid ∗ Ntime)

CacheTree ≜ Ncid ⇀ Ncid ∗ Cache
TimeMap ≜ Nnid ⇀ Ntime

ActiveMap ≜ Nnid ⇀ Ncid

Σ ≜ CacheTree ∗ TimeMap ∗ ActiveMap

𝐴𝐷𝑂 ≜ Σ ∗ (𝜆𝜌𝜆ℛ.Method ⇀ (𝜌 → 𝜌 ∗ℛ))

Figure 4.2: Advert state definitions.

State Figure 5.3 defines the type of the global system state, Σ, to be a triple of a cache

tree (tree), a partial map that stores the largest timestamp that each replica has observed

(times), and a partial map that that marks each replica’s active cache (i.e., the replica’s

view of the most up-to-date state). We use the notation name(𝑠𝑡) to represent extracting

one of these fields (e.g., tree(𝑠𝑡) returns the first element). An ADO consists of this global

state and a method interface. A method interface is a partial map from Method to method

bodies, which are functions parameterized by the types 𝜌 of the replicated state (e.g.,

Vector[Z] in Queue) and ℛ for the return values. 𝑀𝑒𝑡ℎ𝑜𝑑𝑠 are simply identifiers that

represent the name and parameters of the method to call. For example, Queue’s method

interface includes the𝑀𝑒𝑡ℎ𝑜𝑑𝑠 dequeue(), enqueue(1), enqueue(2), and so on.

A Cache is either an 𝐸𝐶𝑎𝑐ℎ𝑒 ,𝑀𝐶𝑎𝑐ℎ𝑒 , or𝐶𝐶𝑎𝑐ℎ𝑒 . Every cache carries the node ID (nid)

of the replica that created it as well as a logical timestamp (time). 𝑀𝐶𝑎𝑐ℎ𝑒𝑠 additionally

contain a Method. The CacheTree is created by associating each cache with a unique cache

ID (cid) and mapping 𝑐𝑖𝑑𝑠 to their corresponding caches and parent caches (with 0 reserved

for the root).

Caches are ordered by ≻, which determines which is more “recent” by comparing their

48

Op ≜ pull : Nnid → Σ → Σ

| invoke : Nnid → Method → Σ → Σ

| push : Nnid → Σ → Σ

Figure 4.3: Advert operations.

𝐶 ↑ 𝐶′ ≜ 𝐶 = parent (𝐶′) ∨𝐶 ↑ parent (𝐶′)
𝐶1 ≻ 𝐶2 ≜ time(𝐶1) > time(𝐶2) ∨𝐶2 ↑ 𝐶1

freshCID(𝑡𝑟) ≜ max {cid (𝐶) | 𝐶 ∈ 𝑡𝑟 } + 1
addLeaf (𝑠𝑡,𝑄,𝐶𝑃 ,𝐶new) ≜ let 𝑡𝑟 ′ = tree(𝑠𝑡) [freshCID(tree(𝑠𝑡)) ↦→ (𝐶𝑃 ,𝐶new)] in

let act′ = active[𝑠 ↦→ 𝐶new | ∀𝑠 ∈ 𝑄] in
(𝑡𝑟 ′, times(𝑠𝑡), act′)

insertBtw(𝑠𝑡,𝑄,𝐶𝑃 ,𝐶new) ≜ let 𝑡𝑟 = tree(𝑠𝑡) in
let 𝑡𝑟 ′ = 𝑡𝑟 [cid (𝐶) ↦→ (cid (𝐶new),𝐶new) | ∀(_,𝐶) ∈ 𝑡𝑟] in
let act′ = active[𝑠 ↦→ 𝐶new | ∀𝑠 ∈ 𝑄] in
(𝑡𝑟 ′[freshCID(tree(𝑠𝑡)) ↦→ (𝐶𝑃 ,𝐶new)], times(𝑠𝑡), act′)

setTimes(𝑠𝑡,𝑄, 𝑡) ≜ (tree(𝑠𝑡), times(𝑠𝑡) [𝑠 ↦→ 𝑡 | ∀𝑠 ∈ 𝑄], active(𝑠𝑡))
isLeader (𝑠𝑡, nid,𝐶) ≜ times(𝑠𝑡) [nid] = time(𝐶) ∧ caller (𝐶) = nid

activeC (𝑡𝑟, nid) ≜ max≻ {𝐶 ∈ 𝑡𝑟 | caller (𝐶) = nid ∧𝐶 = 𝐶𝐶𝑎𝑐ℎ𝑒 (_)}
canElect (𝑠𝑡,𝐶,𝑄) ≜ ∀𝑠 ∈ 𝑄.𝐶 ⪰ active(𝑠𝑡) [𝑠]

canCommit (𝐶, nid, 𝑠𝑡) ≜ 𝐶 = 𝑀𝐶𝑎𝑐ℎ𝑒 (_)
∧ isLeader (𝑠𝑡, nid,𝐶) ∧𝐶 ≻ activeC (tree(𝑠𝑡), nid)

Figure 4.4: Advert auxiliary definitions.

timestamps. In the case of a tie, an ancestor is considered less recent than its descendants

(𝐶 ↑ 𝐶′ means 𝐶 is an ancestor of 𝐶′).

Operations Advert’s interface for interacting with the cache tree consists of the pull,

invoke, and push operations (Figure 4.3). The details of how exactly these operations are

triggered is left up to the implementation and not exposed at the ADO level. For example,

invoke could be the result of a client sending a message to the leader of a Paxos cluster, or it

may be that the protocol is configured to periodically execute methods autonomously (e.g.,

49

PullOk
Opull (𝑠𝑡, nid) = Ok(𝑄,𝑄ok,𝐶max, 𝑡)

𝑠𝑡 ′ ≜ setTimes(𝑠𝑡,𝑄, 𝑡) 𝐶new ≜ 𝐸𝐶𝑎𝑐ℎ𝑒 (nid, 𝑡)
O ⊢ pull(nid) : 𝑠𝑡 ⇝ if 𝑄ok then addLeaf (𝑠𝑡 ′, {nid} ,𝐶max,𝐶new) else 𝑠𝑡 ′

InvokeOk
𝐶𝐴 ≜ active(𝑠𝑡) [nid]

isLeader (𝑠𝑡, nid,𝐶𝐴) 𝐶new ≜ 𝑀𝐶𝑎𝑐ℎ𝑒 (nid, time(𝐶𝐴), 𝑀)
O ⊢ invoke(nid, 𝑀) : 𝑠𝑡 ⇝ addLeaf (𝑠𝑡, {nid} ,𝐶𝐴,𝐶new)

PushOk
Opush(𝑠𝑡, nid) = Ok(𝑄,𝑄ok,𝐶𝑀)

𝑠𝑡 ′ ≜ setTimes(𝑠𝑡,𝑄, time(𝐶𝑀)) 𝐶new ≜ 𝐶𝐶𝑎𝑐ℎ𝑒 (nid, time(𝐶𝑀))
O ⊢ push(nid) : 𝑠𝑡 ⇝ if 𝑄ok then insertBtw(𝑠𝑡 ′, 𝑄,𝐶𝑀 ,𝐶new) else 𝑠𝑡 ′

NoOp

O ⊢ op(nid) : 𝑠𝑡 ⇝ 𝑠𝑡

Figure 4.5: Semantics of Advert operations. Every operation may fail and have no effect on
the state (either because an oracle returns Fail or the preconditions are not met), so NoOp is
parameterized by 𝑜𝑝 , which can be any of pull, invoke, or push. For invoke, 𝑜𝑝 is understood to
also take𝑀 as an argument.

Raft’s heartbeat messages). In either case, Figure 4.5 defines the effect of each operation

with the help of the auxiliary functions from Figure 4.4.

Pull Calling pull either successfully elects a leader and creates an 𝐸𝐶𝑎𝑐ℎ𝑒 , fails to elect

a leader but potentially still strips another replica’s leadership, or has no effect. These

outcomes are influenced by a variety of nondeterministic failures (e.g., dropped packets or

crashed servers), but the precise cause is unimportant so we hide it behind an oracle (Opull).

Oracles are deterministic, but network-based nondeterminism is modeled by quantifying

over all valid oracles. Figure 4.6 defines the conditions that a valid oracle must satisfy.

If pull has any effect, the oracle returns a set of replicas (𝑄) that voted for the candidate,

a cache (𝐶max), and a new timestamp (𝑡). The timestamp must be strictly larger than the

50

Opull : Σ → Nnid → (Ok(𝑆𝑒𝑡 (Nnid) ∗ B ∗ Cache ∗ Ntime) | Fail)
Opush : Σ → Nnid → (Ok(𝑆𝑒𝑡 (Nnid) ∗ B ∗ Cache) | Fail)

ValidPullOracle
𝑄ok ≜ isQuorum(𝑄) ∀𝑠 ∈ 𝑄. times(𝑠𝑡) [𝑠] < 𝑡 canElect (𝑠𝑡,𝐶max, 𝑄)

Opull (𝑠𝑡, nid) = Ok(𝑄,𝑄ok,𝐶max, 𝑡)

ValidPushOracle
𝑄ok ≜ isQuorum(𝑄)

∀𝑠 ∈ 𝑄. times(𝑠𝑡) [𝑠] ≤ time(𝐶𝑀) canCommit (𝐶𝑀 , nid, 𝑠𝑡)
Opush(𝑠𝑡, nid) = Ok(𝑄,𝑄ok,𝐶𝑀)

Figure 4.6: Valid pull and push oracle conditions.

current timestamps of the voters, and the cache must be at least as recent (with respect

to ≻) as the voters’ active caches (canElect). Depending on the size of 𝑄 , the timestamps,

cache tree, and active caches are updated according to Figure 4.5.

If the voters form a quorum (𝑄ok), their timestamps are updated to reflect their votes

(setTimes), an 𝐸𝐶𝑎𝑐ℎ𝑒 is added to 𝐶max , and the leader’s active cache is updated to the

𝐸𝐶𝑎𝑐ℎ𝑒 . If there are not enough voters, then no cache is created, but the timestamps are

still updated, which may be enough to block another replica from committing its methods.

It is also possible for the oracle to return Fail, in which case no change is made.

Invoke Invoking a method requires that the caller has already successfully called pull.

It confirms this by checking that its current timestamp matches the timestamp of its active

cache and that the active cache was created by itself (isLeader), which is only possible as

leader. This check would fail if the replica either was never the leader, or if it was elected

but has since voted for a more recent leader. Otherwise, it creates a new𝑀𝐶𝑎𝑐ℎ𝑒 and adds

it to the end of its active branch.

51

Push As with pull, push succeeds or fails based on the outcome of Opush. Recall that

when a client calls push after a sequence of method invocations, some suffix of𝑀𝐶𝑎𝑐ℎ𝑒𝑠

may not be committed. Opush allows this by choosing an arbitrary cache (𝐶𝑀) that satisfies

canCommit. This requires that𝐶𝑀 is an𝑀𝐶𝑎𝑐ℎ𝑒 , created by the caller in the current round,

that is more recent than the caller’s latest 𝐶𝐶𝑎𝑐ℎ𝑒 (activeC). The voter’s timestamps must

also be no larger than 𝐶𝑀 ’s, though they may be equal.

If push receives a quorum of votes, it updates the voters’ timestamps and creates a

𝐶𝐶𝑎𝑐ℎ𝑒 . However, rather than adding the new cache as a leaf, it is inserted between 𝐶𝑀

and its descendants (insertBtw). This marks 𝐶𝑀 and its ancestors as committed, while still

leaving open the possibility for the remaining𝑀𝐶𝑎𝑐ℎ𝑒𝑠 to be committed by a later push.

As with pull, a non-quorum set of voters causes only the timestamps to change, and a

Fail result has no effect.

4.3 Single-ADO Reasoning

This section defines several important properties of the ADO model and highlights some

of the differences between distributed and sequential or concurrent objects. For ease of

presentation, example ADOs use an object-oriented pseudocode rather than the formal

representation from Figure 4.2. For example, in the simple BankAccount ADO (Figure 4.7),

the line beginning with shared balance indicates that the replicated data has type Z and

is initialized to 0. Lines beginning with method define the method interface. Method bodies

are written in an imperative style and use this to access the current state (the comments

show the equivalent functional versions). When calling pull, invoke, or push, the caller’s

52

1 ADO BankAccount {
2 shared balance : Z := 0; /* Σ = Z */
3 /* read() ↦→ 𝜆 bal. (bal, bal) */
4 method read() { return this.balance; }
5 /* deposit(n) ↦→ 𝜆 bal. (bal + n, tt) */
6 method deposit(n) { this.balance += n; }
7 /* withdraw(n) ↦→ 𝜆 bal.
8 * if n ≤ bal then (bal - n, n) else (bal, 0) */
9 method withdraw(n) {
10 if (n ≤ this.balance) {
11 this.balance -= n;
12 return n;
13 } else { return 0; }
14 }
15 }

Figure 4.7: Distributed bank account object.

node ID is passed implicitly and is accessible from within the method body as this.nid.

4.3.1 Programming with ADOs

One major difference between ADOs and sequential or concurrent objects is that, although

individual ADO operations are atomic, calling a method (preparing the object with pull,

invoking the method, and committing the result with push) is three separate steps, which

may interleave with each other. Each step can also fail, and depending on how the failures

are handled the method call can exhibit different behaviors. The most common behaviors

are at-most-once, at-least-once, and exactly-once [Felber et al. 2001; Ramalingam and

Vaswani 2013]. In SMR-based interfaces these different options are typically hidden behind

a single, black-box RPC operation [Burrows 2006; Schneider 1990; Wollrath et al. 1996], but

the ADO model offers the flexibility to precisely specify which one an application should

use depending on the situation.

53

At-Most-Once As the name suggests, a method called with at-most-once semantics is

guaranteed to be applied to the object either once, or not at all.

Definition 1 (Called At-Most-Once). A method 𝑀 is called at-most-once by nid if there

exists no more than one𝑀𝐶𝑎𝑐ℎ𝑒 in the cache tree containing𝑀 that belongs to nid.

This behavior can be useful when a method’s side effects should not execute twice, and

the application is able to tolerate unclear outcomes (i.e., a sort of speculative execution).

Note that this definition only allows a method to be called at most once ever. However,

since arguments are part of the method name (e.g., m(1) and m(2) are considered different

methods), a simple solution is to add a “request ID” argument to each method and use a

fresh ID on every call.

A method can be called with at-most-once semantics by calling pull, invoking the

method, calling push, and aborting if any step fails. We abbreviate this sequence of opera-

tions as obj.m()?. In the following pseudocode pull returns either the state corresponding

to the chosen cache or the special value FAIL. Similarly, push returns either the return

value of the last committed method or FAIL. Formally, these are functions on Σ, but for

simplicity we use a more concise imperative notation in which the state is implicitly

threaded through each operation.

obj.m()? := if (obj.pull() != FAIL) { obj.invoke(m); return obj.push(); }
else { return FAIL; }

At-Least-Once When an application cannot tolerate a failed method call, the obvious

solution is to retry it. Note, however, that “failed” in a distributed setting just means “not

definitely successful”, and an uncommitted𝑀𝐶𝑎𝑐ℎ𝑒 might be committed by a later push.

Thus, retrying a method until it succeeds only guarantees that it is called at least once.

54

Definition 2 (Called At-Least-Once). A method 𝑀 is called at-least-once by nid if there

exists an𝑀𝐶𝑎𝑐ℎ𝑒 in the cache tree containing𝑀 that belongs to nid.

This is appropriate for read-only methods (e.g., read), or if a method’s effect on the

internal state is effectively invisible to an outside observer (e.g., a random number generator

changing its seed). To make an at-least-once call (obj.m()+), one can repeat an at-most-

once call obj.m()? with a fresh request ID until it succeeds.1

obj.m()+ := do {
rqID := /* compute fresh ID */;
ret := obj.m(rqID)?;

} while (ret = FAIL);
return ret;

Exactly-Once Often the most intuitive behavior is for a method to execute precisely

once. The withdraw method, for example, is difficult to use sensibly without exactly-once

semantics. In general, however, this is impossible to achieve because invoking a method

only once does not guarantee that it will be committed, but invoking it more than once

may commit it multiple times. If, however, a method is idempotent (i.e., applying it more

than once has the same effect as applying it once), repeatedly calling it with at-most-once

semantics will produce an equivalent result to an exactly-once behavior (obj.m()!). The

method may in fact be committed several times, but everything after the first commit has

no effect, so it is as if it was committed once.

Definition 3 (Called Exactly-Once). A method 𝑀 is called exactly-once by nid if there

exists an 𝑀𝐶𝑎𝑐ℎ𝑒 in the cache tree containing 𝑀 that belongs to nid, and, for all states 𝑠𝑡 ,

𝑀 (𝑀 (𝑠𝑡)) = 𝑀 (𝑠𝑡).

1This assumes the loop eventually terminates. We defer liveness considerations to Chapter 6.

55

obj.m()! := do { ret := obj.m(rqID)?; } while (ret = FAIL); return ret;

The idempotency requirement is less restrictive than it might seem because any method

can be mechanically transformed into an idempotent one by simply caching the result

using the node and request IDs as keys. This ensures that the method’s side effects only

execute once and subsequent calls return the memoized value. For example, the withdraw

method could be transformed as follows.

/* Add results : Map[(Z ∗ Z) ⇀ Z] to the replicated state */
method withdraw(rqID, n) {

if ((this.nid, rqID) ∈ this.results) { /* Already executed, do nothing */
} else if (n ≤ this.balance) {
this.balance -= n; /* Only change the balance once */
this.results[(this.nid, rqID)] := n; /* Store the return value */

} else {
this.results[(this.nid, rqID)] := 0;

}
return this.results[(this.nid, rqID)]; /* Return the cached result */

}

4.3.2 Proving with ADOs

Reasoning about an ADO can be quite straightforward because the object’s behaviors are

fully captured by log of atomic events. As an example, we sketch a proof that the balance

of a BankAccount object is always non-negative.

Proof Sketch. We proceed by induction on a sequence of ADO operations. In the base case

the account balance has its initial value of 0, which is non-negative. Now suppose we

have an arbitrary BankAccount object with a non-negative balance and consider every

possible next step. Neither pull nor invoke can change the committed state so the balance

remains non-negative. In the case of a successful push, some sequence of methods may

be committed. Of the possible methods, withdraw is the only one that could cause the

56

balance to decrease; however, it ensures that the amount to be deducted is not greater

than the current balance. Therefore, for any sequence of ADO operations, the balance can

never be negative. □

BankAccount in Figure 4.7 is only a specification andmust be implemented by a protocol

such as Paxos or Raft in order to run. The choice of protocol is critical for achieving good

performance, but a significant strength of the ADOmodel’s unifying specification language

is that one can make this decision orthogonally from correctness considerations. As long

as the protocol satisfies the ADO semantics, one can reuse the same specification and

application-level proofs.

4.4 ADO Composition

The ability to easily compose components is critical for building scalable, reliable distributed

applications. It allows complex systems to be decomposed into modular pieces that are

easier to understand and to fine-tune performance. Compositional reasoning is simpler

with Advert than with network-based specifications because an application’s behavior can

be understood purely in terms of pull, push, and its methods without any knowledge of

the underlying distributed protocol. Despite its simplicity, this interface is more expressive

than SMR because it offers more control over failure handling (e.g., the different method

call semantics in Section 4.3.1).

ADOs are internally implemented by a cluster of servers that only communicate

amongst themselves and are not aware of other ADOs. Therefore, composing two ADOs

really means composing their interactions with clients. For example, a client of ADOs A

57

and B might execute x := A.a()!; B.b(x)!, thus creating a composite system involving

the client and both objects, which we refer to as a distributed application, or DApp. It

is impossible to prove much if clients are allowed to interact with objects arbitrarily,

therefore DApps limit client behaviors to a set of predefined procedures. For example, a

simple DApp composing two BankAccounts (Figure 4.7) to allow transfers between them

could be expressed as follows.

DApp TransferAccount(acct1: BankAccount, acct2: BankAccount) {
proc transfer1to2(n) {
if (acct1.withdraw(n)! = n) { acct2.deposit(n)!; }

}
proc transfer2to1(n) {
if (acct2.withdraw(n)! = n) { acct1.deposit(n)!; }

}
}

Unlike ADO methods, DApp procedures are not necessarily atomic and it is entirely

possible for concurrent executions of transfer1to2 and transfer2to1 to interleave. If,

however, one can prove that a particular DApp’s procedures are atomic, then the composite

system logically behaves as if it were implemented by a single consensus protocol, and

therefore has an equivalent ADO specification.

4.4.1 Case-Study: Key-Value Stores

To demonstrate ADO composition in action, we present three versions of a key-value store:

a self-contained ADO, a lock-based DApp, and, most interestingly, a lock-free DApp. Each

store maps the hash of a key to a value along with metadata about the value (e.g., its size in

memory). For simplicity, we do not consider liveness or hash collisions; nevertheless, the

data structures and coordination patterns in these examples are similar to those employed

58

1 ADO KVPrimitive {
2 shared kv : Vector[Z ∗ Z]; /* (meta, value) */
3 method set(k, v) { this.kv[hash(k)] := (sizeof(v), v); }
4 method lookup(k) { (_, v) := this.kv[hash(k)]; return v; }
5 method getmeta(k) { (m, _) := this.kv[hash(k)]; return m; } }

Figure 4.8: Single ADO key-value store.

in real systems [Burrows 2006; Chang et al. 2006] and could scale to larger applications.

The first example, KVPrimitive (Figure 4.8), is an ADO that manages both the data and

metadata. This has the advantage ofmaking the specification quite simple, and it guarantees

for free that the data and metadata are updated atomically will remain synchronized.

Lock-Based Version KVPrimitive’s simplicity comes at the cost of some control over

performance and reliability. For example, the data and metadata cannot be stored on

separate clusters of servers, which might be desirable to reduce the risk of losing both to

replica crashes. KVLock enables this type of implementation choice by composing separate

DVector objects (an ADO wrapper around a sequential Vector) for the data and metadata

(Figure 4.9). Because these are now independent objects, keeping them synchronized also

requires composing them with a distributed lock object (CASLock).

For KVLock to implement KVPrimitive, its procedures must behave atomically. Every

procedure is protected by a lock, so this is trivial as long as CASLock guarantees mutual

exclusion. Although we use CASLock for simplicity, one can also design more sophisticated

ADO locks (see Appendix A.1).

Lemma 1 (CASLockMutual Exclusion). If, at some point, the lock is held by nid, and then at

a later time it is held by a different nid
′
, there must have been a committed release method

called by nid in between.

59

1 ADO DVector[T] {
2 shared data : Vector[T] := [];
3 ... /* insert, append, pop, etc. */
4 }

1 ADO CASLock {
2 shared owner : option N := None;
3 method tryAcquire() {
4 if (this.owner = None) {
5 this.owner := Some(this.nid);
6 }
7 return this.owner = Some(this.nid);
8 }
9 method release() {
10 if (this.owner = Some(this.nid)) {
11 this.owner := None;
12 }
13 }
14 }

1 DApp KVLock(lk: CASLock, data: DVector[Z], meta: DVector[Z]) {
2 proc set(k, v) {
3 while (!this.lk.tryAcquire()!) {}
4 this.meta.insert(hash(k), sizeof(v))!;
5 this.data.insert(hash(k), v)!;
6 this.lk.release()!;
7 }
8 proc lookup(k) {
9 while (!this.lk.tryAcquire()!) {}
10 v := this.data.get(hash(k))!;
11 this.lk.release()!;
12 return v;
13 }
14 proc getmeta(k) {
15 while (!this.lk.tryAcquire()!) {}
16 m := this.meta.get(hash(k))!;
17 this.lk.release()!;
18 return m;
19 }
20 }

Figure 4.9: Lock-based composite ADO key-value store.

60

Proof Sketch. We proceed by induction on a sequence of ADO operations between the

point where nid holds the lock, and where nid′ holds it. If there are no operations, then

nid = nid
′, which contradicts the assumption that they are different. Otherwise, some

sequence of methods must have been committed. If any of the methods is release(nid),

we are done. If not, the only other options are tryAcquire, or release for some other

client. If we can show that neither option changes the lock owner, then we are done by

the inductive hypothesis.

For tryAcquire we know that this.owner = Some(nid), which is not None, so the

method will not change the owner. Similarly, for release, we know the caller is not the

current lock owner, so this.owner does not equal Some(this.nid) and the method has

no effect on the owner. □

The next step is to show that KVLock simulates KVPrimitive. This involves defining a

relation between their states and proving that, for each of KVPrimitive’s methods, there

is a KVLock procedure that preserves the relation. We only show the case for the set

method as the cases for lookup and getmeta are similar.

Lemma 2 (KVLock-KVPrimitive Refinement). Suppose a KVLock and KVPrimitive are

related such that, for every key, both objects store the same value and metadata. If both

successfully commit the set method, then this relation is preserved.

Proof Sketch. Let the newly inserted key-value pair be called 𝑘 and 𝑣 . It is enough to show

that, after set, only the value corresponding to 𝑘 is changed, and that, for both objects,

the new value is 𝑣 . This is trivial for KVPrimitive as set atomically updates this.kv.

For KVLock, it first waits to acquire a lock using an exactly-once method call (Line 3),

61

1 DApp KVLockFree(data: DVector[Z], meta: DVector[Z ∗ Z]) {
2 proc set(k, v) {
3 idx := this.data.append(v)!;
4 this.meta.insert(hash(k), (sizeof(v), idx))!;
5 }
6 proc lookup(k) {
7 (_, idx) := this.meta.get(hash(k))!;
8 return this.data.get(idx)!;
9 }
10 proc getmeta(k) { (m, _) := this.meta.get(hash(k))!; return m; }
11 }

Figure 4.10: Lock-free composite key-value store.

which, for simplicity, we assume eventually succeeds.2 At this point it has exclusive

access to this.meta and this.data, so the following insert method calls execute atomi-

cally. Now both vectors have been updated at 𝑘 and nowhere else, so the relation with

KVPrimitive is preserved. □

Lock-Free Version A lock is a simple solution for synchronizing distributed components,

but it is often a performance bottleneck, and can cause deadlock if the owner dies while

holding it. Therefore, a lock-free solution such as KVLockFree (Figure 4.10) may be

preferable. Like KVLock it delegates data and metadata storage to DVector objects, but

instead of synchronizing them with a lock, it relies on the order in which data and meta

are updated. In set, the value is appended to data, which returns an index pointing to the

end of the Vector. The key is then mapped to this index and the value’s size in meta. To

recover the value, lookup follows the reverse order by first reading the index from meta

and using it to access data.

The lack of mutual exclusion makes the atomicity of these procedures less obvious

than for KVLock. The key observations are that data.append() returns a monotonically
2In reality, a system would set some upper bound on the number of attempts to avoid blocking forever.

62

increasing index equal to the length of data before the append, and that meta.insert()

is the linearization point (i.e., the moment when a new key-value mapping is visible to a

client). We sketch the case where set and lookup are executed concurrently with the same

key (k) by threads T1 and T2 respectively. Two possible interleavings of these procedures

are expressed below, and the other cases are similar.

T2: (_, idx1) := meta.get(hash(k));
T1: idx2 := data.append(v);
T2: data.get(idx1);
T1: meta.insert(hash(k),

(sizeof(v), idx2));

or
T1: idx1 := data.append(v);
T2: (_, idx2) := meta.get(hash(k));
T1: meta.insert(hash(k),

(sizeof(v), idx1));
T2: data.get(idx2);

Proof Sketch. At the beginning of each case we have the invariant that the length of the

data vector is greater than every index stored in the meta vector. This can be seen

by observing that only set modifies data or meta and the index it inserts is equal to

data.len - 1. As data only ever becomes longer, this means the indices always point to

a valid position in the vector.

Therefore, we have idx1 < idx2 in the left case and idx2 < idx1 in the right. This

means data.get and data.append touch disjoint entries in the Vector, so they can safely

commute without changing the result (swap Lines 2 and 3 in the left case). In the right

case, however, the operations on meta are between the data operations. Since meta and

data are separate objects, their methods may also commute as long as program order is

preserved (swap Lines 1 and 2 & Lines 3 and 5). After reordering, both cases are exactly

equivalent to atomically executing lookup(k) followed by set(k, v), which proves that

the methods are linearizable. □

Lock-free systems can be much more performant than lock-based ones, but to our

knowledge no other verification framework has handled an example like KVLockFree.

63

4.4.2 Alternate Method-Calling Patterns

Exactly-once method calls are intuitive, but alternate method-calling patterns can

sometimes improve performance by sending fewer messages. This involves rewiring

method calls and handling failures at a lower level of abstraction than is typically available

in SMR-like models. With Advert, by simply adjusting when pull and push are called,

one can express and reason about a variety of optimized and unoptimized versions of

an application using an atomic interface that is both simpler than a network model and

more general because it is not tied to a specific protocol. A real-world example of this

type of optimization is in Two-Phase Commit (2PC) combined with consensus (e.g., Paxos

Commit [Gray and Lamport 2006] and WormTX [Shin et al. 2019]).

The standard 2PC protocol distributes its state across a set of resource managers (RM),

each of which stores a list of operations to apply. To ensure consistency among the RMs, a

transaction manager (TM) first asks each if it can apply an operation locally. If all vote yes,

then the TM tells them to commit and apply the operation, and otherwise it tells them to

abort. This all-or-nothing behavior means the entire system blocks if a single RM becomes

unresponsive. Replicating each RM with a consensus protocol reduces this risk by allowing

them to survive 𝑓 crashes out of 2𝑓 + 1 servers.

Figure 4.11 shows a simple implementation of this version of 2PC using 𝑛 ADOs to

model the replicated RMs. For simplicity, we assume the TM never crashes and handles

one request at a time. A more realistic version that properly handles state recovery after a

TM crash can be found in Appendix A.2. The code is mostly unsurprising, but there are

two points that deserve attention.

64

1 DECISION := YES | NO | COMMIT | ABORT;
2 TX := {ops: Vector[IO]; ts: Z; decision: DECISION};
3 /* Local decision to vote YES or NO if tx can be applied to txs */
4 func tx_can_commit(txs, tx) { ... }
5 ADO RM {
6 shared txs : Vector[TX] := [];
7 method prepare(tx) {
8 tx.decision := tx_can_commit(this.txs, tx);
9 this.txs.append(tx);
10 return tx.decision;
11 }
12 method decide(ts, decision) {
13 idx := this.txs.find(𝜆 tx. tx.ts = ts);
14 this.txs[idx].decision := decision;
15 }
16 }

1 DApp TM(rm_1: RM, ..., rm_n: RM) {
2 local ts : Z := 0;
3 /* Must be called once when TM starts */
4 proc init() {
5 for rm in [this.rm_1, ..., this.rm_n] {
6 while (rm.pull() = FAIL) {}
7 }
8 }
9 proc handle_request(ops) {
10 this.ts += 1;
11 tx := {ops=ops, ts=this.ts, decision=COMMIT};
12 /* Phase 1: Collect decisions */
13 for rm in [this.rm_1, ..., this.rm_n] {
14 /* Method invocation only, not an exactly-once call */
15 rm.invoke(prepare(tx));
16 for i in 0..MAX_TRY {
17 res := rm.push();
18 if (res != FAIL) { break; }
19 }
20 /* Abort and break if RM says no or can't commit in MAX_TRY tries */
21 if (res = NO || res = FAIL) {
22 tx.decision := ABORT;
23 break;
24 }
25 }
26 /* Phase 2: Commit the decision */
27 for rm in [this.rm_1, ..., this.rm_n] {
28 rm.invoke(decide(tx.ts, tx.decision));
29 while (rm.push() = FAIL) {}
30 }
31 }
32 }

Figure 4.11: Two-Phase Commit with replicated RMs.

65

1 ADO Transaction {
2 shared ts : Z := 0;
3 shared txs_1 : Vector[TX] := []; ...; shared txs_n : Vector[TX] := [];
4 method handle_request(ops) {
5 this.ts += 1;
6 tx := {ops=ops, ts=this.ts, decision=COMMIT};
7 /* Phase 1: Collect decisions and abort if any vote no */
8 if ([this.txs_1, ..., this.txs_n].any(𝜆 txs. tx_can_commit(txs, tx) = NO)) {
9 return;
10 }
11 /* Phase 2: Commit the decision */
12 for txs in [this.txs_1, ..., this.txs_n] {
13 txs.append(tx);
14 }
15 }
16 }

Figure 4.12: Transaction ADO.

The first is the init procedure, which simply calls pull on every RM. This only needs

to be called once when the TM starts because 2PC assumes that there is at most one valid

TM that can issue transactions to the RMs, so there is no chance for another leader to be

elected. This means that, unlike exactly-once calls, the method calls on Lines 15 and 28

can skip pull and proceed straight to invoke. A similar optimization is also possible for

KVLock because only the client that holds the lock can modify data and meta, so there is

no risk of preemption.

The second place that Figure 4.11 differs from the previous examples is Line 16 in

handle_request. Unlike exactly-once calls, which retry push infinitely, this sets an upper

bound on the number of failed attempts. If this limit is reached, the TM safely treats it as a

NO vote and aborts the operation. This fine-grained control over failure handling is one

way Advert facilitates optimized system designs.

As in the previous examples, we can show that this DApp refines an ADO specification

(Figure 4.12). Because we assume there is only one client at a time, we can consider the

66

procedures atomic. Then the Transaction ADO is nearly the same as the TM DApp with

inlined RMs, so it is easy to see how they relate. One minor difference is that, in phase 1,

TM treats an unresponsive RM as a NO vote, so a transaction may be allowed according to

tx_can_commit, but TM aborts it anyway. This cannot happen in Transaction because

there are no RMs to be unresponsive. Nevertheless, one can prove a soundness relation

that says the DApp commits a transaction only if the ADO does as well.

4.5 Refinement

Thus far, we have seen how ADOs and DApps can be reasoned about independently

from their protocol-level implementations. This section discusses how the lower-level

implementations relate to their ADO specifications.

4.5.1 Network-Based Specifications

The gap between the ADO model and C code (atomic methods and a logical cache tree

vs. packets and concrete memory) is too large to cover in a single step. To help close it,

we introduce an intermediate “network-based” specification that more closely matches

the implementation but still abstracts away C-specific details. One can then link the

specifications with contextual refinement [Gu et al. 2015; Liang et al. 2013] to achieve an

end-to-end correctness property.

State The global state of the system is modeled as a set of local replica states (Replica)

and a Network, which is a pair of bags of sent and delivered messages (Figure 4.13). A

67

Σnet ≜ (Nnid ⇀ Replica) ∗ Network
Replica ≜ Ntime ∗ rdata

Network ≜ 𝑆𝑒𝑡 (Msg) ∗ 𝑆𝑒𝑡 (Msg)
Msg ≜ Request (Nnid ∗ Nnid ∗ Ntime ∗ Cmd)

| Ack(Nnid ∗ Nnid ∗ Ntime ∗ Cmd)
| Ghost (Nnid ∗ Ntime ∗ GCmd)

Cmd ≜ Elect | Commit (rdata)
GCmd ≜ Begin(Cmd) | End (Cmd,B)
Opnet ≜ elect : Nnid → Σnet → Σnet

| invoke : Nnid → Method → Σnet → Σnet

| commit : Nnid → Σnet → Σnet

| deliver : Msg → Σnet → Σnet

Figure 4.13: Generalized Paxos network-based state and operations.

rdata : 𝑇𝑦𝑝𝑒
rtime : rdata → Ntime

update : Method → Ntime → rdata → rdata

isQuorum : 𝑆𝑒𝑡 (Nnid) → Ntime → Cmd → B

Figure 4.14: Generalized Paxos parameters. The type of the replicated state (rdata) remembers the
time it was created (rtime) and can be modified with an update function (update). Quorums are
decided by isQuorum, which may depend on the current command and timestamp in addition to
the set of replicas.

message (Msg) may be a requests (Request), which contains a sender, recipient, logical time,

and command, a request acknowledgement (Ack), or a logical Ghost event. A command

is either a candidate’s request to be elected (Elect) or an attempt to commit a new state

(Commit). Ghost events (GCmd) on the other hand do not represent real communications,

but are logical markers of the start and end of an election or commit attempt. The End

marker indicates whether the leader successfully collected a quorum of votes.

A replica’s local state consists of the current largest timestamp it has observed and

its snapshot of the replicated state, which is represented by the parameterized rdata type.

This, along with a few other parameters (Figure 4.14), generalizes the specification to

68

describe a larger class of protocols. For example, rdata could either be instantiated to

a log of commands for Multi Paxos or just a single value for Single Paxos. In order to

compare two 𝑟𝑑𝑎𝑡𝑎𝑠 to determine which is more recent, they must store the time at which

they were committed (rtime). There must also be an update function (update) to modify

an rdata when a Method is committed. Finally, we generalize the definition of a quorum

(isQuorum) to support more than just the standard simple majority. Section 4.5.3 provides

instantiations of these parameters for four Paxos variants.

Operations Network-level behaviors are defined by the elect, invoke, commit, and

deliver operations. The first three represent a candidate or leader beginning an operation

by performing some local state updates and sending a request and a ghost Begin event. For

example, elect increments the local timestamp and broadcasts an Elect request, invoke

locally applies the update function to its rdata, and commit broadcasts the new rdata in a

Commit request (Figure 4.15).

The deliver operation can be triggered at any time by an oracle, which arbitrarily

chooses a sent message to arrive at its intended recipient. Messages may be delivered

multiple times or not at all, but the contents are never corrupted. Upon receiving a message

the appropriate handler is triggered (Figure 4.16), which decides whether to vote for or

ignore the request, and, in the former case, updates the recipient’s local state and sends

an acknowledgement. Leaders keep track of their acknowledgements and emit an End

ghost event once either they have a quorum (according to isQuorum) or they abandon the

request after being preempted.

69

send (𝑠𝑡,msg) ≜
let sent′ = sent (network(𝑠𝑡)) ∪ {msg} in setNetwork((sent′, recvd (network(𝑠𝑡))))

broadcast (𝑠𝑡,msgs) ≜ fold (send,msgs, 𝑠𝑡)
elect(nid, 𝑠𝑡) ≜

let 𝑠𝑡 ′ = incTime(nid, 𝑠𝑡) in
let ghost = Ghost (nid, time(nid, 𝑠𝑡), Begin(Elect)) in
let reqs = {Request (nid, recip, time(𝑠𝑡 ′, nid), Elect) | ∀recip ∈ replicas} in
broadcast (send (𝑠𝑡 ′, ghost), reqs)

invoke(nid,𝑚, 𝑠𝑡) ≜
let data′ = update(𝑚, time(nid, 𝑠𝑡), data(nid, 𝑠𝑡)) in setData(𝑠𝑡, nid, data′)

commit(nid, 𝑠𝑡) ≜
let 𝑡 = time(𝑠𝑡, nid) in
let data = data(𝑠𝑡, nid) in
let ghost = Ghost (nid, 𝑡, Begin(Commit (data))) in
let reqs = {Request (nid, recip, 𝑡,Commit (data)) | ∀recip ∈ replicas} in
broadcast (send (𝑠𝑡, ghost), reqs)

Figure 4.15: The elect, invoke, and commit network state transition functions.

canCommit (𝑠𝑡, nid, 𝑡, data) ≜ 𝑡 ≥ time(𝑠𝑡, nid) ∧ rtime(data) > rtime(data(𝑠𝑡, nid))
canCommitAck(𝑠𝑡, nid, 𝑡) ≜ 𝑡 = time(𝑠𝑡, nid)
handleCommit (𝑠𝑡, nid, 𝑡, data) ≜ setData(setTime(𝑠𝑡, nid, 𝑡), nid, data)
deliver(msg, 𝑠𝑡) ≜
if msg = Request (from, to, 𝑡,Commit (data)) ∧ canCommit (𝑠𝑡, to, 𝑡, data) then
let 𝑠𝑡 ′ = handleCommit (to, 𝑡, data) in
let ack = Ack(to, from, 𝑡,Commit (data)) in
send (𝑠𝑡 ′, ack)

else if msg = Ack(from, to, 𝑡,Commit (data)) ∧ canCommitAck(𝑠𝑡, to, 𝑡) then
let 𝑠𝑡 ′ = addAck(to,msg) in
let ghost = Ghost (to, 𝑡, End (Commit (data), true)) in
if isQuorum(acks(𝑠𝑡, to)) then send (𝑠𝑡 ′, ghost) else 𝑠𝑡 ′

else . . .

Figure 4.16: Selected deliver request handlers.

70

S2

S3

S1

S1 Leader

S3 elect

(votes self)

S1 commit

(votes self)
 S2 votes S1

(quorum)

S2 votes S3

(quorum)

S3 gets
ack

S1 gets
ack

(a) Interleaved elect and commitmessages. 𝑆3 begins
the election first, but 𝑆1’s commit reaches a quorum
of voters first, though the acknowledgements arrive
later.

S2

S3

S1

S1 Leader

S3 elect

(votes self)

S1 commit

(votes self)
 S2 votes S1

(quorum)

S2 votes S3

(quorum)
 S3 gets

ack

S1 gets
ack

push(S1)

pull(S3)

(b) The same elect and commitmessages, but sorted
to reflect their equivalent linearized order.

Figure 4.17: Linearizing asynchronous network events.

4.5.2 Relating Network and ADO Models

We show that Advert correctly captures the behaviors of the network-based specification

by proving a refinement between pull and elect, and likewise for push and commit.

These theorems state that matching Advert and network-based states continue to match

after taking a step.

What it means for the states to “match” is defined by the refinement relation R. Intu-

itively, it holds when the replicated state in both models is observably equivalent. This

roughly means the committed methods in every replica’s local log all have corresponding

𝐶𝐶𝑎𝑐ℎ𝑒𝑠 in the cache tree. See Appendix B.1 for more precise definitions.

The challenge is that the asynchronous network sometimes creates situations that do

not line up cleanly with a sequence of ADO events. To resolve these mismatches, we must

transform the trace of network events into an equivalent one that is more suitable.

71

Reordering the Network In Figure 4.17a, the current leader 𝑆1 tries to commit a method

just after 𝑆3 begins an election and their messages interleave. Each replica succeeds by

receiving a quorum of votes (from itself and 𝑆2), but to map these messages to Advert

operations, we must determine which completed first. Although 𝑆3 begins first and receives

acknowledgments first, what actually decides when an operation takes effect is when it

is received by a quorum of replicas, which in this case is determined by the order that 𝑆2

observes the requests. Therefore, we may logically reorder the messages as in Figure 4.17b

to create an equivalent linearized timeline whose corresponding Advert events are 𝑆1’s

push, followed by 𝑆3’s pull.

To see why this is the correct ordering, consider the alternative. In the interleaved

timeline, 𝑆2 accepts 𝑆1’s commit request before voting for 𝑆3, which means its acknowl-

edgment will include 𝑆1’s newly committed command. This fits with the interpretation

that push comes before pull, because then Opull is allowed to select 𝑆1’s 𝐶𝐶𝑎𝑐ℎ𝑒 , so we

maintain the relation between 𝑆3’s network-level local log and its active cache. If instead

pull came first, it would be impossible for 𝑆3 to observe 𝑆1’s new method and the relation

would be broken.

Completing the Network Figure 4.18a illustrates another problem: network operations

are non-atomic and may be in an incomplete state. Here, for example, 𝑆1’s commit request

has received only one vote (its own). It is certainly not successful, but it not correct to

consider it a failed push yet either because it might still gather enough votes.

In order to disambiguate these cases and assign this operation a corresponding Advert

operation, we introduce a phase scheduler, which is an oracle that, given a trace of network

72

S2

S3

S1

S1 Leader

S1 commit

(votes self)
 No vote

(incomplete)

(a) An incomplete commit request
with only one vote.

S2

S3

S1

S1 Leader

S1 commit

(votes self)
 Project

into future

S2 votes

(success)

(b) A potential future in which the
commit succeeds by gaining 𝑆2’s
vote.

S2

S3

S1

S1 Leader

S1 commit

(votes self)
 Project

into future

S2 rejects

(failure)

S3 elect

(votes self)

(c) A different future in which the
commit fails from being preempted
by 𝑆3’s election.

Figure 4.18: Completing network events.

events, nondeterministically decides the next event. By repeatedly querying the phase

scheduler, we can complete the network by extending the trace arbitrarily far into the

future until there is enough information to decide an operation’s fate.

For example, Figure 4.18b shows a future in which 𝑆2 receives and acknowledges the

request, so the push is successful. Figure 4.18c shows an alternative where 𝑆3 begins

an election, which causes 𝑆2 to reject the commit request. Because both 𝑆3 and 𝑆2 have

moved on to a larger timestamp, 𝑆1’s request can never receive a quorum of votes so it has

definitely failed. This approach is related to a similar notion of completion from Izraelevitz

et al. [2016] who used it to prove linearizability of shared-memory concurrent systems in

the presence of crashes.

Matching Events By combining these operations, one can transform a trace of poten-

tially incomplete, interleaved network events into an equivalent trace in which events are

untangled, grouped together, and have clear beginnings and endings. This makes it simple

to map them to their corresponding atomic Advert events. However, for the relation

73

defined by this mapping to be meaningful, it must guarantee that matching event traces

produce matching states; i.e., a committed method in the cache tree should also appear in a

quorum of replicas’ local logs. To prove this we must show that the network specification

satisfies replicated state safety.

4.5.3 Safety Proof Template

Proving safety is the most challenging step of the refinement because it requires reasoning

at the network level and working with concurrent, non-atomic events. In Chapters 5

and 6 we will see that it is possible to avoid this step and instead prove safety at the

ADO level by storing additional metadata about quorums of voters in the caches. Advert

lacks this information, but fortunately, the proof must only be done once per protocol.

Furthermore, many distributed protocols are minor variations of the same concept that

all rely on the same core safety argument. Paxos, for example, has many variants (e.g.,

Fast Paxos [Lamport 2006], Disk Paxos [Gafni and Lamport 2003]), but their correctness

always relies on consecutive elect and commit phases having overlapping quorums of

supporters, which prevents different commands from being committed in the same slot.

Our network-based specification for Paxos takes advantage of these similarities by

parametrizing certain protocol-specific details, which can be instantiated to accommodate

a range of Paxos variants. With some basic assumptions (e.g., quorums have a non-empty

intersection), we can prove safety once and for all in terms of these parameters, which

creates a reusable proof template for safety that holds for a family of Paxos-like protocols.

To instantiate the template, one simply needs to define the parameters and prove that they

74

satisfy the assumptions, after which the top-level theorem is derived for free.

Besides the generalized parameters, the proof mostly follows a standard approach [Lam-

port 2001; van Renesse and Altinbuken 2015] and has little to do with the ADO model, so

its details are omitted. More information about the high-level proof structure can be found

in Appendix C.1. The following are a few sample instantiations of the parameters, which

include the type of the replicated state (rdata), a function to determine if a set of replicas

constitutes a quorum (isQuorum), and an update function (update), which is responsible

for computing a new rdata when a method is committed. Each of these definitions is

formalized and proved to satisfy the necessary assumptions in Coq, but here we present

them in a more readable notation.

Single Paxos [Lamport 2001] replicates a single, immutable value. This is typically

some state machine command, which may be serialized as a string or an integer. The

update function enforces immutability by only accepting the new value if the old state has

not already been set (represented by ⊥). Quorums are decided by a simple majority (𝑓 + 1

assuming a set of 2𝑓 + 1 replicas).

rdata ≜ (Z ∗ Ntime) | ⊥
rtime(data) ≜ if data = (_, 𝑡) then 𝑡 else 0

update(𝑚, 𝑡, data) ≜ if data = ⊥ then (𝑚(), 𝑡) else data
isQuorum(votes, 𝑡, cmd) ≜ |votes | ≥ 𝑓 + 1

Multi Paxos [van Renesse and Altinbuken 2015] extends Single Paxos to a log of

immutable values. Quorums are the same as in Paxos, but the update function now

appends a new entry to the end of the log.

75

rdata ≜ 𝐿𝑖𝑠𝑡 (Z ∗ Ntime)
rtime(data) ≜ if data = _ • (_, 𝑡) then 𝑡 else 0

update(𝑚, 𝑡, data) ≜ data • (𝑚(), 𝑡)
isQuorum(votes, 𝑡, cmd) ≜ |votes | ≥ 𝑓 + 1

Vertical Paxos [Lamport et al. 2009] is a version of Multi Paxos that allows different

quorum sizes in the elect and commit phases as long as they still overlap. For example,

the elect phase could use a quorum of size 2𝑓 + 1, which allows commit to only require 1

vote. We model this with a conf parameter to query the configuration (the quorum sizes)

at a particular logical time. The other parameters are the same as for Multi Paxos.

conf : Ntime → (Z ∗ Z)
rdata ≜ 𝐿𝑖𝑠𝑡 (Z ∗ Ntime)

rtime(data) ≜ if data = _ • (_, 𝑡) then 𝑡 else 0
update(𝑚, 𝑡, data) ≜ data • (𝑚(), 𝑡)

isQuorum(votes, 𝑡, cmd) ≜ let (esize, csize) = conf 𝑡 in
|votes | ≥ if cmd = Elect then esize else csize

CASPaxos [Rystsov 2018] updates the replicated state in-place rather than keeping

a log, which can minimize packet sizes, and eliminates the need for operations like log

compaction. Instead of replicating a concrete state, replicas store a “change function”,

which can compute the current state by applying it to an initial value. This is very similar

to the update function, the primary difference being that an update function is a purely

logical abstraction (i.e., it does not actually exist at runtime), whereas CASPaxos replicas

do physically store and communicate change functions.

76

rdata ≜ ((Z→ Z) ∗ Ntime) | ⊥
rtime(data) ≜ if data = (_, 𝑡) then 𝑡 else 0

update(𝑚, 𝑡, data) ≜ if data = (𝑓 , 𝑡) then (𝜆𝑥 .𝑚(𝑓 (𝑥)), 𝑡) else (𝑚, 𝑡)
isQuorum(votes, 𝑡, cmd) ≜ |votes | ≥ 𝑓 + 1

4.5.4 Primary Backup

We have focused mainly on Paxos-like systems, but Advert also supports primary backup

protocols such as Chain Replication [van Renesse and Schneider 2004], and CRAQ [Terrace

and Freedman 2009]. These protocols operate in phases that are analogous to the three

consensus phases, but rather than collecting quorums of votes, they ensure consistency

by passing commands along a chain of replicas. Once a command reaches the tail of the

chain, it is guaranteed to have been approved by every other replica, so it is considered

committed. Instead of an election phase, clients can ensure they have the most up-to-date

state by reading from the tail.

Interestingly, despite the different communication patterns, these protocols can still be

described by the ADO model’s pull, invoke, and push operations. In fact, our refinement

proof for Chain Replication shares many key elements with the proof for Paxos, such as

logical time reordering and network completion. By proving that both Paxos and Chain

Replication refine Advert, we are showing that both satisfy a common high-level interface,

which can be used to build protocol-agnostic distributed applications.

77

4.5.5 C Implementations

To show that Advert enables end-to-end verification, we implemented Multi Paxos in C

and proved it correct with respect to its network specification using certified concurrent

abstraction layers (CCAL) [Gu et al. 2018]. The details of this proof are largely unrelated

to the ADO model and follow the approach of prior work, including CertiKOS [Gu et al.

2016] and WormSpace [Shin et al. 2019].

The general strategy is to divide the code into small modules, or layers, which consist

of some private state and a public interface. Each method of the interface has both a C

implementation and an abstract Coq specification. The C implementation is embedded in

Coq using the CompCert compiler’s [Leroy 2009] Clight abstract syntax tree and semantics.

The Clight code is shown to be correct with respect to the Coq specification by proving

memory safety (i.e., there are no null pointer dereferences or out-of-bounds array accesses)

and functional correctness (i.e., the low-level, in-memory state representation matches the

abstract representation).

Layers can be composed by combining the abstract interface of an existing layer with

some newly introduced C private state and functions. Compared to the network-level

refinement proofs, these functional correctness proofs are sometimes time consuming,

but generally fairly mechanical and unsurprising. Together, these proofs provide a formal

connection between ADO specifications of applications like the key-value stores to efficient

executable code.

78

4.6 Evaluation

Verification Effort The Advert codebase consists of approximately 2K lines of Coq

specifications and 18K of safety and refinement proofs (5K for Paxos, 2K for Chain Repli-

cation, and 11K of shared libraries). Thanks to the reusable proof template, instantiating

four Paxos variants from the generic network specification takes only 340 lines. The

specifications and proofs of the DApps and ADOs in Section 4.4 take 680 lines for the

key-value stores and 470 lines for 2PC. The 2.6K lines of Multi Paxos C code require

43.9K lines of functional correctness proofs, which could be significantly reduced through

automation [Sjöberg et al. 2019]. The code is verified using CompCert’s Clight seman-

tics [Leroy 2009] and runs on both Linux and CertiKOS [Gu et al. 2016] (augmented with

unverified send and recv system calls).

The amount of developer effort required to use Advert depends on the level at which

one wants to reason. To verify an application end-to-end there are three, mostly orthogonal

steps: writing the ADO and DApp specifications, proving that the network-level protocol

refines the ADO model, and proving that the C implementation refines the network-level

protocol. If one reuses an existing verified network-level protocol, then the second and

third steps can be skipped. One might also be satisfied with reasoning about a high-level

model, in which case the ADO specifications alone are sufficient.

The most challenging step is the refinement between network and ADO-level specifi-

cations, though it is only required once per protocol, and similarities between protocols

can be exploited to reduce the proof effort. This step can also be significantly simplified

by lifting the proof to the ADO level, which we demonstrate in Chapters 5 and 6. Verify-

79

ing a C implementation is also quite laborious, though it is typically conceptually more

straightforward than the network-ADO refinement. Advert is not tied to a specific C

verification framework because all that matters is that the code can be abstracted to a

network-based model in the style described in Section 4.5.1. Therefore, although we use

CCAL, one could instead choose, for example, the Verified Software Toolchain [Appel

2011] or RefinedC [Sammler et al. 2021].

By comparison, working with ADO and DApp specifications is much simpler. Much

of the network level’s complexity is hidden and one can treat ADOs almost as standard

concurrent objects, albeit with a somewhat different failure model. The degree of difficulty

of composing ADOs is application-dependent; however, KVLockFree demonstrates that

even fairly sophisticated composition patterns are feasible. In practice, many modern dis-

tributed systems rely on a coordinator to order operations across independent objects [Dean

2009] (e.g., the microservice [Killalea 2016] and serverless computing [Castro et al. 2019]

paradigms). By building up a library of reusable components (e.g., locks, transactions), it

would be straightforward to express many of these systems in Advert.

Performance Figure 4.19 shows latency and throughput measurements of C implemen-

tations of the key-value store (KVS) and 2PC designs from Section 4.4. KVS benchmarks

use Multi Paxos and Chain Replication while 2PC only uses Multi Paxos. The experiments

were run in Amazon EC2 with three replicas per ADO. We only vary the write workload,

as reads can be optimized with extra learner/cache servers.

For key-value store designs (Figures 4.19a and 4.19b), KVPrimitive exhibits the lowest

latency and the highest throughput, but cannot separate metadata and data for modularity

80

(a) KVS latency vs throughput. (b) KVS steady state latency. (c) 2PC latency.

Figure 4.19: Performance of different key-value store (KVS) and 2PC designs.
(MP = Multi Paxos, CR = Chain Replication, KVP = KVPrimitive, KVL = KVLock, KVLF =
KVLockFree, Init = calling pull upon Init, TX = calling pull per TX request, Ph = calling pull per
each 2PC phase)

andmanageability. KVLock’s lock creates a performance bottleneck as each request accesses

it twice (tryAcquire and release). The best compromise is KVLockFree where metadata

and data are managed separately with only a moderate increase in latency but the same

throughput as KVPrimitive.

Comparing across protocols, Chain Replication’s serial communication achieves higher

throughput than Multi Paxos’s broadcasting approach; however, Multi Paxos can make

progress with only 𝑓 + 1 out of 2𝑓 + 1 replicas, whereas Chain Replication must halt for

reconfiguration after even one failure. Comparisons with unverified, open source Multi

Paxos [Moraru et al. 2013] and Chain Replication [Balakrishnan et al. 2012; CorfuDB 2017]

implementations show that our code achieves higher peak throughputs (13 Kops/s vs. 20

Kops/s for Multi Paxos and 7 Kops/s vs. 39 Kops/s for Chain Replication). Our code also

outperforms IronFleet’s IronRSL [Hawblitzel et al. 2015a], which was found to have a

lower throughput than this same Multi Paxos implementation. Note that these systems

are implemented in different languages so our point is not to claim better performance,

but to demonstrate that using Advert does not inherently limit efficiency. The more

81

interesting takeaway is that different implementations of the same application can exhibit

different performance and reliability characteristics while still sharing a common ADO-

level specification.

ADOs also support performance tuning by adjusting method-calling patterns. Fig-

ure 4.19c shows transaction processing latencies of 2PC designs (Figure 4.11) with three

RMs in which pull is called in different places: once during init; once on every transaction

request (handle_request); and once for each phase of 2PC (twice per handle_request).

Under this experiment exactly the same tasks are executed, but the performance varies

up to 2X for different designs. Our aim here is to show that these design choices, which

are invisible in a conventional SMR-like API, can significantly affect performance, and the

ADO model allows developers to easily experiment with them.

4.7 Summary

Advert is an instance of the ADO model designed for compositional reasoning about

distributed applications that hides unnecessary implementation-level complexities while

faithfully capturing common high-level distributed behaviors and failure cases. It can be

connected to network-level specifications of protocols such as Paxos and Chain Replication

through contextual refinement, and the clean separation between implementation and

specification allows one to change an application’s underlying implementation without

modifying ADO-level specifications or proofs. We took advantage of this implementation

flexibility to build three versions of a key-value store, including a lock-free implementation.

By exposing certain failure cases, the ADOmodel supports a wider range of method-calling

82

patterns and optimizations than SMR, which we used to build 2PC from a composition of

replicated RMs.

Although Advert works nicely for these types of distributed applications, it is less

useful for proving protocol-level properties such as safety. Chapter 5 demonstrates that

this is not a fundamental limitation of the ADO model and that different variants can cover

a large portion of the abstraction spectrum (Figure 1.1).

83

Chapter 5

Adore: Atomic Distributed Objects

with Reconfiguration

This chapter discusses the Adore variant of the ADO model, which is designed to support

general protocol-level safety proofs. Notably, it has first-class support for a generic recon-

figuration scheme, an important but often overlooked operation. Section 5.1 summarizes

the challenges of verifying reconfiguration. Section 5.2 then gives an intuitive overview of

Adore’s design, followed by a formal presentation in Section 5.3. Section 5.4 discusses

some important steps of the safety proof, with a focus on subtle problems that Adore is

uniquely suited to solve. Sections 5.5 and 5.6 then demonstrate Adore’s generality by

instantiating it with different protocols and reconfiguration schemes. Finally, Section 5.7

evaluates the proof effort and Section 5.8 summarizes the results.

84

5.1 Motivation

Server failures are inevitable in a distributed setting [Gill et al. 2011; Meza et al. 2018], so a

method for safely and efficiently replacing replicas is essential. However, it is essential

to maintain the invariant that elections and commits have overlapping quorums, so such

configuration changes must be handled carefully. There are many algorithms to accomplish

this [Lamport et al. 2008]. Some, such as Stoppable Paxos [Malkhi et al. 2008], use a

“stop-the-world” approach that first blocks new commands from being committed by the

old configuration, then copies the logs to the new configuration, and finally resumes

normal processing. This somewhat simplifies the problem by ensuring that at no point are

both configurations active at once; however, it also incurs a performance cost due to the

disruption in service.

An alternative is “hot” reconfiguration, which dynamically alters the configuration

without blocking the normal processing of commands. Although clearly a more attractive

option, it introduces additional complexities by temporarily intermingling the old and new

configurations. This obscures the fundamental invariants on which consensus protocols

rely, which makes proving their safety significantly more challenging. Adore demonstrates

that, with the proper abstraction, the additional complexity can be managed by hiding all

but the essential details. As an added benefit, this allows for a more generic model that

can support a variety of implementations.

As an example of a hot reconfiguration scheme we first explain Raft’s single-server

membership change algorithm [Ongaro 2014]. This example also highlights the challenges

of reconfiguration and the need for formal verification because, despite expert review and

85

an implementation in a production environment, this algorithm, as originally presented,

contained a critical bug [Ongaro 2015].

Raft’s Flawed Approach The core idea of the algorithm is to communicate membership

changes through the usual log replication machinery using a special command. The key

difference between the special and regular commands is the latter are applied only after

they are committed, while the former take effect immediately upon entering a replica’s

log. This speculative execution allows new replicas to begin participating sooner, but,

because uncommitted commands may be overwritten, it requires special care. Therefore,

two conditions must be met before a leader may propose a new configuration.

R1 A new configuration can differ from the leader’s configuration by at most one replica.

R2 The leader’s log cannot contain any uncommitted reconfiguration commands.

These restrictions aremeant to ensure that consecutive configurations still have overlap-

ping quorums, so the usual (static configuration) safety arguments still hold. R1 guarantees

that a majority subset of a new configuration still shares at least one replica with the old

one, and R2 makes sure configurations only change once before being committed. At first

glance these seem sufficient; however, they miss a subtle but critical corner case that took

nearly a year to discover.

The Problem Consider Figure 5.1, in which the configuration is 𝑆1–𝑆4 and 𝑆1 is the

leader. 𝑆1 proposes a new configuration that removes 𝑆4, but fails to replicate it. 𝑆2 then

initiates an election and becomes the leader with the support of 𝑆3 and 𝑆4. It is unaware of

𝑆1’s reconfiguration attempt, so it may propose its own that removes 𝑆3 instead. 𝑆2 begins

86

follows S1

follows S1

follows S1
{S1,S2,S3,S4}

...

...

...

...

S1

S2

S3

S4

LogReplica
Status
{config}

{S1,S2,S3,S4}
leader

{S1,S2,S3,S4}

{S1,S2,S3,S4}

(a) 𝑆1 is the leader.

{S1,S2,S3,S4}

...

...

...

...

S1

S2

S3

S4

follows S1

{S1,S2,S3}
leader

{S1,S2,S3,S4}
follows S1

{S1,S2,S3,S4}
follows S1

{S1,S2,S3}

LogReplica
Status
{config}

(b) 𝑆1 removes 𝑆4.

{S1,S2,S4}

...

...

...

...

S1

S2

S3

S4

leader
{S1,S2,S3}

{S1,S2,S3,S4}
follows S2

{S1,S2,S4}
follows S2

{S1,S2,S3}

LogReplica
Status
{config}

{S1,S2,S4}

{S1,S2,S4}

(c) 𝑆2 is elected leader, removes 𝑆3 and com-
mits.

{S1,S2,S4}

...

...

...

...

S1

S2

S3

S4

leader

{S1,S2,S3}
leader

{S1,S2,S3,S4}
follows S1

{S1,S2,S4}
follows S2

{S1,S2,S3}

LogReplica
Status
{config}

{S1,S2,S4}

{S1,S2,S4}

(d) 𝑆1 is elected with the old configuration.

Figure 5.1: Raft’s reconfiguration can violate safety.

using its new configuration immediately, so the command is committed once it reaches 𝑆4

({𝑆2, 𝑆4} is a majority of {𝑆1, 𝑆2, 𝑆4}).

Suppose now that 𝑆1 initiates another election and receives votes from itself and 𝑆3.

Because it also uses the latest configuration from its log ({𝑆1, 𝑆2, 𝑆3}), these two votes

constitute a quorum and it wins the election. At this point the game is lost because 𝑆1 and

𝑆2 are leaders with disjoint quorums, which means 𝑆1 may commit a command without

the approval of 𝑆2 or 𝑆4 and 𝑆2 may do so without 𝑆1 or 𝑆3. This can cause the committed

log entries to diverge, violating the safety guarantee.

The problem is that reconfiguration and consensus are inherently circularly related,

87

and this approach fails to account for the effect this has on elections. In particular, although

R2 prevents a leader from changing the configuration until the current one is committed,

it does not stop other leaders from being elected under uncommitted configurations.

The Solution The solution proposed by Ongaro [2015] is to invalidate all pending recon-

figuration commands before issuing new ones. This can be accomplished by committing a

command with the previous configuration. Suppose that, in Figure 5.1, after 𝑆2 becomes

the leader, before proposing a new configuration, it commits a regular method under the

original configuration ({𝑆1, 𝑆2, 𝑆3, 𝑆4}). This would require at least three of the replicas to

update their logs, which means 𝑆1’s log is no longer sufficiently up-to-date, and it would

be unable to win an election, thereby preventing the diverging configurations.

This solution seems to avoid the safety issue, so a third condition is added that must

be met before proposing a new configuration.

R3 The leader’s log must contain a committed command with the current timestamp.

Ongaro [2015] gives a very high-level proof sketch that R3 solves the problem in general

by arguing that a leader cannot be elected without the latest committed command in its

log. The sketch enumerates the possible configurations for the leader and command and

shows that in each case their quorums must overlap because of R1–3.

As before, this argument seems reasonable, but it overlooks some subtle issues. It relies

on the invariant that leaders are elected with unique timestamps, which is straightforward

to prove with static configurations, but becomes more subtle with reconfiguration as the

leaders’ vote quorums may no longer overlap. As it turns out, the conclusion of the proof

is correct, but Section 5.4 shows how the wrong approach can lead to circular reasoning

88

and why a model that cleanly exposes reconfiguration’s mutual relation with consensus is

necessary to avoid it.

5.2 Overview

Additional Cache Metadata Adore uses the same basic ADO concepts as Advert;

namely, a cache tree and the pull, invoke, and push operations. However, whereas

Advert intentionally omits details like the current configuration that fall outside its

scope, Adore must track this information in the cache tree in order to reason about

safety properties. In particular, caches are now annotated with their voters, as well as the

configuration under which they were created.

Additionally, a new reconfig operation is introduced along with a corresponding

𝑅𝐶𝑎𝑐ℎ𝑒 to model reconfiguration. Following Raft’s single-server approach, these behave

almost identically to invoke and𝑀𝐶𝑎𝑐ℎ𝑒𝑠 , except that there are limits to when reconfig

may be called and an 𝑅𝐶𝑎𝑐ℎ𝑒 contains a new configuration instead of a method. Every

other type of cache inherits its configuration from its parent, which models the speculative

behavior where a replica uses the latest configuration in its log even if it is uncommitted.

Figure 5.2 shows the evolution of a system through a sequence of operations similar to

Figure 3.2, but with the added cache metadata. In Figure 5.2b, 𝑆1 calls pull and successfully

becomes the leader with votes from every replica (𝑆1, 𝑆2, 𝑆3). It then invokes methods

𝑀1 and 𝑀2, creating 𝑀𝐶𝑎𝑐ℎ𝑒 nodes on its active branch (Figure 5.2c). For the moment,

these methods are only in 𝑆1’s log, so, unlike 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 and 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 , the𝑀𝐶𝑎𝑐ℎ𝑒𝑠 do not

contain a set of voters. When it calls push, the oracle indicates that 𝑀1 was received by

89

RCache
Node ID

{config}

(time,version)

ECache

Node ID

(time,version)

{voters}
{config}

MCache
Node ID

Method

(time,version)

CCache
Node ID

(time,version)
{voters}
{config}

(a) Key for Adore caches.

S1
(1,0)

{S1,S2,S3}
{S1,S2,S3}

(b) 𝑆1 calls pull.

S1
(1,0)

{S1,S2,S3}
{S1,S2,S3}

S1

M1

(1,1)

S1

M2

(1,2)

(c) 𝑆1 invokes two methods.

S1
(1,0)

{S1,S2,S3}
{S1,S2,S3}

S1

M1

(1,1)

S1
(1,1)

{S1,S2,S3}

{S1,S2,S3}

S1

M2

(1,2)

(d) 𝑆1 calls push and commits only𝑀1.

S1
(1,0)

{S1,S2,S3}
{S1,S2,S3}

S1

M1

(1,1)

S1

M2

(1,2)

S1
(1,1)

{S1,S2,S3}

{S1,S2,S3}

S1

{S1,S3}

(1,3)

(e) 𝑆1 removes 𝑆2 from the configuration.

S1
(1,0)

{S1,S2,S3}
{S1,S2,S3}

S1

M1

(1,1)

S1
(1,1)

{S1,S2,S3}

{S1,S2,S3} S2

(2,0)
{S2,S3}

{S1,S2,S3}

S1

M2

(1,2)

S2

M3

(2,1)

S1

{S1,S3}

(1,3)

(f) 𝑆2 calls pull and invokes𝑀3.

Figure 5.2: Sample Adore behaviors.

90

every replica, but that𝑀2 failed to reach a quorum. A 𝐶𝐶𝑎𝑐ℎ𝑒 is created between𝑀1 and

𝑀2 to reflect this partially successful commit (Figure 5.2d).

Next, 𝑆1 attempts to remove 𝑆2 from the set of replicas by calling reconfig with the

new configuration {𝑆1, 𝑆3}. Like invoking a method, this adds an 𝑅𝐶𝑎𝑐ℎ𝑒 leaf to the active

branch (Figure 5.2e). Before 𝑆1 is able to commit its new configuration, 𝑆2 preempts it by

calling pull and receiving votes from 𝑆2 and 𝑆3 (Figure 5.2f). The new 𝐸𝐶𝑎𝑐ℎ𝑒 is inserted

after the most up-to-date cache observed by any of the election voters, which in this case

is 𝑆1’s𝐶𝐶𝑎𝑐ℎ𝑒 . Although both the𝑀𝐶𝑎𝑐ℎ𝑒 containing𝑀2 and the 𝑅𝐶𝑎𝑐ℎ𝑒 are more recent,

𝑆1 has not yet managed to replicate them to either 𝑆2 or 𝑆3. Finally, 𝑆2 continues to extend

the new branch with its own methods.

Generality The cache tree abstraction may seem far removed from a protocol’s actual

implementation, but it is really the same information restructured to highlight the im-

portant details. We can prove this with refinement, which implies that Adore captures

every valid behavior of a network-based model of a protocol, and therefore Adore’s safety

properties hold for the protocol as well. Adore’s pull, push, invoke, and reconfig oper-

ations map fairly directly onto the election, commit, and local log update phases found

in most consensus protocols, so, in fact, this relation can be proved for many protocols,

including various Paxos variants and Raft. Section 5.5 demonstrates this in more detail.

The other dimension in which Adore is general is its reconfiguration scheme. Just as

Raft’s single-server algorithm requires R1–3 to hold before reconfiguring, Adore has

similar conditions that must be met. However, we observe that R1 is stronger than

necessary; all that is needed is that consecutive configurations have overlapping quorums.

91

Cache ≜ 𝐸𝐶𝑎𝑐ℎ𝑒 (Nnid ∗ Ntime ∗ Nvrsn ∗ 𝑆𝑒𝑡 (Nnid) ∗ Config)
| 𝑀𝐶𝑎𝑐ℎ𝑒 (Nnid ∗ Ntime ∗ Nvrsn ∗Method ∗ Config)
| 𝑅𝐶𝑎𝑐ℎ𝑒 (Nnid ∗ Ntime ∗ Nvrsn ∗ Config)
| 𝐶𝐶𝑎𝑐ℎ𝑒 (Nnid ∗ Ntime ∗ Nvrsn ∗ 𝑆𝑒𝑡 (Nnid) ∗ Config)

CacheTree ≜ Ncid ⇀ Ncid ∗ Cache
TimeMap ≜ Nnid ⇀ Ntime

Σ ≜ CacheTree ∗ TimeMap

Figure 5.3: Adore state definitions.

In fact, the protocol’s safety is completely independent from the definitions of quorum

and valid configuration as long as they guarantee this property. By parameterizing these

features Adore becomes a generic verification framework that permits many possible

implementations (see Section 5.6 for examples).

5.3 Adore Formal Semantics

This section formalizes the previous intuitive description of Adore. We mark everything

related to reconfiguration in blue with a box. Removing these parts leaves a configuration-

aware model (CADO) that is also useful for reasoning about the safety of protocols with

static configurations. Adore shares many features with Advert, but, in the interest of

completeness, they are explained here again.

State Figure 5.3 defines the type Σ for state (𝑠𝑡), which is a pair of a cache tree (tree), and

the largest timestamp that each replica has observed (times). As before, we use the notation

name(𝑠𝑡) to represent extracting one of these fields (e.g., tree(𝑠𝑡) returns the first element).

Figure 5.4 declares that the type of the configuration (Config) is an opaque parameter with

functions to extract a set of replicas (mbrs) and decide if some set constitutes a quorum

92

Parameters

Config : 𝑇𝑦𝑝𝑒
mbrs : Config → 𝑆𝑒𝑡 (Nnid)

isQuorum : 𝑆𝑒𝑡 (Nnid) → Config → B
R1+ : Config → Config → B

Assumptions about R1+ and isQuorum

(Reflexive) R1+(𝑐 𝑓 , 𝑐 𝑓)
(Overlap) R1+(𝑐 𝑓 , 𝑐 𝑓 ′) ∧ isQuorum(𝑄, 𝑐 𝑓) ∧ isQuorum(𝑄′, 𝑐 𝑓 ′)

=⇒ 𝑄 ∩𝑄′ ≠ ∅

Definitions

𝑅2(𝑡𝑟,𝐶) ≜ ∀𝐶′ ∈ 𝑡𝑟 .𝐶′ = 𝑅𝐶𝑎𝑐ℎ𝑒 (_) ∧𝐶′ ↑ 𝐶 =⇒
∃𝐶′′ ∈ 𝑡𝑟 .𝐶′′ = 𝐶𝐶𝑎𝑐ℎ𝑒 (_) ∧𝐶′ ↑ 𝐶′′ ∧𝐶′′ ↑ 𝐶

𝑅3(𝑡𝑟,𝐶) ≜ ∃𝐶′ ∈ 𝑡𝑟 .

𝐶′ = 𝐶𝐶𝑎𝑐ℎ𝑒 (_) ∧ time(𝐶′) = time(𝐶) ∧𝐶′ ↑ 𝐶

canReconf (𝑡𝑟,𝐶, ncf) ≜ R1+(conf (𝐶), ncf) ∧ 𝑅2(𝑡𝑟,𝐶) ∧ 𝑅3(𝑡𝑟,𝐶)

Figure 5.4: Configuration/quorum parameters and definitions.

(isQuorum). This allows the model and safety proof to work for any instantiation of these

parameters as long as they satisfy the Reflexive and Overlap invariants.

Caches Caches are divided into election (𝐸𝐶𝑎𝑐ℎ𝑒), method (𝑀𝐶𝑎𝑐ℎ𝑒), reconfiguration

(𝑅𝐶𝑎𝑐ℎ𝑒), and commit (𝐶𝐶𝑎𝑐ℎ𝑒) variants. Each has a unique cache ID (cid) and the cache

tree is implemented as a partial map from cid to the corresponding cache, plus the cid of

the cache’s parent (with 0 reserved for the root). The functions for growing the tree are

addLeaf , which adds a child to a parent, and insertBtw, which inserts a cache between a

parent and its children.

Each type of cache contains the node ID (nid) of the replica that called the operation

creating it (caller), a timestamp (time), a version number (vrsn), and the configuration (conf)

93

Op ≜ pull : Nnid → Σ → Σ

| invoke : Nnid → Method → Σ → Σ

| reconfig : Nnid → Config → Σ → Σ

| push : Nnid → Σ → Σ

Figure 5.5: Adore operations.

under which it was called (the root cache is initialized with some conf 0). The timestamp

corresponds to a Paxos ballot number or a Raft term number and is assigned to a leader in

each round. The version number resets to 0 at the start of each round and increments on

every method/reconfiguration call. In Figure 5.6, we define a strict order (≻) on caches

by comparing the lexicographic order of their timestamp and version number pairs, with

the exception that if a 𝐶𝐶𝑎𝑐ℎ𝑒 has the same timestamp and version as a non-𝐶𝐶𝑎𝑐ℎ𝑒 , the

𝐶𝐶𝑎𝑐ℎ𝑒 is considered greater, which is needed to make ≻ a total order.

𝐸𝐶𝑎𝑐ℎ𝑒𝑠 and 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 are also annotated with the node IDs of their voters; i.e., the set

of replicas that voted for them. An𝑀𝐶𝑎𝑐ℎ𝑒 or 𝑅𝐶𝑎𝑐ℎ𝑒’s only voter is its caller. Every cache

is also associated with a related, but subtly different set of replicas called its supporters. For

𝑀𝐶𝑎𝑐ℎ𝑒𝑠 , 𝑅𝐶𝑎𝑐ℎ𝑒𝑠 , and 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 these sets are the same, but an 𝐸𝐶𝑎𝑐ℎ𝑒’s only supporter

is its caller. The difference is related to a replica’s active cache, which is its current view of

the latest state (this corresponds to its local log). A replica may vote for a cache during an

election, but it does not yet make it active. Only when a replica votes to commit a cache

does it have enough evidence to know it is safe to also support the cache and make it active.

Finally, 𝑀𝐶𝑎𝑐ℎ𝑒𝑠 contain a Method. In practice, this encodes an application-specific

function (e.g., increment a counter) to be applied once committed; however, as the method

bodies have no bearing on the protocol’s safety, we simply treat them as opaque identifiers.

94

𝐶 ↑ 𝐶′ ≜ 𝐶 = parent (𝐶′) ∨𝐶 ↑ parent (𝐶′)
𝐶1 ≻ 𝐶2 ≜ (time(𝐶1), vrsn(𝐶1)) > (time(𝐶2), vrsn(𝐶2))

∨ ((time(𝐶1), vrsn(𝐶1)) = (time(𝐶2), vrsn(𝐶2))
∧𝐶1 = 𝐶𝐶𝑎𝑐ℎ𝑒 (_) ∧𝐶2 ≠ 𝐶𝐶𝑎𝑐ℎ𝑒 (_))

voters(𝐶) ≜ if 𝐶 = 𝐸𝐶𝑎𝑐ℎ𝑒 (_, _, _, 𝑄, _) then 𝑄 else
if 𝐶 = 𝑀𝐶𝑎𝑐ℎ𝑒 (nid, _, _, _, _) then {nid} else
if 𝐶 = 𝑅𝐶𝑎𝑐ℎ𝑒 (nid, _, _, _) then {nid} else
if 𝐶 = 𝐶𝐶𝑎𝑐ℎ𝑒 (_, _, _, 𝑄, _) then 𝑄

supporters(𝐶) ≜ if 𝐶 = 𝐸𝐶𝑎𝑐ℎ𝑒 (nid, _, _, _, _) then {nid} else voters(𝐶)
freshCID(𝑡𝑟) ≜ max {cid (𝐶) | 𝐶 ∈ 𝑡𝑟 } + 1

addLeaf (𝑠𝑡,𝐶𝑃 ,𝐶new) ≜ (tree(𝑠𝑡) [freshCID(tree(𝑠𝑡)) ↦→ (𝐶𝑃 ,𝐶new)], times(𝑠𝑡))
insertBtw(𝑠𝑡,𝐶𝑃 ,𝐶new) ≜ let 𝑡𝑟 = tree(𝑠𝑡) in

let 𝑡𝑟 ′ = 𝑡𝑟 [cid (𝐶) ↦→ (cid (𝐶new),𝐶new) | ∀(_,𝐶) ∈ 𝑡𝑟] in
(𝑡𝑟 ′[freshCID(tree(𝑠𝑡)) ↦→ (𝐶𝑃 ,𝐶new)], times(𝑠𝑡))

setTimes(𝑠𝑡,𝑄, 𝑡) ≜ (tree(𝑠𝑡), times(𝑠𝑡) [𝑠 ↦→ 𝑡 | ∀𝑠 ∈ 𝑄])
isLeader (𝑠𝑡, nid,𝐶) ≜ times(𝑠𝑡) [nid] = time(𝐶) ∧ caller (𝐶) = nid

validVotes(nid, 𝑄,𝐶) ≜ nid ∈ 𝑄 ∧𝑄 ⊆ mbrs(conf (𝐶))
active(𝑡𝑟, nid) ≜ max≻ {𝐶 ∈ 𝑡𝑟 | nid ∈ supporters(𝐶)}

activeC (𝑡𝑟, nid) ≜ max≻ {𝐶 ∈ 𝑡𝑟 | nid ∈ supporters(𝐶) ∧𝐶 = 𝐶𝐶𝑎𝑐ℎ𝑒 (_)}
maxActive(𝑡𝑟,𝑄) ≜ max≻ {𝐶 ∈ 𝑡𝑟 | 𝑄 ∩ supporters(𝐶) ≠ ∅}

canCommit (𝐶, nid, 𝑠𝑡) ≜
(
𝐶 = 𝑀𝐶𝑎𝑐ℎ𝑒 (_) ∨ 𝐶 = 𝑅𝐶𝑎𝑐ℎ𝑒 (_)

)
∧ isLeader (𝑠𝑡, nid,𝐶) ∧𝐶 ≻ activeC (tree(𝑠𝑡), nid)

Figure 5.6: Adore auxiliary definitions.

Operations Each of Adore’s operations (pull, invoke, reconfig, and push) takes its

caller’s node ID, the current state (Σ), and for invoke and reconfig a new method or

configuration, and returns a new state (see Figure 5.5). The pull and push operations

rely on an oracle O (consisting of Opull and Opush respectively) to model nondeterministic

network behaviors. The semantics of each operation are defined in Figure 5.7 (with helper

functions defined in Figure 5.6). We write O ⊢ 𝑜𝑝 : 𝑠𝑡 ⇝ 𝑠𝑡 ′ to mean calling the operation

𝑜𝑝 on state 𝑠𝑡 with oracle O results in 𝑠𝑡 ′.

95

PullOk
Opull (𝑠𝑡, nid) = Ok(𝑄,𝑄ok,𝐶max, 𝑡)

𝑠𝑡 ′ ≜ setTimes(𝑠𝑡,𝑄, 𝑡) 𝐶new ≜ 𝐸𝐶𝑎𝑐ℎ𝑒 (nid, 𝑡, 0, 𝑄, conf (𝐶max))
O ⊢ pull(nid) : 𝑠𝑡 ⇝ if 𝑄ok then addLeaf (𝑠𝑡 ′,𝐶max,𝐶new) else 𝑠𝑡 ′

InvokeOk
𝐶𝐴 ≜ active(tree(𝑠𝑡), nid)

isLeader (𝑠𝑡, nid,𝐶𝐴) 𝐶new ≜ 𝑀𝐶𝑎𝑐ℎ𝑒 (nid, time(𝐶𝐴), vrsn(𝐶𝐴) + 1, 𝑀, conf (𝐶𝐴))
O ⊢ invoke(nid, 𝑀) : 𝑠𝑡 ⇝ addLeaf (𝑠𝑡,𝐶𝐴,𝐶new)

ReconfigOk
𝐶𝐴 ≜ active(tree(𝑠𝑡), nid) isLeader (𝑠𝑡, nid,𝐶𝐴)

canReconf (tree(𝑠𝑡),𝐶𝐴, ncf) 𝐶new ≜ 𝑅𝐶𝑎𝑐ℎ𝑒 (nid, time(𝐶𝐴), vrsn(𝐶𝐴) + 1, ncf)
O ⊢ reconfig(nid, ncf) : 𝑠𝑡 ⇝ addLeaf (𝑠𝑡,𝐶𝐴,𝐶new)

PushOk
Opush(𝑠𝑡, nid) = Ok(𝑄,𝑄ok,𝐶𝑀) 𝑠𝑡 ′ ≜ setTimes(𝑠𝑡,𝑄, time(𝐶𝑀))

𝐶new ≜ 𝐶𝐶𝑎𝑐ℎ𝑒 (nid, time(𝐶𝑀), vrsn(𝐶𝑀), 𝑄, conf (𝐶𝑀))
O ⊢ push(nid) : 𝑠𝑡 ⇝ if 𝑄ok then insertBtw(𝑠𝑡 ′,𝐶𝑀 ,𝐶new) else 𝑠𝑡 ′

NoOp

O ⊢ op(nid) : 𝑠𝑡 ⇝ 𝑠𝑡

Figure 5.7: Semantics of Adore operations. Every operation may fail and have no effect on the state
(either because an oracle returns Fail or the preconditions are not met), so NoOp is parameterized
by 𝑜𝑝 , which can be any of pull, invoke, reconfig, or push. For invoke and reconfig, 𝑜𝑝 is
understood to also take𝑀 or ncf as an argument.

Opull : Σ → Nnid → (Ok(𝑆𝑒𝑡 (Nnid) ∗ B ∗ Cache ∗ Ntime) | Fail)
Opush : Σ → Nnid → (Ok(𝑆𝑒𝑡 (Nnid) ∗ B ∗ Cache) | Fail)

ValidPullOracle
validVotes(nid, 𝑄,𝐶max) 𝑄ok ≜ isQuorum(𝑄, conf (𝐶max))
∀𝑠 ∈ 𝑄. times(𝑠𝑡) [𝑠] < 𝑡 𝐶max ≜ maxActive(tree(𝑠𝑡), 𝑄)

Opull (𝑠𝑡, nid) = Ok(𝑄,𝑄ok,𝐶max, 𝑡)

ValidPushOracle
validVotes(nid, 𝑄,𝐶𝑀) 𝑄ok ≜ isQuorum(𝑄, conf (𝐶𝑀))

∀𝑠 ∈ 𝑄. times(𝑠𝑡) [𝑠] ≤ time(𝐶𝑀) canCommit (𝐶𝑀 , nid, 𝑠𝑡)
Opush(𝑠𝑡, nid) = Ok(𝑄,𝑄ok,𝐶𝑀)

Figure 5.8: Valid pull and push oracle conditions.

96

Pull Recall that the purpose of the election phase is to choose a unique logical timestamp

and a sufficiently up-to-date state snapshot with all of the committed commands. Adore

models this with pull, which relies on Opull to simulate the network and arbitrarily decide

what set of voters (𝑄) receive the election request. The oracle is allowed to make any

decision that satisfies the conditions in Figure 5.8, which abstracts over the network details

and treats it as a nondeterministic black box.

On success, the oracle chooses a set of voters and a time (𝑡) that is strictly larger than

any they have previously observed. The cache it returns (𝐶max) is the result of maxActive,

and is the most up-to-date cache supported by any replica in 𝑄 . This guarantees that the

leader learns about every committed method. The voters’ timestamps are updated with

setTimes to reflect their vote.

There are two outcomes for the cache tree depending on 𝑄 . If it is not a quorum,

then the election fails and the only effect is the change in the timestamps. Otherwise, a

new 𝐸𝐶𝑎𝑐ℎ𝑒 child is added to 𝐶max . The oracle may also return failure, in which case the

state is unchanged (see NoOp in Figure 5.7). This is also a possible outcome for the other

operations so it is written in terms of a general operation, 𝑜𝑝 , which can be any of pull,

invoke, reconfig, or push.

Invoke When a method𝑀 is invoked it finds the caller’s active cache (𝐶𝐴), which is the

largest cache supported by nid. If the active cache’s time is not equal to the caller’s local

time then it has been preempted by another leader and the method fails. Otherwise, a new

𝑀𝐶𝑎𝑐ℎ𝑒 with an incremented version number is inserted into the tree as a child of the

active cache (thus making it the new active cache).

97

Reconfig So far, every new cache inherits its parent’s configuration. The only exception

is an 𝑅𝐶𝑎𝑐ℎ𝑒 , which is essentially a special kind of 𝑀𝐶𝑎𝑐ℎ𝑒 that contains a new config-

uration (ncf) instead of a method. 𝑅𝐶𝑎𝑐ℎ𝑒𝑠 are created by reconfig, whose semantics

are nearly identical to regular method invocation, except for a few additional restrictions,

which are modified versions of R1–3 from Section 5.1. Put in words, R2 and R3 guarantee

the following.

R2 There are no uncommitted 𝑅𝐶𝑎𝑐ℎ𝑒𝑠 in the active branch.

R3 There must be a 𝐶𝐶𝑎𝑐ℎ𝑒 with the same timestamp as the active cache in the active

branch.

As mentioned earlier, Raft’s R1 is stronger than necessary, so it is replaced by the

more general R1+ predicate, which can be instantiated by any condition that satisfies the

Reflexive and Overlap properties in Figure 5.4. Section 5.6 demonstrates a few of the

many possible reconfiguration schemes this permits.

Push As with Advert, a successful push commits an arbitrary prefix of the most recent

uncommitted commands. This is chosen by Opush, which returns a cache (𝐶𝑀) that satisfies

canCommit. This means 𝐶𝑀 must be an 𝑀𝐶𝑎𝑐ℎ𝑒 or 𝑅𝐶𝑎𝑐ℎ𝑒 that was called by nid with

its current timestamp, and is more recent than the latest 𝐶𝐶𝑎𝑐ℎ𝑒 supported by nid. This

guarantees that nid is a valid leader, 𝐶𝑀 is an uncommitted command, and committing it

will not conflict with a previous commit. Like pull, the voters’ timestamps must not be

greater than 𝐶𝑀 ’s, though they may be equal.

As with pull, push updates the voters’ timestamps, and the cache tree if𝑄 is a quorum.

98

The new 𝐶𝐶𝑎𝑐ℎ𝑒 (𝐶new) is added with insertBtw rather than addLeaf , which puts 𝐶new

between 𝐶𝑀 and its children instead of creating a leaf node. The children represent partial

failures that may still be committed later on, so shifting them after the𝐶𝐶𝑎𝑐ℎ𝑒 leaves them

as viable candidates for some later pull or push.

5.4 Safety Proof

The primary purpose of Adore is to simplify the verification of safety properties of

consensus protocols even with the complexity introduced by reconfiguration. This section

demonstrates how it accomplishes this goal by sketching the proof of replicated state

safety and highlighting interesting challenges. For clarity, this section sticks mainly to

informal arguments, but more rigorous proofs can be found in Appendix C.2 and in the

Coq source code [Honoré et al. 2022b].

5.4.1 Breaking Circularity with rdist

Replicated state safety guarantees that clients observe the committed commands in the

same order regardless of which replica they contact. This means if two replicas commit a

command in a certain slot, the prefixes of their logs up to that slot are equal. Phrased in

Adore terms, there exists a single branch that contains every 𝐶𝐶𝑎𝑐ℎ𝑒 .

Definition 4 (Replicated State Safety). There exists a linear path from the root of the tree to

a leaf node that contains every committed method. In other words, for any 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 𝐶𝐶1 and

𝐶𝐶2, one must be a descendant of the other.

Without reconfiguration, the core of the proof of this property is that consecutive

99

elections and commits both require a quorum of supporters. This implies that they share

at least one replica, which ensures that a leader’s log must be sufficiently up-to-date and

contains the latest committed method. Note, however, that this latest commit is unique

only if every committed method has a distinct timestamp and version number pair, which

is easy to prove as long as every leader has a unique timestamp. The standard proof of this

property reasons that leaders require a quorum of voters, so two elections must involve at

least one common voter. Then, because replicas only vote for candidates with timestamps

greater than what they have seen, the shared voter cannot have voted for two candidates

with the same timestamp.

Now consider what happens with reconfiguration. We can no longer assume that two

leaders were elected under the same configuration, so the existence of a shared voter is

not automatically guaranteed. Instead, we must prove that the leaders’ configurations

cannot diverge to the point that they no longer overlap. R1+ guarantees this if the leaders

are separated by only one reconfiguration, but it does not help for two or more changes.

For those cases, we need R2 and R3 to show that if both leaders have the latest committed

method then their configurations must still be similar. However, recall that, for there to be

a unique latest committed method, leaders must have unique timestamps. This, in turn,

requires their quorums to overlap, which is where we began.

This circularity arises because there may be arbitrarily many reconfigurations between

the commit and election. The solution is to count the number of reconfigurations between

two commands, which we call their rdist, and reduce the problem to smaller, more manage-

able steps. This is a fairly awkward property to express in a network-based specification

because one must essentially construct a tree from two logs by merging their common

100

prefix into a branch that forks where their tails diverge. It is much more natural in Adore

because the cache tree already captures this structure.

Definition 5 (rdist). Suppose 𝐶1 and 𝐶2 are caches with a nearest common ancestor 𝐶𝐴. The

rdist of 𝐶1 and 𝐶2 is the number of 𝑅𝐶𝑎𝑐ℎ𝑒𝑠 on the path between 𝐶1 and 𝐶2, passing through

𝐶𝐴, not including the endpoints.

This is a useful metric because it counts only the reconfigurations that influence a given

pair of caches. We can extend this idea by defining the rdist of a tree to be the maximum

rdist between any two caches in the tree. The high-level strategy then is to use induction

on rdist to break the safety proof down into the following cases.

rdist = 0. The configurations are the same, so standard arguments about overlapping

quorums apply.

rdist = 1. R1+, R2, and R3 guarantee that quorums still overlap.

rdist = 𝑛 + 1. The cache tree must decompose into a subtree with rdist = 𝑛 and a branch

with exactly one 𝑅𝐶𝑎𝑐ℎ𝑒 . The inductive hypothesis and rdist = 1 case guarantee

𝐶𝐶𝑎𝑐ℎ𝑒𝑠 in these regions are on the same branch.

The typical approach to proving safety in a network-based model goes by induction

over the trace of network events; i.e., assume the property holds, then show it continues to

hold when some replica receives a commit request, or when a candidate receives a quorum

of election votes, and so on.

An advantage of Adore is that one can instead reason directly about the structure of

the cache tree, which makes for simpler and more intuitive proofs. Given a cache tree, one

101

can consider a small number of cases that could have led to that situation, and prove that

the property holds for each.

Y

X
Z rdist=n

These cases are often most easily explained using pictures like the

one to the left. This represents a subtree in which 𝑍 is a common

ancestor of 𝑋 and 𝑌 . The cloud symbol means 𝑍 can be any type of

cache. The dotted arrows indicate that 𝑋 and 𝑌 are descendants, but

not necessarily direct children, of 𝑍 . The label rdist = 𝑛 means that rdist (𝑋,𝑌) = 𝑛.

5.4.2 Base Cases

The safety proof for the rdist = 0 case follows the standard static-configuration argu-

ment [Lamport 2001; Ongaro and Ousterhout 2014], so we leave the details to Appendix C.2.

Many properties that hold for caches where rdist = 0 also hold when rdist = 1 if one can

show that their configurations still have overlapping quorums, which is precisely what

R1+, R2, and R3 are meant to guarantee. The purpose of R1+ is clear (Overlap in Figure 5.4

ensures that when a leader proposes a new configuration it overlaps with the old one), but

the other two are no less important.

R2 ensures that a leader cannot attempt a reconfiguration while there is an uncommitted

𝑅𝐶𝑎𝑐ℎ𝑒 in its branch. This prevents the configuration from changing twice in a single

commit, which might break the overlap guarantee (Overlap only holds for consecutive

configurations). R3 requires the leader’s log to contain a committed entry with the current

timestamp. This serves a similar purpose to R2 in that it prevents a leader from beginning

a new reconfiguration while another leader still has one in progress. This is a particularly

102

S1
(1,2)

{S1,S2,S3}

S1
(1,1)

{S1,S2,S3}
{S1,S2,S3,S4}

...

(a) 𝑆1 proposes a new configuration.

S2
(2,1)

{S2,S4}
{S1,S2,S4}

S1
(1,2)

{S1,S2,S3}

S2
(2,0)

{S2,S3,S4}
{S1,S2,S3,S4}

S2
(2,1)

{S1,S2,S4}

S1
(1,1)

{S1,S2,S3}
{S1,S2,S3,S4}

...

(b) 𝑆2 commits a different configuration.

S2
(2,1)

{S2,S4}
{S1,S2,S4}

S1
(1,2)

{S1,S2,S3}

S2
(2,0)

{S2,S3,S4}
{S1,S2,S3,S4}

S2
(2,1)

{S1,S2,S4}

S1
(3,0)

{S1,S3}
{S1,S2,S3}
S1

(1,1)
{S1,S2,S3}

{S1,S2,S3,S4}

...

(c) 𝑆1 is elected without 𝑆2’s 𝐶𝐶𝑎𝑐ℎ𝑒 .

Figure 5.9: An example of a breach of safety without R3.

subtle problem because the new leader might not even be aware of the old reconfiguration.

For example, consider the situation in Figure 5.9 (this is the same as Figure 5.1 but

with cache trees). The leader 𝑆1 removes 𝑆4 from the configuration but fails to commit

it. Then 𝑆2 becomes the leader, but is unaware of the reconfiguration attempt because

its supporters do not include 𝑆1, so it begins its own reconfiguration by removing 𝑆3. It

succeeds with a quorum (𝑆2 and 𝑆4) of supporters. At this point, any future election must

have this 𝐶𝐶𝑎𝑐ℎ𝑒 in its history or else safety is compromised. However, because 𝑆1 and 𝑆3

did not participate in 𝑆2’s reconfiguration, 𝑆1 is elected using its own configuration on a

different branch from the 𝐶𝐶𝑎𝑐ℎ𝑒 .

103

Note that, although 𝑆1 and 𝑆2 each change only one server, their configurations differ

by two servers, which allows disjoint majorities. R3 prevents this because, before 𝑆2 can

remove 𝑆3, it must commit a command with the old configuration. This blocks 𝑆1 from

being elected using its own 𝑅𝐶𝑎𝑐ℎ𝑒 because 𝑆2’s 𝐶𝐶𝑎𝑐ℎ𝑒 has a larger timestamp.

Together, these properties guarantee that caches with an rdist of 1 have overlapping

quorums and therefore properties like the uniqueness of a leader’s timestamp and safety

follow from similar arguments to their rdist = 0 counterparts.

Theorem 1 (Safety, rdist ≤ 1). Any cache tree with rdist ≤ 1 satisfies replicated state safety.

5.4.3 General Case

Now that we have established safety for rdist ≤ 1, the final step is to show that the general

case of rdist = 𝑛 reduces to a combination of these cases. To help with this reduction, we

require an invariant that, as a consequence of R3, given two 𝑅𝐶𝑎𝑐ℎ𝑒𝑠 on different branches,

at least one must have a 𝐶𝐶𝑎𝑐ℎ𝑒 ancestor that is not an ancestor of the other.

Lemma 3 (CCache in RCache Fork). Let𝐶𝑅1 and𝐶𝑅2 be 𝑅𝐶𝑎𝑐ℎ𝑒𝑠 such that rdist (𝐶𝑅1,𝐶𝑅2) =

0 and neither is a descendant of the other, but both have a common ancestor 𝐶𝐴. Then there

exists a 𝐶𝐶𝑎𝑐ℎ𝑒 𝐶𝐶 that is a descendant of 𝐶𝐴 and an ancestor of either 𝐶𝑅1 or 𝐶𝑅2.

Theorem 2 (Safety). Any cache tree, 𝑡𝑟 , with any rdist satisfies replicated state safety.

Proof Sketch. We proceed by induction on rdist (𝑡𝑟). For rdist ≤ 1 we are done by

Theorem 1. Suppose now that all trees with rdist = 𝑛 are safe, and 1 < rdist (𝑡𝑟) = 𝑛 + 1 so

1 < rdist (𝐶𝐶1,𝐶𝐶2) ≤ 𝑛 + 1 for some𝐶𝐶𝑎𝑐ℎ𝑒𝑠 𝐶𝐶1 and𝐶𝐶2. If rdist (𝐶𝐶1,𝐶𝐶2) ≤ 𝑛, then they

are in some subtree 𝑡𝑟 ′ with rdist (𝑡𝑟 ′) = 𝑛, so we are done by the inductive hypothesis.

104

Safety also holds if 𝐶𝐶1 and 𝐶𝐶2 are on the same branch, and, if not, we will show that all

other shapes for 𝑡𝑟 are impossible.

CA rdist=0

CC2

CC1CR1
rdist=n+1

CR2

CA rdist=0

CC2

CC1
rdist=n+1

CR

CA

CC1CR
rdist=n+1
rdist=0

CC2

The first two cases are symmetric, and Lemma 3 implies that in the last case there

must be another 𝐶𝐶𝑎𝑐ℎ𝑒 between 𝐶𝐴 and either 𝐶𝑅1 or 𝐶𝑅2, which results in the same

situation as the other cases. Therefore, we can assume without loss of generality that𝐶𝑅 is

on the first 𝑅𝐶𝑎𝑐ℎ𝑒 on𝐶𝐶1’s branch. Let 𝐶𝐶𝑅 be 𝐶𝑅’s first𝐶𝐶𝑎𝑐ℎ𝑒 descendant. It is enough

to show that rdist (𝐶𝐶𝑅,𝐶𝐶2) ≤ 𝑛 because then 𝐶𝐶𝑅 and 𝐶𝐶2 must be on the same branch,

which is a contradiction. We know rdist (𝐶𝐶1,𝐶𝐶2) > 1, so 𝐶𝑅 cannot be the only 𝑅𝐶𝑎𝑐ℎ𝑒

on 𝐶𝐶1’s branch. We also know by R2 that this other 𝑅𝐶𝑎𝑐ℎ𝑒 cannot be between 𝐶𝑅 and

𝐶𝐶𝑅 . Therefore, this 𝑅𝐶𝑎𝑐ℎ𝑒 does not count towards rdist (𝐶𝐶𝑅,𝐶𝐶2) and it is at most 𝑛. □

5.5 Refinement

We now know that Adore is safe, but what does this imply for concrete protocols like

Paxos and Raft? With refinement we can formalize the intuitive correspondence between

Adore and these protocols and show that Adore’s safety guarantees their safety. We

demonstrate this for a slightly simplified version of Raft, but note that this is just one of

many possible implementations.

In a sense, Adore models an abstract, synchronous version of Raft in which commu-

105

Σnet ≜ (Nnid ⇀ Replica) ∗ Network
Replica ≜ Ntime ∗ Nvrsn ∗ 𝐿𝑖𝑠𝑡 (Ntime ∗Method ∗ Config) ∗ . . .

Network ≜ 𝑆𝑒𝑡 (Msg) ∗ 𝑆𝑒𝑡 (Msg)
Opnet ≜ elect : Nnid → Σnet → Σnet

| commit : Nnid → Σnet → Σnet

| invoke : Nnid → Method → Σnet → Σnet

| reconfig : Nnid → Config → Σnet → Σnet

| deliver : Msg → Σnet → Σnet

Figure 5.10: Selected Raft network-based state and operations.

nication happens atomically and in logical time order. Through a series of refinements

we show that a more realistic asynchronous network-based specification of Raft behaves

equivalently to this synchronous version. This part is similar to previous work [Chajed

et al. 2018; Hawblitzel et al. 2015a; v. Gleissenthall et al. 2019], but an important distinction

is the final refinement, which lifts the simplified network-based model to Adore.

Specification We begin by writing a standard asynchronous network-level specification

for our Raft protocol. The state (Figure 5.10) comprises a set of replicas each with a current

timestamp, a local log of commands, and some additional bookkeeping details (e.g., the

current leader, number of votes received). Communication between replicas is only possible

through the network, which is represented as a pair of bags of sent and delivered messages,

respectively. Messages are of four types: election/commit requests/acknowledgements.

Requests are generated by the elect and commit operations. Any time after being sent,

a message may arrive with deliver, which triggers a handler based on the type of the

message. A leader may also call invoke and reconfig, which are local operations that

only affect its own log.

106

We also create another specification that is the same except for a few simplifying

assumptions: only valid messages are delivered (i.e., messages that will not be ignored

by their recipients for having the wrong timestamp, coming from outside the current

configuration, etc.), messages are delivered in order of their logical timestamps, and

requests are received and acknowledged atomically by all of the recipients at once. Unless

otherwise qualified, we refer to the asynchronous model as Raft and to this simplified

version as SRaft.

Refinement Relation The next step is to define a refinement relation, R, between

Raft’s and Adore’s state. This includes correspondences between auxiliary state, such as

timestamps and leadership flags, but for Adore’s safety to imply something useful about

Raft, R must ensure that, for any replica’s local log, the methods are the same as those

along that replica’s active branch of the cache tree.

Note that, unlike Advert, we do not have to directly prove the safety of the network-

based specification, but can instead use Adore’s safety result. In particular, because Adore

guarantees that every replica’s active branch has a common prefix of committed methods,

R implies that the same is true in Raft of the local logs. SRaft and Raft share the same state

definitions, so R also holds for SRaft and Adore.

Simulation Finally, we show that Adore simulates Raft by proving that, given two

states related by R, for any step that Raft can take, there is a corresponding step for Adore

that preserves the relation. If the initial states are also related, then this implies that Adore

captures all valid Raft behaviors and therefore its safety implies Raft’s safety.

107

Real Time

elect@2
L2 S1

elect@1
L1 S2

elect@1
L1 S1

elect@2
L2 S2

elect@2
L2 S1

elect@1
L1 S2

elect@2
L2 S2

elect@2
L2 S1

elect@1
L1 S2

elect@2
L2 S2

elect@1
L1 {S2}

elect@2
L2 {S1,S2}

R
af

t
SR

af
t

pull(L1, 1)
{S2}

pull(L2, 2)
{S1,S2}Ad

or
e

Figure 5.11: Raft to SRaft to Adore refinement. 𝐿1 → 𝑆1 denotes a message sent from a leader to a
server with the type and logical timestamp of the message indicated below.

Intuitively, the correspondence between Adore and Raft steps is clear: pull for elec-

tions, push for commits, and Adore method invocation and reconfiguration for their Raft

counterparts. The reality is less straightforward because the Adore operations are atomic,

while their Raft equivalents are not. SRaft’s purpose is to be an intermediate specification

that rearranges asynchronous Raft operations into an equivalent order that satisfies the

intuitive mapping. As an example, consider the situation in Figure 5.11. We’d like to show

that the four Raft receive events in the bottom layer correspond to the two pull requests

in the top layer, but how can we be sure that these sequences of events are equivalent?

We first observe that 𝑆1 receives a message with timestamp 1 after it received one with

timestamp 2. Therefore, 𝑆1 ignores the second message and we can safely drop it from

the sequence of events. Next, we note that 𝑆1 receiving a message has no effect on 𝑆2 and

vice-versa, so the first two receive events safely commute, which puts the sequence in

108

S1
S1

M1

S1
{S1,S2,S3}

S2

S1

M2

S2

M3

S1

{S1,S3}

M1

S1

S2

S3

Log entriesReplica

M2

M3

{S1,S3}M1

M1

Active Branch Local Log

S1
S1

M1

S1
{S1,S2,S3}

S2

S1

M2

S2

M3

S1

{S1,S3}

M1

S1

S2

S3

M2

M3

{S1,S3}M1

M1

S1
S1

M1

S1
{S1,S2,S3}

S2

S1

M2

S2

M3

S1

{S1,S3}

M1

S1

S2

S3

M2

M3

{S1,S3}M1

M1

Figure 5.12: Correspondence between replicas’ local logs and active branches. The active branch
of each replica is shown by the gray backgrounds, with the dark gray indicating caches that have
matching entries in the local log (𝑀𝐶𝑎𝑐ℎ𝑒𝑠 and 𝑅𝐶𝑎𝑐ℎ𝑒𝑠).

logical time order. Now that 𝐿1 and 𝐿2’s requests are untangled, we can merge adjacent

receive events and treat the messages as if they arrived at each recipient at the same time.

Now we have a much simpler network-based model with in-order, atomic message

delivery that is equivalent to the asynchronous version. To complete the refinement,

the final step is to show that corresponding SRaft and Adore operations preserve R.

Because we have already “lined up” the events, the bulk of the remaining work is to

translate between different state representations, such as a replica’s local log in SRaft and

its active branch in Adore (Figure 5.12). See Appendix B.2 for more information about

109

these refinement layers, and the source code [Honoré et al. 2022b] for the full proofs.

5.6 Instantiating Reconfiguration Schemes

Recall that the only information about configurations that the safety proof relies on is

that quorums of two configurations related by R1+ have a non-empty intersection. This

means that, for any valid instantiation of the configuration-related parameters, the safety

proof holds for free. To give a sense of how flexible Adore’s reconfiguration scheme is,

we demonstrate several practical and diverse implementations.

Raft Single-Server One option is Raft’s single-server algorithm, which uses a standard

majority quorum and only allows configurations to add or remove one replica at a time.

Config ≜ 𝑆𝑒𝑡 (Nnid)
R1+(𝐶,𝐶′) ≜ 𝐶 = 𝐶′ ∨ ∃𝑠 .𝐶 = 𝐶′ ∪ {𝑠} ∨𝐶′ = 𝐶 ∪ {𝑠}

isQuorum(𝑆,𝐶) ≜ |𝐶 | < 2 ∗ |𝑆 ∩𝐶 |

To see why this maintains the quorum overlap property, consider sets𝐶 and𝐶′ = 𝐶∪{𝑠}.

A majority of 𝐶 has at least ⌈(|𝐶 | + 1)/2⌉ = ⌈|𝐶′|/2⌉ elements, and a majority of 𝐶′ has at

least ⌈(|𝐶′| + 1)/2⌉ elements, so together they total at least (2|𝐶′| + 1)/2 elements. 𝐶 is

a subset of 𝐶′, so a majority of either 𝐶 or 𝐶′ is a subset of 𝐶′. Given two subsets of the

same set, if the sum of their cardinalities is greater than that of the superset, they must

have at least one element in common. This is the case for majorities of 𝐶 and 𝐶′ because

(2|𝐶′| + 1)/2 > |𝐶′|.

Raft Joint Consensus A more complicated case is Raft’s original reconfiguration strat-

egy [Ongaro and Ousterhout 2014], which allows arbitrary configuration changes. Like the

110

single-server version, a new configuration is proposed as a special command, but instead of

immediately switching to the new configuration, the replicas transition to an intermediate

“joint configuration” consisting of both the old and new members. In this state, elections

and commit operations require support from majorities of both configurations (not their

union) to succeed. Once a command is committed under the joint configuration, it is safe

to transition to the new configuration.

Config ≜ 𝑆𝑒𝑡 (Nnid) ∗𝑂𝑝𝑡𝑖𝑜𝑛(𝑆𝑒𝑡 (Nnid))
R1+(𝐶,𝐶′) ≜ ∃ old . (𝐶 = (old,⊥) ∧𝐶′ = (old, _)) ∨

∃ new. (𝐶 = (_, new) ∧𝐶′ = (new,⊥))
isQuorum(𝑆, (old, new)) ≜ |old | < 2 ∗ |𝑆 ∩ old | ∧

(new = ⊥ ∨ |new | < 2 ∗ |𝑆 ∩ new |)

The essential point here is that the joint configuration requires majorities from both

configurations. This ensures that, when transitioning from the old to joint configuration

or joint to new, there exists a majority of supporters in both sets, which guarantees that

they have a replica in common.

Primary Backup Instead of relying onmajorities, another approach is something similar

to a primary backup protocol, such as Chain Replication [van Renesse and Schneider

2004], in which one replica or set of replicas (the primary) is responsible for committing

commands, while the others serve as passive backups. A quorum is then any set containing

the primary, which means the set of passive backups can change arbitrarily.

Config ≜ Nnid ∗ 𝑆𝑒𝑡 (Nnid)
R1+((𝑃, _), (𝑃 ′, _)) ≜ 𝑃 = 𝑃 ′

isQuorum(𝑆, (𝑃, _)) ≜ 𝑃 ∈ 𝑆

In this case, the primary is constant and is a member of every quorum, so all quorums

111

obviously intersect. The limitation of this is if the primary crashes then all progress is

blocked. A more reliable alternative is to use one of the previous approaches to manage a

set of primaries that can be replaced as needed. For example, using Raft’s single-server

scheme, one could have a set of three primaries and define a quorum as any set containing

two of them. Primaries can then be replaced one at a time, and passive backups can still

be freely added or removed. This also allows replicas to move between the primary and

passive sets to dynamically adjust to varying availability needs.

Dynamic Quorum Sizes With a set of 𝑛 replicas, a quorum size of ⌈𝑛/2⌉ allows only

one replica to be added or removed at a time while still guaranteeing overlap. On the other

hand, a quorum size of 𝑛 means 𝑛 − 1 replicas can safely be changed at once. In general,

larger quorums allow for faster reconfiguration, but are less fault tolerant. This type of

trade-off is why protocols like Vertical Paxos [Lamport et al. 2009] allow quorum size to be

adjusted dynamically. Adore’s reconfiguration scheme supports this by adding quorum

size (𝑞) to the configuration.

Config ≜ N ∗ 𝑆𝑒𝑡 (Nnid)
R1+((𝑞,𝐶), (𝑞′,𝐶′)) ≜ (𝐶 ⊆ 𝐶′ ∧ |𝐶′| < 𝑞 + 𝑞′) ∨

(𝐶′ ⊆ 𝐶 ∧ |𝐶 | < 𝑞 + 𝑞′)
isQuorum(𝑆, (𝑞,𝐶)) ≜ 𝑞 ≤ |𝑆 ∩𝐶 |

The argument for why this guarantees overlap is a generalization of the single-server

case. Intuitively, if the sum of the quorum sizes is greater than the size of the larger sets,

then two quorums together contain at least that many elements. Then, by the pigeonhole

principle, at least one element is a duplicate, so the quorums must have it in common.

112

5.7 Evaluation and Discussion

Proof Effort and Experience The total amount of Coq to implement and prove the

safety of Adore is approximately 10.8k lines.1 Of that, 2.3k are generic well-formedness

invariants about the tree data structure (e.g., proving the absence of cycles), and 4k are

part of a general library of utility functions and lemmas, leaving 4.5k for the kind of proof

shown in Section 5.4. We also performed the same safety proof using the CADO model

(Adore without reconfiguration), which took approximately 1.3k lines (excluding the tree

properties). The CADO proof took one person approximately two weeks to complete and

adding reconfiguration took another three.

For comparison, the safety proof of the network-based, non-reconfigurable Paxos

specification used in the Advert refinement proof (Section 4.5) required approximately 5k

lines. The relative ease with which Adore handles a much more complicated problem is a

strong demonstration that an abstraction designed specifically for protocol-level reasoning

is a powerful tool.

The primary features of Adore that make it ideal for protocol-level reasoning are its

atomic interface and cache tree. Reducing the complexities of network communication

to four simple operations greatly reduces the number of cases to consider. The cache

tree is also an expressive abstraction that captures important information from log-based

models, but makes explicit certain invariants, such as the existence of a common prefix of

committed commands.
1Despite the conceptual similarities with Advert, almost none of the code is shared. Instead, we took the

opportunity to reimplement the cache tree and other data structures in a style that is easier to use in Coq.

113

 0

 200

 400

 600

 800

 1000

 0 1000 2000 3000 4000

(5) (4) (3) (4) (5)

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Request number

Max
Avg
Min

Figure 5.13: OCaml Raft performance with reconfiguration. (𝑛) indicates the number of replicas.

Refinement The refinement proof between the network-based model of a Raft-like

protocol and Adore took approximately nine weeks and 13.8k lines of Coq, of which

2.5k is the refinement between SRaft and Adore. The protocol is parameterized by the

same isQuorum and R1+ predicates as Adore, which means the refinement proof actually

holds for a large family of protocols with different reconfiguration schemes. Instantiating

these parameters and proving that they satisfy the necessary properties is trivial. Adore’s

codebase includes six examples (the four from Section 5.6 and two others) that took only a

few days and about 200 lines in total for both the definitions and proofs (several rely on

the proof that majority subsets overlap, which is an additional 100 lines).

OCaml Extraction and Performance Using Coq’s support for extraction to OCaml

we created an executable version of the Raft network-based specification and, with a

small, unverified network library wrapper, evaluated its performance on Amazon EC2

with m4.xlarge instances. The experiment adds or removes a replica after every 1000

client requests, starting with five replicas, dropping to three, then increasing back to five.

Figure 5.13 shows the maximum, mean, and minimum latencies for processing each client

114

command over eight runs.

Reconfiguration adds a small delay, especially when the number of replicas increases,

but it is within the normal range of sporadic latency spikes. Our aim is not to make any

strong performance claims, but merely to demonstrate that Adore’s safety guarantees can

extend to verified executable code (excluding the OCaml extraction process, compiler, and

network libraries) without being unreasonably slow.

5.8 Summary

Existing models for distributed systems are not ideal for protocol-level verification because

they mix concerns from different abstraction levels, which makes it difficult to reason

about important but complex operations like reconfiguration. Adore demonstrates that

the ADO model works very well in this setting by hiding irrelevant network details and

emphasizing the inherent tree-like structure of the global system state due to partial

failures. These advantages enabled us to complete the first mechanized safety proof for a

generic consensus protocol with a hot reconfiguration algorithm.

Adore shows that the core ADO model can be extended with additional operations

without significantly complicating the safety proof. In Chapter 6 wewill consider a different

kind of extension and show how to prove liveness as well as safety.

115

Chapter 6

AdoB: Atomic Distributed Objects for

Benign and Byzantine Consensus

This chapter presents a third version of the ADO model, AdoB. Like Advert and Adore,

AdoB is a protocol-level abstraction, but it expands the scope from benign consensus

safety properties to the safety and liveness of both benign and byzantine failure models.

Section 6.1 motivates the need to verify these properties and Section 6.2 summarizes AdoB’s

approach. The formal details are divided into two sections. First, Section 6.3 presents a

benign version of the model along with safety and liveness proofs, then Section 6.4 shows

how these are generalized to also support the byzantine case. Section 6.5 explains the

primary steps of a refinement with a network-level specification, and Section 6.6 discusses

some important lessons learned. Finally, Section 6.7 summarizes the results.

116

6.1 Motivation

As discussed in Section 2.1.2, in order to handle byzantine failures, consensus protocols

require more communication than their benign counterparts. For example, because a

leader cannot be trusted to propose the same method to all replicas, a pre-commit phase

is required, which constructs a certificate that can be included with a commit request as

evidence of its safety. This, and other differences, may seem to imply that benign and

byzantine consensus are fundamentally different, and that a single abstraction cannot hope

to describe both.

Upon closer inspection, however, these differences are not so deep. The goal of the

pre-commit phase is to ensure that some trusted replica has vouched for both the leader’s

legitimacy and the safety of the proposed method. In the byzantine case, this trust is

achieved through acquiring a sufficiently large quorum of votes, while, in the benign case,

the leader itself acts as the trusted party. We can see, therefore, that the benign local update

phase serves the same purpose as the byzantine pre-commit, and everything else is merely

an implementation detail.

AdoB formalizes this relation by precisely identifying the few key differences between

benign and byzantine consensus and abstracting over them in order to obtain a unified

model. This allows one to prove a safety property in a very similar style to Adore, but

AdoB goes further and also supports reasoning about liveness. This is a very important

property in practice because safety only concerns what may not happen, whereas liveness

is about what must happen.

The biggest challenge in proving liveness is deciding how to correctly model timeouts.

117

These are different from other operations because they use an all-to-all communication

pattern instead of relying on a leader to coordinate, and it is not obvious how to model this

as an atomic event. In fact, several of our early attempts had subtle mistakes that made

it impossible to refine AdoB with a network-based specification. We discuss these bugs

further in Section 6.6.1.

6.2 Overview

Adore’s version of the cache tree (Section 5.3) has proven to be very useful for proving

high-level properties of consensus protocols; however, it is lacking in two areas for our

goals. Firstly, it has no concept of time or timeouts, so it cannot be used to prove liveness.

Secondly, it assumes a benign setting and has no way to model byzantine behaviors. AdoB

makes several minor modifications to address these shortcomings; however, for simplicity,

it omits the reconfig operation.

Timeouts The first problem is addressed by adding a new type of timeout cache (𝑇𝐶𝑎𝑐ℎ𝑒)

and adjusting pull, invoke, and push to either succeed (creating an 𝐸𝐶𝑎𝑐ℎ𝑒 ,𝑀𝐶𝑎𝑐ℎ𝑒 , or

𝐶𝐶𝑎𝑐ℎ𝑒 , respectively), or fail with a 𝑇𝐶𝑎𝑐ℎ𝑒 . Though this appears at first to be a relatively

straightforward addition, we found it to be a particularly subtle operation tomodel correctly.

Recall that timeouts require a set of replicas to communicate amongst themselves without

a leader to coordinate them. This is a very different communication pattern than the other

operations, and modeling it as an atomic action leads to some surprising behaviors.

118

Byzantine Replicas By carefully constructing this new timeout-aware ADO model to

highlight the essential components of consensus and abstract away any other implemen-

tation details, we are able to adapt it to a byzantine setting with only a few additional

modifications. The first is, of course, to allow certain replicas to behave maliciously. We

model this by relaxing many of the preconditions for pull, invoke, and push to only

apply to honest replicas. For example, no restrictions are placed on the local timestamps

of byzantine replicas as they cannot be trusted to accurately report them.

As a result of these weakened conditions, a quorum of votes is no longer sufficient to

guarantee the existence of a common honest voter for consecutive elections and commits.

Instead, all operations require a super quorum, which is typically a 2/3 majority but can

be defined other ways as well. To remain as general as possible, as in Adore, these are

represented by an isSQuorum parameter.

The only other significant modification is to change invoke from a purely local op-

eration that requires just the leader’s approval to one that requires a super quorum of

votes. We do this by appealing to an oracle, just as with pull and push. In fact, the new

byzantine invoke is nearly identical to push.

Merging the Models The final key to merging the benign-only and byzantine-only

versions of AdoB is to observe that the quorum required by invoke only needs to be

large enough to guarantee a common honest voter with the previous pull quorum and

following push quorum. In the benign setting, the leader is assumed to be honest so it

can be the common voter and it is enough for invoke to be local, while, in the byzantine

case, it requires a super quorum because the leader may be untrustworthy. By introducing

119

Parameters

nonfaulty : 𝑆𝑒𝑡 (Nnid)
faulty : 𝑆𝑒𝑡 (Nnid)
conf ≜ nonfaulty ∪ faulty

honest ≜ conf

isQuorum : 𝑆𝑒𝑡 (Nnid) → B
leaderAt : Ntime → Nnid

Assumptions

(Disjoint) nonfaulty ∩ faulty = ∅
(Overlap) isQuorum(𝑄) ∧ isQuorum(𝑄′) =⇒ 𝑄 ∩𝑄′ ≠ ∅

Figure 6.1: Benign AdoB configuration and quorum parameters and assumptions.

a special parameterized method quorum (mquorum), we can cover both cases in a single

specification that can be instantiated in different ways.

6.3 AdoB for Benign Consensus

This section presents a formal specification of the AdoB abstraction specialized to the

benign case, along with some key steps of the safety and liveness proofs. Although we

do not yet handle byzantine failures, there are several key design decisions that enable a

smooth transition to the generalized case in Section 6.4.

6.3.1 Semantics

State Figure 6.2 defines the system state (Σ) as a pair of a cache tree, and every replica’s

local logical timestamp. We use the notations tree(𝑠𝑡) and times(𝑠𝑡) to discuss these fields.

The configuration consists of the disjoint union of an arbitrary set of nonfaulty and faulty

replicas, all of which are assumed to be honest (Figure 6.1). The definition of a quorum is

flexible, but it must at least satisfy the property that any two quorums have a non-empty

120

Cache ≜ 𝐸𝐶𝑎𝑐ℎ𝑒 (Nnid ∗ Ntime ∗ 𝑆𝑒𝑡 (Nnid))
| 𝑀𝐶𝑎𝑐ℎ𝑒 (Nnid ∗ Ntime ∗ 𝑆𝑒𝑡 (Nnid) ∗Method)
| 𝐶𝐶𝑎𝑐ℎ𝑒 (Nnid ∗ Ntime ∗ 𝑆𝑒𝑡 (Nnid))
| 𝑇𝐶𝑎𝑐ℎ𝑒 (Ntime ∗ 𝑆𝑒𝑡 (Nnid) ∗ 𝑆𝑒𝑡 (Nnid))

CacheTree ≜ Ncid ⇀ Ncid ∗ Cache
TimeMap ≜ Nnid ⇀ Ntime

Σ ≜ CacheTree ∗ TimeMap

Figure 6.2: Benign AdoB state definitions.

intersection (Overlap). This makes AdoB more generic than if quorums were fixed as

simple majorities. The rotating leader schedule is determined by the leaderAt parameter.

Caches There are four types of cache representing a successful election (𝐸𝐶𝑎𝑐ℎ𝑒), method

invocation (𝑀𝐶𝑎𝑐ℎ𝑒), commit (Commit), or timeout (𝑇𝐶𝑎𝑐ℎ𝑒), respectively. Caches are

associated with a unique cache ID (cid) and the cache tree is implemented as a partial map

from a cid to its cache and corresponding parent cid (with cid 0 as the root). New caches

can only be added at the leaves of the tree with addLeaf .

Each cache contains the logical timestamp (time) of the round in which it was created,

and the success caches (i.e., not 𝑇𝐶𝑎𝑐ℎ𝑒) additionally contain the node ID (nid) that

initiated the operation. Recall that timeouts are initiated independently by several replicas,

so 𝑇𝐶𝑎𝑐ℎ𝑒𝑠 instead contain a set of nids. Caches are strictly ordered (≻) by comparing

timestamps and using cRank as a tie-breaker, which is chosen to preserve the invariant

that a cache is greater (with respect to ≻) than its ancestors. Figure 6.4 defines ≻ along

with other useful functions on caches and cache trees.

AdoB draws a similar distinction between voters and supporters as Adore. A replica’s

“local state” is represented by its active cache. Some operations update a replica’s active

121

Op ≜ pull : Nnid → Σ → Σ

| invoke : Nnid → Method → Σ → Σ

| push : Nnid → Σ → Σ

Figure 6.3: Benign AdoB operations.

cache, but a replica may also only witness and approve the creation of a cache without

changing its own. The most recent such cache is called its voted cache. A replica’s active

cache is the largest (with respect to ≻) for which it is in the set of supporters. Likewise, its

voted cache is the largest for which it is in the set of voters. The voter and supporter sets

may be equal (as for 𝐶𝐶𝑎𝑐ℎ𝑒), one may be a subset of the other (𝐸𝐶𝑎𝑐ℎ𝑒), or they may be

unrelated (𝑇𝐶𝑎𝑐ℎ𝑒).

Operations The AdoB interface consists of pull, invoke, and push (Figure 6.3). Each

takes its caller’s node ID and the current state and returns a new state. The invoke

operation additionally takes a command to execute on the replicated state machine. As

this is completely independent from the safety and liveness properties, we represent it as

an abstract, opaque Method type.

Network-level failures and asynchrony introduce nondeterminism into the outcome of

these operations, which we represent with a logical oracle (O). The oracle’s responsibility is

to abstract over the many ways messages may interleave or fail and return a simple success

(Ok) or timeout (Timeout) result. In Figure 6.5, we use the notation O ⊢ 𝑜𝑝 : 𝑠𝑡 ⇝ 𝑠𝑡 ′ to

represent operation 𝑜𝑝 called on state 𝑠𝑡 with oracle O results in 𝑠𝑡 ′.

Pull The pull operation models an election by asking Opull (Figure 6.6) to choose a set

of voters (𝑄), a sufficiently up-to-date cache (𝐶max), and the next timestamp (𝑡). It then

122

cRank(𝐶) ≜ if 𝐶 = 𝐸𝐶𝑎𝑐ℎ𝑒 (_) then 0 else if 𝐶 = 𝑀𝐶𝑎𝑐ℎ𝑒 (_) then 1 else
if 𝐶 = 𝐶𝐶𝑎𝑐ℎ𝑒 (_) then 2 else if 𝐶 = 𝑇𝐶𝑎𝑐ℎ𝑒 (_) then 3

𝐶1 ≻ 𝐶2 ≜ time(𝐶1) > time(𝐶2)
∨ (time(𝐶1) = time(𝐶2) ∧ cRank(𝐶1) > cRank(𝐶2))

𝐶1 ⪰ 𝐶2 ≜ (time(𝐶1), cRank(𝐶1)) = (time(𝐶2), cRank(𝐶2)) ∨𝐶1 ≻ 𝐶2

voters(𝐶) ≜ if 𝐶 = 𝐸𝐶𝑎𝑐ℎ𝑒 (_, _, 𝑄) then 𝑄 else
if 𝐶 = 𝑀𝐶𝑎𝑐ℎ𝑒 (_, _, 𝑄, _) then 𝑄 else
if 𝐶 = 𝐶𝐶𝑎𝑐ℎ𝑒 (_, _, 𝑄) then 𝑄 else
if 𝐶 = 𝑇𝐶𝑎𝑐ℎ𝑒 (_, 𝑄, _) then 𝑄

supporters(𝐶) ≜ if 𝐶 = 𝐸𝐶𝑎𝑐ℎ𝑒 (nid, _, _) then {nid} else
if 𝐶 = 𝑀𝐶𝑎𝑐ℎ𝑒 (nid, _, _, _) then {nid} else
if 𝐶 = 𝐶𝐶𝑎𝑐ℎ𝑒 (_, _, 𝑄) then 𝑄 else
if 𝐶 = 𝑇𝐶𝑎𝑐ℎ𝑒 (_, _, 𝑄) then 𝑄

freshCID(𝑡𝑟) ≜ max {cid (𝐶) | 𝐶 ∈ 𝑡𝑟 } + 1
addLeaf (𝑠𝑡,𝐶𝑃 ,𝐶new) ≜ (tree(𝑠𝑡) [freshCID(tree(𝑠𝑡)) ↦→ (𝐶𝑃 ,𝐶new)], times(𝑠𝑡))

setTimes(𝑠𝑡,𝑄, 𝑡) ≜ (tree(𝑠𝑡), times(𝑠𝑡) [𝑠 ↦→ 𝑡 | ∀𝑠 ∈ 𝑄 ∩ honest])
voted (𝑡𝑟, 𝑠) ≜ max≻ {𝐶 ∈ 𝑡𝑟 | 𝑠 ∈ voters(𝐶)}
active(𝑡𝑟, 𝑠) ≜ max≻ {𝐶 ∈ 𝑡𝑟 | 𝑠 ∈ supporters(𝐶)}

activeC (𝑡𝑟, 𝑠) ≜ max≻ {𝐶 ∈ 𝑡𝑟 | 𝑠 ∈ supporters(𝐶) ∧𝐶 = 𝐶𝐶𝑎𝑐ℎ𝑒 (_)}
canElect (𝑡𝑟,𝐶,𝑄) ≜ (𝐶 = 𝐶𝐶𝑎𝑐ℎ𝑒 (_) ∨𝐶 = 𝑇𝐶𝑎𝑐ℎ𝑒 (_))

∧ ∀𝑠 ∈ 𝑄 ∩ honest .𝐶 ⪰ active(𝑡𝑟, 𝑠)
canInvoke(𝑡𝑟,𝐶, nid, 𝑄) ≜ 𝐶 = 𝐸𝐶𝑎𝑐ℎ𝑒 (nid, _, _)

∧ ∀𝑠 ∈ 𝑄 ∩ honest .𝐶 ⪰ voted (𝑡𝑟, 𝑠)
canCommit (𝑡𝑟,𝐶, nid, 𝑄) ≜ 𝐶 = 𝑀𝐶𝑎𝑐ℎ𝑒 (nid, _, _, _)

∧ ∀𝑠 ∈ 𝑄 ∩ honest .𝐶 ⪰ voted (𝑡𝑟, 𝑠)
canTimeout (𝑡𝑟,𝐶,𝑄) ≜ ∀𝑠 ∈ 𝑄 ∩ honest .𝐶 ⪰ activeC (𝑡𝑟, 𝑠)

Figure 6.4: Benign AdoB auxiliary definitions.

123

PullOk
Opull (𝑠𝑡, nid) = Ok(𝑄,𝐶max, 𝑡)

𝑠𝑡 ′ ≜ setTimes(𝑠𝑡,𝑄, 𝑡) 𝐶new ≜ 𝐸𝐶𝑎𝑐ℎ𝑒 (nid, 𝑡,𝑄)
O ⊢ pull(nid) : 𝑠𝑡 ⇝ addLeaf (𝑠𝑡 ′,𝐶max,𝐶new)

InvokeOk
Oinvoke (𝑠𝑡, nid) = Ok(𝐶𝐸) 𝐶new ≜ 𝑀𝐶𝑎𝑐ℎ𝑒 (nid, time(𝐶𝐸), {nid} , 𝑀)

O ⊢ invoke(nid, 𝑀) : 𝑠𝑡 ⇝ addLeaf (𝑠𝑡,𝐶𝐸,𝐶new)

PushOk
Opush(𝑠𝑡, nid) = Ok(𝑄,𝐶𝑀)

𝑠𝑡 ′ ≜ setTimes(𝑠𝑡,𝑄, time(𝐶𝑀) + 1) 𝐶new ≜ 𝐶𝐶𝑎𝑐ℎ𝑒 (nid, time(𝐶𝑀), 𝑄)
O ⊢ push(nid) : 𝑠𝑡 ⇝ addLeaf (𝑠𝑡 ′,𝐶𝑀 ,𝐶new)

Timeout
Oop (𝑠𝑡, nid) = Timeout (𝑄vote, 𝑄supp,𝐶max, 𝑡)

𝑠𝑡 ′ ≜ setTimes(𝑠𝑡,𝑄vote ∪𝑄supp, 𝑡 + 1) 𝐶new ≜ 𝑇𝐶𝑎𝑐ℎ𝑒 (𝑡,𝑄vote, 𝑄supp)
O ⊢ op(nid) : 𝑠𝑡 ⇝ addLeaf (𝑠𝑡 ′,𝐶max,𝐶new)

Figure 6.5: Semantics of benign AdoB operations. Every operation can time out, so Timeout is
parameterized by 𝑜𝑝 , which can be any of pull, invoke, or push. For invoke, 𝑜𝑝 is understood to
also take𝑀 as an argument.

updates the voter’s timestamps with setTimes to reflect their vote, and adds a new 𝐸𝐶𝑎𝑐ℎ𝑒

child to 𝐶max . This represents a logical marker that at this point, 𝐶max is the most recent

cache among this quorum of voters.

Opull chooses these values nondeterministically, but it must obey certain restrictions

to faithfully model consensus. The first three are simple sanity checks; namely, the new

timestamp follows sequentially from the previous round, the caller is the designated leader

for this round, and it has received a quorum of voters. The others ensure the oracle’s

choice of cache is sufficiently up-to-date. For instance, canElect requires that 𝐶max is a

𝐶𝐶𝑎𝑐ℎ𝑒 or 𝑇𝐶𝑎𝑐ℎ𝑒 , as those are the only valid ways to end a round, and that it is at least

as recent as the honest voters’ active caches. The two remaining preconditions guarantee

124

TimeoutResult ≜ Timeout (𝑆𝑒𝑡 (Nnid) ∗ 𝑆𝑒𝑡 (Nnid) ∗ Cache ∗ Ntime)
Opull : Σ → Nnid → (Ok(𝑆𝑒𝑡 (Nnid) ∗ Cache ∗ Ntime) | TimeoutResult)
Oinvoke : Σ → Nnid → (Ok(Cache) | TimeoutResult)
Opush : Σ → Nnid → (Ok(𝑆𝑒𝑡 (Nnid) ∗ Cache) | TimeoutResult)

ValidPullOracleOk
𝑡 = time(𝐶max) + 1

leaderAt (𝑡) = nid isQuorum(𝑄) canElect (tree(𝑠𝑡),𝐶max, 𝑄)
∀𝑠 ∈ 𝑄 ∩ honest . times(𝑠𝑡) [𝑠] ≤ 𝑡 ∀𝑠 ∈ 𝑄 ∩ honest . time(voted (𝑠𝑡, 𝑠)) < 𝑡

Opull (𝑠𝑡, nid) = Ok(𝑄,𝐶max, 𝑡)

ValidInvokeOracleOk
𝑡 = time(𝐶𝐸) leaderAt (𝑡) = nid canInvoke(tree(𝑠𝑡),𝐶𝐸, nid, {nid})

Oinvoke (𝑠𝑡, nid) = Ok(𝐶𝐸)

ValidPushOracleOk
𝑡 = time(𝐶𝑀) leaderAt (𝑡) = nid isQuorum(𝑄)

canCommit (tree(𝑠𝑡),𝐶𝑀 , nid, 𝑄) ∀𝑠 ∈ 𝑄 ∩ honest . times(𝑠𝑡) [𝑠] ≤ 𝑡

Opush(𝑠𝑡, nid) = Ok(𝑄,𝐶𝑀)

ValidOracleTimeout
isQuorum(𝑄vote) 𝑄supp ∩ honest ≠ ∅

canTimeout (tree(𝑠𝑡),𝐶max, 𝑄vote) ∀𝑠 ∈
(
𝑄vote ∪𝑄supp

)
∩ honest . times(𝑠𝑡) [𝑠] ≤ 𝑡

∃𝑠 ∈ 𝑄vote ∩ honest . times(𝑠𝑡) [𝑠] = 𝑡

Oop (𝑠𝑡, nid) = Timeout (𝑄vote, 𝑄supp,𝐶max, 𝑡)

Figure 6.6: Valid benign AdoB oracle conditions. The conditions for timing out are identical
regardless of the operation so ValidOracleTimeout is parameterized by 𝑜𝑝 .

the voters have not already voted for an election with this timestamp.

The voters of the new 𝐸𝐶𝑎𝑐ℎ𝑒 are not also supporters. They have witnessed the fact

that the new leader chose a sufficiently recent cache, but they do not yet have enough

evidence to know that setting it as their active cache is safe. For that, they must wait until

the leader tells them to commit.

Note that, in several places, only the honest voters are considered by intersecting 𝑄

with honest (e.g., setTimes, canElect). This is redundant because all voters are currently

125

honest; however, expressing it this way brings this model more in line with the byzantine

case and will make it simpler to generalize later.

Invoke The local log update step is modeled by invoke. Oinvoke simply confirms that

it is called by the leader and that the chosen cache (𝐶𝐸) is that leader’s latest 𝐸𝐶𝑎𝑐ℎ𝑒

(canInvoke), which it then extends with an𝑀𝐶𝑎𝑐ℎ𝑒 . This is a local operation that does not

require a quorum of approval, so the leader is its sole voter and supporter.

Push Finally, push attempts to commit the 𝑀𝐶𝑎𝑐ℎ𝑒 created by invoke. Like pull it

receives a set of voters (𝑄), and a cache to commit (𝐶𝑀) from Opush. It performs similar

checks to pull to confirm the caller is indeed the leader and that 𝐶𝑀 is its latest uncom-

mitted 𝑀𝐶𝑎𝑐ℎ𝑒 (canCommit). Note that the voters’ timestamps are set to one past the

𝑀𝐶𝑎𝑐ℎ𝑒’s timestamp to ensure that they can no longer participate in the current or any

previous rounds.

Now the voters can finally support the 𝐶𝐶𝑎𝑐ℎ𝑒 because the leader has told them it is

safe to do so. This has important implications for future pull operations because it affects

the valid choices of 𝐶max . Recall that canElect requires that 𝐶max is at least as recent as

its voters’ active (i.e., supported) caches. This set of voters constitutes a quorum, which

means at least one must also be a supporter of the 𝐶𝐶𝑎𝑐ℎ𝑒 . Therefore, the next election is

guaranteed to be “aware of” the 𝐶𝐶𝑎𝑐ℎ𝑒 and choose a 𝐶max that is at least as recent.

Timeout For each of these operations, a second possible outcome is a timeout, which is

represented by the oracle returning Timeout along with the replicas that timed out (𝑄vote),

the replicas that observed at least a quorum of timeouts (𝑄supp), the most recent cache

126

among those that timed out (𝐶max), and the timestamp at which they timed out (𝑡). The

effect is to create a new 𝑇𝐶𝑎𝑐ℎ𝑒 , and, like push, force the participating replicas to move to

the next round by setting their timestamps to 𝑡 + 1.

The restrictions on the oracle are slightly different from the other cases due to the

unique communication pattern used for timeouts. Rather than being initiated by a leader

and supported by a quorum of replicas, a timeout is a collective action by a quorum of

replicas without a leader’s involvement. The set of voters,𝑄vote, have each timed out locally,

but it is only when some replicas, 𝑄supp, receive a quorum of these timeout messages that

the timeout is considered successful. Therefore, 𝑄vote must be a quorum and 𝑄supp must be

non-empty. These sets may or may not overlap.

Included in each timeout message from 𝑄vote is the replica’s active cache. These are

collected and forwarded to the leader of the next round to prompt it to begin an election.

The oracle enforces this with canTimeout, which confirms 𝐶max is at least as recent as

the voters’ latest supported 𝐶𝐶𝑎𝑐ℎ𝑒 (activeC). The final two preconditions require that

no voter or supporter has already timed out or voted in a more recent round, and that at

least one voter is actually in the round that is currently timing out. This prevents spurious

timeouts for rounds that have not yet even begun, which is necessary to ensure that the

system progresses through rounds sequentially.

Though these rules seem reasonable, it is not obvious whether some slight modifications

might not be equally valid. For example, what happens if one requires 𝐶 = activeC (𝑡𝑟, 𝑠)

in canTimeout, or drops 𝑄supp from ValidOracleTimeout and uses 𝑄vote for both voters

and supporters? These alternatives may seem reasonable, indeed one can even still prove

safety and liveness, but in fact they are invalid because they do not faithfully model the

127

behaviors of real protocols. The fact that these minor alterations can render the abstraction

invalid demonstrates that correctly modeling timeouts in AdoB is a subtle challenge, and

that a refinement proof from a lower-level model is essential to have faith in a high-level

model. Section 6.6.1 discusses these issues further.

Example For the most part, pull, invoke, and push behave similarly to how they were

described in Figures 3.2 and 3.3. In the steady state, branches still grow linearly with

𝐸𝐶𝑎𝑐ℎ𝑒𝑠 followed by 𝑀𝐶𝑎𝑐ℎ𝑒𝑠 followed by 𝐶𝐶𝑎𝑐ℎ𝑒𝑠; however, failures are represented

slightly differently with the addition of𝑇𝐶𝑎𝑐ℎ𝑒𝑠 . Previously, pull simply selected the latest

𝐶𝐶𝑎𝑐ℎ𝑒 , which could create forks as in Figure 3.3b; now, pull must choose a 𝐶𝐶𝑎𝑐ℎ𝑒 or

𝑇𝐶𝑎𝑐ℎ𝑒 from the previous round. This is important to ensure liveness because it prevents

pull from simply choosing the same 𝐶𝐶𝑎𝑐ℎ𝑒 forever without making any actual progress,

but it means the situation in Figure 3.3b is now disallowed.

Instead, before creating an 𝐸𝐶𝑎𝑐ℎ𝑒 for time 3, there must first be a𝑇𝐶𝑎𝑐ℎ𝑒 for time 2. In

Figure 6.7 the three valid options for the 𝑇𝐶𝑎𝑐ℎ𝑒’s parent (caches that satisfy canTimeout)

are an uncommitted 𝑀𝐶𝑎𝑐ℎ𝑒 , its parent 𝐸𝐶𝑎𝑐ℎ𝑒 , and the latest 𝐶𝐶𝑎𝑐ℎ𝑒 . If the 𝑀𝐶𝑎𝑐ℎ𝑒

is chosen, then the next leader picks up where the previous one left off and continues

extending the same branch. Otherwise, if the 𝐶𝐶𝑎𝑐ℎ𝑒 is chosen, then a fork is created

and the𝑀𝐶𝑎𝑐ℎ𝑒 is abandoned. Choosing the 𝐸𝐶𝑎𝑐ℎ𝑒 also creates a fork and is essentially

equivalent to choosing the 𝐶𝐶𝑎𝑐ℎ𝑒 because the branch contains exactly the same prefix of

𝑀𝐶𝑎𝑐ℎ𝑒𝑠 and 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 .

128

MCache

voters={...}

method=M

time=t

CCache

voters={...}

time=t

ECache
voters={...}

ldr=ID

time=t

TCache

voters={...}

supps={...}

time=t

(a) The types of caches. 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 , 𝑀𝐶𝑎𝑐ℎ𝑒𝑠 , and 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 are the same as Figure 5.2 except 𝑀𝐶𝑎𝑐ℎ𝑒𝑠 now
also have a set of voters. 𝑇𝐶𝑎𝑐ℎ𝑒𝑠 represent timeouts.

CCache

voters={S1,S3}

time=1

ECache
voters={S1,S3}

ldr=S3

time=2

MCache
voters={S3}

method=B

time=2

...
TCache

voters={S1,S2}

supps={S1}

time=2

TCache

voters={S1,S2}

supps={S1}

time=2

(b) 𝑆3 times out while committing. There are three possible locations for 𝑇𝐶𝑎𝑐ℎ𝑒 (the 𝐸𝐶𝑎𝑐ℎ𝑒 option is
not shown because choosing it is effectively the same as choosing the 𝐶𝐶𝑎𝑐ℎ𝑒).

CCache

voters={S1,S3}

time=1

ECache
voters={S1,S3}

ldr=S3

time=2

MCache
voters={S3}

method=B

time=2
...

TCache

voters={S1,S2}

supps={S1}

time=2

ECache
voters={S1,S2}

ldr=S1

time=3

(c) Option 1: The next leader continues building off the previous𝑀𝐶𝑎𝑐ℎ𝑒 .

CCache

voters={S1,S3}

time=1

ECache
voters={S1,S3}

ldr=S3

time=2

MCache
voters={S3}

method=B

time=2

...
TCache

voters={S1,S2}

supps={S1}

time=2

ECache
voters={S1,S2}

ldr=S1

time=3

(d) Option 2: The next leader starts a new branch.

Figure 6.7: An example of a timeout in AdoB.

129

6.3.2 Safety and Liveness Proofs

A practical consensus protocol must be both safe and live. We have proved in Coq that

both properties hold for AdoB, and, in this section, we summarize some key steps of these

proofs as well as some necessary assumptions. Coq versions of the following definitions

and theorems can be found in Appendix C.3 and the full proofs can be found in the

supplementary materials.

Safety The top-level safety property is stated as follows.

Theorem 3 (Safety). For any two𝐶𝐶𝑎𝑐ℎ𝑒𝑠 in the cache tree, one is a descendant of the other.

In other words, committed methods form a linear path through the cache tree.

The proof proceeds by supposing neither cache is the other’s descendant and deriving

a contradiction. We then observe that each 𝐶𝐶𝑎𝑐ℎ𝑒 must have a corresponding 𝐸𝐶𝑎𝑐ℎ𝑒

ancestor as well as some nearest common ancestor. By considering the different positions

of these caches, we can see that at least one 𝐸𝐶𝑎𝑐ℎ𝑒 is either the nearest common ancestor,

or a descendant or ancestor of it. In each case, we use invariants about well-formed cache

trees to derive a contradiction.

For example, we can show that 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 have unique timestamps, which means their

corresponding 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 must as well. Then, if the more recent of the two 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 is an

ancestor of the earlier 𝐶𝐶𝑎𝑐ℎ𝑒 , this contradicts the following lemma, which states that

every 𝐸𝐶𝑎𝑐ℎ𝑒 must be a descendant of every earlier 𝐶𝐶𝑎𝑐ℎ𝑒 .

Lemma 4 (Election Follows Commit). For any 𝐶𝐶𝑎𝑐ℎ𝑒 𝐶 and 𝐸𝐶𝑎𝑐ℎ𝑒 𝐶′
, if 𝐶′ ≻ 𝐶 then 𝐶′

must be a descendant of 𝐶 .

130

This sort of invariant is an example of how the cache tree abstraction can greatly

simplify high-level reasoning. It is an intuitively simple property that leaders cannot

be elected if they are missing any committed methods. In AdoB it is equally simple to

express formally because 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 and 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 serve as convenient logical markers of

when elections and commits occurred relative to each other. A typical network-based

model, on the other hand, does not have this level of structure, so formulating this property

is much more cumbersome.

This, and several other key invariants, follow from the fact that consecutive elections,

timeouts, and commits have overlapping quorums of voters. To keep AdoB as general

as possible, we do not specify the exact definition of a quorum, but instead describe it

axiomatically by insisting it satisfy the property that two quorums have a non-empty

intersection (Overlap in Figure 6.1). This is easily instantiated by the typical 𝑓 + 1 out of

2𝑓 + 1 majority, but it also allows for more exotic variants where, for instance, replicas

have weights and a quorum is any set whose total weight exceeds some threshold (similar

to the proof-of-stake scheme [Saleh 2020] used by some blockchain protocols).

Liveness The liveness of AdoB can be stated informally as: given any cache tree, within

some finite time a new method will be committed. To avoid referencing physical time, we

formalize this property in terms of a strategy.

Definition 6 (Strategy). A strategy is a deterministic function that, given a trace of AdoB

operations, decides the next operation to execute.

This acts as a logical global scheduler for the replicas, determining what they do and

in what order. By repeatedly applying the strategy we can extend the trace and consider

131

future states of the cache tree. For liveness, it is not enough to assume an arbitrary strategy,

as it could just call pull forever and nothing would ever be committed. Instead, we must

assume a productive strategy; i.e., one that will try to make progress whenever it is able.

This is enforced by requiring that, whenever a replica is able to perform an operation

(e.g., pull because it has completed its previous round), the strategy will decide to call

that operation within some finite number of steps, and furthermore, the replica will not

participate in any other operations before that point.

Definition 7 (Productive Strategy). When a replica is eligible to become the leader, a

productive strategy requires it to call pull as its next action within a finite number of steps.

Similarly, replicas must call invoke and push as soon as possible whenever they are able.

We can then formally express liveness in the following way.

Theorem 4 (Liveness). Given a cache tree and a productive strategy, within a finite number

of steps a new cache tree will be produced with a more recent 𝐶𝐶𝑎𝑐ℎ𝑒 than the original tree.

Note that a productive strategy does not require that an operation succeeds. It is entirely

possible for a leader to believe it is eligible to call push but be preempted by another leader’s

pull. As long as the attempt is made, we can assume that under reasonable conditions, it

will eventually have an opportunity to succeed.

In particular, we assume that the network is partially synchronous [Dwork et al. 1988]

in order to rule out pathological cases, such as every message being dropped. Recall from

Section 2.1.3 that this means that, after some global stabilization time (GST), messages be-

tween non-faulty replicas are delivered in finite time. We express this through assumptions

that, after GST, all non-faulty replicas will vote for any valid pull or push request.

132

Definition 8 (Partial Synchrony). There exists an arbitrary but finite GST, as well as a

function to determine if a cache tree has reached GST. After GST, if a replica is eligible to be

elected then Opull returns Ok with some set of voters that includes every non-faulty replica.

Likewise for Opush.

This definition requires that, once GST is reached, the network continues to behave

synchronously forever. This is slightly stronger than necessary as we actually only require

synchrony to hold for one complete round (the time to complete a pull, invoke, and

push). However, expressing this more precise bound complicates the formalization, so it is

common to make this simplifying assumption [Bravo et al. 2020; Hawblitzel et al. 2015a;

Losa and Dodds 2020].

The final necessary assumption is that eventually a non-faulty leader has the oppor-

tunity to be elected. HotStuff and Jolteon guarantee this with a round-robin rotating

leadership, but other schemes such as Raft’s randomized election timeouts are also possible.

AdoB therefore simply assumes the existence of an arbitrary deterministic order that

eventually selects a non-faulty replica.

Definition 9 (Fair Rotating Leadership). Leaders are determined for each round according to

some deterministic schedule. The order may be completely arbitrary except that a non-faulty

replica must always be selected within a finite number of rounds.

Armed with these assumptions, the liveness proof decomposes into two main steps:

showing that the system is always able to progress to the next round by either committing

a method or timing out; and, after GST, a non-faulty leader is eventually reached who will

commit a method. The first part relies on a notion of global time that indicates the latest

133

round in which any replica has participated.

Definition 10 (Global Time). The global time of a cache tree is the timestamp of the most

recent (with respect to ≻) 𝐸𝐶𝑎𝑐ℎ𝑒 or 𝑇𝐶𝑎𝑐ℎ𝑒 .

By proving that the global time always eventually increases, we ensure that the system

never gets stuck in a particular round.

Lemma 5 (Global Time Advances). Given any cache tree and productive strategy, a new

cache tree is eventually produced with a strictly larger global time than the original tree.

This follows from the productive strategy assumption. Whatever replica is the leader

for the current round must eventually call invoke and then push. If push fails and times

out, then the round advances and we are done. Otherwise, if it succeeds, then the next

leader must eventually call pull, which will also advance the global time by creating either

an 𝐸𝐶𝑎𝑐ℎ𝑒 on success, a 𝑇𝐶𝑎𝑐ℎ𝑒 on timeout.

Now, thanks to Lemma 5 and Definition 9, we know that, if one waits long enough, a

round will begin with a non-faulty leader. Then, because we have reached GST, Definition 8

guarantees the eventual success of pull and push. The newly created 𝐶𝐶𝑎𝑐ℎ𝑒 must have

a strictly larger timestamp than any before it and the proof is complete.

Proof Effort Implementing benign AdoB in Coq and proving safety and liveness took

under one person-month and approximately 700 lines of specification and 6800 lines of

proof. This does not include the pre-existing custom library of general lemmas and tactics

from Adore, nor the initial planning period to design the model and informally outline the

134

proofs. Nevertheless, this is quite fast for mechanized consensus proofs, where timescales

are normally on the order of several months rather than weeks.

The safety proof very closely follows the high-level structure of Adore’s safety proof.

In fact, several of the top-most theorems are exactly the same. The differences are primarily

localized to lower-level lemmas that perform case analysis on the different cache types (e.g.,

the𝑇𝐶𝑎𝑐ℎ𝑒 , which Adore lacks). This contributed to the faster proof times and is a strong

demonstration of the benefits provided by the ADO model’s isolation of protocol-level

behaviors from irrelevant network-level details.

6.4 AdoB for Generalized Consensus

We now demonstrate how to adapt the previous benign model to a byzantine version, and

finally merge the two into a generalized abstraction.

6.4.1 Adapting to Byzantine Consensus

Thanks to our efforts in Section 6.3 to bring out the shared structure of the benign and

byzantine cases, only three additional changes are required to support byzantine consensus.

Figures 6.8 to 6.10 highlight these modifications with boxed blue text . The first change is

to allow malicious behaviors by partitioning the replicas into honest and byzantine sets.

Now, when preconditions such as canElect intersect 𝑄 with honest, this reflects the fact

that byzantine replicas cannot be trusted to accurately report their local state. We do still

assume that byzantine replicas cannot lie about their identity, invent votes they did not

receive, or create caches out of thin air. These are enforced in practice with cryptographic

135

Parameters

honest : 𝑆𝑒𝑡 (Nnid)
byzantine : 𝑆𝑒𝑡 (Nnid)

conf ≜ honest ∪ byzantine

isQuorum : 𝑆𝑒𝑡 (Nnid) → B
isSQuorum : 𝑆𝑒𝑡 (Nnid) → B

leaderAt : Ntime → Nnid

Assumptions

(Disjoint) honest ∩ byzantine = ∅
(Overlap) isQuorum(𝑄) ∧ isQuorum(𝑄′) =⇒ 𝑄 ∩𝑄′ ≠ ∅

(SOverlap) isSQuorum(𝑄) ∧ isSQuorum(𝑄′) =⇒ 𝑄 ∩𝑄′ ∩ honest ≠ ∅

Figure 6.8: Byzantine AdoB configuration and quorum parameters and assumptions. The replicas
are no longer all honest. Super quorums must have an honest overlap.

InvokeOk
Oinvoke (𝑠𝑡, nid) = Ok(𝑄 ,𝐶𝐸)

𝑠𝑡 ′ ≜ setTimes(𝑠𝑡,𝑄 ∩ honest, time(𝐶𝐸)) 𝐶new ≜ 𝑀𝐶𝑎𝑐ℎ𝑒 (nid, time(𝐶𝐸), 𝑄 ,𝑀)
O ⊢ invoke(nid, 𝑀) : 𝑠𝑡 ⇝ addLeaf (𝑠𝑡 ′,𝐶𝐸,𝐶new)

All other rules are the same as in Figure 6.5.

Figure 6.9: Semantics of byzantine AdoB operations. All are identical to the benign case except
invoke now requires a super quorum of voters (𝑄) instead of just nid.

threshold signatures, the implementation of which we do not verify here.

In general, one cannot tell whether an individual replica is honest or byzantine, but, if

enough replicas are involved and one assumes an upper bound on the fraction of byzantine

replicas, then one can show that the group behaves honestly. This is the purpose of the

second change: super quorums (isSQuorum in Figure 6.8). As with regular quorums, we do

not fix super quorums to any particular size, but instead assume only that any two super

quorums have a common honest member (SOverlap). Then every instance of isQuorum is

replaced with isSQuorum in Figure 6.10.

Note that, while the model separates honest and byzantine replicas, it is important that

136

Oinvoke : Σ → Nnid → (Ok(𝑆𝑒𝑡 (Nnid) ∗ Cache) | TimeoutResult)

ValidPullOracleOk
𝑡 = time(𝐶max) + 1

leaderAt (𝑡) = nid isSQuorum(𝑄) canElect (tree(𝑠𝑡),𝐶max, 𝑄)
∀𝑠 ∈ 𝑄 ∩ honest . times(𝑠𝑡) [𝑠] ≤ 𝑡 ∀𝑠 ∈ 𝑄 ∩ honest . time(voted (𝑠𝑡, 𝑠)) < 𝑡

Opull (𝑠𝑡, nid) = Ok(𝑄,𝐶max, 𝑡)

ValidInvokeOracleOk
𝑡 = time(𝐶𝐸) leaderAt (𝑡) = nid isSQuorum(𝑄)

canInvoke(tree(𝑠𝑡),𝐶𝐸, nid, 𝑄) ∀𝑠 ∈ 𝑄 ∩ honest . times(𝑠𝑡) [𝑠] ≤ 𝑡

Oinvoke (𝑠𝑡, nid) = Ok(𝑄 ,𝐶𝐸)

ValidPushOracleOk
𝑡 = time(𝐶𝑀) leaderAt (𝑡) = nid isSQuorum(𝑄)

canCommit (tree(𝑠𝑡),𝐶𝑀 , nid, 𝑄) ∀𝑠 ∈ 𝑄 ∩ honest . times(𝑠𝑡) [𝑠] ≤ 𝑡

Opush(𝑠𝑡, nid) = Ok(𝑄,𝐶𝑀)

ValidOracleTimeout
isSQuorum(𝑄vote) 𝑄supp ∩ honest ≠ ∅

canTimeout (tree(𝑠𝑡),𝐶max, 𝑄) ∀𝑠 ∈
(
𝑄vote ∪𝑄supp

)
∩ honest . times(𝑠𝑡) [𝑠] ≤ 𝑡

∃𝑠 ∈ 𝑄vote ∩ honest . times(𝑠𝑡) [𝑠] = 𝑡

O(𝑠𝑡, nid) = Timeout (𝑄vote, 𝑄supp,𝐶max, 𝑡)

Figure 6.10: Valid byzantine AdoB oracle conditions. Quorums are replaced by super quorums.

we never rely on this knowledge to determine an operation’s outcome. That is why honest

is only used to weaken preconditions (e.g., ∀𝑠 ∈ 𝑄∩honest . 𝑃 (𝑠) exempts byzantine replicas

from satisfying 𝑃), or when a group is large enough to draw conclusions about its members

(SOverlap can safely assume a common honest replica exists due to the properties of

isSQuorum). In Section 6.5, we prove that we do not make any invalid assumptions by

showing that they are all satisfiable by a network-level protocol specification.

With these changes, we have moved to a model where only groups rather than indi-

viduals can be trusted. In particular, this includes the leader, who, if it were byzantine,

137

could attempt to trick other replicas into committing invalid states either by proposing an

out-of-date cache, or by equivocating and proposing different caches to different replicas.

To rule out this possibility, leaders must gather evidence that at least a super quorum

has approved a proposed cache before it can be committed. Previously, this evidence

was provided implicitly by invoke as it meant the leader unilaterally gave its approval

for an 𝑀𝐶𝑎𝑐ℎ𝑒 , which is enough when everyone behaves honestly. Now, invoke must

actually gather a super quorum of voters, which is decided by Oinvoke (Figure 6.10). The

preconditions are the same as before but extended to every replica in 𝑄 instead of just the

leader. Intuitively, it is as if every voter performs a local dry run of its own benign invoke.

One maywonder if the four outcomes in Figure 6.10 really capture all possible behaviors

of a malicious replica. What happens, for instance, if a byzantine leader colludes with other

byzantine replicas to update their local logs in invalid ways? We make the design decision

to model such operations as having no effect in AdoB. We then justify this decision by

proving that a specification that allows these behaviors refines AdoB (see Section 6.5.1).

The advantage of this approach is it allows us to handle this type of implementation-level

complication independently from general consensus properties such as safety and liveness,

which disentangles and greatly simplifies the proofs.

Examples The addition of byzantine replicas does not drastically change the behaviors

allowed by AdoB. Figure 6.11 shows a typical cache tree with one byzantine replica

(𝑆4, shown in red) and three honest replicas (𝑆1, 𝑆2, 𝑆3). In Figure 6.11b, the leader, 𝑆3,

successfully invokes a method. The main difference from the benign setting is it requires a

super quorum of votes (at least 3 out of 4). This ensures that, although one of the voters is

138

CCache

voters=

{S1,S2,S3}

time=1

ECache
voters={S1,S2,S3}

ldr=S3

time=2

...

(a) 𝑆3 is the leader. The configuration is 𝑆1, 𝑆2, 𝑆3, 𝑆4 and all but 𝑆4 are honest.

MCache
voters=

{S1,S3,S4}

method=B

time=2

CCache

voters=

{S1,S2,S3}

time=1

ECache
voters={S1,S2,S3}

ldr=S3

time=2

...

(b) 𝑆3 invokes a method with votes from a super quorum, including 𝑆4.

MCache
voters=

{S1,S3,S4}

method=B

time=2CCache

voters=

{S1,S2,S3}

time=1

ECache
voters={S1,S2,S3}

ldr=S3

time=2

...
TCache

voters=

{S1,S2,S4}

supps={S1}

time=2

(c) 𝑆1, 𝑆2, 𝑆4 time out waiting for 𝑆3 to commit. 𝑆4 could be lying about its time, but this is
still safe because 𝑆1 and 𝑆2 form an honest quorum.

MCache
voters=

{S1,S3,S4}

method=B

time=2CCache

voters=

{S1,S2,S3}

time=1

ECache
voters={S1,S2,S3}

ldr=S3

time=2

...
TCache

voters=

{S1,S2,S4}

supps={S1}

time=2

MCache
voters=

{S1,S2,S4}

method=C

time=3

ECache
voters={S1,S2,S4}

ldr=S4

time=3

(d) 𝑆4 is elected leader and invokes a method. Byzantine leaders can make progress as long
as they behave honestly.

Figure 6.11: Allowed behaviors in byzantine AdoB.

139

𝑆4 and cannot be trusted, the other voters form an honest quorum (at least 2 out of 3). At

least one of these honest voters must have also voted for the previous election (𝑆1 and 𝑆3

in this case), so we know creating this𝑀𝐶𝑎𝑐ℎ𝑒 is safe.

In Figure 6.11c, 𝑆1, 𝑆2, and 𝑆4 time out while waiting for 𝑆3 to commit and create a

𝑇𝐶𝑎𝑐ℎ𝑒 . It is possible that 𝑆4 is lying about its timer running out, but, once again, the

existence of a super quorum of voters ensures the 𝑇𝐶𝑎𝑐ℎ𝑒 is safe despite a potentially

malicious participant. Finally, in Figure 6.11d, 𝑆4 is successfully elected and invokes a

method. This shows that byzantine replicas do not necessarily always act maliciously, and,

as long as they behave honestly, they can contribute to the committed state.

Figure 6.12 shows that, even when byzantine replicas do act maliciously, they are

limited in the damage they can cause. For example, 𝑆4 could never create the𝑀𝐶𝑎𝑐ℎ𝑒 with

the dotted outline in Figure 6.12a because honest replicas only vote for invoke requests

from a leader and 𝑆4 does not have an 𝐸𝐶𝑎𝑐ℎ𝑒 . However, even as the leader, 𝑆4 cannot

invoke a method on a different branch than its 𝐸𝐶𝑎𝑐ℎ𝑒 because canInvoke ensures that

the parent of an𝑀𝐶𝑎𝑐ℎ𝑒 is both an 𝐸𝐶𝑎𝑐ℎ𝑒 and at least as recent as any cache the honest

voters have voted for. In Figure 6.12b, 𝑆1 and 𝑆2 have voted for the 𝑇𝐶𝑎𝑐ℎ𝑒 , so there is no

way to form a super quorum that would vote for 𝑆4’s𝑀𝐶𝑎𝑐ℎ𝑒 .

For the same reasons, 𝑆4 also cannot commit a method from a previous round (Fig-

ure 6.12c). The 𝑇𝐶𝑎𝑐ℎ𝑒 is more recent than the 𝑀𝐶𝑎𝑐ℎ𝑒 for method 𝐵, so 𝑆4 can never

acquire enough votes. Nor can it create a𝐶𝐶𝑎𝑐ℎ𝑒 on its own branch without first invoking

a method (Figure 6.12d). Replicas require proof of a successful pre-commit round before

voting for a commit request, which in AdoB is modeled by canCommit’s requirement that

the parent of a 𝐶𝐶𝑎𝑐ℎ𝑒 be an𝑀𝐶𝑎𝑐ℎ𝑒 .

140

MCache
voters=

{S1,S3,S4}

method=B

time=2CCache

voters=

{S1,S2,S3}

time=1

ECache
voters={S1,S2,S3}

ldr=S3

time=2

...
TCache

voters=

{S1,S2,S4}

supps={S1}

time=2

MCache

voters={S4}

method=C

time=3

(a) 𝑆4 cannot invoke a method without being elected.

MCache
voters=

{S1,S3,S4}

method=B

time=2CCache

voters=

{S1,S2,S3}

time=1

ECache
voters={S1,S2,S3}

ldr=S3

time=2

...
TCache

voters=

{S1,S2,S4}

supps={S1}

time=2

MCache

voters={S4}

method=C

time=3

ECache
voters={S1,S2,S4}

ldr=S4

time=3

(b) 𝑆4 cannot invoke a method on the wrong branch.

MCache
voters=

{S1,S3,S4}

method=B

time=2CCache

voters=

{S1,S2,S3}

time=1

ECache
voters={S1,S2,S3}

ldr=S3

time=2

...
TCache

voters=

{S1,S2,S4}

supps={S1}

time=2

CCache

voters={S4}

time=3

ECache
voters={S1,S2,S4}

ldr=S4

time=3

(c) 𝑆4 cannot commit a method from an old round.

MCache
voters=

{S1,S3,S4}

method=B

time=2CCache

voters=

{S1,S2,S3}

time=1

ECache
voters={S1,S2,S3}

ldr=S3

time=2

...
TCache

voters=

{S1,S2,S4}

supps={S1}

time=2

CCache

voters={S4}

time=3

ECache
voters={S1,S2,S4}

ldr=S4

time=3

(d) 𝑆4 cannot commit without first invoking a method.

Figure 6.12: Disallowed behaviors in byzantine AdoB. Dotted outlines represent impossible cases.

141

6.4.2 Merging the Models

Now, after identifying exactly where these benign and byzantine models differ, we are

in a position to unify them by introducing parameters that hide the differences behind a

common interface. For two of the changes, this is trivial. The set of byzantine replicas is

already a parameter that can simply be instantiated to the empty set for the benign case.

Likewise, if isSQuorum is set equal to isQuorum, then SOverlap clearly holds because

quorums overlap and every replica is honest.

This leaves only invoke, and the key to bridging this gap is to understand what role

invoke serves inmaintaining an important safety invariant. In order to linearize concurrent

events, it is required that for any two consecutive events there is a common voter, which

creates an unbroken chain of evidence that the logical timestamps are non-decreasing and

that they can therefore be totally ordered. The byzantine case guarantees this by requiring

a super quorum of voters for every operation, and the benign case requires quorums for

pull, push, and timeouts, but, at first glance, seems to make an exception for invoke.

In fact, although benign invoke only requires the leader’s approval, this does not break

the chain of common voters. Observe that an𝑀𝐶𝑎𝑐ℎ𝑒 always follows an 𝐸𝐶𝑎𝑐ℎ𝑒 created

by the same leader, and a 𝐶𝐶𝑎𝑐ℎ𝑒 always follows an 𝑀𝐶𝑎𝑐ℎ𝑒 also from the same leader.

Therefore, the leader is the common voter through this chain of caches.

We can therefore consider benign invoke to require a special quorum of size 1, whose

only restriction is that it must overlap with any other quorum containing the same leader.

By dropping the size restriction and generalizing the overlap condition to hold for super

quorums, we arrive at a generic method quorum (isMQuorum in Figure 6.13) that can be

142

Parameters

isMQuorum : Nnid → 𝑆𝑒𝑡 (Nnid) → B

Assumptions

(MOverlap) isMQuorum(ldr, 𝑄) ∧ isMQuorum(ldr, 𝑄′)
=⇒ 𝑄 ∩𝑄′ ∩ honest ≠ ∅

(MSOverlap) isMQuorum(ldr, 𝑄) ∧ isSQuorum(𝑄′) ∧ ldr ∈ 𝑄′

=⇒ 𝑄 ∩𝑄′ ∩ honest ≠ ∅

Figure 6.13: Method quorum (mquorum) parameters and assumptions. Any two mquorums for
the same leader must have a common honest voter. Any mquorum and super quorum that includes
the same leader must have a common honest voter.

ValidInvokeOracleOk
𝑡 = time(𝐶𝐸) leaderAt (𝑡) = nid isMQuorum(nid, 𝑄)

canInvoke(tree(𝑠𝑡),𝐶𝐸, nid, 𝑄) ∀𝑠 ∈ 𝑄 ∩ honest . times(𝑠𝑡) [𝑠] ≤ 𝑡

Oinvoke (𝑠𝑡, nid) = Ok(𝑄,𝐶𝐸)

Figure 6.14: Oinvoke replaces super quorums with mquorums.

instantiated to either the benign or byzantine case. Unlike the other quorums, isMQuorum

depends on the nid of the leader as well as a set of voters, which is used to determine

when mquorums must overlap. In particular, two mquorums with the same leader must

always have a common honest voter (MOverlap), and an mquorum must also have an

honest overlap with any super quorum containing the same leader (MSOverlap). All

that is needed then to reach the fully unified AdoB model is to replace isSQuorum with

isMQuorum in Oinvoke’s preconditions (Figure 6.14).

It is not difficult to instantiate isMQuorum and prove it satisfies the assumptions for the

benign and byzantine cases, as Figure 6.15 demonstrates. For the benign case, MOverlap

holds trivially because we know ldr ∈ 𝑄 and ldr ∈ 𝑄′ from the definition of isMQuorum

and ldr ∈ honest because byzantine = ∅. MSOverlap follows the same reasoning because

143

Benign

byzantine ≜ ∅
isQuorum(𝑄) ≜ |𝑄 | > |conf |/2
isSQuorum(𝑄) ≜ isQuorum(𝑄)

isMQuorum(ldr, 𝑄) ≜ ldr ∈ 𝑄

Byzantine

byzantine : 𝑆𝑒𝑡 (Nnid)
isQuorum(𝑄) ≜ |𝑄 | > |conf |/2
isSQuorum(𝑄) ≜ |𝑄 | > 2|conf |/3

isMQuorum(ldr, 𝑄) ≜ isSQuorum(𝑄)

Figure 6.15: Quorum instantiations for benign and byzantine settings.

ldr ∈ 𝑄′ by assumption. In the byzantine case, MOverlap and MSOverlap both follow

from SOverlap and Overlap.

6.4.3 Adjusting Safety and Liveness Proofs

Adapting the safety and liveness proofs for benign AdoB to this new unified model is

straightforward because all but the essential details have already been stripped away. None

of the high-level proof structure changes, and all that remains is to weaken certain lemmas

to only apply for honest replicas, and to account for the non-local effects of invoke.

Weakening Invariants AdoB leaves the behavior of byzantine replicas largely unspec-

ified, which means many invariants that previously held for all replicas are now only

provable for honest replicas. For example, an honest replica’s local time is bounded below

by the timestamp of every cache it has voted for or supported, but byzantine replicas can

lie about their local time.

Just as in the benign case everything rested on the existence of overlapping quorums,

the generalized benign/byzantine case relies on an honest overlap between super quorums

and mquorums (SOverlap, MOverlap, MSOverlap). With these additional assumptions,

we can show that, even with the weakened invariants, enough honest replicas are involved

144

in every operation that malicious replicas cannot convince the system to behave incorrectly.

Non-local invoke Now that invoke requires an mquorum of voters, it is no longer a

strictly local operation. Therefore, a few new lemmas as well as some minor changes to

existing ones are required. For example, one important invariant guarantees that push

appends a 𝐶𝐶𝑎𝑐ℎ𝑒 to the leader’s most recent𝑀𝐶𝑎𝑐ℎ𝑒 .

Lemma 6 (Push Max Parent). If Opush returns Ok for some replica, then the cache it selects

is as least as recent (according to ⪰) as every other𝑀𝐶𝑎𝑐ℎ𝑒 created by the same replica.

In the benign case, this follows from the fact that canCommit says 𝐶𝑀 is at least as

recent as its voters’ latest voted caches. Then, when comparing 𝐶𝑀 against any other

𝑀𝐶𝑎𝑐ℎ𝑒 𝐶 , we know that𝐶’s only voter is the leader that created it, which is the same as the

current leader by assumption, so𝐶𝑀 ⪰ 𝐶 . This reasoning does not work in the generalized

setting because 𝐶 now has an mquorum of voters. However, because of MSOverlap, we

know that 𝐶’s mquorum of voters and push’s super quorum of voters have a common

honest replica, which means canCommit still implies 𝐶𝑀 ⪰ 𝐶 .

Proof Effort The updated specifications and proofs for the generalized AdoB model

required only an additional two person-weeks, approximately 20 lines of specification (720

total), and 1300 lines of proof (8100 total). This relatively small delta is a testament to how

well the benign AdoB abstraction already captures the core essence of consensus. The few

remaining steps to generalize it only require minor, local changes to the proofs.

145

6.5 Refinement

The safety and liveness of AdoB is only meaningful if it faithfully models the behavior

of actual benign and byzantine consensus protocols. We demonstrate that it does by

proving that a network-based specification of a novel Jolteon variant refines AdoB. We

call this variant GenJolteon because it is capable of tolerating either benign or byzantine

faults depending on the instantiation of mquorum. As usual, we specify it in terms of a

network-based model; i.e., a set of replicas with local logs communicating over a network.

To lessen the gap between this model and AdoB, we make certain assumptions of the

network to make it behave more synchronously. These assumptions can then be relaxed

in a series of additional refinements that can be transitively linked together.

In this section, we focus on the uppermost layer that connects the simplified network

model to AdoB, which we have proved in Coq. This is by far the most interesting and

challenging step because the significant gap between the abstraction levels leaves the

most room for specification bugs. At the time of writing, we have completed manual

proof sketches for the layers that relax the network assumptions, and have begun the Coq

formalizations. We do not anticipate significant conceptual challenges in these steps as

they are very similar to the network reordering logic used in Adore (Section 5.5) and in

prior work [Chajed et al. 2018; Hawblitzel et al. 2015a; v. Gleissenthall et al. 2019].

6.5.1 Network-Based Specification

The global state of the abstract network-based model (Figure 6.16) consists of a set of local

states and a network, which is represented as a pair of bags of sent and delivered messages.

146

Σnet ≜ (Nnid ⇀ Replica) ∗ Network
Replica ≜ Ntime ∗ Log ∗ Phase

Network ≜ 𝑆𝑒𝑡 (Msg) ∗ 𝑆𝑒𝑡 (Msg)
Log ≜ 𝐿𝑖𝑠𝑡 (Ntime ∗ 𝑆𝑒𝑡 (Nnid) ∗Method)

Phase ≜ Idle | VotedInvoke | VotedCommit

| Elected | Invoked | WaitForAcks | . . .
Msg ≜ Request (Nnid ∗ Nnid ∗ Ntime ∗ Cmd)

| RequestMany(Nnid ∗ 𝑆𝑒𝑡 (Nnid) ∗ Ntime ∗ Cmd)
| Ack(𝑆𝑒𝑡 (Nnid) ∗ Nnid ∗ Ntime ∗ Cmd)

Cmd ≜ Elect (𝑆𝑒𝑡 (Nnid) ∗ 𝑆𝑒𝑡 (Log))
| Invoke(Log ∗ 𝑆𝑒𝑡 (Log) ∗Method)
| Commit (Log)

Opnet ≜ elect : Nnid → Σnet → Σnet

| invoke : Nnid → Method → Σnet → Σnet

| commit : Nnid → Σnet → Σnet

| timeout : 𝑆𝑒𝑡 (Nnid) → Ntime → Σnet → Σnet

| deliver : Msg → Σnet → Σnet

Figure 6.16: Abstract network-based state and operations.

Each replica maintains a local timestamp, a log of methods tagged with a timestamp and set

of voters, and a phase, which influences what actions they are allowed to take. For example,

only a replica in the Elected phase can invoke a method. Messages are divided into three

variants that each contain a sender, potentially multiple recipients, a timestamp, and a

command. A Request represents typical one-to-one communication, but as it is common

for a leader to broadcast requests to every replica, it is convenient to use RequestMany to

treat a request as if it arrives at each of its recipients simultaneously. Acknowledgements

follow the dual pattern where a leader gathers responses from multiple replicas, which we

model as Ack having multiple senders.

Requests are generated by elect, invoke, commit, and timeout. These are simple

state transition functions that update the caller’s local state, advance to the next phase, and

147

send (𝑠𝑡,msg) ≜
let sent′ = sent (network(𝑠𝑡)) ∪ {msg} in setNetwork((sent′, recvd (network(𝑠𝑡))))

broadcast (𝑠𝑡,msg) ≜ send (𝑠𝑡,msg)
commit(nid, 𝑠𝑡) ≜
let req = RequestMany(nid, allReplicas, time(𝑠𝑡, nid),Commit (log(𝑠𝑡, nid))) in
let 𝑠𝑡 ′ = setPhase(𝑠𝑡, nid,WaitForAcks) in broadcast (𝑠𝑡 ′, req)

doCommit (rep, 𝑡, 𝑙𝑔) ≜ setPhase(setLog(setTime(rep, 𝑡), 𝑙𝑔),VotedCommit)
deliver(msg, 𝑠𝑡) ≜
if msg = RequestMany(from, 𝑡𝑜, 𝑡,Commit (𝑙𝑔)) then
let recips = {doCommit (rep, 𝑡, 𝑙𝑔) | rep ∈ 𝑡𝑜 ∧ canCommit (rep, 𝑡, 𝑙𝑔)} in
let ack = Ack(recips, from, 𝑡,Commit (𝑙𝑔)) in
send (setReplicas(𝑠𝑡, recips), ack)

else . . .

Figure 6.17: The commit network state transition function and request handler.

create and send a request. For example, commit (Figure 6.17) advances from the Invoked

phase toWaitForAcks and broadcasts a RequestMany containing the log to commit.

The deliver operation nondeterministically decides when a message arrives at some

subset of its recipients, which models the possibility that messages may be dropped or

delayed. Upon delivery, a handler is triggered for each recipient depending on the type of

the message (e.g., doCommit). For commit, the recipients that are allowed to commit do

so by updating their time, log, and phase. An acknowledgement is then constructed from

these recipients and sent back to the leader.

In addition to assuming RequestMany and Ack are received atomically, we also simplify

the network model by insisting messages arrive in order of their logical timestamps, and

messages are not duplicated. These are simple assumptions to discharge in lower layers

by having replicas discard or wait to handle out-of-order messages, but omitting those

148

byzCommit (rep, 𝑡, 𝑙𝑔) ≜ Obyz (rep, 𝑡, 𝑙𝑔) = rep
′

=⇒ log(rep′) = log(rep) ∨ log(rep′) = 𝑙𝑔

Figure 6.18: The byzantine commit request handler.

implementation details from this specification reduces the number of cases to consider

and simplifies the refinement.

Modeling Byzantine Behaviors The type of specification in Figure 6.17 does not work

for byzantine replicas because we cannot trust them to follow the rules of the protocol.

Instead, wemodel themwith an oracle (Obyz) that can do anything within certain limits. For

example, if a byzantine replica receives a commit request, we cannot assume it will update

its log or send an acknowledgement, though it is allowed to. Nevertheless, we do know

that it cannot invent logs from nothing because they are cryptographically authenticated.

Therefore, the specification only requires that it either takes the proposed log, or keeps its

old log (Figure 6.18).

6.5.2 Refinement Proof

The refinement proof proceeds by induction on a trace of network events, showing that

every action has a corresponding AdoB step that preserves the refinement relation (R).

This relation defines the correspondence between AdoB (ΣAdoB) and network (Σnet) state. It

consists of 15 conjuncts, the most of important of which is LogMatch, the relation between

replicas’ local logs and branches of the cache tree (Figure 6.19). LogMatch states that every

local log corresponds to some branch of the tree, and, for honest replicas, this cache much

be at least as recent as its latest supported 𝐶𝐶𝑎𝑐ℎ𝑒 (activeC). In other words, every honest

149

branchToLog(𝑡𝑟,𝐶) ≜ {(𝑡,𝑄,𝑀) | 𝑀𝐶𝑎𝑐ℎ𝑒 (_, 𝑡,𝑄,𝑀) ∈ ancestors(𝑡𝑟,𝐶)}
LogMatch(𝑠𝑡net, 𝑠𝑡𝐴𝑑𝑜𝐵) ≜ ∀nid . ∃𝐶. log(𝑠𝑡net, nid) = branchToLog(tree(𝑠𝑡𝐴𝑑𝑜𝐵),𝐶)

∧ nid ∈ honest =⇒ 𝐶 ⪰ activeC (tree(𝑠𝑡𝐴𝑑𝑜𝐵), nid)
R(𝑠𝑡net, 𝑠𝑡𝐴𝑑𝑜𝐵) ≜ LogMatch(𝑠𝑡net, 𝑠𝑡𝐴𝑑𝑜𝐵) ∧ . . .

Figure 6.19: The LogMatch component of the refinement relation.

replica’s local log contains the same prefix of committed methods as its corresponding

cache tree branch.

Note that R does not require a replica’s local log to exactly match its active (most

recently supported) cache. This is necessary because the two can temporarily drift out

of sync due to incomplete operations at the network level that are modeled as no-ops in

AdoB (e.g., a failed commit operation that is delivered to only one replica). In this sense,

AdoB’s cache tree is an under-approximation of the network-level local logs; however,

LogMatch ensures that the two abstractions agree at least on the committed methods,

which is sufficient for safety and liveness.

Combined with AdoB’s safety property that 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 all lie on the same branch, R

implies that at least a quorum of honest replicas always agree on the same sequence of

committed methods. Similarly, as long as GenJolteon follows a productive strategy (Defini-

tion 7) and a fair rotating leadership (Definition 9), its liveness follows fromAdoB’s because

some replica’s activeC is guaranteed to increase within some finite time. Furthermore,

because GenJolteon uses the same isQuorum, isSQuorum, and isMQuorum parameters as

AdoB, it inherits the ability to be instantiated to either a benign or byzantine setting.

The remaining 14 conjuncts are supporting invariants that are used to show that

LogMatch is preserved at each step. For example, CommitDelivered ensures that every

150

𝐶𝐶𝑎𝑐ℎ𝑒 has a corresponding delivered commit request. Together with the uniqueness of

commit requests, this can be used to show that when a commit request is delivered, there

is not already a 𝐶𝐶𝑎𝑐ℎ𝑒 for it. See Appendix B.3 for an explanation of each conjunct.

Proof Effort The refinement proof for the simplified network-based model took ap-

proximately two person-months, 900 lines of specification, and 4000 lines of proof. Much

of this time was spent discovering and adjusting the 14 supporting invariants of R. This

also includes the time to adjust AdoB and its safety and liveness proofs as the refinement

revealed some subtle inconsistencies between GenJolteon and AdoB’s handling of timeouts

(see Section 6.6.1 for details).

6.5.3 Extraction to OCaml

To further demonstrate that AdoB faithfully models real protocols, we use Coq’s support for

extraction to OCaml to produce an executable version of GenJolteon. The pure, functional

event handlers are automatically extracted and glued together with a hand-written shim

layer that handles network communication. The shim multiplexes, filters, and collects

network messages so that they match the expectations of the network-level specification.

For example, RequestMany is multi-cast to all replicas, and individual acknowledgements

are coalesced into an Ack. The shim is also responsible for signing and validating threshold-

signature-based quorum certificates so that the malicious behaviors of byzantine replicas

can be detected and contained.

We evaluated the extracted code on a local cluster with a four-replica configuration. It

is not optimized for performance but exhibits an average latency of 2.34 ms (excluding

151

cryptographic signing) to commit a request under a steady state. This is comparable to the

latency of the verified instance of PBFT in Rahli et al. [2018] (approximately 1.5 ms), and

within an acceptable range of the 0.5 ms achieved by the optimized, unverified BFT-SMaRt

system [Bessani et al. 2014]. In addition to the shim layer, the trusted computing base

consists of Coq’s extraction mechanism, the OCaml compiler, and the network, thread,

and cryptographic libraries. For liveness, we must also assume that honest replicas’ clock

speeds are within a reasonable bound so that after GST an honest leader has time to commit

before timing out.

6.6 Discussion

6.6.1 Refinement as a Sanity Check

Working at a high level of abstraction is useful for simplifying reasoning, but it can be

easy to lose sight of the underlying system. Refinement is an essential tool to sanity check

the model against a real implementation and have confidence in its validity. For example,

an early version of AdoB had complete safety and liveness proofs, but it was not until we

attempted to prove refinement with GenJolteon that we discovered subtle mistakes related

to the handling of timeouts (Figure 6.20).

One bug came from incorrectly conflating voters and supporters of a timeout. Recall

that a timeout is successful when some replica receives a super quorum of timeout messages

containing each timed-out replica’s current log. These messages are bundled together to

form a 𝑇𝐶 , which acts as evidence that it is safe to begin a new round using the latest of

152

canTimeout (𝑡𝑟,𝐶,𝑄) ≜ ∀𝑠 ∈ 𝑄 ∩ honest .𝐶 ⪰ activeC (𝑡𝑟, 𝑠)
∧ ∃𝑠 ∈ 𝑄 ∩ honest .𝐶 = activeC (𝑡𝑟, 𝑠)

ValidOracleTimeout
isSQuorum(𝑄) canTimeout (tree(𝑠𝑡),𝐶max, 𝑄)

∀𝑠 ∈ 𝑄 ∩ honest . times(𝑠𝑡) [𝑠] ≤ 𝑡 ∃𝑠 ∈ 𝑄 ∩ honest . times(𝑠𝑡) [𝑠] = 𝑡

Oop (𝑠𝑡, nid) = Timeout (𝑄 ,𝐶max, 𝑡)

Figure 6.20: An incorrect early attempt at modeling timeouts. The mistakes (marked with a
blue box) are using one set of replicas (𝑄) for both the voters and supporters instead of separate
𝑄vote and 𝑄supp, and requiring 𝐶max to be an activeC in canTimeout.

the contained logs. In AdoB, the 𝑇𝐶 is represented by a 𝑇𝐶𝑎𝑐ℎ𝑒 , and an oracle determines

what super quorum of replicas timed out.

This super quorum becomes the 𝑇𝐶𝑎𝑐ℎ𝑒’s voters, but initially they were also defined

to be its supporters. However, this implies that the replicas that time out are exactly the

same replicas that receive the completed 𝑇𝐶 , and this is not always the case. Indeed, the

two sets can be entirely disjoint. Suppose replicas 𝑆1 and 𝑆2 time out but only 𝑆3 receives

the messages. 𝑆1 and 𝑆2 vote for the𝑇𝐶 because they contribute to its creation, but only 𝑆3

supports the 𝑇𝐶 because it is the only one to actually observe the 𝑇𝐶 and update its local

state accordingly.

This problem is solved by returning two sets from the oracle: a set of voters (𝑄vote)

that represents the replicas that timed out and a set of supporters (𝑄supp) that observe the

completed 𝑇𝐶𝑎𝑐ℎ𝑒 . 𝑄vote must be a super quorum, but 𝑄supp can be as small as a single

honest replica. The reason𝑄supp must include at least one honest replica is that, otherwise,

liveness is not guaranteed. Suppose again that 𝑆1 and 𝑆2 time out and only 𝑆3 receives

their messages and forms a 𝑇𝐶 . If 𝑆3 is byzantine, it may decide not to send the 𝑇𝐶 to the

next leader, causing the current round to never end. Fortunately, the partial synchrony

153

assumption prevents this case by guaranteeing that eventually some honest replica will

also receive the timeout messages and form a 𝑇𝐶 .

A related bug overly restricted the parent cache that the oracle selects for 𝑇𝐶𝑎𝑐ℎ𝑒

(𝐶max). Originally, canTimeout required not just that 𝐶max was at least as recent as the

voters’ activeC, but that it was also equal to one of these activeC. The reasoning was that

some replicas will support this 𝑇𝐶𝑎𝑐ℎ𝑒 , so, to maintain safety, it should only choose a

committed cache.

This becomes a problem when considering the situation where a leader invokes a

method but times out before committing it (as in Figure 6.7). At the network level, the 𝑇𝐶

may very well contain the uncommitted method, but this incorrect canTimeout does not

allow a𝑇𝐶𝑎𝑐ℎ𝑒 to follow an𝑀𝐶𝑎𝑐ℎ𝑒 . The solution is to drop the requirement that𝐶max be

a 𝐶𝐶𝑎𝑐ℎ𝑒 . This is still safe because, as long as it is at least as recent as the latest 𝐶𝐶𝑎𝑐ℎ𝑒 ,

the linear chain of 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 will not be broken.

These wrong paths illustrate that, although generalized consensus seems very natural

in AdoB, arriving at the correct abstraction is far from trivial. As with many bugs, these

were simple to fix, but identifying them in the first place was only possible with the scrutiny

required by refinement.

6.6.2 AdoB Generality

We have demonstrated that AdoB is generic in the sense that it describes both benign and

byzantine consensus. By not fixing the quorum and super quorum sizes, it also supports a

variety of strategies, including the typical 1/2 and 2/3 majorities, as well as proof-of-stake-

154

style weighted majorities. A third dimension to AdoB’s generality is in the protocols that

implement it.

Although we only discuss refinement with GenJolteon, the same is possible for other

benign and byzantine consensus protocols such as Paxos, Raft, PBFT, or Tendermint [Buch-

man 2016]. At their core, these protocols have the same election, pre-commit (implicit

for Paxos and Raft), and commit phases and rely on overlapping quorums to guarantee

agreement. The differences are all in how they represent and communicate state.

For instance, in HotStuff and Jolteon, the leader is responsible for convincing the

replicas that a command is safe to commit by constructing a 𝑄𝐶 . In Tendermint, on the

other hand, replicas gather their own evidence by broadcasting their votes to everyone

instead of just the leader. There are performance implications to these communication

patterns, but the result is the same from AdoB’s perspective: a replica only commits a

command for which it has observed a super quorum of votes.

Recall from Section 2.1.4 that certain byzantine protocols implement a pipelining

optimization in which the pre-commit and commit phases are merged. Supporting this

poses a slight problem for AdoB because it assumes separate invoke and push operations.

One solution is to create a new pipelined AdoB that combines invoke and push in the

same way as two-chain Jolteon. In this version, a 𝐶𝐶𝑎𝑐ℎ𝑒 would not be truly committed

until it is directly preceded by a 𝐶𝐶𝑎𝑐ℎ𝑒 from the previous round. One could then prove

that the pipelined AdoB refines the three-phase AdoB, which would allow it to enjoy

safety and liveness guarantees without having to re-prove them.

155

6.7 Summary

Despite different failure assumptions and communication patterns, benign and byzantine

consensus bear a strong intuitive resemblance. AdoB formalizes this intuition and shows

that they are, in fact, similar enough to be described by a single instance of the ADO

model, thereby distilling consensus to its core elements. With this unified abstraction,

we were able to complete the first mechanized safety and liveness proofs for both failure

models simultaneously. The liveness proof in particular uncovered many subtle aspects of

reasoning about temporal properties in a partially synchronous system. One of the key

strengths of AdoB, and the ADO model in general, is that it highlights these challenges

and their solutions by cleanly separating them from implementation details that would

otherwise obscure them.

156

Chapter 7

Related Work

7.1 Abstract Models

Concurrent Memory/Object Models The ADO model is heavily influenced by prior

work on shared-memory concurrent objects such as CCAL [Gu et al. 2016, 2018] and the

push/pull memory model. Many distributed protocols naturally split into three phases,

which map onto pull (get the current state and permission to change it), invoke (update

the state), and push (commit the changes).

There are also parallels between the ADO model and both distributed and shared-

memory transactional models [Guerraoui and Kapalka 2008; Koskinen and Parkinson 2015].

A successful push behaves similarly to a transaction commit in that it atomically commits

(a prefix of) the active cache tree branch while simultaneously aborting inconsistent states

in sibling branches. However, transactions typically rely on a centralized coordinator to

ensure that updates are applied to the latest consistent snapshot, while the ADO model is

more decentralized and allows pull to select an inconsistent state as a starting point. The

157

Replicated State Safety property guarantees that these inconsistent states are descendants

of the latest committed state, but there may temporarily be “competing” snapshots until

they are resolved by push.

Distributed Object Models Wang et al. [2019] showed that conflict-free replicated

data types (CRDTs) [Shapiro et al. 2011] that satisfy a property called replication-aware

linearizability can be modeled by a modular, sequential specification. This is similar to the

ADO model in that it hides distributed behaviors behind a compositional, atomic interface,

but CRDTs offer eventual consistency whereas the ADO model targets strong consistency.

Another framework for modular reasoning about distributed systems is ModP [Desai

et al. 2018]. In this language, systems are modeled as concurrent state machines encapsu-

lated within a module. Communication is modeled by sending events to other modules,

which can trigger state transitions, similar to method calls. A module can refer to an

abstract interface, which can be instantiated by composing with another module that im-

plements the interface. Unlike the ADO, this model is not designed for arbitrary high-level

reasoning, but rather for improving the scalability of distributed system testing by allowing

modules to be tested in isolation.

Another common object-like abstraction for distributed systems is state machine

replication (SMR) with remote procedure calls (RPC), which hide intermediate states due

to transient failures, often by wrapping methods in a retry loop [Schneider 1990]. This can

be convenient, but it prevents reasoning about applications with alternate failure-handling

strategies (e.g., at-most-once calls), those that use inconsistent states (e.g., TAPIR [Zhang

et al. 2015]), or those with optimizations that do not follow the typical message-sending

158

Benign Byz. Safe Live Exec. Refine.

AdoB ✓ ✓ ✓ ✓ ✓ ✓
Advert ✓ × ✓ × ✓ ✓
Adore ✓ × ✓ × ✓ ✓

IronFleet [Hawblitzel et al. 2015a] ✓ × ✓ ✓ ✓ ✓
Verdi [Wilcox et al. 2015] ✓ × ✓ × ✓ ✓

Velisarios [Rahli et al. 2018] × ✓ ✓ × ✓ ×
Carr et al. [2022] × ✓ ✓ × × ×

Losa and Dodds [2020] × ✓ ✓ ✓ × ×

Table 7.1: Comparison of selected consensus verification projects.

patterns (e.g., 2PCwith consensus [Gray and Lamport 2006]). The ADOmodel does support

these types of applications, but one can also easily recover SMR-like behaviors by using

exactly-once calls when this level of control is unnecessary. This means one can build an

application that mixes SMR-style objects with those that exploit intermediate states, and

reason about their interactions using the common ADO foundation.

7.2 Formal Verification

7.2.1 Consensus

Consensus verification is a well-studied topic, with many projects of varying scope. Ta-

ble 7.1 compares a selection of these projects along multiple dimensions; namely, does

it target benign or byzantine consensus, does it prove both safety and liveness, can it

produce executable code, and, if so, is there any formal connection between the code

and the high-level abstraction. The first three lines answer these questions for the case

studies presented in this dissertation and show that AdoB is the only one to cover all of the

points and is also the only one to support benign and byzantine consensus. Nevertheless,

159

Advert and Adore each have other advantages that are not considered in this table, such

as application-level reasoning and supporting reconfiguration.

IronFleet IronFleet [Hawblitzel et al. 2015a] is a verification framework implemented

in Dafny [Leino 2010]. It adopts a layered verification approach in which one begins by

writing a network-level specification and annotating it with Hoare-logic-style pre and

post-conditions, which can be automatically validated by an SMT solver. Then, one writes

another slightly more abstract specification and uses a series of reduction arguments to

reorder, remove, or join sequences of network events into simpler ones, much like the

network refinements presented in Sections 4.5, 5.5, and 6.5.

After the refinements, one can prove high-level properties about an application in

something more akin to an SMR model. The use of SMT solvers to automatically discover

proofs can be very useful; however, it is more limited when considering higher-order

properties involving quantifiers. These cases often require clever developer-provided

heuristics to guide the proof search.

Of the selected benign verification frameworks, IronFleet is the only one to support

liveness reasoning. This is enabled through an embedding of the temporal logic of actions

(TLA [Lamport 1994]), which allows one to state that a property holds eventually or always.

Unlike AdoB, IronFleet’s liveness proofs are application-specific (e.g., a particular service

will eventually respond to a client request), rather than generic properties that hold for an

entire class of protocols.

Dafny also supports unverified compilation to C#, and the related Ironclad [Hawblitzel

et al. 2014] work demonstrated that Dafny specifications can be translated into BoogieX86

160

verifiable assembly [Barnett et al. 2005] as well. Unlike the ADO model, IronFleet’s

strengths lie more in facilitating application-specific reasoning rather than providing a

generic, reusable protocol-level abstraction.

Verdi Verdi [Wilcox et al. 2015] is a Coq distributed system verification framework in

which one writes an application in a network-based style, and reasons about the traces of

external events it generates. Like IronFleet, Verdi supports a layered style where complex

implementations are refined into simpler specifications, which can then be used as a basis

on which to build additional layers.

To help with this process it provides a set of verified system transformers (VSTs), which

can automatically and safely transform one specification into another. This allows one,

for example, to write a naïve system that assumes a reliable network, and automatically

generate a more robust implementation with fault-tolerance mechanisms, such as sequence

numbers to deduplicate messages. The VST also generates a refinement proof that transfers

properties about the simpler system to the more realistic one.

Verdi does not support temporal reasoning. Because it is implemented in Coq, it

allows specifications to be extracted to OCaml. As with IronFleet, Verdi does not provide

a common atomic abstraction for consensus like the ADO model, but instead provides

developers with tools to reason about individual systems in a more ad-hoc manner.

Velisarios Velisarios [Rahli et al. 2018] is the first framework to provide a mechanized

safety proof for byzantine consensus. In particular it showed the safety of PBFT in Coq

using a logic-of-events abstraction, which models a system as a collection of traces of

161

logical events with some order enforced by a happens-before relationship. In some ways,

the ADO model is a hybrid between this abstraction and a network-based model in that it

also captures the history of a distributed system as a collection of events with dependencies;

however, the tree-based structure makes the relation to the concrete state (i.e., logs of

commands) more explicit.

Unlike AdoB, Velisarios does not consider benign consensus or liveness. Additionally,

although it provides a Coq specification of PBFT that can be extracted to OCaml, it is not

proved to refine the logic-of-events model. As Section 6.6.1 shows, this specification gap

can leave the possibility of bugs even in otherwise verified systems.

HotStuff Carr et al. [2022] proved the safety of a generalized abstract specification of

HotStuff in Agda [Agda Development Team 2005–2022]. The protocol is modeled as an

abstract state transition system with parameters for certain implementation details and

assumptions that they must satisfy (as we do for mquorum). This shares the ADO model’s

goal of capturing the core behaviors of a protocol so proofs of high-level properties can be

reused for many implementations; however, this work’s scope is much narrower as it is

targeted specifically at HotStuff variants and does not cover benign consensus, nor does it

prove liveness or provide a verified executable.

Stellar Losa and Dodds [2020] are the first to mechanically prove both the safety and

liveness of a byzantine protocol, Stellar. Instead of traditional (super) quorums, Stellar

uses a slightly different technique to reach consensus called federated agreement in which

each replica makes an individual decision about which replicas it trusts (called a quorum

162

slice). The proof uses a Coq framework to show the safety and liveness of a first-order

logic encoding of the protocol. The validity of this model is then checked against a

more standard specification in Isabelle/HOL [Isabelle Development Team 1986–2022] by

showing that axioms in the Coq model hold in Isabelle. However, there is no mechanically-

checked connection between the models nor is there any connection to an executable

implementation. This work is also specific to Stellar and does not prove anything about

benign or byzantine consensus in general.

7.2.2 Proof Automation

There is also a large body of work on techniques for transforming an asynchronous program

into into an equivalent sequential one by logically rearranging traces of communication

operations using mover types [Chajed et al. 2018; Hawblitzel et al. 2015b; Kragl et al.

2020; v. Gleissenthall et al. 2019]. Some of these tools can create a sequentialized program

automatically, while others provide a library of validated transformations that can be

applied manually. This can be very powerful for reducing verification complexity, but they

often only support specific communication patterns, and some do not handle server and

network failures.

Other work on proof automation includes Ivy [Padon et al. 2016], a verification toolkit

that combines interactive and automation techniques to prove safety properties of dis-

tributed protocols modeled as unbounded state machines. Padon et al. [2017] and Taube

et al. [2018] build on Ivy to introduce methodologies for automatically proving properties

about systems that satisfy certain decidability conditions. I4 [Ma et al. 2019] explores

163

an incremental process for automatic generation of distributed system invariants. These

projects aim to ease network-based reasoning and are largely orthogonal to the ADO

model’s goal of providing a general protocol-level abstraction; however, they may be useful

for simplifying or automating network-level refinement proofs.

7.2.3 Composition

One shortcoming of most distributed system verification frameworks, including Verdi and

IronFleet, is a lack of support for composition between applications and clients, which

limits the modularity and reuse of verified systems. The ADO model supports this with

DApps (Section 4.4), which define how clients can interact with a set of ADOs.

Disel [Sergey et al. 2017] is another framework that supports decomposing composite

applications into isolated pieces. Systems are defined with a shallowly-embedded language

in Coq, which makes use of dependent types to allow users to define protocol invariants

that must always hold. Users then prove these invariants using a program logic built on a

distributed variation of concurrent separation logic.

Interaction between components is modeled by send-hooks, which allow a user to limit

allowed communication and define conditions that must be satisfied. Compared to the

ADO model, the component specifications are at a much lower level of abstraction that

exposes some protocol implementation details. This ties the reasoning to explicit network

communication patterns rather than the generic ADO pull-invoke-push interface.

Another line of work on distributed system composition using separation logic is

Aneris [Krogh-Jespersen et al. 2020]. It provides a higher-order ML-like specification

164

language and the program logic is built on top of the Iris verification framework [Jung

et al. 2015, 2018]. Notably, it supports thread-level concurrency within a single replica in

addition to the usual inter-replica concurrency. Like Disel, it defines interactions at the

level of abstract network primitives and cannot support the kind of network-independent

reasoning enabled by the ADO model.

Both frameworks can handle composition examples such as Two-Phase Commit, which

rely on a coordinator to manage concurrency; however, to our knowledge they have not

demonstrated support for more decentralized applications such as KVLockFree.

7.3 Partial Failures

One advantage of the ADO model is its simple interface for working with one of the most

complicated and unintuitive aspects of distributed systems: failures and intermediate state.

As our replicated Two-Phase Commit example (Section 4.4.2) demonstrates, one can exploit

these features for performance gains. For example, by using pull and push directly instead

of an exactly-once call, the TM is able to save several message round trips.

TAPIR [Zhang et al. 2015] also combines transactions with consensus, but it observes

that, since both the transaction and replication protocols are strongly consistent, it can

replicate commands with only a single round of messages instead of two. This means

replicas may receive commands in different orders, but the consistent global order is

enforced later by the TM. We could model this behavior with cache tree entries for the

replicated commands, which are only committed later by push. Much like the Two-Phase

Commit example, by carefully controlling when pull and push are called and temporarily

165

relying on uncommitted states, TAPIR exploits an application-specific characteristic (the

existence of the TM) to optimize its performance.

Another use for exposed failures is speculative execution. Speculator [Nightingale et al.

2006] is a distributed file system that outperforms NFS by working under the assumption

that its operations will succeed without waiting for confirmation. If it later learns that an

operation failed, it reloads from an earlier checkpoint and retries. The speculation and

failures are hidden from the client by waiting to externalize the output until an operation

succeeds, but, in order to make this optimization possible, they must be exposed within

the boundaries of the application.

At present, these systems are quite complicated and not well supported by existing

models. Thus, in spite of the potential performance benefits, it is difficult for developers

to be confident in the correctness of their implementations. The ADO model may make

formal verification of such systems much more feasible, which could encourage their

development and adoption.

7.4 Reconfiguration

7.4.1 Alternate Reconfiguration Schemes

Adore is designed to support hot reconfiguration algorithms where uncommitted recon-

figuration commands update the configuration immediately. These are both more efficient

and more challenging to verify than other types because they interleave reconfiguration

with normal operations. The cache tree’s representation of uncommitted state is ideal for

166

handling this kind of speculative behavior, and the R1+ and isQuorum parameters allow

Adore to support a wide variety of schemes; however, with some slight modifications, it

could easily handle even more.

Lamport et al. [2008] suggests an “easy” approach to reconfiguration in which each

instance of consensus (each slot in the log) uses a configuration that is inherited from

the previous instance. The configuration can then be changed by committing a special

command that tells the next consensus instance to use it. To avoid blocking instance 𝑖 + 1

from beginning until 𝑖 is fully committed, the algorithm is generalized to use a parameter

𝛼 such that a configuration committed in instance 𝑖 takes effect in instance 𝑖 + 𝛼 , thus

allowing 𝑖 through 𝑖 + 𝛼 − 1 to continue as normal.

This scheme already has a fair amount in common with Adore, such as inheriting the

previous slot’s configuration. In order to fully support it, the first required change is to

wait until a configuration is committed to begin using it, rather than having it take effect

immediately. The other is to block new methods from being invoked on an active branch

that has 𝛼 uncommitted caches.

Stoppable Paxos [Malkhi et al. 2008] introduces a “stop” command that prevents replicas

from committing further commands. Once stopped, a new configuration is launched and

the old log is copied over. WormSpace [Shin et al. 2019] implements a similar approach

by “sealing” the configuration, which causes servers to reject subsequent requests, before

starting a new instance. Liskov and Cowling [2012] also define a membership change

algorithm for Viewstamped Replication in which a special command defines the new con-

figuration and begins a view change (i.e., election). Like the other approaches, handling of

client requests is paused until the logs are completely transferred to the new configuration.

167

Adore could model this style of stop-the-world reconfiguration by deleting all caches

not on the active branch when an 𝑅𝐶𝑎𝑐ℎ𝑒 is committed, which simulates copying the

committed commands to a new cluster of servers. This simplifies the problem because once

the 𝑅𝐶𝑎𝑐ℎ𝑒 is committed there is a clean break between the old and new configurations

with no opportunity for both to run simultaneously.

7.4.2 Formal Verification

There is surprisingly little prior work on formal verification of reconfiguration. Verdi’s

proof of Raft’s safety [Woos et al. 2016] does not consider either the single-server or joint

consensus algorithms. IronFleet’s Paxos-based IronRSL also omits reconfiguration though

they claim it “only requires additional developer time”. Padon et al. [2017] prove the safety

of Vertical Paxos but assume the existence of a correct external reconfiguration service,

thus sidestepping the issue. Even in the blockchain world, where membership tends to be

very flexible, verification efforts often make strict assumptions about configurations. For

example, Losa and Dodds [2020] prove the safety of the Stellar Consensus Protocol, but

assume an “arbitrary, but fixed configuration”. Likewise, Carr et al. [2022] only consider a

single epoch of HotStuff in which the set of validators does not change.

The work nearest to Adore is the verification of the reconfiguration scheme used by

MongoDB [Schultz et al. 2022a,b], which occurred concurrently with Adore’s develop-

ment. Like Adore, the protocol is based on Raft’s single-server algorithm, but with an

optimization that reconfiguration operations are stored separately from regular commands,

which somewhat relaxes the dependencies between them, and means replicas only need

168

to keep the latest configuration. However, there are several significant differences in our

approaches and results.

The MongoDB work is specified in TLA+ [Lamport 1999, 2002] in a very abstract

network-based model and its safety is proved with the TLA+ proof system (TLAPS) [Chaud-

huri et al. 2008]. The specification is at a comparable level of abstraction to our SRaft

specification (Section 5.5), where communication details are mostly hidden but state is

still modeled as local logs rather than a global cache tree. Unlike Adore, there is no

refinement with a more realistic model or the ability to extract executable code. The

MongoDB specification is also for a fixed reconfiguration scheme and lacks the generality

of Adore’s isQuorum and R1+ parameters.

The high-level structures of the safety proofs are quite different as well. Because

MongoDB also uses a hot reconfiguration algorithm, it faces the same sort of circularity

problems described in Section 5.4; however, without Adore’s tree structure to suggest

the rdist-based approach, they resort to the more standard technique of establishing an

inductive invariant that implies safety and is preserved by every step of the specification.

This invariantmust contain enough information both to prove safety and its own invariance,

whichmeans several mutually dependent properties must be bundled together. In particular,

the MongoDB invariant is a conjunction of 20 high-level properties ranging from important

safety guarantees, like election safety and log matching, to implementation details, such

as the uniqueness of a configuration’s term and version number.

With all of these invariants packed together, the intuition behind why the protocol

works is obscured, and the proof is more complex because it is harder to break down into

smaller steps. Discovering the correct invariants alone took between one to two person-

169

months using a counterexample-driven approach with a tool that attempts to detect invalid

invariants. Actually proving that the invariant is inductive and implies safety took another

four person-months. When compared with the five person-weeks to prove Adore’s safety,

this supports our claim that finding the correct protocol-level abstraction is essential for

scaling verification to more realistic and complex systems.

7.5 Connecting Benign and Byzantine Consensus

Although AdoB is the first fully mechanized abstraction to prove the safety and liveness

of benign and byzantine consensus simultaneously, others have also noted the similarities

between the failure models and attempted to formalize the connection. Lamport [2011]

demonstrated that a byzantine version of Paxos (BPCon) refines a modified version of be-

nign Paxos (PCon). In particular, PCon adds a 1𝑐 message (pre-commit in our terminology)

that asserts a particular value is safe to commit. In PCon, this message is purely logical

because it is implied by the following 2𝑎 (commit) message and the leader is trusted, but

in BPCon, it is essential to ensure a byzantine leader cannot convince honest replicas to

commit an invalid state. PCon is proved to be safe in TLAPS and is then “byzantinized”

by proving that BPCon refines it, showing that both implement consensus despite the

presence of malicious replicas.

The 1𝑐 message serves a similar role to AdoB’s mquorum in that it is a generic method

for asserting the validity of a commit with an adjustable burden of proof depending on

the trust model. Thanks to the refinement, PCon’s safety implies BPCon’s safety, but this

proof is specialized to this one instance of benign and byzantine protocols. By raising the

170

level of abstraction to the ADO model, AdoB is able to handle a much more general class

of protocols. Lamport provides an informal argument for the liveness of BPCon, but no

mechanized proof.

In a similar vein, some of the HotStuff designers have informally described how to

derive a benign version of HotStuff by dropping the pre-commit phase and cryptographic

signatures, and using a smaller quorum [Abraham et al. 2021]. The fact that such a simple

transformation is possible is part of what inspired the use of elements of HotStuff’s design

(e.g., rotating leadership every round, quorum and timeout certificates) in AdoB.

Another more general approach is proposed by Rütti et al. [2010], which aims to provide

a generic specification for benign and byzantine consensus. Once again, the key to this

unification is to parameterize the pre-commit phase (what they refer to as the validation

round) to require more or less evidence from the leader that a command is safe to commit.

In particular, the decision (commit) round is controlled by a parameterized threshold of

required votes (𝑇𝐷), and 𝐹𝐿𝐴𝐺 , which decides if the votes must be validated or not.

The authors demonstrate that these parameters can be instantiated for several concrete

protocols including Paxos and PBFT. This is closer to the level of generality provided by

AdoB; however, the authors do not provide mechanized proofs of safety or liveness for the

generalized consensus algorithm. Furthermore, it is specified in terms of a very abstract

network-based model with no formal connection to an implementation.

171

Chapter 8

Conclusions and Future Work

The goal of this dissertation has been to present the atomic distributed object abstraction

and demonstrate its effectiveness for simplifying many aspects of distributed system

verification. This is shown through a series of case studies, each of which develops a

variant of the ADO model and uses it to solve a verification challenge.

First, Advert explores using ADOs for application-level reasoning and composing

them into larger systems. Next, Adore shifts the focus to proving the safety of consensus

protocols with the added complexity of a generic hot reconfiguration scheme. Finally,

AdoB introduces liveness reasoning and generalizes the scope from benign consensus to a

unified model that covers both benign and byzantine failures.

Each case also demonstrates the validity and generality of the ADO model by proving

refinements with a variety of protocols including several Paxos variants, Chain Replication,

a version of Raft, and a version of Jolteon. These illustrate that the ADO model, although

primarily designed for high-level reasoning, is also a viable tool for producing systems

that are both practical and verified.

172

This is a promising line of research with many possible future directions, some of

which are outlined below.

8.1 Combining ADO Variants

We have shown several variants of the ADO model that target different verification chal-

lenges. It would be worthwhile to combine or otherwise link these into a more cohesive

abstraction that covers all cases. For Adore and AdoB, this would mean defining a model

with 𝑅𝐶𝑎𝑐ℎ𝑒𝑠 , 𝑇𝐶𝑎𝑐ℎ𝑒𝑠 , and the generalized benign/byzantine failure model. We expect

that much of the safety and liveness proofs would be unaffected, but the interaction between

reconfiguration, timeouts, and byzantine replicas will likely introduce new complexities.

For Advert, on the other hand, it is not clear thatmerging it with Adore or AdoBwould

be desirable because its focus is on a slightly higher-level of abstraction. Instead, it would be

better to prove that Adore and AdoB refine Advert, which would allow Advert’s DApps

to benefit from the lower-level models’ safety and liveness proofs without complicating

themwith unnecessary details. This proof should be relatively straightforward as Advert’s

cache tree is very similar to that of Adore and AdoB but with less information about voters.

The primary challenge would be mapping this information instead to the ActiveMap, which

is a more coarse-grained method for tracking active caches.

173

8.2 Alternate Consistency Models

In this work we have focused on consensus, which provides strong consistency for the

replicated state; i.e., all operations are guaranteed to be observed in the same order. This is

a very intuitive and often necessary behavior, but it often comes at the expense of high

availability [Gilbert and Lynch 2002]. In practice, applications may choose to use consensus

to maintain only the most critical data, and a weaker model that trades consistency for

improved responsiveness everywhere else [Chang et al. 2006; Dean 2009].

For example, the eventual consistency model, which is used by conflict-free replicated

data types (CRDTs), may temporarily allow different clients to see different views of the

replicated state but guarantees that eventually they will converge. To support a wider

range of distributed systems, the ADO model could be modified to handle this or other

consistency models. This would require weakening the effect that 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 have on pull

because it is no longer guaranteed that exactly one branch is committed at all times.

However, if enough of the abstraction remains the same, it could perhaps even support

composing objects with different consistency models, which would enable verification of

the kind of heterogeneous applications that appear in practice.

8.3 Proof Automation

Network Refinement Despite simplifying reasoning about distributed protocols com-

pared to network-based models, proofs in the ADO model still require a significant amount

of manual effort. It would be interesting to explore what aspects of these proofs could be

fully or partially automated by integrating with existing verification tools. One particularly

174

promising area to apply this would be the network refinement proofs. The process of

reordering and grouping asynchronous network events into a canonical form is precisely

what Verdi’s VSTs are designed for. One could, in principle, use Verdi to prove that a

realistic network-based model refines a much simpler atomic model, which would only

leave the final step of connecting the atomic network model to the ADO model.

Even with proof automation tools, it can still be challenging to simply write a correct

specification. In fact, much of the time to complete the network refinement proofs was

spent writing a specification, attempting the proof only to find it is impossible, adjusting

the specification, and repeating until the process converges. Instead of doing these steps

entirely manually, this cycle could be accelerated with property-based testing. For example,

a tool like QuickChick [Lampropoulos and Pierce 2018] can quickly generate a large

number of random test inputs (e.g., traces of network events) and automatically check if

they satisfy a set of desired properties (e.g., the refinement relation). Any counter-examples

can be studied to discover specification errors, which is much simpler than attempting to

identify the problem from deep within a proof goal.

Executable Code Generation Another area for improvement is the generation of

verified executable code. For Advert, we manually proved a refinement with hand-

written C code using CCAL, which demonstrates that end-to-end verification of efficient

distributed programs is possible, albeit very time consuming. A much simpler alternative is

the approach taken in Adore and AdoB of automatically generating OCaml code directly

from the Coq specification. Unfortunately, this introduces a much larger trusted computing

base and may not satisfy the performance requirements of certain applications.

175

A promising solution that combines the best of both options is the DeepSEA lan-

guage [Sjöberg et al. 2019], which automatically produces C code from a high-level func-

tional specification along with a refinement proof. The refinement proof may, in some cases,

leave a few verification conditions to be proved manually, but this would still represent a

significant reduction in proof effort. Combined with Verdi or a comparable alternative for

the network refinement, this would make it much easier to produce even more optimized

and realistic verified distributed systems.

Model Checking A third option for introducing automation is to use ADO model as a

basis for model checking. Model checking is a common testing technique for distributed

systems that takes an abstract representation of a system, typically as a very high-level

network-based model or state machine, and a property to prove, and automatically searches

for counterexamples [Lamport 1999]. Except for very simple or very regular systems,

exhaustive search is impossible, so it cannot guarantee the absence of a bug; however, it

can still be a useful sanity check that is much lower-effort than full-scale verification. It

would be interesting to apply these techniques to a system that is specified in terms of

the ADO model. Because the interface consists of only three operations with relatively

few potential outcomes, it may be possible to explore a larger search space than with a

network-based model.

176

8.4 Addressing Implementation Inefficiencies

Althoughwe have shown that the ADOmodel can be refined by several consensus protocols,

the examples have been optimized for ease of verification rather than performance. This is

not a fundamental limitation of the ADO model, but implementing more efficient systems

complicates the refinement proofs. For example, in our Raft and Jolteon implementations,

replicas send their entire log in each request. In practice, this becomes prohibitively

inefficient as the length of the log grows. Instead, systems typically implement techniques

to reduce message sizes, such as sending only the log entries that a replica is missing or

sending just a hash of the log and relying on an external protocol like Narwhal [Danezis

et al. 2022] for data replication.

This type of optimization is invisible at the ADO level, as replicas are simply assumed

to have access to the methods in their active branch. A benefit of this design is that data

replication concerns are isolated from safety and liveness properties, but the downside is it

is less clear how these operations map onto the ADO behaviors. A brute-force solution is to

simply add more layers of network refinement, and perhaps, with the help of automation

techniques, the proofs can be made feasible.

An alternative is to investigate whether an intermediate model between the network

and ADO levels might be able to bridge the gap and reduce the proof burden. For instance,

something similar to the ADO model could be equipped with a replicate command

that must be called before a replica switches its active branch. Because this intermediate

model also has a cache tree-based design, the refinement with the ADO model would be

simplified, and the new operation makes it easier to define the relation with a network-

177

based specification as well.

This is similar to how Adore and AdoB can be seen as lower-level versions of Advert

with additional information about the configuration. By continuing to design alternate

ADO variants with increasingly low-level system details, one can break the relation

between the highest and lowest specifications into more manageable steps, while still

preserving the isolation between abstraction layers that makes the ADO model so effective

at protocol-level reasoning.

178

Bibliography

Ittai Abraham, Heidi Howard, and Kartik Nayak. Benign HotStuff, April 2021. URL
https://decentralizedthoughts.github.io/2021-04-02-benign-hotstuff/.

Agda Development Team. What is Agda?, 2005–2022. URL https://agda.readthedocs.
io/en/latest/getting-started/what-is-agda.html.

Andrew W. Appel. Verified software toolchain. In Gilles Barthe, editor, Proceedings of the
European Symposium on Programming, ESOP ’11, Berlin, Germany, March 2011. Springer.
doi: https://doi.org/10.1007/978-3-642-19718-5_1.

AWS Team. Summary of the Amazon EC2 and Amazon RDS service disruption in the US
east region, April 2011. URL https://aws.amazon.com/message/65648/.

Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobber, Michael Wei,
and John D. Davis. CORFU: A shared log design for flash clusters. In Proceedings of the

USENIX Conference on Networked Systems Design and Implementation, NSDI ’12, Berkeley,
CA, USA, April 2012. USENIX Association. doi: https://doi.org/10.1145/2535930.

Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In Frank S. de Boer,
Marcello M. Bonsangue, Susanne Graf, and Willem-Paul de Roever, editors, Proceedings
of the International Symposium on Formal Methods for Components and Objects, FMCO
’05, pages 364–387, Berlin, Germany, November 2005. Springer. doi: https://doi.org/10.
1007/11804192_17.

Christian Berger, Hans P. Reiser, and Alysson Bessani. Making reads in BFT state machine
replication fast, linearizable, and live. In Proceedings of the International Symposium on

Reliabile Distributed Systems, SRDS ’21, Washington, DC, USA, September 2021. IEEE
Computer Society. doi: https://doi.org/10.1109/SRDS53918.2021.00010.

Alysson Bessani, João Sousa, and Eduardo E. P. Alchieri. State machine replication for
the masses with BFT-SMaRt. In Proceedings of the IEEE/IFIP International Conference on

Dependable Systems and Networks, DSN ’14, pages 355–362, Washington, DC, USA, June
2014. IEEE Computer Society. doi: https://doi.org/10.1109/DSN.2014.43.

Manuel Bravo, Gregory Chockler, and Alexey Gotsman. Making Byzantine consensus
live. In Proceedings of the International Conference on Distributed Computing, DISC ’20,
Dagstuhl, Germany, July 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
https://doi.org/10.4230/LIPIcs.DISC.2020.23.

179

https://decentralizedthoughts.github.io/2021-04-02-benign-hotstuff/
https://agda.readthedocs.io/en/latest/getting-started/what-is-agda.html
https://agda.readthedocs.io/en/latest/getting-started/what-is-agda.html
https://aws.amazon.com/message/65648/

Ethan Buchman. Tendermint: Byzantine Fault Tolerance in the Age of Blockchains. PhD
thesis, University of Guelph, 2016.

Mike Burrows. The Chubby lock service for loosely-coupled distributed systems. In
Proceedings of the USENIX Symposium on Operating Systems Design and Implementation,
OSDI ’06, pages 335–350, Berkeley, CA, USA, November 2006. USENIX Association. URL
https://dl.acm.org/doi/10.5555/1298455.1298487.

Christian Cachin and Marko Vukolic. Blockchain consensus protocols in the wild. arXiv,
July 2017. doi: https://doi.org/10.48550/arXiv.1707.01873.

Christian Cachin, Rachid Guerraoui, and Lus Rodrigues. Introduction to Reliable and

Secure Distributed Programming. Springer, Berlin, Germany, 2 edition, 2011. doi: https:
//doi.org/10.1007/978-3-642-15260-3.

Harold Carr, Christa Jenkins, Mark Moir, Victor Cacciari Miraldo, and Lisandra Silva.
Towards formal verification of HotStuff-based Byzantine fault tolerant consensus in Agda.
In Jyotirmoy V. Deshmukh, Klaus Havelund, and Ivan Perez, editors, NASA Formal

Methods, NFM ’22, pages 616–635, Berlin, Germany, May 2022. Springer. doi: https:
//doi.org/10.1007/978-3-031-06773-0_33.

Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance. In Proceedings

of the USENIX Symposium on Operating Systems Design and Implementation, OSDI ’99,
pages 173–186, Berkeley, CA, USA, February 1999. USENIX Association. URL https:
//dl.acm.org/doi/10.5555/296806.296824.

Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. The rise of
serverless computing. Communications of the ACM, 62(12):44–54, December 2019. doi:
https://doi.org/10.1145/3368454.

Tej Chajed, Frans Kaashoek, Butler Lampson, and Nickolai Zeldovich. Verifying concur-
rent software using movers in CSPEC. In Proceedings of the USENIX Symposium on

Operating Systems Design and Implementation, OSDI ’18, pages 306–322, Berkeley, CA,
USA, October 2018. USENIX Association. URL https://dl.acm.org/doi/10.5555/
3291168.3291191.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A distributed
storage system for structured data. In Proceedings of the USENIX Symposium on Operating

Systems Design and Implementation, OSDI ’06, pages 205–218, New York, NY, USA,
November 2006. Association for Computing Machinery. doi: https://doi.org/10.1145/
1365815.1365816.

Kaustuv C Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz. A TLA+
proof system. In Piotr Rudnicki, Geoff Sutcliffe, Boris Konev, Renate Schmidt, and
Stephan Schulz, editors, Proceedings of the Workshop on Knowledge Exchange: Automated

180

https://dl.acm.org/doi/10.5555/1298455.1298487
https://dl.acm.org/doi/10.5555/296806.296824
https://dl.acm.org/doi/10.5555/296806.296824
https://dl.acm.org/doi/10.5555/3291168.3291191
https://dl.acm.org/doi/10.5555/3291168.3291191

Provers and Proof Assistants, KEAPPA ’08, pages 17–37, online, November 2008. CEUR-
WS.org. URL http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-
WS/Vol-418/paper2.pdf.

Coq Development Team. The Coq proof assistant, 1999–2022. URL http://coq.inria.fr.

CorfuDB. CorfuDB, 2017. URL https://www.github.com/CorfuDB/CorfuDB.

George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman.
Narwhal and Tusk: A DAG-based mempool and efficient BFT consensus. In Proceedings

of the ACM SIGOPS/EuroSys European Conference on Computer Systems, EuroSys ’22,
pages 34–50, New York, NY, USA, March 2022. Association for Computing Machinery.
doi: https://doi.org/10.1145/3492321.3519594.

Jeff Dean. Designs, lessons and advice from building large distributed systems,
2009. URL https://research.cs.cornell.edu/ladis2009/talks/dean-keynote-
ladis2009.pdf. Keynote from ACM SIGOPS International Workshop on Large Scale
Distributed Systems and Middleware.

Ankush Desai, Amar Phanishayee, Shaz Qadeer, and Sanjit A. Seshia. Compositional
programming and testing of dynamic distributed systems. Proceedings of the ACM on

Programming Languages, OOPSLA, November 2018. doi: https://doi.org/10.1145/3276529.

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM, 35(2):288–323, April 1988. doi: https://doi.org/10.1145/
42282.42283.

etcd Developers. etcd, 2013–2022. URL https://etcd.io/.

Pascal Felber, Ben Jai, Rajeev Rastogi, and Mark Smith. Using semantic knowledge of
distributed objects to increase reliability and availability. In Proceedings of the In-

ternational Workshop on Object-Orient Real-Time Dependable Systems, WORDS ’01,
pages 153–160, Washington, DC, USA, February 2001. IEEE Computer Society. doi:
https://doi.org/10.1109/WORDS.2001.945126.

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374––382, April 1985. doi:
https://doi.org/10.1145/3149.214121.

Pedro Fonseca, Kaiyuan Zhang, Xi Wang, and Arvind Krishnamurthy. An empirical
study on the correctness of formally verified distributed systems. In Proceedings of the

ACM SIGOPS/EuroSys European Conference on Computer Systems, EuroSys ’17, pages
328–343, New York, NY, USA, April 2017. Association for Computing Machinery. doi:
https://doi.org/10.1145/3064176.3064183.

Eli Gafni and Leslie Lamport. Disk Paxos. Distributed Computing, 16(1), February 2003.
doi: https://doi.org/10.1007/s00446-002-0070-8.

181

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-418/paper2.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-418/paper2.pdf
http://coq.inria.fr
https://www.github.com/CorfuDB/CorfuDB
https://research.cs.cornell.edu/ladis2009/talks/dean-keynote-ladis2009.pdf
https://research.cs.cornell.edu/ladis2009/talks/dean-keynote-ladis2009.pdf
https://etcd.io/

Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman, and
Zhuolun Xiang. Jolteon and Ditto: Network-adaptive efficient consensus with asyn-
chronous fallback. In Proceedings of the International Conference on Financial Cryp-

tography and Data Security, FC ’22, Berlin, Germany, May 2022. Springer. URL
https://fc22.ifca.ai/preproceedings/35.pdf.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system. In
Proceedings of the ACM Symposium on Operating Systems Principles, SOSP ’03, pages
29–43, New York, NY, USA, October 2003. Association for Computing Machinery. doi:
https://doi.org/10.1145/945445.945450.

Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. ACM SIGACT News, 33(2):51–59, June 2002.
doi: https://doi.org/10.1145/564585.564601.

Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding network failures
in data centers: Measurement, analysis, and implications. ACM SIGCOMM Computer

Communication Review, 41(4):350–361, August 2011. doi: https://doi.org/10.1145/2043164.
2018477.

Jim Gray and Leslie Lamport. Consensus on transaction commit. ACM Transactions

on Database Systems, 31(1):133–160, March 2006. doi: https://doi.org/10.1145/1132863.
1132867.

Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman)
Wu, Shu-Chun Weng, Haozhong Zhang, and Yu Guo. Deep specifications and certified
abstraction layers. In Proceedings of the Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL ’15, pages 595–608, New York, NY,
USA, January 2015. Association for Computing Machinery. doi: https://doi.org/10.1145/
2676726.2676975.

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vilhelm Sjöberg, and
David Costanzo. CertiKOS: An extensible architecture for building certified concurrent
OS kernels. In Proceedings of the USENIX Symposium on Operating Systems Design and

Implementation, OSDI ’16, pages 653–669, Berkeley, CA, USA, November 2016. USENIX
Association. URL https://dl.acm.org/doi/10.5555/3026877.3026928.

Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan Wu, Jérémie Koenig, Vilhelm Sjöberg,
Hao Chen, David Costanzo, and Tahina Ramananandro. Certified concurrent abstraction
layers. In Proceedings of the ACM SIGPLAN International Conference of Programming

Language Design and Implementation, PLDI ’18, pages 646–661, New York, NY, USA,
April 2018. Association for Computing Machinery. doi: https://doi.org/10.1145/3296979.
3192381.

Rachid Guerraoui and Michal Kapalka. On the correctness of transactional memory.
In Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP ’08, pages 175–184, New York, NY, USA, February 2008. Association
for Computing Machinery. doi: https://doi.org/10.1145/1345206.1345233.

182

https://fc22.ifca.ai/preproceedings/35.pdf
https://dl.acm.org/doi/10.5555/3026877.3026928

Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat Patana-anake,
Thanh Do, Jeffry Adityatama, Kurnia J. Eliazar, Agung Laksono, Jeffrey F. Lukman,
Vincentius Martin, and Anang D. Satria. What bugs live in the cloud? a study of 3000+
issues in cloud systems. In Proceedings of the ACM Symposium on Cloud Computing,
SoCC ’14, New York, NY, USA, November 2014. Association for Computing Machinery.
doi: https://doi.org/10.1145/2670979.2670986.

Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan Parno, Danfeng
Zhang, and Brian Zill. Ironclad apps: End-to-end security via automated full-system
verification. In Proceedings of the USENIX Symposium on Operating Systems Design and

Implementation, OSDI ’14, pages 165–181, Berkeley, CA, USA, October 2014. USENIX
Association. URL https://dl.acm.org/doi/10.5555/2685048.2685062.

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L.
Roberts, Srinath Setty, and Brian Zill. IronFleet: Proving practical distributed systems
correct. In Proceedings of the ACM Symposium on Operating Systems Principles, SOSP
’15, New York, NY, USA, October 2015a. Association for Computing Machinery. doi:
https://doi.org/10.1145/2815400.2815428.

Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serar Tasiran. Automated and modular
refinement reasoning for concurrent programs. In Proceedings of the International

Conference on Computer Aided Verification, CAV ’15, pages 449–465, Berlin, Germany,
July 2015b. Springer. doi: https://doi.org/10.1007/978-3-319-21668-3_26.

Wolf Honoré, Jieung Kim, Ji-Yong Shin, and Zhong Shao. Much ADO about failures:
A fault-aware model for compositional verification of strongly consistent distributed
systems. Proceedings of the ACM on Programming Languages, OOPSLA, October 2021a.
doi: https://doi.org/10.1145/3485474.

Wolf Honoré, Jieung Kim, Ji-Yong Shin, and Zhong Shao. Artifact for "Much ADO about
failures: A fault-aware model for compositional verification of strongly consistent
distributed Systems", September 2021b.

Wolf Honoré, Ji-Yong Shin, Jieung Kim, and Zhong Shao. Adore: Atomic distributed
objects with certified reconfiguration. In Proceedings of the ACM SIGPLAN International

Conference of Programming Language Design and Implementation, PLDI ’22, pages 379–
394, New York, NY, USA, June 2022a. Association for Computing Machinery. doi:
https://doi.org/10.1145/3519939.3523444.

Wolf Honoré, Ji-Yong Shin, Jieung Kim, and Zhong Shao. Artifact for "Adore: Atomic
distributed objects with certified Reconfiguration", March 2022b.

Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed. ZooKeeper:
Wait-free coordination for Internet-scale systems. In Proceedings of the USENIX An-

nual Technical Conference, USENIXATC ’10, Berkeley, CA, USA, June 2010. USENIX
Association. URL https://dl.acm.org/doi/10.5555/1855840.1855851.

183

https://dl.acm.org/doi/10.5555/2685048.2685062
https://dl.acm.org/doi/10.5555/1855840.1855851

Isabelle Development Team. What is Isabelle?, 1986–2022. URL https://isabelle.in.
tum.de/overview.html.

Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. Linearizability of persistent
memory objects under a full-system-crash failure model. In Proceedings of the Interna-

tional Conference on Distributed Computing, DISC ’16, pages 313–327, Berlin, Germany,
September 2016. Springer. doi: https://doi.org/10.1007/978-3-662-53426-7_23.

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,
and Derek Dreyer. Iris: Monoids and invariants as an orthogonal basis for concurrent
reasoning. Proceedings of the ACM on Programming Languages, Proceedings of the
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages:
637–650, January 2015. doi: https://doi.org/10.1145/2775051.2676980.

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek
Dreyer. Iris from the ground up: A modular foundation for higher-order concurrent
separation logic. Journal of Functional Programming, 28, November 2018. doi: https:
//doi.org/10.1017/S0956796818000151.

Tom Killalea. The hidden dividends of microservices. Communications of the ACM, 59(8):
42–45, August 2016. doi: https://doi.org/10.1145/2948985.

Eric Koskinen and Matthew Parkinson. The Push/Pull model of transactions. In Proceedings
of the ACM SIGPLAN International Conference of Programming Language Design and

Implementation, PLDI ’15, pages 186–195, New York, NY, USA, June 2015. Association
for Computing Machinery. doi: https://doi.org/10.1145/2737924.2737995.

Bernhard Kragl, Constantin Enea, Thomas A. Henzinger, Suha Orhun Mutluergil, and
Shaz Qadeer. Inductive sequentialization of asynchronous programs. In Proceedings

of the ACM SIGPLAN International Conference of Programming Language Design and

Implementation, PLDI ’20, pages 227–242, New York, NY, USA, June 2020. Association
for Computing Machinery. doi: https://doi.org/10.1145/3385412.3385980.

Morten Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch, Simon Oddershede
Gregersen, and Lars Birkedal. Aneris: A mechanised logic for modular reasoning about
distributed systems. In Peter Müller, editor, Proceedings of the European Symposium

on Programming, ESOP ’20, pages 336–365, Berlin, Germany, April 2020. Springer. doi:
https://doi.org/10.1007/978-3-030-44914-8_13.

Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming Lan-

guages and Systems, 16(3):872––923, May 1994. doi: https://doi.org/10.1145/177492.
177726.

Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2):
133–169, May 1998. doi: https://doi.org/10.1145/279227.279229.

Leslie Lamport. Specifying concurrent systems with TLA+. Calculational System De-

sign, 173:183–247, April 1999. URL https://www.microsoft.com/en-us/research/
publication/specifying-concurrent-systems-tla/.

184

https://isabelle.in.tum.de/overview.html
https://isabelle.in.tum.de/overview.html
https://www.microsoft.com/en-us/research/publication/specifying-concurrent-systems-tla/
https://www.microsoft.com/en-us/research/publication/specifying-concurrent-systems-tla/

Leslie Lamport. Paxos made simple. ACM SIGACT News, 32(4):34–58, December 2001. doi:
https://doi.org/10.1145/568425.568433.

Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and

Software Engineers. Addison-Wesley, Boston, MA, USA, June 2002. URL https:
//www.microsoft.com/en-us/research/publication/specifying-systems-the-
tla-language-and-tools-for-hardware-and-software-engineers/.

Leslie Lamport. Fast Paxos. Distributed Computing, 19(2):79–103, July 2006. doi: https:
//doi.org/10.1007/s00446-006-0005-x.

Leslie Lamport. Byzantizing Paxos by refinement. In Proceedings of the International Con-

ference on Distributed Computing, DISC ’11, pages 211–224, Berlin, Germany, September
2011. Springer. URL https://dl.acm.org/doi/10.5555/2075029.2075058.

Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 4(3):382–401, July 1982. doi:
https://doi.org/10.1145/357172.357176.

Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Reconfiguring a state machine. Technical
Report MSR-TR-2008-193, Microsoft, February 2008. URL https://www.microsoft.
com/en-us/research/publication/reconfiguring-a-state-machine/.

Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Vertical Paxos and primary-backup
replication. In Proceedings of the ACM Symposium on Principles of Distributed Computing,
PODC ’09, pages 312–313, New York, NY, USA, August 2009. Association for Computing
Machinery. doi: https://doi.org/10.1145/1582716.1582783.

Leonidas Lampropoulos and Benjamin C. Pierce. QuickChick: Property-Based Testing in
Coq. Software Foundations series, volume 4. Electronic textbook, August 2018. URL
http://www.cis.upenn.edu/~bcpierce/sf.

K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness.
In Edmund M. Clarke and Andrei Voronkov, editors, Proceedings of the International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR ’10,
pages 348–370, Berlin, Germany, 2010. Springer. doi: https://doi.org/10.1007/978-3-642-
17511-4_20.

Xavier Leroy. A formally verified compiler back-end. Journal of Automated Reasoning, 43
(4):363–446, November 2009. doi: https://doi.org/10.1007/s10817-009-9155-4.

Hongjin Liang, Jan Hoffmann, Xinyu Feng, and Zhong Shao. Characterizing progress
properties of concurrent objects via contextual refinements. In Proceedings of the Interna-

tional Conference on Concurrency Theory, CONCUR ’13, pages 227–241, Berlin, Germany,
August 2013. Springer. doi: https://doi.org/10.1007/978-3-642-40184-8_17.

Barbara Liskov and James Cowling. Viewstamped replication revisited. Technical Re-
port MIT-CSAIL-TR-2012-021, MIT, July 2012. URL http://hdl.handle.net/1721.1/
71763.

185

https://www.microsoft.com/en-us/research/publication/specifying-systems-the-tla-language-and-tools-for-hardware-and-software-engineers/
https://www.microsoft.com/en-us/research/publication/specifying-systems-the-tla-language-and-tools-for-hardware-and-software-engineers/
https://www.microsoft.com/en-us/research/publication/specifying-systems-the-tla-language-and-tools-for-hardware-and-software-engineers/
https://dl.acm.org/doi/10.5555/2075029.2075058
https://www.microsoft.com/en-us/research/publication/reconfiguring-a-state-machine/
https://www.microsoft.com/en-us/research/publication/reconfiguring-a-state-machine/
http://www.cis.upenn.edu/~bcpierce/sf
http://hdl.handle.net/1721.1/71763
http://hdl.handle.net/1721.1/71763

Giuliano Losa and Mike Dodds. On the formal verification of the Stellar consensus protocol.
In Bruno Bernardo and Diego Marmsoler, editors, Proceedings of the Workshop on Formal

Methods for Blockchains, FMBC ’20, Dagstuhl, Germany, July 2020. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi: https://doi.org/10.4230/OASIcs.FMBC.2020.9.

Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos Kapritsos, Baris Kasikci, and
Karem A. Sakallah. I4: Incremental inference of inductive invariants for verification
of distributed protocols. In Proceedings of the ACM Symposium on Operating Systems

Principles, SOSP ’19, pages 370–384, New York, NY, USA, October 2019. Association for
Computing Machinery. doi: https://doi.org/10.1145/3341301.3359651.

Dahlia Malkhi, Leslie Lamport, and Lidong Zhou. Stoppable Paxos. Technical Report
MSR-TR-2008-192, Microsoft, April 2008. URL https://www.microsoft.com/en-us/
research/publication/stoppable-paxos/.

Justin Meza, Tianyin Xu, Kaushik Veeraraghavan, and Onur Mutlu. A large scale study of
data center network reliability. In Proceedings of the Internet Measurement Conference,
IMC ’18, pages 393–407, New York, NY, USA, October 2018. Association for Computing
Machinery. doi: https://doi.org/10.1145/3278532.3278566.

Robin Milner. A theory of type polymorphism in programming. Journal of Computer

and System Sciences, 17(3):348–375, December 1978. doi: https://doi.org/10.1016/0022-
0000(78)90014-4.

Atsuki Momose and Jason Paul Cruz. Force-locking attack on sync hotstuff. Cryptology
ePrint Archive, (2019/1484), January 2020. URL https://eprint.iacr.org/2019/1484.

Iulian Moraru, David G. Andersen, and Michael Kaminsky. There is more consensus in
egalitarian parliaments. In Proceedings of the ACM Symposium on Operating Systems

Principles, SOSP ’13, pages 358–372, New York, NY, USA, November 2013. Association
for Computing Machinery. doi: https://doi.org/10.1145/2517349.2517350.

Edmund B. Nightingale, Peter M. Chen, and Jason Flinn. Speculative execution in a
distributed file system. ACM Transactions on Computer Systems, 24(4):361–392, 2006.
doi: https://doi.org/10.1145/1189256.1189258.

Diego Ongaro. Consensus: Bridging Theory and Practice. PhD thesis, Stanford University,
2014.

Diego Ongaro. bug in single-server membership changes, July 2015. URL https://groups.
google.com/g/raft-dev/c/t4xj6dJTP6E/m/d2D9LrWRza8J.

Diego Ongaro and John K. Ousterhout. In search of an understandable consensus algorithm.
In Proceedings of the USENIX Annual Technical Conference, USENIXATC ’14, pages 305–
319, Berkeley, CA, USA, June 2014. USENIX Association. URL https://dl.acm.org/
doi/10.5555/2643634.2643666.

186

https://www.microsoft.com/en-us/research/publication/stoppable-paxos/
https://www.microsoft.com/en-us/research/publication/stoppable-paxos/
https://eprint.iacr.org/2019/1484
https://groups.google.com/g/raft-dev/c/t4xj6dJTP6E/m/d2D9LrWRza8J
https://groups.google.com/g/raft-dev/c/t4xj6dJTP6E/m/d2D9LrWRza8J
https://dl.acm.org/doi/10.5555/2643634.2643666
https://dl.acm.org/doi/10.5555/2643634.2643666

Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham.
Ivy: Safety verification by interactive generalization. In Chandra Krintz and Emery
Berger, editors, Proceedings of the ACM SIGPLAN International Conference of Programming

Language Design and Implementation, PLDI ’16, pages 614–630, New York, NY, USA,
June 2016. Association for Computing Machinery. doi: https://doi.org/10.1145/2908080.
2908118.

Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. Paxos made EPR: Decid-
able reasoning about distributed protocols. Proceedings of the ACM on Programming

Languages, OOPSLA, October 2017. doi: https://doi.org/10.1145/3140568.

Vincent Rahli, Ivana Vukotic, Marcus Völp, and Paulo Esteves-Verissimo. Velisarios:
Byzantine fault-tolerant protocols powered by Coq. In Amal Ahmed, editor, Proceedings
of the European Symposium on Programming, ESOP ’18, pages 619–650, Berlin, Germany,
June 2018. Springer. doi: https://doi.org/10.1007/978-3-319-89884-1_22.

Ganesan Ramalingam and Kapil Vaswani. Fault tolerance via idempotence. In Proceedings of
the Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’13, pages 249–262, New York, NY, USA, January 2013. Association for Computing
Machinery. doi: https://doi.org/10.1145/2429069.2429100.

Olivier Rütti, Zarko Milosevic, and André Schiper. Generic construction of consensus
algorithms for benign and Byzantine faults. In Proceedings of the IEEE/IFIP International

Conference on Dependable Systems and Networks, DSN ’14, pages 343–352, Washington,
DC, USA, June 2010. IEEE Computer Society. doi: https://doi.org/10.1109/DSN.2010.
5544299.

Denis Rystsov. CASPaxos: Replicated state machines without logs. arXiv, May 2018. doi:
https://doi.org/10.48550/arXiv.1802.07000.

Fahad Saleh. Blockchain without waste: Proof-of-stake. The Review of Financial Studies, 34
(3):1156–1190, July 2020. doi: https://doi.org/10.1093/rfs/hhaa075.

Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer,
and Deepak Garg. RefinedC: Automating the foundational verification of C code with
refined ownership types. In Proceedings of the ACM SIGPLAN International Conference

of Programming Language Design and Implementation, PLDI ’21, pages 158–174, New
York, NY, USA, June 2021. Association for Computing Machinery. doi: https://doi.org/
10.1145/3453483.3454036.

Fred B. Schneider. Implementing fault-tolerant services using the state machine approach:
A tutorial. ACM Computing Surveys, 22(4):299–319, December 1990. doi: https://doi.org/
10.1145/98163.98167.

William Schultz, Ian Dardik, and Stavros Tripakis. Formal verification of a distributed
dynamic reconfiguration protocol. In Proceedings of the ACM SIGPLAN International

Conference on Certified Programs and Proofs, CPP ’22, pages 143–152, New York, NY,

187

USA, January 2022a. Association for Computing Machinery. doi: https://doi.org/10.1145/
3497775.3503688.

William Schultz, Siyuan Zhou, Ian Dardik, and Stavros Tripakis. Design and analysis
of a logless dynamic reconfiguration protocol. In Quentin Bramas, Vincent Gramoli,
and Alessia Milani, editors, Proceedings of the International Conference of Principles of
Distributed Systems, OPODIS ’21, Dagstuhl, Germany, February 2022b. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik. doi: https://doi.org/10.4230/LIPIcs.OPODIS.2021.26.

Ilya Sergey, James R. Wilcox, and Zachary Tatlock. Programming and proving with dis-
tributed protocols. Proceedings of the ACM on Programming Languages, POPL, December
2017. doi: https://doi.org/10.1145/3158116.

Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A comprehensive
study of convergent and commutative replicated data types. Technical Report RR-7506,
INRIA, January 2011. URL https://hal.inria.fr/inria-00555588.

Ji-Yong Shin, Jieung Kim, Wolf Honoré, Hernán Vanzetto, Srihari Radhakrishnan, Mahesh
Balakrishnan, and Zhong Shao. WormSpace: A modular foundation for simple, verifiable
distributed systems. In Proceedings of the ACM Symposium on Cloud Computing, SoCC
’19, pages 299–311, New York, NY, USA, November 2019. Association for Computing
Machinery. doi: https://doi.org/10.1145/3357223.3362739.

Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, Proceedings of the
International Conference on the Theory and Applications of Cryptographic Techniques,
EUROCRYPT ’00, pages 207–220, Berlin, Germany, May 2000. Springer. doi: https:
//doi.org/10.1007/3-540-45539-6_15.

Vilhelm Sjöberg, Yuyang Sang, Shu chunWeng, and Zhong Shao. DeepSEA: A language for
certified system software. Proceedings of the ACM on Programming Languages, OOPSLA,
October 2019. doi: https://doi.org/10.1145/3360562.

Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles and

Paradigms. Prentice-Hall, Inc., Hoboken, NJ, USA, 2 edition, 2006. URL https:
//dl.acm.org/doi/10.5555/1202502.

Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, Oded Padon, Mooly Sagiv, Sharon
Shoham, James R. Wilcox, and Doug Woos. Modularity for decidability: Implementing
and semi-automatically verifying distributed systems. In Proceedings of the ACM SIG-

PLAN International Conference of Programming Language Design and Implementation,
PLDI ’18, pages 662–677, New York, NY, USA, June 2018. Association for Computing
Machinery. doi: https://doi.org/10.1145/3192366.3192414.

Jeff Terrace and Michael J. Freedman. Object storage on CRAQ: High-throughput Chain
Replication for read-mostly workloads. In Proceedings of the USENIX Annual Technical

Conference, USENIXATC ’09, Berkeley, CA, USA, June 2009. USENIX Association. URL
https://dl.acm.org/doi/10.5555/1855807.1855818.

188

https://hal.inria.fr/inria-00555588
https://dl.acm.org/doi/10.5555/1202502
https://dl.acm.org/doi/10.5555/1202502
https://dl.acm.org/doi/10.5555/1855807.1855818

Ben Treynor. Today’s outage for several Google services, January 2014. URL https://
googleblog.blogspot.com/2014/01/todays-outage-for-several-google.html.

Klaus v. Gleissenthall, Rami Gökhan Kici, Alexander Bakst, Deian Stefan, and Ranjit Jhala.
Pretend synchrony: Synchronous verification of asynchronous distributed programs.
Proceedings of the ACM on Programming Languages, POPL, January 2019. doi: https:
//doi.org/10.1145/3290372.

Robbert van Renesse and Deniz Altinbuken. Paxos made moderately complex. ACM

Computing Surveys, 47(3), April 2015. doi: https://doi.org/10.1145/2673577.

Robbert van Renesse and Fred B. Schneider. Chain Replication for supporting high through-
put and availability. In Proceedings of the USENIX Symposium on Operating Systems

Design and Implementation, OSDI ’04, pages 91–104, Berkeley, CA, USA, December 2004.
USENIX Association. URL https://dl.acm.org/doi/10.5555/1251254.1251261.

JimWaldo, GeoffWyant, AnnWollrath, and Sam Kendall. A note on distributed computing.
Technical Report SMLI TR-94-29, Sun Microsystems Laboratories, November 1994. URL
https://dl.acm.org/doi/10.5555/974938.

Chao Wang, Constantin Enea, Suha Orhun Mutluergil, and Gustavo Petri. Replication-
aware linearizability. In Kathryn S. McKinley and Kathleen Fisher, editors, Proceedings
of the ACM SIGPLAN International Conference of Programming Language Design and

Implementation, PLDI ’19, pages 980–993, New York, NY, USA, June 2019. Association
for Computing Machinery. doi: https://doi.org/10.1145/3314221.3314617.

MichaelWhittaker. CRAQ bug, June 2020. URL https://github.com/mwhittaker/craq_
bug.

James R.Wilcox, DougWoos, Pavel Panchekha, Zachary Tatlock, XiWang, Michael D. Ernst,
and Thomas Anderson. Verdi: A framework for implementing and formally verifying
distributed systems. In Proceedings of the ACM SIGPLAN International Conference of

Programming Language Design and Implementation, PLDI ’15, pages 357–368, New York,
NY, USA, June 2015. Association for Computing Machinery. doi: https://doi.org/10.1145/
2737924.2737958.

Ann Wollrath, Roger Riggs, and Jim Waldo. A distributed object model for the Java system.
In Proceedings of the USENIX Conference on Object-Oriented Technologies, COOTS ’96,
Berkeley, CA, USA, June 1996. USENIX Association. URL https://dl.acm.org/doi/
10.5555/1268049.1268066.

DougWoos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D. Ernst, and Thomas
Anderson. Planning for change in a formal verification of the Raft consensus protocol.
In Proceedings of the ACM SIGPLAN International Conference on Certified Programs and

Proofs, CPP ’16, pages 154–165, New York, NY, USA, January 2016. Association for
Computing Machinery. doi: https://doi.org/10.1145/2854065.2854081.

189

https://googleblog.blogspot.com/2014/01/todays-outage-for-several-google.html
https://googleblog.blogspot.com/2014/01/todays-outage-for-several-google.html
https://dl.acm.org/doi/10.5555/1251254.1251261
https://dl.acm.org/doi/10.5555/974938
https://github.com/mwhittaker/craq_bug
https://github.com/mwhittaker/craq_bug
https://dl.acm.org/doi/10.5555/1268049.1268066
https://dl.acm.org/doi/10.5555/1268049.1268066

Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abraham.
HotStuff: BFT consensus with linearity and responsiveness. In Proceedings of the ACM

Symposium on Principles of Distributed Computing, PODC ’19, pages 347–356, New York,
NY, USA, July 2019. Association for Computing Machinery. doi: https://doi.org/10.1145/
3293611.3331591.

Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy, and Dan R. K.
Ports. Building consistent transactions with inconsistent replication. In Proceedings of

the ACM Symposium on Operating Systems Principles, SOSP ’15, pages 263–278, New
York, NY, USA, October 2015. Association for Computing Machinery. doi: https://doi.
org/10.1145/2815400.2815404.

190

Appendix A

Additional ADO Examples

Some of the ADO examples in Section 4.4 intentionally make some simplifying assumptions

(e.g., ignoring liveness or certain types of failures) for the sake of a cleaner presentation.

This chapter shows that one can remove these assumptions to create objects that are closer

to those used in real-world systems.

A.1 ADO Lock Alternatives

Different lock implementations have trade-offs in factors such as simplicity, fairness,

and liveness. We have shown CASLock, which is very simple, but is lacking in the other

two areas. Figure A.1 shows two other possible distributed lock ADOs that address these

shortcomings.

TicketLock is a fairer, but slightly more complex alternative. It works by tracking

the currently serving and next unused “tickets” as well as each replica’s current ticket. A

replica owns the lock when its ticket matches the one being served. The owner can then

191

1 ADO TicketLock {
2 shared next : N := 0;
3 shared serving : N := 0;
4 shared tkts : Map[N⇀ N] := {};
5 method requestTkt() {
6 if (this.nid ∈ this.tkts) {
7 return this.tkts[this.nid];
8 } else {
9 this.next += 1;
10 this.tkts[this.nid] := this.next;
11 return this.next;
12 }
13 }
14 method tryAcquire() {
15 return this.nid ∈ this.tks && this.serving = this.tkts[this.nid];
16 }
17 method release() {
18 if (this.nid ∈ this.tks && this.serving = this.tkts[this.nid]) {
19 this.serving += 1;
20 this.tkts.delete(this.nid);
21 }
22 }
23 }

1 ADO TimeoutLock {
2 shared owner : option N := None;
3 shared time : N := 0;
4 method tryAcquire() {
5 if (this.owner = None) {
6 this.owner := Some(this.nid);
7 this.time := 0;
8 }
9 return this.owner = Some(this.nid);
10 }
11 method release() {
12 if (this.owner = Some(this.nid)) { this.owner := None; }
13 }
14 method checkin() {
15 if (this.owner = Some(this.nid)) { this.time := 0; }
16 return this.owner = Some(this.nid);
17 }
18 method tick() {
19 this.time += 1;
20 if (this.time > TIMEOUT) { this.owner := None; }
21 }
22 }

Figure A.1: More complex ADO locks.

192

release the lock by incrementing the serving ticket, which causes the next waiting replica

to acquire the lock. The waiting replicas implicitly form a queue, which provides better

fairness than CASLock because replicas acquire the lock in the order they request it.

Unlike the standard concurrent implementation, in which clients of the lock main-

tain their own tickets, TicketLock remembers each replica’s ticket in order to make

requestTkt idempotent. For this lock, and indeed any non-preemptible distributed lock,

the most significant difference with its concurrent counterpart is that it will block if the

owner replica crashes because there is no way of revoking lock ownership. For simple

examples and idealized models, this liveness limitation can be overlooked because it does

not affect correctness, but practical settings require a solution. Production systems such as

the Chubby distributed lock service [Burrows 2006] typically use a “keep-alive” approach

where the lock is released if it does not hear from the client after some timeout. Although

this is a simple solution for deadlock avoidance, it complicates the mutual exclusivity

guarantee of the lock. One must either take special care to ensure that a client that dies

and comes back online still believing to be the lock owner cannot interfere with the new

owner, or else set the timeouts such that this situation is assumed to be impossible.

The ADO model has no notion of physical time, but one way of approximating a lock

with a timeout (similar to Chubby) is TimeoutLock. It is essentially CASLockwith an added

time field that represents the elapsed time since the lock owner last renewed its lease by

calling checkin. The tick method models the lock’s internal clock by incrementing the

timer and releasing the lock after a certain timeout period. In order for this to have some

relation to physical time, this method must be continually called at regular intervals. This

approach avoids the deadlock risk, but requires additional assumptions about clock skews

193

to maintain safety. If there were a sufficiently large delay between calling checkin and

executing the critical section, it would be possible for another replica to acquire the lock

and break mutual exclusivity. However, due to distributed systems’ lack of a synchronized

global clock, a common assumption is that the replica’ local clocks are within some error

bound so this situation cannot occur [Cachin et al. 2011; Hawblitzel et al. 2015a].

A.2 2PC with Recovery

The 2PC example in Section 4.4.2 improved the availability and reliability of the system

by replicating the RMs so they can survive a certain number of crashes; however, it did not

address the case where the TM crashes. If the TM crashes midway through a transaction,

it is possible for the RMs to be in an inconsistent state where only some have received the

request or final decision. Therefore, when a new TM comes online it must first perform a

recovery operation before handling new requests.

Figure A.2 shows the same TM and RM from Figure 4.11, but augmented with a recovery

phase (methods that have not changed from the previous example are elided). As before,

the initialization begins by calling pull on every RM. Then the TM decides whether

recovery is necessary by checking the latest transaction that each RM has received. If

the transaction has not been decided (committed or aborted), then the TM must have

crashed sometime during or before phase 2. If no RMs have undecided transactions, then

no recovery is needed and the initialization ends. Otherwise, if some RM has a decision for

a transaction that is undecided in another RM, the TM finishes replicating that decision in

all RMs. Finally, the TM asks the RMs to delete any undecided transactions they received

194

1 ADO RM {
2 shared txs : Vector[TX] := [];
3 method prepare(tx) { ... }
4 method decide(ts, decision) { ... }
5 method remove_tx_after(ts) { this.txs := this.txs.filter(𝜆 tx. tx.ts ≤ ts); }
6 method read() { return this.txs; }
7 }

1 DApp TM(rm_1: RM, ..., rm_n: RM) {
2 local ts : Z := 0;
3 /* Must be called once when TM starts */
4 proc init() {
5 for rm in [this.rm_1, ..., this.rm_n] {
6 while (rm.pull() = FAIL) {}
7 }
8 /* Recovery */
9 need_recovery := [];
10 /* Check the last decided TX in each RM */
11 for rm in [this.rm_1, ..., this.rm_n] {
12 rm.invoke(read());
13 do { txs := rm.push(); } while (txs = FAIL);
14 need_recovery[rm] := txs.last().decision ∉ [COMMIT, ABORT];
15 last_decided := txs.filter(𝜆 tx. tx.decision ∈ [COMMIT, ABORT]).last();
16 /* Remember the timestamp and decision of the latest decided TX */
17 if (last_decided.ts > this.ts) {
18 this.ts := last_decided.ts;
19 decision := last_decided.decision;
20 }
21 }
22 /* All RMs are in consistent state */
23 if (!need_recovery.any()) { return; }
24 for rm in [this.rm_1, ..., this.rm_n] {
25 /* Finish TXs that failed during phase 2 */
26 if (need_recovery[rm]) { rm.invoke(decide(this.ts, decision)); }
27 /* Wipe out TXs that failed during phase 1 */
28 rm.invoke(remove_tx_after(this.ts));
29 while (rm.push() = FAIL) {}
30 }
31 }
32 proc handle_request(ops) { ... }
33 }

Figure A.2: Two-Phase Commit with recovery.

195

after the latest decided one. After ensuring that the methods are complete by calling push,

the RMs are guaranteed to be in a consistent state again and the TM can begin handling

new transaction requests.

196

Appendix B

Additional Refinement Details

The key component of a refinement between a network-based specification and the ADO

model is the relation between a replica’s local log and its active branch in the cache

tree (Figure B.1). Intuitively, this says that for every log, there is always a branch that

can be transformed into the same log by collecting the 𝑀𝐶𝑎𝑐ℎ𝑒𝑠 along the branch, and

furthermore, the branch is at least as recent as the replica’s latest supported 𝐶𝐶𝑎𝑐ℎ𝑒 (i.e.,

the log contains all of the replica’s committed methods).

Each of the refinement proofs discussed for the different instances of the ADO model

proves this relation, albeit with minor variations (e.g., Adore also includes 𝑅𝐶𝑎𝑐ℎ𝑒𝑠 in

branchToLog, AdoB weakens LogMatch to only hold for honest replicas), but there are

branchToLog(𝑡𝑟,𝐶) ≜ {(𝑡, 𝑀) | 𝑀𝐶𝑎𝑐ℎ𝑒 (_, 𝑡, 𝑀) ∈ ancestors(𝑡𝑟,𝐶)}
LogMatch(𝑠𝑡net, 𝑠𝑡𝐴𝐷𝑂) ≜ ∀nid . ∃𝐶. log(𝑠𝑡net, nid) = branchToLog(tree(𝑠𝑡𝐴𝐷𝑂),𝐶)

∧𝐶 ⪰ activeC (tree(𝑠𝑡𝐴𝐷𝑂), nid)

Figure B.1: The general local log-ADO branch correspondence of R.

197

small differences in their approaches as well. The following sections provide additional

information and definitions about these differences.

B.1 Advert Refinement Details

Definition 11 (Phase Scheduler). A phase schedule is a list of Elect and Commit events

indicating the order that a certain replica will call the corresponding operations. A phase

scheduler, Osched , is an oracle that takes the current network state and a replica’s node ID

and returns a phase schedule for that replica.

Definition 12 (Complete Request). A request is complete if there is a ghost Begin message,

and a quorum of replicas have received and either accepted or rejected the request. Otherwise

the request is incomplete.

Definition 13 (Completion). Given a network state with an incomplete request, a completion

of that request can be computed by repeatedly querying a phase scheduler and applying either

elect or commit as appropriate until the request is complete.

Definition 14 (Logical Time Reordering). The logical time reordering of a trace of network

events is computed by sorting the events by their logical times with the following caveats: events

originating from the same replica remain in program order, messages cannot be delivered

before they are sent, and once a replica receives a message with logical time 𝑡 , all later messages

at the same replica with logical time less than 𝑡 are dropped.

The refinement relation (RAdvert) is proved by considering an arbitrary network state

and showing that an ADO state exists that satisfies LogMatch. This is done by computing

198

the completion and logical time reordering of the network and proving that the resulting

state is equivalent to the original in the sense that the local logs are the same. Then, a

related ADO state can be constructed from this network state by applying pull for every

successful elect, invoke for every local log update, and push for every successful commit.

B.2 Adore Refinement Details

B.2.1 SRaft and Adore

The following proof sketch demonstrates the intuition for why the LogMatch relation is

preserved between SRaft and Adore states.

Lemma 7 (Adore Refinement). Suppose LogMatch holds for some SRaft state and a cache

tree, 𝑡𝑟 , and that replica 𝑆’s local log is 𝜆. For any valid SRaft step where 𝑆’s new log is 𝜆′

there is a valid Adore step to some 𝑡𝑟 ′ with a cache 𝐶 such that branchToLog(𝑡𝑟 ′,𝐶) = 𝜆′.

Proof Sketch. Consider each possible SRaft operation. Neither elect nor commit change 𝜆,

so Adore can take a stutter step and the result holds trivially. Both invoke and reconfig

append a new method to 𝜆, and the corresponding Adore operations append an equivalent

cache to the end of 𝑆 ’s active branch, preserving the relation. If deliver’s message is an

election request or acknowledgement, then 𝜆 does not change and, likewise, pull only

adds an 𝐸𝐶𝑎𝑐ℎ𝑒 to the cache tree, which branchToLog ignores. The only other operation

to change 𝜆 is a delivery of a commit request, in which case 𝑆 takes the log 𝜆′ sent by some

leader 𝐿. push adds a 𝐶𝐶𝑎𝑐ℎ𝑒 , 𝐶 to 𝐿’s branch, and, because branchToLog also ignores

𝐶𝐶𝑎𝑐ℎ𝑒𝑠 , we know by induction that branchToLog(𝑡𝑟 ′,𝐶) = branchToLog(𝑡𝑟 ′, parent (𝐶)) =

199

Rnet(𝑠𝑡, 𝑠𝑡 ′) ≜ ∀nid . log(𝑠𝑡, nid) = log(𝑠𝑡 ′, nid) ∧ time(𝑠𝑡, nid) = time(𝑠𝑡 ′, nid)

Figure B.2: The network-equivalence relation, Rnet.

log(𝑠𝑡net, 𝐿). Therefore, because 𝑆 voted for 𝐿’s commit, their logs are equal so 𝜆′ =

log(𝑠𝑡net, 𝐿) = branchToLog(𝑡𝑟 ′,𝐶) and LogMatch still holds. □

B.2.2 Raft and SRaft

Recall that SRaft is essentially the same as Raft, aside from some simplifying assumptions

about how andwhenmessages are delivered. To prove that Raft refines SRaft, wemust show

that, despite these assumptions, SRaft behaves equivalently to Raft, up to Rnet (Figure B.2),

which states that the relevant parts of every replica’s local state is the same. The following

proof sketches explain the intuition for why each assumption is safe.

Definition 15 (Valid Message). Upon receiving a message, every replica checks that it

satisfies certain properties, and ignores it if it does not. Examples include a request with an

insufficiently large timestamp, or an acknowledgement for a request that has already ended.

A message is valid if it satisfies the properties and is therefore not ignored.

Lemma 8 (SRaft Valid Messages). For any sequence of network events, evs, that results

in a state, 𝑠𝑡 , there exists a sequence of events, evs
′
, that results in an equivalent state, 𝑠𝑡 ′

(Rnet(𝑠𝑡, 𝑠𝑡 ′)), such that evs
′
contains only valid messages.

Proof Sketch. It is trivial to define evs′ by filtering out invalid messages from evs. Since

invalid messages are ignored anyway, this has no effect on the replicas’ local states. □

Definition 16 (Ordered Messages). Messages𝑚 and𝑚′
are ordered if

200

(time(𝑚), vrsn(𝑚)) ≤lex (time(𝑚′), vrsn(𝑚′))

where ≤lex is the usual lexicographic order.

Definition 17 (Locally Ordered Messages). A sequence of network events, evs, is locally

ordered if, for every𝑚 and𝑚′
, such that evs = . . . • deliver (𝑚) • . . . • deliver (𝑚′) • . . . and

𝑡𝑜 (𝑚) = 𝑡𝑜 (𝑚′),𝑚 and𝑚′
are ordered.

Definition 18 (Globally Ordered Message). A sequence of network events, evs, is globally

ordered if, for every𝑚 and𝑚′
, such that evs = . . . • deliver (𝑚) • . . . • deliver (𝑚′) • . . .,𝑚 and

𝑚′
are ordered.

Lemma 9 (SRaft Globally Ordered). For any sequence of network events, evs, that contains

only valid messages that results in a state, 𝑠𝑡 , there exists a sequence of events, evs
′
, that

results in an equivalent state, 𝑠𝑡 ′ (Rnet(𝑠𝑡, 𝑠𝑡 ′)), such that evs
′
is globally ordered.

Proof Sketch. We know evs is already locally ordered because non-locally ordered messages

would be ignored, and there are no invalid messages by assumption. Therefore, all that

remains is to show that sorting the globally unordered messages in evs does not affect

the replicas’ local states. Observe that receiving a message is a local operation in that

it only affects the state of the recipient. Therefore, deliveries to different recipients are

independent and can freely commute. Since we have established that messages are locally

ordered, the only out-of-order messages must have different recipients and can be sorted

without affecting the final global state. □

Definition 19 (Atomic Deliveries). An operation in a sequence of network events, evs, is

201

delivered atomically if every corresponding delivery (both of the request and the acknowl-

edgements) is adjacent in evs.

Lemma 10 (SRaft Atomic). For any sequence of network events, evs, that contains only

globally ordered, valid messages that results in a state, 𝑠𝑡 , there exists a sequence of events,

evs
′
, that results in an equivalent state, 𝑠𝑡 ′ (Rnet(𝑠𝑡, 𝑠𝑡 ′)), such that evs

′
has atomic deliveries.

Proof Sketch. To construct evs′, for every operation, we must find all unadjacent corre-

sponding deliveries and “push” them together in such a way that does not affect the

resulting state. Because evs is globally ordered, and no leader uses the same timestamp-

version number pair for its operations, any messages that come between two related

deliveries must originate from a different leader. This also implies that the deliveries must

have different recipients, because a replica would not accept two requests from different

leaders with the same timestamp. Therefore, these delivery events can commute. By

repeating this process, all delivery events can be rearranged so that corresponding ones

are adjacent, and one can treat them as if they occurred atomically. □

Lemma 11 (Raft Refines SRaft). For any sequence of network events, evs, that results in

a state, 𝑠𝑡 , there exists a sequence of events, evs
′
, that results in an equivalent state, 𝑠𝑡 ′

(Rnet(𝑠𝑡, 𝑠𝑡 ′)), such that evs
′
contains only valid, globally ordered, and atomic messages.

Proof Sketch. Trivial combination of Lemmas 8 to 10. □

Theorem 5 (Raft Refines Adore). Suppose R holds for some Raft state and a cache tree, 𝑡𝑟 ,

and that replica 𝑆’s local log is 𝜆. For any valid Raft step where 𝑆’s new log is 𝜆′ there is a

valid Adore step to some 𝑡𝑟 ′ with a cache, 𝐶 , such that branchToLog(𝑡𝑟 ′,𝐶) = 𝜆′.

Proof Sketch. Trivial combination of Lemmas 7 and 11. □

202

B.3 AdoB Refinement Details

This section summarizes each of the 15 conjuncts that make up R.

LogMatch Every replica’s local log corresponds to some branch in the cache tree; i.e.,

every log entry has an equivalent𝑀𝐶𝑎𝑐ℎ𝑒 . Furthermore, for an honest replica, the

corresponding branch is at least as recent as its activeC. This allows us to prove that

AdoB’s safety and liveness implies GenJolteon’s safety and liveness.

RequestLogMatch The log contained in every invoke and commit request corresponds to

some branch of the cache tree. This is used to prove LogMatch is maintained after

invoke or commit.

ElectLogMatch The logs contained in every electmessage corresponds to some branch of

the cache tree. Furthermore, the latest log is a 𝐶𝐶𝑎𝑐ℎ𝑒 or 𝑇𝐶𝑎𝑐ℎ𝑒 from the previous

round. This is used to prove LogMatch is maintained after elect.

TimeoutLogMatch The logs contained in every timeout message corresponds to some

branch of the cache tree. If the timeout occurs after a successful commit, then the

log corresponds to the newly created𝐶𝐶𝑎𝑐ℎ𝑒 . Otherwise, there is no𝐶𝐶𝑎𝑐ℎ𝑒 for the

current round, but the latest log is still at least as recent as the latest𝐶𝐶𝑎𝑐ℎ𝑒 . This is

used to prove LogMatch is maintained after timeout.

ReceivedLogSent Replicas sometimes store multiple logs from other replicas, for example

when it receives an election or timeout message. Each of these logs must have been

carried by some request in the network event history. This is used to prove LogMatch

is maintained when these logs are sent along with an invoke request.

203

LocalTimeMatch An honest replica’s local time in the network model must match its local

time in AdoB and there must be a 𝐶𝐶𝑎𝑐ℎ𝑒 or 𝑇𝐶𝑎𝑐ℎ𝑒 with the same time. The time

in the network model may also be one greater than the AdoB time if a replica has

just committed a method. This is used to prove that the preconditions for pull,

invoke, push, and timeout that reference local times are satisfied in both models.

CacheTimeMatch For every cache with a timestamp 𝑡 , there exists a quorum of honest

replicas whose local time is at least 𝑡 . This is used to rule out the existence of caches

with very high timestamps.

VotedTimeMatch An honest replica must either have a larger timestamp than its latest

voted cache, or they are equal and the replica’s phase dictates the type of the voted

cache. If the replica is invoking a method or has just voted for invoke, the cache

must be anything but an 𝐸𝐶𝑎𝑐ℎ𝑒 . If it is committing or has just voted for commit, the

voted cache must be a 𝐶𝐶𝑎𝑐ℎ𝑒 or a 𝑇𝐶𝑎𝑐ℎ𝑒 . This is used to ensure that a replica’s

phase is somewhat synchronized with what caches it has voted for.

PreviousRoundTimeMatch If an honest replica has timestamp 𝑡 > 1, there exists a 𝐶𝐶𝑎𝑐ℎ𝑒

or 𝑇𝐶𝑎𝑐ℎ𝑒 with time 𝑡 − 1. This is used to ensure the rounds in the network and

AdoB models stay synchronized.

CommitAckDelivered Every𝐶𝐶𝑎𝑐ℎ𝑒 corresponds to a delivered commit acknowledgement.

This is used to support RequestLogMatch.

CommitRequestDelivered Every 𝐶𝐶𝑎𝑐ℎ𝑒 corresponds to a delivered commit request. This

is used to support RequestLogMatch.

204

TimeoutDelivered Every 𝑇𝐶𝑎𝑐ℎ𝑒 corresponds to a delivered timeout message. This is

used to support TimeoutLogMatch.

TimeoutUnique The timestamp of every timeout message is unique. This is used in

conjunction with TimeoutDelivered to support TimeoutLogMatch.

TimeoutDone If an honest replica has received a timeout message and has not yet moved

to a later round, its phase must be Done, which prevents it from acknowledging any

further requests in that round. This is used to ensure a timeout effectively ends a

round.

ActiveTCache If an honest replica’s active cache is a 𝑇𝐶𝑎𝑐ℎ𝑒 , then its local timestamp

must be greater than the𝑇𝐶𝑎𝑐ℎ𝑒’s. This is used to ensure that replicas advance their

timestamps after timing out.

205

Appendix C

Additional Safety Proof Details

C.1 Advert Safety Proof Details

This section explains the high-level structure of the replicated state safety proof template

for Paxos-like protocols and shows a few representative theorems. Figure C.1 shows an

overview of the dependencies between theorems in the template. Theorems are categorized

into protocol invariants, which are properties that must be proven for each instantiation

(e.g., Multi Paxos, Vertical Paxos, etc), and core theorems, which hold for the whole family

of protocols and are proven once and for all.

Core Theorems The following are important safety properties of replicated distributed

systems and their supporting theorems. Aside from the protocol invariants, they make

no assumptions about the implementation or lower-level details and hold for most Paxos

variants.

To prove replicated state safety, we must show that every replica’s local rdata snapshot

206

Protocol InvariantsCore Theorems

Replicated
State Safety

Local State-History
Consistency

Successful Commit
Uniqueness ...

...

Commit
Uniqueness

Elect Max Logical
Time

Commit Changes
Snapshot

Quorum Intersect

Quorum Superset

Update Function
Time

...

Elect
Uniqueness

Figure C.1: Abridged proof dependencies.

is associated with a successful Commit operation, and that Commit operations have unique

timestamps. Combined with the fact that Commits require approval from a quorum of

replicas, and that replicas only accept Commits in strictly increasing timestamp order, this

guarantees that there is exactly one linearized order in which the methods that created the

current rdata could be committed.

Core Theorem 1 (Local State-History Consistency). For every replica’s rdata snapshot,

there exists a corresponding successful Commit message in the network history. A successful

Commit message is one that was accepted by a quorum of servers.

Core Theorem 2 (Successful Commit Uniqueness). Any two successful Commit messages

associated with the same logical time contain the same rdata.

Proof Sketch. We proceed by induction on the network history. Because logical times are

unique (Core Lemma 1), the two Commit messages must come from the same replica. Then,

because a Commit message must follow an Elect request, there are two cases: an election

occurred between the commits, or there is an intermediate third commit. In the first case,

we are done because elections change the logical time (Core Lemma 4), which contradicts

the assumption that they are equal. In the second case, we use the inductive hypothesis

207

to show that the first and intermediate Commit messages send the same rdata and then

again derive a contradiction from the change in rdata between the intermediate and the

last Commit. □

Core Theorem 2 expresses a kind of immutability; once an rdata snapshot is committed

at a particular logical time, it can never be erased or overwritten. For protocols with

physical logs (e.g., Multi Paxos), this implies immutability of each index of the log, but

even for protocols with in-place updates to a single object (e.g., CASPaxos), this represents

the fact that there exists an unchanging logical history of atomic updates.

Core Theorems 1 and 2 depend on the following core lemmas.

Core Lemma 1 (Commit Uniqueness). No two Commit messages have the same logical

time.

Core Lemma 2 (Commit Changes Snapshot). A replica’s local rdata snapshot changes only

at the end of an election (when it is copied from servers) or at the end of a commit operation

(when a new update is appended to it).

Core Lemma 3 (Elect Uniqueness). No two Commit messages have the same logical time.

Core Lemma 4 (Elect Max Logical Time). The latest logical time in the corresponding rdata

after a successful election is the maximum among the participating voters.

Core Lemma 1 guarantees that either the time must change between commit phases.

Core Lemma 2 describes when and how a client’s state changes. Core Lemmas 3 and 4

guarantee basic properties about logical timestamps during elections.

208

Protocol Invariants Whereas many of the core theorems require nuanced reasoning

about concurrent, asynchronous behaviors, the protocol invariants are intended to be

simple properties that follow directly from a protocol’s instantiations of the parameters. A

few such properties are listed below to give their flavor.

Protocol Invariant 1 (Quorum Intersect). If 𝑆1 and 𝑆2 are quorums (with respect to

isQuorum) for Elect and Commit phases in the same logical time respectively, then the

two sets have a non-empty intersection.

Protocol Invariant 2 (Quorum Superset). If 𝑆 is a quorum and 𝑆 ⊆ 𝑆′, then 𝑆′ is also a

quorum.

Protocol Invariant 3 (Update Function Time). Extracting the time from an rdata with

rtime after applying the update function (update) must return the same timestamp passed to

the update function.

Protocol Invariants 1 and 2 define properties of quorum-based consensus protocols

and are straightforward to prove with set-theoretic arguments for most reasonable imple-

mentations of isQuorum. Protocol Invariant 3 enforces a relation between the time used

by update and returned by rtime.

C.2 Adore Safety Proof Details

Lemma 12 (Descendant Order). If 𝐶𝑌 is a descendant of 𝐶𝑋 then 𝐶𝑌 ≻ 𝐶𝑋 .

Proof Sketch. It is enough to show that every newly added cache is greater than its parent.

An 𝐸𝐶𝑎𝑐ℎ𝑒 added by pull has a larger timestamp than its supporters, including its parent.

209

𝑀𝐶𝑎𝑐ℎ𝑒𝑠 and 𝑅𝐶𝑎𝑐ℎ𝑒𝑠 increment their parent’s version number. push copies the parent’s

time and version, but since the parent must be an𝑀𝐶𝑎𝑐ℎ𝑒 or 𝑅𝐶𝑎𝑐ℎ𝑒 , the𝐶𝐶𝑎𝑐ℎ𝑒 is greater

by definition of ≻. □

Lemma 13 (Leader Uniqueness, rdist-0). If𝐶𝐸1 and𝐶𝐸2 are 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 and rdist (𝐶𝐸1,𝐶𝐸2) = 0,

then time(𝐶𝐸1) ≠ time(𝐶𝐸2).

Proof Sketch. Because rdist = 0, 𝐶𝐸1 and 𝐶𝐸2 have the same configuration and thus

overlapping quorums of supporters. pull chooses a time greater than any observed by its

supporters, so, since𝐶𝐸1 and𝐶𝐸2 share a supporter, whichever cache was added to the tree

last must have a larger timestamp. □

Theorem 6 (Election-Commit Order, rdist-0). Let 𝐶𝐶 be a 𝐶𝐶𝑎𝑐ℎ𝑒 and 𝐶𝐸 be an 𝐸𝐶𝑎𝑐ℎ𝑒

such that 𝐶𝐸 ≻ 𝐶𝐶 and rdist (𝐶𝐸,𝐶𝐶) = 0. 𝐶𝐸 must be a descendant of 𝐶𝐶 .

Proof Sketch. If 𝐶𝐸 is a descendant of 𝐶𝐶 then we are done, so suppose it is not for the

sake of deriving a contradiction. By Lemma 12, 𝐶𝐶 cannot be a descendant of 𝐶𝐸 either.

By double induction on the time and version number, we can assume that 𝐶𝐸 is the first

𝐸𝐶𝑎𝑐ℎ𝑒 that is not a descendant of 𝐶𝐶 and for all 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 𝐶′
𝐸
where 𝐶𝐸 ≻ 𝐶′

𝐸
≻ 𝐶𝐶 , 𝐶′

𝐸
is

a descendant of 𝐶𝐶 . Because rdist = 0, 𝐶𝐸 and 𝐶𝐶 have the same configuration and thus

overlapping quorums of supporters. Therefore, 𝐶𝐸 ’s parent, 𝐶𝑃 , is greater than 𝐶𝐶 because

pull selects the largest cache supported by its supporters. This leaves the three following

options for the shape of the tree.

210

CC

CP
CA rdist=0

CE

CC

CE
CA rdist=0

CPCPE
CPE

CC

CE
CA rdist=0

CP

In the first case,𝐶𝑃 is an 𝐸𝐶𝑎𝑐ℎ𝑒 , but then𝐶𝐸 ≻ 𝐶𝑃 ≻ 𝐶𝐶 , so by the inductive hypothesis

it must be a descendant of 𝐶𝐶 , which is a contradiction. If 𝐶𝑃 is not an 𝐸𝐶𝑎𝑐ℎ𝑒 , it must

have an 𝐸𝐶𝑎𝑐ℎ𝑒 ancestor, 𝐶𝑃𝐸 , such that time(𝐶𝑃) = time(𝐶𝑃𝐸). From 𝐶𝑃 ≻ 𝐶𝐶 , we know

time(𝐶𝑃) ≥ time(𝐶𝐶), but, thanks to Lemma 13, we also know that if time(𝐶𝑃) = time(𝐶𝐶)

they must be on the same branch. Since they are not, time(𝐶𝑃) = time(𝐶𝑃𝐸) > time(𝐶𝐶),

so 𝐶𝑃𝐸 ≻ 𝐶𝐶 .

The two possible locations for 𝐶𝑃𝐸 are between the common ancestor 𝐶𝐴 and 𝐶𝑃 , or

before 𝐶𝐴. The first option derives a contradiction because 𝐶𝐸 ≻ 𝐶𝑃𝐸 ≻ 𝐶𝐶 but 𝐶𝑃𝐸 is not

a descendant of 𝐶𝐶 . The second case is also impossible by Lemma 12 because 𝐶𝑃𝐸 is an

ancestor of 𝐶𝐶 but 𝐶𝑃𝐸 ≻ 𝐶𝐶 . Thus, it is impossible to arrive at a cache tree in which 𝐶𝐸 is

not a descendant of 𝐶𝐶 . □

Theorem 7 (Safety, rdist-0). Let 𝐶𝐶1 and 𝐶𝐶2 be 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 such that rdist (𝐶𝐶1,𝐶𝐶2) = 0.

Either 𝐶𝐶1 is a descendant of 𝐶𝐶2 or 𝐶𝐶2 is a descendant of 𝐶𝐶1.

Proof Sketch. As before, assume that neither 𝐶𝐶1 nor 𝐶𝐶2 is a descendant of the other in

order to derive a contradiction. Each must have a nearest 𝐸𝐶𝑎𝑐ℎ𝑒 ancestor, 𝐶𝐸1 and 𝐶𝐸2

respectively, with the same time and no intervening 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 . Three possibilities are as

follows.

211

CC2
CA rdist=0

CC1
CE

CC2
CA rdist=0

CC1
CE1 CE2

CC2
CA rdist=0

CC1
CE2 CE1

In the first case, 𝐶𝐸1 and 𝐶𝐸2 are the same 𝐸𝐶𝑎𝑐ℎ𝑒 , called 𝐶𝐸 , and, in the other two,

the elections are distinct common ancestors of 𝐶𝐶1 and 𝐶𝐶2. Recall that there can be no

𝐸𝐶𝑎𝑐ℎ𝑒𝑠 between 𝐶𝐸1 and 𝐶𝐶1 and likewise for 𝐶𝐸2 and 𝐶𝐶2, so the latter two cases are

impossible. Similarly, in the first case, there are no 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 anywhere on the forking

branches after 𝐶𝐴, but this is also impossible because pull is the only operation that can

create forks in the tree. This leaves three options.

CC2
CA rdist=0CE1

CC1

CE2 CC2
CA rdist=0

CE1 CC1
CE2

CC2
CA rdist=0

CE1 CC1

CE2

In the first case,𝐶𝐸2 is a descendant of𝐶𝐸1 so𝐶𝐸2 ≻ 𝐶𝐸1 by Lemma 12. This also implies

time(𝐶𝐸2) > time(𝐶𝐸1) because an 𝐸𝐶𝑎𝑐ℎ𝑒’s version number is always 0. Then, because

time(𝐶𝐸1) = time(𝐶𝐶1),𝐶𝐸2 ≻ 𝐶𝐶1 as well. By Theorem 6,𝐶𝐸2 must be a descendant of𝐶𝐶1,

but it is not, so this case is impossible. The second case follows by a symmetric argument.

The final case also contradicts Theorem 6 if time(𝐶𝐸1) ≠ time(𝐶𝐸2), which we know is true

by Lemma 13. □

Lemma 14 (Leader Uniqueness, rdist-1). If𝐶𝐸1 and𝐶𝐸2 are 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 and rdist (𝐶𝐸1,𝐶𝐸2) = 1,

then time(𝐶𝐸1) ≠ time(𝐶𝐸2).

212

Proof Sketch. R1+ guarantees that quorums of 𝐶𝐸1 and 𝐶𝐸2’s configurations overlap. pull

chooses a time greater than any observed by its supporters, so, since 𝐶𝐸1 and 𝐶𝐸2 share a

supporter, whichever cache was added to the tree last must have a larger timestamp. □

Theorem 8 (Election-Commit Order, rdist-1). Let 𝐶𝐶 be a 𝐶𝐶𝑎𝑐ℎ𝑒 and 𝐶𝐸 be an 𝐸𝐶𝑎𝑐ℎ𝑒

such that 𝐶𝐸 ≻ 𝐶𝐶 and rdist (𝐶𝐸,𝐶𝐶) = 1. 𝐶𝐸 must be a descendant of 𝐶𝐶 .

Proof Sketch. The proof of Theorem 6 relied on Lemma 12 and Lemma 13 to show that

every case where 𝐶𝐸 is not a descendant of 𝐶𝐶 is impossible. The only difference in this

case is that rdist = 1; however, Lemma 12 is independent of rdist, and Lemma 13 can be

replaced by Lemma 14, so nearly exactly the same proof as before works. □

Theorem 9 (Safety, rdist-1). Let 𝐶𝐶1 and 𝐶𝐶2 be 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 such that rdist (𝐶𝐶1,𝐶𝐶2) = 1.

Either 𝐶𝐶1 is a descendant of 𝐶𝐶2 or 𝐶𝐶2 is a descendant of 𝐶𝐶1.

Proof Sketch. If 𝐶𝐶1 and 𝐶𝐶2 are on the same branch, then we are done, so suppose they

are not for the sake of deriving a contradiction and let 𝐶𝐴 be a common ancestor. Because

rdist = 1, there is one 𝑅𝐶𝑎𝑐ℎ𝑒 , 𝐶𝑅 , between either 𝐶𝐴 and 𝐶𝐶1 or 𝐶𝐴 and 𝐶𝐶2. Without loss

of generality, suppose it is on 𝐶𝐶1’s branch. By R3, 𝐶𝑅 must have a 𝐶𝐶𝑎𝑐ℎ𝑒 ancestor, 𝐶𝐶𝑅 ,

with the same time and no other intervening 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 . The possible locations for 𝐶𝐶𝑅 are

the following.

CC2
CA rdist=0

CC1CR
rdist=1

CCR

CC2

CC1CR
rdist=1CCR

The first case has two𝐶𝐶𝑎𝑐ℎ𝑒𝑠 with rdist = 0 on separate branches, which is impossible

213

by Theorem 7. In the second case, 𝐶𝐶𝑅 is a common ancestor of 𝐶𝑅 and 𝐶𝐶2. Each 𝐶𝐶𝑎𝑐ℎ𝑒

must have a nearest 𝐸𝐶𝑎𝑐ℎ𝑒 ancestor, 𝐶𝐸1 and 𝐶𝐸2, respectively, with the same time and

no intervening 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 . Three possibilities are as follows.

CC2

CC1CR
rdist=1CCRCE2

CC2

CC1CR
rdist=1CCRCE1

CE2 CC2

CC1CR
rdist=1CCR

CE2

CE1

In the first case, recall that time(𝐶𝑅) = time(𝐶𝐶𝑅), which implies that there are no

𝐸𝐶𝑎𝑐ℎ𝑒𝑠 between them. Likewise, there are none between 𝐶𝐸2 and 𝐶𝐶2, so neither fork

has an 𝐸𝐶𝑎𝑐ℎ𝑒 , which is impossible. In the second case, 𝐶𝐸2 ≻ 𝐶𝐸1 by Lemma 12 so

time(𝐶𝐸2) > time(𝐶𝐸1). Then, since time(𝐶𝐸1) = time(𝐶𝑅) = time(𝐶𝐶𝑅), 𝐶𝐸2 ≻ 𝐶𝐶𝑅 as

well. But this contradicts Theorem 8 since 𝐶𝐸2 is not a descendant of 𝐶𝐶𝑅 . The final case

also contradicts Theorem 8 because time(𝐶𝐸1) ≠ time(𝐶𝐸2) by Lemma 14, so one must

be greater than the other. This leaves no option but that 𝐶𝐶1 is a descendant of 𝐶𝐶2 or

vice-versa. □

Lemma 15 (CCache in RCache Fork). Let𝐶𝑅1,𝐶𝑅2 be 𝑅𝐶𝑎𝑐ℎ𝑒𝑠 such that rdist (𝐶𝑅1,𝐶𝑅2) = 0,

and neither is a descendant of the other, but both have a common ancestor 𝐶𝐴. Then there

exists a 𝐶𝐶𝑎𝑐ℎ𝑒 𝐶𝐶 that is a descendant of 𝐶𝐴 and an ancestor of either 𝐶𝑅1 or 𝐶𝑅2.

Proof Sketch. By R3, each 𝑅𝐶𝑎𝑐ℎ𝑒 must have a 𝐶𝐶𝑎𝑐ℎ𝑒 ancestor with the same time,

called 𝐶𝐶1 and 𝐶𝐶2 respectively. If either 𝐶𝐶1 or 𝐶𝐶2 is a descendant of 𝐶𝐴, then we are

done. Otherwise, the options are for 𝐶𝐶1 and 𝐶𝐶2 to be the same cache, or for one to be a

descendant of the other.

214

CA
CR1

CR2
CC rdist=0 CA

CR1

CR2
CC2CC1 rdist=0 CA

CR1

CR2
CC1CC2 rdist=0

Recall that there cannot be any 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 between 𝐶𝐶1 and 𝐶𝑅1 or between 𝐶𝐶2 and 𝐶𝑅2.

This means that, in every case, that are no 𝐸𝐶𝑎𝑐ℎ𝑒𝑠 on either forking branch, which is

impossible. □

Theorem 10 (Safety). Let 𝑡𝑟 be a cache tree with any rdist. For any 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 𝐶𝐶1 and 𝐶𝐶2

in 𝑡𝑟 , one must be a descendant of the other.

Proof Sketch. We proceed by induction on rdist (𝑡𝑟). For rdist ≤ 1, we are done by

Theorems 7 and 9. Suppose now that all trees with rdist = 𝑛 are safe, and 1 < rdist (𝑡𝑟) =

𝑛 + 1 so 1 < rdist (𝐶𝐶1,𝐶𝐶2) ≤ 𝑛 + 1. If rdist (𝐶𝐶1,𝐶𝐶2) ≤ 𝑛, then they are in some subtree

𝑡𝑟 ′ with rdist (𝑡𝑟 ′) = 𝑛, so we are done by the inductive hypothesis. Safety also holds if𝐶𝐶1

and 𝐶𝐶2 are on the same branch, and, if not, we will show that all other shapes for 𝑡𝑟 are

impossible.

There are two options for how the 𝑛 𝑅𝐶𝑎𝑐ℎ𝑒𝑠 could be distributed. Either all 𝑛 + 1

𝑅𝐶𝑎𝑐ℎ𝑒𝑠 are on one branch (e.g., rdist (𝐶𝐴,𝐶𝐶1) = 𝑛 + 1 and rdist (𝐶𝐴,𝐶𝐶2) = 0), or the

𝑅𝐶𝑎𝑐ℎ𝑒𝑠 are distributed such that there is at least one on both branches. In either case, we

can identify the first 𝑅𝐶𝑎𝑐ℎ𝑒 descendant of 𝐶𝐴 on both branches.

CC2
CA

CC1CR
rdist=n+1
rdist=0

CC2
CA

CC1
rdist=n+1

CR
rdist=0

CC2
CA

CC1CR1
rdist=n+1

CR2
rdist=0

215

The first two cases are symmetric, so assume without loss of generality that 𝐶𝑅 is

on 𝐶𝐶1’s branch. Let 𝐶𝐶𝑅 be the first 𝐶𝐶𝑎𝑐ℎ𝑒 descendant of 𝐶𝑅 . It is enough to show

that rdist (𝐶𝐶𝑅,𝐶𝐶2) ≤ 𝑛 because then 𝐶𝐶𝑅 and 𝐶𝐶2 must be on the same branch, which

is a contradiction. We know rdist (𝐶𝐶1,𝐶𝐶2) > 1, so 𝐶𝑅 cannot be the only 𝑅𝐶𝑎𝑐ℎ𝑒 on

𝐶𝐶1’s branch. We also know by R2 that this other 𝑅𝐶𝑎𝑐ℎ𝑒 cannot be between 𝐶𝑅 and 𝐶𝐶𝑅 .

Therefore, this 𝑅𝐶𝑎𝑐ℎ𝑒 does not count towards rdist (𝐶𝐶𝑅,𝐶𝐶2) and it is at most 𝑛.

For the final case, by Lemma 15 there must be a 𝐶𝐶𝑎𝑐ℎ𝑒 between 𝐶𝐴 and either 𝐶𝑅1

or 𝐶𝑅2. Suppose it is between 𝐶𝐴 and 𝐶𝑅2 and call it 𝐶′
𝐶2. Now rdist (𝐶𝑅1,𝐶

′
𝐶2) = 0, so this

is the same case as before. Therefore, this situation is impossible as well and the only

possibility is that 𝐶𝐶1 and 𝐶𝐶2 are on the same branch. □

C.3 AdoB Safety and Liveness Proof Details

This section contains Coq formalizations of certain key definitions and theorems for the

safety and liveness of AdoB.

Safety 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 form a linear path in the cache tree. More specifically, given a well-

formed cache tree (ctree_wfmeans a tree is created using pull, invoke, and push accord-

ing to the rules in for a valid oracle), and two distinct 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 , one must be a descendant

of the other ([c ~> c' | ctree] means c' is a descendant of c in ctree).

Theorem safety (ctree: CacheTree) (wf: ctree_wf ctree) :
forall (c c': Cache),
c <> c' ->
In c ctree -> In c' ctree ->
is_commit c = true -> is_commit c' = true ->
[c ~> c' | ctree] \/ [c' ~> c | ctree].

216

𝐸𝐶𝑎𝑐ℎ𝑒𝑠 and 𝑇𝐶𝑎𝑐ℎ𝑒𝑠 descend from earlier 𝐶𝐶𝑎𝑐ℎ𝑒𝑠 .

Lemma election_follows_commit (ctree: CacheTree) (wf: ctree_wf ctree) :
forall (c c': Cache),
is_commit c = true -> (is_election c' || is_timeout c' = true) ->
c' ≻ c ->
[c ~> c' | ctree].

We represent assumptions about configurations and quorums in the QuorumParams

typeclass. This introduces three parameters: an abstract configuration (Config), a pro-

jection function to a set of replicas (members), and a function to decide if a given set of

replicas is a quorum of a given configuration (is_quorum). The quorum definition must

satisfy the property that any two quorums share a common replica, and adding more

replicas to a quorum still produces a quorum.

Class QuorumParams := {
Config: Type;
members: Config -> set NID;
is_quorum: set NID -> Config -> bool;
quorum_overlap: forall (S S': set NID) (C: Config),
incl S (members C) -> incl S' (members C) ->
is_quorum S C = true -> is_quorum S' C = true ->
exists (s: NID), In s S /\ In s S';

quorum_subset: forall (S S: set NID) (C: Config),
incl S S' -> is_quorum S C = true -> is_quorum S' C = true;

is_squorum: set NID -> Config -> bool;
is_mquorum: NID -> set NID -> Config -> bool;
super_honest_subquorum: forall (S: set NID) (C: Config),
incl S (members C) -> is_squorum S C = true -> is_quorum (S ∩ honest) C = true;

mquorum_overlap: forall (ldr: NID) (S S': set NID) (C: Config),
incl S (members C) -> incl S' (members C) ->
is_mquorum ldr S C = true -> is_mquorum ldr S' C = true ->
exists (s: NID), In s S /\ In s S' /\ In s honest;

msquorum_overlap: forall (ldr: NID) (S S': set NID) (C: Config),
incl S (members C) -> incl S' (members C) -> In ldr S' ->
is_mquorum ldr S C = true -> is_squorum S' C = true ->
exists (s: NID), In s S /\ In s S' /\ In s honest;

}.

Liveness Eventually a new 𝐶𝐶𝑎𝑐ℎ𝑒 will be added to the cache tree.

Theorem liveness (ctree: CacheTree) (wf: ctree_wf ctree) :

217

exists (n: nat), maxCommit (runStrategy n ctree) ≻ maxCommit ctree.

A strategy is defined as a typeclass with a next_move function that, given a cache tree,

decides what operation to apply next (pull, invoke, or push). A strategy can then be run

for any number of steps to determine future states of a cache tree.

Class Strategy := { next_move: CacheTree -> CacheTree; }.
Fixpoint runStrategy `{Strategy} (n: nat) (ctree: CacheTree) : CacheTree :=

match n with | 0 => ctree | S n => runStrategy n (next_move ctree) end.

A productive strategy guarantees operations are called in a timely manner.

Definition productive_pull `{Strategy} (ctree: CacheTree) (nid: NID) :=
can_pull ctree nid ->
exists (n: nat),
runStrategy n ctree = ctree'
/\ next_step ctree' = pull nid ctree'
/\ (forall (n': nat),

0 <= n' <= n ->
not_involved nid ctree (runStrategy n' ctree)).

Definition productive_invoke `{Strategy} (ctree: CacheTree) (nid: NID) :=
... (* Similar *)

Definition productive_push `{Strategy} (ctree: CacheTree) (nid: NID) :=
... (* Similar *)

Definition productive_strategy `{Strategy} :=
forall (ctree: CacheTree) (nid: NID),
productive_pull ctree nid
/\ productive_invoke ctree nid
/\ productive_push ctree nid.

A partially synchronous network has some GST, after which messages are guaranteed

to be delivered to honest replicas within a fixed time bound. This is modeled by an arbitrary

GST parameter, a function to determine whether GST has been reached, and assumptions

that after GST all non-faulty replicas will vote for any valid pull, invoke, or push request.

Class PSyncParams := {
GST: nat;
time_elapsed: CacheTree -> nat;
gst_pull: forall (ctree: CacheTree) (nid: NID),
ctree_wf ctree ->
GST < time_elapsed ctree ->
In nid nonfaulty ->

218

can_pull ctree nid ->
exists (vote: set NID) (cmax: Cache) (t: Time),
pull_oracle ctree nid = Ok vote cmax t /\ incl nonfaulty vote;

gst_invoke ...; (* Similar to gst_pull *)
gst_push: ...; (* Similar to gst_pull *)

}.

Leaders are chosen according to a deterministic scheme that must always eventually

select an honest replica.

Class LeaderParams := {
leader_at: Time -> NID;
leader_at_fair: forall (t: Time), exists (t': Time) (nid: NID),
t < t' /\ leader_at t' = nid /\ In nid honest;

}.

The global time is the timestamp of the most recent 𝐸𝐶𝑎𝑐ℎ𝑒 or 𝑇𝐶𝑎𝑐ℎ𝑒 .

Definition global_time (ctree: CacheTree) (t: Time) :=
exists (c: Cache),
In c ctree /\
is_election c || is_timeout c = true /\
time c = t /\
(forall (c': Cache), In c' ctree -> time c' <= t).

The global time is always guaranteed to eventually increase.

Lemma round_advances (ctree: CacheTree) (wf: ctree_wf ctree) :
GST < time_elapsed ctree ->
forall (t t': Time),
global_time ctree t ->
t <= t' ->
exists (n: nat), global_time (runStrategy n ctree) t'.

A replica’s local timestamp is bounded below by the timestamps of the caches it has

voted for or supported.

Lemma local_time_lower_bound (ctree: CacheTree) (wf: ctree_wf ctree) :
forall (nid: NID) (c: Cache),
In c ctree ->
In nid honest ->
voted nid c = true \/ supports nid c = true ->
time c <= local_time nid.

219

The parent cache chosen by Opush is the most recent of the leader’s𝑀𝐶𝑎𝑐ℎ𝑒𝑠 .

Lemma push_max_mcache (ctree: CacheTree) (wf: ctree_wf ctree) :
forall (c cm: Cache) (ldr: NID) (vote: set NID),
In c ctree ->
is_method c = true ->
nid c = ldr ->
push_oracle ctree ldr = Ok vote cm ctree ->
cm ⪰ c.

220

	Contents
	List of Figures
	List of Tables
	Introduction
	Distributed System Abstractions
	Challenges
	Contributions
	Organization

	Background and Motivation
	Consensus
	Benign Consensus
	Byzantine Consensus
	Safety and Liveness
	Protocol Examples

	Distributed System Abstractions
	State Machine Replication
	Network-Based Models

	Atomic Distributed Object Overview
	Inspiration
	State and Operations
	Cache Tree
	Atomic Interface
	Examples

	Advantages

	Advert: Atomic Distributed Objects for Composition and Partial Failures
	Motivation
	Advert Formal Semantics
	Single-ADO Reasoning
	Programming with ADOs
	Proving with ADOs

	ADO Composition
	Case-Study: Key-Value Stores
	Alternate Method-Calling Patterns

	Refinement
	Network-Based Specifications
	Relating Network and ADO Models
	Safety Proof Template
	Primary Backup
	C Implementations

	Evaluation
	Summary

	Adore: Atomic Distributed Objects with Reconfiguration
	Motivation
	Overview
	Adore Formal Semantics
	Safety Proof
	Breaking Circularity with rdist
	Base Cases
	General Case

	Refinement
	Instantiating Reconfiguration Schemes
	Evaluation and Discussion
	Summary

	AdoB: Atomic Distributed Objects for Benign and Byzantine Consensus
	Motivation
	Overview
	AdoB for Benign Consensus
	Semantics
	Safety and Liveness Proofs

	AdoB for Generalized Consensus
	Adapting to Byzantine Consensus
	Merging the Models
	Adjusting Safety and Liveness Proofs

	Refinement
	Network-Based Specification
	Refinement Proof
	Extraction to OCaml

	Discussion
	Refinement as a Sanity Check
	AdoB Generality

	Summary

	Related Work
	Abstract Models
	Formal Verification
	Consensus
	Proof Automation
	Composition

	Partial Failures
	Reconfiguration
	Alternate Reconfiguration Schemes
	Formal Verification

	Connecting Benign and Byzantine Consensus

	Conclusions and Future Work
	Combining ADO Variants
	Alternate Consistency Models
	Proof Automation
	Addressing Implementation Inefficiencies

	Bibliography
	Additional ADO Examples
	ADO Lock Alternatives
	2PC with Recovery

	Additional Refinement Details
	Advert Refinement Details
	Adore Refinement Details
	SRaft and Adore
	Raft and SRaft

	AdoB Refinement Details

	Additional Safety Proof Details
	Advert Safety Proof Details
	Adore Safety Proof Details
	AdoB Safety and Liveness Proof Details

