
Proving the Correctness of Concurrent Robot Software

Peter Kazanzides Yanni Kouskoulas Anton Deguet Zhong Shao

Abstract—
Component-based software has been proposed as a method-

ology for improving software reuse and has increasingly been
adopted by robot software developers. At the same time, robot
systems typically have real-time performance requirements and
performance gains can often be obtained by multi-threading.
It is challenging, however, to create correct multi-threaded
software, especially when standard mutual exclusion primitives,
such as mutexes and semaphores, are eschewed in favor of
more efficient, lock-free mechanisms. It is even more difficult
to find these errors, as they can remain dormant for years
until triggered by just the “right” conditions. Our approach,
therefore, is to apply Formal Methods to reason about the
correctness of these mechanisms. As a first step, we adopted
a recently-developed program logic called History for Local
Rely/Guarantee (HLRG) and applied it to prove the correctness
(after first finding and fixing an error) of one such mechanism
in the open source cisst software package. This strategy is not
specific to cisst and can be applied to other packages.

I. INTRODUCTION

The complexity of robot systems is increasing as they
become integrated with other devices, such as cameras and
imaging devices. Component-based software engineering has
been proposed as a paradigm for dealing with complex
systems[1], and this approach has been adopted by a number
of robot software frameworks [2]. For example, Player [3],
ORCA [4], and the more recent ROS [5] all utilize a
component-based approach, where the components consist
of separate processes (on one or more computers) that
communicate via a middleware layer. These frameworks,
however, do not directly address the real-time requirements
of low-level robot control. This has led to the integration of
packages that provide real-time computing within popular
frameworks such as ROS. For example, both OROCOS [6]
and our own cisst package [7] support real-time processing
and “bridges” have been created between these packages and
the widely-adopted ROS package [8], [9].

Software packages for real-time processing obviously must
support one or more real-time operating systems, but they also
tend to use multi-threading to take advantage of multi-core
computers. This is true of both OROCOS and cisst, which
use lock-free methods for efficient data exchange between the
different threads. The question, then, is how to validate the
correct operation of multi-threaded robot control software.

For some system components, testing techniques (e.g. [10])
are an effective way to reduce defects in operation. The cisst
software uses the CDash package and the CppUnit and PyUnit

P. Kazanzides and A. Deguet are with the Dept. of Computer Science,
Johns Hopkins University; Y. Kouskoulas is with the Applied Physics Lab,
Johns Hopkins University; Z. Shao is with the Dept. of Computer Science,
Yale University

testing frameworks to implement an automated nightly test
suite. Several computers, with different operating systems
and compilers, perform nightly tests and report the results
to a central web page. Unfortunately, although this test suite
can find syntax errors or (sequential) program logic errors,
it generally cannot find errors in concurrent execution (as is
well known, “timing” errors can lay dormant in code for a
long time until triggered).

Our approach, therefore, is to apply recent advances
in formal methods to reason about the correctness of the
concurrent data exchange mechanisms, which are the most
difficult to verify using standard test suites. This complements
other validation activities, such as design reviews, code
walk-through, and regression testing. One limitation of our
approach is that it assumes that programmers actually use
the concurrent data exchange mechanisms provided by the
software package; for example, it cannot check for unsafe
sharing of data between threads (e.g., using a global variable).

This paper uses the cisst software package (available at
trac.lcsr.jhu.edu/cisst) as a test case, but the concepts can be
applied to any package that provides mechanisms for data
exchange in concurrent multi-threaded programs.

II. OVERVIEW OF cisst PACKAGE

The cisst package is a collection of component-based
open-source C++ software libraries developed to support
our research in computer-assisted intervention systems. It
originally supported a multi-threaded (single-process) environ-
ment [7] and was later extended to networked (multi-process)
configurations [11]. This section describes the thread-safe
data exchange mechanisms that exist within the cisst package.

One challenge with multi-threaded programming is the
management of access to shared resources (mutual exclusion),
which is especially problematic because all threads share a
common address space. Modern operating systems provide
several mechanisms for controlling access to shared resources,
such as semaphores, mutexes, and critical sections. Once one
thread has locked a resource, other threads that attempt to lock
it are either blocked until the resource is unlocked or allowed
to continue without accessing the resource. This behavior
is undesirable for high-frequency real-time threads, such as
those used for robot control. In addition, improper use can
lead to deadlocks, which are conditions where where each
thread is waiting for a mutex or semaphore to be unlocked.
It is possible to use a tool, such as D-Finder in GenoM/BIP
[12], to check for deadlock. Our approach, however, is to
use lock-free data structures for inter-thread data exchange.
Specifically, the cisst library uses state tables and message
queues, as shown in Fig. 1.

2012 IEEE International Conference on Robotics and Automation
RiverCentre, Saint Paul, Minnesota, USA
May 14-18, 2012

978-1-4673-1405-3/12/$31.00 ©2012 IEEE 4718

Authorized licensed use limited to: Yale University. Downloaded on May 12,2020 at 15:23:13 UTC from IEEE Xplore. Restrictions apply.

Component 3

queue
state

event

cmd

state

event

thread

State
Table

Component 1

queue

State
Table

thread

queue

queue
Component 2

queue

State
Table

thread

queue

queue

cmd

Fig. 1: Component interconnection in cisst

A state table is a time-indexed circular (ring) buffer, which
has a single writer (the owning component) but potentially
many readers (client components). The important component
state (typically, some or all of the class data members) are
automatically archived in the state table at the end of each
execution cycle. The readers use a time index that is one less
(older) than the write index. Thus, a reader either (1) obtains
fresh data (the expected case, with a sufficiently large ring
buffer) or (2) is informed that the data has been corrupted
(i.e., the ring buffer “wrapped around” and overwrote the
data). The time indexing also provides a snapshot of the
history of the real-time system and can be used for data
collection as well as for debugging (i.e., to provide a “flight
data recorder” functionality). The state table is similar to
publish/subscribe systems (e.g., ROS topics), except that
information is published locally and subscribers must pay the
cost of retrieving the data. On the other hand, a high-frequency
publisher does not overwhelm the network middleware.

A message queue is also a ring buffer, but is restricted to
a single writer (the client component) and a single reader
(the server component that owns the provided interface that
contains the message queue). This can also be implemented in
a lock-free manner, with the assumption that pointer updates
are atomic. As shown in Fig. 1, commands (cmd) sent from
the client component (1 or 2) to the server component (3)
are queued. To ensure a single writer, yet still allow multiple
clients, a new buffer is automatically allocated for each client
component when the connection is established. Essentially, we
create a new provided interface “instance” for each connected
client’s required interface.

III. OVERVIEW OF FORMAL METHODS

In the context of this research, formal methods are mathe-
matically rigorous approaches to reasoning carefully about a
system, to ensure that it operates as we intend. Broadly, there
are two major categories of formal approaches: deductive
verification approaches, and model-checking approaches. Each

approach offers a method of describing a system, a logic used
to express the specification of a system, and an approach to
proving (or disproving) that a system matches a particular
specification.

Model-checking approaches [13], [14] allow their users
to describe systems in terms of the semantics of finite-state
automata interacting concurrently through communication
channels. Model-checking approaches typically use linear
temporal logic (LTL) as their specification language, and
have the advantage of being fully automated, because their
proof strategy is a brute-force search through the space of
possible state transitions. This search sometimes follows a
rely-guarantee formalism [15] which allows reasoning about
concurrency. In this formalism, each sequential component
provides a guarantee to the others about the state transitions
it may take, and from these, each component constructs a
description of the environment on which it can rely, based
on the guarantees of the other components. In between each
state transition, zero or more atomic steps conforming to the
environment may occur. Model-checking adds optimization
to its proof search, but still has the disadvantage that if the
system described has too large of a state space, the proofs
may not complete in any reasonable time frame.

Deductive verification approaches allow more expressive
languages to be used to describe systems, because their
proof strategy depends on the application of inference rules
about the system to prove different system properties. These
approaches can be traced back to Hoare Logic [16], which
provides a set of inference rules that allow us to reason about
the effects that programs have on computer state. The rules
enable one to take a precondition (a logical predicate about
the state of the computer, referenced to the beginning of
the program) and propagate it forward through a program to
its end, and guarantee that the resulting postcondition holds
if the program terminates. Deductive approaches allow us
to reason about systems with extremely large state spaces
without using a brute-force approach.

Recently, the FLINT group at Yale University developed
a program logic called History for Local Rely/Guarantee
(HLRG) [17]. HLRG builds upon LRG [18] which combines
separation logic [19], [20] to enable local reasoning, with
rely-guarantee reasoning to make guarantees about multiple
processes accessing the same data structures concurrently.
HLRG enables the prover to write specifications using
temporal operators to describe time-based properties of data
structures, and to reason about concurrent programs using
sound Hoare-style inference rules. To describe temporal prop-
erties, assertions in HLRG apply to sequences of historical
system states which are collected in a vector called a trace. To
our knowledge, this is one of the most practical and powerful
approaches that facilitates and simplifies reasoning about
concurrency at the program implementation level.

IV. APPLICATION OF FORMAL METHODS TO cisst

We have chosen to analyze the cisst state table (see Section
II), which is a circular array of state vectors, indexed by time,

4719

Authorized licensed use limited to: Yale University. Downloaded on May 12,2020 at 15:23:13 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: The circular buffer used to store copies of the
state vector in memory. The read- and write-indices each
independently refer to a single slot in the circular buffer. The
read-index is indicated by a dashed outline surrounding the
slot to which it refers, and the write-index is indicated by a
solid outline around the slot to which it refers.

as illustrated in Fig. 2. We wish to guarantee the following
two state table requirements:

1) Data Integrity: For each successful read of the state
vector, no writer altered or was in the process of
altering data during the read; and successful reads are
distinguishable from unsuccessful reads.

2) Data Freshness: Each read accesses the most recent
state vector available at the start of the read.

We assume there is exactly one process that updates the state
vector, and many concurrent readers, each of which can start
at any time, and progress at any speed.

A. State table algorithm

To do its job, the state table maintains space for storage of
H copies of the state vector, each with an identifying version
number (the top storage location) and a lower array for the
state vector itself. The array is shown with two elements, but
in general its length is configurable. Writing to and reading
from the state vector is not an atomic operation, but writing
to and reading from the version number is.

Shared memory used by this algorithm is organized as a
circular buffer, as shown in Fig. 2, where each element in
the circular buffer is a copy of the state vector at some point
in time, and its version number. We call each element of the
buffer a “slot.” It also maintains two slot indices.

The writer updates the slots sequentially using the following
algorithm: it writes a fresh state vector into the slot referred
to by the write-index; it advances the write-index clockwise;
it updates the version number of the slot newly pointed to
by the write-index; and it advances the read-index to point
to the slot that was previously referred to by the write index,
that has a freshly updated version of the state vector. This

process is repeated, with the write-index progressing around
the circle in a clockwise fashion.

The data contained in a slot changes for each cycle of
the write-index around the buffer, so a single read needs to
be contained within one cycle to be uncorrupted. Tracing
through the algorithm, we can convince ourselves that the
state vector data in a slot may not change without that slot
first having had its version number updated. Consequently,
the reader strategy compares version numbers before and after
a read to determine whether the read is valid: if the version
numbers match, the read is assumed to be uncorrupted; if
not, an error is returned.

B. Formal verification

The state table algorithm uses optimistic concurrency, a
low-latency lock-free approach to interacting in a shared
memory environment. To our knowledge there are very few
logics that are available that can be applied to this algorithm
to model the properties in which we are interested, and prove
their correctness at the program implementation level. Aside
from History for Local Rely/Guarantee (HLRG) [17] (see
Section III), [21] is the only other logic we are aware of that
is designed to address this problem.

To guarantee that there are no defects with respect to
the properties that we describe, we applied HLRG. HLRG
allows us to precisely describe the software, and then apply
sound inference rules to reason about it in a mathematically
rigorous manner. This section summarizes the results of our
verification; for further details, refer to [22], [23].

Within HLRG, logical statements, or assertions, about the
system are not confined to the current state of the system,
but refer to a vector of system states (a trace), where each
element represents the system state at a particular step in its
evolution. This allows our assertions to refer to the history
of the system (the origin of the “H” in HLRG).

First, we created a model of the program by computing
backwards program slices at all points where shared state is
accessed, using the shared state as our slicing criteria. The
union of these program slices is then converted to a simple
C-like language that makes all complicated semantics explicit.
The strength of our guarantees depends on the fidelity of our
model, shown in Fig. 3.

Next, we create an invariant I that describes the shape of
the heap throughout the evolution of the program (i.e. what
memory is mapped), without specifying the values contained
in those locations. Shared state, in our case, consists of the
read- and write- indices, the state vector copies and their
version numbers.

The next step is to write all of the atomic actions that
are taken on shared state as predicates. These atomic actions
are UpdWrite (lines 6-7 in Fig. 3) that update the write-
index, UpdData (lines 4-5) to update the data (state vector),
UpdVer(lines 8-9) to update the version, and UpdRead (line
10) to update the read-index. We present the HLRG notation
for the UpdWrite atomic step to illustrate this process;
explanation of the notation and details for the other atomic
actions (predicates) can be found in [22], [23]. The UpdWrite

4720

Authorized licensed use limited to: Yale University. Downloaded on May 12,2020 at 15:23:13 UTC from IEEE Xplore. Restrictions apply.

00 global Vector[N][H], readindex, writeindex, version[H];

01 void Write(int data[N]){
02 local old, i, tmp, wr;
03 old = writeindex;
04 for (i=0;i<N;i++)
05 Vector[i][old] = data[i]
06 wr = (old + 1) mod H;
07 writeindex = wr;
08 tmp = version[old] + 1;
09 version[wr] = tmp;
10 readindex = old;
11 }

12 int Read(int data[N]){
13 local rd, curTic1,
14 curTic2, i;
15 rd = readindex;
16 curTic1 = version[rd];
17 for (i=0;i<N;i++)
18 data[i] = Vector[i][rd];
19 curTic2 = version[rd];
20 if (curTic1 == curTic2)
21 return 1;
22 else return 0;
23 }

Fig. 3: Model of Code

atomic action updates the write-index, writeindex, to
point to the next element in the buffer. We write a predicate
that is satisfied with a trace that has just taken this step as
follows:

UpdWrite def
= Id ∗ ((UpdData B Id) ∧ ∃X,X ′.

writeindex 7→ X n writeindex 7→ X ′∧
X ′ = (X + 1)mod H)

This step must follow the UpdData step, with some number
of intervening steps, all of which must be steps that do not
change shared state, Id, so we use the temporal operator B
to enforce this sequencing.

Once all predicates are defined, we can create rely and
guarantee predicates describing the operation of the Write
program.

G
def
= (Id ∨ UpdData ∨ UpdWrite ∨ UpdVer∨

UpdRead) ∧ (I n I)

R
def
= Id ∧ (I n I)

M def
= �(R ∨G)

The guarantee predicate G, is a guarantee about the
behavior of the thread executing the Write function: it
tells us how a step taken by that thread affects shared state.
R assures us that the rest of the concurrent processes (namely
the multitude of possible readers executing Read) have no
effect on the state.M describes the behavior of the system as
a whole: any step in the system will either execute a step in
the Write function or a step in the Read function, and the
state of the system changed (or not) accordingly. Furthermore,
(In I) tells us that the invariant that describes the domain of
the program does not change from step to step. Through this
process, we have described the effect of Write on shared
state and its interaction with other concurrent processes.

C. Proving data integrity

To prove data integrity, we began with a predicate of true
as a precondition to Read, and used the sound inference
rules associated with HLRG to propagate the precondition
through the function. Via this process, we sought to guarantee

that when the if statement takes the return 1 branch, the
postcondition of the computation of the branching condition
guarantees that Vector(X) D held during the time period
that included copying of state vector elements, where X is
the index of the slot we were reading. We use to be an
imprecise binding assertion, i.e. Vector(X) D means that
the heap has at least the memory cell at address Vector(X)
which contains value D, and may have more state as well.

This implies not just that the Read read data was constant
during the copy, but that its contents could not have been
altered by a writer during that period, because where updates
cannot occur in the Write algorithm, the state vector is
considered uncorrupted. This is subtle but important: it
guarantees that our read did not occur in the middle of a
Write that stalled, leaving the value constant but corrupted.

With such a guarantee, when the Read completes suc-
cessfully, the value that is returned accurately reflects an
uncorrupted version of what was stored in that slot by Write.

D. Proving the Stable Data Lemma

Going through this process is straightforward, once one
proves the following, which we call the Stable Data Lemma:

((version+h X I Vector(h) D)
∧(Vector(h) D′ ∗ version+h X))⇒ (D = D′)

This is an invariant tied to our Read algorithm, that says: If, at
some time in the past, we looked at the value of version+h,
and at the state vector in slot h, Vector(h), and if the present
value of version+ h matches what we saw the first time,
then the value of the present Vector(h) is the same as what
we read in the past. We need this lemma to prove that there
is a continuous period of time when Vector(h) D holds.

When we initially attempted to write down a proof of the
lemma by inducting over the steps in a trace, we found that
it was not true, and thus the read data integrity property was
not true: readers could unknowingly read uncorrupted data.
We had found a subtle bug, not by informally examining the
system, or by testing it, but by carefully modeling it, writing
a lemma, and attempting a formal proof.

The crux of the problem is that there is a very short period
of time at the beginning of the “active-write” portion of the

4721

Authorized licensed use limited to: Yale University. Downloaded on May 12,2020 at 15:23:13 UTC from IEEE Xplore. Restrictions apply.

cycle that occurs after the version number has changed but
before the data update has been completed. During this time,
the data may become inconsistent without the version number
changing. If the read occurs during this time, the result may
be inconsistent without us being able to detect it.

We observe that in every situation like the one above, the
problem occurs when the initial version check and the read
occur within the active write portion of the cycle. If both are
in the active portion of the cycle, then the state in between the
initial version check and the read must also be in the active
write portion of the cycle. We modify our Read algorithm so
that it checks the status of the write-index between the first
version check and the read of the data; this is accomplished
by inserting the following three lines after line 16 of the
Read method in Fig. 3:

17 wr = writeindex;
18 if (rd == wr)
19 return 0;

To guarantee that we solved this problem, we rewrote the
statement of our lemma to reflect the changes we made:

((version+h X I writeindex h′ I
Vector(h) D) ∧ (Vector(h) D′∗
version+h X) ∧ (h 6= h′))⇒ (D = D′)

With this modification, the formal proof by induction
succeeds and we can complete the proof of the read data
integrity property that we seek.

E. Proving Data Freshness

Unlike the data integrity property, data freshness is ex-
pressed as a program invariant. We say that a slot is fresh if
the copy of the state vector it contains is the last one changed
by any part of the program, or the one directly before that.
We want to make sure that readindex always points to
the freshest slot at any point in time. We state this invariant
as follows:

((Vector(j) Y ∗ Vector(k) X ′∗
~i6=j,kVector(i) Di) B
(Vector(j) Y ′ ∗ Vector(k) X ′∗
~i6=j,kVector(i) Di)) B
(Vector(j) Y ′ ∗ Vector(k) X∗
~i6=j,kVector(i) Di)∧
(readindex k ∨ readindex j)∧
(X ′ 6= X) ∧ (Y ′ 6= Y))

Because of the mechanics of the writer thread, we can only
ensure that one of the two most recently written vectors
available at the beginning of the read will be accessed.
This is necessary because it is possible that the writer has
finished writing but not yet marked its slot as “completed.”
We approach the proof by induction, inducting over the steps
in a trace. We begin by proving that i⇒ i+ 1.

Assuming that we have a trace T that satisfies this lemma,
we can show that any step taken produces a trace T ′ that also
satisfies the lemma. To illustrate the process, we consider the
UpdData step, which could change the state vector element
and falsify our predicate. If the predicate is pointing to the

most recently changed slot, then changing data in another
slot automatically makes this into the second-most recently
changed element, which is acceptable to this predicate. If,
however, the read-index is pointing to the second-most
recently changed slot, j, then there are two possibilities that
we can see from the cyclical update lemma (Section IV-F.
The first is that this UpdData step is the first that applies
to this index in this cycle, and the history looks something
like the following, with the previous UpdData applying to
another index:

UpdData+ :: UpdWrite :: UpdVer :: UpdRead

If that is the case, then the read-index was updated, in the
state change just previous to this, to be the value of the
write-index just before its most recent value. That value is
the most recently modified slot. So the read-index must be
pointing to the most recent slot as well as the one before that.
The second most recently changed index is not equal to the
most recently changed index, again using the cyclical update
lemma. Thus we have a contradiction, and the read-index
must be pointing to the freshest slot.

The second possibility is that the state transition history
looks like this:

UpdData+ :: UpdWrite :: UpdVer ::
UpdRead :: UpdData+

In this case, we begin with the assumption that the read-index
points to the second-most recently changed slot, j, and further
modifications to this slot will not change anything because
the most recently modified state vector copy is the current
one under the write-index, and any changes still apply to it.

We can conclude that writeindex must be pointing
to the freshest or the next freshest written slot at all times,
including at the beginning of each read of the state vector.

F. Cyclical Update Lemma
The program cycles endlessly through a fixed sequence of

atomic transitions described by the following list:

UpdWrite :: UpdVer :: UpdRead :: UpdData+

List elements are separated by double colons and + is the
Kleene plus, indicating that the preceding state may have
occurred more than once. We prove this lemma by inspection
of the predicates that we used to describe atomic transitions
with attention to the portions that enforce ordering:

UpdWrite def
= · · · (UpdData B Id) · · ·

UpdVer def
= · · · (UpdWrite B Id) · · ·

UpdRead def
= · · · (UpdVer B Id) · · ·

UpdData def
= · · · (UpdData ∨ UpdRead) B Id) · · ·

The definition of UpdWrite says that this state transition
must have been preceded by zero or more identity transitions,
which were in turn preceded by an UpdData state transition.
The only variation in the predictable, straight-line sequence of
steps is the possible repetition of the UpdData predicate more
than once. We also note that the structure of the predicate
does not contain any other disjunctive terms, so the linear
ordering follows.

4722

Authorized licensed use limited to: Yale University. Downloaded on May 12,2020 at 15:23:13 UTC from IEEE Xplore. Restrictions apply.

V. DISCUSSION

As a first step towards proving the correctness of concurrent
robot software, we applied the HLRG program logic to one
lock-free data exchange mechanism in cisst – the State Table,
which is a time-indexed circular buffer that has a single writer
(the owning component) but potentially many readers (client
components). In this case, we manually reverse-engineered
the existing C++ software, modeled it using HLRG, and then
attempted to prove its correctness. One potential issue is that
errors during the reverse-engineering process may result in
models that do not accurately reflect the actual code. A model-
based approach with a (validated) automatic code generation
tool would be less error-prone.

Whether reverse-engineering code or using model-driven
development, robotics engineers may be discouraged by
the complexity of a language such as HLRG. A good
compromise may be to rely on experts to develop models
of the key concurrent data exchange mechanisms and prove
their correctness; then, robotics engineers can use familiar
programming constructs to achieve thread-safe data exchange.

An alternative solution is to discard the multi-threaded
programming model and replace it with new mechanisms such
as coordination languages [24]. If one considers computation
and coordination to be distinct program activities, then it is
possible to have one language for computation and another
for coordination [25]. This approach would, however, require
a rewrite of existing robotics software.

VI. CONCLUSIONS

This paper presented preliminary work in using formal
methods to prove the correctness of concurrent (multi-
threaded) robot software. Specifically, we used HLRG to
prove correctness of the state table mechanism in the cisst
package. During this process, we found a subtle bug in the
system, corrected it, and were able to formally prove that
within the component we were analyzing, the system had no
flaws in its design or implementation.

This study was motivated by the observation that standard
software testing activities are suitable for detecting some
types of errors (e.g., program logic), but typically fail to
find errors due to the interleaving of concurrent threads.
Fortunately, component-based software packages, such as
cisst, are suitable candidates for formal methods because
they provide a small set of inter-thread communication
mechanisms. If we prove correctness of all concurrency
mechanisms and if programmers rely on these mechanisms
for data exchange between components, we can hope to create
better robot software. Our process is not restricted to the cisst
package or to surgical robots and can be applied to other
software packages and application domains.

VII. ACKNOWLEDGMENTS

We thank Russell H. Taylor and the many contributors to
the cisst package. Ming Fu assisted with the application of
HLRG. This work is supported in part by National Science
Foundation EEC 9731748, EEC 0646678, MRI 0722943, CNS
0915888, CNS 0910670, and DARPA FA8750-10-2-0254.

REFERENCES

[1] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming. Addison-Wesley, 1997.

[2] D. Brugali and P. Scandurra, “Component-based robotic engineering
(Part I),” IEEE Robotics and Automation Magazine, pp. 84–96, Dec
2009.

[3] B. P. Gerkey, R. T. Vaughan, and A. Howard, “The Player/Stage project:
Tools for multi-robot and distributed sensor systems,” in Proc. Intl.
Conf. on Advanced Robotics (ICAR), 2003, pp. 317–323.

[4] A. Makarenko, A. Brooks, and T. Kaupp, “Orca: Components for
robotics,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), Workshop on Robotic Standardization, Dec 2006.

[5] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[6] H. Bruyninckx, P. Soetens, and B. Koninckx, “The real-time motion
control core of the Orocos project,” in IEEE Intl. Conf. on Robotics
and Automation (ICRA), vol. 2, Sep 2003, pp. 2766–2771.

[7] A. Kapoor, A. Deguet, and P. Kazanzides, “Software components and
frameworks for medical robot control,” in IEEE Intl. Conf. on Robotics
and Automation (ICRA), May 2006, pp. 3813–3818.

[8] Orocos ROS package. [Online]. Available: http://www.ros.org/wiki/
kul-ros-pkg

[9] cisst ROS package. [Online]. Available: http://code.google.com/p/
jhu-lcsr-ros-pkg

[10] K. Sen, “Concolic testing,” in Proc. 22nd IEEE/ACM intl. conf. on
Automated Software Engineering (ASE), 2007, pp. 571–572.

[11] M. Y. Jung, A. Deguet, and P. Kazanzides, “A component-based
architecture for flexible integration of robotic systems,” in IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2010, pp. 6107–
6112.

[12] S. Bensalem, L. de Silva, F. Ingrand, and R. Yan, “A verifiable and
correct-by-construction controller for robot functional levels,” J. of
Software Engin. for Robotics (JOSER), vol. 2, no. 1, pp. 1–19, Sep
2011.

[13] E. Clarke, “Model checking,” in Foundations of Software Technology
and Theoretical Computer Science, ser. LNCS, S. Ramesh and
G. Sivakumar, Eds. Springer Berlin / Heidelberg, 1997, vol. 1346,
pp. 54–56.

[14] S. Bäumler, M. Balser, A. Dunets, W. Reif, and J. Schmitt, “Verification
of medical guidelines by model checking – a case study,” in Model
Checking Software, ser. LNCS, A. Valmari, Ed. Springer Berlin /
Heidelberg, 2006, vol. 3925, pp. 219–233.

[15] T. A. Henzinger, M. Minea, and V. Prabhu, “Assume-guarantee
reasoning for hierarchical hybrid systems,” in In: HSCC. Volume 2034
of LNCS. Springer, 2001, pp. 275–290.

[16] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Communications of the ACM, Oct. 1969.

[17] M. Fu, Y. Li, X. Feng, Z. Shao, and Y. Zhang, “Reasoning about
optimistic concurrency using a program logic for history,” in CONCUR
2010 - Concurrency Theory, ser. LNCS, P. Gastin and F. Laroussinie,
Eds. Springer Berlin / Heidelberg, 2010, vol. 6269, pp. 388–402.

[18] X. Feng, “Local rely-guarantee reasoning,” in Proc. 36th ACM Symp.
on Principles of Programming Languages, 2009, pp. 315–327.

[19] J. C. Reynolds, “Separation logic: A logic for shared mutable data
structures,” in Proc. 17th Annual IEEE Symp. on Logic in Computer
Science, July 2002, pp. 55–74.

[20] P. W. O’Hearn, “Resources, concurrency and local reasoning,” in Proc.
15th Int’l Conf. on Concurrency Theory (CONCUR’04), ser. LNCS,
vol. 3170, 2004, pp. 49–67.

[21] V. Vafeiadis, “Modular fine-grained concurrency verification,” Ph.D.
dissertation, PhD thesis, University of Cambridge, 2007.

[22] Y. Kouskoulas, F. Ming, Z. Shao, and P. Kazanzides, “Certifying
the concurrent state table implementation in a surgical robotic
system (extended version),” Yale University, Tech. Rep., 2011,
http://flint.cs.yale.edu/flint/publications/statevec-tr.pdf.

[23] ——, “Certifying the concurrent state table implementation in a surgical
robotic system,” in 3rd Joint Workshop On High Confidence Medical
Devices, Software, and Systems (HCMDSS) and Medical Device Plug-
and-Play Interoperability (MDPnP), Apr 2011.

[24] E. A. Lee, “The problem with threads,” IEEE Computer, vol. 39, no. 5,
pp. 33–42, May 2006.

[25] D. Gelernter and N. Carriero, “Coordination languages and their
significance,” Commun. ACM, vol. 35, pp. 97–107, Feb 1992.

4723

Authorized licensed use limited to: Yale University. Downloaded on May 12,2020 at 15:23:13 UTC from IEEE Xplore. Restrictions apply.

