
LiDO-DAG: A Framework for Verifying Safety and Liveness of
DAG-Based Consensus Protocols
LONGFEI QIU, Yale University, USA
JINGQI XIAO, Yale University, USA
JI-YONG SHIN, Northeastern University, USA

ZHONG SHAO, Yale University, USA

Blockchains operating at the global scale demand high-performance byzantine fault-tolerant (BFT) consensus

protocols. Most classic PBFT-like protocols suffer from an issue known as the leader bottleneck, which severely

limits their throughput and resource utilization. Recently, Directed Acyclic Graph, or DAG-based protocols,

have emerged as a promising approach for eliminating the leader bottleneck and achieving better performance.

They attain higher throughput by separating data dissemination and block ordering. However, their safety

and liveness logic is also significantly more elaborate. So far, most DAG-based protocols have only enjoyed

on-paper security proofs, and it is not clear how to construct formal proofs of these protocols efficiently.

We introduce LiDO-DAG, a concurrent object model that abstracts the common logic of these protocols.

LiDO-DAG is constructed by combining a DAG abstraction and LiDO, a recently proposed abstraction for

leader-based consensus. To demonstrate that our framework enables rapid validation of new DAG-based

protocol designs, we implemented LiDO-DAG in Coq and applied it to three recent DAG-based protocols,

including Narwhal, Bullshark, and Sailfish. Our framework readily yields mechanized safety and liveness

proofs for all three protocols, which are also the first mechanized liveness proofs of any DAG-based protocol.

Our framework has also revealed an optimization for Sailfish that improves its worst-case latency.

CCS Concepts: • Networks→ Protocol testing and verification; • Software and its engineering→
Formal software verification; • Theory of computation→ Distributed algorithms.

Additional Key Words and Phrases: DAG-based consensus, safety, liveness, verification, Coq proof assistant

ACM Reference Format:
Longfei Qiu, Jingqi Xiao, Ji-Yong Shin, and Zhong Shao. 2025. LiDO-DAG: A Framework for Verifying Safety

and Liveness of DAG-Based Consensus Protocols. Proc. ACM Program. Lang. 9, PLDI, Article 203 (June 2025),
25 pages. https://doi.org/10.1145/3729306

1 Introduction
Since their inception in 2008, blockchains such as Bitcoin [Nakamoto 2008] and Ethereum [Buterin

2014] have grown into major alternative financial platforms, with billions of dollars traded on them

daily [CoinGecko 2024]. However, a major factor limiting the adoption of blockchains is their low

throughput. As of writing, Ethereum only supports a theoretical maximum of ~600 transactions

per second [Buterin 2024], the actual value being still lower, whereas the Visa payment system

processes more than 8,000 transactions per second on average [Visa Inc. 2023]. Therefore, there is

significant interest in developing blockchains with higher transaction throughput.

At the core of many blockchains is a Byzantine Fault-Tolerant (BFT) consensus protocol. Blocks of

transactions collected by each participating process are submitted to the consensus protocol, which

Authors’ Contact Information: Longfei Qiu, Yale University, New Haven, USA, longfei.qiu@yale.edu; Jingqi Xiao, Yale

University, NewHaven, USA, jingqi.xiao@yale.edu; Ji-Yong Shin, Northeastern University, Boston, USA, j.shin@northeastern.

edu; Zhong Shao, Yale University, New Haven, USA, zhong.shao@yale.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/6-ART203

https://doi.org/10.1145/3729306

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.

HTTPS://ORCID.ORG/0009-0008-7811-4231
HTTPS://ORCID.ORG/0009-0003-9430-6165
HTTPS://ORCID.ORG/0000-0002-1595-4849
HTTPS://ORCID.ORG/0000-0001-8184-7649
https://doi.org/10.1145/3729306
https://orcid.org/0009-0008-7811-4231
https://orcid.org/0009-0003-9430-6165
https://orcid.org/0000-0002-1595-4849
https://orcid.org/0000-0001-8184-7649
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3729306

203:2 Longfei Qiu, Jingqi Xiao, Ji-Yong Shin, and Zhong Shao

produces a single linear transaction log. Most BFT algorithms execute in views, and within each view
a single process is elected as the leader. Only the leader is allowed to propose and commit blocks

within each view. The other processes produce votes which prevent the leader from equivocating.

This architecture of BFT protocols is called leader-based and is by far the most well-understood

kind of consensus protocol. Protocol designs following this pattern include Buchman et al. [2019];

Castro [2001]; Gelashvili et al. [2022]; Lewis-Pye et al. [2024]; Naor et al. [2021]; Yin et al. [2019].

Their formal security properties have also been investigated in many works including Bravo et al.

[2022]; Carr et al. [2022]; Cirisci et al. [2023]; Qiu et al. [2024b]; Rahli et al. [2018]; Vukotic et al.

[2019]. However, they also exhibit several undesirable characteristics, collectively known as the

leader bottleneck [Danezis et al. 2022; Neiheiser et al. 2021]:

• As only leaders may propose blocks, network throughput is limited by that of the leaders;

• The other processes do almost nothing, leading to significant resource under-utilization;

• Moreover, if the leader is faulty then network may not progress for long periods of time.

Recently, there emerged an alternative approach to BFT protocols, based on Directed Acyclic

Graph (DAG) [Arun et al. 2024; Babel et al. 2024; Baird 2016; Danezis et al. 2022; Gągol et al. 2019;

Keidar et al. 2021, 2023; Shrestha et al. 2025; Spiegelman et al. 2023, 2022a]. DAG-based protocols

work around the leader bottleneck by an elegant separation between a data dissemination phase

and a block ordering phase. In the dissemination phase, all processes collaborate to build a DAG of

data blocks, representing a partial order on these blocks (Fig. 1). Data dissemination is leaderless:

all processes can submit blocks to the DAG even when they are not leaders. The ordering phase

then extends this partial order into a total order of blocks, representing the consensus log. This

phase is still leader-based, and can be implemented with any leader-based BFT protocol.

Up to this point DAG-based protocols seem to be just simple compositions of DAG and traditional

BFT algorithms. Indeed, some simple DAGprotocols like Narwhal [Danezis et al. 2022] are structured

exactly this way. The new twist in the story is that many protocols implement the ordering phase

directly upon the DAG structure itself (e.g. Spiegelman et al. [2022a]). From a practical perspective,

this simplifes the implementation by removing the need for a separate BFT component, and reduces

commit latency. However, it comes at the cost of a significantly more complex DAG-building

algorithm. Specifically, whenever each process receives a new DAG vertex, it needs to execute an

ordering algorithm that interprets the local view of the DAG and outputs a linear log of committed

blocks. The protocol must carefully arrange the DAG-building process and the ordering algorithm

so that they together satisfy three correctness criteria:

• Safety: the consensus logs from all non-faulty processes are consistent with each other;

• Liveness: every block from non-faulty processes is eventually committed;

• Fairness: every non-faulty process can eventually submit new blocks into the DAG.

It is highly non-trivial to achieve all three goals simultaneously. As we will see in Section 2.2, the

ordering algorithm can exhibit quite subtle and counterintuitive behaviors, which are necessary to

ensure safety. Existing works indicate it is already challenging to verify only the safety property

[Bertrand et al. 2024]. To prove liveness would require further analysis of how the ordering algorithm

interacts with the DAG-building process. To our knowledge there has been no attempt to formally

verify any liveness proof of DAG-based protocols, either using theorem provers or model checkers.

On the other hand, new DAG-based protocols with better theoretical performance are kept being

proposed in the literature, with safety and liveness proven only on paper. These proofs have grown

increasingly intricate, to the point that their correctness has occasionally become controversial (see,

for example, the appendix of Shrestha et al. [2025] criticizing the liveness proof of Mysticeti [Babel

et al. 2024]). To resolve such disputes, we need a clean conceptual framework for understanding

the behavior of these protocols and verifying their correctness proofs.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.

LiDO-DAG: A Framework for Verifying Safety and Liveness of DAG-Based Consensus Protocols 203:3

Round 1 Round 2 Round 3

Process 1

Process 2

Process 3

Process 4

Fig. 1. DAG-based data dissemination. Each
vertex in the graph represents a block of
data. Vertices are stratified into rounds.
Each process may only create one vertex
per round. Each vertex must embed at least
2𝑓 + 1 pointers to vertices of the immedi-
ate previous round. Each column in this fig-
ure represents one round, and each row rep-
resents vertices from a single process. Pro-
cesses may skip rounds to catch up with
network progress, leaving holes in the fig-
ure. The DAG graph represents only a partial
order on the blocks. Additional mechanisms
are required to reach a total order.

In this work, we introduce LiDO-DAG, a concur-

rent object model for DAG-based consensus that enables

refinement-based safety and liveness proofs for these

protocols. Our starting point is the key observation that

most partially synchronous DAG-based protocols, though

seemingly complex, can still be logically interpreted as

a composition of DAG and a leader-based BFT protocol,

a point we will explain in Section 2.3. This suggests that

approaches for verifying leader-based BFT can also be ap-

plied to DAG-based BFT. In particular, Qiu et al. [2024b]

described a theory called LiDO for verifying leader-based

consensus and applied it to several BFT protocols. How-

ever, as we will see in Section 2.4, liveness of DAG-based

consensus involves a number of subtle issues. In particu-

lar, it is possible that a system satisfying liveness of both

leader-based consensus and DAG-based block dissemi-

nation still does not satisfy liveness as defined above. To

patch this gap it is necessary to make LiDO aware of

the DAG layer, and introduce new safety requirements

on how consensus interacts with DAG, resulting in the

LiDO-DAG model.

Our model enables efficient validation of new DAG-

based protocol designs. To demonstrate this, we imple-

mented in Coq [The Coq Development Team 2024] three

state-of-the-art DAG-based protocols, namely Narwhal

[Danezis et al. 2022], Bullshark [Spiegelman et al. 2022b],

and Sailfish [Shrestha et al. 2025], and constructed mechanized correctness proofs for all three

protocols by refinement to LiDO-DAG. Surprisingly, our model has also helped us discover an

optimization for Sailfish that improves its worst-case latency, also formally verified.

To summarize, our contributions are:

• LiDO-DAG, a concurrent object abstraction for partially synchronous DAG-based protocols

that enables refinement-based safety, liveness, and fairness proofs for these protocols;

• Coq implementations of three state-of-the-art DAG-based protocols, namely Narwhal

[Danezis et al. 2022], Bullshark [Spiegelman et al. 2022b], and Sailfish [Shrestha et al. 2025],

including mechanized safety and liveness proofs.

• An optimization for Sailfish with lower worst-case latency, formalized under LiDO-DAG.

All results claimed in this paper have been mechanized in Coq and available as an artifact [Qiu

et al. 2025a]. More details about our work can be found in the technical report [Qiu et al. 2025b].

2 Overview
2.1 The Landscape of DAG-Based Protocols
To set the stage, we begin with a survey of the current ideas on DAG-based protocol design.

In leader-based consensus, when a non-leader process receives a client request, it either delays

processing the request, or forwards it to the current leader. In contrast, the common theme of all

DAG-based protocols is that each process immediately packages requests it has received into data

blocks that are then disseminated within the network. Clearly if block creation is unconstrained

then the network could be easily flooded by byzantine processes. To prevent such attacks, the

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.

203:4 Longfei Qiu, Jingqi Xiao, Ji-Yong Shin, and Zhong Shao

blocks are stratified into rounds. Each process may only create one block per round, and blocks

within each round (except the first round) must contain pointers to at least 𝑛 − 𝑓 vertices in the

previous round, where 𝑛 is the total number of processes and 𝑓 is the fault-tolerance threshold.

In the standard setting 𝑛 = 3𝑓 + 1, this ensures at least half of the blocks in the network are from

non-faulty processes, and prevents flooding attacks.

If we interpret data blocks as graph vertices, and pointers as directed edges, then the valid blocks

always form a directed acyclic graph (Fig. 1), which is why these protocols are called DAG-based.

Authenticated vs. Unauthenticated Protocols. The above description immediately raises the ques-

tion of how to prevent byzantine processes from creating multiple blocks within a single round.

The easy way is to use a reliable broadcast (RBC) protocol to deliver each vertex. Protocols based on

RBC are called authenticated and include DAG-Rider [Keidar et al. 2021], Narwhal [Danezis et al.

2022], etc. Informally, RBC provides each party with an infinite sequence of message slots. Each
party 𝑝𝑘 may call 𝑟_𝑏𝑐𝑎𝑠𝑡𝑘 (𝑚, 𝑟) to fill its slot 𝑟 with message𝑚. Each slot may only be filled once,

even if 𝑝𝑘 is byzantine. Each party may receive signals 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚, 𝑟, 𝑝𝑘) which state that 𝑝𝑘 has

filled its slot 𝑟 with message𝑚. RBC additionally requires that, after one non-faulty party receives

a message, all other non-faulty parties will receive the same message within bounded time, so that

participants do not need to worry about delivery omissions.

In Alg. 1 we provide an formal ideal model of RBC. The finite map 𝑟𝑏_𝑚𝑎𝑝 keeps track of the

messages filled in each slot. Initially, all slots are empty (line 4). Each party 𝑝𝑘 may call 𝑟_𝑏𝑐𝑎𝑠𝑡𝑘 (𝑚, 𝑟)
to fill one of its slots, unless the slot is already filled (line 6). A virtual agent known as the adversary

A controls message delivery (line 8-10), subject to liveness constraints (line 12 and 13).

Algorithm 1 Ideal Model of Reliable Broadcast

1: Agents: parties 𝑝1, · · · , 𝑝𝑛 , adversary A.

2: State variable: finite map 𝑟𝑏_𝑚𝑎𝑝 : {1, · · · , 𝑛} × N ↦→
option val.

3: initialize:
4: Assume ∀𝑘, ∀𝑟, 𝑟𝑏_𝑚𝑎𝑝 (𝑘, 𝑟) = None.

5: upon 𝑟_𝑏𝑐𝑎𝑠𝑡𝑘 (𝑚,𝑟) from party 𝑝𝑘 :

6: if 𝑟𝑏_𝑚𝑎𝑝 (𝑘, 𝑟) = None then
7: 𝑟𝑏_𝑚𝑎𝑝 (𝑘, 𝑟) ← Some 𝑚

8: upon 𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑘, 𝑟, 𝑖) from A:

9: if 𝑟𝑏_𝑚𝑎𝑝 (𝑘, 𝑟) = Some 𝑚 then
10: Send signal 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚,𝑟, 𝑝𝑘) to party 𝑝𝑖

11: Liveness requirements after GST:

12: If 𝑝𝑘 is non-faulty, after 𝑝𝑘 calls 𝑟_𝑏𝑐𝑎𝑠𝑡𝑘 (𝑚,𝑟) , A calls

𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑘, 𝑟, 𝑖) for each non-faulty 𝑝𝑖 within time𝑇𝑅𝐵𝐶 .

13: Regardless of whether 𝑝𝑘 is non-faulty, after 𝑟𝑏_𝑚𝑎𝑝 (𝑘, 𝑟) ≠
None and A has called 𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑘, 𝑟, 𝑖) for any non-faulty 𝑝𝑖 ,

it calls 𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑘, 𝑟, 𝑖′) for every non-faulty 𝑝𝑖′ within Δ.

Another line of work attempts to reduce

block creation latency by avoiding RBC.

These protocols are known as unauthenti-
cated and include Cordial Miners [Keidar

et al. 2023] and Mysticeti [Babel et al. 2024].

They rely instead on failure detection. If a
non-faulty process observes equivocating

blocks from the same process within a sin-

gle round, it forwards the evidence to other

processes and they expel the faulty process

from the system.

Establishing Total Order over the Blocks.
The DAG graph only provides a partial or-

der over the blocks. To extend this partial

order into a linear order, the easiest way is

to use an external BFT algorithm to order

the blocks. A naive implementation would

commit the hash of every single block into the BFT log. A better way is to make each entry in the

log implicitly include its entire closure, the set of all (indirectly) reachable vertices in the DAG.

Thus each BFT leader proposes only the latest blocks it has received, and they will transitively

include all previous blocks.

More recently, people have realized that it is in fact possible to implement BFT directly upon the

DAG structure. Two approaches known as physical DAG and logical DAG have been proposed. In

logical DAG, consensus information such as votes and timeouts are packaged into the data blocks.

In physical DAG, they are encoded onto the topological structure of the DAG.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.

LiDO-DAG: A Framework for Verifying Safety and Liveness of DAG-Based Consensus Protocols 203:5

Table 1. Classification of recent DAG-based protocols. Some protocols such as Bullshark and Cordial Miners
have multiple versions for different settings. 𝐴 indicates authenticated,𝑈 indicates unauthenticated protocol.
Bold text indicates protocols we have formally verified in this work.

Asynchronous Partially Synchronous

External BFT NarwhalA [Danezis et al. 2022]

Physical DAG DAG-Rider
A
[Keidar et al. 2021] BullsharkA

[Spiegelman et al. 2022b]

Bullshark
A
[Spiegelman et al. 2022a] Mysticeti

U
[Babel et al. 2024]

Cordial Miners
U
[Keidar et al. 2023] SailfishA

[Shrestha et al. 2025]

Tusk
A
[Danezis et al. 2022] Cordial Miners

U
[Keidar et al. 2023]

Shoal
A
[Spiegelman et al. 2023]

Shoal++
A
[Arun et al. 2024]

Logical DAG Fino
A
[Malkhi and Szalachowski 2023]

As we will see in Section 2.3, physical DAGs like Bullshark must carefully control the timing of

DAG vertex creation to ensure liveness. This makes them more difficult to implement than logical

DAGs, where vertex creation and consensus progress independently. However, experiments suggest

that logical DAGs do not perform as well as physical DAGs [Spiegelman et al. 2022a]. Therefore,

the majority of DAG-based protocols in the literature are physical DAGs rather than logical DAGs.

Communication Models. Like other consensus protocols, liveness of DAG-based protocols depend
on the communication model. The distributed system literature distinguishes between asynchro-
nous, synchronous, and partially synchronous protocols [Dwork et al. 1988]. In asynchronous

protocols, messages may arrive arbitrarily late. In synchronous protocols, they must arrive within

a known bound Δ. Partial synchrony represents a middleground: messages must arrive within Δ,
but only so after an unknown timepoint known as the Global Synchronization Time (GST).

Most works on DAG-based protocols use either the asynchronous or the partially synchronous

model. It is known that consensus under asynchrony cannot be deterministically solved [Fischer

et al. 1985]. Hence all asynchronous protocols rely on probabilistic primitives such as public coins

which are difficult to model. Furthermore, asynchronous protocols suffer from a dilemma between

fairness and garbage collection [Spiegelman et al. 2022a]. Therefore most practical deployments of

DAG-based protocols use partially synchronous versions [Arun et al. 2024; Babel et al. 2024]. We

thus exclusively focus on partially synchronous DAG-based protocols in this work.

Summary. In Table 1 we present a classification of recently-proposed DAG-based protocols along

the three aspects we discussed above. The figure clearly shows that partially synchronous protocols,

especially physical DAGs, have attracted the most attention in current literature.

2.2 The Subtleties of DAG-Based Protocols
In terms of performance, currently the best DAG-based protocols are physical DAGs. We now

analyze what makes this class of protocols difficult to understand.

The general operation of physical DAG is as follows. First, within the DAG graph a subset

of vertices are designated as the anchors, also known as leader vertices. Second, a commit rule is
defined for each anchor. If a process observes that the commit rule is satisfied, it considers the

corresponding anchor committed. Finally, an ordering algorithm is defined upon the local state of

each process. The ordering algorithm inspects the set of received vertices and returns an ordered

list of anchors. This list is guaranteed to contain all committed anchors, and may contain additional

anchors. Each entry in the list is then expanded into its closure. After deduplication, the result is

the currently observed consensus log.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.

203:6 Longfei Qiu, Jingqi Xiao, Ji-Yong Shin, and Zhong Shao

A1

A2

A3

Process 1

Process 2

Process 3

Process 4

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6

Wave 1 Wave 2 Wave 3

Fig. 2. An example DAG graph under Bullshark.
Rounds are divided into groups of two, called waves.
Anchors are colored red and labeled as𝐴𝑘 . Thick purple
arrows indicate edges to anchors. If there exists 𝑓 + 1
purple edges within a single wave, the anchor of that
wave is considered committed. Hence 𝐴3 is committed
but 𝐴1, 𝐴2 are not.

As a concrete example, we consider the Bull-

shark [Spiegelman et al. 2022b] protocol. Fig. 2

shows a possible DAG under Bullshark, run-

ning with𝑛 = 3𝑓 +1 = 4 processes. In Bullshark,

the DAG is divided into waves, each wave con-

sisting of two rounds. Within each wave, one

of the processes is designated as the leader. The
anchor of each wave is the vertex created by

the leader in the first round of that wave. Thus

each wave has at most one anchor. For each

anchor, the commit rule is at least 𝑓 + 1 blocks
in the second round of the same wave embed a

pointer to that anchor. The ordering algorithm

is specified in Alg. 8.

Within this section, let us use 𝐴𝑘 to denote

the anchor of wave 𝑘 . In Fig. 2, we observe the

commit rule is satisfied for 𝐴3, so the ordering algorithm is guaranteed to return 𝐴3. Although

the commit rule is not satisfied for 𝐴1 and 𝐴2, they are both reachable from 𝐴3. Unless the reader

is already familiar with Bullshark, it seems natural to conjecture the ordering algorithm should

return these two anchors as well. The reader would then be very surprised to learn the actual list

returned is [𝐴2, 𝐴3], which includes 𝐴2 but omits 𝐴1.

Before discussing why this is the case, we point out this paradoxical behavior shows that in

physical DAG protocols, merely creating an anchor and disseminating it does not guarantee it will

be committed. Thus the protocol must include additional rules that constrain DAG vertex creation,

in order to achieve liveness. In Bullshark, for example, each process is equipped with a local timer

that controls the timing of vertex creation (see line 24 of Alg. 8). The interaction between timers

and DAG-building is a major factor that complicates liveness proofs of physical DAG protocols.

2.3 Understanding DAG-Based Consensus with LiDO
Why is it that in Fig. 2, the ordering logic omits 𝐴1, despite it being reachable from 𝐴3? One way to

understand the problem is to follow Alg. 8 and the proofs in Spiegelman et al. [2022a,b] line-by-line.

However they are long and difficult to read. Our key insight is that things can be understood much

more easily, by realizing Bullshark is in fact simulating a leader-based BFT protocol.

Verifying Protocols via Abstract Model Refinement. From the informal description of Bullshark one

can already see many conceptual analogies between Bullshark and leader-based BFTs like HotStuff

[Yin et al. 2019] and Jolteon [Gelashvili et al. 2022]: 1) all these protocols execute in a succession of

views (waves in Bullshark); 2) there is a single predetermined leader in each view, whose goal is to

commit new data blocks; 3) all these protocols use timers to ensure liveness for non-faulty leaders.

It is tempting to ask how this similarity can be exploited to simplify verification of Bullshark.

Although Bullshark and HotStuff share some similarity, it is not possible to prove that one is

simulating the other, as their network-level details are very different. Recently, Qiu et al. [2024b]

advanced the idea that we can prove all these protocols are simulating an abstract model of

consensus. They introduced a formal model called LiDO for verifying leader-based consensus.

There are several advantages in introducing abstract models for verifying complex protocols like

Bullshark. First, abstract models supply convenient guides in formulating network-level invariants.

The LiDO model postulates three linearization points [Herlihy and Wing 1990] within each view

of consensus, called pull, invoke, and push (explained on the next page). To verify a protocol one

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.

LiDO-DAG: A Framework for Verifying Safety and Liveness of DAG-Based Consensus Protocols 203:7

A1

A2

A3

Root

ECache
wave=1

parent_wave=0

ECache
wave=2

parent_wave=0

MCache
wave=1

anchor=A1

MCache
wave=2

anchor=A2

ECache
wave=3

parent_wave=2

CCache
wave=3

MCache
wave=3

anchor=A3

A1

A2

A3

Fig. 3. The state of consensus in Fig. 2, represented under the LiDO-DAG framework. The closure of anchors
𝐴2, 𝐴3 are shown below. The closure of anchor 𝐴1 contains only 𝐴1 itself. When an anchor is committed, the
entire closure is implicitly committed. See Section 2.3 for explanation.

first defines what these linearization points correspond to in the network model. The abstract

model defines a number of invariants necessary to prove safety of consensus. After defining the

refinement relation for the linearization points, these invariants can be translated to properties of

the network model, simplifying the error-prone task of formulating safety invariants.

Second, abstract models provide reusable decomposition of liveness properties into safety proper-

ties. Most consensus algorithm designs come with liveness claims about the commit latency of the

protocol. Actually formalizing this claim turns out to be tricky. For example, if the commit latency

is 8Δ, it does not mean after GST a new log entry will be committed every 8Δ: it cannot hold if the

current leader of the system is faulty. Thus liveness of the protocol must be stated relative to the

“current leader,” which leads to the question of who the “current leader” is. LiDO resolves the issue

by providing a pacemaker abstraction, which contains two variables current view and remaining
time. Hence the commit latency can be stated as a safety property: if leader of current view is

non-faulty, and remaining time is at least 8Δ, then a new log entry will be committed within 8Δ.
We can then prove on the abstract model that new entries will be committed infinitely often.

How Bullshark Refines LiDO. Under the LiDO framework, the actions of each leader within a

wave can be summarized as three steps:

(1) Pull: the leader updates its local consensus log;
(2) Invoke: the leader proposes new entries to be appended to the log;

(3) Push: the leader commits the proposed entries.

We now look at what these actions correspond to in Bullshark. For the moment, we ignore the

implicitly included closure, and focus only on the anchors. Thus the consensus log corresponds to

the list returned by the ordering algorithm, and in each wave the leader proposes a single anchor.

Fig. 3 shows how we interpret the state of consensus in Fig. 2 under the LiDO framework. The

LiDO model uses a tree of cache nodes to represent the result of each action by the leader. The Root

node represents the empty consensus log at the beginning of execution. The results of each pull,

invoke, and push action are represented by ECache, MCache, and CCache respectively. They

stand for leader Election, Method proposal, and Commit.

When execution begins, process 1 performs pull. Nothing has been proposed yet, so process 1

obtains the empty consensus log. This is represented by an ECache in wave 1 that is attached to

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.

203:8 Longfei Qiu, Jingqi Xiao, Ji-Yong Shin, and Zhong Shao

DAG
Graph

LiDO Cache Tree

Abstract Pacemaker

DAG-based
Dissemination

BFT
Consensus DAG-based

Dissemination

BFT upon DAG

DAG
with Timers

Ordering
Algorithm

refinesrefinesrefines

(a) External BFT (b) Logical DAG (c) Physical DAG

Orders
anchors of

Fig. 4. The LiDO-DAG model, with three implementation strategies. (a) In external BFT implementations,
DAG is solely used to disseminate data blocks, and an external BFT algorithm orders the blocks. (b) In
logical DAG implementations, BFT is implemented by packaging votes and timeouts into data blocks that are
disseminated by DAG. (c) In physical DAG implementations, DAG is modified to cooperate with timers so
that votes and timeouts are encoded into its topological structure.

the Root node. Process 1 then proposes the anchor 𝐴1 but fails to commit it (the commit rule is not

satisfied), so there is an MCache but not CCache in wave 1.

Now wave 2 begins and process 2 performs pull. The result of this operation can be learned from

the pointers embedded in the anchor 𝐴2. Here we notice that in Fig. 2, 𝐴1 is not reachable from 𝐴2.

We thus infer that when process 2 proposed its anchor 𝐴2, it was not aware of the anchor 𝐴1, and

its local consensus log was still the empty log. We represent this by having the ECache of wave 2

also attached to Root. It then goes on to propose the anchor 𝐴2 but again fails to commit.

When process 3 performs pull, it observes both anchors𝐴1 and𝐴2, but they represent conflicting

consensus logs, represented as a fork in Fig. 3. It can infer that 𝐴1 is not committed by any process,

because otherwise process 2 must have observed 𝐴1. However, it cannot be certain whether any

process has committed 𝐴2 or not. Thus it is forced to use the consensus log represented by 𝐴2.

This follows from the general pattern that leaders must use the latest consensus log they see, and

ignore all other conflicting logs. Process 3 then proposes the anchor 𝐴3 and successfully commits

it, represented by the CCache of wave 3. The final consensus log is thus [𝐴2, 𝐴3] which omits 𝐴1.

In summary, there is a direct correspondence between the behavior of Bullshark and the LiDO

model of leader-based consensus: each anchor corresponds to an MCache; the ECache of each wave

is determined by the latest previous anchor reachable from an anchor; and each anchor that is

observed to be committed corresponds to a CCache.

The key safety invariant of LiDO is that whenever a CCache exists in wave𝑤 , and an ECache

exists in wave𝑤 ′ > 𝑤 , the ECache must be attached to an MCache whose wave number is at least

𝑤 . By the above correspondence, this means whenever the anchor 𝐴𝑤 is committed, and an anchor

𝐴𝑤′ (𝑤 ′ > 𝑤) exists, then𝐴𝑤 is reachable from𝐴𝑤′ . This rule was previously described in Shrestha

et al. [2025]; we now see it simply follows from the general safety rule for leader-based BFT.

2.4 Challenges of Adapting LiDO to DAG-Based Protocols
Although network-level descriptions of DAG-based protocols seem complicated, the above analysis

shows there is strong resemblance between the behavior of these protocols and classic leader-based

BFT. Thus it is natural to think that safety and liveness of DAG-based consensus can be verified by

proving a refinement relation to the LiDO model.

The notion that DAG-based protocols are simulating leader-based consensus is informally

discussed in several papers including Arun et al. [2024] and Shrestha et al. [2025]. In these works,

the simulation relation is used to provide intuition that informs the design of new protocols. In this

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.

LiDO-DAG: A Framework for Verifying Safety and Liveness of DAG-Based Consensus Protocols 203:9

work we aim to show this relation can be made formally precise, and interpreting these protocols

this way substantially simplifies the correctness verification of these protocols.

However, when we actually attempted to prove refinement between these protocols and LiDO,

we immediately noticed several gaps between the semantics of LiDO and the correctness criteria of

DAG-based protocols. We show two examples here:

External Validity. All BFT protocols are required to satisfy external validity, meaning every

committed entry in the consensus log must have been submitted by an external client. In most

cases external validity is enforced by checking the signature embedded in the block, which is a

local action. This is also the assumption made in the Jolteon implementation provided by Qiu et al.

[2024b]. However, when a BFT protocol is composed with a data dissemination protocol, as in

Narwhal, then external validity takes on a new definition: each BFT log entry must reference an

existing vertex in the DAG. This introduces unexpected complications. For example, if by the time

the leader’s BFT request message arrives, the voter has not yet received the proposed block from

RBC, then it will reject the proposal, which will break liveness. In Section 4.2, we explain how we

worked around this issue by modifying the network model of Jolteon, but it shows the trickiness in

adapting existing verified BFT protocols to a DAG-based setting.

Stagnant Anchors. Liveness of DAG-based consensus requires that all blocks are eventually

committed. This seems easy to prove if we assume that 1) each block is eventually included in the

closure of some anchor; and 2) each leader will always eventually commit new anchors in the BFT

log. However, there is a subtle gap: when a leader proposes a new anchor, it might not be the latest

block created by this leader. If a leader keeps proposing the same anchor in the BFT protocol, then

the newer blocks would not be committed, even though liveness of neither block dissemination nor

consensus is violated. This does not occur in Bullshark, but it is another formal factor to consider

in protocols like Narwhal where leaders can choose which anchor to propose.

Thus merely proving refinement to LiDO does not yield the expected liveness properties of DAG-

based protocols. To bridge these gaps it is necessary to extend the LiDO theory with abstractions

for DAG, and formalize new requirements necessary for liveness on the extended model. This leads

to the LiDO-DAG model, which we formally define in the next section. As shown in Fig. 4, the

LiDO part of LiDO-DAG is kept largely similar to Qiu et al. [2024b], which is intentional to allow

reusing their proofs, while we added abstractions for DAG-based block dissemination. All three

styles of DAG-based consensus can be refined to our model.

3 The LiDO-DAG Model
In this section we formally define the LiDO-DAG model. We first define a concurrent object that

represents the DAG of data blocks. Then we combine the DAG object with the LiDO model [Qiu

et al. 2024b] which represents the consensus log of DAG anchors. Finally we explain how to reduce

liveness and fairness of DAG-based protocols into safety properties with our model. Here we

describe LiDO-DAG mostly in pseudocode. For details of Coq formalization see Appendix D.

3.1 The DAG Object
The internal state of a DAG is a set of vertices. The vertex record is defined in Fig. 5. Each vertex

contains a piece of client-submitted data, a list of pointers to other vertices, and some other metadata.

We also give each vertex a unique ID. Each pointer is represented by the ID of the target.

The data embedded within each vertex is required to satisfy external validity: the external client
should have ultimate control over what gets recorded in the DAG. To enforce this we follow Qiu

et al. [2024b] and assume the existence of a data pool object (Alg. 3). The data pool interacts with

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.

203:10 Longfei Qiu, Jingqi Xiao, Ji-Yong Shin, and Zhong Shao

Algorithm 2 The DAG Object

1: Agents: DAG-builder threads 𝑝1, 𝑝2, · · · , 𝑝3𝑓 +1.
2: State variable: 𝑣𝑒𝑟𝑡𝑠 : list Vertex.
3: Notation: 𝑣𝑒𝑟𝑡𝑠 [𝑖𝑑] = 𝑣 means 𝑣 ∈ 𝑣𝑒𝑟𝑡𝑠 and 𝑣.𝑖𝑑 = 𝑖𝑑 ; 𝑣𝑒𝑟𝑡𝑠 [𝑖𝑑] = ⊥ if no vertex with 𝑣.𝑖𝑑 = 𝑖𝑑 exists.

4: Notation: 𝑖𝑠𝑄𝑢𝑜𝑟𝑢𝑚 (𝑃) = 𝑡𝑟𝑢𝑒 if 𝑃 is a set of at least 2𝑓 + 1 threads.
5: Notation: cl(𝑣) is the closure of vertex 𝑣, defined in Section 3.1.

6: initialize: Assume 𝑣𝑒𝑟𝑡𝑠 = {}.
7: upon 𝐷𝐴𝐺-𝑃𝑢𝑙𝑙 (𝑟) with 𝑟 ≥ 1 from 𝑝𝑖 :

8: if 𝑟 = 1 then
9: return {}
10: if 𝑝𝑖 is honest but has not called 𝐷𝐴𝐺-𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟 − 1, _, _) before then
11: return 𝐼𝑛𝑣𝑎𝑙𝑖𝑑𝐶𝑎𝑙𝑙

12: upon 𝐷𝐴𝐺-𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟, 𝑣𝑎𝑙, 𝑝𝑟𝑒𝑑𝑠) with 𝑟 ≥ 1 from 𝑝𝑖 :

13: if 𝐶ℎ𝑒𝑐𝑘𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟 (𝑣𝑎𝑙) = 𝑓 𝑎𝑙𝑠𝑒 , or 𝑣𝑒𝑟𝑡𝑠 [𝑖𝑑] = ⊥ for some 𝑖𝑑 ∈ 𝑝𝑟𝑒𝑑𝑠 then
14: return 𝐼𝑛𝑣𝑎𝑙𝑖𝑑𝐶𝑎𝑙𝑙

15: if 𝑣𝑒𝑟𝑡𝑠 [𝑖𝑑] .𝑟𝑜𝑢𝑛𝑑 ≥ 𝑟 for some 𝑖𝑑 ∈ 𝑝𝑟𝑒𝑑𝑠 then
16: return 𝐼𝑛𝑣𝑎𝑙𝑖𝑑𝐶𝑎𝑙𝑙

17: 𝑠𝑡𝑟𝑜𝑛𝑔𝐸𝑑𝑔𝑒𝑠 ← filter (𝑖𝑑 ↦→ 𝑣𝑒𝑟𝑡𝑠 [𝑖𝑑] .𝑟𝑜𝑢𝑛𝑑 = 𝑟 − 1) 𝑝𝑟𝑒𝑑𝑠
18: 𝑠𝑡𝑟𝑜𝑛𝑔𝐸𝑑𝑔𝑒𝐵𝑢𝑖𝑙𝑑𝑒𝑟𝑠 ← map (𝑖𝑑 ↦→ 𝑣𝑒𝑟𝑡𝑠 [𝑖𝑑] .𝑏𝑢𝑖𝑙𝑑𝑒𝑟) 𝑠𝑡𝑟𝑜𝑛𝑔𝐸𝑑𝑔𝑒𝑠
19: if 𝑟 > 1 ∧ 𝑖𝑠𝑄𝑢𝑜𝑟𝑢𝑚 (𝑠𝑡𝑟𝑜𝑛𝑔𝐸𝑑𝑔𝑒𝐵𝑢𝑖𝑙𝑑𝑒𝑟𝑠) = 𝑓 𝑎𝑙𝑠𝑒 then
20: return 𝐼𝑛𝑣𝑎𝑙𝑖𝑑𝐶𝑎𝑙𝑙

21: if 𝑝𝑖 is honest and there exists vertex 𝑣′ ∈ 𝑣𝑒𝑟𝑡𝑠 with 𝑣′ .𝑏𝑢𝑖𝑙𝑑𝑒𝑟 = 𝑝𝑖 , 𝑣
′ .𝑟𝑜𝑢𝑛𝑑 ≥ 𝑟 then

22: return 𝐼𝑛𝑣𝑎𝑙𝑖𝑑𝐶𝑎𝑙𝑙

23: if 𝑝𝑖 is honest, there exists vertex 𝑣′ ∈ 𝑣𝑒𝑟𝑡𝑠 with 𝑣′ .𝑏𝑢𝑖𝑙𝑑𝑒𝑟 = 𝑝𝑖 but ∀𝑖𝑑 ∈ 𝑝𝑟𝑒𝑑𝑠, 𝑣′ ∉ cl(𝑣𝑒𝑟𝑡𝑠 [𝑖𝑑]) then
24: return 𝐼𝑛𝑣𝑎𝑙𝑖𝑑𝐶𝑎𝑙𝑙

25: upon Respond to call 𝐷𝐴𝐺-𝑃𝑢𝑙𝑙 (𝑟) :
26: Nondeterministically choose set 𝑆 ⊆ 𝑣𝑒𝑟𝑡𝑠

27: 𝑠𝑡𝑟𝑜𝑛𝑔𝐸𝑑𝑔𝑒𝑠 ← filter (𝑖𝑑 ↦→ 𝑣𝑒𝑟𝑡𝑠 [𝑖𝑑] .𝑟𝑜𝑢𝑛𝑑 = 𝑟 − 1) 𝑝𝑟𝑒𝑑𝑠
28: 𝑠𝑡𝑟𝑜𝑛𝑔𝐸𝑑𝑔𝑒𝐵𝑢𝑖𝑙𝑑𝑒𝑟𝑠 ← map (𝑖𝑑 ↦→ 𝑣𝑒𝑟𝑡𝑠 [𝑖𝑑] .𝑏𝑢𝑖𝑙𝑑𝑒𝑟) 𝑠𝑡𝑟𝑜𝑛𝑔𝐸𝑑𝑔𝑒𝑠
29: Check 𝑖𝑠𝑄𝑢𝑜𝑟𝑢𝑚 (𝑠𝑡𝑟𝑜𝑛𝑔𝐸𝑑𝑔𝑒𝐵𝑢𝑖𝑙𝑑𝑒𝑟𝑠) = 𝑡𝑟𝑢𝑒 , otherwise go back to line 26 and choose another set 𝑆 .

30: If no such set 𝑆 exists, respond to the call later.

31: return 𝑆 to 𝑝𝑖

32: upon Respond to call 𝐷𝐴𝐺-𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟, 𝑣𝑎𝑙, 𝑝𝑟𝑒𝑑𝑠) with 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 :

33: Nondeterministically choose 𝑖𝑑 such that 𝑣𝑒𝑟𝑡𝑠 [𝑖𝑑] = ⊥.
34: 𝑣 ← {𝑖𝑑 := 𝑖𝑑 ; 𝑟𝑜𝑢𝑛𝑑 := 𝑟 ;𝑏𝑢𝑖𝑙𝑑𝑒𝑟 := 𝑝𝑖 ;𝑑𝑎𝑡𝑎 := 𝑣𝑎𝑙 ;𝑝𝑟𝑒𝑑𝑠 := 𝑝𝑟𝑒𝑑𝑠 }
35: 𝑣𝑒𝑟𝑡𝑠 ← 𝑣𝑒𝑟𝑡𝑠 ∪ {𝑣}
36: return 𝑣 to 𝑝𝑖

37: upon Respond to call 𝐷𝐴𝐺-𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟, 𝑣𝑎𝑙, 𝑝𝑟𝑒𝑑𝑠) with𝑇𝑖𝑚𝑒𝑜𝑢𝑡 :

38: Precondition: exists set 𝑃 with 𝑖𝑠𝑄𝑢𝑜𝑟𝑢𝑚 (𝑃) = 𝑡𝑟𝑢𝑒 and ∀𝑝𝑖 ∈ 𝑃, ∃𝑣 ∈ 𝑣𝑒𝑟𝑡𝑠, 𝑣.𝑏𝑢𝑖𝑙𝑑𝑒𝑟 = 𝑝𝑖 ∧ 𝑣.𝑟𝑜𝑢𝑛𝑑 ≥ 𝑟

39: return𝑇𝑖𝑚𝑒𝑜𝑢𝑡 to 𝑝𝑖

1 Record Vertex := {

2 (* Unique ID for each vertex *)

3 vertex_id : nat;

4 (* Round number of vertex *)

5 vertex_round : nat;

6 (* Builder thread ID *)

7 vertex_builder : nat;

8 (* Client data *)

9 vertex_data : val;

10 (* Target ID of embedded ptrs *)

11 vertex_preds : list nat;

12 }.

Fig. 5. The vertex record.

both external clients and the DAG object. An external client

may call 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟 (𝑣) to add some value 𝑣 to the pool. The

DAG object may call 𝐶ℎ𝑒𝑐𝑘𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟 (𝑣) to check if some

value has been registered or not. Both operations return

atomically.

The agents interacting with the DAG object are a fixed

set of DAG-builder threads, one from each participating

process. Each process is classified as synchronous, asynchro-
nous, or byzantine. Both synchronous and asynchronous

processes are honest. Their difference is that asynchronous
processes may undergo omission failure even after GST. To

simplify presentation, we assume the standard setting with

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.

LiDO-DAG: A Framework for Verifying Safety and Liveness of DAG-Based Consensus Protocols 203:11

2𝑓 + 1 synchronous processes, 𝑓 byzantine processes, and no asynchronous processes. A quorum is

any set of 2𝑓 + 1 processes, and a weak quorum is any set of 𝑓 + 1 processes. See Appendix A for

how to tolerate omission faults in addition to byzantine faults.

Algorithm 3 Data Pool

1: State variable: finite set 𝑆 of data values.

2: initialize:
3: Assume 𝑆 = {}.
4: upon 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟 (𝑣) :
5: 𝑆 ← 𝑆 ∪ {𝑣}
6: upon𝐶ℎ𝑒𝑐𝑘𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟 (𝑣) :
7: return 𝑣 ∈ 𝑆

The object exposes two operations 𝐷𝐴𝐺-𝑃𝑢𝑙𝑙 (𝑟) and
𝐷𝐴𝐺-𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟, 𝑣𝑎𝑙, 𝑝𝑟𝑒𝑑𝑠). When an agent invokes one of

these operations, the object first makes a number of valid-

ity checks. If one of these checks fails, the object returns

𝐼𝑛𝑣𝑎𝑙𝑖𝑑𝐶𝑎𝑙𝑙 atomically. Otherwise, the operation is valid,

and the object may respond to the call at any later time-

point, or not respond at all (to model network failure). No

change to the object state occurs until the object responds

to the call. After an honest thread invokes a valid operation,

it waits until the object responds to the call. If the thread is byzantine, it may voluntarily withdraw

the operation, with no change in object state. We represent this with the response𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑛. The

validity conditions and the possible responses to each operation are specified in Alg. 2.

The purpose of 𝐷𝐴𝐺-𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟, 𝑣𝑎𝑙, 𝑝𝑟𝑒𝑑𝑠) is to add a vertex of round 𝑟 to the DAG, with 𝑣𝑎𝑙 as

its contained data, and 𝑝𝑟𝑒𝑑𝑠 as its embedded pointers. Round numbers start from 1. As discussed

in Section 2, to prevent byzantine flooding, 𝑝𝑟𝑒𝑑𝑠 must contain at least 2𝑓 + 1 vertices of round
𝑟 − 1 created by different threads. This in turn implies the thread must know the existence of these

vertices. The process of learning vertices in round 𝑟 − 1 is abstracted by the operation 𝐷𝐴𝐺-𝑃𝑢𝑙𝑙 (𝑟),
which each honest thread should perform before invoking 𝐷𝐴𝐺-𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟, _, _).

The 𝐷𝐴𝐺-𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟, _, _) operation may either return 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 or 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 . When it returns

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 , a new vertex is added and returned to the caller. Upon 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 no change to the DAG

occurs. 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 may occur only when there are already 2𝑓 + 1 vertices in some round 𝑟 ′ ≥ 𝑟 . The

𝑇𝑖𝑚𝑒𝑜𝑢𝑡 outcome is used to model the round-skipping behavior in some protocols, where honest

processes catch up network progress by abandoning proposing vertices in some rounds.

When 𝐷𝐴𝐺-𝑃𝑢𝑙𝑙 (𝑟) with 𝑟 > 1 returns, it always returns a set of vertices containing at least

2𝑓 + 1 vertices in round 𝑟 − 1. To prevent the system from getting stuck, when an honest thread

calls 𝐷𝐴𝐺-𝑃𝑢𝑙𝑙 (𝑟), we must ensure either there already exists 2𝑓 + 1 vertices in round 𝑟 − 1, or
these vertices will eventually be created. We enforce this by requiring that before any honest thread

calls 𝐷𝐴𝐺-𝑃𝑢𝑙𝑙 (𝑟) with 𝑟 > 1, it must have already performed 𝐷𝐴𝐺-𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟 − 1, _, _) (line 10 of
Alg. 2). Thus each honest thread is forced to follow the interaction pattern below:

𝐷𝐴𝐺-𝑃𝑢𝑙𝑙 (1) · 𝐷𝐴𝐺-𝐼𝑛𝑣𝑜𝑘𝑒 (1, _, _) · 𝐷𝐴𝐺-𝑃𝑢𝑙𝑙 (2) · 𝐷𝐴𝐺-𝐼𝑛𝑣𝑜𝑘𝑒 (2, _, _) · 𝐷𝐴𝐺-𝑃𝑢𝑙𝑙 (3) · · ·
It can be shown that if all honest threads follow this pattern, then it is not possible for 𝐷𝐴𝐺-𝑃𝑢𝑙𝑙

to get stuck. We will return to this point in Section 3.4, where we discuss liveness of LiDO-DAG.

The Closure of a Vertex. For each vertex 𝑣 in the DAG object, we define its closure cl(𝑣) by
induction on 𝑣 .𝑟𝑜𝑢𝑛𝑑 . If 𝑣 .𝑟𝑜𝑢𝑛𝑑 = 1 then cl(𝑣) = {𝑣}. If 𝑣 .𝑟𝑜𝑢𝑛𝑑 > 1, then cl(𝑣 ′) is already defined

for every 𝑣 ′ ∈ 𝑣 .𝑝𝑟𝑒𝑑𝑠 . If 𝑣 .𝑝𝑟𝑒𝑑𝑠 = {𝑖𝑑1, 𝑖𝑑2, · · · , 𝑖𝑑𝑛} then let 𝑢𝑖 = 𝑣𝑒𝑟𝑡𝑠 [𝑖𝑑𝑖] and we define

cl(𝑣) = cl(𝑢1) ∪ cl(𝑢2) ∪ · · · ∪ cl(𝑢𝑛) ∪ {𝑣}.

3.2 Combining DAG and LiDO
The LiDO-DAG object augments the DAG object with two additional concurrent components: a

cache tree and an abstract pacemaker. The agents interacting with these components are 3𝑓 + 1
LiDO-proposer threads (one from each participating process), and an adversary A.

The Cache Tree. The internal state of the LiDO cache tree is a set Σ of cache nodes, defined in

Fig. 6. Five kinds of cache nodes exist: Root, ECache, MCache, CCache, and TCache. Each cache

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.

203:12 Longfei Qiu, Jingqi Xiao, Ji-Yong Shin, and Zhong Shao

𝐶𝑎𝑐ℎ𝑒𝑁𝑜𝑑𝑒 ≜𝑅𝑜𝑜𝑡

| 𝐸𝐶𝑎𝑐ℎ𝑒 (N𝑤𝑎𝑣𝑒 ∗ N𝑝𝑎𝑟𝑒𝑛𝑡_𝑤𝑎𝑣𝑒)
| 𝑀𝐶𝑎𝑐ℎ𝑒 (N𝑤𝑎𝑣𝑒 ∗ N𝑎𝑛𝑐ℎ𝑜𝑟_𝐼𝐷)
| 𝐶𝐶𝑎𝑐ℎ𝑒 (N𝑤𝑎𝑣𝑒)
| 𝑇𝐶𝑎𝑐ℎ𝑒 (N𝑤𝑎𝑣𝑒)
(a) Cache Nodes

𝑝𝑎𝑟𝑒𝑛𝑡 (𝐸𝐶𝑎𝑐ℎ𝑒 (𝑤, 𝑝)) ≡
{
𝑅𝑜𝑜𝑡 (𝑝 = 0)
Σ[𝑝] .𝑚𝑐𝑎𝑐ℎ𝑒 (𝑝 > 0)

𝑝𝑎𝑟𝑒𝑛𝑡 (𝑀𝐶𝑎𝑐ℎ𝑒 (𝑤,𝑚)) ≡ Σ[𝑤] .𝑒𝑐𝑎𝑐ℎ𝑒
𝑝𝑎𝑟𝑒𝑛𝑡 (𝐶𝐶𝑎𝑐ℎ𝑒 (𝑤)) ≡ Σ[𝑤] .𝑚𝑐𝑎𝑐ℎ𝑒

(b) Cache Node Parent Relation

Fig. 6. Definition of LiDO cache nodes and node parents [Qiu et al. 2024b].

Algorithm 4 The LiDO-DAG Cache Tree

1: Agents: LiDO-proposer threads 𝑝1, 𝑝2, · · · , 𝑝3𝑓 +1.
2: State variable: Σ : list CacheNode.
3: initialize: Assume Σ = {𝑅𝑜𝑜𝑡 }.
4: upon 𝑃𝑢𝑙𝑙 (𝑤) from 𝑝𝑖 :

5: if 𝑝𝑖 ≠ 𝑙𝑒𝑎𝑑𝑒𝑟_𝑜 𝑓 (𝑤) , or Σ[𝑤] .𝑒𝑐𝑎𝑐ℎ𝑒 ≠ ⊥ then
6: return 𝐼𝑛𝑣𝑎𝑙𝑖𝑑𝐶𝑎𝑙𝑙

7: upon 𝐼𝑛𝑣𝑜𝑘𝑒 (𝑤, 𝑖𝑑) from 𝑝𝑖 :

8: if 𝑝𝑖 ≠ 𝑙𝑒𝑎𝑑𝑒𝑟_𝑜 𝑓 (𝑤) , or 𝑣𝑒𝑟𝑡𝑠 [𝑖𝑑] = ⊥, or Σ[𝑤] .𝑒𝑐𝑎𝑐ℎ𝑒 = ⊥, or Σ[𝑤] .𝑚𝑐𝑎𝑐ℎ𝑒 ≠ ⊥ then
9: return 𝐼𝑛𝑣𝑎𝑙𝑖𝑑𝐶𝑎𝑙𝑙

10: if 𝑝𝑖 is honest, and 𝑣𝑒𝑟𝑡𝑠 [𝑖𝑑] is not the latest vertex built by 𝑝𝑖 when 𝑃𝑢𝑙𝑙 (𝑤) was called (or a later vertex) then
11: return 𝐼𝑛𝑣𝑎𝑙𝑖𝑑𝐶𝑎𝑙𝑙

12: upon 𝑃𝑢𝑠ℎ (𝑤) from 𝑝𝑖 :

13: if 𝑝𝑖 ≠ 𝑙𝑒𝑎𝑑𝑒𝑟_𝑜 𝑓 (𝑤) or Σ[𝑤] .𝑚𝑐𝑎𝑐ℎ𝑒 = ⊥ then
14: return 𝐼𝑛𝑣𝑎𝑙𝑖𝑑𝐶𝑎𝑙𝑙

15: upon Respond𝑇𝑖𝑚𝑒𝑜𝑢𝑡 to 𝑃𝑢𝑙𝑙 (𝑤) , 𝐼𝑛𝑣𝑜𝑘𝑒 (𝑤, _) , or 𝑃𝑢𝑠ℎ (𝑤) :
16: Σ← Σ ∪ {𝑇𝐶𝑎𝑐ℎ𝑒 (𝑤) }
17: return𝑇𝐶𝑎𝑐ℎ𝑒 (𝑤) to 𝑝𝑖
18: upon Respond 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 to 𝑃𝑢𝑙𝑙 (𝑤) :
19: Choose 𝑝 s.t. 𝑝 < 𝑤 ∧ (𝑝 = 0 ∨ Σ[𝑝] .𝑚𝑐𝑎𝑐ℎ𝑒 ≠ ⊥) ∧ ∀𝑤′, 𝑤′ < 𝑤 ⇒ Σ[𝑤′] .𝑐𝑐𝑎𝑐ℎ𝑒 ≠ ⊥ ⇒ 𝑝 ≥ 𝑤′ .
20: Such 𝑝 always exists.

21: 𝑐 ← {𝐸𝐶𝑎𝑐ℎ𝑒 (𝑤, 𝑝) }; Σ← Σ ∪ {𝑐 }
22: return 𝑐 to 𝑝𝑖

23: upon Respond 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 to 𝐼𝑛𝑣𝑜𝑘𝑒 (𝑤, 𝑖𝑑) :
24: 𝑐 ← {𝑀𝐶𝑎𝑐ℎ𝑒 (𝑤, 𝑖𝑑) }; Σ← Σ ∪ {𝑐 }
25: return 𝑐 to 𝑝𝑖

26: upon Respond 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 to 𝑃𝑢𝑠ℎ (𝑤, 𝑖𝑑) :
27: Precondition: ∀𝑤′, 𝑤′ > 𝑤 ⇒ Σ[𝑤′] .𝑒𝑐𝑎𝑐ℎ𝑒 = ⊥ ∨ Σ[𝑤′] .𝑒𝑐𝑎𝑐ℎ𝑒.𝑝𝑎𝑟𝑒𝑛𝑡_𝑤𝑎𝑣𝑒 ≥ 𝑤.

28: If precondition is not satisfied, respond𝑇𝑖𝑚𝑒𝑜𝑢𝑡 instead.

29: 𝑐 ← {𝐶𝐶𝑎𝑐ℎ𝑒 (𝑤) }; Σ← Σ ∪ {𝑐 }
30: return 𝑐 to 𝑝𝑖

node except Root has a 𝑤𝑎𝑣𝑒 argument indicating the wave it belongs to. Wave numbers begin

from 1. The intended meaning of these cache nodes is that: each ECache represents the log that

the leader of wave𝑤 received when it entered wave𝑤 ; each MCache represents one new anchor

entry appended to the log; each CCache is a mark that a particular branch of the log has been

committed; each TCache is a record that some network failure has occured in wave 𝑤 . In the

following paragraphs these meanings will be made more precise.

The cache tree maintains that within each wave, there is at most one ECache, one MCache, and

one CCache. We thus use Σ[𝑤] .𝑒𝑐𝑎𝑐ℎ𝑒 to represent the ECache of wave𝑤 if it exists. If it does not

exist, we write Σ[𝑤] .𝑒𝑐𝑎𝑐ℎ𝑒 = ⊥. The notations Σ[𝑤] .𝑚𝑐𝑎𝑐ℎ𝑒, Σ[𝑤] .𝑐𝑐𝑎𝑐ℎ𝑒 are defined similarly.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.

LiDO-DAG: A Framework for Verifying Safety and Liveness of DAG-Based Consensus Protocols 203:13

Algorithm 5 The Abstract Pacemaker

1: Agents:

2: LiDO-proposer threads 𝑝1, 𝑝2, · · · 𝑝3𝑓 +1;
3: Adversary A.

4: Constant: 𝑡𝑖𝑚𝑒𝑟_𝑟𝑒𝑠𝑒𝑡_𝑣𝑎𝑙 : nat.
5: State variables:

6: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑤𝑎𝑣𝑒 : nat
7: 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 : nat
8: 𝑐𝑎𝑛_𝑠𝑡𝑎𝑟𝑡_𝑛𝑒𝑥𝑡 : bool
9: initialize:
10: Assume 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑤𝑎𝑣𝑒 = 1

11: Assume 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 = 𝑡𝑖𝑚𝑒𝑟_𝑟𝑒𝑠𝑒𝑡_𝑣𝑎𝑙

12: Assume 𝑐𝑎𝑛_𝑠𝑡𝑎𝑟𝑡_𝑛𝑒𝑥𝑡 = 𝑓 𝑎𝑙𝑠𝑒

13: upon 𝑆𝑡𝑎𝑟𝑡𝑁𝑒𝑥𝑡 (𝑤) from 𝑝𝑖 :

14: if 𝑝𝑖 ≠ 𝑙𝑒𝑎𝑑𝑒𝑟_𝑜 𝑓 (𝑤) then
15: return 𝐼𝑛𝑣𝑎𝑙𝑖𝑑𝐶𝑎𝑙𝑙

16: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑤𝑎𝑣𝑒 = 𝑤 then

17: 𝑐𝑎𝑛_𝑠𝑡𝑎𝑟𝑡_𝑛𝑒𝑥𝑡 ← 𝑡𝑟𝑢𝑒

18: return 𝑆𝑢𝑐𝑐𝑒𝑠𝑠

19: upon 𝐸𝑙𝑎𝑝𝑠𝑒 () from A:

20: if 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 > 0 then
21: 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 ← 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 − 1

22: else
23: 𝑐𝑎𝑛_𝑠𝑡𝑎𝑟𝑡_𝑛𝑒𝑥𝑡 ← 𝑡𝑟𝑢𝑒

24: return 𝑆𝑢𝑐𝑐𝑒𝑠𝑠

25: upon𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝑆𝑡𝑎𝑟𝑡𝑁𝑒𝑥𝑡 () from A:

26: if 𝑐𝑎𝑛_𝑠𝑡𝑎𝑟𝑡_𝑛𝑒𝑥𝑡 = 𝑡𝑟𝑢𝑒 then
27: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑤𝑎𝑣𝑒 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑤𝑎𝑣𝑒 + 1
28: 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 ← 𝑡𝑖𝑚𝑒𝑟_𝑟𝑒𝑠𝑒𝑡_𝑣𝑎𝑙

29: 𝑐𝑎𝑛_𝑠𝑡𝑎𝑟𝑡_𝑛𝑒𝑥𝑡 ← 𝑓 𝑎𝑙𝑠𝑒

30: return 𝑆𝑢𝑐𝑐𝑒𝑠𝑠

31: else
32: return 𝐼𝑛𝑣𝑎𝑙𝑖𝑑𝐶𝑎𝑙𝑙

Each cache node in Σ except Root and TCache has a parent cache node, defined in Fig. 6. The

cache nodes are chained by this parent relation into a tree (Fig. 3). Each cache node 𝑐 except TCache

is also associated with a consensus log, denoted by log(𝑐). It is defined by induction on the tree

structure as follows: log(𝑅𝑜𝑜𝑡) = []; if 𝑐 is an ECache or CCache, then log(𝑐) = log(𝑝𝑎𝑟𝑒𝑛𝑡 (𝑐));
and if 𝑐 is an MCache, then log(𝑐) = log(𝑝𝑎𝑟𝑒𝑛𝑡 (𝑐)) ++ [𝑐.𝑎𝑛𝑐ℎ𝑜𝑟_𝑖𝑑].

Three operations are exposed for manipulating the cache tree, which are 𝑃𝑢𝑙𝑙 (𝑤), 𝐼𝑛𝑣𝑜𝑘𝑒 (𝑤, 𝑖𝑑),
and 𝑃𝑢𝑠ℎ(𝑤). The cache tree responds to each operation with either 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 or 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 , adding

one new cache node to Σ. Each 𝑃𝑢𝑙𝑙 (𝑤), 𝐼𝑛𝑣𝑜𝑘𝑒 (𝑤, 𝑖𝑑), 𝑃𝑢𝑠ℎ(𝑤) operation only creates cache nodes

in wave𝑤 . Each wave has a unique, predetermined leader, denoted by 𝑙𝑒𝑎𝑑𝑒𝑟_𝑜 𝑓 (𝑤) and known

to all participants. Only the 𝑙𝑒𝑎𝑑𝑒𝑟_𝑜 𝑓 (𝑤) may call 𝑃𝑢𝑙𝑙 (𝑤), 𝐼𝑛𝑣𝑜𝑘𝑒 (𝑤, 𝑖𝑑), or 𝑃𝑢𝑠ℎ(𝑤).
The semantics of these operations are defined in Alg. 4. When 𝑃𝑢𝑙𝑙 (𝑤) succeeds, the object

creates an ECache 𝑐 , with log(𝑐) representing the consensus log that 𝑙𝑒𝑎𝑑𝑒𝑟_𝑜 𝑓 (𝑤) receives. The
wave number of the last entry in the log is recorded in 𝑐.𝑝𝑎𝑟𝑒𝑛𝑡_𝑤𝑎𝑣𝑒 , and the previous entries are

defined via the parent relation. When 𝐼𝑛𝑣𝑜𝑘𝑒 (𝑤, 𝑖𝑑) succeeds, a new anchor entry (represented by

an MCache) is created but not yet committed. It gets committed when 𝑃𝑢𝑠ℎ(𝑤) succeeds.
The LiDO cache tree maintains a key invariant (line 19 and 27 of Alg. 4): if Σ[𝑤] .𝑐𝑐𝑎𝑐ℎ𝑒 ≠

⊥, 𝑤 ′ > 𝑤 , and Σ[𝑤 ′] .𝑒𝑐𝑎𝑐ℎ𝑒 ≠ ⊥, then Σ[𝑤 ′] .𝑝𝑎𝑟𝑒𝑛𝑡_𝑤𝑎𝑣𝑒 ≥ 𝑤 . Then it is easy to show

that if Σ[𝑤] .𝑐𝑐𝑎𝑐ℎ𝑒 ≠ ⊥, then the log of every cache node 𝑐 in wave 𝑤 ′ > 𝑤 extends from

log(Σ[𝑤] .𝑐𝑐𝑎𝑐ℎ𝑒). In this sense we say, each CCache marks a committed branch of consensus log.

The Abstract Pacemaker. The LiDO cache tree presents an elegant abstraction for the consensus

log, but is in itself insufficient to reduce liveness of consensus to safety properties. Qiu et al. [2024b]

points out that this is because we lack information about the local timers running at each process,

without which we cannot infer whether leader actions will succeed before timer expiration. They

introduced an abstract pacemaker that can be simulated by a group of local timers.

The pacemaker is defined in Alg. 5. It has two variables 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑤𝑎𝑣𝑒 and 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑡𝑖𝑚𝑒

(𝑐𝑢𝑟𝑟_𝑤𝑎𝑣𝑒 and 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 for short), representing a logical timer. The idea is that 𝑐𝑢𝑟𝑟_𝑤𝑎𝑣𝑒

indicates the current wave for which liveness is guaranteed (until pacemaker intervention), and

𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 is the minimum period of time the pacemaker guarantees not to intervene. 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒

should decrease by 1 within each period of Δ. If 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 reaches 0, the pacemaker shall move the

system to the next wave. The pacemaker also allows 𝑙𝑒𝑎𝑑𝑒𝑟_𝑜 𝑓 (𝑤) to call 𝑆𝑡𝑎𝑟𝑡𝑁𝑒𝑥𝑡 (𝑤) to start

the next wave before timer expiration, if it completes its tasks early.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.

203:14 Longfei Qiu, Jingqi Xiao, Ji-Yong Shin, and Zhong Shao

The LiDO-DAG concurrent object is thus defined as a transition system specified by Alg. 2, Alg. 4,

and Alg. 5, with each upon clause representing an atomic transition event.

3.3 The Consensus Log
We now define the DAG consensus log, providing a formal safety criterion for DAG-based protocols.

Definition 3.1. The anchor log is defined as log(𝑐) where 𝑐 is the CCache with the highest wave

number in Σ. The anchor log is empty in case no CCache exists in Σ.

The following theorem easily follows from the key invariant of LiDO cache tree:

Theorem 3.2 (Safety of LiDO-DAG). If 𝑧, 𝑧′ are states of LiDO-DAG and 𝑧′ is reachable from 𝑧,
then 𝑎𝑛𝑐ℎ𝑜𝑟_𝑙𝑜𝑔(𝑧′) extends from 𝑎𝑛𝑐ℎ𝑜𝑟_𝑙𝑜𝑔(𝑧).

The DAG consensus log is defined by expanding each anchor into its closure. To convert the

closure set to a linear list, we assume a parameter 𝛿 , a deterministic topological sort algorithm.

Definition 3.3. If the anchor log is [𝑖𝑑1, · · · , 𝑖𝑑𝑛], and 𝑣𝑒𝑟𝑡𝑠 [𝑖𝑑𝑖] = 𝑢𝑖 , then the DAG consensus log
is dedup(𝛿 (cl(𝑢1)) ++ · · · ++𝛿 (cl(𝑢𝑛))), where dedup is the deduplication function.

Definition 3.4 (Safety of DAG-based protocols). A DAG-based protocol 𝐷 is safe, if 1) it is possible

to construct a refinement-mapping 𝜙 from a network model of 𝐷 to the LiDO-DAG model, and 2)

whenever a participating process outputs a log, it is a prefix of the current DAG consensus log.

3.4 Liveness and Fairness of LiDO-DAG
The abstract pacemaker enables refinement-based liveness proofs, which has been successfully

applied to BFT protocols like Jolteon [Gelashvili et al. 2022] in Qiu et al. [2024b]. We now apply

their ideas to DAG-based protocols.

Liveness refinement is based on an abstraction called trace segmentation. Assume that an infinite

timed-trace 𝜏 is non-Zeno, i.e. only a finite number of events occur in every finite period. Let 𝑇 be

any timepoint after GST, and Δ the network latency after GST. The idea is that 𝜏 can be represented

as the limit of 𝜏0, 𝜏1, · · · , where 𝜏𝑘 is the prefix of 𝜏 containing only events with 𝑡𝑖𝑚𝑒 < 𝑇 + 𝑘Δ.
Since the trace is non-Zeno, each of 𝜏0, 𝜏1, · · · is finite. Each 𝜏𝑖 is also a prefix of 𝜏𝑖+1. We will use

(𝜏, 𝜏 ′] to denote the trace 𝜏 ′ with prefix 𝜏 removed. Liveness assumptions such as partial-synchrony

can be stated as safety properties over finite and contiguous subsequences of the segmentation.

If 𝜙 is a refinement mapping from a protocol 𝐷 to LiDO-DAG, and 𝜏0, 𝜏1, · · · is the segmentation

of an infinite network trace, then 𝜙 (𝜏0), 𝜙 (𝜏1), · · · is the segmentation of the corresponding LiDO-

DAG trace. The definition of refinement mapping guarantees that 𝜙 is prefix-preserving. A protocol

𝐷 is live if all live traces of its network model refine live traces of LiDO-DAG (Definition 3.5).

Definition 3.5. An infinite segmented trace 𝜏0, 𝜏1, · · · of LiDO-DAG is live, if each of its finite

contiguous subsequence 𝜏𝑖 , · · · , 𝜏𝑖+𝑘 satisfies the following conditions:

(1) (Liveness of 𝐷𝐴𝐺-𝐼𝑛𝑣𝑜𝑘𝑒) There exists constant 𝐶 , s.t. if a synchronous thread has called

𝐷𝐴𝐺-𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟, _, _) before the end of 𝜏𝑖 , then it receives response before the end of 𝜏𝑖+𝐶 ;
(2) (Liveness of 𝐷𝐴𝐺-𝑃𝑢𝑙𝑙) There exists constant 𝐶 , s.t. if a synchronous thread has called

𝐷𝐴𝐺-𝑃𝑢𝑙𝑙 (𝑟) before the end of 𝜏𝑖 , then it receives response before the end of 𝜏𝑖+𝐶 , provided
that either 1) at least one other synchronous thread has called 𝐷𝐴𝐺-𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟, _, _), or 2) all
synchronous have called 𝐷𝐴𝐺-𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟 − 1, _, _) and received response;

(3) (Liveness of DAG-building)When execution begins, each synchronousDAG-builder thread im-

mediately calls 𝐷𝐴𝐺-𝑃𝑢𝑙𝑙 (1); they immediately call 𝐷𝐴𝐺-𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟, _, _) after 𝐷𝐴𝐺-𝑃𝑢𝑙𝑙 (𝑟)
returns, and immediately call 𝐷𝐴𝐺-𝑃𝑢𝑙𝑙 (𝑟 + 1) after 𝐷𝐴𝐺-𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟, _, _) returns;

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.

LiDO-DAG: A Framework for Verifying Safety and Liveness of DAG-Based Consensus Protocols 203:15

(4) (Liveness of LiDO) There exists constant 𝐶 , s.t. if 𝑐𝑢𝑟𝑟_𝑤𝑎𝑣𝑒 (𝜏𝑖) < 𝑤 , 𝑐𝑢𝑟𝑟_𝑤𝑎𝑣𝑒 (𝜏𝑖+1) ≥ 𝑤 ,

and 𝑙𝑒𝑎𝑑𝑒𝑟_𝑜 𝑓 (𝑤) is synchronous, then there exists a CCache of wave𝑤 at the end of 𝜏𝑖+𝐶 ;
(5) (Liveness of abstract pacemaker) 1) Within (𝜏𝑖 , 𝜏𝑖+1], 𝐸𝑙𝑎𝑝𝑠𝑒 () is called at most once, and

it cannot be called after a valid 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝑆𝑡𝑎𝑟𝑡𝑁𝑒𝑥𝑡 () call; 2) If 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 (𝜏𝑖) > 0, then

within (𝜏𝑖 , 𝜏𝑖+1] either 𝐸𝑙𝑎𝑝𝑠𝑒 () or𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝑆𝑡𝑎𝑟𝑡𝑁𝑒𝑥𝑡 () is called at least once; 3) There exists
constant 𝐶 , s.t. if 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 (𝜏𝑖) = 0 then 𝑐𝑢𝑟𝑟_𝑤𝑎𝑣𝑒 (𝜏𝑖+𝐶) > 𝑐𝑢𝑟𝑟_𝑤𝑎𝑣𝑒 (𝜏𝑖).

Conditions (4) and (5) are consistent with Qiu et al. [2024b] and ensure that every wave started

after GST will eventually have a CCache. Conditions (1)-(3) are new in LiDO-DAG and ensure

every round of DAG will eventually have at least 2𝑓 + 1 vertices.

Liveness of Consensus. We proved the following theorem for all live traces of LiDO-DAG:

Theorem 3.6 (Liveness of LiDO-DAG). For each vertex 𝑣 built by a synchronous process, eventually
there exists an anchor 𝑣 ′ in the anchor log, s.t. 𝑣 ∈ cl(𝑣 ′).

The outline of the proof is as follows. First, the DAG part enforces that (line 21 and 23 of Alg. 2),

when an honest thread 𝑝𝑖 attempts to create a new vertex 𝑣 , the closure of 𝑣 must include all vertices

ever created by 𝑝𝑖 . This means if one of the vertices created by 𝑝𝑖 is committed, then all previous

vertices are also committed.

Second, the LiDO part enforces that (line 10 of Alg. 4), when an honest LiDO-proposer becomes

the leader, it must propose the latest vertex created by the same process as the new anchor. This

requirement avoids the stagnant anchor problem mentioned in Section 2.4. It ensures new vertices

are eventually included in the closures of new anchor proposals.

Finally, requirements (4)-(5) of Definition 3.5 guarantee the newly proposed anchor will be

committed. Assuming that the leader schedule is fair (all processes become leader infinitely often),

this ensures all vertices from synchronous threads will eventually be committed.

Progress of DAG-Pull. The rationale of the liveness requirement around𝐷𝐴𝐺-𝑃𝑢𝑙𝑙 (𝑟) is as follows.
If at least one synchronous thread has called 𝐷𝐴𝐺-𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟, _, _), then it has already learned

2𝑓 + 1 vertices in round 𝑟 − 1, and it should forward this knowledge to threads still waiting upon

𝐷𝐴𝐺-𝑃𝑢𝑙𝑙 (𝑟), so they also learn them within Δ.
If all synchronous threads have returned from 𝐷𝐴𝐺-𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟 − 1, _, _), then either all of them

succeeded, or at least one of them received 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 . In either case, there exists at least 2𝑓 + 1
vertices in round 𝑟 − 1. Since vertices are gossiped among synchronous threads, they should all

learn them within Δ. Based on these considerations, we proved that:

Theorem 3.7 (Progress of DAG). Each DAG round 𝑟 will eventually contain at least 2𝑓 +1 vertices
from different DAG-builder threads.

Fairness of DAG. Theorem 3.7 says nothing about individual DAG-builders. It is possible that

2𝑓 + 1 vertices are created in each round, but some synchronous DAG-builder threads are starved.

The simplest way to formalize the fairness requirement is that after GST, all new calls to

𝐷𝐴𝐺-𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟, _, _) return 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 . However this requirement is impractical: even after GST it is

occasionally necessary to skip rounds and catch up with network progress, for example if network

speed is faster for some honest builder than others. Instead we use the following definition:

Definition 3.8 (Fairness of DAG-based protocols). There exists constant 𝐶 , s.t. each synchronous

DAG-builder creates at least one new vertex within (𝜏𝑖 , 𝜏𝑖+𝐶].

This does not guarantee absolute fairness: some threads can still create vertices more frequently

than others. However it gives a minimum vertex creation frequency for all synchronous threads.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.

203:16 Longfei Qiu, Jingqi Xiao, Ji-Yong Shin, and Zhong Shao

4 Implementations of LiDO-DAG
4.1 System Model
We produced several different implementations of the LiDO-DAG object, showing good reusability

of our model. In this section, we describe the general structure of our network models. Features of

individual implementations will be described in subsequent sections following this skeleton.

State
Machine

Network
send_msg

deliv_msg

RBC
r_bcast

r_deliver

Local
Timer

Reset

Timeout

Client
Request

Consensus
Log

Fig. 7. Model of each honest process.

We specify each honest process as a state machine that

interacts with three ideal objects (Fig. 7), namely the net-

work object (providing message sending and delivery), the

reliable broadcast object (RBC, specified in Alg. 1), and a

local timer object. Byzantine processes do not have internal

state. Instead, they are allowed to interact with the network

object and the RBC object arbitrarily.

The Network Object. The internal state of the network
object is a set of messages. Each message must come from

a predefined setM called the message space. The message space is protocol-specific. Each message

is signed by a sender. We assume byzantine processes cannot forge signatures of honest processes.

For example, in consensus protocols, byzantine processes cannot send votes on behalf of other

processes. On the other hand, we follow Dolev and Yao [1983] and allow the adversary to see every

sent message and send any message signed by byzantine processes. Message delivery is UDP-like:

sent messages may be delivered in any possible order. Although each message has a set of intended
recipients, the message may be delivered to any process in the system.

Algorithm 6 Local Timer

1: Constant: 𝑡𝑖𝑚𝑒𝑟_𝑟𝑒𝑠𝑒𝑡_𝑣𝑎𝑙 : nat
2: State variable: 𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 : nat
3: initialize:
4: 𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 ← 𝑡𝑖𝑚𝑒𝑟_𝑟𝑒𝑠𝑒𝑡_𝑣𝑎𝑙

5: upon 𝑅𝑒𝑠𝑒𝑡 () from state machine:

6: 𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 ← 𝑡𝑖𝑚𝑒𝑟_𝑟𝑒𝑠𝑒𝑡_𝑣𝑎𝑙

7: upon 𝐸𝑙𝑎𝑝𝑠𝑒 () from A:

8: if 𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 > 0 then
9: 𝑡 ← 𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑚_𝑡𝑖𝑚𝑒

10: 𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 ← 𝑡 − 1

11: else
12: Send signal 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ()

The Local Timer. Each honest process is equipped with

a local timer object, specified in Alg. 6. It has a sin-

gle variable 𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 . The state machine may

call 𝑅𝑒𝑠𝑒𝑡 () to reset 𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 to a fixed value

𝑡𝑖𝑚𝑒𝑟_𝑟𝑒𝑠𝑒𝑡_𝑣𝑎𝑙 . The adversary may call 𝐸𝑙𝑎𝑝𝑠𝑒 () to
decrease 𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 . If 𝐸𝑙𝑎𝑝𝑠𝑒 () is called when

𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 = 0, a timeout signal is delivered.

Liveness Assumptions. Infinite timed-traces of the net-

work model are segmented by Δ in the same way de-

scribed in Section 3.4. To prove liveness, we consider all

segmented traces that satisfy Definition 4.1 and show

that, under the refinement mapping 𝜙 from the safety

proof, they refine live traces of LiDO-DAG.

Definition 4.1. An infinite segmented trace 𝜏0, 𝜏1, · · · of the network model is live, if each of its

finite contiguous subsequence 𝜏𝑖 , · · · , 𝜏𝑖+𝑘 satisfies:

(1) (Liveness of network) If a synchronous process 𝑝𝑖 has sent a message𝑚 before the end of 𝜏𝑖 ,

then it is delivered to every synchronous recipient at least once before the end of 𝜏𝑖+1;
(2) (Liveness of timer) For each local timer, within (𝜏𝑖 , 𝜏𝑖+1], 1) either 𝐸𝑙𝑎𝑝𝑠𝑒 () or 𝑅𝑒𝑠𝑒𝑡 () is called

at least once; 2) 𝐸𝑙𝑎𝑝𝑠𝑒 () is called at most once; 3) 𝐸𝑙𝑎𝑝𝑠𝑒 () cannot be called after 𝑅𝑒𝑠𝑒𝑡 ();
(3) (Liveness of RBC) The liveness requirements in Alg. 1 are satisfied.

Implementing DAG using Reliable Broadcast. The protocols we considered in this work are all

authenticated DAG-based protocols, which are easier to model than unauthenticated ones. Although

they implement consensus differently, the way they implement the DAG graph is largely the same.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.

LiDO-DAG: A Framework for Verifying Safety and Liveness of DAG-Based Consensus Protocols 203:17

Algorithm 7 Building DAG From RBC

1: State variable: 𝑙𝑜𝑐𝑎𝑙_𝑣𝑒𝑟𝑡𝑠 : list Vertex; 𝑏𝑢𝑓𝑓 𝑒𝑟 : list (nat * nat * val * list nat).
2: initialize:
3: 𝑙𝑜𝑐𝑎𝑙_𝑣𝑒𝑟𝑡𝑠 ← {}; 𝑏𝑢𝑓𝑓 𝑒𝑟 ← {}
4: procedure tryAddVert(𝑟, 𝑘, 𝑣, 𝑝𝑟𝑒𝑑𝑠)
5: 𝑖𝑑 ← 𝑟 (3𝑓 + 1) + 𝑘
6: if 𝑙𝑜𝑐𝑎𝑙_𝑣𝑒𝑟𝑡𝑠 [𝑖𝑑] ≠ ⊥, or𝐶ℎ𝑒𝑐𝑘𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟 (𝑣) = 𝑓 𝑎𝑙𝑠𝑒 , or 𝑙𝑜𝑐𝑎𝑙_𝑣𝑒𝑟𝑡𝑠 [𝑝_𝑖𝑑] = ⊥ for some 𝑝_𝑖𝑑 ∈ 𝑝𝑟𝑒𝑑𝑠 then
7: return
8: if 𝑙𝑜𝑐𝑎𝑙_𝑣𝑒𝑟𝑡𝑠 [𝑝_𝑖𝑑] .𝑟𝑜𝑢𝑛𝑑 ≥ 𝑟 for some 𝑝_𝑖𝑑 ∈ 𝑝𝑟𝑒𝑑𝑠 then
9: return
10: 𝑠𝑡𝑟𝑜𝑛𝑔𝐸𝑑𝑔𝑒𝑠 ← filter (𝑝_𝑖𝑑 ↦→ 𝑣𝑒𝑟𝑡𝑠 [𝑝_𝑖𝑑] .𝑟𝑜𝑢𝑛𝑑 = 𝑟 − 1) 𝑝𝑟𝑒𝑑𝑠
11: 𝑠𝑡𝑟𝑜𝑛𝑔𝐸𝑑𝑔𝑒𝐵𝑢𝑖𝑙𝑑𝑒𝑟𝑠 ← map (𝑝_𝑖𝑑 ↦→ 𝑣𝑒𝑟𝑡𝑠 [𝑝_𝑖𝑑] .𝑏𝑢𝑖𝑙𝑑𝑒𝑟) 𝑠𝑡𝑟𝑜𝑛𝑔𝐸𝑑𝑔𝑒𝑠
12: if 𝑟 > 1 ∧ 𝑖𝑠𝑄𝑢𝑜𝑟𝑢𝑚 (𝑠𝑡𝑟𝑜𝑛𝑔𝐸𝑑𝑔𝑒𝐵𝑢𝑖𝑙𝑑𝑒𝑟𝑠) = 𝑓 𝑎𝑙𝑠𝑒 then
13: return
14: 𝑣 ← {𝑖𝑑 := 𝑖𝑑 ; 𝑟𝑜𝑢𝑛𝑑 := 𝑟 ;𝑏𝑢𝑖𝑙𝑑𝑒𝑟 := 𝑝𝑘 ;𝑑𝑎𝑡𝑎 := 𝑣;𝑝𝑟𝑒𝑑𝑠 := 𝑝𝑟𝑒𝑑𝑠 }
15: 𝑙𝑜𝑐𝑎𝑙_𝑣𝑒𝑟𝑡𝑠 ← 𝑙𝑜𝑐𝑎𝑙_𝑣𝑒𝑟𝑡𝑠 ∪ {𝑣}
16: upon 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚,𝑟, 𝑝𝑘) from RBC:

17: Interpret𝑚 as (𝑣, 𝑝𝑟𝑒𝑑𝑠) .
18: 𝑏𝑢𝑓𝑓 𝑒𝑟 ← 𝑏𝑢𝑓𝑓 𝑒𝑟 ∪ { (𝑟, 𝑘, 𝑣, 𝑝𝑟𝑒𝑑𝑠) }
19: Call tryAddVert(𝑟, 𝑘, 𝑣, 𝑝𝑟𝑒𝑑𝑠) for each (𝑟, 𝑘, 𝑣, 𝑝𝑟𝑒𝑑𝑠) ∈ 𝑏𝑢𝑓𝑓 𝑒𝑟 until no entry can be added to 𝑙𝑜𝑐𝑎𝑙_𝑣𝑒𝑟𝑡𝑠 .

Each process is given access to an infinite number of instances of reliable broadcast (RBC), numbered

from 1. The instance number is specifed with parameter 𝑟 in Alg. 1.

Each honest process maintains a local view of the DAG graph (Alg. 7). When RBC sends

𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚, 𝑟, 𝑝𝑘), it builds a vertex record (Fig. 5) with 𝑏𝑢𝑖𝑙𝑑𝑒𝑟 = 𝑝𝑘 and 𝑟𝑜𝑢𝑛𝑑 = 𝑟 . It inter-

prets𝑚 as a tuple of 𝑑𝑎𝑡𝑎 and 𝑝𝑟𝑒𝑑𝑠 , and 𝑖𝑑 is implicitly defined from 𝑏𝑢𝑖𝑙𝑑𝑒𝑟 and 𝑟𝑜𝑢𝑛𝑑 . It then

checks whether the pointers in 𝑝𝑟𝑒𝑑𝑠 lead to known vertices in the local view. If so, the new vertex

is added to the local view. Otherwise, it buffers the record until these pointers can be resolved.

To prove that the procedure outlined above refines the DAG object, we can imagine there is a

global observer of all RBC instances. Whenever an honest or byzantine process calls 𝑟_𝑏𝑐𝑎𝑠𝑡 (𝑚, 𝑟),
the value is immediately delivered to the observer. The observer runs the same procedure to build

its local view of the graph. The global DAG graph is the local graph built by this observer. It is easy

to see that a vertex must be added to this global graph before it can be added to the local graph of

any honest process. Thus each local view is a subgraph of this global graph.

4.2 Narwhal
Narwhal implements consensus using an external BFT algorithm. The original combination de-

scribed by Danezis et al. [2022] is called Narwhal-HS where HS is the HotStuff [Yin et al. 2019]

protocol. Here we reused the Jolteon [Gelashvili et al. 2022] implementation provided by Qiu et al.

[2024b]. In each wave (view in Jolteon), we make the leader propose a single vertex to be committed

as the new anchor. The main challenge is to ensure all entries proposed by leaders are valid vertices.

Our implementation buffers the BFT request messages until the voter has added the proposed

vertex to its local view. This introduces some delay between receiving a BFT request and processing

it. However when a synchronous process proposes a vertex 𝑣 in Jolteon, it must have already

received 𝑣 through RBC, and RBC will deliver 𝑣 to all other synchronous processes within Δ (with

suitably large Δ). Hence the request message is still processed by every synchronous process within

Δ, and the liveness proof still works. Overall, we were able to integrate the Jolteon implementation

into DAG with minimal changes to its safety and liveness proofs.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.

203:18 Longfei Qiu, Jingqi Xiao, Ji-Yong Shin, and Zhong Shao

Algorithm 8 Summary of Bullshark

1: State variable: 𝑙𝑜𝑐𝑎𝑙_𝑐𝑢𝑟𝑟_𝑟𝑜𝑢𝑛𝑑 : nat.
2: Notation: 𝑖𝑠𝑊𝑒𝑎𝑘𝑄𝑢𝑜𝑟𝑢𝑚 (𝑃) = 𝑡𝑟𝑢𝑒 if 𝑃 is a set of at least 𝑓 + 1 processes.
3: Notation: 𝑖𝑠𝐴𝑛𝑐ℎ𝑜𝑟 (𝑣) = 𝑡𝑟𝑢𝑒 if 𝑣.𝑟𝑜𝑢𝑛𝑑 = 2𝑤 − 1 and 𝑣.𝑏𝑢𝑖𝑙𝑑𝑒𝑟 = 𝑙𝑒𝑎𝑑𝑒𝑟_𝑜 𝑓 (𝑤) for some 𝑤.

4: Notation: 𝑙𝑜𝑐𝑎𝑙_𝑐𝑢𝑟𝑟_𝑤𝑎𝑣𝑒 = ⌊ (𝑙𝑜𝑐𝑎𝑙_𝑐𝑢𝑟𝑟_𝑟𝑜𝑢𝑛𝑑 + 1)/2⌋.
5: initialize:
6: 𝑙𝑜𝑐𝑎𝑙_𝑐𝑢𝑟𝑟_𝑟𝑜𝑢𝑛𝑑 ← 1

7: Propose vertex in round 1.

8: procedure commitCondition(𝑤)

9: 𝑐𝑜𝑚𝑚𝑖𝑡𝑉𝑜𝑡𝑒𝑠 ← filter (𝑣 ↦→ 𝑣.𝑟𝑜𝑢𝑛𝑑 = 2𝑤 ∧ (2𝑤 − 1, 𝑙𝑒𝑎𝑑𝑒𝑟_𝑜 𝑓 (𝑤)) ∈ 𝑣.𝑝𝑟𝑒𝑑𝑠) 𝑙𝑜𝑐𝑎𝑙_𝑣𝑒𝑟𝑡𝑠
10: 𝑐𝑜𝑚𝑚𝑖𝑡𝑉𝑜𝑡𝑒𝐵𝑢𝑖𝑙𝑑𝑒𝑟𝑠 ← map (𝑣 ↦→ 𝑣.𝑏𝑢𝑖𝑙𝑑𝑒𝑟) 𝑐𝑜𝑚𝑚𝑖𝑡𝑉𝑜𝑡𝑒𝑠

11: return 𝑖𝑠𝑊𝑒𝑎𝑘𝑄𝑢𝑜𝑟𝑢𝑚 (𝑐𝑜𝑚𝑚𝑖𝑡𝑉𝑜𝑡𝑒𝐵𝑢𝑖𝑙𝑑𝑒𝑟𝑠)
12: procedure getAnchorLog(𝑤)

13: 𝑣 ← anchor of wave 𝑤; 𝑎𝑛𝑐ℎ𝑜𝑟𝐿𝑜𝑔← []
14: while 𝑣 ≠ ⊥ do
15: 𝑎𝑛𝑐ℎ𝑜𝑟𝐿𝑜𝑔← 𝑣 :: 𝑎𝑛𝑐ℎ𝑜𝑟𝐿𝑜𝑔

16: 𝑣 ← argmax𝑣′∈cl(𝑣), 𝑣′≠𝑣, 𝑖𝑠𝐴𝑛𝑐ℎ𝑜𝑟 (𝑣′)=𝑡𝑟𝑢𝑒 ⌊ (𝑣′ .𝑟𝑜𝑢𝑛𝑑 + 1)/2⌋
17: return 𝑎𝑛𝑐ℎ𝑜𝑟𝐿𝑜𝑔

18: procedure advanceRoundCondition(𝑟)
19: 𝑝𝑟𝑒𝑣𝑅𝑜𝑢𝑛𝑑𝑉𝑒𝑟𝑡𝑠 ← filter (𝑣 ↦→ 𝑣.𝑟𝑜𝑢𝑛𝑑 = 𝑟 − 1) 𝑙𝑜𝑐𝑎𝑙_𝑣𝑒𝑟𝑡𝑠
20: 𝑝𝑟𝑒𝑣𝑅𝑜𝑢𝑛𝑑𝐵𝑢𝑖𝑙𝑑𝑒𝑟𝑠 ← map (𝑣 ↦→ 𝑣.𝑏𝑢𝑖𝑙𝑑𝑒𝑟) 𝑝𝑟𝑒𝑣𝑅𝑜𝑢𝑛𝑑𝑉𝑒𝑟𝑡𝑠

21: if 𝑟 ≤ 𝑙𝑜𝑐𝑎𝑙_𝑐𝑢𝑟𝑟_𝑟𝑜𝑢𝑛𝑑 , or 𝑖𝑠𝑄𝑢𝑜𝑟𝑢𝑚 (𝑝𝑟𝑒𝑣𝑅𝑜𝑢𝑛𝑑𝐵𝑢𝑖𝑙𝑑𝑒𝑟𝑠) = 𝑓 𝑎𝑙𝑠𝑒 then
22: return 𝑓 𝑎𝑙𝑠𝑒

23: if 𝑟 = 2𝑤 for some 𝑤 then
24: return 𝑡𝑟𝑢𝑒 if anchor of wave 𝑤 received, or 𝑙𝑜𝑐𝑎𝑙_𝑐𝑢𝑟𝑟_𝑟𝑜𝑢𝑛𝑑 = 2𝑤 − 1 and local timer has expired.

25: return 𝑓 𝑎𝑙𝑠𝑒 otherwise.

26: else
27: return 𝑡𝑟𝑢𝑒

28: upon advanceRoundCondition(r) = 𝑡𝑟𝑢𝑒 for some 𝑟 :

29: 𝑙𝑜𝑐𝑎𝑙_𝑐𝑢𝑟𝑟_𝑟𝑜𝑢𝑛𝑑 ← 𝑟

30: Propose vertex in round 𝑟 .

31: Reset timer to𝑇𝑅𝐵𝐶 + 1 if 𝑙𝑜𝑐𝑎𝑙_𝑐𝑢𝑟𝑟_𝑤𝑎𝑣𝑒 has increased.

32: upon commitCondition(w) = 𝑡𝑟𝑢𝑒 for some 𝑤:

33: Output getAnchorLog(𝑤) as the new anchor log.

4.3 Bullshark
Bullshark [Spiegelman et al. 2022b] implements consensus by utilizing edges in the DAG graph as

commit votes, avoiding the need for a separate BFT protocol. The basic concepts of Bullshark were

introduced in Section 2.2, and Alg. 8 shows a summary of the protocol. In this section, we focus on

showing how Bullshark refines the safety and liveness requirements of LiDO-DAG.

Safety. To prove safety, we construct a refinement mapping 𝜙 , which defines a LiDO cache tree

from the global DAG graph. We show that whenever an honest process outputs an anchor log (line

12-17 of Alg. 8), it is the consensus log of a CCache, which must be a prefix of the global anchor log.

In Bullshark, each wave 𝑤 corresponds to two DAG rounds (2𝑤 − 1 and 2𝑤). The anchor of

wave 𝑤 is the vertex created by 𝑙𝑒𝑎𝑑𝑒𝑟_𝑜 𝑓 (𝑤) in round 2𝑤 − 1. Our refinement mapping is as

follows. We create an ECache and an MCache of wave 𝑤 simultaneously, when the anchor 𝑣 of

wave𝑤 is created. To compute 𝑒𝑐𝑎𝑐ℎ𝑒.𝑝𝑎𝑟𝑒𝑛𝑡_𝑤𝑎𝑣𝑒 , we look at the closure cl(𝑣). If cl(𝑣) contains
no anchors, then 𝑒𝑐𝑎𝑐ℎ𝑒.𝑝𝑎𝑟𝑒𝑛𝑡_𝑤𝑎𝑣𝑒 = 0. Otherwise, we find the anchor in cl(𝑣) with the highest

wave number, and take that wave number as 𝑒𝑐𝑎𝑐ℎ𝑒.𝑝𝑎𝑟𝑒𝑛𝑡_𝑤𝑎𝑣𝑒 . Thus in Fig. 2, since cl(𝐴2)
contains no anchors, Σ[2] .𝑒𝑐𝑎𝑐ℎ𝑒 is attached directly to 𝑅𝑜𝑜𝑡 (Fig. 3).

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.

LiDO-DAG: A Framework for Verifying Safety and Liveness of DAG-Based Consensus Protocols 203:19

CCache of wave𝑤 is created when there exists 𝑓 + 1 vertices (a weak quorum) in round 2𝑤 that

embed pointers to the anchor of wave𝑤 . To see how this definition maintains the key invariant

of LiDO, notice that a quorum and a weak quorum must intersect on at least one process. If 𝑓 + 1
vertices in the DAG round 2𝑤 contain pointers to the anchor 𝑣 , and every vertex in round 2𝑤 + 1
embeds pointers to 2𝑓 + 1 vertices in round 2𝑤 , then every vertex in round 2𝑤 + 1 must contain 𝑣

in its closure. By induction, this applies to every round 𝑟 ≥ 2𝑤 + 1. Hence anchors of every wave

𝑤 ′ > 𝑤 also contain 𝑣 in their closures, and Σ[𝑤 ′] .𝑒𝑐𝑎𝑐ℎ𝑒.𝑝𝑎𝑟𝑒𝑛𝑡_𝑤𝑎𝑣𝑒 ≥ 𝑤 .

Now observe that in Alg. 8, if commitCondition(𝑤) returns 𝑡𝑟𝑢𝑒 , then a CCache of round𝑤

exists. The procedure getAnchorLog(𝑤) begins from the anchor of wave𝑤 , and every iteration of

line 16 corresponds to moving to the previous entry of the consensus log. Hence getAnchorLog(𝑤)

always returns the consensus log of a CCache, which completes the safety proof.

Liveness. An intuitive way to describe liveness of Bullshark is as follows. Each process enters

wave𝑤 when it observes 2𝑓 + 1 vertices of round 2𝑤 − 2. It first proposes a vertex in round 2𝑤 − 1,
then resets the timer to 𝑇𝑅𝐵𝐶 + 1 and waits for the anchor of wave 𝑤 (line 28-31 of Alg. 8). If it

receives the anchor before the timer expires, it will create a vertex in round 2𝑤 with a pointer to

the anchor; otherwise it creates a vertex without that pointer. In any case, eventually there will be

2𝑓 + 1 vertices in round 2𝑤 , and every process will enter wave𝑤 + 1.
To formalize this liveness argument, we use the LiDO-DAG model to decompose it into a number

of safety invariants (Definition 3.5). To begin, we define how the local timers implement the

abstract pacemaker (Alg. 5). Let 𝑃 be the set of all synchronous processes. For each 𝑝 ∈ 𝑃 , we use
𝑙𝑜𝑐𝑎𝑙_𝑐𝑢𝑟𝑟_𝑤𝑎𝑣𝑒 (𝑝) to denote the highest wave 𝑝 has ever entered (line 4 of Alg. 8). Then the state

variables of the abstract pacemaker are computed as: 𝑐𝑢𝑟𝑟_𝑤𝑎𝑣𝑒 = max𝑝∈𝑃 𝑙𝑜𝑐𝑎𝑙_𝑐𝑢𝑟𝑟_𝑤𝑎𝑣𝑒 (𝑝),
and 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 = min𝑝∈𝑃, 𝑙𝑜𝑐𝑎𝑙_𝑐𝑢𝑟𝑟_𝑤𝑎𝑣𝑒 (𝑝)=𝑐𝑢𝑟𝑟_𝑤𝑎𝑣𝑒 𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 (𝑝). That is, 𝑐𝑢𝑟𝑟_𝑤𝑎𝑣𝑒 is the

highest wave any synchronous process has ever entered, and 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 is the least local remaining

time among those synchronous processes currently in 𝑐𝑢𝑟𝑟_𝑤𝑎𝑣𝑒 .

It remains to show that all invariants in Definition 3.5 are satisfied. The complete proof is

described in Appendix B. Here we present a key part of it, namely liveness of consensus. It states

if 𝑐𝑢𝑟𝑟_𝑤𝑎𝑣𝑒 (𝜏𝑖) < 𝑤 , 𝑐𝑢𝑟𝑟_𝑤𝑎𝑣𝑒 (𝜏𝑖+1) ≥ 𝑤 , and 𝑙𝑒𝑎𝑑𝑒𝑟_𝑜 𝑓 (𝑤) is synchronous, then a CCache of

wave𝑤 will be created. We first observe that if 𝑐𝑢𝑟𝑟_𝑤𝑎𝑣𝑒 (𝜏𝑖) < 𝑤 , then no process has timed-out

in wave𝑤 (since no process has entered that wave), nor will anyone timeout in wave𝑤 before the

end of 𝜏𝑖+𝑇𝑅𝐵𝐶+2. Now if a synchronous process creates a vertex 𝑣 in round 2𝑤 , then either it has

timed-out in wave𝑤 , or 𝑣 contains a pointer to anchor of wave𝑤 . Together they imply:

Lemma 4.2. If 𝑐𝑢𝑟𝑟_𝑤𝑎𝑣𝑒 (𝜏𝑖+𝑘) > 𝑤 for some 1 ≤ 𝑘 ≤ 𝑇𝑅𝐵𝐶 + 2, then a CCache of wave𝑤 exists
by the end of 𝜏𝑖+𝑘 .
The reason being, if 𝑐𝑢𝑟𝑟_𝑤𝑎𝑣𝑒 (𝜏𝑖+𝑘) > 𝑤 then at least 2𝑓 + 1 vertices exist in round 2𝑤 , of

which at least 𝑓 + 1 come from synchronous processes. They must contain pointers to the anchor

of wave𝑤 , hence the anchor is committed.

Hence we only consider the case where 𝑐𝑢𝑟𝑟_𝑤𝑎𝑣𝑒 (𝜏𝑖+𝑘) = 𝑤 for every 1 ≤ 𝑘 ≤ 𝑇𝑅𝐵𝐶 + 2. Since
at least one synchronous process has received 2𝑓 + 1 vertices in round 2𝑤 − 2 by the end of 𝜏𝑖+1,
all synchronous processes including 𝑙𝑒𝑎𝑑𝑒𝑟_𝑜 𝑓 (𝑤) will enter wave𝑤 by the end of 𝜏𝑖+2. Thus by
the end of 𝜏𝑖+𝑇𝑅𝐵𝐶+2, all synchronous processes will have received at least 2𝑓 + 1 vertices in round

2𝑤 − 1, including the anchor. They will all create vertices in round 2𝑤 that contain pointer to the

anchor. Hence the anchor is committed.

4.4 Sailfish
One of the drawbacks of the Bullshark protocol is its long commit latency and low anchor frequency.

This leads to a number of works [Arun et al. 2024; Shrestha et al. 2025; Spiegelman et al. 2023]

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.

203:20 Longfei Qiu, Jingqi Xiao, Ji-Yong Shin, and Zhong Shao

proposing ideas for admitting more anchors. We now look at the single-leader Sailfish protocol

[Shrestha et al. 2025] which is easier to implement.

A1

A2

A3

Fig. 8. A counterexample to
a “naive” version of Sailfish.

Sailfish optimizes Bullshark in a way analogous to how pipelining

optimizes HotStuff [Yin et al. 2019]. It reduces each wave to just one

DAG round, but each round now simultaneously serves to introduce a

new anchor and commit the anchor in the previous round. Although

this sounds simple, the actual differences from Bullshark are complex,

and the proofs very subtle. Fig. 8 shows what could go wrong if we

only reduce the wave length without changing other components of

Bullshark. In this figure, there are 2 edges from vertices in round 2 to

the anchor 𝐴1, so it seems 𝐴1 is committed. However the anchor 𝐴2 is

also committed, but𝐴1 is not in the closure of𝐴2, so we have committed

two conflicting logs, a safety violation.

To avoid the kind of paradox shown above, the commit rule needs to

be carefully designed, so that if the anchor 𝐴𝑟−1 is committed, then the anchor 𝐴𝑟 (if it exists) must

embed a pointer to it. Sailfish resolves this issue by introducing 𝐶𝑜𝑚𝑚𝑖𝑡 , 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 , and 𝑁𝑜𝑉𝑜𝑡𝑒

messages. Specifically: when a process 𝑝𝑘 enters round 𝑟 + 1, it either sends ⟨𝐶𝑜𝑚𝑚𝑖𝑡, 𝑟, 𝑝𝑘⟩ to
𝑙𝑒𝑎𝑑𝑒𝑟_𝑜 𝑓 (𝑟) if it has received the anchor 𝐴𝑟 , or it sends ⟨𝑁𝑜𝑉𝑜𝑡𝑒, 𝑟 + 1, 𝑝𝑘⟩ to 𝑙𝑒𝑎𝑑𝑒𝑟_𝑜 𝑓 (𝑟 + 1), if
it has not seen 𝐴𝑟 . When 𝑙𝑒𝑎𝑑𝑒𝑟_𝑜 𝑓 (𝑟 + 1) proposes the new anchor 𝐴𝑟+1, it must embed either a

pointer to the anchor of round 𝑟 , or 2𝑓 + 1 𝑁𝑜𝑉𝑜𝑡𝑒 messages of round 𝑟 + 1.
The ⟨𝐶𝑜𝑚𝑚𝑖𝑡, _, _⟩ message does not appear in the original presentation of Sailfish. Instead it

was called “the first message of RBC.” In Appendix C, we describe the full details of Sailfish and its

proofs. Here, we merely notice that correctness of the scheme hinges on that each honest process

𝑝 will send out either ⟨𝐶𝑜𝑚𝑚𝑖𝑡, 𝑟, 𝑝⟩ or ⟨𝑁𝑜𝑉𝑜𝑡𝑒, 𝑟 + 1, 𝑝⟩, but never both. Thus if we have 2𝑓 + 1
Commit messages, it is not possible to collect 2𝑓 + 1 NoVote messages, so the anchor of round 𝑟 + 1
must embed a pointer to the anchor of round 𝑟 .

Table 2. Statistics of proof effort

Component Lines

LiDO-DAG model specs 747

(586 imported)

proofs 1500

(397 imported)

Narwhal specs 2307

(1706 imported)

proofs 9697

(6813 imported)

Bullshark specs 603

proofs 4343

Sailfish specs 270

(original) proofs 3479

Sailfish specs 339

(with modification) proofs 3040

The Extra Latency Problem of Sailfish. Although Sail-

fish resolves the paradox around consecutive anchors,

it introduces a new latency problem: if 𝑙𝑒𝑎𝑑𝑒𝑟_𝑜 𝑓 (𝑟)
is byzantine and refuses to create an anchor, then

𝑙𝑒𝑎𝑑𝑒𝑟_𝑜 𝑓 (𝑟 + 1) will have to wait until everyone else

enters round 𝑟 +1 and sends it𝑁𝑜𝑉𝑜𝑡𝑒 messages, before

it may propose its vertex. The timer duration also has

to be lengthened to accommodate the worst-case extra

latency. Shrestha et al. [2025] summarizes the conse-

quence as follows: when there is a sequence of two or
more faulty leaders in between honest leaders, ... our pro-
tocol would slightly underperform compared to Bullshark
in terms of latency.

It is natural to ask whether this extra latency can be

eliminated. During our attempt to formalize Sailfish,

we realized this is in fact possible. Note that the purpose of 𝑁𝑜𝑉𝑜𝑡𝑒 messages is to ensure that,

whenever we see 2𝑓 + 1 vertices of round 𝑟 + 1 embedding pointers to the anchor 𝐴𝑟 , we can be

sure the anchor 𝐴𝑟+1 (if it exists) must also contain a pointer to 𝐴𝑟 . Thus if we simply remove

𝑁𝑜𝑉𝑜𝑡𝑒 messages, then we cannot commit 𝐴𝑟 until we receive 𝐴𝑟+1 and check that 𝐴𝑟+1 contains a
pointer to 𝐴𝑟 . This is analogous to the 2-chain rule of Jolteon, and implies we need 𝑙𝑒𝑎𝑑𝑒𝑟_𝑜 𝑓 (𝑟)

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.

LiDO-DAG: A Framework for Verifying Safety and Liveness of DAG-Based Consensus Protocols 203:21

and 𝑙𝑒𝑎𝑑𝑒𝑟_𝑜 𝑓 (𝑟 + 1) to be both synchronous to ensure 𝐴𝑟 can be committed. However, with a

simple modification, we were able to remove this consecutive leader requirement.

 0
 2
 4
 6
 8

 10
 12
 14

 0 20 40 60 80 100

no failure 1 failure

La
te

nc
y

(m
s)

Round

Fig. 9. Bullshark latency to advance
rounds with and without failures.

Our modification is to add a field in timeout messages that in-

dicates the latest anchor the sender has received.When the local

timer of party 𝑝𝑘 expires, 𝑝𝑘 now sends ⟨𝑇𝑖𝑚𝑒𝑜𝑢𝑡, 𝑟, 𝑞𝑐ℎ𝑖𝑔ℎ, 𝑝𝑘⟩
where 𝑞𝑐ℎ𝑖𝑔ℎ is the highest round 𝑟 ′ ≤ 𝑟 whose anchor 𝐴𝑟 ′

has already been received by 𝑝𝑘 . We require that if a vertex of

round 𝑟 embeds 2𝑓 + 1 timeouts, then its closure must include

the highest anchor referenced by these timeouts. Hence if there

exists 2𝑓 + 1 commit votes of round 𝑟 , all future vertices must

include the anchor 𝐴𝑟 in their closures. See Appendix C for

details of liveness.

4.5 Proof Effort
Table 2 shows the statistics of our Coq proofs. Proofs for Narwhal take up the largest size, but a

significant portion of it is imported from Qiu et al. [2024b]. The additional effort to adapt it to the

DAG setting is comparatively small. The proofs were written by two persons over three months.

5 Experimental Evaluation

 0
 2
 4
 6
 8

 10
 12
 14

 0 20 40 60 80 100

no failure 1 failure

La
te

nc
y

(m
s)

Round

Fig. 10. Narwhal latency to advance
rounds with and without failures.

 0
 2
 4
 6
 8

 10
 12
 14

 0 20 40 60 80 100

La
te

nc
y

(m
s)

Round

original improved

Fig. 11. Comparison of latencies of
original and modified Sailfish with 1
failed node.

To demonstrate that our verified Coq specification is detailed

enough and realistic, we extracted the lowest layers of Nar-

whal, Bullshark, and Sailfish into executable OCaml code. The

extracted OCaml code follows the process model of Fig. 7 and

implements RBC with quorum signing, but lacks network and

timer facility. We linked the code to OCaml’s Unix libraries,

but the core logic remains unchanged. The code was tested on

a local cluster with four nodes, each with Intel Xeon Gold 6338

CPU, 128 GB memory, and 10 GigE NIC. We compared our code

against verified Jolteon code from [Qiu et al. 2024a,b].

We ran Bullshark and Narwhal without any failures and

with one crashed node while the timeout is set to 10 ms. We

measured the latency to advance a round and throughput for

committing blocks. Fig. 9 and Fig. 10 measure the latency to ad-

vance the DAG-round from 1 to 100. On average, it takes 688 and

594 𝜇s in the absence of failure and 3,166 and 1,998 𝜇s with one

failed node to advance a round for Bullshark and Narwhal, re-

spectively. The spikes in the figures capture the cases when it is

the failed node’s turn to act as a leader and the timeout kicks in to advance the round. In contrast,

it took on average 3,861 𝜇s and 5,690 𝜇s to advance a view for Jolteon (not in the figure) with and

without one failure, respectively. Note that a view of Jolteon contains two phases and corresponds

to roughly two DAG-rounds.

Table 3. Throughput (Commits/s)

Protocols

without

failures

with 1

failure

Bullshark 2,917 1,444

Narwhal 5,857 4,851

Jolteon 267 173

The throughput measurement (Table 3) more clearly shows

the benefit of DAG-based protocols against leader-based pro-

tocols: the throughput of Bullshark and Narwhal are over 10 to

21 times higher without failures and 8 to 28 times higher with

one node failure than Jolteon. The result clearly shows that

DAG-based protocols which process new blocks in all nodes in

parallel outperform the leader-based protocol which processes new blocks only in the leader node.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.

203:22 Longfei Qiu, Jingqi Xiao, Ji-Yong Shin, and Zhong Shao

We also measured the latencies of the two versions of Sailfish we verified. In the original version

of Sailfish, if the leader of round 𝑟 is faulty, then everyone except the leader of round 𝑟 + 1 enters
round 𝑟 + 1 within 8Δ. However, the leader of round 𝑟 + 1 needs one extra Δ to collect the 𝑁𝑜𝑉𝑜𝑡𝑒

messages. Our modified Sailfish removes the 𝑁𝑜𝑉𝑜𝑡𝑒 messages. As shown in Fig. 11, in rounds

where the leader has crashed, the original Sailfish consistently requires ~1ms longer failover time

than the modified Sailfish, which demonstrates the effectiveness of our optimization.

6 Related Works and Limitations
The literature on the designs of DAG-based protocols has been surveyed in Section 2. Further

survey can be found in [Raikwar et al. 2024]. Here we focus on works on verifying DAG-based

consensus and consensus in general.

Two existing works [Bertrand et al. 2024; Crary 2021] attempted to verify DAG-based protocols.

Crary [2021] used Coq to model Hashgraph [Baird 2016], an asynchronous protocol based on

random coins. They studied both safety and liveness, but liveness is based on an ad-hoc axiom

with on-paper justification. Their approach is specialized to a single protocol. Bertrand et al. [2024]

provided a generic safety model of DAG-based protocols, and applied it to Bullshark [Spiegelman

et al. 2022a] and Cordial Miners [Keidar et al. 2023], but without liveness proof. Their model is

based on the local views of individual processes and their mutual consistency. By contrast, our

approach is based on introducing a virtual global state of DAG and consensus, and proving every

local view is consistent with this global state. We believe our approach is conceptually cleaner and

scales better with complex protocols, as it enables proving invariants at an abstract level. Thomsen

and Spitters [2021] verified Nakamoto-style proof-of-stake, which is a kind of unstructured DAG.

Similar to Crary [2021], the probabilistic portion of the liveness proof is not verified.

There are extensive studies [Berkovits et al. 2019; Bertrand et al. 2022; Bravo et al. 2022; Carr

et al. 2022; Cirisci et al. 2023; Drăgoi et al. 2016; Hawblitzel et al. 2015; Konnov et al. 2023; Losa and

Dodds 2020; Padon et al. 2017; Qiu et al. 2024b; Rahli et al. 2018; Taube et al. 2018; Vukotic et al. 2019;

Wilcox et al. 2015; Woos et al. 2016; Zhao et al. 2024] on verification of either benign or byzantine

leader-based consensus. They can be classified into model-checking approaches (e.g. Berkovits et al.

[2019]; Bertrand et al. [2022]; Losa and Dodds [2020]) and proof-checking approaches (e.g. Carr et al.

[2022]; Rahli et al. [2018]; Zhao et al. [2024]). While model-checking provides greater automation,

it is challenging to apply it to partially-synchronous liveness, and existing works mostly focus on

safety. The tricky part of liveness reasoning is to keep track of local timers and ordering between

message delivery and timeout events. Sun et al. [2024] verified liveness of a cluster controller, but

their liveness reasoning does not need to deal with local timers. Hawblitzel et al. [2015] verified

liveness of Multi-Paxos. Their reasoning is completely at network level, and one can expect that

they relied on a large number of complex invariants. In our engineering experience, formulating

these invariants is extremely error-prone. It is easier to first formulate them on simpler models like

LiDO-DAG, and then translate them down to network-level properties.

The way LiDO and LiDO-DAG currently models external validity is not completely ideal. It

postulates that as soon as a value gets registered, all voters can immediately check its validity.

This notion becomes problematic as we compose consensus with RBC: there is a gap between

broadcasting a value and learning the value. Thus although we were able to adapt the Jolteon

implementation from Qiu et al. [2024b], it was not as effortless as we expected. Making consensus

aware of this timing-gap is future work.

Our work is currently limited to partially synchronous protocols. To model liveness of asyn-

chronous protocols would require a theory of probabilistic refinement. Bertrand et al. [2021] has

introduced a model-checking technique for verifying randomized distributed algorithms. Introduc-

ing their techniques into asynchronous DAG-based protocols is future work.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.

LiDO-DAG: A Framework for Verifying Safety and Liveness of DAG-Based Consensus Protocols 203:23

Acknowledgments
We would like to thank our anonymous reviewers for their helpful feedback. This material is based

upon work supported in part by NSF grants 2019285 and 2313433, and by the Defense Advanced

Research Projects Agency (DARPA) and Naval Information Warfare Center Pacific (NIWC Pacific)

under Contract No. N66001-21-C-4018. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not necessarily reflect the views of the

funding agencies.

Artifact-Availability Statement
The artifact accompanying this paper is available on Zenodo [Qiu et al. 2025a].

References
Balaji Arun, Zekun Li, Florian Suri-Payer, Sourav Das, and Alexander Spiegelman. 2024. Shoal++: High Throughput DAG

BFT Can Be Fast! arXiv:2405.20488 [cs.DC] https://arxiv.org/abs/2405.20488

Kushal Babel, Andrey Chursin, George Danezis, Anastasios Kichidis, Lefteris Kokoris-Kogias, Arun Koshy, Alberto Sonnino,

and Mingwei Tian. 2024. Mysticeti: Reaching the Limits of Latency with Uncertified DAGs. arXiv:2310.14821 [cs.DC]

https://arxiv.org/abs/2310.14821

Leemon Baird. 2016. The swirlds hashgraph consensus algorithm: Fair, fast, byzantine fault tolerance. Technical Report
SWIRLDS-TR-2016-01. Swirlds. https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf

Idan Berkovits, Marijana Lazić, Giuliano Losa, Oded Padon, and Sharon Shoham. 2019. Verification of Threshold-Based

Distributed Algorithms by Decomposition to Decidable Logics. In Computer Aided Verification, Isil Dillig and Serdar

Tasiran (Eds.). Springer International Publishing, Cham, 245–266. https://doi.org/10.1007/978-3-030-25543-5_15

Nathalie Bertrand, Pranav Ghorpade, Sasha Rubin, Bernhard Scholz, and Pavle Subotic. 2024. Reusable Formal Verification

of DAG-based Consensus Protocols. arXiv:2407.02167 [cs.LO] https://arxiv.org/abs/2407.02167

Nathalie Bertrand, Vincent Gramoli, Igor Konnov, Marijana Lazić, Pierre Tholoniat, and Josef Widder. 2022. Holistic

Verification of Blockchain Consensus. In 36th International Symposium on Distributed Computing (DISC 2022) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 246), Christian Scheideler (Ed.). Schloss Dagstuhl – Leibniz-Zentrum

für Informatik, Dagstuhl, Germany, 10:1–10:24. https://doi.org/10.4230/LIPIcs.DISC.2022.10

Nathalie Bertrand, Igor Konnov, Marijana Lazić, and Josef Widder. 2021. Verification of randomized consensus algorithms

under round-rigid adversaries. International Journal on Software Tools for Technology Transfer 23, 5 (2021), 797–821.
https://doi.org/10.1007/s10009-020-00603-x

Manuel Bravo, Gregory V. Chockler, and Alexey Gotsman. 2022. Liveness and Latency of Byzantine State-Machine

Replication. In 36th International Symposium on Distributed Computing, DISC 2022, October 25-27, 2022, Augusta, Georgia,
USA (LIPIcs, Vol. 246), Christian Scheideler (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 12:1–12:19. https:

//doi.org/10.4230/LIPIcs.DISC.2022.12

Ethan Buchman, Jae Kwon, and Zarko Milosevic. 2019. The latest gossip on BFT consensus. arXiv:1807.04938 [cs.DC]

https://arxiv.org/abs/1807.04938

Vitalik Buterin. 2014. Ethereum: A Next-Generation Smart Contract and Decentralized Application Platform. https:

//ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf

Vitalik Buterin. 2024. Possible futures of the Ethereum protocol, part 2: The Surge. https://vitalik.eth.limo/general/2024/10/

17/futures2.html

Harold Carr, Christa Jenkins, Mark Moir, Victor Cacciari Miraldo, and Lisandra Silva. 2022. Towards Formal Verification

of HotStuff-Based Byzantine Fault Tolerant Consensus in Agda. In NASA Formal Methods, Jyotirmoy V. Deshmukh, Klaus

Havelund, and Ivan Perez (Eds.). Springer International Publishing, Cham, 616–635. https://doi.org/10.1007/978-3-031-

06773-0_33

Miguel Castro. 2001. Practical Byzantine Fault Tolerance. Ph. D. Dissertation. Massachusetts Institute of Technology.

https://www.microsoft.com/en-us/research/wp-content/uploads/2017/01/thesis-mcastro.pdf

Berk Cirisci, Constantin Enea, and Suha Orhun Mutluergil. 2023. Quorum Tree Abstractions of Consensus Protocols.

In Programming Languages and Systems, Thomas Wies (Ed.). Springer Nature Switzerland, Cham, 337–362. https:

//doi.org/10.1007/978-3-031-30044-8_13

CoinGecko. 2024. Top Blockchains by Total Value Locked (TVL). https://www.coingecko.com/en/chains

Karl Crary. 2021. Verifying the Hashgraph Consensus Algorithm. arXiv:2102.01167 [cs.LO] https://arxiv.org/abs/2102.01167

George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman. 2022. Narwhal and Tusk: a DAG-

based mempool and efficient BFT consensus. In Proceedings of the Seventeenth European Conference on Computer Systems

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.

https://arxiv.org/abs/2405.20488
https://arxiv.org/abs/2405.20488
https://arxiv.org/abs/2310.14821
https://arxiv.org/abs/2310.14821
https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf
https://doi.org/10.1007/978-3-030-25543-5_15
https://arxiv.org/abs/2407.02167
https://arxiv.org/abs/2407.02167
https://doi.org/10.4230/LIPIcs.DISC.2022.10
https://doi.org/10.1007/s10009-020-00603-x
https://doi.org/10.4230/LIPIcs.DISC.2022.12
https://doi.org/10.4230/LIPIcs.DISC.2022.12
https://arxiv.org/abs/1807.04938
https://arxiv.org/abs/1807.04938
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://vitalik.eth.limo/general/2024/10/17/futures2.html
https://vitalik.eth.limo/general/2024/10/17/futures2.html
https://doi.org/10.1007/978-3-031-06773-0_33
https://doi.org/10.1007/978-3-031-06773-0_33
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/01/thesis-mcastro.pdf
https://doi.org/10.1007/978-3-031-30044-8_13
https://doi.org/10.1007/978-3-031-30044-8_13
https://www.coingecko.com/en/chains
https://arxiv.org/abs/2102.01167
https://arxiv.org/abs/2102.01167

203:24 Longfei Qiu, Jingqi Xiao, Ji-Yong Shin, and Zhong Shao

(Rennes, France) (EuroSys ’22). Association for Computing Machinery, New York, NY, USA, 34–50. https://doi.org/10.

1145/3492321.3519594

D. Dolev and A. Yao. 1983. On the security of public key protocols. IEEE Transactions on Information Theory 29, 2 (1983),

198–208. https://doi.org/10.1109/TIT.1983.1056650

Cezara Drăgoi, Thomas A. Henzinger, and Damien Zufferey. 2016. PSync: A Partially Synchronous Language for Fault-

Tolerant Distributed Algorithms. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (St. Petersburg, FL, USA) (POPL ’16). Association for Computing Machinery, New York, NY,

USA, 400–415. https://doi.org/10.1145/2837614.2837650

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the Presence of Partial Synchrony. Journal of the
ACM 35, 2 (April 1988), 288–323. https://doi.org/10.1145/42282.42283

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility of distributed consensus with one faulty

process. J. ACM 32, 2 (April 1985), 374–382. https://doi.org/10.1145/3149.214121

Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman, and Zhuolun Xiang. 2022. Jolteon and Ditto:

Network-Adaptive Efficient Consensus with Asynchronous Fallback. In Financial Cryptography and Data Security, Ittay
Eyal and Juan Garay (Eds.). Springer International Publishing, Cham, 296–315. https://doi.org/10.1007/978-3-031-18283-

9_14

Adam Gągol, Damian Leśniak, Damian Straszak, and Michał Świętek. 2019. Aleph: Efficient Atomic Broadcast in

Asynchronous Networks with Byzantine Nodes. In Proceedings of the 1st ACM Conference on Advances in Financial
Technologies (Zurich, Switzerland) (AFT ’19). Association for Computing Machinery, New York, NY, USA, 214–228.

https://doi.org/10.1145/3318041.3355467

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath Setty, and Brian

Zill. 2015. IronFleet: Proving Practical Distributed Systems Correct. In Proceedings of the 25th Symposium on Operating
Systems Principles (Monterey, California) (SOSP ’15). Association for Computing Machinery, New York, NY, USA, 1–17.

https://doi.org/10.1145/2815400.2815428

Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects. ACM
Trans. Program. Lang. Syst. 12, 3 (jul 1990), 463–492. https://doi.org/10.1145/78969.78972

Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. 2021. All You Need is DAG. In Proceedings
of the 2021 ACM Symposium on Principles of Distributed Computing (Virtual Event, Italy) (PODC’21). Association for

Computing Machinery, New York, NY, USA, 165–175. https://doi.org/10.1145/3465084.3467905

Idit Keidar, Oded Naor, Ouri Poupko, and Ehud Shapiro. 2023. Cordial Miners: Fast and Efficient Consensus for Every

Eventuality. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPICS.DISC.2023.26

Igor Konnov, Marijana Lazić, Ilina Stoilkovska, and Josef Widder. 2023. Survey on Parameterized Verification with Threshold

Automata and the Byzantine Model Checker. Logical Methods in Computer Science Volume 19, Issue 1 (Jan. 2023).

https://doi.org/10.46298/lmcs-19(1:5)2023

Andrew Lewis-Pye, Dahlia Malkhi, Oded Naor, and Kartik Nayak. 2024. Lumiere: Making Optimal BFT for Partial Synchrony

Practical. arXiv:2311.08091 [cs.DC] https://arxiv.org/abs/2311.08091

Giuliano Losa and Mike Dodds. 2020. On the Formal Verification of the Stellar Consensus Protocol. In 2nd Workshop
on Formal Methods for Blockchains (FMBC 2020) (OpenAccess Series in Informatics (OASIcs), Vol. 84), Bruno Bernardo

and Diego Marmsoler (Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 9:1–9:9. https:

//doi.org/10.4230/OASIcs.FMBC.2020.9

Dahlia Malkhi and Pawel Szalachowski. 2023. Maximal Extractable Value (MEV) Protection on a DAG. In 4th International
Conference on Blockchain Economics, Security and Protocols (Tokenomics 2022) (Open Access Series in Informatics (OASIcs),
Vol. 110), Yackolley Amoussou-Guenou, Aggelos Kiayias, andMarianne Verdier (Eds.). Schloss Dagstuhl – Leibniz-Zentrum

für Informatik, Dagstuhl, Germany, 6:1–6:17. https://doi.org/10.4230/OASIcs.Tokenomics.2022.6

Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.org/bitcoin.pdf

Oded Naor, Mathieu Baudet, Dahlia Malkhi, and Alexander Spiegelman. 2021. Cogsworth: Byzantine View Synchronization.

Cryptoeconomic Systems 1, 2 (oct 22 2021). https://doi.org/10.21428/58320208.08912a03

Ray Neiheiser, Miguel Matos, and Luís Rodrigues. 2021. Kauri: Scalable BFT Consensus with Pipelined Tree-Based

Dissemination and Aggregation. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles
(Virtual Event, Germany) (SOSP ’21). Association for Computing Machinery, New York, NY, USA, 35–48. https://doi.org/

10.1145/3477132.3483584

Oded Padon, Jochen Hoenicke, Giuliano Losa, Andreas Podelski, Mooly Sagiv, and Sharon Shoham. 2017. Reducing

Liveness to Safety in First-Order Logic. Proc. ACM Program. Lang. 2, POPL, Article 26 (dec 2017), 33 pages. https:

//doi.org/10.1145/3158114

Longfei Qiu, Yoonseung Kim, Ji-Yong Shin, Jieung Kim, Wolf Honoré, and Zhong Shao. 2024a. Artifact for PLDI 2024 paper #
290: LiDO: Linearizable Byzantine Distributed Objects with Refinement-Based Liveness Proofs. Yale University, New Haven,

USA. https://doi.org/10.5281/zenodo.10909272

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.

https://doi.org/10.1145/3492321.3519594
https://doi.org/10.1145/3492321.3519594
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1145/2837614.2837650
https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/3149.214121
https://doi.org/10.1007/978-3-031-18283-9_14
https://doi.org/10.1007/978-3-031-18283-9_14
https://doi.org/10.1145/3318041.3355467
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/3465084.3467905
https://doi.org/10.4230/LIPICS.DISC.2023.26
https://doi.org/10.46298/lmcs-19(1:5)2023
https://arxiv.org/abs/2311.08091
https://arxiv.org/abs/2311.08091
https://doi.org/10.4230/OASIcs.FMBC.2020.9
https://doi.org/10.4230/OASIcs.FMBC.2020.9
https://doi.org/10.4230/OASIcs.Tokenomics.2022.6
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.21428/58320208.08912a03
https://doi.org/10.1145/3477132.3483584
https://doi.org/10.1145/3477132.3483584
https://doi.org/10.1145/3158114
https://doi.org/10.1145/3158114
https://doi.org/10.5281/zenodo.10909272

LiDO-DAG: A Framework for Verifying Safety and Liveness of DAG-Based Consensus Protocols 203:25

Longfei Qiu, Yoonseung Kim, Ji-Yong Shin, Jieung Kim, Wolf Honoré, and Zhong Shao. 2024b. LiDO: Linearizable Byzantine

Distributed Objects with Refinement-Based Liveness Proofs. Proc. ACM Program. Lang. 8, PLDI, Article 193 (June 2024),
25 pages. https://doi.org/10.1145/3656423

Longfei Qiu, Jingqi Xiao, Ji Yong Shin, and Zhong Shao. 2025a. Artifact for PLDI 2025 Paper #316 LiDO-DAG: A Framework
for Verifying Safety and Liveness of DAG-Based Consensus Protocols. https://doi.org/10.5281/zenodo.15223659

Longfei Qiu, Jingqi Xiao, Ji-Yong Shin, and Zhong Shao. 2025b. LiDO-DAG: A Framework for Verifying Safety and Liveness of
DAG-Based Consensus Protocols. Technical Report TR1574. Yale Univ. https://flint.cs.yale.edu/publications/lido-dag.html

Vincent Rahli, Ivana Vukotic, Marcus Völp, and Paulo Esteves-Verissimo. 2018. Velisarios: Byzantine Fault-Tolerant Protocols

Powered by Coq. In Programming Languages and Systems, Amal Ahmed (Ed.). Springer International Publishing, Cham,

619–650. https://doi.org/10.1007/978-3-319-89884-1_22

Mayank Raikwar, Nikita Polyanskii, and Sebastian Müller. 2024. SoK: DAG-based Consensus Protocols. In 2024 IEEE
International Conference on Blockchain and Cryptocurrency (ICBC). IEEE, 1–18. https://doi.org/10.1109/icbc59979.2024.

10634358

Nibesh Shrestha, Rohan Shrothrium, Aniket Kate, and Kartik Nayak. 2025. Sailfish: Towards Improving the Latency of

DAG-based BFT . In 2025 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA,

21–21. https://doi.org/10.1109/SP61157.2025.00021

Alexander Spiegelman, Balaji Arun, Rati Gelashvili, and Zekun Li. 2023. Shoal: Improving DAG-BFT Latency And Robustness.

arXiv:2306.03058 [cs.DC] https://arxiv.org/abs/2306.03058

Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-Kogias. 2022a. Bullshark: DAG BFT Protocols

Made Practical. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security (Los

Angeles, CA, USA) (CCS ’22). Association for Computing Machinery, New York, NY, USA, 2705–2718. https://doi.org/10.

1145/3548606.3559361

Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-Kogias. 2022b. Bullshark: The Partially

Synchronous Version. arXiv:2209.05633 [cs.DC] https://arxiv.org/abs/2209.05633

Xudong Sun, Wenjie Ma, Jiawei Tyler Gu, Zicheng Ma, Tej Chajed, Jon Howell, Andrea Lattuada, Oded Padon, Lalith Suresh,

Adriana Szekeres, and Tianyin Xu. 2024. Anvil: verifying liveness of cluster management controllers. In Proceedings of
the 18th USENIX Conference on Operating Systems Design and Implementation (Santa Clara, CA, USA) (OSDI’24). USENIX
Association, USA, Article 35, 18 pages.

Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, Oded Padon, Mooly Sagiv, Sharon Shoham, James R. Wilcox, and Doug

Woos. 2018. Modularity for Decidability of Deductive Verification with Applications to Distributed Systems. SIGPLAN
Not. 53, 4 (jun 2018), 662–677. https://doi.org/10.1145/3296979.3192414

The Coq Development Team. 2024. The Coq Reference Manual – Release 8.19.0. https://coq.inria.fr/doc/V8.19.0/refman.

Søren Eller Thomsen and Bas Spitters. 2021. Formalizing Nakamoto-Style Proof of Stake. In 2021 IEEE 34th Computer Security
Foundations Symposium (CSF). 1–15. https://doi.org/10.1109/CSF51468.2021.00042

Visa Inc. 2023. Annual Report 2023. https://s29.q4cdn.com/385744025/files/doc_downloads/2023/Visa-Inc-Fiscal-2023-

Annual-Report.pdf

Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo. 2019. Asphalion: trustworthy shielding against Byzantine faults.

Proc. ACM Program. Lang. 3, OOPSLA, Article 138 (Oct. 2019), 32 pages. https://doi.org/10.1145/3360564

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and Thomas Anderson. 2015.

Verdi: A Framework for Implementing and Formally Verifying Distributed Systems. SIGPLAN Not. 50, 6 (jun 2015),

357–368. https://doi.org/10.1145/2813885.2737958

Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D. Ernst, and Thomas Anderson. 2016. Planning for

Change in a Formal Verification of the Raft Consensus Protocol. In Proceedings of the 5th ACM SIGPLAN Conference on
Certified Programs and Proofs (St. Petersburg, FL, USA) (CPP 2016). Association for Computing Machinery, New York, NY,

USA, 154–165. https://doi.org/10.1145/2854065.2854081

Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abraham. 2019. HotStuff: BFT Consensus

with Linearity and Responsiveness. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing
(Toronto ON, Canada) (PODC ’19). Association for Computing Machinery, New York, NY, USA, 347–356. https:

//doi.org/10.1145/3293611.3331591

Qiyuan Zhao, George Pîrlea, Karolina Grzeszkiewicz, Seth Gilbert, and Ilya Sergey. 2024. Compositional Verification of

Composite Byzantine Protocols. In Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications
Security (Salt Lake City, UT, USA) (CCS ’24). Association for Computing Machinery, New York, NY, USA, 34–48. https:

//doi.org/10.1145/3658644.3690355

Received 2024-11-15; accepted 2025-03-06

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.

https://doi.org/10.1145/3656423
https://doi.org/10.5281/zenodo.15223659
https://flint.cs.yale.edu/publications/lido-dag.html
https://doi.org/10.1007/978-3-319-89884-1_22
https://doi.org/10.1109/icbc59979.2024.10634358
https://doi.org/10.1109/icbc59979.2024.10634358
https://doi.org/10.1109/SP61157.2025.00021
https://arxiv.org/abs/2306.03058
https://arxiv.org/abs/2306.03058
https://doi.org/10.1145/3548606.3559361
https://doi.org/10.1145/3548606.3559361
https://arxiv.org/abs/2209.05633
https://arxiv.org/abs/2209.05633
https://doi.org/10.1145/3296979.3192414
https://coq.inria.fr/doc/V8.19.0/refman
https://doi.org/10.1109/CSF51468.2021.00042
https://s29.q4cdn.com/385744025/files/doc_downloads/2023/Visa-Inc-Fiscal-2023-Annual-Report.pdf
https://s29.q4cdn.com/385744025/files/doc_downloads/2023/Visa-Inc-Fiscal-2023-Annual-Report.pdf
https://doi.org/10.1145/3360564
https://doi.org/10.1145/2813885.2737958
https://doi.org/10.1145/2854065.2854081
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3658644.3690355
https://doi.org/10.1145/3658644.3690355

	Abstract
	1 Introduction
	2 Overview
	2.1 The Landscape of DAG-Based Protocols
	2.2 The Subtleties of DAG-Based Protocols
	2.3 Understanding DAG-Based Consensus with LiDO
	2.4 Challenges of Adapting LiDO to DAG-Based Protocols

	3 The LiDO-DAG Model
	3.1 The DAG Object
	3.2 Combining DAG and LiDO
	3.3 The Consensus Log
	3.4 Liveness and Fairness of LiDO-DAG

	4 Implementations of LiDO-DAG
	4.1 System Model
	4.2 Narwhal
	4.3 Bullshark
	4.4 Sailfish
	4.5 Proof Effort

	5 Experimental Evaluation
	6 Related Works and Limitations
	Acknowledgments
	References

