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Byzantine fault-tolerant state machine replication (SMR) protocols, such as PBFT, HotStuff, and Jolteon, are

essential for modern blockchain technologies. However, they are challenging to implement correctly because

they have to deal with any unexpected message from Byzantine peers and ensure safety and liveness at all

times. Many formal frameworks have been developed to verify the safety of SMR implementations, but there

is still a gap in the verification of their liveness. Existing liveness proofs are either limited to the network level

or do not cover popular partially synchronous protocols.

We introduce LiDO, a consensus model that enables the verification of both safety and liveness of imple-

mentations through refinement. We observe that current consensus models cannot handle liveness because

they do not include a pacemaker state. We show that by adding a pacemaker state to the LiDO model, we

can express the liveness properties of SMR protocols as a few safety properties that can be easily verified by

refinement proofs. Based on our LiDO model, we provide mechanized safety and liveness proofs for both

unpipelined and pipelined Jolteon in Coq. This is the first mechanized liveness proof for a byzantine consensus

protocol with non-trivial optimizations such as pipelining.
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1 INTRODUCTION
Byzantine State Machine Replication (SMR) protocols [Schneider 1990], such as PBFT [Castro 2001],

HotStuff [Yin et al. 2019], and Jolteon [Gelashvili et al. 2022] form the basis of modern blockchain

applications. They ensure that a linear history of a state machine is correctly replicated to a group
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of nodes and safe from tampering by a minority of malicious nodes. They are also called consensus

protocols because a key part of these protocols is to make the participating nodes agree on a single

history. As the open nature of public blockchains requires executing consensus protocols on a large

number of nodes, in recent years, there has been a significant amount of research proposing new

protocol designs that have better safety and liveness properties [Abspoel et al. 2021; Civit et al.

2022; Lewis-Pye 2022; Naor et al. 2021; Naor and Keidar 2020].

Despite the results that improve various aspects of byzantine SMR, it remains a herculean task

to implement these protocols correctly, so that they enjoy the features claimed on paper. A paper

description of a protocol is almost never sufficient to specify the behavior of a process under all

possible situations. The unspecified aspects are open to interpretation, yet these details can have

very subtle effects on the actual system. This issue is especially prominent under byzantine faults

since the adversary now has more ways to influence the non-faulty nodes.

(a)

   Broadcast timeout msg
+ Enter round r+1 upon 2f+1
   timeouts of round r

(b)

   Broadcast timeout msg
+ Enter round r+1 upon 2f+1
   timeouts of round r
+ Enter round r upon f+1
   timeouts of round r

(c)

   Broadcast timeout msg
+ Enter round r+1 upon 2f+1
   timeouts of round r' ≥ r

(d)

   Broadcast timeout msg
+ Enter round r+1 upon 2f+1
   timeouts of round r' ≥ r
+ Enter round r upon f+1
   timeouts of round r' ≥ r

Liveness: No, unless network
is gossiping

Liveness: Yes, but subject to
flooding by byzantine peers

Liveness: Yes, longer latency Liveness: Yes

Fig. 1. Variants of a timeout-based pacemaker, with different
liveness properties. Red text shows differences from (a). In
variants (c) and (d), timeouts can come from different rounds.

For a concrete example of this issue, we

look at the pacemaker component of SMR

protocols. Most SMR protocols are struc-

tured as an infinite sequence of smaller

protocols called rounds or views, and each
node participates in only one round at a

time. The pacemaker drives the nodes to

a new round when the current round is

not making progress. As such, it plays a

vital role in maintaining liveness.

The pacemaker usually consists of

making each node broadcast a timeout

message for its current round when no

progress is observed within a certain pe-

riod, and enter a new round after receiv-

ing a quorum of timeouts. In Fig. 1, we

show four variants of this simple idea,

with subtly different liveness properties.

Notice that versions (b) and (d) differ only

in allowing mixing timeouts from different rounds. This is significant because it allows non-faulty

nodes to keep only the timeout of the highest round from each peer. Without this optimization,

byzantine nodes can launch denial-of-service attacks by flooding non-faulty peers with timeouts, a

tricky situation that would not occur under benign faults. This shows that paper proofs of protocols

are not enough. We need proofs that can be directly tied to the implementation, which can only be

achieved by machine-checked proofs on a formal model of the implementation.

Today, we have many formal frameworks for verifying the safety properties of distributed

systems [Krogh-Jespersen et al. 2020; O’Hearn 2007; Sergey et al. 2017; Sharma et al. 2023]. In

particular, formal safety proofs of consensus protocols have been studied in Carr et al. [2022];

Cirisci et al. [2023]; Honoré et al. [2021, 2022]; Rahli et al. [2018]; Taube et al. [2018]; Wilcox et al.

[2015]. However, there are very few works that also establish formal liveness results for consensus

protocols. IronFleet [Hawblitzel et al. 2015] and PSync [Drăgoi et al. 2016] establish liveness for

benign-fault protocols such as Multi-Paxos [Lamport 1998], but do not handle byzantine faults.

Padon et al. [2017] proposes a liveness-to-safety reduction approach for proving liveness, which

has been applied to byzantine-fault protocols in Berkovits et al. [2019]; Losa and Dodds [2020], but

their methodology has never been applied to partially synchronous protocols, which is the most

common class of consensus protocols in practice.
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Finally, none of the existing machine-checked liveness proofs are based on refinement, whereas
safety results are usually stated as a refinement between the network model and the abstract

interface. This situation is unsatisfactory for several reasons. Most importantly, it obscures high-

level reasoning and prevents proof reuse since every definition and every lemma is tied to network-

level details. It also poses a challenge to users of the system since they must understand the

implementation details of the system in order to understand what is proved as “liveness.”

In this work, we aim to simplify the task of constructing liveness proofs of byzantine consensus

protocols. We achieve this by introducing an intermediate model of consensus between the SMR

interface and network details that supports proving both safety and liveness via refinement. Our

key insight is that existing models lack a representation of the pacemaker, which, as we have seen,

is critical to liveness, and this prevents them from handling liveness. We start from the Atomic

Distributed Object (ADO) model, which has been used to verify the safety of several benign-fault

protocols [Honoré et al. 2021, 2022]. We show that by adding the pacemaker state into the model,

the liveness of consensus can be reduced to a few safety properties on timed traces, which can be

easily proved through refinement. We also introduce segmented traces, a variant of timed traces that

enables more effective formalization of liveness properties and proofs. Using our LiDO model, we

obtain safety and liveness proofs for both unpipelined and pipelined Jolteon [Gelashvili et al. 2022].

To summarize, our contributions are:

• LiDO, a model of consensus formalized in Coq, supporting both safety and liveness reasoning

via refinement;

• Segmented traces, an effective formalism for proving liveness properties via refinement;

• Implementations of both unpipelined and pipelined Jolteon in Coq, providing case
studies for our methodology;

• Refinement-based proofs of both safety and liveness of Jolteon using our LiDO model.

All proofs have been mechanized in Coq and are available as artifacts [Qiu et al. 2024]. We have

also extracted unpipelined Jolteon into an OCaml executable, showing that our network model is

reasonable and realistic.

2 OVERVIEW
2.1 Background: State Machine Replication Under Partial Synchrony
The Partial Synchrony Assumption. Message-passing distributed systems rely on getting mes-

sages delivered to make progress. Therefore any liveness property of such systems depends on

assumptions about message delivery. Depending on the kind of assumptions they make, the systems

are classified into asynchronous, synchronous, or partially synchronous protocols [Dwork et al. 1988].
This work targets proving the safety and liveness of partially synchronous SMR protocols. Our

theory can be applied to both benign-fault and byzantine-fault tolerant protocols, but in this work,

we mainly consider Byzantine fault-tolerant (BFT) protocols.

There are two versions of partial synchrony [Dwork et al. 1988]. In one version, there is a

fixed upper bound Δ of message delivery latency, but it only holds after a certain timepoint called

global synchronization time (GST). The participating processes know Δ but do not know when GST

commences. In another version, the delivery latency is always bounded, but the processes do not

know the exact bound. In this work, we use the first version, as it is easier to work with formally.

State Machine Replication. The safety definition of SMR is well-known. Clients submit requests
to the system. The system outputs responses to requests, each request is responded to at most once,

and the request-response trace must linearize to an atomic spec of a state machine [Herlihy and

Wing 1990]. Under partial synchrony, the system processes do not know when GST begins, so they
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cannot rely on messages being delivered in time. As such, they maintain safety even during periods

of asynchrony.

The liveness definition of SMR is more subtle. There can be two reasonable definitions:

Definition 2.1. An SMR system is live if every client request is eventually responded to.

Definition 2.2. An SMR system is live if it responds to client requests infinitely often.

There is a gap between the two definitions. Under Definition 2.2, the system may selectively

respond to a subset of requests. When there is only a fixed number of clients, we can simply make

the system choose among client requests in a round-robin fashion, so that each client is fairly

serviced. When the SMR clients are unbounded in number, as in public blockchains, maintaining

fairness among clients is a research problem that is beyond the scope of this work [Kelkar et al.

2020; Kursawe 2020]. Therefore, this work aims to establish Definition 2.2.

2.2 The ADO Model of Consensus
Although the safety and liveness definitions of SMR are simple and intuitive, proving that an

implementation satisfies these definitions is not. As one of the early attempts, Verdi [Wilcox et al.

2015; Woos et al. 2016] used 50,000 lines of code to prove the safety of Raft but did not verify liveness.

Proofs of this complexity are difficult to maintain and difficult to port to other implementations.

To better manage the complexity of proofs, a successful strategy is to introduce an intermediate

abstraction between SMR and the network model. The abstraction captures essential information

about the network state but remains simple enough to allow easy reasoning about system behavior.

Most notably, the Atomic Distributed Object (ADO) theory has been proposed to verify the safety

of multiple benign-fault consensus protocols, including Raft with reconfiguration [Honoré et al.

2021, 2022]. Here we give an intuitive introduction to ADO. The formal details are in Section 3.

The ADO theory gives a detailed view of how the consensus log grows during the execution

of a consensus protocol. It models the execution of a protocol as a group of proposer processes

interacting with a concurrent object. The basic idea of ADO is that within each round of consensus,

three events occur in sequence: first, the leader is given an up-to-date branch of the consensus log;

then, it appends one or more requests at the tip of the branch; finally, it attempts to commit its

changes. These steps are called pull, invoke, and push. In each step the leader may collect enough

votes and succeed, or it may fail to collect votes before the pacemaker drives it to the next round.

To model this behavior, the ADO object exposes three operations 𝑃𝑢𝑙𝑙 (𝑟 ), 𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟,𝑚), and
𝑃𝑢𝑠ℎ(𝑟 ), where 𝑟 is the round the proposer participates in; 𝑚 is the request (called method in

ADO theory) the proposer wishes to append. The object responds to each call with either 𝑆𝑢𝑐𝑐𝑒𝑠𝑠

or 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 . When it responds to a call, a cache node is created to record information about

the response. Successful responses to 𝑃𝑢𝑙𝑙, 𝐼𝑛𝑣𝑜𝑘𝑒, 𝑃𝑢𝑠ℎ correspond to 𝐸𝐶𝑎𝑐ℎ𝑒,𝑀𝐶𝑎𝑐ℎ𝑒,𝐶𝐶𝑎𝑐ℎ𝑒

respectively, where 𝐸,𝑀,𝐶 stand for Election, Method invocation, and Commit. The cache nodes

are chained together by causal relation to form a cache tree.
Fig. 2 shows an example cache tree. Each 𝑀𝐶𝑎𝑐ℎ𝑒 represents a client method that has been

proposed by a proposer. We say an𝑀𝐶𝑎𝑐ℎ𝑒 is committed if there exists a path from that𝑀𝐶𝑎𝑐ℎ𝑒

to a 𝐶𝐶𝑎𝑐ℎ𝑒 . The safety property of an ADO object is an invariant of the cache tree: there exists a

path from 𝑅𝑜𝑜𝑡 that contains all committed𝑀𝐶𝑎𝑐ℎ𝑒 . It follows that we can take the sequence of

all committed𝑀𝐶𝑎𝑐ℎ𝑒 on this path as the consensus log, and implement SMR on top of it, as was

done in Honoré et al. [2021, 2022]. The linearization point of each client method is the point where

the corresponding 𝑀𝐶𝑎𝑐ℎ𝑒 becomes committed. Hence, SMR liveness is equivalent to creating

𝑀𝐶𝑎𝑐ℎ𝑒 and 𝐶𝐶𝑎𝑐ℎ𝑒 infinitely often in the ADO cache tree.
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ECache
round = 1
parent = 0

MCache
round = 1

method = A

CCache
round = 3

ECache
round = 2
parent = 1

ECache
round = 3
parent = 1

MCache
round = 2

method = B

MCache
round = 3

method = C

Root

Fig. 2. An Example ADO Cache Tree. An 𝑀𝐶𝑎𝑐ℎ𝑒 is committed if there exists a path from it to a 𝐶𝐶𝑎𝑐ℎ𝑒 .
Hence𝑀𝐶𝑎𝑐ℎ𝑒 of round 1 and 3 are committed, but𝑀𝐶𝑎𝑐ℎ𝑒 of round 2 is not.

2.3 The Need for a New Model
The ADO model nicely abstracts out the common logic of safety proofs, but it has not been

useful for verifying liveness. We now look at why proving liveness remains difficult. Intuitively, a

refinement-based liveness proof should involve the following steps:

(1) Among the valid traces of the abstract model, we identify a subset of live traces;
(2) We prove that all live traces of the abstract model satisfy SMR liveness (Definition 2.2);

(3) We identify the live traces of the implementation;

(4) We prove that every live trace of the implementation refines a live trace of the model.

Clearly the key part of this plan is the first step. We need to carefully define the model and its live

traces so that it is both easy to prove that every live trace satisfies SMR liveness, and to prove that

an implementation refines the live traces.

Temporal properties are easiest to work with when they are posed as safety properties. That is,

they concern system dynamics over only a finite period of time. For example, “the system commits

client methods infinitely often” is a liveness property, but “the system will commit one client

method within each period of 10Δ” is a safety property. Ideally, when we define live traces of the

abstract model and the network model, we should always characterize them using safety properties.

We now try to execute the plan on the ADO model. As discussed above we have to create a

𝐶𝐶𝑎𝑐ℎ𝑒 infinitely often. To reduce this to a safety property, naively, we may try:

Example 2.3. After GST, when a non-faulty proposer calls 𝑃𝑢𝑠ℎ(𝑟 ), it receives 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 within 2Δ.

If we could prove this, and we arrange non-faulty proposers to call 𝑃𝑢𝑠ℎ infinitely often, we

could show that a 𝐶𝐶𝑎𝑐ℎ𝑒 is created infinitely often. At first glance, this seems intuitive. At the

network level, a call from a non-faulty proposer usually corresponds to it broadcasting a request

message. Since the message will be delivered to every non-faulty voter within Δ, and the votes will

come back within Δ, the request will succeed within 2Δ.
However, in making this inference we have neglected an important factor: the pacemaker. By

influencing the round-change process, the adversary may obstruct liveness in a number of ways:

• The non-faulty nodes may never enter round 𝑟 , so the leader may never make its request;

• The byzantine nodes may initiate a round-change before the request succeeds, so the leader

will not receive a 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 response.

Even if byzantine nodes do nothing, the non-faulty nodes will still initiate round-change when

their timers expire. Therefore to prove that a request will succeed, we at least need to assume

that all non-faulty nodes still have sufficient time in their timers. Unfortunately, the ADO model

does not capture information about these local timers, preventing us from formally expressing

this assumption. This clearly shows that we need a new model that incorporates the pacemaker

information we need.
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ADO Cache Tree

Pull,
Invoke,
Push

Response
round = r

remaining time = t
StartNext

Elapse

TimeoutStartNext

Fig. 3. The LiDO object architecture.

This motivates us to propose the LiDO model.

As shown in Fig. 3, we add two state variables

𝑟𝑜𝑢𝑛𝑑 and remaining time (𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 for short).

These variables represent a logical timer: 𝑟𝑜𝑢𝑛𝑑

represents the round the voters currently guar-

antee liveness for, while 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 is the least

amount of time the voters promise not to time-

out. In this work, we will consistently use Δ
as a unit of time, so 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 = 3 intuitively

means none of the non-faulty voters will time-

out within 3Δ.
The timer variables can only be manipulated through a number of calls, shown in Fig. 3. In partic-

ular, 𝐸𝑙𝑎𝑝𝑠𝑒 () represents the flow of time: it decreases 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 by 1. The call𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝑆𝑡𝑎𝑟𝑡𝑁𝑒𝑥𝑡 ()
increases 𝑟𝑜𝑢𝑛𝑑 by 1, but it can only be called when 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 = 0. This says that the adversary

cannot terminate a round until the logical timer has expired. The adversary also cannot make time

flow too fast. We capture this by allowing 𝐸𝑙𝑎𝑝𝑠𝑒 () to be called at most once per period of Δ. Hence
if 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 = 3, then the adversary must call 𝐸𝑙𝑎𝑝𝑠𝑒 () three times, taking a period of 3Δ, before
it may increase 𝑟𝑜𝑢𝑛𝑑 . Our safety rules on 𝐸𝑙𝑎𝑝𝑠𝑒 () and 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝑆𝑡𝑎𝑟𝑡𝑁𝑒𝑥𝑡 () thus formalize the

notion that the adversary cannot preempt a non-faulty leader too soon. We also allow the leader

of round 𝑟 to call 𝑆𝑡𝑎𝑟𝑡𝑁𝑒𝑥𝑡 (𝑟 ), a request to start round 𝑟 + 1, after all requests in round 𝑟 have

succeeded. More formal details are in Section 3.2.

With pacemaker information added to the model, we can weaken Example 2.3 to

Example 2.4. After GST, if 𝑟𝑜𝑢𝑛𝑑 = 𝑟 and 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 ≥ 2, the leader of round 𝑟 is non-faulty and

calls 𝑃𝑢𝑠ℎ(𝑟 ), it receives 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 within 2Δ.

This is now intuitively implementable because the pacemaker will not intervene within 2Δ.

2.4 Proving Liveness Under Partial Synchrony
In the previous sections we gave an intuitive explanation of our LiDO model design but did not

give any formal liveness details. We now introduce our liveness formalism.

In synchronous or partially synchronous systems, the most general formalism for characterizing

live traces is timed traces [Lamport 2005].We first assume there exists a 𝑡𝑖𝑚𝑒 variable that represents

physical time and increases continuously. When each event 𝑒 occurs, we pair it with the current

reading of 𝑡𝑖𝑚𝑒 . The trace thus consists of a sequence of pairs (𝑒0, 𝑡𝑖𝑚𝑒0); (𝑒1, 𝑡𝑖𝑚𝑒1); · · · with
𝑡𝑖𝑚𝑒0 ≤ 𝑡𝑖𝑚𝑒1 ≤ · · · . The problem is that continuous time is difficult to encode in proof checkers.

We can look at timed traces in a different way. In general, we only consider non-Zeno timed

traces, meaning only a finite number of events may occur within a finite period of time. Hence

assume the set of all events occurred before any timepoint 𝑡 is always finite. Then we can cut

the trace into segments, each representing a period of Δ, and use them to cover the entire trace.

Formally:

Definition 2.5. A segmented trace is an arbitrary-length sequence of finite untimed traces

(𝜏0, 𝜏1, · · · ), such that each 𝜏𝑖 is a valid trace, and each 𝜏𝑖 is a prefix of 𝜏𝑖+1.

Definition 2.6. Let 𝑇 be any timepoint with 𝑇 ≥ 𝐺𝑆𝑇 . We define the (𝑇,Δ)-segmentation of a

non-Zeno timed trace 𝜏 to be (𝜏0, 𝜏1, · · · ) where 𝜏𝑖 is the sequence of all events that occurred at

some timepoint 𝑡 < 𝑇 + 𝑖Δ. If 𝜏 is infinite, the segmentation is also infinite; if 𝜏 is finite and only

covers events up to timepoint 𝑇 + 𝑘Δ, the segmentation also ends at 𝜏𝑘 .

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.



LiDO: Linearizable Byzantine Distributed Objects with Refinement-Based Liveness Proofs 193:7

In Definition 2.6, the requirement that 𝑇 ≥ 𝐺𝑆𝑇 ensures that all events occurred before GST are

hidden into 𝜏0, so we do not need to worry about whether each segment between 𝜏𝑖 and 𝜏𝑖+1 is
before or after GST.

Segmented traces provide a convenient formalism for stating temporal properties with time

constraints. To see this, we look at formalizing the partial synchrony assumption in a network

model. In this work, the formal definition of partial synchrony under timed traces is:

Assumption 2.7. If process 𝑝 sends𝑚𝑠𝑔 to process 𝑞 at timepoint 𝑡 , both 𝑝, 𝑞 are non-faulty, then
process 𝑞 receives𝑚𝑠𝑔 at least once in the interval [𝑡,max{𝑡,𝐺𝑆𝑇 } + Δ].

For a valid trace 𝜏 , let𝑚𝑠𝑔(𝜏) be the set of all messages already sent within 𝜏 , and let𝑑𝑒𝑙𝑖𝑣_𝑚𝑠𝑔(𝜏)
be the set of delivered messages, represented as (𝑖𝑑,𝑚𝑠𝑔) pairs. For each message𝑚, let 𝑠𝑒𝑛𝑑𝑒𝑟 (𝑚)
be its sender and 𝑟𝑒𝑐𝑖𝑝 (𝑚) its recipient set. Let 𝐻 be the set of non-faulty processes. Then we have:

Lemma 2.8. In every (𝑇,Δ)-segmentation of every live timed trace of a network model, we have

∀𝑖,∀𝑚,∀𝑝,𝑚 ∈𝑚𝑠𝑔(𝜏𝑖 ) ⇒ 𝑠𝑒𝑛𝑑𝑒𝑟 (𝑚) ∈ 𝐻 ⇒ 𝑝 ∈ 𝑟𝑒𝑐𝑖𝑝 (𝑚) ⇒ 𝑝 ∈ 𝐻 ⇒ (𝑝,𝑚) ∈ 𝑑𝑒𝑙𝑖𝑣_𝑚𝑠𝑔(𝜏𝑖+1).

Proof : If𝑚 was sent before GST then it is delivered at least once before 𝐺𝑆𝑇 + Δ. If it was sent
within the interval [𝐺𝑆𝑇,𝐺𝑆𝑇 + 𝑖Δ) then it is delivered at least once before 𝐺𝑆𝑇 + (𝑖 + 1)Δ.

Thus we can take Lemma 2.8 as the definition of partial synchrony under segmented traces.

Refinement of Segmented Traces. We now observe that segmented traces enjoy a natural notion of

refinement. Let 𝑓 be a refinement mapping between a spec system and an implementation system.

Then 𝑓 maps traces of the implementation to traces of the spec. Furthermore, the definition of a

refinement mapping requires that, if 𝜏 is a prefix of 𝜏 ′, then 𝑓 (𝜏) is also a prefix of 𝑓 (𝜏 ′).
It follows, if (𝜏0, 𝜏1, · · · ) is a valid segmented trace of the implementation, then (𝑓 (𝜏0), 𝑓 (𝜏1), · · · )

is also a valid segmented trace of the spec. We say that (𝜏0, 𝜏1, · · · ) refines (𝑓 (𝜏0), 𝑓 (𝜏1), · · · ).
Thus, segmented traces are a very convenient formalism for analyzing partially synchronous

systems. They are easy to encode in proof checkers, and it is easy to define refinement between

them. Throughout this work, we will use segmented traces as the main formalism for analyzing

liveness. Our plan consists of the following steps:

(1) We specify the LiDO model of consensus as our spec (Section 3);

(2) We specify a set 𝑆 of segmented traces as the live traces of the LiDO model, and prove that

they satisfy SMR liveness (Section 3.3);

(3) We specify a system model for implementing unpipelined and pipelined Jolteon (Section 4.1);

(4) We define a set 𝑆 ′ of segmented traces as live traces of the implementation, and show that 𝑆 ′

covers all timed traces of the implementation (Definition 4.3);

(5) We establish refinement mapping between the implementations and LiDO, and prove that

every trace in 𝑆 ′ refines a trace in 𝑆 (Section 4.3).

Layered Refinement Proof. Fig. 4 shows a schematic diagram of our refinement proof between

LiDO and Jolteon. In between LiDO and the network model, we used two additional layers called the

Server and Voting layer. These layers implement the LiDO model in a shared-memory manner. This

allows us to focus on the important invariants maintained by the protocol while ignoring details

such as message delivery and bookkeeping, which only appear in the network model. Introducing

these intermediate layers simplifies overall engineering effort. See Section 4 for details.

3 THE LIDO MODEL OF CONSENSUS
In this section, we formally define the LiDO model and its live traces. We first define the ADO

model as a concurrent object, and then define the LiDO model as an extension of ADO.
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Fig. 4. Jolteon safety refinement proof architecture.

3.1 The ADO Model

Algorithm 1 The Method Pool Object

1: initialize: 𝑄 ← ∅
2: upon 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑀𝑒𝑡ℎ𝑜𝑑 (𝑚):
3: 𝑄 ← 𝑄 ∪ {𝑚}
4: upon 𝐶ℎ𝑒𝑐𝑘𝑀𝑒𝑡ℎ𝑜𝑑 (𝑚):
5: return𝑚 ∈ 𝑄

In byzantine consensus, although byzantine proposers

can send any message, the system is required to main-

tain external validity, meaning all requests committed

in the log must come from external clients, not fabri-

cated by byzantine proposers. Therefore, we first as-

sume there exists an object called the method pool (Al-
gorithm 1). The object state is a set 𝑄 of client-signed

methods. Initially, 𝑄 = ∅. The object exposes two opera-

tions 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑀𝑒𝑡ℎ𝑜𝑑 (𝑚) and 𝐶ℎ𝑒𝑐𝑘𝑀𝑒𝑡ℎ𝑜𝑑 (𝑚). SMR clients may call 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑀𝑒𝑡ℎ𝑜𝑑 (𝑚) to add

a method 𝑚 into 𝑄 . The ADO object may call 𝐶ℎ𝑒𝑐𝑘𝑀𝑒𝑡ℎ𝑜𝑑 (𝑚) to check whether 𝑚 has been

registered or not. Both calls are atomic. In an implementation, they correspond to the client signing

a request, and the voters checking the signature.

The ADO object proper is a concurrent object, formalized as a transition system consisting of

two kinds of events: an agent making a call on the object, and the object responding to a call. The

object does not need to respond to each call immediately; it may respond to it at some arbitrary

later time, but no changes to the object state occur before the response. We assume each agent

is sequential: it only waits upon one call at a time. Thus in a valid trace, each agent alternates

between making a call and receiving its response, and these events can be interleaved.

The agents interacting with the ADO object are the proposers of a consensus protocol. In the

standard setting, there are 3𝑓 + 1 proposers, of which 2𝑓 + 1 are non-faulty proposers and 𝑓 are

byzantine. We assume that in the consensus protocol, rounds are numbered from 1, and in each

round, one of the proposers is predetermined as the leader. We use 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ) to represent that

leader. Assume that each proposer becomes a leader infinitely often.

The object state of ADO is a set Σ of cache nodes that form a cache tree. Therefore, we first

formally define cache nodes and the cache tree, then define the ADO object. The cache node

structure is defined in Fig. 5 (a). Each cache node except 𝑅𝑜𝑜𝑡 contains a 𝑟𝑜𝑢𝑛𝑑 field, along with

other data. Let Σ be a set of cache nodes with at most one 𝐸𝐶𝑎𝑐ℎ𝑒 , one𝑀𝐶𝑎𝑐ℎ𝑒 , and one𝐶𝐶𝑎𝑐ℎ𝑒 per

round. We use Σ[𝑟 ] .𝑒𝑐𝑎𝑐ℎ𝑒, Σ[𝑟 ] .𝑚𝑐𝑎𝑐ℎ𝑒, Σ[𝑟 ] .𝑐𝑐𝑎𝑐ℎ𝑒 to represent that unique cache node of round
𝑟 . We write Σ[𝑟 ] .𝑒𝑐𝑎𝑐ℎ𝑒 = ⊥ if round 𝑟 does not have an 𝐸𝐶𝑎𝑐ℎ𝑒 , similarly for other notations.

For each 𝐸𝐶𝑎𝑐ℎ𝑒,𝑀𝐶𝑎𝑐ℎ𝑒,𝐶𝐶𝑎𝑐ℎ𝑒 in Σ, we define its parent as in Fig. 5 (b). The cache tree of Σ
is a graph with all cache nodes except 𝑇𝐶𝑎𝑐ℎ𝑒 as its vertices, and directed edges from each node

to its direct children as its edges. The cache tree is well-defined when the parent of each node is
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𝐶𝑎𝑐ℎ𝑒𝑁𝑜𝑑𝑒 ≜𝑅𝑜𝑜𝑡

| 𝐸𝐶𝑎𝑐ℎ𝑒 (N𝑟𝑜𝑢𝑛𝑑 ∗ N𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 )
| 𝑀𝐶𝑎𝑐ℎ𝑒 (N𝑟𝑜𝑢𝑛𝑑 ∗𝑀𝑒𝑡ℎ𝑜𝑑)
| 𝐶𝐶𝑎𝑐ℎ𝑒 (N𝑟𝑜𝑢𝑛𝑑 )
| 𝑇𝐶𝑎𝑐ℎ𝑒 (N𝑟𝑜𝑢𝑛𝑑 )

(a) Cache Nodes

𝑝𝑎𝑟𝑒𝑛𝑡 (𝐸𝐶𝑎𝑐ℎ𝑒 (𝑟, 𝑝)) ≡
{
𝑅𝑜𝑜𝑡 (𝑝 = 0)
Σ[𝑝] .𝑚𝑐𝑎𝑐ℎ𝑒 (𝑝 > 0)

𝑝𝑎𝑟𝑒𝑛𝑡 (𝑀𝐶𝑎𝑐ℎ𝑒 (𝑟,𝑚)) ≡ Σ[𝑟 ] .𝑒𝑐𝑎𝑐ℎ𝑒
𝑝𝑎𝑟𝑒𝑛𝑡 (𝐶𝐶𝑎𝑐ℎ𝑒 (𝑟 )) ≡ Σ[𝑟 ] .𝑚𝑐𝑎𝑐ℎ𝑒

(b) Cache Node Parent Relation

Fig. 5. Definition of ADO Cache Nodes and Node Parents.

𝑃𝑢𝑙𝑙𝑃𝑟𝑒 (Σ, 𝑟 , 𝑝) ≡ 𝑝 < 𝑟 ∧ (𝑝 = 0 ∨ Σ[𝑝] .𝑚𝑐𝑎𝑐ℎ𝑒 ≠ ⊥) ∧ Σ[𝑟 ] .𝑒𝑐𝑎𝑐ℎ𝑒 = ⊥
∧ (∀𝑟 ′, 𝑟 ′ < 𝑟 ⇒ (𝑝 ≥ 𝑟 ′ ∨ Σ[𝑟 ′] .𝑐𝑐𝑎𝑐ℎ𝑒 = ⊥))

𝐼𝑛𝑣𝑜𝑘𝑒𝑃𝑟𝑒 (Σ, 𝑟 ) ≡ Σ[𝑟 ] .𝑒𝑐𝑎𝑐ℎ𝑒 ≠ ⊥ ∧ Σ[𝑟 ] .𝑚𝑐𝑎𝑐ℎ𝑒 = ⊥
𝑃𝑢𝑠ℎ𝑃𝑟𝑒 (Σ, 𝑟 ) ≡ Σ[𝑟 ] .𝑚𝑐𝑎𝑐ℎ𝑒 ≠ ⊥ ∧ (∀𝑟 ′, 𝑟 ′ > 𝑟 ⇒ (Σ[𝑟 ′] .𝑒𝑐𝑎𝑐ℎ𝑒 = ⊥ ∨ Σ[𝑟 ′] .𝑒𝑐𝑎𝑐ℎ𝑒.𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 ≥ 𝑟 ))

Fig. 6. Preconditions for 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 response of ADO object. For explanations, see Appendix A.

well-defined, and the graph forms a rooted tree with 𝑅𝑜𝑜𝑡 as its root. See Fig. 2 for an example cache

tree. We say an 𝑀𝐶𝑎𝑐ℎ𝑒 is committed, if there exists a path in the cache tree from that 𝑀𝐶𝑎𝑐ℎ𝑒

to a 𝐶𝐶𝑎𝑐ℎ𝑒 . Hence in Fig. 2, Σ[1] .𝑚𝑐𝑎𝑐ℎ𝑒 is committed, as there is a path to Σ[3] .𝑐𝑐𝑎𝑐ℎ𝑒 , but
Σ[2] .𝑚𝑐𝑎𝑐ℎ𝑒 is not.

When the cache tree is well-defined, there is a unique path from 𝑅𝑜𝑜𝑡 to each cache node 𝑐 . The

sequence of all𝑀𝐶𝑎𝑐ℎ𝑒 on that path forms the consensus log up to node 𝑐 . We denote it by 𝑙𝑜𝑔(𝑐).
We now define the ADO object. The object state is a set Σ of cache nodes. Initially, Σ = {𝑅𝑜𝑜𝑡}.

The object exposes three operations, which are 𝑃𝑢𝑙𝑙 (𝑟 ), 𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟,𝑚), and 𝑃𝑢𝑠ℎ(𝑟 ) with 𝑟 > 0.

Only 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ) may call 𝑃𝑢𝑙𝑙 (𝑟 ), 𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟,𝑚), or 𝑃𝑢𝑠ℎ(𝑟 ). Also, 𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟,𝑚) can only be called

when𝑚 has been registered in the method pool. Otherwise, it is considered an invalid call and fails

immediately with no change in object state.

The object may respond to each call with either 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 or 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 . If the caller is byzantine,

it may voluntarily stop waiting for its current call and we represent this with a special response

𝐷𝑟𝑜𝑝𝑝𝑒𝑑 , with no change in object state.

The object may always respond to a call with𝑇𝑖𝑚𝑒𝑜𝑢𝑡 , adding a𝑇𝐶𝑎𝑐ℎ𝑒 to Σ. When it decides to

respond to 𝑃𝑢𝑙𝑙 (𝑟 ) with 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 , it must non-deterministically choose a 𝑝 such that 𝑃𝑢𝑙𝑙𝑃𝑟𝑒 (Σ, 𝑟 , 𝑝)
is currently satisfied. Similarly, when it responds to 𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟,𝑚) or 𝑃𝑢𝑠ℎ(𝑟 ) with 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 , the con-

ditions 𝐼𝑛𝑣𝑜𝑘𝑒𝑃𝑟𝑒 (Σ, 𝑟 ) or 𝑃𝑢𝑠ℎ𝑃𝑟𝑒 (Σ, 𝑟 ) must be currently satisfied, respectively. The definitions

of these conditions are shown in Fig. 6. The changes to the object state upon each response are

defined in Algorithm 2.

Linearizability of ADO. In Honoré et al. [2021, 2022], the ADO object was described as an atomic

object. The refinement proof works by reordering network events to their linearization points.

However, for liveness refinement, we have to define a refinement mapping between ADO and the

network model, and events cannot be reordered, which forces us to switch to a concurrent spec.

Nevertheless, we can define an atomic version of ADO as follows. The object exposes exactly the

same interface as concurrent ADO. However, when any proposer makes a call, the object atomically

chooses a response (𝑆𝑢𝑐𝑐𝑒𝑠𝑠 or 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 ) and returns it immediately. The preconditions and effects

of each response are exactly the same as defined in Fig. 6 and Algorithm 2.

Lemma 3.1. The concurrent ADO object is linearizable to the atomic ADO object.
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Algorithm 2 ADO Object State Changes

1: initialize: Σ← {𝑅𝑜𝑜𝑡}
2: upon return 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 to call 𝑃𝑢𝑙𝑙 (𝑟 ):
3: Choose 𝑝 such that 𝑃𝑢𝑙𝑙𝑃𝑟𝑒 (Σ, 𝑟 , 𝑝) is satisfied, if no such 𝑝 exists return 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 instead.

4: Σ← Σ ∪ {𝐸𝐶𝑎𝑐ℎ𝑒 (𝑟, 𝑝)}
5: upon return 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 to call 𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟,𝑚):
6: Check 𝐼𝑛𝑣𝑜𝑘𝑒𝑃𝑟𝑒 (Σ, 𝑟 ) is satisfied, if not return 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 instead.

7: Σ← Σ ∪ {𝑀𝐶𝑎𝑐ℎ𝑒 (𝑟,𝑚)}
8: upon return 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 to call 𝑃𝑢𝑠ℎ(𝑟 ):
9: Check 𝑃𝑢𝑠ℎ𝑃𝑟𝑒 (Σ, 𝑟 ) is satisfied, if not return 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 instead.

10: Σ← Σ ∪ {𝐶𝐶𝑎𝑐ℎ𝑒 (𝑟 )}
11: upon return 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 to call 𝑃𝑢𝑙𝑙 (𝑟 ), 𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟,𝑚), or 𝑃𝑢𝑠ℎ(𝑟 ):
12: Σ← Σ ∪ {𝑇𝐶𝑎𝑐ℎ𝑒 (𝑟 )}

Proof : We simply choose the point where the object generates a response as the linearization

point of a call. The call does not have any effect on the object state before the response is generated.

The preconditions of generating a response depend only on the object state at the response point.

Therefore, moving every call event to the response point results in a valid atomic trace with the

same final object state.

Safety of ADO. In Appendix A, we give a presentation of the safety theory of ADO. Here we

simply understand that, the ADO cache tree is always well-defined, and there is always a path

starting from 𝑅𝑜𝑜𝑡 that contains all committed𝑀𝐶𝑎𝑐ℎ𝑒 . Let 𝑐 be the committed𝑀𝐶𝑎𝑐ℎ𝑒 with the

highest round number, then we can take 𝑙𝑜𝑔(𝑐) to be the current committed consensus log.

Implementing ADO. We also define what it means that a network systemwith byzantine processes

implements the ADO object. Let 𝑀 be the message space of the system, the set of all possible

messages that may be created within the system. For every reachable system state 𝑧, let𝑚𝑠𝑔(𝑧) ⊆ 𝑀

denote the set of all messages that have been actually created at state 𝑧. Then we define:

Definition 3.2. A refinement between the ADO object and a network system consists of the

following data:

(1) A refinement mapping 𝑓 that maps valid finite network traces to valid finite traces of ADO

object, which defines correspondence between network state 𝑧 and ADO cache tree Σ;
(2) For each possible cache node 𝑐 , a certificate set 𝑐𝑒𝑟𝑡 (𝑐) ⊆ 𝑀 , such that in every corresponding

pair of network state 𝑧 and ADO cache tree Σ, we have 𝑐 ∈ Σ iff at least one member of

𝑐𝑒𝑟𝑡 (𝑐) is in𝑚𝑠𝑔(𝑧).

Although byzantine processes can send any message, they still have to follow cryptographic

restrictions, which is why they cannot fabricate messages in 𝑐𝑒𝑟𝑡 (𝑐) to claim the existence of a

cache node. Thus whatever byzantine processes do in the network system, the net effect is still as if
they are following the ADO interface. Hence external processes such as SMR clients and executors

can use 𝐶𝐶𝑎𝑐ℎ𝑒 certificate messages as evidence that a method is committed, and act accordingly.

3.2 The LiDO Model
We now define the LiDO model, which is the ADO model extended with state variables and

operations that represent an abstract pacemaker.
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Algorithm 3 Abstract Pacemaker State

Changes

1: 𝑟𝑒𝑠𝑒𝑡_𝑣𝑎𝑙 : Implementation-defined

constant for 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 reset value.

2: initialize:
3: 𝑟𝑜𝑢𝑛𝑑 ← 1

4: 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 ← 𝑟𝑒𝑠𝑒𝑡_𝑣𝑎𝑙

5: upon respond to 𝑆𝑡𝑎𝑟𝑡𝑁𝑒𝑥𝑡 (𝑟 ):
6: if 𝑟𝑜𝑢𝑛𝑑 = 𝑟 then
7: 𝑟𝑜𝑢𝑛𝑑 ← 𝑟 + 1
8: 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 ← 𝑟𝑒𝑠𝑒𝑡_𝑣𝑎𝑙

9: upon 𝐸𝑙𝑎𝑝𝑠𝑒 ():
10: if 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 > 0 then
11: 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 ← 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 − 1
12: upon 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝑆𝑡𝑎𝑟𝑡𝑁𝑒𝑥𝑡 ():
13: if 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 = 0 then
14: 𝑟𝑜𝑢𝑛𝑑 ← 𝑟𝑜𝑢𝑛𝑑 + 1
15: 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 ← 𝑟𝑒𝑠𝑒𝑡_𝑣𝑎𝑙

As shown in Fig. 3, the LiDO object state consists

of an ADO cache tree Σ, and two integers 𝑟𝑜𝑢𝑛𝑑

and 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 . The object exposes six operations. The

𝑃𝑢𝑙𝑙 (𝑟 ), 𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟,𝑚), and 𝑃𝑢𝑠ℎ(𝑟 ) operations affect

the cache tree, and their semantics are exactly the

same as the ADO object (Algorithm 2). There are

three new operations 𝑆𝑡𝑎𝑟𝑡𝑁𝑒𝑥𝑡 (𝑟 ), 𝐸𝑙𝑎𝑝𝑠𝑒 (), and
𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝑆𝑡𝑎𝑟𝑡𝑁𝑒𝑥𝑡 () which affect the pacemaker state

and are described below.

We introduce a new agent called the adversary A,

which represents the effect of time flowing. A may

call 𝐸𝑙𝑎𝑝𝑠𝑒 (), which decreases 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 by 1. When

𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 = 0, A may call 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝑆𝑡𝑎𝑟𝑡𝑁𝑒𝑥𝑡 () to in-

crease 𝑟𝑜𝑢𝑛𝑑 by 1 and reset 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 to a preconfig-

ured value 𝑟𝑒𝑠𝑒𝑡_𝑣𝑎𝑙 . This models a logical timer that

is simulated by the local timers of each voter. It allo-

cates a fixed duration for each round, and when the

timer expires, the pacemaker may intervene to start the

next round. Both 𝐸𝑙𝑎𝑝𝑠𝑒 () and 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝑆𝑡𝑎𝑟𝑡𝑁𝑒𝑥𝑡 ()
are atomic calls: the object responds to the call imme-

diately.

We allow 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ) to call 𝑆𝑡𝑎𝑟𝑡𝑁𝑒𝑥𝑡 (𝑟 ). This call sends a signal to the pacemaker that it

may start round 𝑟 + 1 without waiting for the timer of round 𝑟 to expire. This is a concurrent call:

the object does not need to respond to the signal immediately.

The formal effects of these calls are shown in Algorithm 3.

3.3 The Live Traces of LiDO
We now define the live traces of LiDO. In general, we define live traces by liveness requirements.
A valid segmented trace (𝜏0, 𝜏1, · · · ) is a live trace whenever it satisfies these requirements. Our

requirements only concern events over a fixed-length duration. This makes them safety properties

which are easy to handle using refinement.

The liveness requirements on LiDO are divided into protocol-independent ones and protocol-

dependent ones. The reason is that pipelined protocols provide a weaker liveness guarantee, as it

needs the cooperation of two (or more) leaders to commit a method, so certain liveness properties

of unpipelined protocols are not enjoyed by pipelined ones. Here we focus on unpipelined protocols.

The liveness of pipelined protocols will be discussed in Section 5.

Definition 3.3. The protocol-independent liveness requirements are:

(1) Between 𝜏𝑖 and 𝜏𝑖+1, 𝐸𝑙𝑎𝑝𝑠𝑒 () is called at most once;

(2) If 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 (𝜏𝑖 ) > 0, between 𝜏𝑖 and 𝜏𝑖+1 if 𝐸𝑙𝑎𝑝𝑠𝑒 () is not called then 𝑟𝑜𝑢𝑛𝑑 is increased at

least once;

(3) There exists constant 𝐶 , such that if 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 (𝜏𝑖 ) = 0, then 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖+𝐶 ) > 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖 );
By “between 𝜏𝑖 and 𝜏𝑖+1,” we mean the trace 𝜏𝑖+1 with prefix 𝜏𝑖 removed. Together, these require-

ments ensure that the round number will increase unboundedly in an infinite trace, while still

giving sufficient time to each round.

Many protocols allow two consecutive non-faulty leaders to cooperate to start a new round,

without waiting for the timer to expire. This feature can be formulated as an additional liveness

requirement:
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Definition 3.4. If 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖 ) = 𝑟 , both 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ), 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 + 1) are non-faulty, 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 )
has called 𝑆𝑡𝑎𝑟𝑡𝑁𝑒𝑥𝑡 (𝑟 ) in 𝜏𝑖 , then 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖+1) ≥ 𝑟 + 1.

Definition 3.5. The protocol-dependent liveness requirements for unpipelined protocols are:

(1) A non-faulty leader calls 𝑆𝑡𝑎𝑟𝑡𝑁𝑒𝑥𝑡 (𝑟 ) only after a 𝐶𝐶𝑎𝑐ℎ𝑒 in round 𝑟 is created;

(2) There exists constant𝑁 < 𝑟𝑒𝑠𝑒𝑡_𝑣𝑎𝑙 , such that if 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖 ) = 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖+𝑁 ) = 𝑟 , 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 (𝜏𝑖 ) ≥
𝑁 , 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ) is non-faulty, then a 𝐶𝐶𝑎𝑐ℎ𝑒 of round 𝑟 is created by the end of 𝜏𝑖+𝑁 .

The second requirement simply says that, given round change does not occur, each non-faulty

leader will always commit a method by itself. Recall that there are only two ways to increase 𝑟𝑜𝑢𝑛𝑑 :

either the leader calls 𝑆𝑡𝑎𝑟𝑡𝑁𝑒𝑥𝑡 (𝑟 ) or the adversary calls𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝑆𝑡𝑎𝑟𝑡𝑁𝑒𝑥𝑡 (). When a new round

𝑟 starts, 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 is reset to 𝑟𝑒𝑠𝑒𝑡_𝑣𝑎𝑙 > 𝑁 . The adversary cannot call𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝑆𝑡𝑎𝑟𝑡𝑁𝑒𝑥𝑡 () within
𝑁Δ. Hence if 𝑟𝑜𝑢𝑛𝑑 is increased within 𝑁Δ, then 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ) must have called 𝑆𝑡𝑎𝑟𝑡𝑁𝑒𝑥𝑡 (𝑟 ),
which implies a 𝐶𝐶𝑎𝑐ℎ𝑒 of round 𝑟 has been created, by the first rule. If 𝑟𝑜𝑢𝑛𝑑 is not increased,

then a 𝐶𝐶𝑎𝑐ℎ𝑒 must have been created as well, by the second rule. Therefore these rules guarantee

that as soon as 𝑟𝑜𝑢𝑛𝑑 reaches 𝑟 , the leader of round 𝑟 will commit a method within 𝑁Δ.
We observe that the liveness proofs of many byzantine consensus protocols, including PBFT

[Castro 2001], HotStuff [Yin et al. 2019], and Jolteon [Gelashvili et al. 2022] follow the same

reasoning pattern as outlined above. Their differences mainly lie in (1) the round-change mechanism

implementation and (2) how each leader utilizes its allocated time.

As a simple example, we may assume that after 𝑟𝑜𝑢𝑛𝑑 is increased to 𝑟 , the leader of round 𝑟 will

learn this fact within Δ. Upon learning this fact, it immediately makes 𝑃𝑢𝑙𝑙 , 𝐼𝑛𝑣𝑜𝑘𝑒 , and 𝑃𝑢𝑠ℎ calls

in sequence, and each call takes at most 2Δ to succeed. In Section 4, we will see that unpipelined

Jolteon follows exactly this pattern, except that it performs 𝑃𝑢𝑙𝑙 and 𝐼𝑛𝑣𝑜𝑘𝑒 simultaneously in one

phase. We can formalize the above assumptions as follows:

(1) If 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖 ) = 𝑟 , 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 ≥ 1, 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ) is non-faulty, but no 𝐸𝐶𝑎𝑐ℎ𝑒 of round 𝑟 has

been created, then either 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ) is currently waiting upon 𝑃𝑢𝑙𝑙 (𝑟 ), or it will call 𝑃𝑢𝑙𝑙 (𝑟 )
between 𝜏𝑖 and 𝜏𝑖+1;

(2) If 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖 ) = 𝑟 , 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ) is non-faulty, 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 ≥ 2, and the leader is waiting upon a

call 𝑃𝑢𝑙𝑙 (𝑟 ), 𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟,𝑚), 𝑃𝑢𝑠ℎ(𝑟 ), then that call will succeed before the end of 𝜏𝑖+2;
(3) When a non-faulty leader receives 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 for 𝑃𝑢𝑙𝑙 (𝑟 ), it immediately chooses𝑚 and calls

𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟,𝑚); similarly it immediately calls 𝑃𝑢𝑠ℎ(𝑟 ) after 𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟,𝑚) succeeds.
By “immediately,” we mean between 𝜏𝑖 and 𝜏𝑖+1, if the first event has occurred, then the second

must have also occurred. Since the leader takes Δ to enter round 𝑟 , and each phase takes 2Δ, the
leader will commit a method within 7Δ. Hence take 𝑟𝑒𝑠𝑒𝑡_𝑣𝑎𝑙 = 8 and Definition 3.5 is satisfied.

Liveness of LiDO. We now formally state and prove LiDO’s liveness property (for unpipelined

protocols), which implies SMR liveness.

Theorem 3.6. In every infinite live trace (𝜏0, 𝜏1, · · · ) of LiDO, let 𝑟 = 𝑟𝑜𝑢𝑛𝑑 (𝜏0), then for every
𝑟 ′ > 𝑟 with 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ′) non-faulty, there exists 𝑖 such that a 𝐶𝐶𝑎𝑐ℎ𝑒 of round 𝑟 ′ is created by the
end of 𝜏𝑖 .

Proof : Let (𝜏0, 𝜏1, · · · ) be an infinite live trace.We first show that 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖 ) increases unboundedly.
Let 𝑟 = 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖 ), 𝑡 = 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 (𝜏𝑖 ). If 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖 ) = 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖+1) but 𝑡 > 0 then 𝐸𝑙𝑎𝑝𝑠𝑒 () is called
once between 𝜏𝑖 and 𝜏𝑖+1, which decreases 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 by 1. Hence if 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖 ) = 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖+𝑡 ), then
𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 (𝜏𝑖+𝑡 ) = 0. By assumption, there exists constant 𝐶 such that 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖+𝑡+𝐶 ) > 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖 ).

Since 𝑟𝑜𝑢𝑛𝑑 increases unboundedly, for each 𝑟 > 𝑟𝑜𝑢𝑛𝑑 (𝜏0), we can find 𝑖 such that 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖 ) < 𝑟

but 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖+1) ≥ 𝑟 . By assumption, there exists constant 𝑁 such that if 𝜏𝑖+1 = 𝜏𝑖+1+𝑁 = 𝑟 , then
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there is𝐶𝐶𝑎𝑐ℎ𝑒 of round 𝑟 by the end of 𝜏𝑖+1+𝑁 . On the other hand, if 𝜏𝑖+1+𝑁 > 𝑟 , then 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 )
must have called 𝑆𝑡𝑎𝑟𝑡𝑁𝑒𝑥𝑡 (𝑟 ), so there exists a 𝐶𝐶𝑎𝑐ℎ𝑒 of round 𝑟 by the end of 𝜏𝑖+1+𝑁 as well.

Given that each non-faulty proposer becomes a leader infinitely often, this implies that 𝐶𝐶𝑎𝑐ℎ𝑒

is created infinitely often during execution. Since each 𝐶𝐶𝑎𝑐ℎ𝑒 represents a new method being

committed, we see that new methods are committed infinitely often.

4 PROVING SAFETY AND LIVENESS OF UNPIPELINED JOLTEON
In Section 3 we fully defined the LiDO object and its live traces. In this section we use unpipelined

Jolteon as an example to show how to prove a network model refines LiDO. We study Jolteon

because its design maps nicely onto the ADO’s three-step view of consensus.

4.1 System Model

Main
Process

Timer

External Request

Deliver Msg

Reset

Timeout

Elapse
Request Response

Fig. 7. Architecture of each non-faulty process.

We consider a system consisting of a fixed

finite set of non-faulty and byzantine pro-

cesses. The only way of communication

between these processes is through send-

ing and delivering messages. The set𝑀 of

all messages that may potentially be cre-

ated within the system is called itsmessage
space. The set 𝑍 of all internal states each

non-faulty process may potentially reach

during execution is called its state space.
Within set 𝑍 , a special state 𝑧0 is designated as the initial state of each non-faulty process. We do

not model the internal state of byzantine processes.

The system state consists of three parts: 1) A finite map 𝑝𝑟𝑜𝑐_𝑠𝑡𝑎𝑡𝑒 from process IDs to the current

state of that process; 2) A finite set𝑚𝑠𝑔 of all messages that have been created within the system;

3) A finite set 𝑑𝑒𝑙𝑖𝑣_𝑚𝑠𝑔 of process-message pairs, indicating which messages have been delivered

to which processes. Initially, 𝑝𝑟𝑜𝑐_𝑠𝑡𝑎𝑡𝑒 (𝑝𝑖𝑑) = 𝑧0 for each process, and𝑚𝑠𝑔 = 𝑑𝑒𝑙𝑖𝑣_𝑚𝑠𝑔 = ∅.
Fig. 7 shows the architecture of each non-faulty process. It is specified as a main process with a

timer object attached. The main process has three operations: it can receive requests from external

clients, receive messages from the network, and receive timeout signals. Only the timer can send

timeout signals to the main process. The timer object has two operations called reset and elapse,
where reset can only be called by the main process while elapse is an external signal. The formal

details of the timer are explained later.

Each event that may occur within the system belongs to one of the following kinds:

(1) Deliver an external client request to a non-faulty process;

(2) Deliver a message to a non-faulty process, provided it has been sent previously;

(3) Deliver a time-elapse signal to a timer object;

(4) A byzantine process sends an arbitrary message, subject to constraints (explained later).

The action of a non-faulty process upon each delivery event is specified by a handler function. The

action may involve state changes and sending messages and is atomic with the event.

The Timer Object. We now study the timer object more closely. Normally, a timer is considered a

continuous object that exposes a single operation reset and sends out timeout signals. After GST,

the timer sends out a timeout signal when and only when a predetermined duration 𝛿 has elapsed

from the most recent reset call. This model is intuitive and is implicitly adopted in paper proofs

of liveness such as Bravo et al. [2022]. However, continuous objects are difficult to formalize in

proof checkers. Therefore, in this work, we replace it with a discrete model that approximates
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the continuous behavior. We explain how this model is derived. Without loss of generality, let us

assume that the timeout duration 𝛿 is 𝑐Δ where 𝑐 is a positive integer.

Let 𝑥 be the time duration elapsed since the most recent reset call and 𝑦 = 𝑐Δ − 𝑥 . Then 𝑦 is a

continuous variable that decreases linearly as time flows. When 𝑦 reaches 0, the timer sends out a

timeout signal. Now instead of focusing on 𝑦, we consider its approximate value 𝑡 = ⌊𝑦/Δ⌋.
We observe that 𝑡 only changes discretely. If reset is called at timepoint 𝑇 , then before timepoint

𝑇 + Δ we have 𝑡 = 𝑐 − 1, and it decreases by 1 at timepoints 𝑇 + Δ,𝑇 + 2Δ, · · · . The timer sends out

its timeout signal at timepoint 𝑇 + 𝑐Δ.
Algorithm 4 The Discrete Timer Model

1: Assume timeout duration 𝛿 = 𝑐Δ.
2: initialize:
3: 𝑡𝑖𝑚𝑒𝑟_𝑒𝑛𝑎𝑏𝑙𝑒𝑑 ← 𝑡𝑟𝑢𝑒

4: 𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 ← 𝑐 − 1
5: upon 𝑅𝑒𝑠𝑒𝑡 ():
6: 𝑡𝑖𝑚𝑒𝑟_𝑒𝑛𝑎𝑏𝑙𝑒𝑑 ← 𝑡𝑟𝑢𝑒

7: 𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 ← 𝑐 − 1
8: upon 𝐸𝑙𝑎𝑝𝑠𝑒 ():
9: if 𝑡𝑖𝑚𝑒𝑟_𝑒𝑛𝑎𝑏𝑙𝑒𝑑 then
10: if 𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 > 0 then
11: 𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 ← 𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 − 1
12: else
13: 𝑡𝑖𝑚𝑒𝑟_𝑒𝑛𝑎𝑏𝑙𝑒𝑑 ← 𝑓 𝑎𝑙𝑠𝑒

14: 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 ()

We can picture the discrete changes

of 𝑡 as being triggered by an exter-

nal elapse signal. Formally, we make

the timer maintain an internal vari-

able 𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 . When reset is

called, it sets 𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 = 𝑐 − 1.

When it receives an elapse signal, it

decreases 𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 by 1. After

𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 reaches 0 and the elapse

signal is received again, it delivers a

timeout. Algorithm 4 shows the formal

pseudocode.

To use this model in liveness proofs,

we also have to specify its live traces. We

first formally characterize live traces of

a timer using timed traces:

Definition 4.1. A non-Zeno timed trace of a discrete timer is live if:

(1) Before GST, 𝑅𝑒𝑠𝑒𝑡 () and 𝐸𝑙𝑎𝑝𝑠𝑒 () can be called arbitrarily;

(2) Within the time interval [𝐺𝑆𝑇,𝐺𝑆𝑇 + Δ), either 𝑅𝑒𝑠𝑒𝑡 () or 𝐸𝑙𝑎𝑝𝑠𝑒 () is called at least once;

(3) After the first 𝑅𝑒𝑠𝑒𝑡 () or 𝐸𝑙𝑎𝑝𝑠𝑒 () event after GST, if an 𝐸𝑙𝑎𝑝𝑠𝑒 () event 𝑒 exists at timepoint

𝑡 , then there exists a 𝑅𝑒𝑠𝑒𝑡 () or 𝐸𝑙𝑎𝑝𝑠𝑒 () event 𝑒′ at timepoint 𝑡 − Δ, and between 𝑒, 𝑒′ there
is no other event in the trace;

(4) If a 𝑅𝑒𝑠𝑒𝑡 () or 𝐸𝑙𝑎𝑝𝑠𝑒 () event occurs at timepoint 𝑡 ≥ 𝐺𝑆𝑇 , and no event occurs within the

interval (𝑡, 𝑡 + Δ), then there exists a 𝑅𝑒𝑠𝑒𝑡 () or 𝐸𝑙𝑎𝑝𝑠𝑒 () event at timepoint 𝑡 + Δ.

To model the timer in our segmented trace formalism, we notice the following patterns:

Lemma 4.2. In a live timed trace of a timer, within each interval [𝑇,𝑇 +Δ) with𝑇 ≥ 𝐺𝑆𝑇 , we have:
(1) 𝐸𝑙𝑎𝑝𝑠𝑒 () is called at most once;
(2) After 𝑅𝑒𝑠𝑒𝑡 () is called 𝐸𝑙𝑎𝑝𝑠𝑒 () is not called;
(3) Either 𝐸𝑙𝑎𝑝𝑠𝑒 () or 𝑅𝑒𝑠𝑒𝑡 () is called at least once.

Proof : See Appendix B.
We thus combine Lemma 4.2 with Lemma 2.8 to define the live traces of a network system.

Definition 4.3. A segmented trace (𝜏0, 𝜏1, · · · ) of a network system is live if:

(1) 𝜏0 can be any valid finite trace;

(2) Each segment between 𝜏𝑖 and 𝜏𝑖+1 satisfies the patterns in Lemma 4.2 for each individual

timer object;

(3) Messages already sent in 𝜏𝑖 are delivered at least once in 𝜏𝑖+1, provided both the sender and

the recipient are non-faulty.
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𝑉𝑜𝑡𝑒 ≜𝐸𝑀𝑉𝑜𝑡𝑒 (N𝑖𝑑 ∗ N𝑟𝑜𝑢𝑛𝑑 ∗ N𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 ∗𝑀𝑒𝑡ℎ𝑜𝑑)
| 𝐶𝑉𝑜𝑡𝑒 (N𝑖𝑑 ∗ N𝑟𝑜𝑢𝑛𝑑 )

𝐶𝑎𝑐ℎ𝑒𝐶𝑒𝑟𝑡 ≜𝐸𝑀𝐶𝑒𝑟𝑡 (N𝑖𝑑 ∗ N𝑟𝑜𝑢𝑛𝑑 ∗ N𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 ∗𝑀𝑒𝑡ℎ𝑜𝑑 ∗ 𝐿𝑖𝑠𝑡 (𝐸𝑀𝑉𝑜𝑡𝑒))
| 𝐶𝐶𝑒𝑟𝑡 (N𝑖𝑑 ∗ N𝑟𝑜𝑢𝑛𝑑 ∗ 𝐿𝑖𝑠𝑡 (𝐶𝑉𝑜𝑡𝑒))

𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ≜𝐸𝑀𝑅𝑒𝑞(N𝑖𝑑 ∗ N𝑟𝑜𝑢𝑛𝑑 ∗ N𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 ∗𝑀𝑒𝑡ℎ𝑜𝑑 ∗𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡)
| 𝐸𝑀𝑅𝑒𝑞(N𝑖𝑑 ∗ N𝑟𝑜𝑢𝑛𝑑 ∗ N𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 ∗𝑀𝑒𝑡ℎ𝑜𝑑 ∗𝐶𝐶𝑒𝑟𝑡)
| 𝐶𝑅𝑒𝑞(N𝑖𝑑 ∗ N𝑟𝑜𝑢𝑛𝑑 ∗ 𝐸𝑀𝐶𝑒𝑟𝑡)

𝑇𝑖𝑚𝑒𝑜𝑢𝑡 ≜𝑇𝑖𝑚𝑒𝑜𝑢𝑡 (N𝑖𝑑 ∗ N𝑟𝑜𝑢𝑛𝑑 ∗𝑂𝑝𝑡𝑖𝑜𝑛(𝐸𝑀𝐶𝑒𝑟𝑡))
𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 ≜𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 (N𝑟𝑜𝑢𝑛𝑑 ∗ 𝐿𝑖𝑠𝑡 (𝑇𝑖𝑚𝑒𝑜𝑢𝑡))

Fig. 8. Message space of Jolteon.

4.2 Unpipelined Jolteon
In Gelashvili et al. [2022], the Jolteon consensus protocol was described in its pipelined form. Here

we consider an unpipelined form. The pipelined form is considered in Section 5 and Appendix D.

Message Space. As shown in Fig. 8, the message space of Jolteon consists of five kinds of messages,

which we call 𝑉𝑜𝑡𝑒 , 𝐶𝑎𝑐ℎ𝑒𝐶𝑒𝑟𝑡 , 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 , 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 , and 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 . Requests, votes, and cache

certificates are subdivided into 𝐸𝑀 type and 𝐶 type. This naming shows the correlation between

Jolteon and the ADO model. In Jolteon, 𝐸𝐶𝑎𝑐ℎ𝑒 and 𝑀𝐶𝑎𝑐ℎ𝑒 are created simultaneously in a

single phase, and 𝐸𝑀𝐶𝑒𝑟𝑡 serves as the certificate for these caches; 𝐶𝐶𝑎𝑐ℎ𝑒 is created in a second

phase, using 𝐶𝐶𝑒𝑟𝑡 as its certificate. In the original description [Gelashvili et al. 2022], 𝐶𝐶𝑒𝑟𝑡 and

𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 are called 𝑄𝐶 and 𝑇𝐶 respectively.

Constraints on Byzantine Processes. In theory, byzantine processes are allowed to send “any

message.” However, it is common practice to use cryptographic primitives such as digital signatures

to constrain their behaviors.We impose two constraints on byzantine processes, called cryptographic
constraint and semantic constraint.

1 Record node_state := {

2 node_local_round : nat;

3 node_local_rem_time : nat;

4 node_leader_phase : (* Enum type *);

5 node_voter_phase : (* Enum type *);

6 node_commit_round : nat;

7 node_recv_votes : list Vote;

8 node_recv_emcache : list EMCert;

9 node_recv_timeouts : list TimeoutMsg;

10 }

Fig. 9. State variables of non-faulty process.

As shown in Fig. 8, eachmessage except𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡

contains a sender ID field (𝑖𝑑). Also, some messages

may embed other messages, like 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 embed-

ding𝑇𝑖𝑚𝑒𝑜𝑢𝑡 messages. Our cryptographic constraint

takes a Dolev-Yao-like approach [Dolev and Yao 1983]:

byzantine participants may only fill their own IDs in

the sender field, and they may only embed already

existing messages; however, we give them access to

every existing message in the network, regardless of

whether they are intended recipients or not.

In addition to cryptographic validity, we enforce a

semantic validity rule. For each kind of message, we

define a decidable property on its content that must be satisfied. For example, a cache certificate

must embed a quorum of votes supporting that cache. Since these properties are decidable, the

non-faulty processes simply call the decision procedure and discard the message if the test fails.

This allows us to ignore messages that are not semantically valid, and simplify the proof. See

Appendix C for details.
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State Space. Fig. 9 shows a simplified view of the internal state of non-faulty processes. Although

proposers and voters are logically separate, they are implemented in the same process. The fieldmost

relevant to liveness is 𝑙𝑜𝑐𝑎𝑙_𝑟𝑜𝑢𝑛𝑑 , which dictates which round the process currently participates

in. The 𝑐𝑜𝑚𝑚𝑖𝑡_𝑟𝑜𝑢𝑛𝑑 field records the highest round in which the process has cast a commit vote

(𝐶𝑉𝑜𝑡𝑒). It corresponds to the 𝑞𝑐ℎ𝑖𝑔ℎ .𝑟 variable in the original description. The 𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 field

is the remaining time of the timer object, as discussed previously. The other fields are progress

indicators for leaders and voters, and buffers for received messages. Although the buffers are shown

as lists here, they are implemented as finite maps from process IDs to messages, and we keep only

one message per ID.

Algorithm 5 Unpipelined Jolteon Protocol

1: Assume 𝑙𝑜𝑐𝑎𝑙_𝑟𝑜𝑢𝑛𝑑 = 𝑟

2: ⊲ Invoke phase

3: as leader:
4: 𝑐𝑒𝑟𝑡 ← 𝐶𝐶𝑒𝑟𝑡 or 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 of round 𝑟 − 1
5: if 𝑐𝑒𝑟𝑡 is 𝐶𝐶𝑒𝑟𝑡 then
6: 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 ← 𝑟 − 1
7: else
8: 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 ← max𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ∈𝑐𝑒𝑟𝑡 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 .𝑒𝑚𝑐𝑒𝑟𝑡 .𝑟𝑜𝑢𝑛𝑑 (0 if 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 .𝑒𝑚𝑐𝑒𝑟𝑡 = ⊥)
9: Choose𝑚𝑒𝑡ℎ𝑜𝑑 from client requests

10: Broadcast 𝐸𝑀𝑅𝑒𝑞(𝑖𝑑, 𝑟, 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑,𝑚𝑒𝑡ℎ𝑜𝑑, 𝑐𝑒𝑟𝑡)
11: Collect 𝐸𝑀𝑉𝑜𝑡𝑒 (_, 𝑟 , 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑,𝑚𝑒𝑡ℎ𝑜𝑑) from a quorum of voters

12: 𝑒𝑚𝑐𝑒𝑟𝑡 ← 𝐸𝑀𝐶𝑒𝑟𝑡 (𝑖𝑑, 𝑟, 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑,𝑚𝑒𝑡ℎ𝑜𝑑, 𝑣𝑜𝑡𝑒𝑠)
13: as voter:
14: Wait for 𝐸𝑀𝑅𝑒𝑞(_, 𝑟 , 𝑝,𝑚, 𝑐𝑒𝑟𝑡)
15: Send 𝐸𝑀𝑉𝑜𝑡𝑒 (𝑖𝑑, 𝑟, 𝑝,𝑚)
16: ⊲ Commit phase

17: as leader:
18: Broadcast 𝐶𝑅𝑒𝑞(𝑖𝑑, 𝑟, 𝑒𝑚𝑐𝑒𝑟𝑡)
19: Collect 𝐶𝑉𝑜𝑡𝑒 (_, 𝑟 ) from a quorum of voters

20: 𝑐𝑐𝑒𝑟𝑡 ← 𝐶𝐶𝑒𝑟𝑡 (𝑖𝑑, 𝑟, 𝑣𝑜𝑡𝑒𝑠)
21: Send 𝑒𝑚𝑐𝑒𝑟𝑡, 𝑐𝑐𝑒𝑟𝑡 to external client and executors

22: as voter:
23: Wait for 𝐶𝑅𝑒𝑞(_, 𝑟 , 𝑒𝑚𝑐𝑒𝑟𝑡)
24: Store 𝑒𝑚𝑐𝑒𝑟𝑡 , set 𝑐𝑜𝑚𝑚𝑖𝑡_𝑟𝑜𝑢𝑛𝑑 to 𝑟

25: Send 𝐶𝑉𝑜𝑡𝑒 (𝑖𝑑, 𝑟 )
26: ⊲ Pacemaker

27: upon timeout:

28: 𝑐𝑒𝑟𝑡 ← 𝐸𝑀𝐶𝑒𝑟𝑡 of round 𝑐𝑜𝑚𝑚𝑖𝑡_𝑟𝑜𝑢𝑛𝑑,⊥ if never sent any 𝐶𝑉𝑜𝑡𝑒

29: Broadcast 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 (𝑙𝑜𝑐𝑎𝑙_𝑟𝑜𝑢𝑛𝑑, 𝑐𝑒𝑟𝑡)
30: upon receive a quorum of 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 with 𝑟𝑜𝑢𝑛𝑑 ≥ 𝑙𝑜𝑐𝑎𝑙_𝑟𝑜𝑢𝑛𝑑 :

31: Send 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 (𝑙𝑜𝑐𝑎𝑙_𝑟𝑜𝑢𝑛𝑑, 𝑡𝑖𝑚𝑒𝑜𝑢𝑡𝑠) to oneself and 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑙𝑜𝑐𝑎𝑙_𝑟𝑜𝑢𝑛𝑑 + 1)

Operation of Jolteon. Algorithm 5 is a summary of our implementation of Jolteon. Each round

has two phases, which we call Invoke and Commit. During the Invoke phase, the leader broadcasts

a request that contains a 𝐶𝐶𝑒𝑟𝑡 or 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 of the previous round, along with a client method
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of its own choice. This corresponds to a simultaneous pull and invoke in ADO. In the second phase

the leader rebroadcasts the votes received, and the voters store the method. This corresponds to a

push in ADO.

When a process receives a timeout signal from the timer, it broadcasts a 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 message

and no longer produces votes for the current round. The 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 message contains the current

𝑙𝑜𝑐𝑎𝑙_𝑟𝑜𝑢𝑛𝑑 . A quorum of 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 , each of round at least 𝑙𝑜𝑐𝑎𝑙_𝑟𝑜𝑢𝑛𝑑 (they do not need to be of

the same round), is used to build a 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 . Any non-faulty process that receives a 𝐶𝐶𝑒𝑟𝑡 or

𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 should forward it to the next leader. This ensures the leader will also enter the new

round within Δ. The pacemaker described in Algorithm 5 corresponds to part (c) of Fig. 1, which is

sufficient for our refinement proof. We also implemented a version with pacemaker improved to

part (d) of Fig. 1. See Appendix C for details.

The timer is reset when and only when the process increases its 𝑙𝑜𝑐𝑎𝑙_𝑟𝑜𝑢𝑛𝑑 . The process enters

round 𝑟 > 𝑙𝑜𝑐𝑎𝑙_𝑟𝑜𝑢𝑛𝑑 in one of the following situations:

(1) A 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 or 𝐶𝐶𝑒𝑟𝑡 of round 𝑟 − 1 is received;
(2) A valid 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 of round 𝑟 is received;

(3) A 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 message that embeds an 𝐸𝑀𝐶𝑒𝑟𝑡 with 𝑒𝑚𝑐𝑒𝑟𝑡 .𝑟𝑜𝑢𝑛𝑑 = 𝑟 is received.

4.3 Proving Safety and Liveness of Jolteon
We proved both the safety and liveness of Jolteon by constructing a refinement between Jolteon

and LiDO. The proof was done in three steps:

(1) We construct a refinement between Jolteon and ADO (Definition 3.2), which derives the

safety of Jolteon from the safety of ADO;

(2) For each network state 𝑧, we define its abstract pacemaker state, which consists of 𝑟𝑜𝑢𝑛𝑑 and

𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 , and prove that each network step either does not change these values or changes

them in accordance with one action of the abstract pacemaker; this proves that Jolteon refines

LiDO;

(3) We prove that all live traces of Jolteon (Definition 4.3) refine live traces of LiDO.

In Appendix C, we present the full details of the proof. Here we present the overall structure and

discuss some of its interesting details.

Layered Safety Refinement. The refinement mapping itself is straightforward to define. We map a

proposer broadcasting 𝐸𝑀𝑅𝑒𝑞 to calling 𝑃𝑢𝑙𝑙 at ADO level. Since 𝐸𝐶𝑎𝑐ℎ𝑒 and𝑀𝐶𝑎𝑐ℎ𝑒 are created

in a single phase, we map building 𝐸𝑀𝐶𝑒𝑟𝑡 to an atomic sequence of creating 𝐸𝐶𝑎𝑐ℎ𝑒 , calling

𝐼𝑛𝑣𝑜𝑘𝑒 , and creating𝑀𝐶𝑎𝑐ℎ𝑒 . Broadcasting 𝐶𝑅𝑒𝑞 and building 𝐶𝐶𝑒𝑟𝑡 are mapped to calling 𝑃𝑢𝑠ℎ

and building 𝐶𝐶𝑎𝑐ℎ𝑒 . If a proposer enters the next round without collecting enough votes for its

request, we map it to creating 𝑇𝐶𝑎𝑐ℎ𝑒 .

The hard part is to show that the image of every valid network trace is a valid ADO trace. It is

possible to prove this theorem in a single shot. However, the proof would be quite complex and

involve dozens of mutually dependent invariants. Instead, we introduced two intermediate layers

called Server and Voting (Fig. 4), which allowed us to reduce proof complexity by proving some

invariants on a simpler, more abstract layer. Each lower layer is a transition system that captures

more information about the network state but is also more deeply tied to implementation details.

The informal idea of safety proof is as follows. Each 𝐶𝑎𝑐ℎ𝑒𝐶𝑒𝑟𝑡 and 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 is backed by

a quorum of votes or timeouts. For every pair of a 𝐶𝐶𝑒𝑟𝑡 of round 𝑟 and a 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 of round

𝑟 ′ ≥ 𝑟 , at least one non-faulty voter has voted for both. The 𝐶𝑉𝑜𝑡𝑒 must have been produced

before the 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 . Hence, the highest 𝐸𝑀𝐶𝑒𝑟𝑡 embedded in the 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 must be of round

at least 𝑟 . Since the 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 of any 𝐸𝑀𝑅𝑒𝑞 of round 𝑟 ′ + 1 must come from either a 𝐶𝐶𝑒𝑟𝑡 or
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a 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 of round 𝑟 ′, we see that the new leader must observe all committed methods. We

now decompose the above argument, so that we only deal with one key invariant at a layer.

At Server layer, the events we capture are proposers building 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 and 𝐶𝑎𝑐ℎ𝑒𝐶𝑒𝑟𝑡 messages,

and the pacemaker building 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 messages. The proposers, as well as the pacemaker, are

modeled as threads running on a shared-memory system. Each thread can observe all existing

messages, and may atomically create a single new message. The invariant we enforce at this layer

is that for every pair of a 𝐶𝐶𝑒𝑟𝑡 of round 𝑟 and a 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 of round 𝑟 ′ ≥ 𝑟 , the 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡

must embed an 𝐸𝑀𝐶𝑒𝑟𝑡 of round at least 𝑟 .

At Voting layer, we additionally capture voters sending 𝑉𝑜𝑡𝑒 and 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 messages. Again,

the voters are threads on a shared-memory system and can observe all existing messages. We

enforce that non-faulty voters cannot make conflicting votes. This means they cannot make two

different 𝐸𝑀𝑉𝑜𝑡𝑒 in a single round, they cannot make 𝐶𝑉𝑜𝑡𝑒 of round 𝑟 after sending 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 of

round 𝑟 ′ ≥ 𝑟 , etc. It is then easy to prove that the Voting layer refines the Server layer, through the

quorum-overlap argument.

The Network layer implements the proposer, voter, and timer threads in our message-passing

model. The messages must now be explicitly delivered to each process. Each voter maintains its

own bookkeeping and decides whether to produce a vote upon receiving a request. To show that

the Network layer refines the Voting layer, we prove that whenever a voter decides to produce a

vote, the relevant safety invariant is respected.

A Subtle Safety Issue. Although the proof outlined above seems intuitive, there are many subtle

details. Here we present one example. Suppose that 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ) enters round 𝑟 by receiving a

quorum of timeouts of round 𝑟 − 1. According to Algorithm 5, it should find the highest 𝐸𝑀𝐶𝑒𝑟𝑡

embedded within the timeouts. It is possible that an 𝐸𝑀𝐶𝑒𝑟𝑡 of round 𝑟 +1 has already been created.

If so, a byzantine process could include it in a timeout of round 𝑟 . In this case, when the request

succeeds, the leader would have to set 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 = 𝑟 + 1, which violates ADO safety rules.

The above situation would not actually happen. The reason is that if an 𝐸𝑀𝐶𝑒𝑟𝑡 of round 𝑟 + 1
exists, then a quorum of voters have already entered round 𝑟+1, and so will not vote on the request of
round 𝑟 . However, this argument is not easy to formalize using invariants. Instead, we adopt a much

simpler solution: we make non-faulty processes reject𝑇𝑖𝑚𝑒𝑜𝑢𝑡 with 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 .𝑒𝑚𝑐𝑒𝑟𝑡 .𝑟 > 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 .𝑟 .

This ensures that in every valid 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 of round 𝑟 , the highest embedded 𝐸𝑀𝐶𝑒𝑟𝑡 can be of

round at most 𝑟 , which eliminates the difficult case described above.
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Fig. 10. Liveness of Jolteon

Liveness Refinement. Fig. 10 presents an overview

of our layered liveness proof. We first proved that

the pacemaker mechanism satisfies the protocol-

independent assumptions (Definition 3.3). Then we

decomposed the time allocated to each round into

3 steps. In the first step, the leader receives a 𝐶𝐶𝑒𝑟𝑡

or𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 from the previous round and enters

the new round. Then the leader completes the two

phases of a round. Each phase is further decomposed

into two stages: the voters receive the request, and

the leader receives the votes.

More specifically, we first define for each network state 𝑧 the corresponding abstract pacemaker

states 𝑟𝑜𝑢𝑛𝑑 (𝑧) and 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 (𝑧).

Definition 4.4. Let 𝐻 be the set of non-faulty processes. For each valid network state 𝑧, define:

(1) 𝑟𝑜𝑢𝑛𝑑 (𝑧) = max𝑝∈𝐻 𝑝.𝑙𝑜𝑐𝑎𝑙_𝑟𝑜𝑢𝑛𝑑 ;
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Table 1. Proof effort of unpipelined Jolteon, in lines of Coq.

Part Lines Purpose

LiDO Interface 321 Define LiDO object

Safety proof 272 Prove safety of LiDO

Server layer Add QCs/TCs into view

Spec 185

Invariants 56

Refinement 115

Voting layer Add votes/timeouts into view

Spec 353

Invariants 194

Refinement 275

Network layer Model the network system

Spec 939

Invariants 604

Refinement 693

Liveness proof Prove liveness refinement

Liveness of LiDO 357

Voting layer to LiDO layer 523

Network model to Voting layer 953

(2) 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 (𝑧) = min𝑝∈𝐻,𝑝.𝑙𝑜𝑐𝑎𝑙_𝑟𝑜𝑢𝑛𝑑=𝑟𝑜𝑢𝑛𝑑 (𝑧 ) 𝑝.𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 .

That is, we take 𝑟𝑜𝑢𝑛𝑑 (𝑧) to be the maximum round ever entered by any non-faulty process.

Among the processes currently participating in 𝑟𝑜𝑢𝑛𝑑 (𝑧), we take the minimum value of the timers’

remaining time as 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 (𝑧). It is easy to see that under this definition, the pacemaker simulates

a logical clock. We leave the details in Appendix C.

We then proved that the leader can commit a method within the allocated time. We present one

example of proving progress within a single round.

Lemma 4.5. Let 𝑧, 𝑧′ be the system states at timepoints 𝑇,𝑇 + Δ. If 𝑟𝑜𝑢𝑛𝑑 (𝑧) = 𝑟 , 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ) is
non-faulty and waits upon 𝑃𝑢𝑙𝑙 (𝑟 ), 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 (𝑧) ≥ 1, then in state 𝑧′ either there exists an 𝐸𝑀𝐶𝑒𝑟𝑡

of round 𝑟 , or all non-faulty voters have voted for the same 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 and𝑚𝑒𝑡ℎ𝑜𝑑 in round 𝑟 .

Proof : Since “there exists an 𝐸𝑀𝐶𝑒𝑟𝑡 of round 𝑟 in state 𝑧′” is a decidable property (by deciding

over every existing message in the state), we do a case analysis on it. If such an 𝐸𝑀𝐶𝑒𝑟𝑡 exists,

then we are done. If not, then the leader must still be waiting upon 𝑃𝑢𝑙𝑙 (𝑟 ). By the GST assumption,

the request message must have been delivered to all non-faulty voters.

We then look at the progress indicator of each non-faulty voter. Since 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 (𝑧) ≥ 1, none of

the non-faulty voters will timeout within Δ. Hence, when each voter receives the request, it will

send a vote, unless it has already received another 𝐸𝑀𝑅𝑒𝑞 or 𝐶𝑅𝑒𝑞. The latter case is impossible

since the non-faulty leaders do not send conflicting requests.

Proof Effort. Table 1 shows the proof effort for Jolteon. Defining the models and proving the

safety property of Jolteon took around 4,000 lines. Proving its liveness took around 1,800 lines.

5 PIPELINED JOLTEON
Pipelining is an optimization technique in consensus protocol design that reduces one phase from

each round. It was introduced in HotStuff [Yin et al. 2019] and adopted in several following works,

including Jolteon. It is, in fact, how Jolteon was originally presented.
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Pipelining works by merging the Commit phase of each round with the Invoke phase of the

next round. While pipelining improves latency when there are no byzantine faults [Yin et al.

2019], the fact that committing a method requires the cooperation of two consecutive leaders

weakens the liveness guarantee of the protocol. This issue has been studied in Giridharan et al.

[2023]. Nevertheless, in the 3𝑓 + 1 rotating-leader setting, one can show there must be at least two

consecutive non-faulty leaders by a counting argument. If every non-faulty leader is sandwiched

by byzantine leaders then the proportion of byzantine processes must be at least 1/2 instead of 1/3.
Verifying pipelined protocols is more challenging than unpipelined protocols. This is because the

liveness of pipelining is tied to the round change mechanism. Proving the liveness of each single

round is not enough. We also have to analyze the cooperation of consecutive leaders and potential

byzantine interference.

We have completed a safety and liveness proof of pipelined Jolteon. This shows our approach

can be applied to systems with non-trivial optimizations. The details of our implementation and

proof are in Appendix D. Here we present the modifications to the liveness proof.

We observe that the liveness of pipelined Jolteon essentially consists of two parts. First, each non-

faulty leader can create an𝑀𝐶𝑎𝑐ℎ𝑒 on its own. Second, under suitable conditions, two consecutive

non-faulty leaders can cooperate to commit the𝑀𝐶𝑎𝑐ℎ𝑒 .

The “suitable conditions” of the second part are a bit tricky. The first leader initiates pipelining by

sending its 𝐸𝑀𝐶𝑒𝑟𝑡 message to the second leader. On the other hand, the pacemaker may also send

a 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 to the second leader. To make pipelining successful, the second leader must receive

the 𝐸𝑀𝐶𝑒𝑟𝑡 before any𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 messages. We implement this by requiring that the first leader

must send its 𝐸𝑀𝐶𝑒𝑟𝑡 soon enough: when it sends out 𝐸𝑀𝐶𝑒𝑟𝑡 we must have 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 ≥ 1. This

implies that no𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 will be created within Δ, so the next leader must build its own request

using the received 𝐸𝑀𝐶𝑒𝑟𝑡 .

Our liveness theorem is as follows:

Theorem 5.1. In every infinite segmented trace of pipelined Jolteon, let 𝑟 = 𝑟𝑜𝑢𝑛𝑑 (𝜏0), then for
every 𝑟 ′ > 𝑟 such that both 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ′), 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ′ + 1) are non-faulty, eventually an 𝑀𝐶𝑎𝑐ℎ𝑒

and a 𝐶𝐶𝑎𝑐ℎ𝑒 of 𝑟 ′ are created.

Proof Effort. The safety proof effort remains almost the same. The liveness proof grew slightly

more complex and required around 2,000 lines.

6 EXPERIMENTAL EVALUATION
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Fig. 11. Latency measurements.

To show that our Coq specification is realistic and faithful

to runnable code, we extracted the network layer specifica-

tion of unpipelined Jolteon into executable OCaml code. The

code specifies messages to be exchanged among different

nodes and abstractions for sending and receiving messages

but lacks implementations of the network primitives and

the timer. We manually glued the network abstraction to

OCaml’s libraries that realize TCP/UDP-based communica-

tions through a shim layer and added a timer that triggers

timeout events when the round does not advance within a threshold. Still, the main logic comes

from the unmodified extracted code.

We evaluate the code on a research cloud with a four-node setting. Fig. 11 shows a series of

latency measurements to increment the round either by committing a method or by timing out.

Without any failed or Byzantine nodes, the system exhibits an average latency of 2.56 ms to commit

a request. With a single failed or Byzantine node that hinders making progress, it takes an average of
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4.45 ms to advance the round (timeout is set to 10 ms). The system is not optimized for performance

and does not include pipelining, but the experiment shows that our specification is realistic, the

code maintains liveness under failure, and the execution exhibits comparable performance (i.e., 1 ms

overhead under steady state) to other verified PBFT Rahli et al. [2018] and non-verified BFT-SmaRt

implementations [Bessani et al. 2014].

7 RELATEDWORK
Theoretical Solutions to Byzantine Consensus Liveness. Maintaining the liveness of byzantine

consensus protocols has been traditionally considered a difficult problem. The original PBFT thesis

[Castro 2001] did not give a formal liveness proof, although they had a semi-formal safety proof.

The problem is that byzantine participants may attempt to force an early round-change, and honest

participants need to correctly deal with the messages they send.

HotStuff [Yin et al. 2019] first proposed to use an independent component called pacemaker to

control round-change so that each round gets allocated sufficient time to commit methods. However,

the pacemaker of HotStuff is relatively unusual. The participants may enter new rounds without

observing QC or TC of previous rounds. Therefore, HotStuff had to use exponential backup to

ensure that, eventually, the participants would enter the same round. Its liveness dynamics are

difficult to analyze. Jolteon [Gelashvili et al. 2022] was then proposed as a variant of HotStuff that

reverts to a pacemaker with the all-to-all broadcast of timeout messages. The Cogsworth pacemaker

[Naor et al. 2021] was proposed as a way to avoid all-to-all broadcast needed in Jolteon. It has been

incorporated into a new version of HotStuff [Malkhi and Nayak 2023]. While our work has only

inspected the pacemaker of Jolteon, we expect that most of the pacemaker designs in the literature

can be captured and analyzed by our approach.

Bravo et al. [2022] proposed a theory of synchronizers, which are objects that control the round-

change of each process but are completely independent of other parts of the protocol. They showed

that it can applied to a number of different protocol designs. However, synchronizers are not

band-aids that magically repair broken protocols. To apply the synchronizer to a protocol requires

changes to the protocol itself, and indeed a large part of Bravo et al. [2022] is showing that the

modified protocol still satisfies safety and liveness. This shows that synchronizers do not replace

the need for a formal framework for safety and liveness proofs. We also observe that it is unclear

how to apply synchronizers to pipelined protocols, as pipelining relies on a fast path for round

change, which synchronizers currently do not provide.

Verifying Safety and Liveness of Consensus Protocols. A large number of frameworks for verifying

the correctness of consensus protocols have been proposed in the literature. Figure 2 gives a

comparison between our work and existing approaches. The figure shows a clear pattern: verifying

safety is relatively easy, but verifying liveness is a lot harder. Especially for byzantine consensus

protocols, all existing liveness results only work for fully asynchronous or synchronous protocols.

A number of projects have aimed at verifying the safety properties of byzantine consensus

protocols similar to HotStuff [Yin et al. 2019]. These include Velisarios [Rahli et al. 2018], Carr

et al. [2022], and QTree [Cirisci et al. 2023]. In particular, the Velisarios proof uses a logic-of-events

approach, which constructs a causal ordering of events and proves safety by induction on this

ordering, with which our safety refinement proof bears similarity. However, recording only causal

ordering does not provide enough information to establish liveness. For partially synchronous

protocols, one also needs temporal ordering, which our segmented-trace formalism addresses.

Carr et al. [2022] suggests that one proves a weak version of liveness called plausible liveness,
which essentially means that one can always extend any valid execution to commit some data.

This notion is inadequate in an adversarial environment: the byzantine adversary may actively
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Table 2. Comparison between consensus verification projects.
*: The liveness proof does not cover partially-synchronous protocols.

Byzantine Safety Liveness Executable Refinement

IronFleet [Hawblitzel et al. 2015] × ✓ ✓ ✓ ✓
Verdi [Wilcox et al. 2015] × ✓ × ✓ ✓
PSync [Drăgoi et al. 2016] × ✓ ✓ ✓ ✓

Taube et al. [2018] × ✓ × ✓ ×
Velisarios [Rahli et al. 2018] ✓ ✓ × ✓ ✓
Adore [Honoré et al. 2022] × ✓ × ✓ ✓

Carr et al. [2022] ✓ ✓ × × ×
QTree [Cirisci et al. 2023] ✓ ✓ × × ✓

Padon et al. [2017] × ✓ ✓* × ×
Berkovits et al. [2019] ✓ ✓ ✓* × ×
Losa and Dodds [2020] ✓ ✓ ✓* × ×
Bertrand et al. [2022] ✓ ✓ ✓* × ×

LiDO (this work) ✓ ✓ ✓ ✓ ✓

delay successful commit. Another issue is the protocol may selectively ignore certain requests. Our

notion of liveness guarantees every proposer may always commit some method of its own choice.

IronFleet [Hawblitzel et al. 2015] and PSync [Drăgoi et al. 2016] are the only results we are aware

of that cover liveness and can be connected to executable code. Both works only cover benign

consensus. PSync uses the Heard-Of model, and the verified code is coupled to a pacemaker. The

pacemaker component is not mechanically verified. IronFleet explicitly models timers, heartbeats,

and other factors. The model is very comprehensive, but the accompanying proofs are equally

verbose. Our methodology results in proofs with a more transparent structure and better reusability.

Padon et al. [2017] proposed a liveness-to-safety reduction approach that allows verifying the

liveness of protocols in first-order logic. It has been extended to byzantine protocols in Berkovits et al.

[2019]; Losa and Dodds [2020], but has so far not been applied to partially synchronous protocols.

Our work has shown that it is easy to both capture network dynamics using safety properties,

and decompose SMR liveness into safety requirements on the network. However, automating our

proofs in model checkers is future work.

AdoB [Honoré et al. 2024] is a recent variant of ADO that supports reasoning about benign and

byzantine faults in a unified way. The main difference between AdoB and LiDO is that AdoB is

an atomic model, whereas LiDO defines a concurrent but linearizable object. This has significant

implications for liveness reasoning. Refinement proofs for AdoB linearize each valid network trace

into a valid atomic trace of AdoB. In doing so, it reorders network events and eliminates important

temporal information. For example, even if the trace 𝜏1 is a prefix of 𝜏2, there is no general relation

between their linearized traces 𝜏 ′
1
and 𝜏 ′

2
. Consequently, although AdoB claims to have a liveness

proof, it does not support liveness refinement like our LiDO model does: live traces of the network

model cannot be directly correlated to live traces of AdoB.

Consensus Beyond Partial Synchrony. In this work, we have only considered mechanizing live-

ness proof of partially synchronous protocols with a fixed set of participants. In practice, public

blockchains often demand byzantine consensus algorithms supporting dynamic or open member-

ship. There are a number of works proposing protocol designs that work under this new setting

[Buterin et al. 2020; D’Amato et al. 2023]. Also, Thomsen and Spitters [2021] have mechanized a

liveness proof for Nakamoto-style Proof-of-Stake (PoS) consensus under a synchronous setting. In

the future, we plan to extend our theory to cover open-membership protocols.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.



LiDO: Linearizable Byzantine Distributed Objects with Refinement-Based Liveness Proofs 193:23

ACKNOWLEDGMENTS
We would like to thank our anonymous reviewers for their helpful feedback. This material is

based upon work supported in part by NSF grants 2019285, 1763399, 2313433, and 2118851, and

by the Defense Advanced Research Projects Agency (DARPA) and Naval Information Warfare

Center Pacific (NIWC Pacific) under Contract No. N66001-21-C-4018. Any opinions, findings, and

conclusions or recommendations expressed in this material are those of the authors and do not

necessarily reflect the views of the funding agencies.

ARTIFACT-AVAILABILITY STATEMENT
The artifact accompanying this paper is available on Zenodo [Qiu et al. 2024].

REFERENCES
Mark Abspoel, Thomas Attema, and Matthieu Rambaud. 2021. Brief Announcement: Malicious Security Comes for Free

in Consensus with Leaders. In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing (Virtual

Event, Italy) (PODC’21). Association for Computing Machinery, New York, NY, USA, 195–198. https://doi.org/10.1145/

3465084.3467953

Idan Berkovits, Marijana Lazić, Giuliano Losa, Oded Padon, and Sharon Shoham. 2019. Verification of Threshold-Based

Distributed Algorithms by Decomposition to Decidable Logics. In Computer Aided Verification, Isil Dillig and Serdar

Tasiran (Eds.). Springer International Publishing, Cham, 245–266. https://doi.org/10.1007/978-3-030-25543-5_15

Nathalie Bertrand, Vincent Gramoli, Igor Konnov, Marijana Lazić, Pierre Tholoniat, and Josef Widder. 2022. Holistic

Verification of Blockchain Consensus. In 36th International Symposium on Distributed Computing (DISC 2022) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 246), Christian Scheideler (Ed.). Schloss Dagstuhl – Leibniz-Zentrum

für Informatik, Dagstuhl, Germany, 10:1–10:24. https://doi.org/10.4230/LIPIcs.DISC.2022.10

Alysson Bessani, João Sousa, and Eduardo E. P. Alchieri. 2014. State Machine Replication for the Masses with BFT-SMaRt.

In Proceedings of the IEEE/IFIP International Conference on Dependable Systems and Networks (DSN ’14). IEEE Computer

Society, Washington, DC, USA, 355–362. https://doi.org/10.1109/DSN.2014.43

Manuel Bravo, Gregory V. Chockler, and Alexey Gotsman. 2022. Liveness and Latency of Byzantine State-Machine

Replication. In 36th International Symposium on Distributed Computing, DISC 2022, October 25-27, 2022, Augusta, Georgia,
USA (LIPIcs, Vol. 246), Christian Scheideler (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 12:1–12:19. https:

//doi.org/10.4230/LIPIcs.DISC.2022.12

Vitalik Buterin, Diego Hernandez, Thor Kamphefner, Khiem Pham, Zhi Qiao, Danny Ryan, Juhyeok Sin, Ying Wang, and

Yan X Zhang. 2020. Combining GHOST and Casper. arXiv:2003.03052 [cs.CR]

Harold Carr, Christa Jenkins, Mark Moir, Victor Cacciari Miraldo, and Lisandra Silva. 2022. Towards Formal Verification

of HotStuff-Based Byzantine Fault Tolerant Consensus in Agda. In NASA Formal Methods, Jyotirmoy V. Deshmukh, Klaus

Havelund, and Ivan Perez (Eds.). Springer International Publishing, Cham, 616–635. https://doi.org/10.1007/978-3-031-

06773-0_33

Miguel Castro. 2001. Practical Byzantine Fault Tolerance. Ph. D. Dissertation. Massachusetts Institute of Technology.

https://www.microsoft.com/en-us/research/wp-content/uploads/2017/01/thesis-mcastro.pdf

Berk Cirisci, Constantin Enea, and Suha Orhun Mutluergil. 2023. Quorum Tree Abstractions of Consensus Protocols.

In Programming Languages and Systems, Thomas Wies (Ed.). Springer Nature Switzerland, Cham, 337–362. https:

//doi.org/10.1007/978-3-031-30044-8_13

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, Jovan Komatovic, and Manuel

Vidigueira. 2022. Byzantine Consensus Is Θ(𝑛2 ) : The Dolev-Reischuk Bound Is Tight Even in Partial Synchrony!. In 36th
International Symposium on Distributed Computing (DISC 2022) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 246), Christian Scheideler (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 14:1–14:21.

https://doi.org/10.4230/LIPIcs.DISC.2022.14

Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse. 2023. Goldfish: No More Attacks on Ethereum?!

arXiv:2209.03255 [cs.CR]

D. Dolev and A. Yao. 1983. On the security of public key protocols. IEEE Transactions on Information Theory 29, 2 (1983),

198–208. https://doi.org/10.1109/TIT.1983.1056650

Cezara Drăgoi, Thomas A. Henzinger, and Damien Zufferey. 2016. PSync: A Partially Synchronous Language for Fault-

Tolerant Distributed Algorithms. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (St. Petersburg, FL, USA) (POPL ’16). Association for Computing Machinery, New York, NY,

USA, 400–415. https://doi.org/10.1145/2837614.2837650

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

https://doi.org/10.1145/3465084.3467953
https://doi.org/10.1145/3465084.3467953
https://doi.org/10.1007/978-3-030-25543-5_15
https://doi.org/10.4230/LIPIcs.DISC.2022.10
https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.4230/LIPIcs.DISC.2022.12
https://doi.org/10.4230/LIPIcs.DISC.2022.12
https://arxiv.org/abs/2003.03052
https://doi.org/10.1007/978-3-031-06773-0_33
https://doi.org/10.1007/978-3-031-06773-0_33
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/01/thesis-mcastro.pdf
https://doi.org/10.1007/978-3-031-30044-8_13
https://doi.org/10.1007/978-3-031-30044-8_13
https://doi.org/10.4230/LIPIcs.DISC.2022.14
https://arxiv.org/abs/2209.03255
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1145/2837614.2837650


193:24 Longfei Qiu, Yoonseung Kim, Ji-Yong Shin, Jieung Kim, Wolf Honoré, and Zhong Shao

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the Presence of Partial Synchrony. Journal of the
ACM 35, 2 (April 1988), 288–323. https://doi.org/10.1145/42282.42283

Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman, and Zhuolun Xiang. 2022. Jolteon and Ditto:

Network-Adaptive Efficient Consensus with Asynchronous Fallback. In Financial Cryptography and Data Security, Ittay
Eyal and Juan Garay (Eds.). Springer International Publishing, Cham, 296–315. https://doi.org/10.1007/978-3-031-18283-

9_14

Neil Giridharan, Florian Suri-Payer, MatthewDing, Heidi Howard, Ittai Abraham, and Natacha Crooks. 2023. BeeGees: Stayin’

Alive in Chained BFT. In Proceedings of the 2023 ACM Symposium on Principles of Distributed Computing (Orlando, FL, USA)
(PODC ’23). Association for ComputingMachinery, New York, NY, USA, 233–243. https://doi.org/10.1145/3583668.3594572

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath Setty, and Brian

Zill. 2015. IronFleet: Proving Practical Distributed Systems Correct. In Proceedings of the 25th Symposium on Operating
Systems Principles (Monterey, California) (SOSP ’15). Association for Computing Machinery, New York, NY, USA, 1–17.

https://doi.org/10.1145/2815400.2815428

Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects. ACM
Trans. Program. Lang. Syst. 12, 3 (jul 1990), 463–492. https://doi.org/10.1145/78969.78972

Wolf Honoré, Jieung Kim, Ji-Yong Shin, and Zhong Shao. 2021. Much ADO about Failures: A Fault-Aware Model for

Compositional Verification of Strongly Consistent Distributed Systems. Proc. ACM Program. Lang. 5, OOPSLA, Article 97
(oct 2021), 31 pages. https://doi.org/10.1145/3485474

Wolf Honoré, Longfei Qiu, Yoonseung Kim, Ji-Yong Shin, Jieung Kim, and Zhong Shao. 2024. AdoB: Bridging Benign and

Byzantine Consensus with Atomic Distributed Objects. Proc. ACM Program. Lang. 8, OOPSLA1, Article 109 (apr 2024),
30 pages. https://doi.org/10.1145/3649826

Wolf Honoré, Ji-Yong Shin, Jieung Kim, and Zhong Shao. 2022. Adore: Atomic Distributed Objects with Certified Recon-

figuration. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and
Implementation (San Diego, CA, USA) (PLDI 2022). Association for Computing Machinery, New York, NY, USA, 379–394.

https://doi.org/10.1145/3519939.3523444

Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. 2020. Order-Fairness for Byzantine Consensus. In Advances in
Cryptology – CRYPTO 2020, Daniele Micciancio and Thomas Ristenpart (Eds.). Springer International Publishing, Cham,

451–480. https://doi.org/10.1007/978-3-030-56877-1_16

Morten Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch, Simon Oddershede Gregersen, and Lars Birkedal. 2020.

Aneris: A Mechanised Logic for Modular Reasoning about Distributed Systems. In Programming Languages and Systems,
Peter Müller (Ed.). Springer International Publishing, Cham, 336–365. https://doi.org/10.1007/978-3-030-44914-8_13

Klaus Kursawe. 2020. Wendy, the Good Little Fairness Widget: Achieving Order Fairness for Blockchains. In Proceedings of
the 2nd ACM Conference on Advances in Financial Technologies (New York, NY, USA) (AFT ’20). Association for Computing

Machinery, New York, NY, USA, 25–36. https://doi.org/10.1145/3419614.3423263

Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput. Syst. 16, 2 (may 1998), 133–169. https://doi.org/10.

1145/279227.279229

Leslie Lamport. 2005. Real Time is Really Simple. Technical ReportMSR-TR-2005-30. 72 pages. https://www.microsoft.com/en-

us/research/publication/real-time-is-really-simple/

Andrew Lewis-Pye. 2022. Quadratic worst-case message complexity for State Machine Replication in the partial synchrony

model. CoRR abs/2201.01107 (2022). arXiv:2201.01107

Giuliano Losa and Mike Dodds. 2020. On the Formal Verification of the Stellar Consensus Protocol. In 2nd Workshop
on Formal Methods for Blockchains (FMBC 2020) (OpenAccess Series in Informatics (OASIcs), Vol. 84), Bruno Bernardo

and Diego Marmsoler (Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 9:1–9:9. https:

//doi.org/10.4230/OASIcs.FMBC.2020.9

Dahlia Malkhi and Kartik Nayak. 2023. Extended Abstract: HotStuff-2: Optimal Two-Phase Responsive BFT. Cryptology

ePrint Archive, Paper 2023/397. https://eprint.iacr.org/2023/397

Oded Naor, Mathieu Baudet, Dahlia Malkhi, and Alexander Spiegelman. 2021. Cogsworth: Byzantine View Synchronization.

Cryptoeconomic Systems 1, 2 (oct 22 2021). https://doi.org/10.21428/58320208.08912a03

Oded Naor and Idit Keidar. 2020. Expected Linear Round Synchronization: The Missing Link for Linear Byzantine SMR.

In 34th International Symposium on Distributed Computing (DISC 2020) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 179), Hagit Attiya (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 26:1–26:17.

https://doi.org/10.4230/LIPIcs.DISC.2020.26

Peter W. O’Hearn. 2007. Resources, concurrency, and local reasoning. Theoretical Computer Science 375, 1 (2007), 271–307.
https://doi.org/10.1016/j.tcs.2006.12.035 Festschrift for John C. Reynolds’s 70th birthday.

Oded Padon, Jochen Hoenicke, Giuliano Losa, Andreas Podelski, Mooly Sagiv, and Sharon Shoham. 2017. Reducing

Liveness to Safety in First-Order Logic. Proc. ACM Program. Lang. 2, POPL, Article 26 (dec 2017), 33 pages. https:

//doi.org/10.1145/3158114

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

https://doi.org/10.1145/42282.42283
https://doi.org/10.1007/978-3-031-18283-9_14
https://doi.org/10.1007/978-3-031-18283-9_14
https://doi.org/10.1145/3583668.3594572
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/3485474
https://doi.org/10.1145/3649826
https://doi.org/10.1145/3519939.3523444
https://doi.org/10.1007/978-3-030-56877-1_16
https://doi.org/10.1007/978-3-030-44914-8_13
https://doi.org/10.1145/3419614.3423263
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://www.microsoft.com/en-us/research/publication/real-time-is-really-simple/
https://www.microsoft.com/en-us/research/publication/real-time-is-really-simple/
https://arxiv.org/abs/2201.01107
https://doi.org/10.4230/OASIcs.FMBC.2020.9
https://doi.org/10.4230/OASIcs.FMBC.2020.9
https://eprint.iacr.org/2023/397
https://doi.org/10.21428/58320208.08912a03
https://doi.org/10.4230/LIPIcs.DISC.2020.26
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1145/3158114
https://doi.org/10.1145/3158114


LiDO: Linearizable Byzantine Distributed Objects with Refinement-Based Liveness Proofs 193:25

Longfei Qiu, Yoonseung Kim, Ji-Yong Shin, Jieung Kim, Wolf Honoré, and Zhong Shao. 2024. Artifact for PLDI 2024 paper #
290: LiDO: Linearizable Byzantine Distributed Objects with Refinement-Based Liveness Proofs. Yale University, New Haven,

USA. https://doi.org/10.5281/zenodo.10909272

Vincent Rahli, Ivana Vukotic, Marcus Völp, and Paulo Esteves-Verissimo. 2018. Velisarios: Byzantine Fault-Tolerant Protocols

Powered by Coq. In Programming Languages and Systems, Amal Ahmed (Ed.). Springer International Publishing, Cham,

619–650. https://doi.org/10.1007/978-3-319-89884-1_22

Fred B. Schneider. 1990. Implementing Fault-Tolerant Services Using the State Machine Approach: A Tutorial. ACM Comput.
Surv. 22, 4 (dec 1990), 299–319. https://doi.org/10.1145/98163.98167

Ilya Sergey, James R. Wilcox, and Zachary Tatlock. 2017. Programming and Proving with Distributed Protocols. Proc. ACM
Program. Lang. 2, POPL, Article 28 (dec 2017), 30 pages. https://doi.org/10.1145/3158116

Upamanyu Sharma, Ralf Jung, Joseph Tassarotti, Frans Kaashoek, and Nickolai Zeldovich. 2023. Grove: A Separation-Logic

Library for Verifying Distributed Systems. In Proceedings of the 29th Symposium on Operating Systems Principles (Koblenz,
Germany) (SOSP ’23). Association for Computing Machinery, New York, NY, USA, 113–129. https://doi.org/10.1145/

3600006.3613172

Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, Oded Padon, Mooly Sagiv, Sharon Shoham, James R. Wilcox, and Doug

Woos. 2018. Modularity for Decidability of Deductive Verification with Applications to Distributed Systems. SIGPLAN
Not. 53, 4 (jun 2018), 662–677. https://doi.org/10.1145/3296979.3192414

Søren Eller Thomsen and Bas Spitters. 2021. Formalizing Nakamoto-Style Proof of Stake. In 2021 IEEE 34th Computer Security
Foundations Symposium (CSF). 1–15. https://doi.org/10.1109/CSF51468.2021.00042

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and Thomas Anderson. 2015.

Verdi: A Framework for Implementing and Formally Verifying Distributed Systems. SIGPLAN Not. 50, 6 (jun 2015),

357–368. https://doi.org/10.1145/2813885.2737958

Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D. Ernst, and Thomas Anderson. 2016. Planning for

Change in a Formal Verification of the Raft Consensus Protocol. In Proceedings of the 5th ACM SIGPLAN Conference on
Certified Programs and Proofs (St. Petersburg, FL, USA) (CPP 2016). Association for Computing Machinery, New York, NY,

USA, 154–165. https://doi.org/10.1145/2854065.2854081

Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abraham. 2019. HotStuff: BFT Consensus

with Linearity and Responsiveness. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing
(Toronto ON, Canada) (PODC ’19). Association for Computing Machinery, New York, NY, USA, 347–356. https:

//doi.org/10.1145/3293611.3331591

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

https://doi.org/10.5281/zenodo.10909272
https://doi.org/10.1007/978-3-319-89884-1_22
https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/3158116
https://doi.org/10.1145/3600006.3613172
https://doi.org/10.1145/3600006.3613172
https://doi.org/10.1145/3296979.3192414
https://doi.org/10.1109/CSF51468.2021.00042
https://doi.org/10.1145/2813885.2737958
https://doi.org/10.1145/2854065.2854081
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3293611.3331591


193:26 Longfei Qiu, Yoonseung Kim, Ji-Yong Shin, Jieung Kim, Wolf Honoré, and Zhong Shao

A SAFETY THEORY OF ADO
Here we present the safety properties of the ADO model. The ADO model has been defined in

Section 3.

A.1 Explanation of the Cache Creation Preconditions
We first explain the cache creation preconditions shown in Fig. 6.

ECache Creation. An 𝐸𝐶𝑎𝑐ℎ𝑒 of round 𝑟 represents the consensus log branch that the leader of

round 𝑟 receives when it enters round 𝑟 . The 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 variable represents the round number

of the latest entry of that branch. The conditions are:

• 𝑝 < 𝑟 : The log branch must come from a previous round. It cannot come from a later round,

otherwise there would be cycles in the cache tree.

• 𝑝 = 0 ∨ Σ[𝑝] .𝑚𝑐𝑎𝑐ℎ𝑒 ≠ ⊥: Either the leader receives an empty log (represented by 𝑝 = 0), or

the latest entry is a valid𝑀𝐶𝑎𝑐ℎ𝑒 .

• Σ[𝑟 ] .𝑒𝑐𝑎𝑐ℎ𝑒 = ⊥: There can be only one 𝐸𝐶𝑎𝑐ℎ𝑒 per round.

• ∀𝑟 ′, 𝑟 ′ < 𝑟 ⇒ (𝑝 ≥ 𝑟 ′ ∨ Σ[𝑟 ′] .𝑐𝑐𝑎𝑐ℎ𝑒 = ⊥): For every previous round 𝑟 ′, either no 𝐶𝐶𝑎𝑐ℎ𝑒
was created in round 𝑟 ′, or the latest entry of the consensus log branch is from at least round

𝑟 ′. This ensures the branch will always contain all committed methods in previous rounds.

MCache Creation. An𝑀𝐶𝑎𝑐ℎ𝑒 of round 𝑟 represents the method proposed by the leader of round

𝑟 in that round. The conditions are:

• Σ[𝑟 ] .𝑒𝑐𝑎𝑐ℎ𝑒 ≠ ⊥: The leader must have already received a consensus log branch.

• Σ[𝑟 ] .𝑚𝑐𝑎𝑐ℎ𝑒 = ⊥: There can be only one𝑀𝐶𝑎𝑐ℎ𝑒 per round.

CCache Creation. A 𝐶𝐶𝑎𝑐ℎ𝑒 of round 𝑟 represents that the method proposed in round 𝑟 has been

successfully committed, along with all previous methods in that branch of consensus log. The

conditions are:

• Σ[𝑟 ] .𝑚𝑐𝑎𝑐ℎ𝑒 ≠ ⊥: The leader must have already proposed a method in round 𝑟 .

• ∀𝑟 ′, 𝑟 ′ > 𝑟 ⇒ (Σ[𝑟 ′] .𝑒𝑐𝑎𝑐ℎ𝑒 = ⊥ ∨ Σ[𝑟 ′] .𝑒𝑐𝑎𝑐ℎ𝑒.𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 ≥ 𝑟 ): For every future round

𝑟 ′, either the leader of round 𝑟 ′ has not yet entered round 𝑟 ′ and received a consensus log

branch, or the latest entry of the received branch is from at least round 𝑟 . This ensures that

we do not retroactively commit methods that are not seen by future leaders, thus creating a

fork situation.

A.2 Some Simple Lemmas of ADO
We state a few simple invariants about the cache tree Σ. They can be easily proved by induction on

the cache creation trace.

Lemma A.1. Once a cache node 𝑐 is added to Σ, it is never removed.

Lemma A.2. If a cache node 𝑐 is in Σ, then 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑐) ∈ Σ.

Lemma A.3. Every 𝐸𝐶𝑎𝑐ℎ𝑒 in Σ satisfies 𝑒𝑐𝑎𝑐ℎ𝑒.𝑟𝑜𝑢𝑛𝑑 > 𝑒𝑐𝑎𝑐ℎ𝑒.𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 .

Lemma A.4. Every cache node 𝑐 in Σ satisfies 𝑐.𝑟𝑜𝑢𝑛𝑑 ≥ 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑐).𝑟𝑜𝑢𝑛𝑑 , taking 𝑅𝑜𝑜𝑡 .𝑟𝑜𝑢𝑛𝑑 = 0.

Lemma A.5. There is at most one 𝐸𝐶𝑎𝑐ℎ𝑒 , one𝑀𝐶𝑎𝑐ℎ𝑒 , and one 𝐶𝐶𝑎𝑐ℎ𝑒 in each round.

Lemma A.6. If Σ[𝑟 ] .𝑐𝑐𝑎𝑐ℎ𝑒 ≠ ⊥, then for every 𝑟 ′ > 𝑟 , if Σ[𝑟 ′] .𝑒𝑐𝑎𝑐ℎ𝑒 ≠ ⊥,
then Σ[𝑟 ′] .𝑒𝑐𝑎𝑐ℎ𝑒.𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 ≥ 𝑟 .

Lemma A.7. The cache tree Σ is always well-defined.
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A.3 Lemmas on the Cache Tree
For any two cache nodes 𝑐1, 𝑐2 ∈ Σ, we say 𝑐2 is a descendant of 𝑐1, if there exists a path from 𝑐1 to

𝑐2 in the cache tree, including the case 𝑐1 = 𝑐2.

We now make some simple observations:

Lemma A.8. If 𝑐2 is a descendant of 𝑐1, then 𝑐1.𝑟𝑜𝑢𝑛𝑑 ≤ 𝑐2 .𝑟𝑜𝑢𝑛𝑑 .

Lemma A.9. If 𝑐3 is a descendant of both 𝑐1, 𝑐2, then either 𝑐2 is a descendant of 𝑐1, or 𝑐1 is a
descendant of 𝑐2.

A.4 The ADO Safety Invariant
The key invariant maintained by the ADO object is the following:

Lemma A.10. If Σ[𝑟 ] .𝑐𝑐𝑎𝑐ℎ𝑒 ≠ ⊥, then every cache node 𝑐 with 𝑐.𝑟𝑜𝑢𝑛𝑑 > 𝑟 is a descendant of
Σ[𝑟 ] .𝑚𝑐𝑎𝑐ℎ𝑒 .

Proof : By induction on 𝑐.𝑟𝑜𝑢𝑛𝑑 . Since the parent of an𝑀𝐶𝑎𝑐ℎ𝑒 is the 𝐸𝐶𝑎𝑐ℎ𝑒 of the same round,

and the parent of a 𝐶𝐶𝑎𝑐ℎ𝑒 is the 𝑀𝐶𝑎𝑐ℎ𝑒 of the same round, we only need to care about the

𝐸𝐶𝑎𝑐ℎ𝑒 of each round.

In the base case 𝑐.𝑟𝑜𝑢𝑛𝑑 = 𝑟 + 1, then we must have 𝑟 ≤ 𝑐.𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 < 𝑟 + 1, which means

𝑐.𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 = 𝑟 and 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑐) = Σ[𝑟 ] .𝑚𝑐𝑎𝑐ℎ𝑒 .

In the inductive case, we still have 𝑟 ≤ 𝑐.𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 < 𝑐.𝑟𝑜𝑢𝑛𝑑 . Let 𝑐′ = Σ[𝑐.𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑] .𝑚𝑐𝑎𝑐ℎ𝑒 ,

then 𝑐 is a descendant of 𝑐′, and by inductive hypothesis 𝑐′ is a descendant of Σ[𝑟 ] .𝑚𝑐𝑎𝑐ℎ𝑒 , so 𝑐 is

a descendant of Σ[𝑟 ] .𝑚𝑐𝑎𝑐ℎ𝑒 .

We are now ready to prove the safety theorem of ADO:

Lemma A.11. In the cache tree there exists a path starting from 𝑅𝑜𝑜𝑡 and contains all committed
𝑀𝐶𝑎𝑐ℎ𝑒 .

Proof : Let 𝑐1, 𝑐2, · · · be the list of all committed𝑀𝐶𝑎𝑐ℎ𝑒 in Σ, ordered by round number. Since

the cache tree is well-formed, there exists a path from 𝑅𝑜𝑜𝑡 to 𝑐1. Then we only have to show that

there always exists a path from 𝑐𝑖 to 𝑐𝑖+1.
Since both 𝑐𝑖 , 𝑐𝑖+1 are committed, there exists two 𝐶𝐶𝑎𝑐ℎ𝑒 nodes 𝑑𝑖 , 𝑑𝑖+1, such that 𝑑𝑖 is a descen-

dant of 𝑐𝑖 , and 𝑑𝑖+1 is a descendant of 𝑐𝑖+1.
If 𝑑𝑖 .𝑟𝑜𝑢𝑛𝑑 = 𝑑𝑖+1.𝑟𝑜𝑢𝑛𝑑 then 𝑑𝑖 is a descendant of both 𝑐𝑖 , 𝑐𝑖+1. Since 𝑐𝑖 .𝑟𝑜𝑢𝑛𝑑 < 𝑐𝑖+1.𝑟𝑜𝑢𝑛𝑑 , we

infer that 𝑐𝑖+1 is a descendant of 𝑐𝑖 .
Otherwise, we have either 𝑑𝑖 .𝑟𝑜𝑢𝑛𝑑 < 𝑑𝑖+1 .𝑟𝑜𝑢𝑛𝑑 , or 𝑑𝑖 .𝑟𝑜𝑢𝑛𝑑 > 𝑑𝑖+1 .𝑟𝑜𝑢𝑛𝑑 . If 𝑑𝑖 .𝑟𝑜𝑢𝑛𝑑 <

𝑑𝑖+1.𝑟𝑜𝑢𝑛𝑑 , then 𝑑𝑖+1 is a descendant of Σ[𝑑𝑖 .𝑟𝑜𝑢𝑛𝑑] .𝑚𝑐𝑎𝑐ℎ𝑒 , which in turn is a descendant of 𝑐𝑖 .

But 𝑑𝑖+1 is also a descendant of 𝑐𝑖+1. Hence 𝑐𝑖+1 is a descendant of 𝑐𝑖 . The case where 𝑑𝑖 .𝑟𝑜𝑢𝑛𝑑 <

𝑑𝑖+1.𝑟𝑜𝑢𝑛𝑑 is completely analogous.

By induction, we can always construct a path that passes through all committed𝑀𝐶𝑎𝑐ℎ𝑒 .

B LIVENESS REQUIREMENTS OF THE TIMER OBJECT
In Section 4.1, we introduced the timer object (Algorithm 4). We now prove Lemma 4.2, which is

key to defining the live traces of timers under segmented traces.

For reader’s convenience, we copy over the relevant definition.

Definition B.1. A live timed trace of a discrete timer is a valid timed trace that satisfies the

following conditions:

(1) Before GST, 𝑅𝑒𝑠𝑒𝑡 () and 𝐸𝑙𝑎𝑝𝑠𝑒 () can be called arbitrarily;

(2) Within the time interval [𝐺𝑆𝑇,𝐺𝑆𝑇 + Δ), either 𝑅𝑒𝑠𝑒𝑡 () or 𝐸𝑙𝑎𝑝𝑠𝑒 () is called at least once;
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(3) After the first 𝑅𝑒𝑠𝑒𝑡 () or 𝐸𝑙𝑎𝑝𝑠𝑒 () event after GST, if an 𝐸𝑙𝑎𝑝𝑠𝑒 () event 𝑒 exists at timepoint

𝑡 , then there exists a 𝑅𝑒𝑠𝑒𝑡 () or 𝐸𝑙𝑎𝑝𝑠𝑒 () event 𝑒′ at timepoint 𝑡 − Δ, and between 𝑒, 𝑒′ there
is no other event in the trace;

(4) If a 𝑅𝑒𝑠𝑒𝑡 () or 𝐸𝑙𝑎𝑝𝑠𝑒 () event occurs at timepoint 𝑡 ≥ 𝐺𝑆𝑇 , and no event occurs within the

interval (𝑡, 𝑡 + Δ), then there exists a 𝑅𝑒𝑠𝑒𝑡 () or 𝐸𝑙𝑎𝑝𝑠𝑒 () event at timepoint 𝑡 + Δ.
Lemma B.2. In a live timed trace of a timer, within each interval [𝑇,𝑇 + Δ) with𝑇 ≥ 𝐺𝑆𝑇 we have:
(1) 𝐸𝑙𝑎𝑝𝑠𝑒 () is called at most once;
(2) After 𝑅𝑒𝑠𝑒𝑡 () is called 𝐸𝑙𝑎𝑝𝑠𝑒 () is not called;
(3) Either 𝐸𝑙𝑎𝑝𝑠𝑒 () or 𝑅𝑒𝑠𝑒𝑡 () is called at least once.
Proof : If a 𝑅𝑒𝑠𝑒𝑡 () or 𝐸𝑙𝑎𝑝𝑠𝑒 () event occurs at timepoint 𝑥 , then the next 𝐸𝑙𝑎𝑝𝑠𝑒 () event would

not occur until timepoint 𝑥 + Δ. This proves the first two patterns.

To prove the third pattern, first consider the special case 𝑇 = 𝐺𝑆𝑇 + 𝑘Δ where 𝑘 is integer.

Definition B.1 guarantees that at least one event occurs within the interval [𝐺𝑆𝑇,𝐺𝑆𝑇 + Δ), which
proves the base case 𝑘 = 0.

To prove the inductive case, assume that at least one event occurs within the interval [𝐺𝑆𝑇 +
𝑘Δ,𝐺𝑆𝑇 + (𝑘 + 1)Δ). Let 𝑒 be the last event in this interval and let 𝑡 be the timepoint of 𝑒 . Then

no event occurs in the interval (𝑡,𝐺𝑆𝑇 + (𝑘 + 1)Δ). If at least one event occurs in the interval

[𝐺𝑆𝑇 + (𝑘 + 1)Δ, 𝑡 + Δ) then we are done. Otherwise, Definition B.1 guarantees that at least one

event occurs at timepoint 𝑡 + Δ, which finishes the inductive case.

Finally, we consider the general case 𝑇 = 𝐺𝑆𝑇 + 𝑘Δ + 𝑥 with 0 < 𝑥 < Δ. If the interval

[𝐺𝑆𝑇 +𝑘Δ+𝑥,𝐺𝑆𝑇 + (𝑘 +1)Δ) contains at least one event, then we are done. Otherwise the interval

[𝐺𝑆𝑇 + 𝑘Δ,𝐺𝑆𝑇 + 𝑘Δ + 𝑥) contains at least one event. Let 𝑒 be the last event in this interval and let

𝑡 be the timepoint of 𝑒 . Then there is no event in the interval (𝑡,𝐺𝑆𝑇 + (𝑘 + 1)Δ). Therefore, if no
event occurs in the interval [𝐺𝑆𝑇 + (𝑘 + 1)Δ, 𝑡 + Δ), then at least one event occurs at timepoint

𝑡 + Δ. This finishes the analysis.

C DETAILS OF UNPIPELINED JOLTEON
C.1 Semantic Validity of Jolteon Messages
Here we explain the semantic validity condition we impose on each kind of message.

Vote. All vote messages must have 𝑟𝑜𝑢𝑛𝑑 ≥ 1. This is because rounds are numbered from 1.

𝐸𝑀𝑉𝑜𝑡𝑒 additionally requires 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 ≤ 𝑟𝑜𝑢𝑛𝑑 .

CacheCert. The requirements are:

• 𝑟𝑜𝑢𝑛𝑑 ≥ 1: Round number must be valid.

• 𝑖𝑑 = 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟𝑜𝑢𝑛𝑑): Only the leader of round 𝑟 can create cache certificates of round 𝑟 .

• The embedded𝑉𝑜𝑡𝑒 must have matching type and data. This means 𝐸𝑀𝐶𝑒𝑟𝑡 can only embed

𝐸𝑀𝑉𝑜𝑡𝑒 with same 𝑟𝑜𝑢𝑛𝑑 , 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 , and 𝑀𝑒𝑡ℎ𝑜𝑑 . 𝐶𝐶𝑒𝑟𝑡 can only embed 𝐶𝑉𝑜𝑡𝑒 with

same 𝑟𝑜𝑢𝑛𝑑 .

• The embedded 𝑉𝑜𝑡𝑒 must come from a quorum of voters.

Request. The requirements are:

• 𝑟𝑜𝑢𝑛𝑑 ≥ 1: Round number must be valid.

• 𝑖𝑑 = 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟𝑜𝑢𝑛𝑑): Only the leader of round 𝑟 can create requests of round 𝑟 .

• If 𝑟𝑜𝑢𝑛𝑑 = 𝑟 , 𝐸𝑀𝑅𝑒𝑞 must embed either a 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 or a 𝐶𝐶𝑒𝑟𝑡 of round 𝑟 − 1. If 𝐶𝐶𝑒𝑟𝑡
is embedded, 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 = 𝑟 − 1. If 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 is embedded, 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 is equal to

the round number of the highest embedded 𝐸𝑀𝐶𝑒𝑟𝑡 in the 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 . If no 𝐸𝑀𝐶𝑒𝑟𝑡 is

embedded, take 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 = 0.
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• If 𝑟𝑜𝑢𝑛𝑑 = 𝑟 , 𝐶𝑅𝑒𝑞 must embed an 𝐸𝑀𝐶𝑒𝑟𝑡 of round 𝑟 .

Timeout. The requirements are:

• 𝑟𝑜𝑢𝑛𝑑 ≥ 1: Round number must be valid.

• 𝑟𝑜𝑢𝑛𝑑 ≥ 𝑒𝑚𝑐𝑒𝑟𝑡 .𝑟𝑜𝑢𝑛𝑑 : If a non-faulty process receives an𝐸𝑀𝐶𝑒𝑟𝑡 of round 𝑟 , and 𝑙𝑜𝑐𝑎𝑙_𝑟𝑜𝑢𝑛𝑑 <

𝑟 , then it should enter round 𝑟 immediately. Hence when a process times out and broadcasts

a timeout message, it should not embed an 𝐸𝑀𝐶𝑒𝑟𝑡 of round 𝑟 ′ > 𝑟 .

TimeoutCert. The requirements are:

• 𝑟𝑜𝑢𝑛𝑑 ≥ 1: Round number must be valid.

• If 𝑟𝑜𝑢𝑛𝑑 = 𝑟 , then every embedded 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 message satisfies 𝑟𝑜𝑢𝑛𝑑 ≥ 𝑟 .

• If 𝑟𝑜𝑢𝑛𝑑 = 𝑟 , then every embedded 𝐸𝑀𝐶𝑒𝑟𝑡 (indirectly through 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 messages) satisfies

𝑒𝑚𝑐𝑒𝑟𝑡 .𝑟𝑜𝑢𝑛𝑑 ≤ 𝑟 . If a non-faulty process receives a 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 that embeds an 𝐸𝑀𝐶𝑒𝑟𝑡 of

round 𝑟 , and 𝑙𝑜𝑐𝑎𝑙_𝑟𝑜𝑢𝑛𝑑 < 𝑟 , then it should enter round 𝑟 immediately. Hence when the

process builds a 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 of round 𝑟 , it should not embed an 𝐸𝑀𝐶𝑒𝑟𝑡 of round 𝑟 ′ > 𝑟 .

This ensures that when 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 + 1) receives the𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 , it would not see an entry

that “comes from the future.”

• The embedded 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 messages come from a quorum of voters.

C.2 Proof of Liveness Lemmas
Lemma C.1. For a non-faulty process 𝑝 , if 𝑝.𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 = 𝑘 , then it will not send any𝑇𝑖𝑚𝑒𝑜𝑢𝑡

message within 𝑘Δ.

Proof : A non-faulty process sends 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 only when local timer times out, but local timer

elapse occurs at most once in each period of Δ, and each event decreases 𝑝.𝑙𝑜𝑐𝑎𝑙_𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 by 1,

so it will not timeout within 𝑘Δ.

Lemma C.2. If 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 (𝑧) = 𝑘 then no 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 of 𝑟𝑜𝑢𝑛𝑑 (𝑧) will be built within 𝑘Δ.
Proof : A𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 embeds a quorum of𝑇𝑖𝑚𝑒𝑜𝑢𝑡 messages, with at least 𝑓 +1 of them coming

from non-faulty processes. However, 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 (𝑧) = 𝑘 implies none of them will send 𝑇𝑖𝑚𝑒𝑜𝑢𝑡

message within 𝑘Δ.

Lemma C.3. If any non-faulty process 𝑝 enters round 𝑟 > 1, then either 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ) has already
entered round 𝑟 , or 𝑝 has received a 𝐶𝐶𝑒𝑟𝑡 or 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 of round 𝑟 − 1.
Proof : By case analysis on the different ways a process may enter round 𝑟 .

(1) A 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 or 𝐶𝐶𝑒𝑟𝑡 of round 𝑟 − 1 is received.
This is exactly the second condition.

(2) A valid 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 of round 𝑟 is received.

A non-faulty leader builds a request of round 𝑟 only after entering round 𝑟 , so the first

condition is satisfied.

(3) A 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 message that embeds an 𝐸𝑀𝐶𝑒𝑟𝑡 with 𝑒𝑚𝑐𝑒𝑟𝑡 .𝑟𝑜𝑢𝑛𝑑 = 𝑟 is received.

A non-faulty leader builds an 𝐸𝑀𝐶𝑒𝑟𝑡 of round 𝑟 only after entering round 𝑟 , so the first

condition is satisfied.

Lemma C.4. If any non-faulty process 𝑝 enters round 𝑟 > 1, then some non-faulty process has
previously entered round 𝑟 − 1. By induction, every round 𝑟 ′ < 𝑟 has been entered by some non-faulty
process.

Proof : By Lemma C.3, the first process to enter round 𝑟 must have received a 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 or a

𝐶𝐶𝑒𝑟𝑡 of round 𝑟 . A 𝐶𝐶𝑒𝑟𝑡 embeds a quorum of 𝐶𝑉𝑜𝑡𝑒 , but a non-faulty process produces a 𝐶𝑉𝑜𝑡𝑒

of round 𝑟 only after entering round 𝑟 .
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Similarly, a 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 embeds a quorum of 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 messages of round 𝑟 ′ ≥ 𝑟 . Hence some

non-faulty process has entered some round 𝑟 ′ ≥ 𝑟 . By induction hypothesis, we see some non-faulty

process must have previously entered round 𝑟 .

Lemma C.5. The live traces of unpipelined Jolteon satisfy Definition 3.3 and Definition 3.5.

Proof : We start from the easy pieces:

(1) Between 𝜏𝑖 and 𝜏𝑖+1, 𝐸𝑙𝑎𝑝𝑠𝑒 () is called at most once

This follows from each network timer object elapses at most once between 𝜏𝑖 and 𝜏𝑖+1.
(2) If 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 (𝜏𝑖 ) > 0, between 𝜏𝑖 and 𝜏𝑖+1 if 𝐸𝑙𝑎𝑝𝑠𝑒 () is not called then 𝑟𝑜𝑢𝑛𝑑 is increased at

least once.

If 𝑟𝑜𝑢𝑛𝑑 did not increase, this means no non-faulty process entered a round higher than

𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖 ). Then the timer of every process that is currently in 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖 ) elapses once, so
𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 (𝑧) decreases by 1.

(3) If 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖 ) = 𝑟 , both 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ), 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 + 1) are non-faulty, 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ) has called
𝑆𝑡𝑎𝑟𝑡𝑁𝑒𝑥𝑡 (𝑟 ), then 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖+1) ≥ 𝑟 + 1.
A non-faulty leader calling 𝑆𝑡𝑎𝑟𝑡𝑁𝑒𝑥𝑡 (𝑟 ) corresponds to sending a 𝐶𝐶𝑒𝑟𝑡 to the next leader.

Since it will be delivered within Δ, and the new leader will enter round 𝑟 + 1 upon receiving

it, we have 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖+1) ≥ 𝑟 + 1.
(4) A non-faulty leader calls 𝑆𝑡𝑎𝑟𝑡𝑁𝑒𝑥𝑡 (𝑟 ) only after a 𝐶𝐶𝑎𝑐ℎ𝑒 in round 𝑟 is created.

A non-faulty leader calls 𝑆𝑡𝑎𝑟𝑡𝑁𝑒𝑥𝑡 (𝑟 ) by sending a 𝐶𝐶𝑒𝑟𝑡 message of round 𝑟 , which

corresponds to a 𝐶𝐶𝑎𝑐ℎ𝑒 of round 𝑟 .

(5) If 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖 ) = 𝑟 , 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ) is non-faulty, but no 𝐸𝐶𝑎𝑐ℎ𝑒 of round 𝑟 has been created, then

either 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ) is currently waiting upon 𝑃𝑢𝑙𝑙 (𝑟 ), or it will call 𝑃𝑢𝑙𝑙 (𝑟 ) before the end of

𝜏𝑖+1.
If 𝐸𝐶𝑎𝑐ℎ𝑒 has not been created, this means 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ) either has not yet entered round 𝑟 ,

or it is still collecting 𝐸𝑀𝑉𝑜𝑡𝑒 . In the former case, Lemma C.3 implies it will enter within Δ.
In the latter case, it has already called 𝑃𝑢𝑙𝑙 (𝑟 ) and is waiting for response.

(6) If 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖 ) = 𝑟 , 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ) is non-faulty, 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 ≥ 2, and the leader is waiting upon a

call 𝑃𝑢𝑙𝑙 (𝑟 ), 𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟,𝑚), 𝑃𝑢𝑠ℎ(𝑟 ), then that call will succeed before the end of 𝜏𝑖+2.
Making each call corresponds to broadcasting the corresponding request message, and collect

a quorum of votes. Within Δ the request will reach every non-faulty voter, and within another

Δ the votes will be received by the leader. The condition 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 ≥ 2 guarantees that no

non-faulty process will send 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 messages within 2Δ, by Lemma C.2.

(7) When a non-faulty leader receives 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 for 𝑃𝑢𝑙𝑙 (𝑟 ), it immediately chooses𝑚 and calls

𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟,𝑚); similarly it immediately calls 𝑃𝑢𝑠ℎ(𝑟 ) after 𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟,𝑚) succeeds.
Sending out 𝐶𝑅𝑒𝑞 is part of the message handler for 𝐸𝑀𝑉𝑜𝑡𝑒 . In our model it is performed

atomically with receiving the last vote message of a quorum set. Therefore, the proposer

immediately calls 𝑃𝑢𝑠ℎ(𝑟 ) after 𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟,𝑚) succeeds.
The most complex part is showing that when 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 (𝑧) reaches 0, there is a constant 𝐶 such

that 𝑟𝑜𝑢𝑛𝑑 (𝑧) increases within 𝐶Δ. We give a proof with large 𝐶 that is easy to formalize. Proofs

with smaller𝐶 can be constructed with more detailed analysis, or by implementing a more complex

pacemaker, but this proof suffices for our purpose.

Assume that the leader schedule is fair, meaning each proposer becomes the leader once every

3𝑓 + 1 rounds. This is typical in rotating-leader protocols. Suppose that 𝑧, 𝑧′ are the network states

at the beginning and end of a period of Δ. Let 𝑟 = 𝑟𝑜𝑢𝑛𝑑 (𝑧). Since 𝑟𝑜𝑢𝑛𝑑 increases in unit steps,

for every round 𝑟 ′ < 𝑟 there must exist a previous state 𝑧′′ with 𝑟𝑜𝑢𝑛𝑑 (𝑧′′) = 𝑟 ′. When 𝑟𝑜𝑢𝑛𝑑

reaches 𝑟 ′, the leader of 𝑟 ′ must enter round 𝑟 ′ within Δ. Hence we can prove that in state 𝑧′, every
non-faulty process should be in some round 𝑟 ′ > 𝑟𝑜𝑢𝑛𝑑 (𝑧) − (3𝑓 + 1).
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By Theorem 3.6, we set the timeout duration of each timer to 8Δ. Then we observe:

Lemma C.6. Within every period of 9Δ, at least one non-faulty process will enter a higher round.

Proof : Let 𝑧 be the network state at the beginning of the period, and let 𝑥 be the minimum round

𝑟 any non-faulty process is still participating in state 𝑧. If no non-faulty process enters a higher

round within 8Δ, then every non-faulty process will broadcast a 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 message of round 𝑟 ′ ≥ 𝑥 ,

and within Δ everyone will receive a quorum of 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 messages. Hence every process still in

round 𝑥 will enter round 𝑥 + 1.
Since there are 2𝑓 + 1 non-faulty processes, by pigeonhole principle, if we wait for a period of

9(3𝑓 + 1) (2𝑓 + 1)Δ, at least one non-faulty process must have entered some round 𝑟 ≥ 𝑟𝑜𝑢𝑛𝑑 (𝑧) + 1.
This proves non-faulty processes must keep entering new rounds.

C.3 Jolteon with Improved Pacemaker
The pacemaker of Algorithm 5 (Line 27–31) corresponds to part (c) of Fig. 1. We have also imple-

mented a version of unpipelined Jolteon that improves the pacemaker to part (d) of Fig. 1. The

improved pacemaker is shown as follows.

Algorithm 6 Improved Pacemaker for Jolteon Implementation

1: upon timeout:

2: 𝑐𝑒𝑟𝑡 ← 𝐸𝑀𝐶𝑒𝑟𝑡 of round 𝑐𝑜𝑚𝑚𝑖𝑡_𝑟𝑜𝑢𝑛𝑑,⊥ if never sent any 𝐶𝑉𝑜𝑡𝑒

3: Broadcast 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 (𝑙𝑜𝑐𝑎𝑙_𝑟𝑜𝑢𝑛𝑑, 𝑐𝑒𝑟𝑡)
4: upon receive a quorum of 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 with 𝑟𝑜𝑢𝑛𝑑 ≥ 𝑙𝑜𝑐𝑎𝑙_𝑟𝑜𝑢𝑛𝑑 :

5: Send 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 (𝑙𝑜𝑐𝑎𝑙_𝑟𝑜𝑢𝑛𝑑, 𝑡𝑖𝑚𝑒𝑜𝑢𝑡𝑠) to oneself and 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑙𝑜𝑐𝑎𝑙_𝑟𝑜𝑢𝑛𝑑 + 1)
6: upon receive 𝑓 + 1 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 with 𝑟𝑜𝑢𝑛𝑑 > 𝑙𝑜𝑐𝑎𝑙_𝑟𝑜𝑢𝑛𝑑 :

7: Enter round 𝑙𝑜𝑐𝑎𝑙_𝑟𝑜𝑢𝑛𝑑 + 1

The intuition is that, if there are 𝑓 + 1 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 messages with 𝑟𝑜𝑢𝑛𝑑 > 𝑙𝑜𝑐𝑎𝑙_𝑟𝑜𝑢𝑛𝑑 , then at

least one of them comes from a non-faulty process. That process must have already entered some

round 𝑟 ′ > 𝑙𝑜𝑐𝑎𝑙_𝑟𝑜𝑢𝑛𝑑 .

The safety proof remains almost the same. However, with this change we can derive a better

latency bound. If one voter enters round 𝑟 by receiving a 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 , then among the embedded

𝑇𝑖𝑚𝑒𝑜𝑢𝑡 messages, at least 𝑓 + 1 come from non-faulty processes. These will be received by every

voter within Δ. Hence all voters will enter round 𝑟 − 1 within Δ. On the other hand if it enters

round 𝑟 by receiving a 𝐶𝐶𝑒𝑟𝑡 , then at least 𝑓 + 1 voters have already entered round 𝑟 − 1. This
shows that the round number difference between the voters cannot be too large.

D DETAILS OF PIPELINED JOLTEON
D.1 Changes to the Jolteon Protocol
The system model is the same as described in Section 4.1. The message space is reduced and shown

in Fig. 12. The internal state of non-faulty processes is the same as Fig. 9. The pipelined Jolteon

protocol is described in Algorithm 7. There is now only one phase per round. The changes from

Algorithm 5 are shown in blue. The conditions for a non-faulty process to enter round 𝑟 are:

(1) A 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 or 𝐸𝑀𝐶𝑒𝑟𝑡 of round 𝑟 − 1 is received;
(2) A valid 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 of round 𝑟 is received;

(3) A 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 message that embeds an 𝐸𝑀𝐶𝑒𝑟𝑡 with 𝑒𝑚𝑐𝑒𝑟𝑡 .𝑟𝑜𝑢𝑛𝑑 = 𝑟 is received.
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𝑉𝑜𝑡𝑒 ≜𝐸𝑀𝑉𝑜𝑡𝑒 (N𝑖𝑑 ∗ N𝑟𝑜𝑢𝑛𝑑 ∗ N𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 ∗𝑀𝑒𝑡ℎ𝑜𝑑)
𝐶𝑎𝑐ℎ𝑒𝐶𝑒𝑟𝑡 ≜𝐸𝑀𝐶𝑒𝑟𝑡 (N𝑖𝑑 ∗ N𝑟𝑜𝑢𝑛𝑑 ∗ N𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 ∗𝑀𝑒𝑡ℎ𝑜𝑑 ∗ 𝐿𝑖𝑠𝑡 (𝐸𝑀𝑉𝑜𝑡𝑒))

𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ≜𝐸𝑀𝑅𝑒𝑞(N𝑖𝑑 ∗ N𝑟𝑜𝑢𝑛𝑑 ∗ N𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 ∗𝑀𝑒𝑡ℎ𝑜𝑑 ∗𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡)
| 𝐸𝑀𝑅𝑒𝑞(N𝑖𝑑 ∗ N𝑟𝑜𝑢𝑛𝑑 ∗ N𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 ∗𝑀𝑒𝑡ℎ𝑜𝑑 ∗ 𝐸𝑀𝐶𝑒𝑟𝑡)

𝑇𝑖𝑚𝑒𝑜𝑢𝑡 ≜𝑇𝑖𝑚𝑒𝑜𝑢𝑡 (N𝑖𝑑 ∗ N𝑟𝑜𝑢𝑛𝑑 ∗𝑂𝑝𝑡𝑖𝑜𝑛(𝐸𝑀𝐶𝑒𝑟𝑡))
𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 ≜𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 (N𝑟𝑜𝑢𝑛𝑑 ∗ 𝐿𝑖𝑠𝑡 (𝑇𝑖𝑚𝑒𝑜𝑢𝑡))

Fig. 12. Message space of pipelined Jolteon.

Algorithm 7 Pipelined Jolteon Protocol

1: Assume 𝑙𝑜𝑐𝑎𝑙_𝑟𝑜𝑢𝑛𝑑 = 𝑟

2: ⊲ Invoke phase

3: as leader:
4: 𝑐𝑒𝑟𝑡 ← 𝐸𝑀𝐶𝑒𝑟𝑡 or 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 of round 𝑟 − 1
5: if 𝑐𝑒𝑟𝑡 is 𝐸𝑀𝐶𝑒𝑟𝑡 then
6: 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 ← 𝑟 − 1
7: else
8: 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 ← max𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ∈𝑐𝑒𝑟𝑡 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 .𝑒𝑚𝑐𝑒𝑟𝑡 .𝑟𝑜𝑢𝑛𝑑 (0 if 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 .𝑒𝑚𝑐𝑒𝑟𝑡 = ⊥)
9: Choose𝑚𝑒𝑡ℎ𝑜𝑑 from client requests

10: Broadcast 𝐸𝑀𝑅𝑒𝑞(𝑖𝑑, 𝑟, 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑,𝑚𝑒𝑡ℎ𝑜𝑑, 𝑐𝑒𝑟𝑡)
11: Collect 𝐸𝑀𝑉𝑜𝑡𝑒 (_, 𝑟 , 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑,𝑚𝑒𝑡ℎ𝑜𝑑) from a quorum of voters

12: 𝑒𝑚𝑐𝑒𝑟𝑡 ← 𝐸𝑀𝐶𝑒𝑟𝑡 (𝑖𝑑, 𝑟, 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑,𝑚𝑒𝑡ℎ𝑜𝑑, 𝑣𝑜𝑡𝑒𝑠)
13: Send 𝑒𝑚𝑐𝑒𝑟𝑡 to 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 + 1); also send to 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 − 1) if 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 = 𝑟 − 1
14: as voter:
15: Wait for 𝐸𝑀𝑅𝑒𝑞(𝑖𝑑, 𝑟, 𝑝,𝑚, 𝑐𝑒𝑟𝑡)
16: if 𝑝 = 𝑟 − 1 then
17: Extract 𝐸𝑀𝐶𝑒𝑟𝑡 of round 𝑟 − 1 from 𝑐𝑒𝑟𝑡

18: Store 𝐸𝑀𝐶𝑒𝑟𝑡 , set 𝑐𝑜𝑚𝑚𝑖𝑡_𝑟𝑜𝑢𝑛𝑑 to 𝑟 − 1
19: Send 𝐸𝑀𝑉𝑜𝑡𝑒 (𝑖𝑑, 𝑟, 𝑝,𝑚)
20: ⊲ Pacemaker

21: upon timeout:

22: 𝑐𝑒𝑟𝑡 ← 𝐸𝑀𝐶𝑒𝑟𝑡 of round 𝑐𝑜𝑚𝑚𝑖𝑡_𝑟𝑜𝑢𝑛𝑑,⊥ if never sent any 𝐸𝑀𝑉𝑜𝑡𝑒 with 𝑝 = 𝑟 − 1
23: Broadcast 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 (𝑖𝑑, 𝑙𝑜𝑐𝑎𝑙_𝑟𝑜𝑢𝑛𝑑, 𝑐𝑒𝑟𝑡)
24: upon receive a quorum of 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 with 𝑟𝑜𝑢𝑛𝑑 ≥ 𝑙𝑜𝑐𝑎𝑙_𝑟𝑜𝑢𝑛𝑑 :

25: Send 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 (𝑙𝑜𝑐𝑎𝑙_𝑟𝑜𝑢𝑛𝑑, 𝑡𝑖𝑚𝑒𝑜𝑢𝑡𝑠) to oneself and 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑙𝑜𝑐𝑎𝑙_𝑟𝑜𝑢𝑛𝑑 + 1)

D.2 Changes to the Refinement Proof
Safety Refinement. We still map broadcasting 𝐸𝑀𝑅𝑒𝑞 to calling 𝑃𝑢𝑙𝑙 , and creating 𝐸𝑀𝐶𝑒𝑟𝑡 to

creating 𝐸𝐶𝑎𝑐ℎ𝑒 and𝑀𝐶𝑎𝑐ℎ𝑒 . In pipelined Jolteon the leader does not perform the commit phase

by itself. It delegates the task to the next leader and simply waits for the result. Therefore, we map

the network event of the current leader receiving 𝐸𝑀𝐶𝑒𝑟𝑡 from the next leader to the ADO event

of calling 𝑃𝑢𝑠ℎ and create 𝐶𝐶𝑎𝑐ℎ𝑒 .

The overall proof architecture is the same as that for unpipelined Jolteon. However, there is now

no explicit 𝐶𝑉𝑜𝑡𝑒 . Instead, an 𝐸𝑀𝑉𝑜𝑡𝑒 with 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 = 𝑟𝑜𝑢𝑛𝑑 − 1 serves as a commit vote

for 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 . Therefore, we prove instead the following invariants:
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Lemma D.1. If a non-faulty process produces both an 𝐸𝑀𝑉𝑜𝑡𝑒 of round 𝑟 with 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 = 𝑟−1,
and a 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 of round 𝑟 ′ ≥ 𝑟 , then the 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 embeds an 𝐸𝑀𝐶𝑒𝑟𝑡 of round 𝑟 ′′ ≥ 𝑟 − 1.

LemmaD.2. If an 𝐸𝑀𝐶𝑒𝑟𝑡 of round 𝑟 is created with 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 = 𝑟−1, then every𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡

of round 𝑟 ′ ≥ 𝑟 embeds an 𝐸𝑀𝐶𝑒𝑟𝑡 of round 𝑟 ′′ ≥ 𝑟 − 1.

From these lemmas we can prove that creating 𝐶𝐶𝑎𝑐ℎ𝑒 in round 𝑟 − 1 after creating 𝐸𝐶𝑎𝑐ℎ𝑒 in
round 𝑟 with 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 = 𝑟 − 1 is always safe.

Liveness Refinement. Since pipelined protocols provide weaker liveness guarantees than un-

pipelined ones, we have to tune the ADO-specific liveness requirements in the model.

Definition D.3. For pipelined protocols we impose the following liveness requirements:

(1) A non-faulty leader calls 𝑆𝑡𝑎𝑟𝑡𝑁𝑒𝑥𝑡 (𝑟 ) only after a𝑀𝐶𝑎𝑐ℎ𝑒 in round 𝑟 is created.

(2) If 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖 ) = 𝑟 , 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ) is non-faulty, but no 𝐸𝐶𝑎𝑐ℎ𝑒 of round 𝑟 has been created, then

either 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ) is currently waiting upon 𝑃𝑢𝑙𝑙 (𝑟 ), or it will call 𝑃𝑢𝑙𝑙 (𝑟 ) between 𝜏𝑖 and

𝜏𝑖+1;
(3) When 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ) receives 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 for 𝑃𝑢𝑙𝑙 (𝑟 ), it immediately chooses some𝑚 and calls

𝐼𝑛𝑣𝑜𝑘𝑒 (𝑟,𝑚);
(4) If 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖 ) = 𝑟, 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 (𝜏𝑖 ) ≥ 2, and 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ) is waiting upon a 𝑃𝑢𝑙𝑙 or 𝐼𝑛𝑣𝑜𝑘𝑒 call of

round 𝑟 , it will succeed before the end of 𝜏𝑖+2;
(5) If 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖 ) = 𝑟 , an𝑀𝐶𝑎𝑐ℎ𝑒 of round 𝑟 has been created, both 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ), 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 + 1)

are non-faulty, then 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖+1) ≥ 𝑟 + 1.
(6) If 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖 ) < 𝑟 or 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖 ) = 𝑟 ∧ 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 (𝜏𝑖 ) ≥ 2, but 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖+1) ≥ 𝑟 + 1, and

𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 + 1) is non-faulty, then an 𝐸𝐶𝑎𝑐ℎ𝑒 of round 𝑟 + 1 with 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 = 𝑟 is

created before the end of 𝜏𝑖+3.
(7) If at the end of 𝜏𝑖 , an 𝐸𝐶𝑎𝑐ℎ𝑒 of round 𝑟 with 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 = 𝑟 − 1 exists, and both

𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ), 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 − 1) are non-faulty, then a𝐶𝐶𝑎𝑐ℎ𝑒 of round 𝑟 − 1 is created before

the end of 𝜏𝑖+1.

Like the requirements for unpipelined protocols, these rules provide a breakdown of how a

method is committed in a pipelined protocol. The first four rules guarantee that each non-faulty

leader can individually create an𝑀𝐶𝑎𝑐ℎ𝑒 . The last three rules show how two non-faulty leaders

cooperate to commit an𝑀𝐶𝑎𝑐ℎ𝑒 .

The proofs for the first three rules are exactly the same as in the unpipelined case. Here we focus

on proofs for the pipelined case:

(1) If 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖 ) = 𝑟 , an𝑀𝐶𝑎𝑐ℎ𝑒 of round 𝑟 has been created, both 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ), 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 + 1)
are non-faulty, then 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖+1) ≥ 𝑟 + 1.
Creating𝑀𝐶𝑎𝑐ℎ𝑒 corresponds to creating 𝐸𝑀𝐶𝑒𝑟𝑡 at network level. Then 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ) imme-

diately sends it to the next leader, and it will be delivered within Δ. Hence 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖+1) ≥ 𝑟 +1.
(2) If 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖 ) < 𝑟 or 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖 ) = 𝑟 ∧ 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 (𝜏𝑖 ) ≥ 2, but 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖+1) ≥ 𝑟 + 1, and

𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 + 1) is non-faulty, then an 𝐸𝐶𝑎𝑐ℎ𝑒 of round 𝑟 + 1 with 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 = 𝑟 is

created before the end of 𝜏𝑖+4.
If 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖 ) < 𝑟 or 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 (𝜏𝑖 ) ≥ 2 then no 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 of round 𝑟 would be created

within 2Δ. On the other hand if 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖+1) ≥ 𝑟 + 1 then some non-faulty process must

have entered round 𝑟 + 1. That process must have received an 𝐸𝑀𝐶𝑒𝑟𝑡 of round 𝑟 . Since

it would forward the 𝐸𝑀𝐶𝑒𝑟𝑡 to 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 + 1), the new leader must receive it before

the end of 𝜏𝑖+2. It could not receive any 𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝐶𝑒𝑟𝑡 before the end of 𝜏𝑖+2. Therefore, it
will embed the 𝐸𝑀𝐶𝑒𝑟𝑡 into its 𝐸𝑀𝑅𝑒𝑞, and the 𝐸𝐶𝑎𝑐ℎ𝑒 it subsequently creates must have

𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 = 𝑟 .
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(3) If at the end of 𝜏𝑖 , an 𝐸𝐶𝑎𝑐ℎ𝑒 of round 𝑟 with 𝑝𝑎𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 = 𝑟 − 1 exists, and both

𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ), 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 − 1) are non-faulty, then a𝐶𝐶𝑎𝑐ℎ𝑒 of round 𝑟 − 1 is created before

the end of 𝜏𝑖+1.
After 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ) creates the 𝐸𝑀𝐶𝑒𝑟𝑡 , it sends the certificate to 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 − 1), which is

delivered within Δ. The previous leader uses the certificate to confirm that its proposal has

been committed, creating the 𝐶𝐶𝑎𝑐ℎ𝑒 .

We can now prove that:

Theorem D.4. In every infinite segmented trace of pipelined Jolteon, let 𝑟 = 𝑟𝑜𝑢𝑛𝑑 (𝜏0), then for
every 𝑟 ′ > 𝑟 such that both 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 ), 𝑙𝑒𝑎𝑑𝑒𝑟_𝑎𝑡 (𝑟 + 1) are non-faulty, eventually a method is
committed in round 𝑟 .

First we can show that every non-faulty proposer can independently build 𝐸𝑀𝐶𝑒𝑟𝑡 . The proof is

almost the same as Theorem 3.6. By choosing a suitable timeout duration, we can further show that

by the time the proposer builds 𝐸𝑀𝐶𝑒𝑟𝑡 , the abstract pacemaker must have 𝑟𝑒𝑚_𝑡𝑖𝑚𝑒 ≥ 2. Now

the proposer sends the 𝐸𝑀𝐶𝑒𝑟𝑡 to the next leader. By assumption it will rebroadcast that 𝐸𝑀𝐶𝑒𝑟𝑡

and thus commit the method.
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