
Verified Compilation of C
Programs with a Nominal

Memory Model
Yuting Wang1, Ling Zhang1, Zhong Shao2 and Jérémie Koenig2

1. Shanghai Jiao Tong University, China
2. Yale University, U.S.A.

Philadelphia (Virtually), POPL, Jan 2022

Background
• Memory Models in Verified Compilation

• Semantics for languages based on some memory model
• Prove preservation of semantics with memory invariants

2

Compile
Programs:

Semantics:

Compile

Semantic
Equivalence

𝑃!

Source
Language

[𝑃!]

𝑃"

Intermediate
Language

[𝑃"]

𝑃#

Target
Language

[𝑃#]
Memory States: 𝑀! 𝑀"

Memory
Invariant

𝑀#
Memory
Invariant

Semantic
Equivalence

The Structure of Verified Compilers

The State-of-the Art
• Block-Based Memory Model

• Memory model for CompCert
• Pointers:

• a pair 𝑏, δ of block id 𝑏 and offset δ
• Pointer Arithmetic:

• 𝑏, δ + 𝑛 = (𝑏, 𝛿 + 𝑛)
• Memory isolation by definition

• Injections as Memory Invariants
• An injection function 𝑗 is a partial

mapping for blocks
• 𝑗 𝑏 = 𝑆𝑜𝑚𝑒(𝑏!, 𝛿) if 𝑏 is embedded

into 𝑏′ at offset δ
• 𝑗 𝑏 = 𝑁𝑜𝑛𝑒 if 𝑏 is pulled out of the

memory

3

𝑏! 𝑏"
𝑏-

! ! ! !𝟎
−𝟏
−𝟐

𝟏
𝟐
𝟑
𝟒
𝟓

𝑏", 2

𝑏", 5 = 𝑏", 2 + 3

• 𝑗 𝑏# = 𝑆𝑜𝑚𝑒(𝑏′, 0)
• 𝑗 𝑏$ = 𝑆𝑜𝑚𝑒(𝑏′, δ)
• 𝑗 𝑏" = 𝑁𝑜𝑛𝑒

𝑏-

𝑗𝑏!

𝑏"
𝑏′

Source Target

δ

Restrictions
• Concrete Numbering of Memory Blocks

a) Block identifiers are positive numbers: 1, 2, … , 𝑛, …
b) A special identifier called 𝑛𝑒𝑥𝑡𝑏𝑙𝑜𝑐𝑘 for allocating fresh blocks
c) Valid blocks are {1, 2, … , 𝑛𝑒𝑥𝑡𝑏𝑙𝑜𝑐𝑘 − 1}

4

• 𝑏! = 1
• 𝑏" = 2
• 𝑏- = 3

• 𝑛𝑒𝑥𝑡𝑏𝑙𝑜𝑐𝑘 = 𝟏• 𝑛𝑒𝑥𝑡𝑏𝑙𝑜𝑐𝑘 = 𝟐

𝟎
−𝟏
−𝟐

𝟏
𝟐
𝟑
𝟒
𝟓

𝑏! 𝑏"
𝑏- • 𝑛𝑒𝑥𝑡𝑏𝑙𝑜𝑐𝑘 = 𝟑• 𝑛𝑒𝑥𝑡𝑏𝑙𝑜𝑐𝑘 = 𝟒

Problems
1. No distinction between different memory regions
2. Contiguous numbering brings unnecessary dependency
3. Global constraint imposed by 𝑛𝑒𝑥𝑡𝑏𝑙𝑜𝑐𝑘

5
Elimination of Unused Global Variables Linking of Multi-Threaded Programs

: Global Blocks

: Stack Blocks

2

1

3

4

!
!
!

Source Target

𝑗 1

2

3

!
!
!

1

2

5

3

4

yield

yield

Thread 2Thread 1

1

2

5

3

4

Linking

Threads {1,2}

6

Big Picture

Treatment of Named Resources in Formal Verification

1. Is there a more flexible representation of
memory space?

2. What benefits it brings to compiler verification?

Our Contributions
• Nominal Memory Model: Generalization of Block-Based Memory Model

• Flexible representation of blocks based on nominal techniques
• Eliminates unnecessary dependency and global constraints
• Compatible with all existing mechanisms in BBMM

• Nominal CompCert: A General Framework for Verified Compilation of C
• Proofs are abstracted over the interface of nominal memory model
• Supports complex memory structures through instantiation

• Application of Nominal CompCert
• Verified compilation with structured memory
• Verified contextual compilation to multi-stack machines

7

Memory Representation with Nominal Names
• Background: Nominal Techniques for Managing Named Objects

• Names are represented as atoms in countably infinite sets
• Renaming is described as permutations (bijection) on atoms
• A set 𝐴 of atoms supports an object 𝑥 if

• A name 𝑎 (atom) is fresh to 𝑥 if 𝑎 is not in some support 𝐴

• Key Ideas:
• Atoms to generalize block ids
• Permutation is equivalent to (renaming-based) memory injection
• Supports to generalize valid block ids
• Freshness to generalize 𝑛𝑒𝑥𝑡𝑏𝑙𝑜𝑐𝑘

• Note: We do not yet exploit the analogy between permutation and injection
8

∀ 𝜋, 𝜋 𝑥 = 𝑥 (𝜋 denotes a permutation on atoms that is identity for 𝐴)

Nominal Memory Model
An Abstraction of Block-Based Memory Model with a Nominal Interface

9
Interface of the Nominal Memory Model Block-Based Memory Model

(* Block ADT *)
Module Type BLOCK.

Parameter block : Type.
Parameter eq_block : ∀ 𝑥 𝑦 : block, 𝑥 = 𝑦 + {𝑥 ≠ 𝑦}

End BLOCK.

(* Support ADT *)
Module Type SUP.

Parameter sup : Type.
Parameter sup_empty: sup. (* Empty Support *)
Parameter fresh_block: sup → block. (* Fresh Block *)
Parameter sup_incr : sup → sup. (* Increase Support *)
(* Check Validity of Blocks*)
Parameter valid_block : block → sup → bool.
…

End SUP.

(* Block ADT *)
Module Block <: BLOCK.

Definition block := positive.
Definition eq_block := peq.

End Block.

(* Support ADT *)
Module Sup <: SUP.

Definition sup := list block.
Definition sup_empty : sup = [].
Definition fresh_block (𝑠: sup) := (max 𝑠) +1.
Definition sup_incr (𝑠: sup) := (fresh_block 𝑠) :: 𝑠.
(* Check Validity of Blocks*)
Definition valid_block (𝑏: sup) (𝑠: sup) := 𝑏 ∈ 𝑠.
…

End Sup.

Benefits
Problems:

1. No Distinction of Memory Regions

2. Contiguous Numbering of Blocks

3. Global Constraint from 𝑛𝑒𝑥𝑡𝑏𝑙𝑜𝑐𝑘

Solutions:

1. Block Type for Classifying Memory

2. Support Type for Separating Memory

3. 𝑓𝑟𝑒𝑠ℎ_𝑏𝑙𝑜𝑐𝑘 for Localized Allocation

10

All operations, properties and proofs remain (almost) unchanged!

Nominal CompCert
A Complete Extension of CompCert with the Nominal Memory Model

• Abstraction: Proofs hold under any instantiation of nominal interface

11

Nominal Memory
States:

Compile
Programs:

Semantics:

Compile

Semantic
Equivalence

𝑃!

C

[𝑃!]

𝑃"

Intermediate
Language

[𝑃"]

𝑃#

Asm

[𝑃#]
Semantic

Equivalence

𝑀! 𝑀"
Memory
Injection

𝑀#
Memory
Injection

The Structure of Nominal CompCert

Enhanced Verified Compilation

1. Verified Compilation with Structured Memory
2. Verified Contextual Compilation to Multi-Stack Machines

12

CompCert
Original
CompCert

This Work Nominal
CompCert

Nominal
Memory Model

CompCert with
Structured

Memory

Multi-Stack
CompCert

Block-Based
Memory Model

Ad hoc modification to
memory model

Instantiation of
Nominal Memory

Structured Memory Space
• Key Idea: Rich memory structures via instantiating blocks and supports
• Memory Space = Global Space + Stack Space

• Global blocks are given static names
• Stack space is organized into a tree of frames
• Note: Heap is part of global memory

• Block Type:

13

Inductive block :=
| Global : ident → block.
| Stack : option ident → list nat→ positive → block;

!!! 1 2 3

Record sup := {global: list ident ; stack: stree }.

1 2 3

1 2 1

!!!

main

f

g h

0 1 2

10

Stack (Some g) [2,0] 1

Structural Injection Functions
• Represent memory invariant by static injection functions
• Example: Elimination of Unused Global Variables

14

Variable 𝑔𝑒: genv. (* target environment *)

Definition check_block (𝑠:sup) (𝑏:block): bool :=
match 𝑏 with

| Stack _ _ _ ⇒ valid_block 𝑏 𝑠
| Global 𝑖 ⇒ match (find_symbol 𝑔𝑒 𝑖) with

| None⇒ false | Some _ ⇒ true
end

end.

Definition struct_meminj (𝑠:sup) (𝑏:block) :=
if check_block 𝑠 𝑏 then Some (𝑏, 0) else None.

: Global Blocks

: Stack Blocks

2

1

3

4

!
!
!

Source Target

𝑗 1

2

3

!
!
!

𝑛2

𝑛1

𝑛3

𝑠𝑏

!
!
!

Source

𝑗 𝑛1

𝑛3

𝑠𝑏

!
!
!

Target

Reasoning about Local Memory Transformations
• Observation: Many transformation focuses on local memory regions
• Structural injections capture local memory transformations
• Example: Merging of Stack-Allocated Variables

15

𝑏!
𝑏"
𝑏-

𝑏<
𝑏=

Source
Stack

𝑏!′

𝑏"′

Target
Stack

𝑗 Variable 𝑔𝑒 : genv. (* source environment *)

Definition unchecked_meminj (𝑏:block) :=
match 𝑏 with
| Global _⇒ Some (𝑏, 0)
| Stack (Some 𝑖𝑑) 𝑝 𝑖 ⇒
𝑜𝑓𝑓𝑠𝑒𝑡← find_frame_offset 𝑔𝑒 𝑖𝑑 𝑖 ;
Some (Stack (Some 𝑖𝑑) 𝑝 1, 𝑜𝑓𝑓𝑠𝑒𝑡)

end.

Definition struct_meminj (𝑠:sup) (𝑏:block) :=
if valid_block 𝑏 𝑠
then unchecked_meminj 𝑏
else None.

Nominal CompCert with Structured Memory
• Complete Extension to Nominal CompCert with

• Structured Memory Space
• Intuitive Proofs with Concrete Memory Injections

16

C Clight MachRTL

X86

ARM

PowerPC

Nominal Memory Model
with Structured Memory Space

Nominal CompCert with Structured Memory

Contextual Compilation with Multiple Stacks
• Contextual Compilation

• Open modules compiled in contextual memory
• Investigated extensively for verified compilation

• Problems with Contextual Compilation of Multiple Threads

17

1. Independent Stacks 2. Finite and Continuous Stacks

1

2

5

3

4

yield

yield

Thread 2Thread 1

1

2

5

3

4

Linking

Threads {1,2}

Compile to
Independent and
Finite Stacks?Certified Concurrent

Abstraction Layers
(Gu et. al, PLDI’18)

New Approach to Support Finite Stacks
• Background: Stack-Aware CompCert [Wang et al, POPL 2019]:

• First extension with a finite and contiguous stack
• No increase of stack consumption in compilation
• Key Technique: Abstract stack in the memory model

• Observation: Abstract stack describes properties of memory space
• Stack-Aware Nominal CompCert

• Absorb the abstract stack into support:

• Significantly simplified proofs for preservation of stack consumption

18

Record sup := {global: list ident; stack: stree; astack: stackadt}.

Multi-Stack CompCert
1. Merge stack frames into finite and contiguous stacks
2. Add multiple stacks that grow independently

19

C Module X86
Asm

Multi-
Stack AsmStack-Aware

Nominal CompCert

RealAsm
Stack
Merging

Pseudo-
Instruction
Elimination

Nominal Memory Model
with Multiple Stack

Multi-Stack CompCert

Record sup := {global: list ident; stack: list stree; astack: list stackadt; thread_id: nat}.

Contextual Compilation to Multi-Stack Machine
• Direct Application of Multi-Stack CompCert

20

Compile to
Independent and
Finite Stacks

𝑏!

𝑏"

𝑏-

𝑏!′

𝑏"′
yield

yield

Thread 2Thread 1

Linking

Threads {1,2}

𝑏!

𝑏"

𝑏-

𝑏!′

𝑏"′

Threads {1,2}

𝑏!
𝑏"
𝑏-

𝑏!′
𝑏"′

Max_Stack_Size

Evaluation
• Development is based on CompCert v3.8 in Coq
• Nominal CompCert

• Time: 1 Person Month
• LOC: 1.4K (0.5% addition to CompCert v3.8)

• Nominal CompCert with Structured Memory Space
• Time: 2 Person Month
• LOC: 3.5K (2.5% addition to Nominal CompCert)

• Multi-Stack CompCert (including Stack-Aaware Nominal CompCert)
• Time: 3 Person Month
• LOC: 15K (10.6% addition to Nominal CompCert)

• Artifact: https://github.com/SJTU-PLV/nominal-compcert-popl22-artifact

21

https://github.com/SJTU-PLV/nominal-compcert-popl22-artifact

Conclusion
• Nominal Memory Model: A Principled Generalization over BBMM

• Nominal CompCert: A Framework for Verified Compilation of C programs

• Principled Instantiation of Nominal CompCert

• Note: Regardless the complexity of instances, the existing proofs for all
the memory-injection phases remain valid.

• Future Work:
• Combination of Nominal Memory Model with General Compositional Verification
• Support for Transportation of Proofs between Different Memory Structures
• Application to Program Verification in General

22

