Precision in Practice:
A Type-Preserving Java Compiler*

Christopher League', Zhong Shao?, and Valery Trifonov?

! Long Island University - Computer Science
1 University Plaza, Brooklyn, NY 11201
christopher.league@liu.edu

2 Yale University - Computer Science
P.O. Box 208285, New Haven, CT 06520
flint@cs.yale.edu

Abstract. Popular mobile code architectures (Java and .NET) include
verifiers to check for memory safety and other security properties. Since
their formats are relatively high level, supporting a wide range of source
language features is awkward. Further compilation and optimization,
necessary for efficiency, must be trusted. We describe the design and
implementation of a fully type-preserving compiler for Java and ML.
Its strongly-typed intermediate language provides a low-level abstract
machine model and a type system general enough to prove the safety
of a variety of implementation techniques. We show that precise type
preservation is within reach for real-world Java systems.

1 Introduction

There is increasing interest in program distribution formats that can be checked
for memory safety and other security properties. The Java Virtual Machine
(JVM) [1] performs conservative analyses to determine whether the byte codes of
each method are safe to execute. Its class file format contains type signatures and
other symbolic information that makes verification possible. Likewise, the Com-
mon Intermediate Language (CIL) of the Microsoft NET platform [2] includes
type information and defines verification conditions for many of its instructions.

As a general distribution format, JVM class files are very high-level and quite
partial to the Java language. The byte-code language (JVML) includes no facil-

* This work was sponsored in part by the Defense Advanced Research Projects Agency
ISO under the title “Scaling Proof-Carrying Code to Production Compilers and
Security Policies,” ARPA Order No. H559, issued under Contract No. F30602-99-
1-0519, and in part by NSF Grants CCR-9901011 and CCR-0081590. The views
and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of
the Defense Advanced Research Projects Agency or the U.S. Government. Java is
a registered trademark of Sun Microsystems, Inc. in the U.S. and other countries.
CaffeineMark is a trademark of Pendragon Software.

ities for specifying data layouts or expressing the results of standard optimiza-
tions. Compiling other languages for the JVM means making foreign constructs
look and act like Java classes or objects. That so many translations exist [3] is
a testament to the utility of the mobile code concept, and to the ubiquity of
the JVM itself. To some extent, CIL alleviates these problems. It supports user-
defined value types, stack allocation, tail calls, and pointer arithmetic (which
is outside the verifiable subset). Even so, a recent proposal to extend CIL for
functional language interoperability [4] added no fewer than 6 new types and 12
new instructions (bringing the total number of call instructions to 5) and it still
does not support ML’s higher-order modules or Haskell’s constructor classes.

Another problem with both of these formats is that they require further com-
pilation and optimization to run efficiently on real hardware. Since these phases
occur after verification, they are not guaranteed to preserve the verified safety
and security properties. Bugs in the compiler may have security implications, so
the entire compiler must be trusted.

The idea of type-preserving compilation is to remove the compiler from the
trusted code base (TCB) by propagating type information through all the com-
pilation and optimization passes. Every representation from the source down
to the object code supports verification. Object formats developed in this con-
text include Typed Assembly Language (TAL) [5] and Proof-Carrying Code
(PCC) [6].

Many compilers—including Marmot [7], Intel’s VM [8], and NaturalBridge
BulletTrain [9]—preserve some kind of type information in their intermediate
code, but none are rigorous enough to support verification. Lower-level code
requires more sophisticated type systems. As we will demonstrate, annotations
that merely distinguish between integers, floats, and objects of distinct classes
are insufficient. Types must enforce subtle invariants, for which logical constructs
(such as quantification) are useful.

Our previous work [10, 11] developed type-theoretic encodings of many Java
features. We proved useful properties, such as type preservation and decidabil-
ity, but always our goal was to implement the encodings in a practical com-
piler. In fact, we rejected the classic object encodings [12] because their runtime
penalties—superfluous indirections and function calls—were too high.

This paper describes the design and implementation of a compiler based on
our encodings. It is the first practical system to use a higher-order polymorphic
intermediate language to compile both functional and object-oriented source
languages. Additionally, it has the following features:

— Front ends for both Standard ML [13] and JVML that share optimizations
and code generators. Programs from either language run together in the
same interactive runtime system.

— AJVM, our high-level intermediate language (IL) in the Java front end, uses
the same primitive instructions and types as JVML, but is easier to verify
and more amenable to optimization (see section 3).

— JFlint, our low-level generic IL, includes function declarations, arrays and
structures, and the usual branches and numeric primitives. Its type system

includes logical quantifiers (universal, existential, fixed point) and rows [14]
for abstracting over structure suffixes. The instruction stream includes ex-
plicit type operations that guide the verifier.

— Unlike the CIL extension [4], our design supports a pleasing synergy between
the encodings of Java and ML. JFlint does not, for example, treat Java
classes or ML modules as primitives. Rather, it provides a low-level abstract
machine model and sophisticated types that are general enough to prove
the safety of a variety of implementation techniques. We expand on this in
section 4.

— Nothing about our instruction set should surprise a typical compiler devel-
oper. Type operations must appear periodically, but most occur in canned
sequences that can easily be treated as macros. Although the detailed type
information can be quite large, our graph representation maintains opti-
mal sharing. Type annotations within the code are merely pointers into this
graph. For debugging purposes, we print the type annotations using short,
intuitive names such as InstOf [java/lang/Object].

— All types are discarded after verification, leaving concise and efficient code,
ezactly as an untyped compiler would produce.

Our thesis, in short, is that precise type preservation is within the reach of
practical Java systems.

The next section introduces a detailed example to elucidate some of the
issues in certifying compilation of object-oriented languages, and to distinguish
our approach from that of Cedilla Systems [15]. We postpone discussion of other
related projects to section 6.

2 Background: self-application and Special J

We begin by attempting to compile the most fundamental operation in object-
oriented programming: virtual method invocation.

public static void deviant (Object x, Object y)
{ x.toString(); }

The standard implementation adds an explicit self argument (this) to each
method and collects the methods into a per-class structure called a vtable. Each
object contains a pointer to the vtable of the class that created it. To invoke
a virtual method, we load the vtable pointer from the object, load the method
pointer from the vtable, and then call the method, providing the object itself as
this.

public static void deviant (Object x, Object y)
{ if (x is null) throw NullPointerException;

rl = x.vtbl;

r2 = rl.toString;

call r2 (x); }

A certifying compiler must justify that the indirect call to r2 is safe; this is
not at all obvious. Since x might be an instance of a subclass, the method in
r2 might require additional fields and methods that are unknown to the caller.
Self-application works thanks to a rather subtle invariant. One way to upset that
invariant is to select a method from one object and pass it another object as the
self argument. For example, replace just the last instruction above with call r2
(y).

This might seem harmless; after all, both x and y are instances of Object.
It is unsound, however, and any unsoundness can be exploited. Suppose class
Int extends Object by adding an integer field; class Ref adds a byte vector and
overrides toString:

class Ref extends Object
{ public byte[] vec;
public String toString()
{ vec[13] = O0xFF; return "Ha ha!"; }
}

Then, calling the deviant method as follows:
deviant (new Ref(...), new Int(...));

will jump to Ref.toString() with this bound to the Int object. Thus, we
use an arbitrary integer as an array pointer. This is one reason why virtual
method calls are atomic operations in both JVML and CIL. How to enforce the
self-application invariant in lower-level code is not widely understood.

Cedilla Systems developed Special J [15], a proof-carrying code compiler for
Java. Their paper described the design, defined some of the predicates used in
verification conditions, explained their approach to exceptional control flow, and
gave some experimental results. Their running example was hand-optimized code
including a loop, an array field, and an exception handler.

Unfortunately, their paper did not adequately describe the safety conditions
for virtual method calls. In communication with the authors, we discovered that
their current system indeed does not properly enforce the necessary invariant
on self-application [16]. It gives the type “vtable of Object” to rl and the
type “implementation of String Object.toString()” to r2. The verification
condition for the call requires only that the static class of the self argument
matches the static class of the object from which the method was fetched. As a
result, the consumer’s proof checker will accept the malicious code given above.

Necula claims that this hole can be patched [16], but it has still not been
addressed in subsequent work [17]. One weakness in the Cedilla PCC architecture
is that the rules for the source language are part of the trusted code base. If they
are unsound, all bets are off. Moreover, the rules and the code have different levels
of granularity. PCC is machine code, but its logical predicates refer specifically
to Java constructs such as objects, interfaces, and methods. To support another
language, an entirely new set of language-specific predicates and rules must be
added to the TCB.

In the next section, we briefly survey the architecture of our compiler. Its
key strongly-typed intermediate language is the topic of section 4.

3 Architecture of our compiler

Standard ML of New Jersey is an interactive runtime system and compiler based
on a strongly-typed intermediate language called FLINT [18]. We extended the
FLINT language of version 110.30 and implemented a new front end for Java
class files. We updated the optimization phases to recognize the new features.
The code generator and runtime system remain unchanged.

The Java front end parses class files and converts them to a high-level 1L
called AJVM. This language uses the same primitive instructions and types as
JVML. The difference is that AJVM replaces the implicit operand stack and
untyped local variables with explicit data flow and fully-typed single-assignment
bindings. This alternate representation has several advantages. First, it is sim-
pler to verify than JVML, because all the hard analyses (object initialization,
subroutines, etc.) are performed during translation and their results preserved
in type annotations. The type checker for AJVM is just 260 lines of SML code.
Second, as a functional 1L, it is (like static single assignment form) amenable to
further analysis and optimization [19, 20]. Although we have not implemented
them, this phase would be suitable for class hierarchy analysis and various object-
aware optimizations [21] because the class hierarchy and method invocations are
still explicit.

We designed A\JVM so that its control and data flow mimic that of JFlint.
This means that the next phase of our compiler is simply an expansion of the
JVML types and operations into more detailed types and lower-level code. For
further details about AJVM, please see [22].

On JFlint, we run several contraction optimizations (inlining, common subex-
pression elimination, etc.), and type-check the code after each pass. Since method
invocations are no longer atomic in JFlint, these optimizations readily lift and
merge vtable accesses. A future version of the JFlint type system will even have
support for optimizing array bounds checks [23].

We discard the type information before converting to MLRISC [24] for final
instruction selection and register allocation. To generate typed machine code,
we would need to preserve types throughout the back end. The techniques of
Morrisett et al. [5] should apply directly, since JFlint is based on System F.

Figure 1 demonstrates the SML/JFlint system in action. The top-level loop
accepts Standard ML code, as usual. The JFlint subsystem is controlled via the
Java structure; its members include:

— Java.classPath : string list ref
Initialized from the CLASSPATH environment variable, this is a list of direc-
tories where the loader will look for class files.

— Java.load : string -> unit
looks up the named class using classPath, resolves and loads any depen-
dencies, then compiles the byte codes and executes the class initializer.

— Java.run : string -> string list -> unit
ensures that the named class is loaded, then attempts to call its main method
with the given arguments.

Standard ML of New Jersey v110.30 [JFLINT 1.2]

- Java.classPath := ["/home/league/r/java/tests"];

val it = () : unit

- val main = Java.run "Hello";

[parsing Hello]

[parsing java/lang/Object]

[compiling java/lang/Object]

[compiling Hello]

[initializing java/lang/Object]

[initializing Hello]

val main = fn : string list -> unit

- main ["Duke"];

Hello, Duke

val it = () : unit

- main [];

uncaught exception ArrayIndexOutOfBounds
raised at: Hello.main([Ljava/lang/String;)V

- D

Fig. 1. Compiling and running a Java program in SML/NJ.

The session in figure 1 sets the classPath, loads the Hello class, and binds its
main method, using partial application of Java.run. The method is then invoked
twice with different arguments. The second invocation wrongly accesses argv [0];
this error surfaces as the ML exception Java.ArrayIndexOutOfBounds.

This demonstration shows SML code interacting with a complete Java pro-
gram. Since both run in the same runtime system, very fine-grained interactions
should be possible. Benton and Kennedy [25] designed extensions to SML to
allow seamless interaction with Java code when both are compiled for the Java
virtual machine. Their design should work quite well in our setting also.

Ours is essentially a static Java compiler, as it does not handle dynamic
class loading or the java.lang.reflect API. These features are more difficult
to verify using a static type system, but they are topics of active research. The
SML runtime system does not yet support kernel threads, so we have ignored
concurrency and synchronization.

Finally, our runtime system does not, for now, dynamically load native code.
This is a dubious practice anyway; such code has free reign over the runtime
system, thus nullifying any safety guarantees won by verifying pure code. Nev-
ertheless, this restriction is unfortunate because it limits the set of existing Java
libraries that we can use.

4 Overview of the JFlint IL

To introduce the JFlint language, we begin with a second look at virtual method
invocation in Java: below is the expansion into JFlint of a Java method that takes
Objects x and y and calls x.toString().

obedient (x, y : InstOf[java/lang/Object]l?) =

switch (x)
case null: throw NullPointerException;
case non-null x1:
<f1,ml; x2 : Self[java/lang/Object] f1 mi>
= 0OPEN x1;
x3 = UNFOLD x2;
rl = x3.vtbl;
r2 = rl.toString;
call r2 (x2);

The dots at left indicate erasable type operations. The postfix ? indicates that
the arguments could be null. The code contains the same operations as before:
null check, two loads, and a call. The null check is expressed as a switch that, in
the non-null case, binds the new identifier x1 to the value of x, but now with type
Inst0f [java/lang/Object] (losing the 7). It is customary to use new names
whenever values change type, as this dramatically simplifies type checking.

4.1 Type operations

The new instructions following the null check (OPEN and UNFOLD) are type oper-
ations. InstOf abbreviates a particular existential type (we clarify the meanings
of the various types in section 4.4):

Inst0f [java/lang/0bject] =
exists fO, mO: Self[java/lang/Object] £0 mO

OPEN eliminates the existential by binding fresh type variables (f1 and m1 in the
example) to the hidden witness types. Likewise, Self abbreviates a fixed point
(recursive) type:

Self [java/lang/Object] fi mi =
fixpt sO0: { vtbl : Meths[java/lang/Object] sO mi;
hash : int;
fi }

Meths[java/lang/Object] sj mj =
{ toString : sj -> Inst0f[java/lang/String];
hashCode : sj -> int;
mj(sj)

UNFOLD eliminates the fixed point by replacing occurrences of the bound vari-
able sO with the recursive type itself. These operations leave us with a struc-
tural view of the object bound to x3; it is a pointer to a record of fields
prefixed by the vtable (a pointer to a sequence of functions). Importantly,
the fresh type variables introduced by the OPEN (f1 and ml) find their way
into the types of the vtable functions. Specifically, r2 points to a function of
type Self [java/lang/Object] f1 ml -> InstOf[java/lang/String]. Thus
the only valid self argument for r2 is x2. The malicious code of section 2 is
rejected because opening y would introduce brand new type variables (£2 and

signature JFLINT = sig
datatype value (* identifiers and constants *)
= VAR of id | INT of Int32.int | STRING ...

datatype exp
= LETREC of fundec list * exp
| LET of id * exp * exp
| CALL of id * value list
| RETURN of value
[
I
I

STRUCT of value list * id * exp
LOAD of value * int * 1d * exp
STORE of value * int * value * exp
- (* type manipulation instructions *)
| INST of id * ty list * id * exp
| FOLD of value * ty * id * exp
| UNFOLD of value * id * exp
| PACK of ty list * (valuexty) list * id * exp
| OPEN of value * id list * (id*ty) list * exp

withtype fundec = id * (id * ty) list * exp
end

Fig. 2. Representation of JFlint code.

m2, say); these never match the variables in the type of r2. The precise typing
rules for UNFOLD and OPEN are available elsewhere [11, 26].

After the final verification, the type operations are completely discarded and
the aliased identifiers are renamed. This erasure leaves us with precisely the same
operational behavior that we used in an untyped setting. Like other instructions,
type manipulations yield to simple optimizations. We can, for example, eliminate
redundant OPENs and hoist loop-invariant UNFOLDs. In fact, using online common
subexpression elimination, we avoid emitting redundant operations in the first
place. For a series of method calls and field accesses on the same object, we would
OPEN and UNFOLD it just once. Although the type operations have no runtime
penalty, optimizing them is advantageous. First, fewer type operations means
smaller programs and faster compilation and verification. Second, excess type
operations often hide further optimization opportunities in runtime code.

4.2 Code representation

Our examples use a pretty-printed surface syntax for JFlint. Figure 2 contains a
portion of the SML signature for representing such code in our compiler. Iden-
tifiers and constants comprise values. Instructions operate on values and bind
their results to new names. Loads and stores on structures refer to the integer
offset of the field. Function declarations have type annotations on the formal
parameters. Non-escaping functions whose call sites are all in tail position are
very lightweight, more akin to basic blocks than to functions in C.

This language is closer to machine code than to JVML, but not quite as
low-level as typed assembly language. Allocating and initializing a structure,
for example, is one instruction: STRUCT. Similarly, the CALL instruction passes
n arguments and transfers control all at once; the calling convention is not
explicit. It is possible to break these down and still preserve verifiability [5], but
this midpoint is simpler and still quite useful for optimization.

There are two hurdles for a conventional compiler developer using a strongly-
typed IL like JFlint. The first is simply the functional notation, but it can be
understood by analogy to SSA. Moreover, it has additional benefits such as
enforcing the dominator property and providing homes for type annotations [19)].
The second hurdle is the type operations themselves: knowing where to insert
and how to optimize them. The latter is simple; most standard optimizations
are trivially type-preserving. Type operations have uses and defs just like other
instructions, and type variables behave (in most cases) like any other identifier.

As for knowing what types to define and where in the code to insert the type
operations: we developed recipes for Java primitives [10, 11]; some of these appear
in figure 3. A thorough understanding of the type system is helpful for developing
successful new recipes, but experimentation can be fruitful as long as the type
checker is used as a safety net. Extending the type system without forfeiting
soundness is, of course, a more delicate enterprise; a competent background in
type theory and semantics is essential.

4.3 Interfaces and casts

The open-unfold sequence used in method invocation appears whenever we need
to access an object’s structure. Getting or setting a field starts the same way:
null check, open, unfold (see the first expanded primop in figure 3).

Previously, we showed the expansion of InstO0f[C] as an existential type.
Suppose D extends C; then, InstOf [D] is a different existential. In Java, any
object of type D also has type C. To realize this property in JFlint, we use
explicit type coercions. (This helps keep the type system simple; otherwise we
would need F-bounded quantifiers [27] with ‘top’ subtyping [28].) AJVM marks
such coercions as upcasts. They are expanded into JFlint code just like other
operators.

An upcast should not require any runtime operations. Indeed, apart from the
null test, the upcast recipe in figure 3 is nothing but type operations: open the
object and repackage it to hide more of the fields and methods. Therefore, only
the null test remains after type erasure: (x == null? null : x). This is easily
recognized and eliminated during code generation.

In Java, casts from a class to an interface type are also implicit (assuming the
class implements the interface). On method calls to objects of interface type, a
compiler cannot statically know where to find the interface method. Most imple-
mentations use a dynamic search through the vtable to locate either the method
itself, or an embedded itable containing all the methods of a given interface.
This search is expensive, so it pays to cache the results. With the addition of
unordered (permutable) record types and a trusted primitive for the dynamic

putfield C.f (x : InstOf[C]?; y : T) =
switch (x) case null: throw NullPointerException;
case non-null x1:
<f3,m3; x2 : Self[C] £3 m3> = OPEN x1;
x3 = UNFOLD x2;
x3.f :=y;

upcast D,C (x : InstOf[D]?) —
switch (x) case null: return null : InstOf[C]?;
case non-null x1:
<f4,m4; x2 : Self[D] f4 m4> = OPEN x1;
x2 = PACK f5=NewFlds[D] f4, m5=NewMeths[D] m4
WITH x1 : Self[C] £f5 m5;
return x2 : InstOf[C]?7;

invokeinterface I.m (x : IfcObj[I]?; vi...vn) =
switch (x) case null: throw NullPointerException;
case non-null x1:

<t; x1 : IfcPair[I] t> = OPEN x1;

rl = x1.itbl;

r2 = xl.obj;
r3 = rl.m;
call r3 (r2, vi, ..., vn);

Fig. 3. Recipes for some AJVM primitives.

search, interface types pose no further problems. Verifying the searching and
caching code in a static type system would be quite complex. As an experiment,
we implemented a unique representation of interfaces for which the dynamic
search is unnecessary [10].

In our system, interface calls are about as cheap as virtual calls (null check,
a few loads and an indirect call). We represent interface objects as a pair of the
interface method table and the underlying object. To invoke a method, we fetch
it from the itable and pass it the object as the self argument. This implies a
non-trivial coercion when an object is upcast from a class to an interface type,
or from one interface to another: fetch the itable and create the pair. Since all
interface relationships are declared in Java, the itables can be created when each
class is compiled, and then linked into the class vtable. Since the layout of the
vtable is known at the point of upcast, dynamic search is unnecessary.

The final recipe in figure 3 illustrates this technique. The new type abbrevi-
ations for representing interface objects are, for example:

IfcObj[java/lang/Runnable] =

exists t . IfcPair[java/lang/Runnable] t
IfcPair[java/lang/Runnable] t =

{itbl : { run : t -> void }, obj : t }

The existential hides the actual class of the object. Just as with virtual invo-
cation, the interface invocation relies on a sophisticated invariant. A method

signature JTYPE = sig

type ty

val var : int * int -> ty (* type variable *)
val arrow : ty list * ty -> ty (* function type *)
val struct : ty —-> ty (* structure types *)
val row Dty * ty > ty

val empty : int -> ty

- (* quantified types *)
val exists : kind list * ty list -> ty
val fixpt : kind list * ty list -> ty

val lam : kind list * ty -> ty (* higher-order *)
val app : ty * ty list -> ty
end

Fig. 4. Abstract interface for JFlint type representation.

from the itable must be given a compatible object as the self argument. The
existential ensures that only the packaged object will be used with methods in
the itable.

This scheme also supports multiple inheritance of interfaces. Suppose inter-
face AB extends both interfaces A (with method a) and B (with method b). The
itable of AB will contain pointers to itables for each of the super interfaces: To
upcast from AB to B, just open the interface object, fetch itbl.B, pair it with
obj, and re-package.

Unfortunately, Java’s covariant subtyping of arrays (widely considered to
be a misfeature) is not directly compatible with this interface representation.
Imagine casting an array of class type to an array of interface type—we would
need to coerce each element! For the purpose of experimentation, we ignored
the covariant array subtyping rule. In the future, we would like to find a hybrid
approach that allows cheap, easily verifiable invocation of interface methods, but
is still compatible with the Java specification.

4.4 Type representation

To support efficient compilation, types are represented differently from code.
Figure 4 contains part of the abstract interface to our type system. Most of
our types are standard: based on the higher-order polymorphic lambda calculus
(see [29] for an overview).

A structure is a pointer to a sequence of fields, but we represent the sequence
as a linked list of rows. Any tail of the list can be replaced with a type variable,
providing a handle on suffixes of the structure. The Inst0f definition used an
existential quantifier [30] to hide the types of additional fields and methods;
these are rows.

A universal quantifier—precisely the inverse—allows outsiders to provide
types; in our encoding, it models inheritance. Subclasses provide new types for
the additional fields and methods. Kinds classify types and provide bounds for

quantified variables. They ensure that rows are composed properly by tracking
the structure offset where each row begins [14].

Our object encodings rely only on standard constructs, so our type system is
rooted in well-developed type theory and logic. The soundness proof for a similar
system is a perennial assignment in our semantics course. The essence was even
formalized in machine-checkable form using Twelf [31].

4.5 Synergy

Judging from the popular formats, it appears that there are just two ways to
support different kinds of source languages in a single type-safe intermediate
language. Either favor one language and make everyone else conform (JVM)
or incorporate the union of all the requested features (CIL, ILX [2, 4]). CIL
instructions distinguish, for example, between loading functions vs. values from
objects ws. classes. ILX adds instructions to load from closure environments and
from algebraic data types.

JFlint demonstrates a better approach: provide a low-level abstract machine
model and general types capable of proving safety of various uses of the machine
primitives. Structures in JFlint model Java objects, vtables, classes, and inter-
faces, plus ML records and the value parts of modules. Neither Java nor ML has
a universal quantifier, but it is useful for encoding both Java inheritance and
ML polymorphism. The existential type is essential for object encoding but also
for ML closures and abstract data types.

We believe this synergy speaks well of our approach in general. Still, it does
not mean that we can support all type-safe source languages equally well. Java
and ML still have much in common; they work well with precise generational
garbage collection and their exceptions are similar enough. Weakly typed for-
mats, such as C-- [32], are more ambitious in supporting a wider variety of
language features, including different exception and memory models. Practical
type systems to support that level of flexibility are challenging; further research
is needed.

5 Implementation concerns

If a type-preserving compiler is to scale, types and type operations must be
implemented with extreme care. The techniques of Shao, et al. made the FLINT
typed IL practical enough to use in a production compiler [18]. Although different
type structures arise in our Java encodings, the techniques are quite successful. A
full type-preserving compile of the 12 classes in the CaffeineMark 3.0 embedded
series takes 2.4 seconds on a 927 MHz Intel Pentium III Linux workstation. This
is about 60% more than gcj, the GNU Java compiler [33]. Since gcj is written
in C and our compiler in SML, this performance gap can easily be attributed to
linguistic differences. Verifying both the AJVM and the JFlint code adds another
half second.

Run times are promising, but can be improved. (Our goal, of course, is to
preserve type safety; speed is secondary.) CaffeineMark runs at about a third the
speed in SML/NJ compared to gcj -02. There are several reasons for this dif-
ference. First, many standard optimizations, especially on loops, have not been
implemented in JFlint yet. Second, the code generator is still heavily tuned for
SML; structure representations, for example, are more boxed than they should
be. Finally, the runtime system is also tuned for SML; to support callcc, every
activation record is heap-allocated and subject to garbage collection. Benchmark-
ing is always fraught with peril. In our case, meaningful results are especially
elusive because we can only compare with compilers that differ in many ways
besides type preservation.

6 Related work

Throughout the paper, we made comparisons to the Common Intermediate Lan-
guage (CIL) of the Microsoft .NET platform [2] and ILX, a proposed extension
for functional language interoperability [4]. We discussed the proof-carrying code
system Special J [15] at length in section 2. We mentioned C-- [32], the portable
assembly language, in section 4.5. Several other systems warrant mention.

Benton et al. built MLj, an SML compiler targeting the Java Virtual Ma-
chine [34]; we mentioned their extensions for interoperability earlier [25]. Since
JVML is less expressive than JFlint, they monomorphize SML polymorphic func-
tions and functors. On some applications, this increases code size dramatically.
JVML is less appropriate as an intermediate format for functional languages be-
cause it does not model their type systems well. Polymorphic code must either
be duplicated or casts must be inserted. JFlint, on the other hand, completely
models the type system of SML.

Wright, et al. [35] compile a Java subset to a typed intermediate language,
but they use unordered records and resort to dynamic type checks because their
system is too weak to type self application. Neal Glew [36] translates a simple
class-based object calculus into an intermediate language with F-bounded poly-
morphism [27] and a special ‘self” quantifier. A more detailed comparison with
this encoding is available elsewhere [11, 26].

Many researchers use techniques reminiscent of those in our AJVM trans-
lation format. Marmot converts bytecode to a conventional high-level IL using
abstract interpretation and type elaboration [7, 37]. Gagnon et al. [38] give an
algorithm to infer static types for local variables in JVML. Since they do not
use a single-assignment form, they must occasionally split variables into their
separate uses. Since they do not support set types, they insert explicit type
casts to solve the multiple interface problem. Amme et al. [39] translate Java to
SafeTSA, an alternative mobile code representation based on SSA form. Since
they start with Java, they avoid the complications of subroutines and set types.
Basic blocks must be split wherever exceptions can occur, and control-flow edges
are added to the catch and finally blocks. Otherwise, SafeTSA is similar in
spirit to AJVM.

7

Conclusion

We have described the design and implementation of our type-preserving com-
piler for both Java and SML. Its strongly-typed intermediate language provides
a low-level abstract machine model and a type system general enough to prove
the safety of a variety of implementation techniques. This approach produces a
pleasing synergy between the encodings of both languages. We have shown that
type operations can be implemented efficiently and do not preclude optimiza-
tions or efficient execution. We therefore believe that precise type preservation
is within reach for real-world Java systems.

References

1]

o
[11]
[12]
[13]
[14]
[15]

[16]
[17]

Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. 2nd edn.
Addison-Wesley (1999)

ECMA: Common language infrastructure. Drafts of the TC39/TG3 standardiza-
tion process. http://msdn.microsoft.com/net/ecma/ (2001)

Tolksdorf, R.: Programming languages for the JVM. http://flp.cs.tu-berlin.
de/~tolk/vmlanguages.html (2002)

Syme, D.: ILX: extending the .NET Common IL for functional language inter-
operability. In: Proc. BABEL Workshop on Multi-Language Infrastructure and
Interoperability, ACM (2001)

Morrisett, G., Walker, D., Crary, K., Glew, N.: From System F to typed assembly
language. ACM Trans. on Programming Languages and Systems 21 (1999)
Necula, G.C.: Proof-carrying code. In: Proc. Symp. on Principles of Programming
Languages, Paris, ACM (1997) 106-119

Fitzgerald, R., Knoblock, T.B., Ruf, E., Steensgaard, B., Tarditi, D.: Marmot: an
optimizing compiler for Java. Software: Practice and Experience 30 (2000)
Stichnoth, J.M., Lueh, G.Y., Cierniak, M.: Support for garbage collection at every
instruction in a Java compiler. In: Proc. Conf. on Programming Language Design
and Implementation, Atlanta, ACM (1999) 118-127

NaturalBridge: Personal comm. with Kenneth Zadeck and David Chase (2001)
League, C., Shao, Z., Trifonov, V.: Representing Java classes in a typed inter-
mediate language. In: Proc. Int’l Conf. Functional Programming, Paris, ACM
(1999)

League, C., Shao, Z., Trifonov, V.: Type-preserving compilation of Featherweight
Java. ACM Trans. on Programming Languages and Systems 24 (2002)

Bruce, K.B., Cardelli, L., Pierce, B.C.: Comparing object encodings. Information
and Computation 155 (1999) 108-133

Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML
(Revised). MIT Press (1997)

Rémy, D.: Syntactic theories and the algebra of record terms. Technical Report
1869, INRIA (1993)

Colby, C., Lee, P., Necula, G.C., Blau, F., Cline, K., Plesko, M.: A certifying
compiler for Java. In: Proc. Conf. on Programming Language Design and Imple-
mentation, Vancouver, ACM (2000)

Necula, G.C.: Personal communication (2001)

Schneck, R.R., Necula, G.C.: A gradual approach to a more trustworthy, yet
scalable, proof-carrying code. In: Proc. Conf. on Automated Deduction. (2002)

[18]
[19]
[20]
[21]

[22]

23]
24]
[25]
[26]

27]

28]
[29]
[30]
31]
32]
[33]
[34]

[35]

[36]
37]
[38]

[39]

Shao, Z., League, C., Monnier, S.: Implementing typed intermediate languages.
In: Proc. Int’l Conf. Functional Programming, Baltimore, ACM (1998) 313-323
Appel, A'W.: SSA is functional programming. ACM SIGPLAN Notices (1998)
Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. on Programming Languages and Systems 13 (1991) 451-490

Dean, J., Grove, D., Chambers, C.: Optimization of object-oriented programs
using static class hierarchy analysis. In: Proc. European Conf. Object-Oriented
Programming. (1995)

League, C., Trifonov, V., Shao, Z.: Functional Java bytecode. In: Proc. 5th
World Conf. on Systemics, Cybernetics, and Informatics. (2001) Workshop on
Intermediate Representation Engineering for the Java Virtual Machine.

Shao, Z., Saha, B., Trifonov, V., Papaspyrou, N.: A type system for certified
binaries. In: Proc. Symp. on Principles of Programming Languages. (2002)
George, L.: Customizable and reusable code generators. Technical report, Bell
Labs (1997)

Benton, N., Kennedy, A.: Interlanguage working without tears: Blending ML with
Java. In: Proc. Int’l Conf. Functional Programming, Paris, ACM (1999) 126-137
League, C.: A Type-Preserving Compiler Infrastructure. PhD thesis, Yale Uni-
versity (2002)

Canning, P., Cook, W., Hill, W., Olthoff, W., Mitchell, J.C.: F-bounded poly-
morphism for object-oriented programming. In: Proc. Int’l Conf. on Functional
Programming and Computer Architecture, ACM (1989) 273-280

Castagna, G., Pierce, B.C.: Decidable bounded quantification. In: Proc. Symp.
on Principles of Programming Languages, Portland, ACM (1994)

Barendregt, H.: Typed lambda calculi. In Abramsky, S., Gabbay, D., Maibaum,
T., eds.: Handbook of Logic in Computer Science. Volume 2. Oxford (1992)
Mitchell, J.C., Plotkin, G.D.: Abstract types have existential type. ACM Trans-
actions on Programming Languages and Systems 10 (1988) 470-502

Schiirmann, C., Yu, D., Ni, Z.: An encoding of F-omega in LF. In: Proc. Workshop
on Mechanized Reasoning about Languages with Variable Binding, Siena (2001)
Peyton Jones, S., Ramsey, N., Reig, F.: C—: a portable assembly language that
supports garbage collection. In Nadathur, G., ed.: Proc. Conf. on Principles and
Practice of Declarative Programming. Springer (1999) 1-28

Bothner, P.: A GCC-based Java implementation. In: Proc. IEEE Compcon. (1997)
Benton, N., Kennedy, A., Russell, G.: Compiling Standard ML to Java bytecodes.
In: Proc. Int’l Conf. Functional Programming, Baltimore, ACM (1998) 129-140
Wright, A., Jagannathan, S., Ungureanu, C., Hertzmann, A.: Compiling Java to a
typed lambda-calculus: A preliminary report. In: Proc. Int’l Workshop on Types
in Compilation. Volume 1473 of LNCS., Berlin, Springer (1998) 1-14

Glew, N.: An efficient class and object encoding. In: Proc. Conf. on Object-
Oriented Programming Systems, Languages, and Applications, ACM (2000)
Knoblock, T., Rehof, J.: Type elaboration and subtype completion for Java byte-
code. In: Proc. Symp. on Principles of Programming Languages. (2000) 228-242
Gagnon, E., Hendren, L., Marceau, G.: Efficient inference of static types for Java
bytecode. In: Proc. Static Analysis Symp. (2000)

Amme, W., Dalton, N., von Ronne, J., Franz, M.: SafeTSA: A type safe and
referentially secure mobile-code representation based on static single assignment
form. In: Proc. Conf. on Programming Language Design and Implementation,
ACM (2001)

