
End-to-End Verification of Information-Flow
Security for C and Assembly Programs

Abstract
Protecting the confidentiality of information manipulated by
a computing system is one of the most important challenges
facing today’s cybersecurity community. A promising step
toward conquering this challenge is to formally verify that
the end-to-end behavior of the computing system really sat-
isfies various information-flow policies. Unfortunately, be-
cause today’s system software still consists of both C and
assembly programs, the end-to-end verification necessarily
requires that we not only prove the security properties of in-
dividual components, but also carefully preserve these prop-
erties through compilation and cross-language linking.

In this paper, we present a practical, general, and novel
methodology for formally verifying end-to-end security of
a software system that consists of both C and assembly
programs. We introduce a general definition of observa-
tion function that unifies the concepts of policy specifica-
tion, state indistinguishability, and whole-execution behav-
iors. We show how to use different observation functions for
different levels of abstraction, and how to link different se-
curity proofs across abstraction levels using a special kind
of simulation that is guaranteed to preserve state indistin-
guishability. To demonstrate the effectiveness of our new
methodology, we have successfully constructed an end-to-
end security proof, fully formalized in the Coq proof as-
sistant, of a nontrivial operating system. Some parts of the
operating system are written in C and some are written in
assembly; we verify all of the code, regardless of language.

1. Introduction
Information flow control (IFC) [21, 23] is a form of analysis
that tracks how information propagates through a system.
It can be used to state and verify important security-related
properties about the system. In this work, we will focus
on the read-protection property known as confidentiality or
privacy, using these terms interchangeably with security.

Security is desirable in today’s real-world software.
Hackers often exploit software bugs to obtain information
about protected secrets, such as user passwords or private
keys. A formally-verified end-to-end security proof can
guarantee such exploits will never be successful. There are
many significant roadblocks involved in such a verification,
however, and the state-of-the-art is not entirely satisfactory.

Consider the setup of Figure 1, where a large system
(e.g., an operating system) consists of many separate func-
tions (e.g., system call primitives) written in either C or as-
sembly. Each primitive has a verified atomic specification,

x86	Assembly	Machine	

	
	
	

User	
Process	

P1	
	
	
	
	

OS	Syscall	Spec	

CModules	

	

Asm.s	
	

	
	

CompCert	
	
	
	

CMods.s	

	

AsmSpec	
	

primi5ve	&	
func5on	calls	

“implements”	

“li>ing”	

	
	
	

User	
Process	

P2	
	
	
	
	

High-level	informa0on-flow	security	policy	specifica0on	

Low-level		
end-to-end	
security		
guarantee	

Figure 1. An end-to-end software system that consists of both OS
modules (in C and assembly) and user processes.

and there is a verified compiler, such as CompCert [14],
that can correctly compile C programs into assembly. We
wish to prove an end-to-end security statement about some
context program that can call the primitives of the system,
which ultimately guarantees that the concrete execution (i.e.,
the whole-program assembly execution) behaves securely.
There are many challenges involved, such as:

• Policy Specification — How do we specify a clear and
precise security policy, describing how information is al-
lowed to flow between various domains? If we express
the policy in terms of the high-level primitive specifica-
tions, then what will this imply for the whole-program
assembly execution? We need some way of specifying
policies at different levels of abstraction, as well as trans-
lating between or linking separate policies.
• Propagating Security — It is well known [11, 17] that

simulations and refinements may not propagate security
guarantees. How, then, can we soundly obtain a low-level
guarantee from a high-level security verification?
• Cross-Language Linking — Even if we verify security

for all atomic primitive specifications and propagate the
proofs to implementations, there still may be incompati-
bilities between the proofs for C primitives and those for
assembly primitives. For example, a security proof for an
assembly primitive might express that some data stored
in a particular machine register is not leaked; this prop-
erty cannot be directly chained with one for a C primi-
tive since the C memory model does not contain machine
registers. We therefore must support linking the specifi-
cations of primitives implemented in different languages.

1

In this paper, we present a practical, general, and novel
methodology for formally verifying end-to-end security of
a system like the one shown in Figure 1. First, security is
proved for each high-level specification in a standard way,
establishing noninterference by showing that a state indistin-
guishability relation is invariant across the specification (this
is the standard unwinding condition [7, 8]). Then we apply
simulation techniques to automatically obtain a sound secu-
rity guarantee for the low-level machine execution, which is
expressed in terms of whole-execution observations.

The central idea of our methodology is to introduce a
flexible definition of observation that unifies the concepts
of policy specification, state indistinguishability, and whole-
execution observations. For every level of abstraction, we
define an observation function that describes which portions
of a program state are observable to which principals. For
example, an observation function might say that “x is ob-
servable to Alice” and “y is observable to Bob”.

Different abstraction levels can use different observation
functions. We might use one observation function mention-
ing machine registers to verify an assembly primitive, and a
second observation function mentioning program variables
to verify a C primitive. These observation functions are then
linked across abstraction levels via a special kind of simula-
tion that preserves state indistinguishability.

We demonstrate the efficacy of our approach by applying
it to the mCertiKOS operating system [9] to prove security
between user processes with distinct IDs. mCertiKOS guar-
antees full functional correctness of system calls by chaining
simulations across many abstraction layers. We implement
our general notion of observation function over the existing
simulation framework, and then verify security of the high-
level system call specifications. The result of this effort is an
end-to-end security guarantee for the operating system —
we specify exactly which portions of high-level state are ob-
servable to which processes, and we are guaranteed that the
low-level assembly execution of the whole system is secure
with respect to this policy.

To summarize, the primary contributions of this work are:

• A novel methodology for end-to-end security verifica-
tion of complex systems written in different languages
extending across various levels of abstraction.
• An end-to-end security proof, completely formalized in

the Coq proof assistant [27], of a nontrivial operating
system. Some parts of the operating system are written
in C and some are written in assembly; we verify all of
the code, regardless of language.

The rest of this paper is organized as follows. Sec. 2 intro-
duces the observation function and shows how to use it for
policy specification, security proof, and linking. Sec. 3 for-
malizes our simulation framework and shows how we prove
the end-to-end security theorem. Sec. 4 and 5 describe the
security property that we prove over mCertiKOS, highlight-

ing the most interesting aspects of our proofs. Finally, we
discuss related work and then conclude.

2. The Observation Function
This section will explore our notion of observation, describ-
ing how it cleanly unifies various aspects of security verifi-
cation. Assume we have some set L of principals or security
domains that we wish to fully isolate from one another, and a
state transition machine M describing the single-step opera-
tional semantics of execution at a particular level of abstrac-
tion. For any type of observations, we define the observation
function of M to be a function mapping a principal and pro-
gram state to an observation. For a principal l and state σ,
we express the state observation notationally asOM ;l(σ), or
just Ol(σ) when the machine is obvious from context.

2.1 High-Level Security Policies
We use observation functions to express high-level policies.
Consider the following C primitive (assume variables are
global for the purpose of presentation):

void add() {
a = x + y;
b = b + 2; }

Clearly, there are flows of information from x and y to a,
but no such flows to b. We express these flows in a policy
induced by the observation function. Assume that program
state is represented as a partial variable store, mapping vari-
able names to either None if the variable is undefined, or
Some v if the variable is defined and contains integer value
v. We will use the notation [x ↪→ 7; y ↪→ 5] to indicate the
variable store where x maps to Some 7, y maps to Some 5,
and all other variables map to None.

We consider the value of a to be observable to Alice
(principal A), and the value of b to be observable to Bob
(principal B). Since there is information flow from x and y
to a in this example, we will also consider the values of x and
y to be observable to Alice. Hence we define the observation
type to be partial variable stores (same as program state), and
the observation function is:

OA(s)
4
= [a ↪→ s(a); x ↪→ s(x); y ↪→ s(y)]

OB(s)
4
= [b ↪→ s(b)]

This observation function induces a policy over an execu-
tion, stating that for each principal, the final observation is
dependent only upon the contents of the initial observation.
This means that Alice can potentially learn anything about
the initial values of a, x, and y, but she can learn nothing
about the initial value of b. Similarly, Bob cannot learn any-
thing about the initial values of a, x, or y. It should be fairly
obvious that the add primitive is secure with respect to this
policy; we will discuss how to prove this fact shortly.

Alternative Policies Since the observation function can be
anything, we can express various intricate policies. For ex-

2

ample, we might say that Alice can only observe parities:

OA(s)
4
= [a ↪→ s(a)%2; x ↪→ s(x)%2; y ↪→ s(y)%2]

We also do not require observations to be a portion of
program state, so we might express that the average of x
and y is observable to Alice:

OA(s)
4
= (s(x) + s(y))/2

Notice how this kind of observation expresses a form of
declassification, saying that the average of the secret values
in x and y can be declassified to Alice.

One important example of observation is a representation
of the standard label lattices and tainting used in many secu-
rity frameworks. Security domains are arranged in a lattice
structure, and information is only allowed to flow up the lat-
tice. Suppose we attach a security label to each piece of data
in a program state. We can then define the observation func-
tion for a label l to be the portion of state that has a label
at or below l in the lattice. As is standard, we define the se-
mantics of a program such as a = x + y to set the resulting
label of a to be the least upper bound of the labels of x and y.
Hence any label that is privileged enough to observe a will
also be able to observe both x and y. We can then prove that
this semantics is secure with respect to our lattice-aware ob-
servation function. In this way, our observation function can
directly model label tainting.

2.2 Security Formulation
High-Level Security As mentioned in Section 1, we prove
security at a high abstraction level by using an unwinding
condition. Specifically, for a given principal l, this unwind-
ing condition says that state indistinguishability is preserved
by each step of an execution, where two states are said to
be indistinguishable just when their observations are equal.
Intuitively, if a step of execution always preserves indistin-
guishability, then the final observation of the step can never
be influenced by changing unobservable data in the initial
state (i.e., high-security inputs cannot influence low-security
outputs).

More formally, for any principal l and state transition
machine M with single-step transition semantics TM , we
say that M is secure for l if the following property holds
for all states σ1, σ2, σ′1, and σ′2:

Ol(σ1) = Ol(σ2) ∧ (σ1, σ
′
1) ∈ TM ∧ (σ2, σ

′
2) ∈ TM

=⇒ Ol(σ′1) = Ol(σ′2)

Consider how this property applies to an atomic specification
of the add primitive above, using the observation function
where only the parities of a, x, and y are observable to
Alice. Two states are indistinguishable to Alice just when
the parities of these three variables are the same in the states.
Taking the entire primitive as an atomic step, we see that
indistinguishability is indeed preserved since a gets updated

to be the sum of x and y, and addition is homomorphic
with respect to parity. Hence the policy induced by this
observation function is provably secure.

Low-Level Security Notice that the non-atomic implemen-
tation of add also satisfies the above security property. That
is, if we consider a machine where a single step corresponds
to a single line of C code, then both of the two steps in-
volved in executing add preserve indistinguishability. How-
ever, this is not true in general. Consider an alternative im-
plementation of add with the same atomic specification:

void add() {
a = b;
a = x + y;
b = b + 2; }

The first line of this implementation may not preserve
indistinguishability since the unobservable value of b is di-
rectly written into a. Nevertheless, the second line immedi-
ately overwrites a, reestablishing indistinguishability. This
example illustrates that we cannot simply prove the unwind-
ing condition for high-level atomic specifications, and ex-
pect it to automatically propagate to a non-atomic imple-
mentation. We therefore must use a different security defi-
nition for low-level implementations.

We will express low-level security as an equality between
the whole-execution observations produced by two execu-
tions starting from indistinguishable states. There are two
challenges involved in formalizing this definition, relating to
indistinguishability and whole-execution observations.

Low-Level Indistinguishability For high-level security,
we defined state indistinguishability to be equality of the
state-parameterized observations. This definition may not
make sense at a lower level of abstraction, however. For
example, suppose we attach security labels to data in a high-
level state, for the purpose of specifying a policy based on
label tainting (described above). Further suppose that we
treat the labels as purely logical, erasing them when simu-
lating the high-level specification with an implementation.
This means that the observation function of the implementa-
tion machine cannot be dependent on security labels in any
way, and hence equality of observations is not a sensible
notion of indistinguishability at the implementation level.

We solve this challenge by defining low-level state indis-
tinguishability in terms of high-level indistinguishability and
simulation. We say that, given a simulation relation R relat-
ing specification to implementation, two low-level states are
indistinguishable if there exist two indistinguishable high-
level states that are related to the low-level states by R. This
definition will be formalized in Section 3.

Whole-Execution Observations We define the observa-
tions made by an entire execution in terms of external events,
which are in turn defined by a machine’s observation func-
tion. Many traditional automaton formulations define an ex-
ternal event as a label on the step relation. Each individual

3

step of an execution may or may not produce an event, and
the whole-execution observation, or behavior, is the con-
catenation of all events produced across the execution.

We use the observation function to model external events.
The basic idea is to equate an event being produced by a tran-
sition with the state observation changing across the tran-
sition. This idea by itself does not work, however. When
events are expressed externally on transitions, they defini-
tionally enjoy an important monotonicity property: when-
ever an event is produced, that event cannot be “undone” or
“forgotten” at any future point in the execution. When events
are expressed as changes in state observation, this property
is no longer guaranteed.

We therefore explicitly enforce a monotonicity condition
on the observation function of an implementation. We re-
quire a partial order to be defined over the observation type
of the low-level semantics, as well as a proof that every
step of the semantics respects this order. For example, our
mCertiKOS proof represents the low-level observation as an
output buffer (a Coq list). The partial order is defined based
on list prefix, and we prove that execution steps will al-
ways respect the order by either leaving the output buffer
unchanged or appending to the end of the buffer.

Note that we only enforce observation monotonicity on
the implementation. It is crucial that we do not enforce it on
the high-level specification; doing so would greatly restrict
the high-level policies we could specify, and would poten-
tially make the unwinding condition of the high-level secu-
rity proof unprovable. Intuitively, a non-monotonic observa-
tion function expresses which portions of state could poten-
tially influence the observations produced by an execution,
while a monotonic observation function expresses which ob-
servations the execution has actually produced. We are inter-
ested in the former at the specification level, and the latter at
the implementation level.

2.3 Security-Preserving Simulation
The previous discussion described how to use the observa-
tion function to express both high-level and low-level secu-
rity properties. With some care, we can automatically derive
the low-level security property from a simulation and a proof
of the high-level security property.

It is known that, in general, security is not automatically
preserved across simulation. One potential issue, known as
the refinement paradox [11, 17, 18], is that a nondetermin-
istic secure program can be refined into a more determin-
istic but insecure program. For example, suppose we have
a secret boolean value stored in x, and a program P that
randomly prints either true or false. P is obviously se-
cure since its output has no dependency on the secret value,
but P can be refined by an insecure program Q that directly
prints the value of x. We avoid this issue by ruling out P
as a valid secure program: despite being obviously secure,
it does not actually satisfy the unwinding condition defined
above and hence is not provably secure in our framework.

42 27 0
swap(x,y)

 x y z

z = x; x = y; y = z

R R

42 27 0

27 42 0

27 42 42

 x y z

 x y z

 x y z

Figure 2. Security-Violating Simulation. The shaded part of state
is unobservable, while the unshaded part is observable.

Note that the seL4 security verification [20] avoids this is-
sue in the same way. In that work, the authors frame their
solution as a restriction that disallows specifications from
exhibiting any domain-visible nondeterminism. Indeed, this
can be seen clearly by specializing the unwinding condition
above such that states σ1 and σ2 are identical:

(σ, σ′1) ∈ TM ∧ (σ, σ′2) ∈ TM =⇒ Ol(σ′1) = Ol(σ′2)

The successful security verifications of both seL4 and mCerti-
KOS provide solid evidence that this restriction on specifi-
cations is not a major hindrance for usability.

Unlike the seL4 verification, however, our framework
runs into a second issue with regard to preserving security
across simulation. The issue arises from the fact that both
simulation relations and observation functions are defined in
terms of program state, and they are both arbitrarily general.
This means that certain simulation relations may, in some
sense, behave poorly with respect to the observation func-
tion. Figure 2 illustrates an example. Assume program state
at both levels consists of three variables x, y, and z. The
observation function is the same at both levels: x and y are
unobservable while z is observable. Suppose we have a de-
terministic specification of the swap primitive saying that
the values of x and y are swapped, and the value of z is un-
changed. Also suppose we have a simulation relation R that
relates any two states where x and y have the same values,
but z may have different values. Using this simulation rela-
tion, it is easy to show that the low-level swap implementa-
tion simulates the high-level swap specification.

Since the swap specification is deterministic, this exam-
ple is unrelated to the issue described above, where domain-
visible nondeterminism in the high-level program causes
trouble. Nevertheless, this example fails to preserve security
across simulation: the high-level program clearly preserves
indistinguishability, while the low-level one leaks the secret
value of x into the observable variable z.

As mentioned above, the root cause of this issue is that
there is some sort of incompatibility between the simulation
relation and the observation function. In particular, security
is formulated in terms of a state indistinguishability rela-
tion, but the simulation relation may fail to preserve indistin-
guishability. Indeed, for the example of Figure 2, it is easy to
demonstrate two indistinguishable program states that are re-
lated by R to two distinguishable ones. Thus our solution to

4

this issue is to restrict simulations to require that state indis-
tinguishability is preserved. More formally, given a principal
l, in order to show that machine m simulates M under simu-
lation relation R, the following property must be proved for
all states σ1, σ2 of M , and states s1, s2 of m:

OM ;l(σ1) = OM ;l(σ2) ∧ (σ1, s1) ∈ R ∧ (σ2, s2) ∈ R
=⇒ Om;l(s

′
1) = Om;l(s

′
2)

3. End-to-End Security Formalization
In this section, we describe the formal proof that some no-
tion of security is preserved across simulation. Most of the
technical details are omitted here, but can be found in the
companion technical report [1].

Machines with Observations In the following, assume we
have a set L of isolated principals or security domains.

Definition 1 (Machine). A state transition machine M con-
sists of the following components :

• a type ΣM of program state
• a set of initial states IM and final states FM
• a transition (step) relation TM of type P(ΣM × ΣM)
• a type ΩM of observations
• an observation functionOM ;l(σ) of type L×ΣM → ΩM

When the machine M is clear from context, we use the
notation σ 7→ σ′ to mean (σ, σ′) ∈ TM . For multiple steps,
we define σ 7→n σ′ in the obvious way, meaning that there
exists a chain of states σ0, ..., σn with σ = σ0, σ′ = σn, and
σi 7→ σi+1 for all i ∈ [0, n). We then define σ 7→∗ σ′ to
mean that there exists some n such that σ 7→n σ′.

Notice that our definition is a bit different from most
traditional definitions of automata, in that we do not define
any explicit notion of actions on transitions. In traditional
definitions, actions are used to represent some combination
of input events, output events, and instructions/commands
to be executed. In our approach, we advocate moving all of
these concepts into the program state — this simplifies the
theory, proofs, and policy specifications.

Initial States vs Initialized States Throughout our formal-
ization, we do not require anything regarding initial states
of a machine. The reason is related to how we will actu-
ally carry out security and simulation proofs in practice. We
never attempt to reason about the true initial state of a ma-
chine; instead, we assume that some appropriate setup/con-
figuration process brings us from the true initial state to some
properly initialized state, and then we perform all reasoning
under the assumption of proper initialization.

High-Level Security As described in Section 2, we use dif-
ferent notions of security for the high level and the low level.
High-level security says that each individual step preserves
indistinguishability. It also requires a safety proof as a pre-
condition, guaranteeing that the machine preserves some ini-
tialization invariant I .

Definition 2 (High-Level Security). Machine M is secure
for principal l under invariant I , written ∆M I

l , just when:

1.) safe(M, I)

2.) ∀σ1, σ2 ∈ I, σ′1, σ′2 .
Ol(σ1) = Ol(σ2) ∧ σ1 7→ σ′1 ∧ σ2 7→ σ′2

=⇒ Ol(σ′1) = Ol(σ′2)

3.) ∀σ1, σ2 ∈ I .
Ol(σ1) = Ol(σ2) =⇒ (σ1 ∈ FM ⇐⇒ σ2 ∈ FM)

Low-Level Security For low-level security, we first must
define whole-execution behaviors with respect to a mono-
tonic observation function.

Definition 3 (Behavioral Machine). We say that a machine
M is behavioral for principal l when we have a partial
order defined over ΩM , and a proof that every step of M
is monotonic with respect to this order.

For any machine M that is behavioral for principal l,
we can define the set of whole-execution behaviors that are
possible starting from a given state σ. We refer to this set
as BM ;l(σ). The four kinds of behaviors are faulting (get-
ting stuck), termination, silent divergence, and reactive di-
vergence. The definitions can be found in the technical re-
port [1]; the main point to understand here is that behaviors
use the machine’s observation type as a building block. For
example, a behavior might say “an execution from σ termi-
nates with final observation o”, or “an execution from σ di-
verges, producing an infinite stream of observations os”.

Definition 4 (Low-Level Security). Given a machinem that
is behavioral for principal l, we say that m is behaviorally
secure for l under some indistinguishability relation ρ, writ-
ten ∇mρ

l , just when:

∀σ1, σ2 . ρ(σ1, σ2) =⇒ Bm;l(σ1) = Bm;l(σ2)

Simulation We next formalize our definition of simula-
tion. It is mostly standard, except that we require the sim-
ulation relation to preserve indistinguishability.

Definition 5 (Simulation). Given two machines M and m,
a principal l, and a relation R of type P(ΣM ×Σm), we say
that M simulates m using R, written M vR;l m, when:

1.) ∀σ, σ′ ∈ ΣM , s ∈ Σm .

σ 7→ σ′ ∧R(σ, s)

=⇒ ∃s′ ∈ Σm . s 7→∗ s′ ∧R(σ′, s′)

2.) ∀σ ∈ ΣM , s ∈ Σm .

σ ∈ FM ∧R(σ, s) =⇒ s ∈ Fm
3.) ∀σ1, σ2 ∈ ΣM , s1, s2 ∈ Σm .

OM ;l(σ1) = OM ;l(σ2) ∧R(σ1, s1) ∧R(σ2, s2)

=⇒ Om;l(s1) = Om;l(s2)

5

We omit details here regarding the well-known “infinite stut-
tering” problem for simulations (described, for example,
in [15]). Our Coq definition of simulation includes a well-
founded order that prevents infinite stuttering.

End-to-End Security Our end-to-end security theorem is
proved with the help of a few lemmas about behaviors and
simulations, described in the technical report [1]. For exam-
ple, one lemma basically says that if we have a simulation
between behavioral machines M and m, then the possible
behaviors of M from some state σ are a subset of the be-
haviors of m from a related state s. There is one significant
technical detail we should mention here regarding these lem-
mas: behaviors are defined in terms of observations, and the
types of observations of two different machines may be dif-
ferent. Hence we technically cannot compare behavior sets
directly using standard subset or set equality. For the purpose
of presentation, we will actually assume here that all behav-
ioral machines under consideration use the same type for
observations. In fact, the mCertiKOS proof is a special case
of our framework that obeys this assumption (all behavioral
machines use the output buffer observation). Our framework
is nevertheless capable of handling changes in observation
type by adding a new relation to simulations that relates ob-
servations; the technical report contains the details.

We are now ready to describe how simulations preserve
security. As mentioned previously, low-level security uses
an indistinguishability relation derived from high-level in-
distinguishability and a simulation relation:

Definition 6 (Low-Level Indistinguishability).

φ(M, l, I, R)
4
=

λs1, s2 . ∃σ1, σ2 ∈ I .
OM ;l(σ1) = OM ;l(σ2) ∧R(σ1, s1) ∧R(σ2, s2)

Theorem 1 (End-to-End Security). Suppose we have two
machines M and m, a principal l, a high-level initialization
invariant I , and a simulation M vR;l m. Further suppose
that m is deterministic and behavioral for l. Let low-level
indistinguishability relation ρ be φ(M, l, I, R) from Defini-
tion 6. Then high-level security implies low-level security:

∆M I
l =⇒ ∇mρ

l

Proof Sketch. We prove this theorem by defining a new ma-
chineN in betweenM andm, and proving simulations from
M to N and from N to m. N will mimic M in terms of pro-
gram states and transitions, while it will mimicm in terms of
observations. We prove thatN is behavioral, and apply some
lemmas to equate the whole-execution behaviors of m with
those of N . We then formulate the high-level security proof
as a bisimulation over M , and use this to derive a bisim-
ulation over N . Finally, we apply a lemma to connect the
bisimulation over N with the whole-execution behaviors of
N , completing the proof. The details of this proof and the
relevant lemmas can be found in the technical report [1].

4. Security Definition of mCertiKOS
We will now discuss how we applied our methodology to
prove an end-to-end security guarantee between separate
processes running on top of the mCertiKOS kernel [9]. Dur-
ing the proof effort, we had to make some changes to the
operating system to close potential security holes. We refer
to our secure variant of the kernel as mCertiKOS-secure.

4.1 mCertiKOS Overview
The starting point for our proof effort was the basic version
of the mCertiKOS kernel, described in detail in Section 7
of [9]. We will give an overview of the kernel here. It is com-
posed of 32 abstraction layers, which incrementally build up
the concepts of physical memory management, virtual mem-
ory management, kernel-level processes, and user-level pro-
cesses. Each layer L consists of the following components:

• a type ΣL of program state, separated into machine reg-
isters, concrete memory, and abstract data of type DL

• a set of initial states IL and final states FL
• a set of primitives PL implemented by the layer, includ-

ing two special primitives called load and store
• for each p ∈ PL, a specification of type P(ΣL × ΣL)

• (if L is not the bottom layer) for each p ∈ PL, an im-
plementation written in either LAsm(L′) or ClightX(L′)
(defined below), where L′ is the layer below L

The top layer is called TSysCall, and the bottom is called
MBoot. MBoot describes execution over the model of the ac-
tual hardware; the specifications of its primitives are taken as
axioms. Implementations of primitives in all layers are writ-
ten in either a layer-parameterized variant of x86 assembly
or a layer-parameterized variant of C.

The assembly language, called LAsm(L), is a direct ex-
tension of CompCert’s [14] model of x86 assembly that al-
lows primitives of layer L to be called atomically. When
an atomic primitive call occurs, the semantics consults that
primitive’s specification to take a step.

The C variant, called ClightX(L), is a direct extension
of CompCert’s Clight language [3] (which is a slightly-
simplified version of C). Like LAsm(L), the semantics is ex-
tended with the ability to call the primitives of L atomically.
ClightX(L) programs can be compiled to LAsm(L) in a
verified-correct fashion using the CompCertX compiler [9],
which is an extension of CompCert.

Each layerL induces a machineML of the kind described
in Section 3, with transition relation defined by the opera-
tional semantics of LAsm(L).

Load/Store Primitives Before continuing, there is one
somewhat technical detail regarding the LAsm(L) seman-
tics that requires explanation. While most layer primitives
are called in LAsm(L) using the call syntax, the special
load and store primitives work differently. Whenever an
assembly command dereferences an address, the LAsm(L)

6

ML

ML’

spawn() yield()

ClightX(L’)

CompCertX

LAsm(L’) LAsm(L’)

Figure 3. Simulation between adjacent layers. Layer L contains
primitives spawn and yield, with the former implemented in
ClightX(L′) and the latter implemented in LAsm(L′).

semantics consults the load/store primitives to decide how
the dereference is actually resolved. This allows TSysCall to
interpret addresses as virtual, while MBoot interprets them
as physical. As an example, consider the following snippet
of assembly code, taken from the implementation of the page
fault handler TSysCall primitive:

call trap_get
movl %eax, 0(%esp)
call ptfault_resv

The layer below TSysCall is called TDispatch, and thus this
code is written in the language LAsm(TDispatch). The first
and third lines call primitives of TDispatch atomically. The
second line ostensibly writes the value of %eax into the
memory location pointed to by %esp. The actual semantics
of this line, however, will call TDispatch’s store primi-
tive with the value of %eax and the address in %esp as pa-
rameters. This primitive will translate the destination address
from virtual to physical by walking through the page tables
of the currently-executing process.

Layer Simulation Figure 3 illustrates how machines in-
duced by two consecutive layers are connected via simula-
tion. Each step of machine ML is either a standard assembly
command or an atomic primitive call. Steps of the former
category are simulated inML′ by exactly the same assembly
command. Steps of the latter are simulated using the prim-
itive’s implementation, supplied by layer L. If the primitive
is implemented in LAsm(L′), then the simulation directly
uses the semantics of this implementation. If the primitive is
implemented in ClightX(L′), then CompCertX is used first
to compile the implementation into LAsm(L′). CompCertX
is verified to provide a simulation from the ClightX(L′) ex-
ecution to the corresponding LAsm(L′) execution, so this
simulation is chained appropriately.

Once every pair of consecutive machines is connected
with a simulation, they are combined to obtain a simulation
from TSysCall to MBoot. Since the TSysCall layer provides
mCertiKOS’s system calls as primitives, user process execu-
tion is specified at the TSysCall level. To get a better sense
of user process execution, we will now give an overview of
the TSysCall program state and primitives.

TSysCall State The TSysCall abstract data is a Coq record
consisting of 32 separate fields. We will list here those fields
that will be relevant to our discussion. In the following,
whenever a field name has a subscript of i, this indicates that
the field is a finite map from process ID to some data type.

• outi — The output buffer for process i.
• HP— A global, flat view of the user-space memory heap.

A page is defined as the 4096-byte sequence starting from
a physical address that is divisible by 4096.
• AT — A global allocation table, represented as a bitmap

indicating which pages in the global heap have been
allocated. Element n of this map corresponds to page n.
• pgmapi — A representation of the two-level page map

for process i. The page map translates a virtual address
between 0 and 232 − 1 into a physical address.
• containeri — A representation of process i that main-

tains information regarding spawned status, children, par-
ents, and resource quota. A container is itself a Coq
record containing the following fields:

used — A boolean indicating whether process i has
been spawned.

parent — The ID of the parent of process i.

nchildren — The number of children of process i.

quota — The maximum number of pages that pro-
cess i is allowed to dynamically allocate.

usage — The current number of pages that process
i has dynamically allocated.

• ctxti — The saved register context of process i, con-
taining the register values that will need to be restored
the next time process i is scheduled.
• cid — The currently-running process ID.

TSysCall Primitives There are 9 primitives in the TSysCall
layer, including the load/store primitives. The primitive
specifications operate over both the TSysCall abstract data
and the machine registers. Note that they do not interact with
concrete memory since all relevant portions of memory have
already been abstracted into the TSysCall abstract data.

• Initialization — proc init sets up the various kernel
objects to get everything into a working state. We never
attempt to reason about anything that happens prior to ini-
tialization; it is assumed that the bootloader will always
call proc init appropriately.
• Load/Store — Since paging is enabled at the TSysCall

level, the load and store primitives walk the page ta-
bles of the currently-running process to translate virtual
addresses into physical. If no physical address is found
due to no page being mapped, then the faulting virtual
address is written into the CR2 control register, the cur-
rent register context is saved, and the instruction pointer

7

register is updated to point to the entry of the page fault
handler primitive.
• Page Fault — pgf handler is called immediately af-

ter one of the load/store primitives fails to resolve a vir-
tual address. It reads the faulting virtual address from the
CR2 register, allocates one or two new pages as appropri-
ate, increases the current process’s page usage, and plugs
the page(s) into the page table. It then restores the reg-
ister context that was saved when the load/store primi-
tive faulted. If the current process does not have enough
available quota to allocate the required pages, then the in-
struction pointer register is updated to point to the entry
of the yield primitive (see below).
• Get Quota — get quota returns the amount of remain-

ing quota for the currently-executing process.
• Spawn Process — proc create attempts to spawn a

new child process. It takes a quota as a parameter, spec-
ifying the maximum number of pages the child process
will be allowed to allocate. This quota allowance is taken
from the current process’s available quota.
• Yield — sys yield performs the first step for yielding.

It enters kernel mode, disables paging, saves the current
registers, and changes the currently-running process ID
to the head of the ready queue. It then context switches
by restoring the newly-running process’s registers. The
newly-restored instruction pointer register is guaranteed
(proved as an invariant) to point to the function entry of
the start user primitive.
• Start User — start user performs the simple sec-

ond step of yielding. It enables paging for the currently-
running process and exits kernel mode. The entire func-
tionality of yielding must be split into two primitives
because context switching requires writing to the in-
struction pointer register, and therefore only makes sense
when it is the final operation performed by a primitive.
• Output — print appends its parameter to the currently-

running process’s output buffer.

4.2 Security Overview
We consider each process ID to be a distinct principal.
The high-level security policy expresses which portions of
TSysCall state are observable to which principals. The secu-
rity verification then guarantees complete isolation between
all principals: no process’s observable state can ever be in-
fluenced by the execution of another process.

High-Level Semantics High-level security is proved by
showing that every step of execution preserves an indistin-
guishability relation saying that the observable portions of
two states are equal. In the mCertiKOS context, however,
this property will not hold over the TSysCall machine.

To see this, consider any process ID (i.e., principal) l,
which we call the “observer process”. For any TSysCall state

active state inactive state

Figure 4. The TSysCall-local semantics, defined by taking big
steps over the inactive parts of the TSysCall semantics.

σ, we say that σ is “active” if cid(σ) = l, and “inactive”
otherwise. Now consider whether the values in machine
registers should be observable to l. Clearly, if l is executing,
then it can read and write registers however it wishes, so the
registers must be considered observable. On the other hand,
if some other process l′ is executing, then the registers must
be unobservable to l if we hope to prove that l and l′ are
isolated. We conclude that registers should be observable to
l only in active states.

What happens, then, if we attempt to prove that indistin-
guishability is preserved when starting from inactive indis-
tinguishable states? Since the states are inactive, the regis-
ters are unobservable, and so the instruction pointer register
in particular may have a completely different value in the
two states. This means that the indistinguishable states may
execute different instructions. If one state executes the yield
primitive while the other does not, we may end up in a situ-
ation where one resulting state is active but the other is not;
clearly, such states cannot be indistinguishable since the reg-
isters are observable in one state but not in the other. Thus
indistinguishability may not be preserved in this situation.

The fundamental issue here is that, in order to prove that
l cannot be influenced by l′, we must show that l has no
knowledge that l′ is even executing. We accomplish this
by defining a higher-level machine above the TSysCall ma-
chine, where every state is active. We call this the TSysCall-
local machine — it is parameterized by principal l, and it
represents l’s local view of the TSysCall machine.

Figure 4 gives a visual representation of how the se-
mantics of TSysCall-local is defined. The solid arrows are
transitions of the TSysCall machine, white circles are ac-
tive TSysCall states, and shaded circles are inactive states.
The TSysCall-local semantics is then obtained by combin-
ing all of the solid arrows connecting active states with all
of the dotted arrows. Note that in the TSysCall layer, the
yield primitive is the only way that a state can change from
active to inactive, or vice-versa. Thus one can think of the
TSysCall-local machine as a version of the TSysCall ma-
chine where the yield semantics takes a big step, immedi-
ately returning to the process that invoked the yield.

Our high-level security property is proved over the TSys-
Call-local machine, for any choice of observer principal l.
We easily prove simulation from TSysCall-local to TSysCall,
so this strategy fits cleanly into our simulation framework.

Observation Function We now define the high-level ob-
servation function used in our verification. For a given pro-
cess ID l, the state observation of σ is defined as follows:

8

Load 147

Store 258

Page Fault 188

Get Quota 10

Spawn 30

Yield 960

Start User 11

Print 17

Total 1621

Primitives 1621

Glue 853

Framework 2192

Invariants 1619

Total 6285

Security Proof (LOC)

Security of Primitives (LOC)

Figure 5. Approximate Coq LOC of proof effort.

• Registers — All registers are observable if σ is active.
• Output — The output buffer of l is observable.
• Virtual Address Space — We can dereference any virtual

address by walking through l’s page tables. This will
result in a value if the address is actually mapped, or
no value otherwise. This function from virtual addresses
to option values is observable. Importantly, the physical
address at which a value resides is never observable.
• Spawned — The spawned status of l is observable.
• Quota — The remaining quota of l is observable.
• Children — The number of children of l is observable.
• Active — It is observable whether cid(σ) is equal to l.
• Reg Ctxt — The saved register context of l is observable.

5. Security Verification of mCertiKOS
To prove the end-to-end security theorem (Theorem 1) for
mCertiKOS-secure, the primary task is to establish high-
level security of the TSysCall-local machine (proving the
other preconditions of Theorem 1 is easy, see the techni-
cal report [1] for details). The proof is done by showing
that each primitive of the TSysCall layer preserves indistin-
guishability. The yield primitive requires some special treat-
ment since the TSysCall-local semantics treats it differently;
this will be discussed later in this section.

Figure 5 gives the number of lines of Coq definitions
and proof scripts required for the proof effort. The entire
effort is broken down into security proofs for primitives,
glue code to interface the primitive proofs with the LAsm(L)
semantics, definitions and proofs of the framework described
in Section 3, and proofs of new state invariants that were
established. We will now discuss the most interesting aspects
and difficulties of the TSysCall-local security proof.

State Invariants While mCertiKOS already verifies a
number of useful state invariants, some new ones are needed
for our security proofs. The new invariants established over
TSysCall-local execution are:

1. In all saved register contexts, the instruction pointer reg-
ister points to the entry of the start user primitive.

2. No page is mapped more than once in the page tables.

3. We are always either in user mode, or we are in kernel
mode and the instruction pointer register points to the
entry of the start user primitive (meaning that we
just yielded and are going to enter user mode in one step).

4. The sum of the available quotas (max quota minus usage)
of all spawned processes is less than or equal to the
number of unallocated pages in the heap.

Security of Load/Store Primitives The main task for prov-
ing security of the 100+ assembly commands of LAsm(TSys-
Call) is to show that the TSysCall layer’s load/store prim-
itives preserve indistinguishability. This requires showing
that equality of virtual address spaces is preserved. Reason-
ing about virtual address spaces can get quite hairy since we
always have to consider walking through the page tables,
with the possibility of faulting at either of the two levels.

To better understand the intricacies of this proof, consider
the following situation. Suppose we have two states σ1 and
σ2 with equal mappings of virtual addresses to option values
(where no value indicates a page fault). Suppose we are
writing to some virtual address v in two executions on these
states. Consider what happens if there exists some other
virtual address v′ such that v and v′ map to the same physical
page in the first execution, but map to different physical
pages in the second. It is still possible for σ1 and σ2 to
have identical views of their virtual address space, as long
as the two different physical pages in the second execution
contain the same values everywhere. However, writing to v
will change the observable view of v′ in the first execution,
but not in the second. Hence, in this situation, it is possible
for the store primitive to break indistinguishability.

We encountered this exact counterexample while at-
tempting to prove security, and we resolved the problem
by establishing the second state invariant mentioned above.
The invariant guarantees that the virtual addresses v and v′

will never be able to map to the same physical page.
Security of Process Spawning The proc create prim-
itive was the only one whose security depended on making
a major change to the existing mCertiKOS. When the inse-
cure version of mCertiKOS creates a new child process, it
chooses the lowest process ID that is not currently in use.
The system call returns this ID to the user. Hence the ID
can potentially leak information between different users. For
example, suppose Alice spawns a child process and stores
its ID into variable x. She then calls yield. When execu-
tion eventually returns back to her, she again spawns a child
and stores the ID into variable y. Since mCertiKOS always
chooses the lowest available process ID, the value of y−x−1
is exactly the number of times that other processes spawned
children while Alice was yielded. In some contexts, this in-
formation leak could allow for direct communication be-
tween two different processes.

To close this information channel, we had to revamp the
way process IDs are chosen in mCertiKOS-secure. The new
ID system works as follows. We define a global parameter

9

C: confidentiality I: integrity CR: confidentiality restore

σ1

σ2

σ1’

σ2’

 I I I

 I I I I I I I

 C

CR

Figure 6. Applying the three lemmas to prove security of
TSysCall-local yielding.

mc limiting the number of children any process is allowed to
spawn. Suppose a process with ID i and c children (c < mc)
spawns a new child. Then the child’s ID will always be
i∗mc+c+1. This formula guarantees that different processes
can never interfere with each other via child ID: if i 6= j,
then the set of possible child IDs for process i is completely
disjoint from the set of possible child IDs for process j.
Security of Page Fault One interesting aspect of page fault
security involves some trickiness with running out of heap
space. When allocating a page, mCertiKOS always chooses
the first page available. Therefore, the global allocation ta-
ble AT must be unobservable to prevent an information leak
(similar to the information leak via process ID discussed
above). This means that the page fault handler may success-
fully allocate a page in one execution, but fail to allocate a
page in an execution from an indistinguishable state due to
there being no pages available. Clearly, the observable result
of the primitive will be different for these two executions.

To resolve this issue, we relate available heap pages to
available quota by applying the fourth state invariant men-
tioned above. Recall that the invariant guarantees that the
sum of the available quotas of all spawned processes is al-
ways less than or equal to the number of available heap
pages. Therefore, if an execution ever fails to allocate a page
because no available page exists, the available quota of all
spawned processes must be zero. Since the available quota
is observable, we see that allocation requests will be denied
in both executions from indistinguishable states. Therefore,
we actually can end up in a situation where one execution
has pages available for allocation while the other does not;
in both executions, however, the available quota will be zero,
and so the page allocator will deny the request for allocation.
Security of Yield Yielding is by far the most complex
primitive to prove secure, as the proof requires reasoning
about the relationship between the TSysCall semantics and
TSysCall-local semantics. Consider Figure 6, where active
states σ1 and σ2 are indistinguishable, and they both call
yield. The TSysCall-local semantics takes a big step over
the executions of all non-observer processes; these big steps
are unfolded in Figure 6, so the solid arrows are all of the
individual steps of the TSysCall semantics. We must es-
tablish that a big-step yield of the TSysCall-local machine
preserves indistinguishability, meaning that states σ′1 and σ′2
in Figure 6 must be proved indistinguishable.

We divide this proof into three separate lemmas, proved
over the TSysCall semantics:

• Confidentiality — If two indistinguishable active states
take a step to two inactive states, then those inactive states
are indistinguishable.
• Integrity — If an inactive state takes a step to another

inactive state, then those states are indistinguishable.
• Confidentiality Restore — If two indistinguishable inac-

tive states take a step to two active states, then those ac-
tive states are indistinguishable.

These lemmas are chained together as pictured in Figure 6.
The dashed lines indicate indistinguishability. Thus the con-
fidentiality lemma establishes indistinguishability of the ini-
tial inactive states after yielding, the integrity lemma estab-
lishes indistinguishability of the inactive states immediately
preceding a yield back to the observer process, and the con-
fidentiality restore lemma establishes indistinguishability of
the active states after yielding back to the observer process.

Note that while the confidentiality and confidentiality re-
store lemmas apply specifically to the yield primitive (since
it is the only primitive that can change active status), the in-
tegrity lemma applies to all primitives. Thus, like the secu-
rity unwinding condition, integrity is proved for each of the
TSysCall primitives. The integrity proofs are simpler since
the integrity property only requires reasoning about a single
execution, whereas security requires comparing two.

The confidentiality restore lemma only applies to the
situation where two executions are both yielding back to the
observer process. The primary obligation of the proof is to
show that if the saved register contexts of two states σ1 and
σ2 are equal, then the actual registers of the resulting states
σ′1 and σ′2 are equal. There is one interesting detail related
to this proof: a context switch in mCertiKOS does not save
every machine register, but instead only saves those registers
that are relevant to the local execution of a process (e.g.,
%eax, %esp, etc.). In particular, the CR2 register, which the
page fault handler primitive depends on, is not saved. This
means that, immediately after a context switch from some
process i to some other process j, the CR2 register could
contain a virtual address that is private to i. How can we
then guarantee that j is not influenced by this value? Indeed,
if process j immediately calls the page fault handler without
first triggering a page fault, then it may very well learn some
information about process i. We resolve this insecurity by
making a very minor change to mCertiKOS: we add a line
of assembly code to the implementation of context switch
that clears the CR2 register to zero.

6. Related Work and Conclusions
Observations and Indistinguishability Our flexible notion
of observation is similarly powerful to purely semantic and
relational views of indistinguishability, such as the ones used
in Sabelfeld’s PER model [25] and Nanevski’s Relational

10

Hoare Type Theory [22]. In those systems, for example, a
variable x is considered observable if its value is equal in
two related states. In our system, we directly say that x is
an observation, and then indistinguishability is defined as
equality of observations. Our approach may at first glance
seem less expressive since it uses a specific definition for
indistinguishability. However, we do not put any restrictions
on the type of observation: for any given indistinguishability
relation R, we can represent R by defining the observation
function on σ to be the set of states related to σ by R.

Our observation function is a generalization of the “con-
ditional labels” presented in [4]. In that work, everything in
the state has an associated security label, but there is allowed
to be arbitrary dependency between values and labels. For
example, a conditional label may say that x has a low label if
its value is even, and a high label otherwise. In the method-
ology presented here, we do not need the labels at all: the
state-dependent observation function observes the value of
x if it is even, but observes no value if x is odd.

Our approach is also a generalization of Delimited Re-
lease [24] and Relaxed Noninterference [16]. Delimited Re-
lease allows declassifications only according to certain syn-
tactic expressions (called “escape hatches”). Relaxed Non-
interference uses a similar idea, but in a semantic setting:
a security label is a function representing a declassification
policy, and whenever an unobservable variable x is labeled
with function f , the value f(x) is considered to be observ-
able. Our observation function can easily express both of
these concepts of declassification.

Security Across Simulation/Refinement As explained in
Sections 1 and 2, refinements and simulations may fail to
preserve security. There have been a number of solutions
proposed for dealing with this so-called refinement paradox,
e.g. [11, 17, 18]. The one that is most closely related to our
setup is Murray et al.’s seL4 security proof [20], where the
main security properties are shown to be preserved across
refinement. As we mentioned in Section 2, we employ a sim-
ilar strategy for security preservation in our framework, dis-
allowing high-level specifications from exhibiting domain-
visible nondeterminism. Because we use an extremely flex-
ible notion of observation, however, we encounter another
difficulty involved in preserving security across simulation;
this is resolved with the natural solution of requiring simu-
lation relations to preserve state indistinguishability.

Security of OS Kernels The most directly-related work in
the area of formal operating system security is the seL4 ver-
ified kernel [12, 19, 20, 26]. There are a lot of similarities
between the security proof of seL4 and the security proof of
mCertiKOS, as both proofs are conducted over a high-level
specification and then propagated down to a concrete imple-
mentation. There are two main aspects of our methodology
that are novel in comparison to seL4. First, the seL4 verifica-
tion uses a classic notion of observation, similar to external
events; the type of observations are the same at the abstract

and concrete levels, and the refinement property guarantees
that high-level specifications and low-level implementations
produce identical observations; our work generalizes obser-
vations, allowing them to express different notions of secu-
rity at different abstraction levels. Second, the seL4 verifi-
cation only goes down to the level of C implementation; for
kernel primitives implemented in assembly, such as context
switch, security is verified with respect to an atomic speci-
fication that is assumed to be correct; the security guarantee
we prove about mCertiKOS, on the other hand, applies to the
actual assembly execution of the operating system.

Another related work is the information-flow security
verification of the PROSPER separation kernel [5]. The goal
of that verification effort is to prove isolation of separate
components that are allowed to communicate across autho-
rized channels. They do not formulate security as standard
noninterference, since some communication is allowed. In-
stead, they prove a property saying that the machine ex-
ecution is trace-equivalent to execution over an idealized
model where the communicating components are running on
physically-separated machines. Their setup is fairly different
from ours, as we disallow communication between processes
and hence prove noninterference. Furthermore, they conduct
all verification at the assembly level, whereas our methodol-
ogy works at both the C and assembly levels, using verified
compilation to link implementations in different languages.

The Ironclad [10] system aims for full correctness and
security verification of an entire system stack. That work
shares a similar goal to ours: provide guarantees that apply to
the low-level assembly execution of the machine. The over-
all approaches are quite different, however. One difference is
that Ironclad uses Dafny [13], Boogie [2], and Z3 [6] for ver-
ification, whereas our approach uses Coq. This means that
Ironclad relies heavily on SMT solving, which allows for a
large amount of automation in the verification, but does not
produce machine-checkable proof evidence like Coq does.
Another difference is in the treatment of high-level specifi-
cations. While Ironclad allows some verification to be done
in Dafny using high-level specifications, a trusted transla-
tor converts them into low-level specifications expressed in
terms of assembly execution. The final security guarantee
applies only to the assembly level; one must trust that the
guarantee corresponds to the high-level intended specifica-
tions. Contrast this to our approach, where we verify that
low-level execution conforms to the high-level policy.

Conclusion In this paper, we presented a framework for
verifying end-to-end security of C and assembly programs.
A flexible observation function is used to specify the secu-
rity policy, to prove noninterference via unwinding, and to
soundly propagate the security guarantee across simulation.
We demonstrated the efficacy of our approach by verifying
the security of a nontrivial operating system kernel. We suc-
cessfully developed a fully-formalized Coq proof that guar-
antees security of the kernel’s assembly execution.

11

References
[1] Anonymous. The Supplementary Material for “End-to-End

Verification of Information-Flow Security for C and Assem-
bly Programs”. The extended TR and the gzipped tar file were
uploaded to the PLDI’16 submission site. They are also avail-
able on a web site whose URL is removed for double-blind
review.

[2] M. Barnett, B. E. Chang, R. DeLine, B. Jacobs, and K. R. M.
Leino. Boogie: A modular reusable verifier for object-oriented
programs. In Formal Methods for Components and Objects,
4th International Symposium, FMCO 2005, Amsterdam, The
Netherlands, November 1-4, 2005, Revised Lectures, pages
364–387, 2005.

[3] S. Blazy and X. Leroy. Mechanized semantics for the Clight
subset of the C language. J. Automated Reasoning, 43(3):263–
288, 2009.

[4] D. Costanzo and Z. Shao. A separation logic for enforcing
declarative information flow control policies. In POST, pages
179–198, 2014.

[5] M. Dam, R. Guanciale, N. Khakpour, H. Nemati, and
O. Schwarz. Formal verification of information flow secu-
rity for a simple arm-based separation kernel. In 2013 ACM
SIGSAC Conference on Computer and Communications Se-
curity, CCS’13, Berlin, Germany, November 4-8, 2013, pages
223–234, 2013.

[6] L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver.
In Tools and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS 2008, Held as
Part of the Joint European Conferences on Theory and Prac-
tice of Software, ETAPS 2008, Budapest, Hungary, March 29-
April 6, 2008. Proceedings, pages 337–340, 2008.

[7] J. A. Goguen and J. Meseguer. Security policies and security
models. In IEEE Symposium on Security and Privacy, pages
11–20, 1982.

[8] J. A. Goguen and J. Meseguer. Unwinding and inference
control. In Proceedings of the 1984 IEEE Symposium on
Security and Privacy, Oakland, California, USA, April 29 -
May 2, 1984, pages 75–87, 1984.

[9] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. N. Wu,
S. Weng, H. Zhang, and Y. Guo. Deep specifications and cer-
tified abstraction layers. In Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2015, Mumbai, India, January
15-17, 2015, pages 595–608, 2015.

[10] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno,
D. Zhang, and B. Zill. Ironclad apps: End-to-end security
via automated full-system verification. In 11th USENIX Sym-
posium on Operating Systems Design and Implementation,
OSDI ’14, Broomfield, CO, USA, October 6-8, 2014., pages
165–181, 2014.

[11] J. Jürjens. Secrecy-preserving refinement. In FME 2001:
Formal Methods for Increasing Software Productivity, In-
ternational Symposium of Formal Methods Europe, Berlin,
Germany, March 12-16, 2001, Proceedings, pages 135–152,
2001.

[12] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell,
R. Kolanski, and G. Heiser. Comprehensive formal verifica-
tion of an OS microkernel. ACM Transactions on Computer
Systems, 32(1), Feb. 2014.

[13] K. R. M. Leino. Dafny: An automatic program verifier for
functional correctness. In Logic for Programming, Artificial
Intelligence, and Reasoning - 16th International Conference,
LPAR-16, Dakar, Senegal, April 25-May 1, 2010, Revised
Selected Papers, pages 348–370, 2010.

[14] X. Leroy. The CompCert verified compiler. http://
compcert.inria.fr/, 2005–2014.

[15] X. Leroy. A formally verified compiler back-end. Journal of
Automated Reasoning, 43(4):363–446, 2009.

[16] P. Li and S. Zdancewic. Downgrading policies and relaxed
noninterference. In POPL, pages 158–170, 2005.

[17] C. Morgan. The shadow knows: Refinement and security in
sequential programs. Sci. Comput. Program., 74(8):629–653,
2009.

[18] C. Morgan. Compositional noninterference from first princi-
ples. Formal Asp. Comput., 24(1):3–26, 2012.

[19] T. C. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke,
S. Seefried, C. Lewis, X. Gao, and G. Klein. sel4: From
general purpose to a proof of information flow enforcement.
In IEEE Symposium on Security and Privacy, pages 415–429,
2013.

[20] T. C. Murray, D. Matichuk, M. Brassil, P. Gammie, and
G. Klein. Noninterference for operating system kernels. In
Certified Programs and Proofs - Second International Confer-
ence, CPP 2012, Kyoto, Japan, December 13-15, 2012. Pro-
ceedings, pages 126–142, 2012.

[21] A. C. Myers and B. Liskov. A decentralized model for infor-
mation flow control. In SOSP, pages 129–142, 1997.

[22] A. Nanevski, A. Banerjee, and D. Garg. Verification of infor-
mation flow and access control policies with dependent types.
In IEEE Symposium on Security and Privacy, pages 165–179,
2011.

[23] A. Sabelfeld and A. C. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Communi-
cations, 21(1):5–19, 2003.

[24] A. Sabelfeld and A. C. Myers. A model for delimited infor-
mation release. In ISSS, pages 174–191, 2003.

[25] A. Sabelfeld and D. Sands. A per model of secure information
flow in sequential programs. In ESOP, pages 40–58, 1999.

[26] T. Sewell, S. Winwood, P. Gammie, T. C. Murray, J. Andron-
ick, and G. Klein. sel4 enforces integrity. In Interactive The-
orem Proving - Second International Conference, ITP 2011,
Berg en Dal, The Netherlands, August 22-25, 2011. Proceed-
ings, pages 325–340, 2011.

[27] The Coq development team. The Coq proof assistant. http:
//coq.inria.fr, 1999 – 2015.

12

http://compcert.inria.fr/
http://compcert.inria.fr/
http://coq.inria.fr
http://coq.inria.fr

	Introduction
	The Observation Function
	High-Level Security Policies
	Security Formulation
	Security-Preserving Simulation

	End-to-End Security Formalization
	Security Definition of mCertiKOS
	mCertiKOS Overview
	Security Overview

	Security Verification of mCertiKOS
	Related Work and Conclusions

