
Adaptive Generative Modeling in Resource-Constrained Environments

Jung-Eun Kim
Computer Science

Yale University
New Haven, CT, USA
jung-eun.kim@yale.edu

Richard Bradford
Commercial Avionics Engineering

Collins Aerospace
Cedar Rapids, IA, USA

richard.bradford@collins.com

Max Del Giudice
Computer Science

Yale University
New Haven, CT, USA

max.delgiudice@yale.edu

Zhong Shao
Computer Science

Yale University
New Haven, CT, USA
zhong.shao@yale.edu

Abstract—Modern generative techniques, deriving realistic data from
incomplete or noisy inputs, require massive computation for rigorous
results. These limitations hinder generative techniques from being incor-
porated in systems in resource-constrained environment, thus motivating
methods that grant users control over the time-quality trade-offs for a
reasonable “payoff” of execution cost. Hence, as a new paradigm for
adaptively organizing and employing recurrent networks, we propose an
architectural design for generative modeling achieving flexible quality.
We boost the overall efficiency by introducing non-recurrent layers into
stacked recurrent architectures. Accordingly, we design the architecture
with no redundant recurrent cells so we avoid unnecessary overhead.

I. INTRODUCTION

In a machine learning module, processing of data cannot be
completed within strict time limits in an “all-or-nothing” manner.
Furthermore, for the last decade or so, deep learning has been
advancing its performance by increasing neural network depth
and complexity, but it is neither straightforwardly explainable nor
predictable how an extensively fabricated network can impact quality
of the overall result. In particular, to be deployed in a resource-
constrained environment, machine learning modules could allow
trade-offs between time and quality of results that could be controlled
depending on the application context. Hence, in this paper, we address
time-quality trade-offs for generative models, which have proven useful
for applications for deriving realistic forms of data from abstract
ones, e.g., enhancing resolution of pictures (from lower resolution to
higher resolution, called upsampling or super-resolution), removing
occlusions from pictures, generating an estimated picture with certain
designated features, explaining a picture (scene) with texts to describe
it, and so on. However, obtaining high-quality results from a generative
model imposes a huge computational burden due to the complexity
of the numbers of internal parameters required in the network layers.

Techniques present in the existing literature do not grant users
flexible control over the time-quality trade-offs. In this paper, we
propose novel techniques for increasing the prediction granularity and
efficiency of models, which can be generally applied in a recurrent
neural network (RNN), an architectural platform for generative
modeling. Through our architecture, if time is short, quality is
sacrificed. In these contexts, a “sufficient” quality depends on the
application, data set and user. More emphasis is placed on the
flexibility of intervals between obtaining intermediate results. Intervals
between earlier results are short whereas later intervals are long,
meaning our framework provides a “quick glance” at a solution first,
and rigorous details emerge later. We name this new paradigm as
Adaptive Generative Modeling.

Our approach is to use a recurrent neural network structure to
break down this complexity into smaller operations, so as to facilitate
flexibility in obtaining intermediate results. We vary the execution time

This work is supported in part by NSF grants 1945541, 1763399, 1521523,
and GPU Grant by NVIDIA Corporation. All views expressed here are those
of the authors and not necessarily those of sponsors.

per iteration so as to expend processing resources when the current
candidate solution is likely to be in the neighborhood of the optimum.
To decrease the processing time for a given active layer, our technique
switches recurrent convolution layers into standard (non-recurrent)
convolution layers unless it degrades the overall performance. The
resources used by a standard convolutional layer are necessarily less
since no manipulations involving state need to be performed. We find
that in certain conditions, eliminating some recurrent layers results in
no necessary performance impact.

II. ADAPTIVE GENERATIVE MODELING

As opposed to discriminative modeling (e.g., image classification),
generative modeling attempts to learn the shape of the underlying
(unknown) data distribution. Assuming training is successful, this
effectively makes generative models capable of “generating” data
from the unknown distribution. In this paper, our target application is
super-resolution which is a process to produce a high-resolution image
from a low-resolution image. That is, its ‘data-generation’ process
involves generating additional pixels to increase the resolution of an
input image, and the unknown data distribution we want to learn is
the high resolution image space.

The aim of building of our framework is to provide intermediate
computational results when interrupted. It is designed so that these
intermediate results improve over time for adaptive timeliness. Thus,
if only a small amount of time is available, the system can sacrifice
quality of the result, and vice versa. Note that in this context, time
is concerned only with the generating (i.e., inferring) stage; offline
training is assumed to be done for a sufficient amount of time.

A. Underlying Architecture

We introduce our recurrent super-resolution generative model. The
model is trained to take in a low-resolution input image of dimensions
L× L× 3, and output a high-resolution output image of dimensions
H × H × 3, where H > L. Hereafter, we refer to the inputs and
outputs of networks (and the intermediate calculations) as tensors,
multidimensional arrays. The training dataset consists of pairs of
low-resolution images and their high-resolution counterparts (x, y).
The training process for super-resolution proceeds as follows:
1) Feed a mini-batch of inputs X (subset of our training dataset)

through the generator.
2) The generator computes the super-resolution outputs, O. We can

treat the actual generator as a black box for the present. Details
will be given in the following sections.

3) Compute the distance (or loss, see Sec. II-E for details) between
the outputs O and the actual high-resolution images Y .

4) Use backpropagation to update the weights.
5) Return to step (1).

Our framework is based on Generative Adversarial Networks
(GANs) [8]. A GAN consists of two neural networks competing against
each other. Let D and G be a discriminator (critic, interchangeably)

and generator respectively. They are functions defined over the
domains D : Pr −→ [0, 1] and G : Pg −→ Pr , where Pr represents
our target data distribution, and Pg represents the noisy input to
the generator. In super-resolution, Pg corresponds to low resolution
images, and Pr is the high resolution counterparts. The discriminator
D outputs a value close to 1 if it determines the image to be realistic
and close to 0 otherwise.

Recurrent
Convolution

Recurrent
Convolution

Convolution

Upsampling

Recurrent
Convolution

Recurrent
Convolution

Convolution

Output

Input

Concatenate. . .

Recurrent
Convolution

Recurrent
Convolution

Convolution

Upsampling

Recurrent
Convolution

Recurrent
Convolution

Convolution

Output

Input

Convolution

Concatenate

Macro
Connection

. . .

(C.3)

(C.3)

(C.1)

(C.1)

(C.2)

(D)

(A)

L x L x 3

L x L x 128

H x H x 3

(B)

L x L x 128

. . .

Fig. 1: Underlying architecture.

The specific generator
architecture is shown in
Fig. 1. A single forward
pass shares a similar base
structure to the one intro-
duced in [20]. By choos-
ing a simpler base model
we can focus on the two
architectural techniques,
AEL and ORL. Our tech-
niques are general and
can be applied to most
stacked recurrent archi-
tectures.

The generator network
consists of an initial con-
volutional layer (labeled

as A). The features from the output of the previous iteration (B)
are concatenated to create a tensor to pass to the next portion of the
network. The inner four layers are convolutional LSTMs. The first two
convolutional LSTMs (C.1) operate in the L× L-dimensional image
space, and are split by a static upsampling layer (C.2), which simply
transforms the tensor dimensions into the high-resolution image space.
The next two convolutional LSTMs (C.3) learn image features in this
H ×H image space. Finally, one more convolution (D) transforms
our tensor into the correct 3-dimensional (RGB) feature space.

B. Adaptively Expanding Layers (AEL)

Considering a general stacked recurrent network optimized to
produce iterative predictions, we encounter a trade-off: if the network
is too deep (referring to layer count), one pass through the network is
computationally expensive. If the network is too shallow, the learning
capacity is limited. When trying to build a model that can produce

Recurrent
Convolution

Inactive

Convolution

Upsampling

Recurrent
Convolution

Recurrent
Convolution

Convolution

Output

Input

Iteration k

Inactive

Inactive

Convolution

Upsampling

Inactive

Inactive

Convolution

Output

Input

Iteration 0

Convolution

ConcatenateConcatenate

Macro
Connection

. . .

Recurrent
Convolution

Recurrent
Convolution

Convolution

Upsampling

Recurrent
Convolution

Recurrent
Convolution

Convolution

Output

Input

Iteration k+h

Convolution

Concatenate

Macro
Connection

. . .

Fig. 2: Overview of AEL. The three recurrent convolutions become
active at iteration k, and the full stacked network becomes active at
iteration k+ h. An inactive layer is simply an identity operation, i.e.,
the output is same as the input. An iteration with more inactive layers
will yield a quicker pass, and vice versa.

adaptive predictions, we ideally want to maintain the benefits of both
architectures. To achieve this, we make the Time Per Iteration (TPI)
for early iterations fast, while later iterations can expend more time
for the payoff of increased quality of output. To do so, certain layers
are designated as inactive for earlier iterations (effectively making
them identity operations), making one full forward pass take less time.
In subsequent iterations, the inactive layers become active, further
refining the result at the tradeoff of slower inference speed. This
technique is referred to as Adaptively Expanding Layers (AEL).

Variable TPI can be considered through the lens of human visual
understanding. For example, if someone were to glance at a car for a
split second, they may only notice broad features, e.g., the car is a
red truck. Given more time, they process additional information – the
make and model, what is in the car, the condition of the tires, etc. The
earlier iterations of this model can be thought of as conducting a quick
glance, whereas the later ones perform a more thorough inspection.

To achieve this level of flexibility, we propose a recurrent generator
with AEL as shown in Fig. 2. This network behaves like the model in
Fig. 1, but each iteration has specified active and inactive layers. With
this structure, predictions at earlier timesteps sacrifice accuracy for
speed because earlier iterations only traverse part of the network. In the
subsequent iterations, additional layers become active to improve the
output quality. The capacity of the network to produce more detailed
results increases with time. Our network is flexible in that it can iterate
indefinitely. In practice there will be a number of iterations, contingent
upon the task at hand and the particularities of the architecture, where
improvement of the result levels off.

While AEL is a general design technique, whether it can be
employed depends on certain architectural restrictions. Most sig-
nificantly, the input tensors and output tensors of skipped layers
(i.e., inactive layers) must align in a sensible manner. Given a four
layer architecture where the first several iterations skip the inner
two layers, the dimensions of the output of Layer 2 must match
the dimensions of the input of Layer 4 (see Fig. 1). Outside of the
immediate architectural restrictions, AEL also introduces two key
design considerations: (i) which layers should be deactivated? (ii) at
which point should inactive layers be activated? To partially answer
the second one, let us consider the state of a recurrent convolution
cell at time t: zt = U ∗ xt +W ∗ ht−1 + b, where xt is the input at
time t and ht−1 is the state from the previous timestep. Through time,
the receptive field of the recurrent convolution cell expands. Once this
field expands beyond the size of the original input, more iterations
(without the addition of new layers) would result in no improvement.

C. Optional Recurrent Layers (ORL)

AEL increases the flexibility of the model in that individual
iterations can have variable processing times, but we also want
to consider global changes, e.g., changes that affect the inference
speed of the entire system. In other words, how can we decrease
TPI for every iteration? Our approach is to decrease the number of
unnecessary recurrent layers in the forward pass. A recurrent layer
must perform multiple convolutions, involving both state from the
previous timestep and input data, in order to produce a result. A non-
recurrent convolutional layer necessarily uses fewer resources since
no manipulations involving state need to be performed. Fig. 3 shows
example versions of possible configurations. The naming convention
of ORL configuration uses r to indicate a recurrent layer and n to
indicate a non-recurrent (i.e., standard, feed-forward) layer. r or n is
labeled for the inner four layers from the bottom.

We chose convolutional LSTMs [21] for the recurrent convolution
layer due to their ubiquity and success in resolving the vanishing

gradient problem. Then, the four inner layers may have either convo-
lutional LSTM or non-recurrent convolution layer. The convolutional
LSTM uses the standard LSTM gates and state update rules, but the
critical operation is convolution rather than matrix multiplication:

it = σ(Wxi ∗ xt +Whi ∗ ht−1 +Wci ◦ ct−1 + bi)

ft = σ(Wxf ∗ xt +Whf ∗ ht−1 +Wcf ◦ ct−1 + bf)

ct = ft ◦ ct−1 + it ◦ tanh(Wxc ∗ xt +Whc ∗ ht−1 + bc)

ot = σ(Wxo ∗ xt +Who ∗ ht−1 +Wco ◦ ct + bo)

ht = ot ◦ tanh(ct)

where W∗ and b∗ values are learnable parameters, ∗ denotes convolu-
tion, ◦ denotes Hadamard product, and σ denotes the sigmoid function.
ht and ot denote the cell state and output, respectively, at time t. Non-
recurrent convolution layer is described as u = BN(`(C1 ∗ xt + a1))
and ot = BN(C2 ∗ u+ a2), where BN is batch normalization, ∗ is
convolution, and ` is a leaky rectified linear unit (LReLU).

D. Combining AEL and ORL

Recurrent
Convolution

Convolution

Upsampling

Recurrent
Convolution

Convolution

Output

Input

Convolution

Concatenate

Convolution

Convolution

(a) ORL configuration
r n r n

n

r

n

r

Recurrent
Convolution

Convolution

Upsampling

Recurrent
Convolution

Convolution

Output

Input

Convolution

Concatenate

Convolution

(b) ORL configuration
r n n r

r

n

n

r

Macro
Connection

Macro
Connection

Convolution

Fig. 3: Two configurations of ORL mech-
anism: r stands for “recurrent” whereas
n stands for “non-recurrent”. It is labeled
from the bottom for the inner four layers.

The combination of
AEL and ORL induces
four possible configura-
tions for an inner layer:
(i) active convolutional
LSTM, (ii) inactive con-
volutional LSTM, (iii) ac-
tive non-recurrent con-
volution, and (iv) inac-
tive non-recurrent convo-
lution. Combining ORL
and AEL introduces an
important question: will
a network with an ORL
architecture perform the
same when an AEL strat-
egy is placed on top?
In other words, given all
16 ORL configurations
for our model trained
on a dataset and ordered
by test performance, will

this order remain the same when an AEL strategy is placed on top of
each of the models? Or will AEL fundamentally alter the performance
of the model, resulting in a totally new ordering of models.

We systematically examine the effects of toggling layers in the
recurrent context, and the effects of including recurrent/non-recurrent
layers. Our work uses a super-resolution GAN to explore these
enhancements but not the particular problem area of super-resolution.

E. Loss Function

Our model uses Wasserstein GAN (WGAN), introduced in [1]. It
uses the following loss functions:

LD = −Ex∼Pr [D(x)]−Ex∼Pg [D(G(x))];

LG = −Ex∼Pg [D(G(x))].

In this case, the discriminator D now maps to the range [0, 1] – rather
than returning 1 or 0, D can be thought of as a critic judging the
input quality. In addition, we compare the output super-resolution
image to the true image. This results in an additional visual loss term
added to our generator loss:

LG = LGGAN + LGV IS = −Ex∼Pg [D(G(x))] + LGV IS

The simplest definition of LGV IS is mean squared error (MSE). Given
two m× n images X and Y , where X(i, j) represents the value of
the pixel at row i and column j, MSE is defined as

MSE(X,Y) =
1

mn

m−1∑
i=0

n−1∑
j=0

[X(i, j)− Y (i, j)]2

This performs a pixel-by-pixel comparison of the super-resolution
image and ground truth image. Because the generator outputs a
prediction at each timestep, we compute the MSE for each iteration’s
generated prediction. Suppose we train a network for T timesteps.
Let Xt be the predicted (super-resolved) image at time step t, and
let Y be the label image (ground truth). Our visual loss is defined as

LGV IS =
1

T

T∑
t=1

MSE(Xt, Y)

This loss term is added to the adversarial loss for the generator:

LG = LGV IS − 10−3 ∗ LGGAN ; LD = LDGAN

The generator GAN loss is weighted by 10−3, as in [16] – in
experimentation, we chose this weight to balance training stability
with generator convergence.

III. EXPERIMENTS

A. Experimental Setup

For the ORL architecture comparison, we train each of the possible
16 models for 100 epochs. All datasets consist of 64× 64× 3 RGB
images scaled to [0, 1]. These images are downsampled by a factor
of 2 using bicubic interpolation to create the 32× 32× 3 inputs to
the network. Hyperparameters and other specifications are as follows:
• Optimizer: We use AdamOptimizer [12] for both the critic

(discriminator) and generator. Both share the following parameters:
– Learning rate: 10−4. Once we find the correct direction to move

the weights by computing the gradient of the loss function, the
learning rate specifies the magnitude of the step we take in that
direction. A high learning rate results in faster training with a
higher risk of divergence, while a lower learning rate results in
smoother training at the expense of speed.

– Epsilon: 10−5. Similar to the learning rate, ε is a stability con-
stant affecting the smoothness of the training procedure. A smaller
value of ε results in quicker training at the expense of stability,
while a lower value of ε stabilizes training but with slower
convergence. This value was chosen because certain architectures
were highly volatile during training. Other architectures were
relatively stable due to a higher ε value, but we kept ε = 10−5

across all models for the sake of comparison.
• Number of epochs: 100 • Mini-batch size: 16
• Gradient clipping: Enabled with a threshold of 0.5 - important in

preventing gradient explosion when training recurrent networks.
• Hardware: All networks were trained either on an NVIDIA Tesla

K80, Tesla P100, or an Quadro P6000. The model quality is
independent from where the architectures are trained.

• Iteration count: All networks are trained for 100 iterations.
1) Data Sets: We use three datasets to assess the impact of data

complexity/homogeneity on model performance.
• CARDATA: The Stanford Cars Dataset [13] consists of 16,185 RGB

images of 196 classes of cars. The data is preprocessed by cropping
around the cars, omitting most non-car background pixels. Each
image is downsampled to 64× 64× 3 using bicubic interpolation.

• FACEDATA: The CyberExtruder Ultimate Face Matching Data Set
[7] contains consists of 10,205 RGB images of 1000 faces scraped

(a) # of recurrent layers = 3.
rrrr is shown for comparison.

(b) # of recurrent layers = 1.
nnnn is shown for comparison.

Fig. 4: Model trained against full CARDATA

from the internet. The dataset is highly varied, containing differences
in light, shadow, expression, facial occlusions, etc. Each image is
downsampled to 64× 64× 3 using bicubic interpolation.

• GEODATA: The Sat-4 Airborne Dataset [3] consists of 500,000
28×28×4 image patches covering four land types: barren land, trees,
grassland, and a miscellaneous class. We created a sub-dataset of
size 16, 000 by randomly selecting 64,000 image patches, grouping
sets of four together in a single 56×56 image (2×2 grid), and then
upsampling to 64 × 64 using bicubic interpolation. The original
data has four color channels, but the infrared channel is omitted.
2) Performance Measures: In addition to the MSE defined in

Section II-E, we use two other performance metrics:
• Peak signal-to-noise ratio (PSNR): PSNR is defined in terms of

mean squared error,

PSNR(X,Y) = 10 · log
(MAX2

X

MSE(X,Y)

)
,

where X is the ground-truth image and Y is the super-resolved
image. PSNR is functionally equivalent to a regularization of MSE.
PSNR ranges from 0 to ∞ (in the case where MSE is 0, i.e., the
images are the same), with higher values being better.

• Structural similarity (SSIM): SSIM is a more advanced image
similarity metric. It works by examining sub-windows of the images
X and Y . For n× n windows x and y, the SSIM is defined as

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
.

SSIM values for all subwindows are averaged. SSIM ranges from
0 to 1, with higher values being better.
To compute model performance, we use a labeled test set of images

(low-resolution and high-resolution pairs). We feed the low-resolution
images through the model and calculate the difference (using MSE,
PSNR, or SSIM) between the output and the high-resolution label. In
the following sections, performance or test performance refers to the
MSE by default. Because our architecture is iterative and produces
an output at each timestep, we average the MSE across all iterations.

B. Applying Optional Recurrent Layers (ORL)

1) Number of Convolutional LSTM Layers: Fig. 4(a) shows that
removing a single recurrent layer has a positive impact on the final
loss – rrrr had the largest loss. With the exception of rrrn which,
although the final loss value is less than rrrr, suffers from unstable
training, all architectures with one non-recurrent layer converge
smoothly and more quickly than rrrr. The overall result shows
that all recurrent layers is not necessarily the strongest.

We also examine the case with three non-recurrent layers, shown
in Fig. 4(b). (nnnn is shown for a comparison purpose.) Here, all
networks with the exception of nnnr have an n in the last layer, and
all non-nnnr validation curves display the characteristic spikiness

(a) W/ a recurrent last layer.
Trained against full CARDATA.

(b) W/ a non-recurrent last layer.
Trained against full CARDATA.

(c) W/ a non-recurrent last layer.
Trained against full FACEDATA.

(d) W/ a non-recurrent last layer.
Trained against full FACEDATA.

Fig. 5: Impact of last recurrent layer on stability.

found in the other two cases. Moreover, the spikes increase with the
total number of non-recurrent layers. Interestingly, nnnr is the top
performing model among all 16 architectures. We can attribute this
to the faster convergence of the model, as the non-recurrent n cells
have fewer parameters than the r cells.

TABLE I: Top-performing models
w.r.t. active recurrent layers

Model # Parameter MSE
nnnr 1335683 0.0068
nnrr 2220419 0.0070
rrnr 3105155 0.0069
rrrr 3989891 0.0075

The improved performance
of some models over rrrr ar-
chitecture (i.e., fully-recurrent)
suggests that, when building
a stacked recurrent model, the
designer should take into ac-
count whether all layers need
to be recurrent. Indeed, the top
performing model from this run
of experiments was nnnr as explained above (Table I), which had
74.8% fewer parameters than the fully recurrent version. Aside from
reducing inference time by introducing “non-recurrency”, our work
shows that one may expect performance boosts and improvements in
training with a sensible number of recurrent layers.

2) Placement of recurrent/non-recurrent layers: Where the recur-
rent layers are placed within the stacked recurrent network (when
there are the same number of recurrent layers) also is critical to the
performance of the network. A significant result that draws attention
is the impact of the last recurrent/non-recurrent layer on stability.
Fig. 5 shows the impact of the existence of a recurrent last layer -
models in Fig. 5(a) (for CARDATA) and Fig. 5(c) (for FACEDATA)
have a recurrent last layer, and ones in Fig. 5(b) (for CARDATA)
and Fig. 5(d) (for FACEDATA) have a non-recurrent last layer. (In
Fig. 5(a) and Fig. 5(c) there is no model that is entirely stable like
the ones in Fig. 5(b) or Fig. 5(b).) The final recurrent layer’s ability
to record state close to the output has a larger impact than earlier
recurrent layers, likely due to its proximity to the final result.

3) Dataset Size and Type: The previous sections showed that more
recurrent layers do not equate to a better performing model. This,
however, is contingent on dataset size and complexity. Fig. 6 shows
the impact of dataset size on loss value - the charts compare a case of
full and 1/4 of CARDATA. Although only select models are shown
in Fig. 6 (for the purpose of clearly showing the gap), the trend

(a) On model nnnr. (b) On model rrrr.

Fig. 6: Impact of dataset size. Trained against full and 1/4 of CARDATA

that small dataset sizes suffer a higher loss is consistent with every
model by apple-to-apple comparison. However, with a smaller dataset,
the model will likely converge earlier but with a much higher loss
value. Comparing Fig. 6(a) and Fig. 6(b), when we take only 25% of
the original dataset, models with more recurrent layers tend to learn
significantly less quickly. Indeed, nnnr exceeds the performance
of all other models on the reduced CARDATA set (which is also
consistent with the cases of the original dataset). However, additional
data is not a cure-all. More training data increases training time, and
if the model is too simple (i.e., has too few trainable parameters)
to capture the information conveyed by the additional data, then the
result is a less-efficient training process with no performance benefit.
Striking the balance of trainable parameters to dataset size is critical
in determining the efficiency and effectiveness of model training.

Fig. 7 displays the best models (with respect to the number of
recurrent layers) for each of the three datasets: CARDATA, FACEDATA,
and GEODATA. Notice that rrrr is the worst performing among all
datasets. Indeed, for GEODATA, we even experience training instability
with rrrr, whereas the other models converge steadily.

C. Applying Adaptively Expanding Layers (AEL)

• BICUBICUPSAMPLING: The baseline deterministic algorithm for
upsampling an image. All models should exceed this point.

• NOAEL: ORL models without AEL laid on top. We examine the
following subset of models: rrrr, rrnr, nnrr, and nnnr.

• AEL+ORL: The ORL models listed above, with one of the three
AEL configurations enumerated below applied on top.

Let x ∈ {r,n} indicate an active recurrent or non-recurrent layer, and
let “-” indicate an inactive layer. For example, r--r would represent
the outer two layers being active & recurrent and the inner two layers
inactive. The notation r--r (p) indicates that the given configuration
repeats p times. We examine the following configurations:
1) Config. A: ---x (2) — x--x (2) — xx-x (3) — xxxx (3)
2) Config. B: x--x (2) — xx-x (2) — xxxx (6)
We restrict our attention to CARDATA for the purposes of exploring
the effects of AEL on model performance. Each model is tested on
1600 test images, and the scores and computation time are averaged.

Config. A: Fig. 8 shows the performance of AEL configuration 1 on
the four ORL models above. In models (a) rrrr and (b) rrnr, we
can see particularly near the start of the curves, that AEL is able to
output predictions earlier than ORL for a reduced time cost. Indeed,
for these ORL configurations, the first iteration of the AEL model
finishes in roughly half the time as the ORL model. For time-sensitive
applications that require a strict time constraint, this behavior is
critical. The rrnr and rrrr AEL models do slightly underperform
the NOAEL models. However, this stems from the added complexity
of the AEL strategy requiring a longer training.

Note that the (c) nnrr and (d) nnnr AEL models underperform
when compared to the other AEL models. Consider nnnr – our
configuration starts as ---x, meaning all non-recurrent layers are
inactive and the one recurrent layer at the end is active. Indeed, this
AEL configuration only cancels non-recurrent layers for the ORL
layout nnnr. Recurrent layers have significantly more parameters
than non-recurrent layers, hence the arithmetic operations take more
time. Consequently, the time-savings yielded by only canceling non-
recurrent layers are more marginal, making the cross markers shift
rightward along the x-axis. A similar argument applies to nnrr.
Config. B: Fig. 9 shows the performance of AEL configuration 2
on the four ORL models above. In all configurations, we are able
to extract several earlier predictions than the NOAEL model, since
more layers are active on the first iteration.

IV. RELATED WORK

As a specific type of generative technique, GANs [8] have
shown powerful performance on general-purpose modeling problems.
Improvements on the original form were proposed in literature
including [1] (WGAN) or [17] (SRGAN).

Although frequently used for sequential data, RNNs have proven
useful where feed-forward networks are traditionally used. Recent
architectures have combined RNN and CNN features, from simple
LSTM implementations that incorporate convolutions [19] [10] [14],
to complex networks implementing LSTMs [21], dilated convolutions
[6], and quasi-recurrence [5]. Liang and Hu [19] designed recurrent
convolutional layers (RCLs). The authors note that using recurrent
connections within a convolutional layer broadens the receptive field
of the convolution operation, making it possible for lower layers to
recognize complex features. Based on [19], [10] developed a deeply-
recursive convolutional network for super resolution.

Originally developed with visual applications in mind [15], attention
provides a way for a discriminative model to focus on parts of an input
image that are most important to the final classification. Attention
mechanisms have found widespread use in a number of neural network
architectures [22], including RNNs [2], [23] and GANs [24]. While
related to our goals, attention falls short of solving the problem
of visual understanding. Implementing an attention mechanism also

(a) CARDATA (b) GEODATA (c) FACEDATA

Fig. 7: Comparison of best models for each dataset. rrrr was not in any dataset’s top models, but it is shown for comparison.

(a) rrrr (b) rrnr (c) nnrr (d) nnnr

Fig. 8: Impact of AEL (Config. A) on ORL layouts.

(a) rrrr (b) rrnr (c) nnrr (d) nnnr

Fig. 9: Impact of AEL (Config. B) on ORL layouts.

involves introducing many more trainable parameters into a network.
Other works have explored adaptive neural networks, including [4]
and [11] for a resource-constrained environment. In addition, the
idea of neural networks with early exits has been well-explored in
the literature including [9], [18]. Many of these early-exit strategies
were developed with the goal of improving computational efficiency,
skipping layers automatically if the result exceeds certain confidence
thresholds midway through the computation.

V. CONCLUSION

In this work, we proposed a new architectural framework employing
a recurrent neural network, with the aim of granting users control over
time-quality trade-offs: i) providing adaptive performance between
iterations: fast early iterations, slow late iterations; ii) advancing
efficiency by using non-redundant recurrent cells only. As the
evaluation results demonstrate, decreasing the number of recurrent
layers does not necessarily degrade the performance of an entire
stacked recurrent network, while it can decrease the overhead of
execution cost. To the best of our knowledge, this is a novel finding
that enables the architecting of more efficient and adaptive networks.

REFERENCES

[1] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. CoRR,
abs/1701.07875, 2017.

[2] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by
jointly learning to align and translate. CoRR, abs/1409.0473, 2014.

[3] S. Basu, S. Ganguly, S. Mukhopadhyay, R. DiBiano, M. Karki, and R. R.
Nemani. Deepsat - A learning framework for satellite imagery. CoRR,
abs/1509.03602, 2015.

[4] T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama. Adaptive neural
networks for efficient inference. CoRR, abs/1702.07811, 2017.

[5] J. Bradbury, S. Merity, C. Xiong, and R. Socher. Quasi-recurrent neural
networks. CoRR, abs/1611.01576, 2016.

[6] S. Chang, Y. Zhang, W. Han, M. Yu, X. Guo, W. Tan, X. Cui, M. J.
Witbrock, M. Hasegawa-Johnson, and T. S. Huang. Dilated recurrent
neural networks. CoRR, abs/1710.02224, 2017.

[7] I. CyberExtruder.com. Cyberextruder ultimate face matching data set.
Accessed: 2018-07-01.

[8] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. C ourville, and Y. Bengio. Generative adversarial nets. In
NIPS 27. Curran Associates, Inc., 2014.

[9] A. Graves. Adaptive computation time for recurrent neural networks.
CoRR, abs/1603.08983, 2016.

[10] J. Kim, J. K. Lee, and K. M. Lee. Deeply-recursive convolutional network
for image super-resolution. In CVPR, 2016.

[11] J.-E. Kim, R. Bradford, M.-K. Yoon, and Z. Shao. ABC: Abstract
prediction before concreteness. In DATE ’20, page 1103–1108, 2020.

[12] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014.

[13] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object representations
for fine-grained categorization. In 4th IEEE Workshop on 3dRR-13, 2013.

[14] S. Lai, L. Xu, K. Liu, and J. Zhao. Recurrent convolutional neural
networks for text classification. In AAAI, 2015.

[15] H. Larochelle and G. E. Hinton. Learning to combine foveal glimpses
with a third-order Boltzmann machine. In Advances in Neural Information
Processing Systems 23. Curran Associates, Inc., 2010.

[16] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. P. Aitken, A. Tejani, J. Totz,
Z. Wang, and W. Shi. Photo-realistic single image super-resolution using
a generative adversarial network. CoRR, abs/1609.04802, 2016.

[17] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. P. Aitken, A. Tejani, J. Totz,
Z. Wang, and W. Shi. Photo-realistic single image super-resolution using
a generative adversarial network. CoRR, abs/1609.04802, 2016.

[18] S. Leroux, S. Bohez, E. Coninck, T. Verbelen, B. Vankeirsbilck,
P. Simoens, and B. Dhoedt. The cascading neural network: Building the
internet of smart things. Knowl. Inf. Syst., 52(3):791–814, Sept. 2017.

[19] M. Liang and X. Hu. Recurrent convolutional neural network for object
recognition. In The IEEE CVPR, June 2015.

[20] A. Radford, L. Metz, and S. Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. CoRR,
abs/1511.06434, 2015.

[21] X. Shi, Z. Chen, H. Wang, D. Yeung, W. Wong, and W. Woo. Convolu-
tional LSTM network: A machine learning approach for precipitation
nowcasting. CoRR, abs/1506.04214, 2015.

[22] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhutdinov, R. S.
Zemel, and Y. Bengio. Show, attend and tell: Neural image caption
generation with visual attention. CoRR, abs/1502.03044, 2015.

[23] Z. Yang, D. Yang, C. Dyer, X. He, A. J. Smola, and E. H. Hovy.
Hierarchical attention networks for document classification. In The
Conference of the NAACL: Human Language Technologies, 2016.

[24] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena. Self-attention
generative adversarial networks, 2018.

	Introduction
	Adaptive Generative Modeling
	Underlying Architecture
	Adaptively Expanding Layers (AEL)
	Optional Recurrent Layers (ORL)
	Combining AEL and ORL
	Loss Function

	Experiments
	Experimental Setup
	Data Sets
	Performance Measures

	Applying Optional Recurrent Layers (ORL)
	Number of Convolutional LSTM Layers
	Placement of recurrent/non-recurrent layers
	Dataset Size and Type

	Applying Adaptively Expanding Layers (AEL)

	Related Work
	Conclusion
	References

