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Abstract. In this paper, we introduce a Foundational Proof-Carrying Code (FPCC)
framework for constructing certified code packages from typed assembly lan-
guage that will interface with a similarly certified runtime system. Our frame-
work permits the typed assembly language to have a “foreign function” interface,
in which stubs, initially provided when the program is being written, are eventu-
ally compiled and linked to code that may have been written in a language with
a different type system, or even certified directly in the FPCC logic using a proof
assistant. We have increased the potential scalability and flexibility of our FPCC
system by providing a way to integrate programs compiled from different source
type systems. In the process, we are explicitly manipulating the interface between
Hoare logic and a syntactic type system.

1 Introduction

Proof-Carrying Code (PCC) [16, 17] is a framework for generating executable machine
code along with a machine-checkable proof that the code satisfies a given safety pol-
icy. The initial PCC systems specified the safety policy using a logic extended with
many (source) language-specific rules. While allowing implementation of a scalable
system [18, 7], this approach to PCC suffers from too large of a trusted computing base
(TCB). It is still difficult to trust that the components of this system – the verification-
condition generator, the proof-checker, and even the logical axioms and typing rules –
are free from error.

The development of another family of PCC implementations, known as Founda-
tional Proof-Carrying Code (FPCC) [4, 3], was intended to reduce the TCB to a min-
imum by expressing and proving safety using only a foundational mathematical logic
without additional language-specific axioms or typing rules. The trusted components in
such a system are mostly reduced to a much simpler logic and the proof-checker for it.

Both these approaches to PCC have one feature in common, which is that they
have focused on a single source language (e.g. Java or ML) and compile (type-correct)
programs from that language into machine code with a safety proof. However, the run-
time systems of these frameworks still include components that are not addressed in
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the safety proof [3, 10] and that are written in a lower-level language (like C): mem-
ory management libraries, garbage collection, debuggers, marshallers, etc. The issue of
producing a safety proof for code that is compiled and linked together from two or more
different source languages was not addressed.

In this paper, we introduce an FPCC framework for constructing certified machine
code packages from typed assembly language (TAL) that will interface with a similarly
certified runtime system. Our framework permits the typed assembly language to have
a “foreign function” interface in which stubs, initially provided when the program is
being written, are eventually compiled and linked to code that may have been writ-
ten in a language with a different type system, or even certified directly in the FPCC
logic using a proof assistant. To our knowledge, this is the first account of combining
such certification proofs from languages at different levels of abstraction. While type
systems such as TAL facilitate reasoning about many programs, they are not sufficient
for certifying the most low-level system libraries. Hoare logic-style reasoning, on the
other hand, can handle low-level details very well but cannot account for embedded
code pointers in data structures, a feature common to higher-order and object-oriented
programming. We outline for the first time a way to allow both methods of verification
to interact, gaining the advantages of both and circumventing their shortcomings.

Experience has shown that foundational proofs are much harder to construct than
those in a logic extended with type-specific axioms. The earliest FPCC systems built
proofs by constructing sophisticated semantic models of types in order to reason about
safety at the machine level. That is, the final safety proof incorporated no concept of
source level types – each type in the source language would be interpreted as a predicate
on the machine state and the typing rules of the language would turn into lemmas which
must prove properties about the interaction of these predicates. While it seems that
this method of FPCC would already be amenable to achieving the goals outlined in
the previous paragraph, the situation is complicated by the complexity of the semantic
models [11, 5, 1] that were required to support a realistic type system. Nonetheless, the
overall framework of this paper may work equally well with the semantic approach.

In this paper, we adopt the “syntactic” approach to FPCC, introduced in [13, 14] and
further applied to a more realistic source type system by [9, 10]. In this framework, the
machine level proofs do indeed incorporate and use the syntactic encoding of elements
of the source type system to derive safety. Previous presentations of the syntactic ap-
proach involve a monolithic translation from type-correct source programs to a package
of certified machine code. In this paper, we refine the approach by inserting a generic
layer of reasoning above the machine code which can (1) be a target for the compilation
of typed assembly languages, (2) certify low-level runtime system components using
assertions as in Hoare logic, and (3) “glue” together these pieces by reasoning about the
compatibility of the interfaces specified by the various types of source code.

A simple diagram of our framework is given in Figure 1. Source programs are writ-
ten in a typed high-level language and then passed through a certifying compiler to
produce machine code along with a proof of safety. The source level type system may
provide a set of functionality that is accessed through a library interface. At the machine
level, there is an actual library code implementation that should satisfy that interface.
The non-trivial problem is how to design the framework such that not only will the two
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Fig. 1. FPCC certified runtime framework.

pieces of machine code link together to run, but that the safety proofs originating from
two different sources are also able to “link” together, consistent with the high-level
interface specification, to produce a unified safety proof for the entire set of code.

Notice that the interaction between program and library is two-way: either piece of
code may make direct or indirect function calls and returns to the other. Ideally, we want
to be able to certify the library code with no knowledge of the source language and type
system that will be interacting with it. At the same time we would like to support first-
class code pointers at all levels of the code. Methods for handling code pointers properly
have been one of the main challenges of FPCC and are one of the differentiating factors
between semantic and syntactic FPCC approaches. For the framework in this paper, we
have factored out most of the code pointer reasoning that is needed when certifying
library code so that the proofs thereof can be relatively straightforward.

In the following sections, after defining our machine and logic, we present the layer
of reasoning which will serve as the common interface for code compiled from different
sources. Then we present a typical typed assembly language, extended with library
interfaces and external call facilities. We finally show how to compile this language to
the target machine, expanding external function stubs, and linking in the runtime library,
at the same time producing the proof of safety of the complete package. We conclude
with a brief discussion of implementation in the Coq proof assistant and future and
related work.

2 A Machine and Logic for Certified Code
In this section, we present our machine on which programs will run and the logic that
we use to reason about safety of the code being run. We use an idealized machine for
purposes of presentation in this paper although implementation upon the IA-32 (Intel
x86 architecture) is in progress. A “real” machine introduces many engineering details
(e.g. fixed-size integers, addressing modes, memory model, variable length instructions
and relative addressing) which we would rather avoid while presenting our central con-
tributions along the subject of this paper.
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Fig. 2. Machine state: memory, registers, and instructions (commands).
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Fig. 3. Machine semantics.

2.1 The Machine

The hardware components of our idealized machine are a memory, register file, and a
special register containing the current program counter (RTS ). These are defined to be
the machine state, as shown in Figure 2. We use a 16-register word-addressed machine
with an unbounded memory of unlimited-size words. We also define a decoding func-
tion Dc which decodes integer words into a structured representation of instructions
(“commands”), also shown in Figure 2. The machine is thus equipped with a Step func-
tion that describes the (deterministic) transition from one machine state to the next,
depending on the instruction at the current RUS .

The operational semantics of the machine is given in Figure 3. The instructions’ ef-
fects are quite intuitive. The first half involve arithmetic and data movement in registers.
The ld and st load and store data from/to memory. These are followed by the condi-
tional and unconditional branch instructions. An illegal (non-decodable) instruction
puts the machine in an infinite loop.

2.2 The Logic

In order to produce FPCC packages, we need a logic in which we can express (encode)
the operational semantics of the machine as well as define the concept and criteria of
safety. A code producer must then provide a code executable (initial machine state)



along with a proof that the initial state and all future transitions therefrom satisfy the
safety condition.

The foundational logic we use is the calculus of inductive constructions (CiC) [24,
20]. CiC is an extension of the calculus of constructions (CC) [8], which is a higher-
order typed lambda calculus. Due to limited space we forgo a discussion of CiC here
and refer the reader unfamiliar with the system to the cited references.

CiC has been shown to be strongly normalizing [25], hence the corresponding logic
is consistent. It is supported by the Coq proof assistant [24], which we use to implement
a prototype system of the results presented in this paper.

2.3 Defining Safety and Generating Proofs
The safety condition is a predicate expressing the fact that code will not “go wrong.”
We say that a machine state � is safe if every state it can ever reach satisfies the safety
policy SP:

Safe ����� SP���	��

� Nat � SP � Step ���������
A typical safety policy may require such things as the program counter must point

to a valid instruction address in the code area and that any writes (reads) to (from)
memory must be from a properly accessible area of the data space. For the purposes of
presentation in this paper, we will be using a very simple safety policy, requiring only
that the machine is always at a valid instruction:

BasicSP ��������� RTS���� Dc ����� RTS������� illegal � InCodeArea ����� RUS��
We can easily define access controls on memory reads and writes by including an-

other predicate in the safety policy, SafeRdWr ���������QRUS�� . By reasoning over the num-
ber of steps of computation more complex safety policies including temporal constraints
can potentially be expressed. However, we will not be dealing with such policies here.

The FPCC code producer has to provide an encoding1 of the initial state � � along
with a proof ! that this state satisfies the safety condition BasicSP, specified by the
code consumer. The final FPCC package is thus a pair:

" �#���$�%� State ��!&� Safe ���$�'� BasicSP ���(�

3 A Language for Certified Machine Code (CAP)
We know now what type of proof we are looking for; the hard part is to generate that
proof of safety. Previous approaches for FPCC [4, 2, 5, 13] have achieved this by con-
structing an induction hypothesis, also known as the global invariant, which can be
proven (e.g. by induction) to hold for all states reachable from the initial state and is
strong enough to imply the safety condition. The nature of the invariant has ranged
from a semantic model of types at the machine level (Appel et al. [4, 2, 5, 23]) to a
purely syntactic well-formedness property [13, 14] based on a type-correct source pro-
gram in a typed assembly language.

What we have developed in this paper refines these previous approaches. We will
still be presenting a typed assembly language in Section 4, in which most source pro-
grams are written. However, we introduce another layer between the source type system

1 We must trust that our encoding of the machine and its operational semantics, and the definition
of safety, are correct. Along with the logic itself and the proof-checker implementation thereof,
these make up most of our software trusted computing base (TCB).



and the “raw” encoding of the target machine in the FPCC logic. This is a “type system”
or “specification system” that is defined upon the machine encoding, allowing us to rea-
son about its state using assertions that essentially capture Hoare logic-style reasoning.
Such a layer allows more generality for reasoning than a fixed type system, yet at the
same time is more structured than reasoning directly in the logic about the machine
encoding.

Our language is called CAP and it uses the same machine syntax as presented in
Figure 2. The syntax of the additional assertion layer is given below:

� ��� ����� Pred � State � Prop
� � CdSpec � Word 	 � Word 
 Pred �

CmdList �
� � � �����.S
� ���
WordList ��� � � ������� � ���

The name CAP is derived from its being a “Certified Assembly Programming” lan-
guage. An initial version was introduced in [27] and used to certify a dynamic storage
allocation library. The version we have used for this paper introduces some minor im-
provements such as a unified data and code memory, assertions on the whole machine
state, and support for user-specifiable safety policies (Section 3.3).

Assertions (
�

, � , � ) are predicates on the machine state and the code specification
(
�

) is a partial function mapping memory addresses to a pair of an integer and a pred-
icate. The integer gives the length of the command sequence at that address and the
predicate is the precondition for the block of code. (The function of this is to allow us
to specify the addresses of valid code areas of memory based on

�
.)

The operational semantics of the language has already been presented in Section 2.1.
We now introduce CAP inference rules followed by some important safety theorems.

3.1 Inference Rules

CAP adds a layer of inference rules (“typing rules”) allowing us to prove specification
judgments of the forms:

��������� � well-formed command sequence
� � � � well-formed code specification

� ��������� RTS�� well-formed machine state

The inference rules for these judgments are shown in Figure 4. The rules for well-
formed command sequences essentially require that if the given precondition

�
is satis-

fied in the current state, there must be some postcondition � , which is the precondition
of the remaining sequence of commands, that holds on the state after executing one
step. The rules directly refer to the Step function of the machine; control flow instruc-
tions additionally use the code specification environment

�
in order to allow for the

certification of mutually dependent code blocks.
We group as “pure” commands all those which do not involve control flow and do

not change the memory (i.e. everything other than branches, jumps, and st). The st
command requires an additional proof that the address being stored to is not in the code
area (i.e. we do not permit self-modifying code). curcmd ����� is defined as:



����� add � addi � mov � movi � ld ��	��

�����������
curcmd

������� � �������
Step

��������� �! � � ��"�# � � � ��$ $ " (CAP-PURE)

�%�&

���������'�
curcmd

�����'�
st (*) ��+,� �,(*- �.�/���

Step
���0����21

InCodeArea
��� � �3
 4�� ( ) �65�+7����8 � � ��" �8 � � � st (*) ��+,� �,( - $ $ " (CAP-ST)

�	��
9�����������
curcmd

���0���
bgt ('-��,(*:6�,; �������
 4<� (*- �>=?��
 4<� (@: �&�A���

Step
���0�������B����
 4<� ('- �>C8�&
 4D� (@: �&�A�DE��

Step
����������8 � � ��" where

��� ; �F�G�
� � �DE���! � � � bgt ( - �,( : �,; $ $ " (CAP-BGT)

�%�F

�������	���
curcmd

�����H�
jd ; �&�A� E �

Step
�����I�

where
��� ; �&�J� � � � E ��! � � � jd ; $ $LK (CAP-JD)

�%�&

�����������
curcmd

���0���
jmp ( �&�A�DE��

Step
���0�����

where
�����3
 4<� ( ���F�J� � � �<E7��# � � � jmp ( $ $MK (CAP-JMP)
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�ON �*PQ��R � �! � � � � Map

�
Dc � N��I�

for all R where
��� R �F�G�

length
�
N�� � �<� P $ � (CAP-CDSPEC)

 P $ � �! � � � � Map
�
Dc � N����

Flatten
�
N �'PQ�@S � � InCodeArea
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S � � .� PT� 4 �OS � � (CAP-STATE)

Fig. 4. CAP inference rules.

curcmd ��������� RTS���� Dc ����� RUS����
The InCodeArea predicate in the rules uses the code addresses and sequence lengths

in
�

to determine whether a given address lies within the code area. The (CAP-CDSPEC)
rule ensures that the addresses and sequence lengths specified in

�
are consistent with

the code actually in memory.
The Flatten predicate is defined as:

Flatten -�U � 3 �WV / � True
Flatten - �����WXH� 3 �WV / � 3 - V / � �ZY Flatten - XH� 3 �WV @D��/

3.2 Safety Properties

The machine will execute continuously, even if an illegal instruction is encountered.
Given a well-formed CAP state, however, we can prove that it satisfies our basic safety
policy, and that executing the machine one step will result again in a good CAP state.

Theorem 1 (Safety Policy and Preservation).
For some state � , if

� � then (1) BasicSP ��� � and (2)
�

Step � ����� for all 
 .

For the purposes of FPCC, we are interested in obtaining safety proofs in the context
of our policy as described in Section 2.3. From Theorem 1 we can easily derive:

Theorem 2 (CAP Safety). For any � , if
� � then Safe ����� BasicSP� .



Thus, to produce an FPCC package we just need to prove that the initial machine
state is well-formed with respect to the CAP inference rules. This provides a structured
method for constructing FPCC packages in our logic. However, programming and rea-
soning in CAP is still much too low-level for the practical programmer. We thus need to
provide a method for compiling programs from a higher-level language and type system
to CAP. The main purpose of programming directly in CAP will then be to “glue” code
together from different source languages and to certify particularly low-level libraries
such as memory management. In the next few sections, we present a “conventional”
typed assembly language and show how to compile it to CAP.

3.3 Advanced safety policies

In the theorems above, and for the rest of this paper, we are only interested in proving
safety according to our basic safety policy. For handling more general safety policies
using CAP, we can extend our CAP inference rules by parameterizing them with a
“global safety predicate” SP:

���
SP

� ��� � ,
�

SP � � � , and
�

SP ��� �����<RUS�� .
The inference rule for each command in this extended system requires an addi-

tional premise that the precondition for the command implies the global safety predi-
cate. Then, using a generalized version of Theorem 1, we can establish that:

Theorem 3. For any � and SP, if
�

SP � then Safe ������� ����� State � SP ����� � � BasicSP ����� ��� .
Threading an arbitrary SP through the typing rules is a novel feature not found

in the initial version of CAP [27]. In that case, there was no way to specify that an
arbitrary safety policy beyond BasicSP (which essentially provides type safety) must
hold at every step of execution.

4 Extensible Typed Assembly Language with Runtime System

In this section, we introduce an extensible typed assembly language (XTAL) based on
that of Morrisett et al. [15]. After presenting the full syntax of XTAL, we give here
only a brief overview of its static and dynamic semantics, due to space constraints
of this paper. A more complete definition of the language can be found in the Coq
implementation itself or the technical report [12].

4.1 Syntax

To simplify the presentation, we will use a much scaled down version of typed assem-
bly language (see Figure 5)–its types involve only integers, pairs, and integer arrays.
(We have extended our prototype implementation to include existential, recursive, and
polymorphic code types.) The code type ��� �
	 describes a code pointer that expects a
register file satisfying � . The register file type assigns types to the word values in each
register and the heap type keeps track of the heap values in the data heap. We have
separated the code and data heaps at this level of abstraction because the code heap will
remain the same throughout the execution of a program.

Unlike many conventional TALs, our language supports “stub values” in its code
heap. These are placeholders for code that will be linked in later from another source
(outside the XTAL system). Primitive “macro” instructions that might be built into other
TALs, such as array creation and access operations, can be provided as an external



(type) ����� � int � array ������:������ �	� 
��
(reg file type)


 ��� � � ��
A��� � ���O���������1����� �
(heap type) � ��� � ��� 
 ����� ��������� � � ����� �

(label)
� ��� �M�
�����������

(register) ����� � r �
� r ����������� r �
(word val) ����� � � �"�
(code heap val) � ��� � code

� 
�� � � � stub
� 
�� � U

(heap val) � ��� � � � 
 �����O����� � � ����� 
 �����! 
(instr) " ��� � add ���'�(� ! �(� % � movi ��� ��� � movl ���'� � � ld ���'�(� !.- �0/

� st ��� - �0/2�(� ! � bgt � ! �(� % � � � bgti � ! �(��� � � newpair �"� � � � ��� � �
(instr seq) ����� �#"%$���� jd � � jmp �

(code heap) & ��� � ��� 
 ?6 � 
 ��������� � � ?6 � � �
(data heap) ' ��� � ��� 
*?6(�)
���������� � � ?6*�+� �
(reg file) , ��� � � � 
 ?6*� 
 ���������$� � ?6*� � �
(program) -���� � - & ��' ��,G�%��/

Fig. 5. XTAL syntax.

library with interface specified as XTAL types. We have also included a typical macro
instruction for allocating pairs (newpair) in the language. When polymorphic types are
added to the language, this macro instruction could potentially be provided through the
external code interface; however, in general, providing built-in primitives can allow for
a richer specification of the interface (see the typing rule for newpair below).

The abstract state of an XTAL program is composed of code and data heaps, a reg-
ister file, and current instruction sequence. Labels are simply integers and the domains
of the code and data heaps are to be disjoint. Besides the newpair operation, the arith-
metic, memory access, and control flow instructions of XTAL correspond directly to
those of the machine defined in 2.1. The movl instruction is constrained to refer only
to code heap labels. Note that programs are written in continuation passing style; thus
every code block ends with some form of jump to another location in the code heap.

4.2 Static and Dynamic Semantics

The dynamic (operational) semantics of the XTAL abstract machine is defined by a set
of rules of the form .0/�1. � . This evaluation relation is entirely standard (see [15, 14])
except that the case when jumping to a stub value in the code heap is not handled. The
complete rules are omitted here.

For the static semantics, we define a set of judgments as illustrated in Figure 6. Only
a few of the critical XTAL typing rules are presented here. The top-level typing rule for
XTAL programs requires well-formedness of the code and data heaps, register file, and
current instruction sequence, and that 2 is somewhere in the code heap:�43 �65 �87 3:9�; � �&� � 3<9 � � 2=?> �A@CB�D � 3 �(� 3 � > ��� code � � � 	 � 2 � and 2FE tail 2 �� � 3 � 5 ��� �!2 � (PROG)
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�� 
 � 
 
 is a register file subtype of

 �� - & ��' ��,G�%��/ - & �%' �%, ����/ is a well-formed program� & & is a well-formed code heap� ' � � ' is a well-formed data heap of type �

&�$�� � ,H� 
 , is a well-formed reg. file of type



& � � cdval � is a well-formed code heap value
� � �P��� hval � is a well-formed data heap value of type �
� $ � �)��� � is a well-formed word value of type �
&�$ 
�� � � is a well-formed instruction sequence

Fig. 6. Static judgments.

Heap and register file typing depends on the well-formedness of the elements in
each. Stub values are simply assumed to have the specified code type. From the in-
struction typing rules, we show below the rules for newpair, jd, and jmp. The newpair
instruction expects initialization values for the newly allocated space in registers r � and
r � and a pointer to the new pair is put in ��� .

3:9 � � 23 �
code � � 	 � 2 cdval

(CODE) 3 �
stub � ��	 � � cdval

(STUB)

� � r � ���
	 � ��� r � ����	 � 3<9 � � ��� �
	 � 
�	 � � � 23:9 � � newpair � � � 	 � ��	 � 	 9 2 (IS-NEWPAIR)

typeof � 3 � > ����� ��� � � 	 � � E � �3<9 � � jd
> (IS-JD)

� ��� � � ��� � � 	 � � E � �3:9 � � jmp � (IS-JMP)

Although the details of the type system are certainly important, the key thing to
be understood here is just that we are able to encode the syntactic judgment forms of
XTAL in our logic and prove soundness in Wright-Felleisen style [26]. We will then
refer to these judgments in CAP assertions during the process of proving machine code
safety.

4.3 External Code Stub Interfaces

XTAL can pass around pointers to arrays in its data heap but has no built-in operations
for allocating, accessing, or modifying arrays. We provide these through code stubs:

newarray ?6 stub
� �

r � � int � r �A� int � r � � - ��� �
r � � array � � / � � � U

arrayget ?6 stub
� �

r � � array � r �U� int � r � � - ��� �
r �>� int � � / � � � U

arrayset ?6 stub
� �

r � � array � r �U� int � r � � int � r � � - �	� �
r � � array � � / � � � U

newarray expects a length and initial value as arguments, allocates and initializes a
new array accordingly, and then jumps to the code pointer in r � . The accessor operations
similarly expect an array and index arguments and will return to the continuation pointer
in r � when they have performed the operation. As is usually the case when dealing with
external libraries, the interfaces (code types) defined above do not provide a complete



specification of the operations (such as bounds-checking issues). Section 5.3 discusses
how we deal with this in the context of the safety of XTAL programs and the final
executable machine code.

4.4 Soundness

As usual, we need to show that our XTAL type system is sound with respect to the
operational semantics of the abstract machine. This can be done using the standard
progress and preservation lemmas. However, in the presence of code stubs, the complete
semantics of a program is undefined, so at this level of abstraction we can only assume
that those typing rules are sound. In the next section, when compiling XTAL programs
to the real machine and linking in code for these libraries and stubs, we will need to
prove at that point that the linked code is sound with respect to the XTAL typing rules.
Let us define the state when the current XTAL program is jumping to external code:

Definition 1 (External call state). We define the current instruction of a program,
� 3 � 5 ��� �!2 � , to be an external call if 2 � � jd > � jmp � � bgt � � � � bgti � � � � and

3 � > � �
stub � ��	 � � or

3 � � � � ����� stub � ��	 � � , as appropriate.

Theorem 4 (XTAL Progress). If
� . and the current instruction of . is not an exter-

nal call then there exists . � such that .0/�1. � .
Theorem 5 (XTAL Preservation). If

� . and .0/�1. � then
� . � .

These theorems are proven by induction on the well-formed instruction premise
(
3:9 � � 2 ) of the top level typing rule (

� . ). Of course the proof of these must be done
entirely in the FPCC logic in which the XTAL language is encoded.

In our previous work [13, 14], we demonstrated how to get from these proofs of
soundness directly to the FPCC safety proof. However, now we have an extra level to
go through (the CAP system) in which we will also be linking external code to XTAL
programs, and we must ensure safety of the complete package at the end.

5 Compilation and Linking
In this section we first define how abstract XTAL programs will be translated to, and laid
out in, the real machine state (the runtime memory layout). We also define the necessary
library routines as CAP code (the runtime system). Then, after compiling and linking
an XTAL program to CAP, we must show how to maintain the well-formedness of that
CAP state so that we can apply Theorem 2 to obtain the final FPCC proof of safety.

5.1 The Runtime System
In our simple runtime system, memory is divided into three sections–a static data area
(used for global constants and library data structures), a read-only code area (which
might be further divided into subareas for external (

�
) and program code), and the

dynamic heap area, which can grow indefinitely in our idealized machine. We use a data
allocation framework where a heap limit, stored in a fixed allocation pointer register,2

designates a finite portion of the dynamic heap area as having been allocated for use.
(Our safety policy could use this to specify “readable” and “writeable” memory.)

2 XTAL source programs use fewer registers than the actual machine provides.



5.2 Translating XTAL Programs to CAP

We now outline how to construct (compile) an initial CAP machine state from an XTAL
program. Given an initial XTAL program, we need the following (partial) functions or
mappings to produce the CAP state:

– ��� � label 	 Word – a layout mapping from XTAL code heap labels to CAP
machine addresses.

– ���&� label 	 Word – a layout mapping from XTAL data heap labels to CAP ma-
chine addresses. Both the domain and range of the two layout functions should
be disjoint. We use � without any subscript to indicate the union of the two:
� ��� ��� ��� .

–
� � Word 	 CmdList 
 Pred – the external (from XTAL’s point of view) code
blocks and their CAP preconditions for well-formedness. Proving that these blocks
are well-formed according to the preconditions will be a proof obligation when
verifying the safety of the complete CAP state. The range of ��� may overlap with
the domain of

�
– these addresses are the implementation of XTAL code stubs.

With these elements, the translation from XTAL programs to CAP is quite straight-
forward. As in [13], we can describe the translation by a set of relations and associated
inference rules. Because of limited space, we only show here the top-level rule:

� � � 3 � 5 �	� � � � �
� � � � � 2�� � Flatten � � ��� � RTS��=?> � 3 � > ��� code � ��	 � 2 � � 2FE tail 2 � � RUS ��� � � > �
� � 2 � ��� � 2 �
� � � @CB�D � � �(� Flatten � Fst � � � � ���'��� � � �

� 9 � � � 3 � 5 � � �!2 �	� ���������QRUS�� (TR-PROG)

Register files and word values translate fairly directly between XTAL and the ma-
chine. XTAL labels are translated to machine addresses using the � functions. Every
heap value in the code and data heaps must correspond to an appropriately translated
sequence of words in memory. All XTAL instructions translate directly to a single ma-
chine command except newpair which translates to a series of commands that adjust
the allocation pointer to make space for a new pair and then copy the initial values
from r � and r � into the new space. We ignore the stubs in the XTAL code heap transla-
tion because they are handled in the top-level translation rule shown above (when

�
is

Flatten’ed).

5.3 Generating the CAP Proofs

In this section we proceed in a top-down manner by first stating the main theorem we
wish to establish. The theorem says that for a given runtime system, any well-typed
XTAL program that compiles and links to the runtime will result in an initial machine
state that is well-formed according to the CAP typing rules. Applying Theorem 2, we
would then be able to produce an FPCC package certifying the safety of the initial
machine state.

Theorem 6 (XTAL-CAP Safety Theorem). For some specified external code envi-
ronment

�
, and for all . and � , if

� . (in XTAL) and
� 9 � � .�� � , then

� � (in
CAP).



To prove that the CAP state is well-formed (using the (CAP-STATE) rule, Fig-
ure 4), we need a code heap specification,

�
, and a top-level precondition,

�
, for

the current program counter. The code specification is generated as follows:
� �

CpGen � � � ����� 3 � , where

CpGen � � � ����� 3 �'� � �
�
�

CpInv � ��� � 3 � � � if ����A@CB�D � � � and
=?> � � � � > � � � � 3 � > ��� � code � ��	 � 2 �

Snd � � � � ��� if �
�A@CB�D � � �
That is, for external code blocks, the precondition comes directly from

�
, while

for code blocks that have been compiled from XTAL, the CAP preconditions are con-
structed by the following definition:

CpInv � ����� 3 � � ��� � � � = � � � ; � 5 � � �'� � 3 � � � � 5 � ; � � � 3:9�; � � � ���
� � � � � 3 � 5 �	� ��� � � � � � � �
� ��� � �

For any given program, the code heap and layout (
3

and � � ) must be unchanged,
therefore they are global parameters of these predicate generators. CpInv captures the
fact that at a particular machine state there is a well-typed XTAL memory and register
file that syntactically corresponds to it. We only need to specify the register file type
as an argument to CpInv because the typing rules for the well-formed register file and
heap will imply all the necessary restrictions on the data heap structure. One of the
main insights of this work is the definition of CpInv, which allows us to both establish
a syntactic invariant on CAP machine states as well as define the interface between
XTAL and library code at the CAP level. CpInv is based on a similar idea as the global
invariant defined in [13] but instead of a generic, monolithic safety proof using the
syntactic encoding of the type system, CpInv makes clear what the program-specific
preconditions are for each command (instruction) and allows for easy manipulation and
reasoning thereupon, as well as interaction with other type system-based invariants.

Returning to the proof of Theorem 6, if we define the top-level precondition of the
(CAP-STATE) rule to be CpInv � � ��� 3 � � � , then it is trivially satisfied on the initial state
� by the premises of the theorem. We now have to show well-formedness of the code
at the current program counter,

� � � ��� � , and, in fact, proofs of the same judgment
form must be provided for each of the code blocks in the heap, according to the (CAP-
CDSPEC) rule. The correctness of the CAP code memory is shown by the theorem:

Theorem 7 (XTAL-CAP Code Heap Safety). For a specified
�

, and for any XTAL
program state � 3 � 5 ��� �!2 � , register file type � , layout functions � , and machine state
��������� RUS�� , such that

� � 3 � 5 � � � 2 � and
� 9 � � � 3 � 5 � � � 2 �	� ���������QRUS�� , if

� �
CpGen � � � ����� 3 � , then

� � � � .

This depends in turn on the proof that each well-typed XTAL instruction sequence
translated to machine commands will be well-formed in CAP under CpInv:

Theorem 8 (XTAL-CAP Instruction Safety). For a specified
�

, and for all � � ,
3

,
2 , � , and � (where

� � CpGen � � � � � � 3 � ), if
3:9 � � 2 and � � � 2 � � , then� ���

CpInv � � � � 3 � � � � � .



Due to space constraints, we omit details of the proof of this theorem except to
mention that it is proved by induction on 2 . In cases where the current instruction di-
rectly maps to a machine command (i.e., other than newpair), the postcondition ( � in
the CAP rules) is generated by applying CpInv to the updated XTAL register file type.
We use the XTAL safety theorems (4 and 5) here to show that � holds after one step
of execution. In the case of the expanded commands of newpair, we must construct the
intermediate postconditions by hand and then show that CpInv is re-established on the
state after the sequence of expanded commands has been completed. In the case when
jumping to external code, we use the result of Proof Obligation 10 below.

Finally, establishing the theorems above depends on satisfying some proof obliga-
tions with respect to the external library code and its interfaces as specified at the XTAL
level. First, we must show that the external library code is well-formed according to its
supplied preconditions:

Proof Obligation 9 (External Code Safety) For a given
�

, if
� � CpGen � � � ����� 3 �

for any ��� and
3

, then
�����

Snd � � � � ��� � Fst � � � � ��� , for all � � @CB�D � � � .
For now, we assume that the proofs of this lemma are constructed “by hand” using

the rules for well-formedness of CAP commands.
Secondly, when linking the external code with a particular XTAL program, where

certain labels of the XTAL code heap are mapped to external code addresses, we have to
show that the typing environment that would hold at any XTAL program that is jumping
to that label implies the actual precondition of that external code:

Proof Obligation 10 (Interface Correctness) For a given
�

, � � , and
3

, and for all
>

such that
3 � > ��� stub � � 	 � � and � � � > � � � , if CpInv � � � � 3 � ��� ��� � then Snd � � � � ��� ���%� .

These properties must be proved for each instantiation of the runtime system
�

.
With them, the proofs of Theorems 8, 7, and, finally, 6 can be completed.

5.4 arrayget Example

As a concrete example of the process discussed in the foregoing subsection, let us con-
sider arrayget. The XTAL type interface is defined in Section 4.3. An implementation
of this function could be:

�
aget � �

ld r ��� r � - � /!$ addi r �.� r ����� $ bgt r ��� r � � bnderr $ add r ��� r �C� r �8$ ld r ��� r � - � /!$ jmp r � �

The runtime representation of an array in memory is a length field followed by the
actual array of data. We assume that there is some exception handling routine for out-of-
bounds accesses with a trivial precondition defined by

� � bnderr � �&� � bnderr � � bnderr � .
Before describing the CAP assertions for the safety of � aget , notice that the code

returns indirectly to an XTAL function pointer. Similarly, the arrayget address can be
passed around in XTAL programs as a first-class code pointer. While the syntactic type
system handles these code pointers quite easily using the relevant XTAL types, deal-
ing with code pointers in a Hoare logic-based setup like CAP requires a little bit of
machinery.

We can thus proceed to directly define the precondition of � aget as,



�
aget � CpInv -���� � & � �

r � � array � r �U� int � r � � - ��� �
r �>� int � � / �./

for some � � and
3

. Then we certify the library code in CAP by providing a derivation
of � � ��� � aget

� � aget � . We do this by applying the appropriate rules from Figure 4
to track the changes that are made to the state with each command. When we reach
the final jump to r � , we can then show that CpInv � � � � 3 � � r � � int

� � holds, which must
be the precondition specified for the return code pointer by

� ����� �
� r � ��� (see the defini-
tion of

�
in the beginning of Section 5.3). The problem with this method of certifying

arrayget, however, is that we have explicitly included details about the source language
type system in its preconditions. In order to make the proof more generic, while at the
same time be able to leverage the syntactic type system for certifying code pointers,
we follow a similar approach as in [27]: First, we define generic predicates for the pre-
and postconditions, abstracting over an arbitrary external predicate,

�
aget. The actual re-

quirements of the arrayget code are minimal (for example, that the memory area of the
array is readable according to the safety policy). The post-condition predicate relates
the state of the machine upon exiting the code block to the initial entry state:

Pre ����� aget � � 9 �	� aget - 9 / Y SafeToRead - 9 � 3 � 9 � 7 - r ��/2� 9 � 7 - r �"/�@G�"/
Post ��� - 3 � 7 �$��
�/2�
� - 3�� � 7
� � ��
 � /2� 3�� � 3 Y ��
 � � 9 � 7 - r ��/

Y 7 � - r � /&� 3 - 7 - r ��/�@ 7 - r ��/�@D�"/?Y �����
Now we certify the arrayget code block, quantifying over all

�
aget and complete

code specifications
�

, but imposing some appropriate restrictions on them:

��� ��� aget � � - bnderr />� �
bnderr Y - � 9 � 9 � � Pre - � aget / - 9 / Y Post - 9 / - 9 � /�6 � - 9 � 7 - r ��/(/ - 9 � /(/

6 � � �
Pre - � aget / � �

aget

Thus, under the assumption that the Pre predicate holds, we can again apply the
inference rules for CAP commands to show the well-formedness of the � aget code.
When we reach the final jump, we show that the Post predicate holds and then use that
fact with the premise of the formula above to show that it is safe to jump to the return
code pointer.

The arrayget code can thus be certified independent of any type system, by introduc-
ing the quantified

�
aget predicate. Now, when we want to use this as an external function

for XTAL programs, we instantiate
�

aget with � aget above. We have to prove the premise
of the formula above, � � � ��� ��� Pre � � aget �'��� � � Post ��� �'��� � ��� � ����� �
� r ����� ����� ��� . Prov-
ing this is not difficult, because we use properties of the XTAL type system to show
that from a state satisfying the precondition–i.e. there is a well-formed XTAL program
whose register file satisfies the arrayget type interface– the changes described by the
Post predicate will result in a state to which there does correspond another well-formed
XTAL program, one where the register r � is updated with the appropriate element of the
array. Then we can let

� � arrayget � � � � aget � Pre � � aget ��� and we have satisfied Proof
Obligation 9. Proof Obligation 10 follows almost directly given our definition of � aget.

In summary, we have shown how to certify runtime library code independent of a
source language. In order to handle code pointers, we simply assume their safety as a
premise; then, when using the library with a particular source language type system, we



instantiate with a syntactic well-formedness predicate in the form of CpInv and use the
facilities of the type system for checking code pointers to prove the safety of indirect
jumps.

6 Implementation and Future Work

We have a prototype implementation of the system presented in this paper, developed
using the Coq proof assistant. Due to space constraints, we have left out its details
here. As mentioned earlier in the paper, our eventual goal is to build an FPCC system
for real IA-32 (Intel x86) machines. We have already applied the CAP type system
to that architecture and will now need to develop a more realistic version of XTAL.
Additionally, our experience with the Coq proof assistant leads us to believe that there
should be more development on enhancing the automation of the proof tactics, because
many parts of the proofs needed for this paper are not hard or complex, but tedious to
do given the rather simplistic tactics supplied with the base Coq system.

In this paper, we have implicitly assumed that the CAP machine code is generated
from one of two sources: (a) XTAL source code, or (b) code written directly in CAP.
However, more generally, our intention is to support code from multiple source type
systems. In this case, the definition of CpGen (Section 5.3) would utilitize code precon-
dition invariant generators (CpInv) from the multiple type systems. The general form of
each CpInv would be the same, although, of course, the particular typing environments
and judgments would be different for each system. Then we would have a series of the-
orems like those in Section 5.3, specialized for each CpInv. Proof Obligation 10 would
also be generalized as necessary, requiring proofs that the interfaces between the vari-
ous type systems are compatible. Of course there will be some amount of engineering
required to get such a system up and running, but we believe that there is true potential
for building a realistic, scalable FPCC framework along these lines.

7 Related Work and Conclusion

In the context of the original PCC systems cited in the Introduction, there has been
recent work to improve their flexibility and reliability by removing type-system specific
components from the framework [19]. These systems have the advantage of working,
production-quality implementations but it is still unclear whether they can approach the
trustworthiness goals of FPCC.

We also mentioned the first approaches to generating FPCC, which utilized seman-
tic models of the source type system, and their resulting complexities. Attempting to
address and hide the complexity of the semantic soundness proofs, Juan Chen et al. [6]
have developed LTAL, a low-level typed assembly language which is used to compile
core ML to FPCC. LTAL is based in turn upon an abstraction layer, TML (typed ma-
chine language) [22], which is an even lower-level intermediate language. Complex
parts of the semantic proofs, such as the indexed model of recursive types and strati-
fied model of mutable fields, are hidden in the soundness proof of TML and as long
as a typed assembly language can be compiled to TML, one need not worry about the
semantic models. All the same, LTAL and TML are only assembly language type sys-
tems, albeit at a much lower level that XTAL. They do not provide CAP’s generality



of reasoning nor can their type systems be used to certify their own runtime system
components. It should be clearly noted that the ideas presented in this paper are not re-
stricted to use with a syntactic FPCC approach, as we have pursued. Integrating LTAL
or TML with the CAP framework of this paper to certify their runtime system compo-
nents seems feasible as well.

Along the syntactic approach to FPCC, Crary [9, 10] applied our methods [13, 14]
to a realistic typed assembly language initially targeted to the Intel x86. He even went
on to specify invariants about the garbage collector interface, but beyond the interface
the implementation is still uncertified. In his work he uses the metalogical framework
of Twelf [21] instead of the CiC-based Coq that we have been using.

In conclusion, there is much ongoing development of PCC technology for producing
certified machine code from high-level source languages. Concurrently, there is exciting
work on certifying garbage collectors and other low-level system libraries. However,
integrating the high and low-level proofs of safety has not yet received much attention.
The ideas presented in this paper represent a viable approach to dealing with the issue
of interfacing and integrating safety proofs of machine code from multiple sources in a
fully certified framework.
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21. F. Pfenning and C. Schürmann. System description: Twelf - a meta-logical framework for
deductive systems. In Proc. 16th International Conference on Automated Deduction, volume
1632 of LNCS, pages 202–206. Springer-Verlag, July 1999.

22. K. N. Swadi and A. W. Appel. Typed machine language and its semantics. Unpublished
manuscript available at www.cs.princeton.edu/˜appel/papers, July 2001.

23. G. Tan, A. W. Appel, K. N. Swadi, and D. Wu. Construction of a semantic model for a typed
assembly language. In 5th International Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI ’04), page (to appear), Jan. 2004.

24. The Coq Development Team. The Coq proof assistant reference manual. The Coq release
v7.1, Oct. 2001.
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