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Abstract

Runtime stacks are critical components of any modern soéwa
they are used to implement powerful control structures sash
function call/return, stack cutting and unwinding, coinas, and
thread context switch. Stack operations, however, are harg to
reason about: there are no known formal specifications fai-ce
fying C-stylesetjmp/longjmp, stack cutting and unwinding, or
weak continuations (in C--). In many proof-carrying code&€®
systems, return code pointers and exception handlerseatetas
general first-class functions (as in continuation-passtglg) even
though both should have more limited scopes.

In this paper we show that stack-based control abstractans
low a much simpler pattern than general first-class codetpoin
ers. We present a simple but flexible Hoare-style framework f
modular verification of assembly code with all kinds of stack
based control abstractions, including function call/metuail call,
setjmp/longjmp, weak continuation, stack cutting, stack un-
winding, multi-return function call, coroutines, and thdecontext
switch. Instead of presenting a specific logic for each abstruc-
ture, we develop all reasoning systems as instances of aigene
framework. This allows program modules and their proofsetiev
oped in different PCC systems to be linked together. Ouesyss
fully mechanized. We give the complete soundness proof dnlll a
verification of several examples in the Coq proof assistant.

1. Introduction

Runtime stacks are critical components of any modern soéwa
they are used to implement powerful control structures sisgbro-
cedure call/return, tail call [34, 8], C-styket jmp/longjmp [20],
stack cutting and unwinding (for handling exceptions) [Z, 30],
coroutines [10], and thread context switch [15]. Corregtliemen-
tation of these constructs is of utmost importance to thetgaind
reliability of many software systems.

Stack-based controls, however, can be unsafe and erroe-pro
For example, both stack cutting abdngjmp allow cutting across
a chain of stack frames and returning immediately from a lgeep
nested function call. If not done carefully, it can invoke aio-
solete longjmp or a deadweak continuation[30]). Neither C
nor C-- [30] provides any formal specifications for certifyi
setjmp/longjmp, stack cutting and unwinding, or weak continua-
tions. In Java virtual machine and Microsoft’s .NET IL, oggons
on native C stacks are notanagedso they must be trusted.
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0 f:
1 addiu $sp, $sp, -32 ;allocate stack frame
2 sw $fp, 32($sp) ;save old $fp
3 addiu $fp, $sp, 32 ;set new $fp
4 sw $ra, -4($fp) ;save $ra
5 jal h ;call h
6 ct: 1w $ra, -4($fp) ;restore $ra
7 1w $fp, 0($£fp) ;restore $fp
8 addiu $sp, $sp, 32 ;deallocate frame
9 jr $ra ;return
10 h
11 jr $ra ;return
Figure 1. Stack-Based Function Call/Return
void £(){ | void h(){
hQ; | return;
return; | }
} |

Before calling functionh, the callerf first saves its return code
pointer (in$ra) on the stack; the instructigal h loads the return
address (the labelt) in $ra, and jumps to the labél; whenh
returns, the control jumps back to the labe| wheref restores its
return code pointer and stack pointers and jumps back talitsrs
code. The challenge is to formalize and capture the invéitiatct
does not outlivef even though it can escape into other functions.
Many proof-carrying code (PCC) systems [3, 14, 29] support
stack-based controls by using continuation-passing EBRS) [2].
CPS treats return addresses or exception handlers addisstende
pointers. Under CPS, the code followirg (lines 6-9) is treated
not as a part of functioft but as a separate new function; wheis
called, the continuation functiott is passed as an extra argument
in $ra which is then called at the end of functibBnCPS makes type-
checking easier but it is still hard to describe the abovariant
aboutf and ct. Indeed, none of the existing PCC systems [26,
27, 9, 3, 14] have successfully certifiedt jmp/longjmp, weak
continuations, and general stack cutting and unwinding & 10
and Sec 2.1 for an in-depth discussion about the related)work

In this paper we describe a formal system that can expose and
validate the invariants of stack-based control abstrastid/e show
that return pointers (or exception handlers) are much miwa-d
plined than general first-class code pointers. A returntpoiis al-
ways associated with sonmgical control stack whose validity can
be established statically. A function can cut to any retwinter if
it can establish the validity of its associated logical cohstack.

Stack operations are very hard to reason about because they More specifically, we present a simple but flexible Hoardesty

involve subtle low-level invariants: both return code fens and
exception handlers should have restricted scopes, yettieayften
stored in memory or passed in registers—making it diffiauttack
their lifetime. For instance, the following C program is qutad
into the MIPS assembly code shown in Figure 1:

framework for modular verification of assembly code withkitids
of stack-based control abstractions (see Table 1). Instéade-
senting a specific logic for each construct, we develop aoaing
systems as instances of a generic framework. This allowgrano
modules and their proofs developed in different PCC systerbe



Stack-Based Reasonind Definition & o
Control Abstraction System Formalization
function call/return SCAP SEC4
tall call optimization [34, 8] SCAP SEC4.4
exception: stack unwinding [30]SCAP-I SEC5.1 .
EUCAP | SECG6.1
exception: stack cutting [30] | SCAP-Il | SEC5.2
ECAP SEC6.2
multi-return function call [32] | SCAP-Il | SEC5.2 .
weak continuation [30] SCAP-II | SEC5.2
setjmp/longjmp [20] SCAP-II | SEC5.3
coroutines [10] CAP-CR |SEC7.1
coroutines + function call [10] | SCAP-CR| SEC 7.2
threads [15] FCCAP | SECS8

Table 1. A Summary of Supported Control Abstractions

linked together. Our system is fully mechanized. We givecth@-
plete soundness proof and a full verification of several gtamin
the Coq proof assistant [35]. Our paper builds upon preweork
on program verification but makes the following new conttiios:

e As far as we know, our paper is the first to successfully
formalize and verify sophisticated stack operations sugh a
setjmp/longjmp, weak continuations, and general stack cut-
ting. We verify raw assembly implementation so there is 138 1o
of efficiency or additional runtime check. Our interfaceiims
ple, general, yet modular (so a library only needs to be ee¥ifi
once). Our framework is sound: a program certified using our
system is free ofincheckeduntime errors [20, 30].

We have also done a thorough study of common stack-based
control abstractions in the literatures (see Table 1). Rahe
construct, we formalize its invariants and show how to &eits °
implementation. As an important advantage, all these syste

are instances of a generic framework; in fact, the inferenles

for each system are just derived lemmas in the base framework
so programs certified in different PCC systems can be linked
together.

Our SCAP system (Sec 4) is interesting and novel in its own
right. Instead of treating return pointers as first-clastequoint-

ers (which require “impredicative types” [23, 29]), SCARSsp
fies the invariant at each program point using a pair of a preco
dition and a “local” guarantee (which states the obligatioat

the current function must fulfill before it can return or thwan
exception). These guarantees, when chained togethereds us
to specify the logical control stack. SCAP is also orthoddna
the recent work on XCAP [29]: it can apply the same syntactic

Function call/returnfollow a strict “last-in, first-out” pattern:
the callee always returns to the point where it was most tgcen
called. Similar concepts include the JVBubroutines[22],
which are used to compile the#y-finally” block in Java.

The tail call optimizationis commonly used in compiler im-
plementation: if a function call occurs at the end of the entr
function, the callee will reuse the current stack frame atarn
directly to the caller of the current function.

Exceptions, stack unwinding, and stack cuttWen an excep-
tion is raised, the control flow is transferred to the pointhaich

the exception is handled. There are mainly two strategidsfo
plementing exceptions (on stacks) [38tack unwindingvalks

the stack one frame at a time until the handler is reached; in-
termediate frames contain a default handler that rest@lesy

of callee-save registers and re-raises the exception; @idum
always returns to the activation of its immediate calfgack
cutting sets the stack pointer and the program counter directly
to the handler which may be contained in a frame deep on the
stack; intermediate frames are skipped over.

Weak continuations and setjmp/longjn@- uses weak contin-
uations [30] to support different implementation stragsgior
exceptions. A weak continuation is similar to the first-slasn-
tinuation except that it can only be defined inside a procadur
and cannot outlive the activation of the enclosing procedGr
usessetjmp/longjmp library functions [20] to enable an im-
mediate return from a deeply nested function call, the séiogn
of which is similar to weak-continuations (while the implem
tation may be more heavyweight). Especially, the function-c
taining theset jmp must not have terminated wher.engjmp

is launched. Both C-- and C make no effort to prohibit invoca-
tion of a dead weak continuation or an obsolkéagjmp.

Multi-return function call Shivers and Fisher [32] proposed
MRLC to allow functions to have multiple return points, wkos
expressiveness sits between general CPS and first-order fun
tions. The mechanism is similar to weak continuations, box p
posed at a higher abstract level. Multi-return function sap-
ports pure stack-based implementations.

Coroutines and threadsvolve multiple execution contexts that
exist concurrently. Control can be transferred from oneexe
tion context to another. Implementation of context switclesl
not follow the regular function calling convention: it féies
the return code pointer from the stack of the target coreutin
(thread) and returns to the target instead of its caller.

2.1 Reasoning about Control Abstractions

Traditional Hoare-logic [16] uses the pre- and postcoaditas
specifications for programs. Most work on Hoare-logic [4gens
about control structures in higher-level languages ands dus
directly reason about return code pointers in their seroanfio
apply traditional Hoare-logic to generate mechanized fgrdor
. ; : low-level code, we need to first formalize auxiliary variebland
can support any physical stack layout and calling convestio the Invariance rule, which is a non-trivial issue and cocgiks the
In the rest of this paper, we first review common stack-based ¢ formalization, as shown in pervious work [38, 5]; next, wedé¢o
trols and summarize our main approach (Sec 2). We then define o  relate the entry point with the exit point of a function andwstthe
machine platform and a generic Hoare-style framework ($e4/8 validity of return code pointers—this is hard at the assgntélel
present our SCAP system for certifying function call/retand due to the lack of abstractions.
show how to extend it to support different control abstiaeiin Stata and Abadi [33] also observed two similar challenges fo

Tabll(e 1 (dSehc 4-9). ITirlia”y we discuss implementation angtedl o checking Java byte code subroutines. They propose eeHoa
work, and then concluade. style type system to reason about subroutine cajts (") and

returns (fet x"). To ensure the return address used by a subroutine
2. Background and Related Work is the one that is most recently pushed onto the stack, they ha
Before giving an overview of our approach, we first survey eom to disallow recursive function calls, and require labelafigode to
mon stack-based control abstractions in the literatures: relate the entry point with the return point of subroutines.

technique [29] to certify general first-class code pointers

Our certified framework is also very flexible. A logical canitr
stack specifies a chain of valid return pointers, but it ingsos
no restriction on where we store these pointers. Because all
invariants are specified as state predicates or stateardative
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jr $ra

producer

address pool

Figure 2. The Model for Code Pointers

Necula used Hoare triples to specify functions in SAL [26¢ H
needs a history of states, which contains copies of the register
file and the whole memory at the moment of function invocation
At the return point, the last state is popped up frémand the
relation between that state and the current state is chedketd
a model of physical stack#{ is used purely for reasoning about
function calls; it complicates the operational semantfcSAL sig-
nificantly. Also, SAL uses a very restrictive physical stackdel
where only contiguous stack is supported and general paire-
ments (which may point into the stack) are not allowed.

To overcome the lack of structures in low-level code, manZPC

systems have also used CPS to reason about regular control ab

stractions, which treats return code pointers (and exacefian-
dlers) as first-class code pointers. CPS is a general senmaaotiel
to support all the control abstractions above, but it is fardse
CPS to characterize the invariants of control stacks focifipe
control abstractionse(g., setjmp/longjmp and weak continua-
tion). CPS-based reasoning also requires specificatioargfraia-
tion pointers using “impredicative types” [23, 29]), whiaakes
the program specification complex and hard to understand. An
other issue with CPS-based reasoning is the difficulty taifpe
first-class code pointers modularly in logic: because ofcfrmular
references between code pointers and data heap (which rhayin
contains code pointers), it is not clear how to apply exgstp-
proaches [25, 3, 29] to model sophisticated stack-basedliamts.

2.2 Our Approach

In this paper we will show that we can support modular reaspni
of stack-based control abstractions without treating tlasnfirst-
class code pointers. In our model, when a control transfeursc
the pointer for the continuation code is deposited into astrabt
“address pool” (which may be physically stored in memory or
the register file). The code that saves the continuationliecca
“producer”, and the code that uses the continuation latealied

a “consumer”. In case of function calls, as shown in Figurehg,
caller is the “producer” and the callee is the “consumer”jleithe
return address is the continuation pointer.

The producer is responsible for ensuring that each codegroin
it deposits is a valid one and depositing the code pointes o
break theinvariant of the address pool. The consumer ensures
that the invariant established at its entry point still lsolghen it
fetches the code pointer from the pool and makes an indinegp,
The validity of the code pointer is guaranteed by the invdridao
overcome the lack of abstraction at the assembly level, weaus
guarantegg—a relation over a pair of states—to bridge the gap
between the entry and exit points of the consumer. This @gpro
avoids maintaining any state history or labeling of code.

The address pool itself is structureless, with each corbel
straction molding the pool into the needed shape. For fansfi
exceptions, weak continuationstc, the pool takes the form of a
stack; for coroutines and threads it takes the form of a quewe
queue of stacks (each stack corresponding to a coroutiaafth
The invariant specified by a control abstraction also resttow
the pool is used. Function call, for example, restricts #tagk-

(Program) P = (C,S,I)
(CodeHeap C = {f~1}"
(Statg S = (H,R)
(Heap H :i={1~wu}"
(RegFile R = {r~w}"
(Registej r = {rj {031
(Label§ £,1:=i (natnums
(Word) w :=n (integerg
(InstrSeq I u=c;I[jf |jal £, fret |Jrrs

ommangl ¢ = addurq,rs,ri | addiu rq,rs,w
C dd ddi
| beq rs,rt,f | bgtz rs, £ | Iw rt,w(rs)

| subu rg,rs,rt | Swry,w(rs)

Figure 3. Syntax of Target Machine TM

$zero ro always zero

$at r] assembler temporary
$v0—$vl ro—r3 return values

$a0 — $a3 r4—1r7 arguments

$t0 — $t9 rg—r15,Y24—TI25 temporary (caller saved)
$s0 — $s7 ri6— 123 callee saved

$k0 — $k1 T2 —TI27 kernel

$gp rog global pointer

$sp rog stack pointer

$fp r30 frame pointer

$ra r31 return address

Figure 4. Register Aliases and Usage

shaped) pool to a strict “last-in, first-out” pattern, andkesmsure
that all addresses remain constant until they are fetched.

In the rest of this paper, we will describe the invariant facle
control abstraction. We also present a set of lemmas thaivall
programmers to verify structureless assembly code withédrig
level abstractions. Before we define these systems, we fasept
our generic CAPO framework. All the systems for specific oaint
abstractions will be presented as a set of lemmas in CAPO.

3. The CAPO Framework

In this section, we first present a MIPS-style “untyped” &irg
machine language (TM) and its operational semantics. Then w
propose a general logic, CAPO, for verifying TM programseTh
generic CAPO framework will serve as the common basis for the
interoperability of different logics.

3.1 The Target Machine

In Figure 3 we show the definition of a MIPS-style target maehi
(TM). A machine state is called a “Progran?®)( which consists of
aread-only code heaf}, an updatable stat&), and an instruction
sequencelj. The code heap is a finite partial mapping from code
labels to instruction sequences. The sfatentains a data heafl}

and a register fileK). Each instruction sequence is a basic code
block,i.e.,a list of instructions ending with a jump-instruction. We
use an instruction sequentén P (rather than a program counter)
to represent the basic block that is being executed.

The target machine has 32 registers. Following the MIPS con-
vention, Figure 4 shows the register aliases and usagehélhs-
sembly code shown in the rest of the paper follows this caimen

The instruction set captures the most basic and common MIPS
instructions. Since we do not have a program counter, wegehan
the syntax of thgal instruction and require that the return address
be explicitly given. The execution of TM programs is modesed
a small-step transition from one program to another,P — .
Figure 5 defines the program transition function. The seitsof



[ifI= [ then(C, (H.R),I) — | WH{a}P| (Well-formed Program
jf (C,(H,R),C(£)) whenf edomC)
jal £, fret ((C,(]HI R{rzi~ fret}),C(£)) whent € domC) Wk C:Ws (aWsS) H{a}l (PROG
jrrs (C,(H,R),C(R(xs))) whenR(rs) edomC) We F{a} (C,S,I)
beq rs, i, £;1 | (C,(H,R),T") whenR(xrs) ZR(ry);
(C,(H,R),C(£)) whenR(rs) =R(xt), £ edom(C) W-C:¥' | (Well-formed Code He
bgtz rs, £;T (C,(H,R),T") whenR(rs) < ( »
(C, (H, R),(C( )) whenR(rs) >0, £ € dom(C) a=[6] F{(a)y}I
Ry (C\Next¢ (H,R),I') B (£~ T {z~ 0] (coHP)
where Wi C1:W,  Wob- C2: W, dom(Cy) mdorr((Cz) 0
[ifc= [thenNext ¢ (H,R) = | Vi € dom¥y) mdon/(qJZ), 1(f) = Wa(£) (LINK)
addu rg,rs, 1t | (H,R{rg~ R(rs)+R(x()}) P1UWo CLUC: W UW,
addiu rg, rs,w | (H,R{rg~R(rs)+w}) -F{a}]l (Well-formed Instruction Sequende
W rr,w(rs) <H.R{hrw1éﬂ<ﬂ§<rs>+;>;r>( )
whenR(rs)+w e domH
WS aWs —[[WE)]WS
SUbU Tq, 75, Tt | (B, R{rd~ R(rs)—R(r)}) vW.S.a . [%(o)] 0
swr,w(rs) | (H{R(xs) Tw~ R(x)LR) {a}if
whenR (rs) +u € domt) VW H,R. a W (H,R) — [W(£)] W (H,R{ra~ fret}) )
Figure 5. Operational Semantics of TM F{a}ial £, fret
most instructions are the same with corresponding MIPSuost VWS a¥S5 - [[LP(S‘R(IS))H ¥s (IR
tions, except that code labels in jump-instructioesy(,j £, jr r) Habirrs
and branch-instructions(g.,beq rs, rt, f) are treated as absolute {a}T
addresses instead of relative addresses. VW.S. a WS — ((S.R(rs) £S.R(ry) — a’ WS)A
3.2 The CAPO Framework (FS'R(ES):S'R(“_)HH [¥(£)] ¥S) (BEQ)
CAPO generalizes our previous work on CAP systems [40, 29]. {a}beqrs i, £
It leaves the program specification unspecified, which caouse F{a'}1
tomized to embed different logics into the framework. Thersb YW S aWSs — ((SR(rs) <0—a’ WS)A
ness of CAPO is independent of specific forms of program §peci (SR(rs)>0— [W(£)|] WS))
cations. The framework supports separate verification ogam F{a}bgtz ts, £, (BGTZ)
modules using different verification logics.
. c € {addu,addiu, Iw, subu,sw}
3.2.1 Program Specifications YW.S. aWS— a' W (Nextc(S)) F{a'}1
The verification constructs are defined as follows. Flalcl (seQ
(CdHpSpet W = {f~0}"
(CdSpeg ] = Figure 6. Inference Rules for CAPO

(Interp.) a,[8],(a)y € CdHpSpee- State— Prop . . .
A program is well-formed (the°ROG rule) if there exists a

To verify a program, the programmer needs to first give a §ipaei global code heap specificatidHg and an assertioa such that:
tion W of the code heap, which is a finite mapping from code labels
to code specificatior To support different verification methodol-
ogy, the CAPO framework does not enforce the forr.dhstead, it
requires the programmer to provide an interpretation fond_]
which map9 to predicatess) over the code heap specification and
the program state. CAPO uses the interpretation of codefmec
tions as its assertion language.

To support separate verification of modules, we add an extra
constraint on the arguments afusing the lifting function(_)y,
which says that the specificatiol of the local moduleis the
smallest set of code specifications we need to know to verify t
module. The lifting function is defined as follows:

() 2 AW AS.(WCW)AaW's.

We will give a detailed explanation of CAPQ’s support of mizatu
ity in the next section.

¢ theglobal code healf is well-formed with respect t&¢;
e givenWg, the current statB satisfies the assertian and
¢ the current instruction sequenté well-formed.

The CAPO framework supporseparate verificatioof program
modules. Modules are modeled as small code heaps whichironta
at least one code block. The specification of a module contain
only specifications of the code blocks in the current modbig,
also specifications of external code blocks which will bdechby
the module. In the judgmen¥- C:W', W contains specifications
for imported external code and for code within the moddl¢to
support recursive functions), whilk contains specifications for
exported interfaces for other modules. Programmers angrezh
to first establish the well-formedness of each individuatioie via
thecDHPrule. Two non-intersecting well-formed modules can then
be linked together via theink rule. ThePROGrule requires that
all modules be linked into a well-formed global code heap.

In thecDHPrule, the user specificatidh(for T) is first mapped
to a predicate over the code heap specification and the pnogra
state, and then lifted by the lifting function parametedizg/ the
local specification®, of this module. Later on, we will see that
none of the instruction rulee(g.,J and JAL) refer to the global
program specificatiofs. Instead, a universally quantified is

3.2.2 Inference Rules and Soundness
We use the following judgments to define inference rules:
Wk {a}P (well-formed program)
WEC:¥W (well-formed code heap)
F{a}l (well-formed instruction sequence)

Figure 6 shows the inference rules of CAPO.



used with the constraint that it must be a supersefof Such a
constraint is enforced by the lifting functido)y, .

The well-formedness of instruction sequences ensurest tisat
safe to executé in a machine state satisfying the assertom\n
instruction sequence beginning withs safe (ruleseq) if we can
find an assertior’ which serves both as the postcondition cof
(that is,a’ holds on the updated machine state after executing
as captured by the implication) and as the precondition eftai
instruction sequence. A direct jump is safe (rajef the current
assertion can imply the assertion of the target code bloskpesi-
fied in W. Rules for other jump and branch instructions are similar
to the J rule. When proving the well-formedness of an instruction
sequence, a programmer’s task includes applying the apatep
inference rules and finding intermediate assertions sueh as

Soundness The soundness of CAPO inference rules with respect
to the operational semantics of TM is established followihg
syntactic approach [39] to prove type soundness. We do gaire
the specific form of code specificatioBdo prove the soundness.

Lemma 3.1 (Progress)if Wi {a}P, then there exists a program
P’, such that? — P'.

Lemma 3.2 (Preservation)If Wt {a} P, andP +—— P, then there
existsa’, W {a'} P’

Theorem 3.3 (Soundnesslf W {a}P, then for all natural num-
bern, there exists a prograi¥ such that® —" P’.

We have formally encoded the soundness proof [36] in the Coq
proof assistant.

CAPO and Previous CAP systemsThe CAPO framework is a
generalization of our previous work on CAP systems [40, 29].
The original CAP [40] does not support separate verificabbn
program modules. The idea of letting assertions be parainete
by W and using universally-quantifie in the CAPO inference
rules, is borrowed from Ni and Shao’s work on XCAP [29]. XCAP
is proposed to reason about general first-class code pejimtbere

a special form of assertions (with tyState— PropX) is used for
program specifications.

CAPO generalizes XCAP and leaves the form of program spec-
ifications unspecified. The interpretation function in CARGich
is different from the one in XCAP, maps different forms of sifie
cations to a general form. Itis trivial to embed the origiGAP in
CAPO by the following customization and interpretation.

(Assertion p
(CdSpet 6 :=p
(Interp) [p] & AWASpS

XCAP and its extension [28] for weak memory update can be
embedded into CAPO too if we use formulae of tyf&iate—
PropX) to customize thed in CAPO, and use the interpretation
in XCAP as our interpretation function. TAL [24] may also be
embedded in CAPO indirectly through XCAP, as shown by Ni and
Shao [28].

€ State— Prop

4. SCAP for Function Call/Return

4.1 Stack-Based Reasoning for Function Call

We present SCAP as an instance of the CAPO framework. The code

specificatiorf in CAPO is instantiated with the SCAP specification,
which is defined as:
(Assertion p € State— Prop

(Guarante¢ g < State— State— Prop
(CdSpeg 6 = (p.g)

£

f:-{(p, 9)} B
addiu $sp, $sp, -
9
jal  h, ct 9% b
b _dr$ra

_ ct: (p,, ) c

ct:
9,
ir $ra

ir $ra E

@ (b)
Figure 7. The Model for Function Call/Return in SCAP

A precondition for an instruction sequence contains a pegdi
p specifying the current state, andgaaranteeg describing the
relation between the current state and the state at thengbimt of

the current function (if the function ever returns). Figd(a) shows
the meaning of the specificatidp, g) for the functionf defined in

Figure 1 (Section 1). Note thgt may cover multiple instruction
sequences. If a function has multiple return poigtgoverns all

the traces from the current program point to any return point

Figure 7(b) illustrates a function call @ from £ at pointa,
with the return addresst. The specification di is (py,g;). Spec-
ifications atA andD are(pg, gp) and(p,, g,) respectively, wherg,
governs the code segmenE andg, governsD-E.
To ensure that the program behaves correctly, we need to en-
force the following conditions:
¢ the precondition of functioh can be satisfied,e.,

VH,R.pg (H,R) — p; (H,R{$ra~> ct});

e afterh returns,f can resume its execution from pointi.e.,
VH,R,S.pg (H,R) — g; (H,R{$ra~ ct})S' —p,S;

o if the functionh and the code segmemE satisfy their specifi-
cations, the specification farE is satisfiedj.e.,
VH,R,S',S" po (H,R) —
g1 (H.R{Sra~ ct})§' — g, §'S" — gy (H,R) §";

¢ the functionh must reinstate the return code pointer when it
returnsj.e.,vs,S'.g; SS' — S.R($ra) = S'.R($ra).
Above conditions are enforced by thaLL rule shown in Figure 8
(ignore the meaning df(p,g)] for the time being, which will be
defined later).

To check the well-formedness of an instruction sequencimbeg
ning with c, the programmer needs to find an intermediate specifi-
cation(p’,g’), which serves both as the postcondition éaand as
the precondition for the remaining instruction sequencesitown
in the scAP-seQrule, we check that:

¢ the remaining instruction sequence is well-formed witharelg
to the intermediate specification;
 p/ is satisfied by the resulting state gfand
« if the remaining instruction sequence satisfies its guasssit
the original instruction sequence satisfies
Suppose the state transition sequence made by the funstion i

(So,---,Sn). To show that the function satisfies its guararg€ee.,
g So Sn), we enforce the following chain of implication relations:

€nSn-15n — gn_1Sn-25n — ... — gSp Sn,

where eaclg; is the intermediate specification used at each ver-
ification step. Each arrow on the chain is enforced by rules su
assCAP-seQ The head of the chain.€., g, Sn_1 Sp) is enforced



f.fe €domW) (pg)=W(f) (p".8")=
VH,R.p (H,R) — p/ (IHI R{$ra~fret})
VH,R,S'. p (H,R) — g’ (H,R{$ra~ fre}) S’ —
( /! S/ /\ (VS” g// SI S// — g ( ) ))
vS,S'.¢g' SS' — S.R($ra) = S'.R($ra)
F{{[(p,&)[)w, }tial £, fret

W (fret)

(cALL)

c € {addu,addiu, lw, subu,sw}

FULEgNDw T VS.pS—p' (Nexte(S))
vS,S'pS— g (Nextc(S))S' —gSS

F{([(p.g))w, }cil
¥SpS—gSS
F{[(p.g)])w, }irsra
fedomW) (p.g)=Wi(£)
¥SpS—p'S VS, pS—g'SS —gSS
F{l(p.g))w }it
fedomW,) (p”.g")=WL.(f)

S.pS — S.R(rs) £ SR(x) — (¢ SA (V5. SE —g88))
VS.pS — S.R(rs) = S.R(xt) — (p”" SA(VS'.g"SS — gS ')

F{[(p.g)])w, }beqrs,xi, £;1
(SCAP-BEQ)

(SscAP-seQ

(RET)

(T-CALL)

LR ])w, HT

fedomW) (p".g")=%(f) F{(((@.&)])w}I
VSpS — SR(rs) <0— (p SA(VS.g'SS — S )
VS.pS—SR(rs) >0— (p" SA(VS'.g’SS' —gS¥))

F{{[(p,&) [ )w }bgtz rs,£:1

(SCAP-BGTZ)

Figure 8. SCAP Inference Rules

by theRET rule (whereS,_1 is the same witl$,, since the jump in-
struction does not change the state), therefore we canyfirgsth
the conclusion of Sg Sp.

SCAP also supports tail function call, where the callee esus
the caller’s stack frame and the return code pointer. To naatkel
function call, the caller just directly jumps to the calleebde. As
shown in theT-cALL rule, we need to check that the guarantee of
the callee matches the guarantee that remains to be fulfijlede
caller function.

Rules for branch instructions are straightforward. Heapr-
BGTZ rule is like a combination of thecArP-sEQrule and ther-
CALL rule, since the execution may either fall through or jump to
the target code label, depending on whether the condititasho

Notice that all the code specificatiod used in SCAP rules
are thelocal specifications for the current module. SCAP supports
modular reasoning about function call/return in the sehaedaller
and callee can be in different modules and be certified stgpara
When specifying the callee function, we do not need any knowl
edge about the return addre®a in its preconditionp. The RET
rule for the instruction jf $ra” does not have any constraint on
$ra either. Examples in Section 4.4 illustrate how to write peog
specifications in SCAP.

4.2 The Stack Invariant

Figure 9 shows a snapshot of the stack of return continustitie
specification of the current function {9g, gg), which will return
to its caller at the end; and the caller will return to the eddl
caller... The return continuations in the dashed box coe@os
logical control stack.

To establish the soundness of the SCAP inference rules, we

need to ensure that when the current function returns, &ra
contains a valid code pointer with the specificatien,g;), and

Po

T
P, jr$rai
B

9

[

I

I I
I I
I I
[ [
I I
I I
| % |
[ P; [
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I I
I I
I I
I I
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Figure 9. The Logical Control Stack

pq is satisfied. Similarly we need to ensure that, at returntp@in
andc, $ra contains valid code pointers with specificatidips, go)
and(ps, g3) respectively, and that, andpy are satisfied by then.
Suppose the current state S which satisfiespy, above safety
requirement can be formalized as follows:
80S0S1—

S1.R(8ra) € domW) AW(S1.R($ra)) = (p1,81) APy S1;

80S0S1 — 81 5182 —

So.R($ra) € domW) AW(S2.R($ra)) = (p,g2) AP2 S2;

g0S0S1— g1 5152 — g, 5253 —

S3.R($ra) € domW) AW(S3.R($ra)) = (p3,&3) AP3 Ss;

where W is the program specification, and ea8his implicitly
quantified by universal quantification.

Generalizing above safety requirement, we recursivelyndefi
the “well-formed control stack with depitti as follows:

WFST(0,g,S,W) £ -35.gS ¢
WFST(n,g,S,W) £
vS'.gSS — S R($ra) € domW) Ap' S AWFST(n—1,¢',§, W)

where(p’,g’) = W(S'.R($ra)).
When the stack has depth 0, we are in the outermost functiazhwh
has no return code pointer (the program either “halts” oeenan
infinite loop). In this case, we simply require that thereserioS’
at which the function can returnge.,—-35". gS §’.

Then the stack invariant we need to enforce is thateach
program point with specificatiofip, g), the program stat& must
satisfy p and there exists a well-formed control stackSnThe
invariant is formally defined as:

PSAINWEST(n,g,S,¥).

Note here we do not care about the actual depth of the comdick.s

To prove the soundness of SCAP, we need to prove that the in-
variant holds at every step of program execution. The stagki-
ant essentially explains why we can have such a simmpgferule,
which “typechecks” thejf $ra” instruction without requiring that
$ra contain a valid code pointer.

4.3 SCAP in the CAP Framework

We prove the soundness of SCAP by showing that SCAP inference
rules are provable from the corresponding CAPO rules, gaen
proper interpretation function for the SCAP specifications

In Section 4.1 we instantiated the CAPO code specificalion

with (p,g) in SCAP, without giving the interpretation function.
Having defined the stack invariant, the interpretationmfg) is



unsigned fact(unsigned n){
return n ? n * fact(n - 1) : 1;

}
(a) regular recursive function

void fact(unsigned *r, unsigned n){
if (n == 0) return;
*r = *r * n;
fact(r, n - 1);

}

(b) tail recursion with pointer arguments

Figure 10. Factorial Functions in C

TRUE £ AS.True NoG 2 AS.AS .False
Hnid(1s) £V1 ¢ 1s.[I] = I Rid(rs) £Vr € rs,[r] = [z
Frmfi] £ [[$fp] —i Frm'[i] £ [[$fp] —i]’

grm = [$sp)’ = [$sp] + 3 [$fp] = Frm|[0]
A[$ra)’ = Frm[1] A [$s0]’ = Frm[2]

Figure 11. Macros for SCAP Examples

simply defined as the invariant:
[(p,g)] 2 AWAS.pS AINWFST(n,g,S,W).

The proof of SCAP inference rules as lemmas in CAPO are

presented in Appendix A and encoded in Coq [36].
4.4 Examples

In this section we show how SCAP can be used to support callee-

save registers, optimizations for tail-recursions, antegal pointer
arguments in C.

Figure 10 shows two versions of the factorial function imple
mented in C. The first one is a regular recursive function)enthie
second one saves the intermediate result in the addressdpass
argument and makes a tail-recursive call.

The compiled assembly code of these two functions is shown

in Figure 12 and 13. In both programs, the labetry points to
the initial code segment where the functitact is called. SCAP
specifications for the code heap are embedded in the codesedc

by -{}. Figure 11 shows definitions of macros used in the code

specifications. To simplify the presentation, we (iseand [1] to
represent values contained in the registemd memory location
1. We also use primed representatida¥ and [1]’ to represent
values in the resulting state (the second argument) of agtesg.
Rid(rs) means all the registers irs are preserved by the function.
Hnid(1s) means all memory cellsxcepthose with addresses iz
are preservedzrm|i] represents thé" word on the stack frame.

The specification at the entrance point (labeledbbylog) of
the first function is given aéTRUE, gg) in Figure 12. The precon-
dition defines no constraint on the value$o. The guarantegg
specifies the behavior of the function:

e the return valug$vo] is the factorial of the argumefa0];
o callee-save registers are not updated; and
¢ the memory, other than the stack frames, are not updated.

If we use pre-/post-conditions in traditional Hoare-Logispecify
the function, we have to use auxiliary variables to spediy first
point, and apply the Invariance Rule for the last two poibtsing
the guaranteg, they can be easily expressed.

In the second implementation (in Figure 13), the caller @ass
the address of a&tack variableto the functionfact. The tail
recursion is optimized by reusing the stack frame and making

go= [$v0]' = [$a0]! A Rid
AHnid({([$sp] — 3

—~

{$gp, $sp, $fp, $ra, $s0,...,$s7})

$20] - 2).....[3sp]})

g1= [$v0]' = [$20]! A Rid({$gp,$s1,...,$57}) Agim
AHnid({([$sp] — 3+ [$20] + 1).... [$sp]})

ga= ([$v0]' = [$vO0]* [$s0]) ARid({$gp,$s1,...,$57}) Agsm A Hnid(0)

g2 Rid({$gp, $v0,$s1,...,$57}) A ggm A Hnid(0)

——

prolog: -{(TRUE, gg)}
addiu $sp, $sp, -3 ;allocate frame
sw $fp, 3($sp) ;save old $fp
addiu $fp, $sp, 3 ;new $fp
sSW $ra, -1($fp) ;save return addr
sw $s0, -2($£fp) ;callee-save reg
J fact
fact: -{(TRUE, g}
bgtz $a0, nonzero ;n ==
addiu $v0, $zero, 1 ;return 1
J epilog
nonzero: -{([$a0] >0, g)}
addiu $s0, $a0, O ;save n
addiu $a0, $a0, -1 ;n--
jal prolog, cont ;fact(n)
cont: -{([$v0] = ([$s0] - 1)!, g3)}
multu $v0, $s0, $vO ;return n*(n-1)!
J epilog
epilog: -{(TRUE, g4}
1w $s0, -2($fp) ;restore $s0
1w $ra, -1($fp) ;restore $ra
1w $fp, 0($fp) ;restore $fp
addiu $sp, $sp, 3 ;restore $sp
jr $ra ;return
halt: -{(TRUE, NoG)}
j halt
entry: -{(TRUE, NoG)}
addiu $a0, $zero, 6 ;$a0 = 6

jal prolog, halt

Figure 12. SCAP Factorial Example

direct jump. The preconditiop requires that stack variable be
initialized to 1 and not be allocated on the unused stackespgidte
guarantegy, is similar to the one for the first version.

Malicious functions cannot be called. Itis also interesting to see
how malicious functions are rejected in SCAP. The followiogle
shows a malicious function which disguises a function cathe
virus code as a return (the more deceptive x86 versiompush
virus; ret”).
ld_vir: -{(p, g)}

addiu $ra, $zero, virus ;fake the ret addr

jr $ra ;disguised func. call
The functionld_vir can be verified in SCAP with a proper specifi-
cation of (p,g) (e.g.,(TRUE,AS, S’ . True)), because the SCARET
rule does not check the return address$rin However, SCAP will
reject any code trying to calld_vir, because thg cannot satisfy
the premises of theALL rule.

5. Generalizations of SCAP

The methodology for SCAP scales well to multi-return fuomti
calls and weak continuations. In this section, we will gefize
the SCAP system in two steps. By a simple relaxation ofdheL
rule, we get system SCAP-I to support function calls with tiplé
return addresses (with the restriction that a function mestrn
to its immediate caller). We can use SCAP-I to certify thelsta



[$20]] = 1A [$20] & {([$sp] —2),...,[$sp]}
[[$a0]]/ = [$a1]! A Rid({$gp,$sp,$fp,$ra,$a0,$s0,...,$s7})
AHnid({[$sp] —2,...,[$sp], [$a0]})
p; = [$20] & {([$sp]+1)..... ([$sp] +3)}
g1 2 ([[$20]) = [[$20]] = [$a1]!) A Rid({$gp, $a0,$s1,...,$s7})
Agirm A\ Hnid ({[$20]})
g3 = Rid({Sgp, $20,$s1,...,$57}) A ggm /A Hnid(0)

Po
8o

ey
L

prolog: -{(pg, gp)}
addiu $sp, $sp, -3 ;allocate frame
sw $fp, 3($sp) ;save old $fp
addiu $fp, $sp, 3 ;new $fp
sw $ra, -1($fp) ;save return addr
sw $s0, -2($fp) ;callee-save reg
j fact
fact: -{(p1, 8}
bgtz $al, nonzero ;if n == 0 continue
j epilog
nonzero: -{(p;A[$al] >0, g}
1w $s0, 0($a0) ;intermediate result
multu $s0, $s0, $ail ;*r * n
sw $s0, 0($a0) ;¥r = *r * n
addiu $al, $al, -1 ;n--
j fact ;tail call
epilog: -{(TRUE, g3)}
1w $s0, -2($fp) ;restore $s0
1w $ra, -1($fp) ;restore $ra
1w $fp, 0($£fp) ;restore $£fp
addiu $sp, $sp, 3 ;restore $sp
jr $ra ;return
halt: -{(TRUE, NoG)}
j halt
entry -{(TRUE, NoG)}
addiu $sp, $sp, -1 ;allocate a slot
addiu $a0, $sp, 1 5
addiu $s0, $zero, 1 ;$s0 = 1
sw $s0, 0($a0) ;initialize
addiu $al, $zero, 6 ;$a1 = 6
jal prolog, halt

Sirm= [$sp]’ = [$sp] + 2 [$fp]’ = Frm[0] A [$ra]’ = Frm([1]

gy 2 ([$20] = 0 — [$v0]' = 1) A ([$20] # 0 — [$v0]' = 0)
ARid({$gp, $sp, $fp,$ra, $s0,...,$s7})
AHnid({[$sp] — 1, [$sp]})

P % [$ra] = ct1A[$al] =k

g1 = ([$a0] =0— [$v0]' = 1) A([$a0] # 0 — [$v0]' = 0)
ARid({$gp,$s0,...,$s7}) A ggym A Hnid (D)

p, 2TRUE

g, 2[$v0) =OARid({$gp,$s0,...,$57}) Aggm A Hnid(0)

ps 2TRUE

gz = [$v0]' = 1ARId({3gp,$s0....,$57}) A ggr /A Hnid(0)
gs 2 ([$20] = 0 — [$ra]’ = [$a1]) A ([$20] # 0 — [$ra]’ = [$ra])
ARid({$gp, $sp, $fp, $s0,...,$s7}) A Hnid(0)

rev: -{(TRUE, gy}
addiu $sp, $sp, -2 ;allocate frame
swW $fp, 2($sp) ;save old $fp
addiu $fp, $sp, 2 ;new $fp
sw $ra, -1($fp) ;save old $ra
addiu $ra, $zero, cti ;ret cont 1
addiu $al, $zero, k ;ret cont O
-{(p1, &)}
j cmp ;call cmp with k
ctl:  —{(py, g}
addiu $v0, $zero, O ;8v0 = 0
j epilog
k: ‘{(P3, gg)}
addiu $v0, $zero, 1 ;$v0 = 1
j epilog
epilog: —{(ps, g4)}
1w $ra, -1($fp) ;restore $ra
1w $£fp, 0($fp) ;restore $ra
addiu $sp, $sp, 2 ;restore $sp
jr $ra ;return
cmp: -{(TRUE, g5}
beq $a0, $zero, eqz
jr $ra ;return <1/1>
cazi  ~{(pg, g}
addu  $ra, $zero, $al ;return <0/1>
jr $ra

Figure 13. SCAP Implementation of Tail Recursion

rev(bits32 x){ cmp(bits32 x){

cmp(x) also returns to k; if (x = 0)
return 0; return <0/1>;
else

continuation k:
return 1; }

return <1/1>;

Figure 14. C-- Code with Multi-Return Address

unwinding-based implementation for exceptions. We thenhine
the relaxed call rule with the support for tail function catid get a
more general system, namely SCAP-II. SCAP-II can certifiakve
continuationsset jmp/longjmp and the full-blown MRLC [32].

5.1 SCAP-I

In SCAP, a function call is gal f,fet instruction (equivalent to
addiu $ra, $zero, fret; j £). The callee can only return e, forced

by the constraint’S,S’. g’ S S" — S.R($ra) = S'.R($ra) in the
CALL rule. To allow the callee to return to multiple locations, we
simply remove that constraint. Also, since we no longer doac
single return address, there is no need tossetat the call site,

Figure 15. Example for Multi-Return Function Call

reducing the calling instruction fc. The resulting rule becomes
vS.pS—7p'S

(p'.e") = Wi (f)
VS, . pS—g' SS —
S’ R($ra) € domW ) Ap” S'A(VS". g"§'S" — gSS")
where(p”,g") = W, (S .R($ra))

H{[(p.g)w }i £

£ edomW¥,)

(cALL-1)

This rules does not specify how the return address is goirgeto
passed into the function. Instead, we only require $hatontain a
code pointer specified i, at the return stat§’, which is provable
based on the knowledge pfandg’. This allows SCAP-I to certify
any convention for multi-return function call.

The cALL-I rule is also a lemma provable from theule of
CAPQ, using the same interpretation as the one for SCAP.8ste r
of SCAP-I inference rules are the same with those in SCAP. For
instance, we can also use tmecALL rule when we usej‘t” to
make a tail call.

SCAP-I can certify the compiled C-- code with stack unwind-
ing. C-- uses the primitivereturn <n/m>" to allow a function to
return to then'™™ of m return continuations defined in the caller. A
normal return is written asr'eturn <m/m>”", while n being less



rev(bits32 x){
cmpO(x, k) also cuts to k;
return O; 3

cmpO (bits32 x, bits32 k){
cmpl (x, k);

continuation k: cmpl(bits32 x, bits32 k){
return 1; if (x 0) cut to k;
} return;

}

Figure 16. C-- Code with Weak-Continuations

thanm means an “abnormal” return. Correspondingly, at the call
cite, the caller put the annotation such a%fo returns to kO,

k1", where continuation&0 andk1 are defined in the same func-
tion as the call site.

In Figure 14 we show a simple C-- program which returns 1 if
the argument is 0 and returns 0 otherwise. We illustrategnrei 15
how to use SCAP-I to certify the compiled code. The precanalit
of therev function is simply set taRUE, while gq specifies the
relationship between the argumé$0] and the return valugvo],
and the preservation of callee save registers and memoepesar
the space for the stack frame. The precondition fortefunction
is TRUE, and the guarantegs says that the function returns to
different addresses under different conditions.

At the point wherecmp is called, we need to specify in the pre-
conditionp, that both return addresses are valid code laligds (
ct1 andk). The guaranteg; specifies the behavior of the remain-
ing code under two different conditions, whilg,, g,) and(ps, g3)
specify the two different return continuations. Interesteaders
can check that the specifications satisfy the constrairreed by
the cALL-I rule. Specifications for other code blocks are straight-
forward and are omitted here.

5.2 SCAP-II for Weak Continuations

The weak continuation construct in C-- allows a functiondturn

to any activation on the control stack. Since we use the gteea

g to represent the behavior of a function, we need to undatstan
what happens to the intermediate activations on the statkatie
“skipped”: are theilg’s discarded or fulfilled?

In SCAP-II, we enforce that the callee must fulfill the reniagn
behavior of its caller before it can “skip” its caller andust to an
activation deeper on the control stack. From the calleristpof
view, it made &ail call to the callee.

VS.pS—p'S f edomW,)
vS,S.pS— g SS —

(gSS'Vv

S/ R($ra) € dom(W ) Ap” S'A(VS". g" S'S" — gSS"))
where(p”,g") = W, (S' R($ra))

H{[(p.g) 1w }i £

(p'.g) =W (%)

(cALL-11)

In the caLL-11 rule, we further relax the second premise of
the CALL-I rule and provide an option of either returning to the
return point of the caller or satisfying the caller’'s remagg and
therefore being able to return to the caller’s caller. Thguirement
automatically forms arbitrary length chains that allow tagirn to
go arbitrarily far in the stack. Also notice that tlhaLL-1I rule is
simply a combination of theALL-I rule and ther-cALL in SCAP
for tail call.

We also relax SCAP’s definition of “well-formed stack” and
allow dismissal of multiple stack frames at the return pdifging
the new predicat@VFST’ defined in Figure 18 in the interpretation
function for (p, g), we can derive theALL-1I rule as alemma. The
rest of SCAP-II inference rules are the same with those in BCA
When a function jumps to a weak continuation, we use the same
rule as thereT rule in SCAP, as shown below. Here we use a new
nameJwc (jJump to weak continuations) to show tt$ah contains a

po = TRUE
go £ ([$20] = 0 — [$v0] = 1) A ([$a0] # 0 — [$v0] = O)A
ARid({$gp, $sp, $fp,$ra, $s0,...,$s7})
/\Hnid({[$sp] -3..., [$Sp]})
py 2 [$ra] = ct A[$al] =k A [$a2] = [$fp] A [$a3] = [$sp]
g1 £ ([$20] = 0 — [$v0] = 1) A([$a0] # 0 — [$v0] = O)A
ARId({8p, $50.,....,857) A Hrid ({[8sp] — L. [85p]}) A giom
gc = ([$20] = 0— [$ra]’ = [$a1] A [$fp] = [$a2] A[$sp] = [$a3]
ARid({$gp, $s0,...,$s7}))
A([$a0] # 0 — Rid({$gp, $sp, $fp, $ra, $s0,...,$s7})
ps = TRUE
g4 = ge/AHnid({[$sp] - 1,[$sp]})
ps 2 TRUE
g 2 g.AHNd(0)
rev: -{(p0, g0)}
addiu $sp, $sp, -2 ;allocate frame
sw $fp, 2($sp) ;save old $fp
addiu $fp, $sp, 2 ;new $fp
sw $ra, -1($fp) ;save $ra
addiu $al, $zero, k ;set cut cont
addiu $a2, $fp, O ;save $fp
addiu $a3, $sp, O ;save $sp
addiu $ra, $zero, ct ;set ret cont
-{(p1, g)}
j cmpO ;call cmpO
ct: -{(p2, g2)}
addiu $v0, $zero, O ;return O
Jj epilog
k: -{(p3, g3)}
addiu $v0, $zero, 1 ;return 1
J epilog
cmp0:  -{(p4, g4}
addiu $sp, $sp, -2 ;allocate frame
sw $fp, 2($sp) ;save old $fp
addiu $fp, $sp, 2 ;new $fp
sw $ra, -1($fp) ;save $ra
addiu $ra, $zero, epilog
j cmpl ;call cmpl
cmpl:  -{(p5, gb)}
beq $a0, $zero, cutto ;if ($a0==0) cut
jr $ra ;else return
cutto: -{(p6, gb)}
addiu $ra, $al, O ;set $ra to k
addiu $fp, $a2, O ;restore k’s $fp
addiu $sp, $a3, 0 ;restore k’s $sp
jr $ra ;goto k
epilog: —{(p7, g7}
1w $ra, -1($fp) ;restore $ra
1w $fp, 0($fp) ;restore $fp
addiu $sp, $sp, 2 ;restore $sp
jr $ra ;return

Figure 17. Example for Weak Continuation

WEFST'(0,g,S, W)
WFST'(n,g,S, W)
vS'.gSS —

S’ .R(s$ra) € domW) Ap’' S’ AIdm< n. WFEST' (m,g’,S', W)
where(p’,g') = W(S'.R($ra)).

£ 39.gS¥

AN

[(p,g)] £AWASPS AINWFST'(n,g,S, W)

Figure 18. The Interpretation Function for SCAP-II



weak continuation pointer instead of the return addredsdrcéller. Pouf(X)
VSpS—gSS gour(X)

?
_ = (awce) (
FlEghvlirsa E $50)' = X)) A... A ([857) = [x+7]) A ([8fp)' = [x+8)A

($spl" = [x+9)) A ([$gp] = [x+10)) A ([$ra]’ = [x+11])

Shivers and Fisher use the “super tail recursive” functiath c Po = ppui([$20]) * TRUE
to implement their MRLC, which is essentially multi-retuiumc- go = ([$v0]' = 0) ARid({$ra, $sp, $fp, $gp, $20,$s0,...,$s7})
tion call with stack cutting. The implementation of MRLC che Agput([$20]) AHnid({[$20],...,[$a0]+ 11})
certified using SCAP-II. P1 % (Ppui([$20]) * TRUE) A [$a1] # O

In Figure 16, we show a C-- program using weak continuations. &1 = ([$v0]' = [$a1]) A gp¢([$20]) A Hnid (0)

The behavior of the functiomev is similar to the one shown in

! _ ¢ g ! setjmp:  -{(pg, gp)}
Figure 14. If the argument is 0, the functiemp1 may skip over its sw $s0, 0($a0) ;save callee-saves
callercmp0 and cut to the stack afev. e
Figure 17 shows the compiled code and specifications. To sim- sw $s7, 7($a0)
plify the presentation, we pass the weak continuatiofwhich W $fp, 8($20) ;frame pointer
contains the return code pointer, the frame pointer and teek s v :SP’ ?éf;oé) fsia;klpc’n.‘tir
pointer) via registerg$al-$a3. The specificatior{pg, gg) for rev :Z $§§’ 11($2‘0) fflg ;rapom e
is very similar to the one shown in Figure 15. The specificatib addiu  $v0, $zero, 0  :return value
the call site ofemp0 is (pq,g1). Specifications for functionsmp0 jr $ra
and cmpl are given agp,,g4) and (ps,gs), respectively. Notice
that two different conditions are consideredginandgs, i.e., the longjmp: -{(p;, g}
condition under which that the functions return normallyl dhe 1w $s0, 0($a0) ;restore callee-saves
condition under which the functions cut the stack. Spedifica
for other code blocks are omitted. v $s7, 7($a0)
1w $fp, 8($a0) ;restore $fp
5.3 Example: setjimp/longjmp 1w $sp, 9($a0) jrestore $sp
setjmp andlongjmp are two functions in the C library that are iz :g 125:28; izztgiz :fz
used to perform non-local jumps. They are used as follows: a addu  $v0, $zero, $al ;return value
setjmp is called to save the current state of the program into a jr $ra ;jump to restored $ra
data structureife., jmp_buf). That state contains the current stack - -
pointer, all callee-save registers, the code pointer tonte in- Figure 19. Implementation foset jmp/longjmp
struction, and gverything else prescribed by the architecfThen jmp_buf env; /+ env is a global variable */
when called with such a structurksngjmp restores every part of
the saved state, and then jumps to the stored code pointer. int rev(int x){ void cmpO(int x){
These functions in C are not considered sate.jmp does not if (setjmp(env) == 0){ cmpl (x)
save closures, and thus the behavionohgjmp is undefined if cmpO (x) ; ¥
the function calling the correspondirg:tjmp has returned. The return 0; ) )
control flow abstraction provided byetjmp/longjmp is very }eiziirn . Voi? Ezpiilgs 01
similar to weak continuations and can be reasoned using SICAP 3 ’ longjmp(env, 1);

The code in Figure 19 shows a simple implementation of 3}
setjmp/longjmp functions and their specifications. Here we bor-

row the separation logic [31] notation, whefe— n} means the Figure 20. C Program Usinget jmp/longjmp

memory cell at addregsontains valua, while P« Q specifies two . . . .
parts of memory which have disjoint domains and satgndQ The preconditionpg for function rev requires thaenv point
respectively. As shown in [40], separation logic primitvean be {0 @ block of memory for thgmp_buf, and that there be disjoint
encoded in Cog and embedded in general predicates. memory space for stack frames; while the guaragtess similar

to the one shown in Figure 17. Specifications for functapo and
cmpl are similar to the ones given in Figure 17 too. However, it is
a little tricky to specify the code labeled yt1, which may be
executed twice: the first time after the return freet jmp and the
%econd time after the return frorng jmp. We need to consider
both cases in the specificatifp,, g1 ).

The preconditiorp, of setjmp simply requires that the argu-
ment $a0 point to ajmp_buf. It guaranteesgy) that the return
value is 0; values of callee save registers, return codegrsiand
some other registers are not changed and they are saved in th
jmp_buf; and data heap except thep_buf is not changed.

Preconditiorp, for Llongjmp is similar topg, with extra require-
ment that the second argumehatt, which will be the return value, 6. Exceptions
cannot be 0. The guarantgesays the function returrgai, recov-
ers reglstervalues savedjmp_buf (including return code pointers block (line 3-6) encloses the code that may raise exceptiohite
and stack pointers), and does not change any part of the rgemor the “on error” block (line 9-12) defines an exception handler. If

In Figure 20 we use a simple C program to illustrate the use of an exception is raisedithin the try block, the remaining code of
setjmp/longjmp. The code has the same behavior with the one of the block is skipped and the control jumps to line 9. Otlisew
shown in Figure 16, except that here we make a non-local jump b code following the block (line 7, 8) is executed and the fiorct
using theset jmp/longjmp instead of a weak continuation. returns. Note that if an exception is raised outside ofttheblock

Based on our specification ekt jmp/longjmp, the compiled (e.g.,fromline 7-8 or 9-12), it will be handled by the closest highe
code of the C program can be certified using SCAP-II. The assem level handler (not shown in the code snippet). Raising argtian
bly code and specifications are presented in Figures 21 artk22 is similar to a return, except this return does not go to tlewipus
we reuse some macros defined previously in Figures 19 and 11.  function, but rather to the closest exception handler.

Figure 23 shows a higher-level program with exception. Thsg™
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rev:  -{(pg, go)} blk(X,y) £ {X— _X+1— _...,y— _}
addiu $sp, $sp, -3 ;allocate frame Pl (%) éﬁ{XFﬁ [$50],....x+11 > ct1}
sw $fp, 3($sp) ;save old $fp buf\"2 , e , ,
addiu  $fp, $sp, 3 inew $fp 8rm = ([$sp]’ = [$sp]+3) A ([$fp)’ = Frm[Q]) A ([$ra]’ = Frm[1])
sw $ra, -1($fp) ;save $ra gepiA: Rid({$gp, $s0,...,$s7}) Agqm /A Hid (D)
sw $20, -2($£p) ;save argument Po = Ppur(env) +blk([$sp]—5, [$sp]) + TRUE
addiu $a0, $zero, env ;argument for setjmp go £ ([$20] = 0 — [$v0] = 1) A ([$a0] # 0 — [$v0] = O)A
addiu $ra, $zero, ctl ;set ret addr ARid({$gp, $sp, $fp,$ra, $s0,...,$s7})
j setjmp ;setjmp(env) AHnid({[$sp]—5,...,[$sp],env,...,env+11})
o1 « . P1 % Phut(env) * blk([$sp]—2, [$sp]) * TRUE
et “1P1s 81 = ([$v0] =0 A ([$v0] # 0 — ([$v0]' = 1) A gy
beq $v0, $zero, ct2 ;if $v0 = 0 goto ct2 gl‘é ([8v0] — 82) A ([8v0] # 0= ([$v0] ) gem)
addiu $v0, $zero, 1 P2 Z-Pl / /
i epilog ;return 1 g = (Fr/m[Z] =0— [$v0] = 1) A (Frm[2] # 0 — [$v0] = 0)
. [\Bour(env) A g A Hid({[$sp] 2., [$spl})
ct2: -{(p2, g2)% P3 = TRUE
1w $a0, -2($fp) ;$a0 = x gz = ([$v0) = 0) Agepi
éddiu $ra, $zero, ct3 iset ret addr P4 fﬁPbm(env)*bW(@SD}—ZJ$SM)*TRUE
j cmpO ; cmpO (%) g4 = ([$20]=0— g{)uf(env) A[$v0] #0)
. C ) A([$20] # 0 — Rid({$gp, $sp, $fp, $ra, $s0, ..., $s7}))
ctd3:  ~{(ps, g3) AHnid({[$sp]—2, ..., [$sp]})
addiu $v0, $zero, O 2
i ; Ps = ppyr(env) * TRUE
j epilog ;return O N , ,
g5 = ([$20] = 0 — gp(env) A [$v0] = 1) -
cmp0:  ~{(pg, g} . A([$a0] # 0 — Rid({$gp, $sp, $fp, $ra, $s0,...,$s7})) AHnid(0)
addiu $sp, $sp, -3 ;allocate frame Pe i:Pbm(enV)*TRUE
sw $fp, 3($sp) ;save old $fp g5 i:ggm(env)A[$vN/::lﬁdﬁmd(®)
addiu $fp, $sp, 3 ;new $fp p7 = TRUE
sw $ra, -1($fp) ;save $ra g7;é Q$v0F::[$v0])Agem
addiu $ra, $zero, epilog ;set ret addr
J cmpl ; cmpl (x) Figure 22. Specifications for Code in Figure 21
cmpl:  -{(ps, g5)} . )
beq $a0, $zero, cutto ;if ($20==0) longjmp 1 v01d.ma1n() {
jr $ra ;else return 2 int x; . .
3 try { // code that may raise exceptions
cutto: —{(pg, g¢)} 4 fEQ?);
addiu $a0, $zero, env ;$a0 = env 5 x=1;
addiu $al, $zero, 1 ;$al = 1 6 3
j longjmp ;longjmp(env, 1) 7 e
8 return x;
epilog: ~{(p;, g} ?0 on errgr{ // the exception handler code
1w $ra, -1($fp) ;restore $ra =Y
1w $fp, 0($£fp) ;restore $£fp 11 return x;
addiu $sp, $sp, 3 ;restore $sp 12 5
jr $ra ;return 13}

Figure 21. TM Code Usingset jmp/longjmp 14 wvoid £(int x) {

15 if (x<=0)
. . 16 3 ; . t .
There are two stack-based implementation methods for excep |, olse flety: // raise exception

tions [30]. One, called stack unrolling or stack unwindirgjies on
the fact that each function has an implicit exception hamellich
restores callee-saved registers from the stack and resrtis ex-
ception. This method requires no extra operations uporriagte
a try block, as all the necessary state will be preserved tydu
function calls. However, upon raising an exception, thegpam
will execute each implicit exception handler until the pgopne is
reached, meaning that this is a slow operation. The secotitbche
stack cutting, requires that all callee-saves are stored aptering
a try block. Then, when an exception is raised, we can simyly c
the stack to the appropriate point, and restore all theealves to
resume computation from the handler.

The SCAP-I system presented in Section 5 supports reasoning
about stack unwinding. SCAP-II supports general weak noati h ) e
tion, therefore it can be used for both stack unwinding aadkst closely follows ideas used in defining SCAP.
cutting. However, with the emphasis on generality, therabtbn 6.1.1 EUCAP Inference Rules

is too low level for these two systems to be used conveniently figre 24 shows the model of exception handling using staek u
For instance, in a function that has two possible returntppione winding. One should immediately observe that thg and call
would have to give a guarantee containing a disjunction @wsh  5re not separate concepts. Both of them are representechby”
that only under normal conditions the code will return totfies which always sets a new exception handler. Thus in the diagra

18 }

Figure 23. Higher-Level Pseudo Code with Exceptions

turn point, and only under exceptional conditions it wiltue to
the second point. In this section, we propose two highestisys-
tems customized to handle stack unwinding and stack cuténg
spectively. Both of these systems provide guarantees fepéei
reasoning about exceptions.

6.1 Exception Handling with Stack Unwinding

In this section, we show a specification system that can stippo
reasoning about exceptions compiled using stack unwingihgch
we refer to as EUCAP. The system is embeddable in CAPO, and

11



t:(p1,81,h1)

Figure 24. The Model for Call/Raise/Return in EUCAP

vSpS—p'S fedomW,) (p,g.h)=W¥ ()
VS.pS — S.R($ra) € dom(W A
VS¢S —

p// SI /\VS"A(g" S/ SII N g S SII) /\ (h// S/ SII — h S SII)
where(p”,g”,h") = W (S.R($ra))

¥S.p S — S.R($rh) € domW,)A
vS'h'SS —
p/// S, /\VSII.(g/// S, S" — g S SH) /\ (h/// S, S// — h S S//)
where(p”,g"” h"") = W (S.R($rh))
vS,S'.(g' SS' — S.R($ra) =S .R($ra))
AR SS' — S.R($rh) = S'.R($rh))

'_{<[[(p7g7h)]]>wL}] f

(EU-CALL)

VSpS—gSS
g EU-RET
et o, Jirora (FURED
VS.pS—~hSS (EU-RAISE)

F{[(p,&:n)])w, }ir $rh

c € {addu,addiu, Iw, subu, sw}
FLLP, ) w VS.pS—p’ (Nextc(S))
VS,S'.pS — (g Nextc(S)S' — gSS)A(h' Nextc(S) S’ - hSS)

H{[(p.g:0) Dw }eiT

(EU-SEQ

Figure 25. EUCAP Rules as CAPO Lemmas

above, one can think afall £2 as either a function call or a try
block, which sets D as the return point and F as an exception ha
dler. Thus when at point C, an exception is raised, the el@tut
jumps to point F, and proceeds to execute from there. The icode
the handler then may finish normally by returning, or may c®oo
to re-raise the exception by issuingise. That behavior is not any
different from a regular return point, and that fact is reyerged in
the diagram by a merging at point H. One can think of point H as
where the try block ends and regular execution resumes.

Given the above diagram, it is very easy to define exceptions.
We define them simply as another return point, and to clegdg-s
ify these return points separately, we extend SCAP’s spatifin
language by adding another predicate similag.tdhen the speci-
fication language becomes
(Assertion p,q,r € State—Prop
(Guarante¢ gh € State— State— Prop

(CdSpeg 8 == (p,g,h)
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[(p,g,h)] £AWASpS AINWFSE(n,gS,h S, W)

WFSE(0,q,r,W) £ -3S.qSVrS
WFSE(n,q,r, W) £ S,
(@S-
S.R($ra) € domW) Ap' SAWFSE(n—1,g’ S,h' S,W))
ANrS—
S.R($rh) € domW) Ap” SAWFSE(n—1,g" S,h” S, W))
where(p’,g’,h’) = W(S.R($ra)) and (p”,g”, ") = W(S.R($rh)).

Figure 26. EUCAP Interpretation

The h guarantee specifies what a function does by the time an
exception is raised. If a function can not raise an exceptioen

h can simply be set t&'S,S’.False. This means that this model is
actually the same as multi-return function call (SCAP-Ijimg

split into two pieces: one for regular return, another fareptional
return.

The rest of the system is just a correction for this splitaase
is simply aret whenh as opposed tg is met. Thecall needs to
check that both predicates are adequate, and the well-tress
of the stack needs to be altered to allow both predicatesdcifyp
possible return points. The complete set of EUCAP rulesvsri
in figure 25, and the interpretation function is given in fig26.

Derivations of EUCAP rules as lemma in the CAPO framework
can be found in appendix B.

6.1.2 Example

In this section we show an example of how to use EUCAP to gertif
a program that implements exceptions using stack unwindihg
higher level program shown in figure 23 is compiled with stack
unwinding implementation of exceptions to produce assgietne
shown in figure 27.

Labelmain is an entry point into the program. Labelsin-1
andmain-2 are the normal and exceptional continuations for the
program. Labef is the entry point of functiorf, while f-raise
andf-return are the code blocks responsible for raising an ex-
ception or returning from functiof..

Specifications for each block of code are embedded in the code
right next to the label they specify. To make specificatiorreno
readable, we reuse the macros defined before in Figure 11 for
common expressions.

In this example, all jumps t® areEU-CALL instructions, which
always set a new handler. This makes the try block aroundate c
to £ be unnecessary, and thus the try block and the first call to
function £ are mergedx is set to 1 at the normal return point, but
not at the exceptional return point, making that instructimrk as
though it is inside a try block, while it is actually outsidé the
call. Thus theg for f-ret andh for £-raise simply say that they
restore the previous frame and then jump to their appraprettirn
point.

6.2 Exception Handling with Stack Cutting

In this section, we show a specification system that can stippo
reasoning about exceptions compiled using stack cuttihg;wwe
refer to as ECAP. The system is also embeddable in CAPO, and
closely follows ideas used in defining SCAP.

6.2.1 ECAP Inference Rules

Figure 28 shows multiple workflows through the code contagjni
exceptions. Functiorf does atry, which then callsf2. If £2
succeeds, it then issues a return into the remaining segnmdé
a try (cont). If the entire try block succeeds, thendtry jumps
to cont2, which finishes the execution of functidn However, if
an exception is raised inside they block, including insidef2,



g2 [$sp]’ = [$sp] +3A[$rh]’ = Frm[2]A
[$ra]’ = Frm[1] A [$fp]’ = Frm[0]
go = Rid({$sp,$fp,$ra,$rh, $gp, $s0,...,$s7})
AHnid([$sp] — 3 [$a0] — 3,...,[$sp])
ho 2 gyA[$a0] <0
h1 2 Rid({$gp,$a0,$s0,...,$s7}) Agl, AHnid(0)
g, = Rid({$gp,$a0,$s0,...,$57}) A gl A Hnid(0)

main:  -{(TRUE,NoG,NoG)}
addiu  $a0, $zero, 20 ;20 iterations
addiu  $ra, $zero, main-1 ;set return point
addiu  $rh, $zero, main-0 ;set handler
j f

main-1: -{(TRUE, NoG, NoG)}
addiu  $v0, $zero, 1
j halt

;returnval=1

main-0: -{(TRUE, NoG, NoG)}

addiu  $v0, $zero, O ;returnval=0
j halt
£: -{(TRUE, g, ho)}
addiu  $sp, $sp, -3 ;reserve frame
sw $fp, 3($sp) ;save old $fp
addiu  $£fp, $sp, 3 ;new $fp
sw $ra, -1($fp) ;save $ra
sw $rh, -2($fp) ;save $rh
blez $a0, f-raise ;if x<=0 raise error
addiu  $a0, $a0, -1 ;X——

addiu  $ra, f-ret, O
addiu  $rh, f-raise, O
j f

;set return point
;set handler

f-raise:-{(TRUE, NoG, hji)}

1w $rh, -2($fp) ;restore $rh
1w $ra, -1($fp) ;restore $ra
1w $fp, 0($£fp) ;restore $£fp
addiu  $sp, $sp, 3 ;restore $sp
jr $rh ;raise
f-ret: -{(TRUE, g5, NoG)}
1w $rh, -2($fp) ;restore $rh
1w $ra, -1($fp) ;restore $ra
1w $fp, 0($fp) ;restore $fp
addiu  $sp, $sp, 3 ;restore $sp
jr $ra ;return
halt: -{(TRUE,NoG,NoG) }

j halt

Figure 27. Example of Exceptions Compiled with Unwinding

the program jumps to the handler specified by the try blaekd).
Then both execution paths froront2 andhand will eventually
return to the same point, or raise an exception and returheto t
same handler.

To be able to certify code with exceptions implemented using

stack cutting, we define ECAP, another instance of CAPO iadpi

by SCAP. The code specification of ECAP are same as those in

EUCAP:
(Assertion p,q,r € State— Prop

(Guaranteg g,h
(CdSpeg 6

€ State— State— Prop
i= (p.g:h)

The purpose oh is exactly the same as its purpose in EUCAP,
namely to specify what needs to happen between the currérit po

and the point where the exception can be raised.

To ensure correct behavior in all executions, we enforce the

following invariants at the point of entering a try block:
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call f

try B
(Po.go.ho) t:(p1,g1.h1)
A
call f2D .
(p2,g2,h2) h:(ps,gs;h3)
C
F ret
cont : (pa,ga.ha) E
cont2: (ps.gs.hs) M end try

Figure 28. The Model for Try/Raise/Call/Return in ECAP

VSpS—p'S fedomW,) (p,g,b')=W. ()
VS.p S — S.R($ra) € domW,)A
vS'.g S —

p// S/ /\VS//.(g” S/ S// —g S S//) A (h// S/ S// —h S S//)
where(p”,g”,h") = W (S.R($ra))

VS,8'pS—h'SS' »hSS VS,§.g SS — S.R($ra) =S R($ra)

H([(p.g:0) Dw }i £

(E-CALL)
vSpS—p'S fedomW¥,) (p,g,bh)=WY (£)
VS.pS — S.R($ra) € domW,)A

vS'.g SS —

p// SI /\VS"A(g” S/ SII — g S SII) /\ (h// SI SII — h S SII)
where(p”,g”,h") = W (S.R($ra))

VS.p S — S.R($rh) € domW)A
vS'n'SS —
p/// S/ /\vs//.(g/// S/ S// — g S S//) A (h/// S/ S// —h S S//)
where(p”,g"” , h"") = W, (S.R($rh))

vS,S'.(g' SS' — S.R($ra) = S'.R($ra))
A SS — S.R($rh) = S/ .R($rh))

F{[(p.g: ) ])w, }if

(E-TRY)

vYSpS—gSS
: E-RET,
F{([(p,g,h)])w, }ir $ra ( )
7S kS5 (E-RAISE)

F{([(p,&1)])w, }ir $rh

c € {addu,addiu, lw, subu,sw}

([, g"0) ])w, }T VS.pS —p' (Nextc(S))
VS,S'.pS — (g Nextc(S)S' — gSS') A (h' Nextc(S)S' —hS )

FH{l(p.gh)Dw Feil
(E-SEQ

Figure 29. ECAP Rules as CAPO Lemmas



g%,mé [$sp]’ = [$sp] + 2 A [$fp]’ = Frm[0] A [$ra]’ = Frm[1]

Brec= [$5p)/ = [$x0] A [$fp]’ = [[$x0]]

hs = Rid({$sp,$fp,$ra, $rh, $gp, $s0,...,$s7,$k0})
AHnid({[$sp] — 2% [$a0] — 2,...,[$sp]}) A [$a0]’ <O

hs 2 Rid({$rh,$gp, $s0,...,$s7,$k0}) A gree/\ Hnid(0)

gs = Rid({$rh,$gp,$s0,...,$57,$k0}) A g}, A Hnid(0)

[(p,g,h)] EAWASpS AINWFSC(n,gS,h S, W)

WFSC(0,q,r,W) £ -3S.qSVrS
WFSC(n,q,r, W) £ V8.
(@S—
S.R($ra) € domW) Ap' SAWFSC(n—1,¢’ S,b’ §,W))
ANrS—
S.R($rh) € domW) Ap” SAIm< n. WFSC(m,g” S,h” S, ¥))

main: -{(TRUE, NoG, NoG)}

where(p’,g’,h’) = W(S.R($ra)) and(p”,g",h") = W(S.R($rh)). addiu  $sp, $sp, -1 ;jreserve frame
swW $fp, 0($sp) ;record $fp
. ; addiu  $kO0, $sp, O ;set the handler $sp
Figure 30. ECAP Interpretation addiu  $rh, $zero, main-0 ;set the handler
. L addiu  $ra, $zero, main-1 ;set try exit point
e the precondition of the try block can be satisfied,e., j try

VS.po S — ps S (note that entering a try block is done jy);

e after the try block finishes normally, can resume execution try: - (TRUE’ g4, ha)}
. . addiu  $a0, $zero, 20 ;x=20
beyond the try block (poirtt), and the normal behaviog{) of . ’
L . j £ ;E(x)
the try block 8-G) and the remaining codéi{I) satisfies the
specification ofA-I, i.e., main-1: -{(TRUE, NoG, NoG)}
vS,8'pgS— g1 SS — addiu  $v0, $zero, 1
psS'A (VS g5 S S — goSS")A (VS hs S S” — hsSS) j halt
e after the try block finishes exceptionallf,can resume execu- main-0: -{(TRUE, NoG, NoG)}
tion starting at the exception handler (poi)t and the excep- addiu  $v0, $zero, 0
tional behavior §1) of the try block and the exception handler J halt
(k-L) satisfies the specification afI, i.e., £ ((TRUE, g, 1)}
VS, pgS—h1SS — addiu  $sp, $sp, -2 ;allocate frame
PeS'A(VS".ggS'S" — ggSS”)A (VS hg &' S” = hoSS”) sw $fp, 2($sp) ;save old $fp
. . . addiu $fp, $sp, 2 ;new $fp
The above conditions (in a generalized form) are enforcethby sw $ra, -1($tp) ;save $ra
E-TRY rule shown in figure 29. blez $a0, f-raise ;if x<=0 raise error
TheE-cALL rule is an extension of theaLL rule of SCAP with addiu  $a0, $a0, -1 X7
following differences: addiu  $ra, $zero, f-ret ;set return point
j f ;£ (x)

¢ adds an exceptional dual of the continuation’s guarantgge- sa

fying the function’s guaranteég., f-raise:-{([a0] <0, NoG, hs)}

VS,S'.pp S —g3SS — (V§"ha §'S” —hp SS”). addiu  $sp, $k0, O ;restore handler $sp
« the function’s exceptional behavior must satisfy the calle Lw $2p, 0(sp) jrestore $fp
jr $rh ;raise

exceptional behavior.e.,

VS, p, S —h3SS —hp ST . f-ret: -{(TRUE, gg, NoG)}
Returning from the function call or a try block has the same in 1w $ra, -1($fp) ;restore $ra
variant as the SCARET rule, i.e., the state in which a return is 1w $fp, 0($fp) ;restore $fp
issued satisfies the predicgteRaising an exception is a dual of re- addiu  $sp, $sp, 3 ;restore $sp
turn, having the same invariant usihgredicate. Well-formedness Jr $ra jreturn
of an instruction sequence is similar to theAP-SEQrule, except halt:  -{(TRUE,NoG,NoG)}

it also ensures the chaining of the predidate

6.2.2 ECAP in the CAPO Framework

Just like SCAP, ECAP rules are derivable as lemmas of the CAPO
framework, using the definitions in figures 29 and 30. Therinte
pretation of(p, g,h) is similar to that of(p,g) in SCAP. The new
“well-formed stack” predicateWFSC) is SCAP’SWFST modi-
fied to deal witth and the non-linear stack workflow of exceptions.
Namely, it adds an additional requirement that at the entegk-
ception handler there is a well formed stack of smaller dépti
justn—1, asin SCAP).

Like WFST, WFSC is recursive, well-founded, and is indepen-
dent of the stack layout, supporting different calling camions
and exception handling methods.

j halt

Figure 31. Example of Exceptions Compiled with Cutting

The derivation of ECAP rules as lemmas in the CAPO frame-
work can be found in appendix C.

6.2.3 Example

In this section we show how ECAP can be used to support excep-
tions using stack cutting.

The higher-level program given in Figure 23 is compiled gsin
stack cutting, resuling in assembly code in figure 31.

Specifications of code heaps are embedded in the code. We

WFSC predicate uses thgrh register. However, the TM does ~ reuse macros defined before in Figures 11.
not have such a register. This is done for simplicity, andihbe In this example, upon entering the try block, the calleessav
interpreted as any specific memory which can be used to pass aare saved on the stack, wighh remembering the handler’s label
second return point. In our examples, we take the liberty ainmg and $k0 remembering the stack pointer of the main functi
$rh refer to the otherwise unused regiskar, as well as usingo and$ko are preserved through the callsttdVhen the exception is
as a pointer to where the handler keeps information negessar  raised, the stack is recovered througt® and convention defined
restore the stack frame. by grec-
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void £() { void h() {
int i; int j;
while(true) { while(true) {
i++; it
switch; switch;
¥ }
} }

Figure 32. Higher-level Coroutine Pseudo code

(. 9),
g{&___switgn__ P Dy
(p" ’ q )I 1% g; = G1| SWitCh

_________ M{\ addu $ry, $zero, $rx
“x.\ addiu $rx, $zero, ct
G<=d e T $ry
switch (P 9" )y

g =>G,

Figure 33. A Simplified Model for Coroutines

7. Reasoning about Coroutines

Figure 32 shows a trivial higher-level program that usesutines.
The purpose behind coroutines is to create code that actwai-
sists of two mostly independent code executions that areeseq
tial, with precisely defined switch points. Examples of spcb-
grams include producer/consumer programs and simplerdieter
istic (round-robin) threads.

In this section, we present variations of SCAP to reasontabou
coroutines. The system CAP-CR supports separate verificafi
coroutines without functions, while SCAP-CR can reasoruabo
bitrary interleaving of coroutine switching and functicaléreturn.
Like SCAP, both systems can be embedded in CAPOQ.

7.1 Coroutines without Function Call

We first work on a simplified model of coroutines, in which a
coroutine does not make a function call. Figure 33 illussahe
execution of coroutines. To implement the switch from ongire
to the other, we use two special registed @nds$ry) to hold the
code pointersswitch is implemented as follows:
addu  $ry, $zero, $rx
addiu $rx, $zero, ct ;save the return addr
jr $ry ;jump to target address
wherect is the code label for the return continuation, as shown in
Figure 33. In concrete implementatiosx and$ry can be any two
designated registers or even two memory cells.

Specification® for coroutine code are defined as follows:
(Assertion p € State—Prop
(Guaranteg¢ g, < State— State— Prop
(CdSpeg 6 == (p.g&)i
wherep specifies the current statg, describes the behavior of

the code segment from the current program point to the simigch
point, and the indek (0 < i < 1) represent thé" coroutine.

Different than function call, there is a new challenge fraate
verification of coroutine code. Since tharitch is done by an

;set the target switch addr
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indirect jump, we do not know to which code segment of thedtrg
coroutine we are jumping to. However, we still need to ensuae
the target coroutine will switch back to the right place witte
expected state. To solve this problem, we use the rely-gtega
method [18] and assignglobal guarantee; for theith coroutine.
As shown in Figure 33, although we do not know whether we are
jumping to the code segment with guarantgeor the one with
guaranteez;”, we can require that all code segments between two
switch points in coroutine X i must satisfyG1_j, that is we require
g = G and g” = G. Here we use the short hang = G for
vS,S. g SS'—GS¥.

In summary, the specifications of coroutineonsist of(p, g; )i
pairs for each code segment, and a global guarahtekat speci-
fies the common behavior for code segments between two consec
utive switch points.

We use the followingswiTcCH rule to type check the indirect
jump for switching.

VSpS—gSS

(S.R($rx) € dom( W) A (gf = Gi)A
(VS'.G1-i S — S' R($ry) = S.R($rx) Ap’ §'))
where(p’,g))i = WL (S.R($x))

F{([(@.g0)i])w, }ir $ry (SWITCH)

The swiTCH rule is like a combination of theALL rule and the
RET rule of SCAP, because from coroutiiise point of view, the
switch is like a function call, while for corouting — i) it is like a
return. The first premise requires that the coroutimeust finish its
guaranteed behavior before it switches to the coroutinei). The
second premise requires that:

e $rx contain the return code pointer at the switch point, and the
behavior starting from the return code pointer satisfy tiobal
guaranteds;;

e at stateS/, the coroutine(1 —i) switch back to the expected
place,i.e.,S R($ry) = S.R($rx); and

¢ when the coroutinél —i) switches back, the staf satisfy the
preconditionp’ of the return continuation.

The restinference rules, such as rules for sequentialictiins
and direct jumps, are the same with those in SCAP, except that
the g's in SCAP has been replaced y. To derive theswiTCH
rule and other rules as lemmas in CAPO, we use the following
interpretation for(p, g; );.

[(p.g)i] = AWAS.pS A
vS'.g SS' — S'.R($ry) € domW) Ap’ S'A (gt = G1-i)
where(p’,g{) = W(S'.R($ra))
The interpretation function requires that:
¢ the current state be valide.,p S;
e at the switch pointsry will be a valid code pointer in the
coroutine(1—i) with specificationp’, g{)1_i;
¢ the precondition of the label to which we are switching be
satisfiedj.e.,p’ §'; and
¢ the code to which we are switching will satisfy the coroutine
(1—i)'s global guaranteée., g} = G1_;.

Given the interpretation function, CAP-CR inference rutas be
proved as lemmas in CAPO.

7.2 Coroutines with Function Calls

In the system CAP-CR, each coroutine does not make function
calls, so we do not have to model stacks. Coroutines withtioimc
calls are trickier to verify because functions called by comutine
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Figure 34. Model for Coroutines with Function Calls

may switch to another coroutine in the middle. It is harder to
specify the behavior of functions.

In SCAP-CR, we instantiate the code specificatioim CAPO
as follows:

(Assertion  p
(Guarantee g, g;.g,
(CdSpeg 6

€ State— Prop
€ State— State— Prop
= (p,g.g.8 )i Where(0<i<1)

As in SCAP, the function specification in SCAP-CR contaires th
specificationp of the expected input and the behavigrof the
function. Since a switch may occur within a function, we gge
as in CAP-CR to specify the code segment from the currentt poin
to the nextswitchpoint, as shown in Figure 34. Also, because the
return point and theswitchpoint may not match, we use an extra
guaranteeg, to specify the remaining state transition the current
coroutine needs to make between tieéurn point and the next
switchpoint. Intuitively, g, tells the caller of the current function
what the caller needs to do after the function returns so ithat
can fulfill the guaranteed behavior before switching to haot
coroutinel The switch operation is implemented in the same way

shown in Section 7.1. For each coroutine, we also need algloba

[[(P7g7gt7gr)i]] £AWAS. pS/\WFCR(i7g7glvgr7S7w>

WFCR(i7g7gt7gr7§7w) é
IMWFCRST(m g.g,.S, W)A
(vS'.g; SS — S'.R($ry) € dom W) A (gf = G1-i) AP’ S'A
In.WFCRST(n,g,g;,5',¥))
where(p’. g’ gt,gr)1-i = W(S' R($ry))

WFCRST(0,g,g,,S,W) £ -35. g S
WFCRST(n,g,g,,S,¥) £
vS.gSS —
S’ R($ra) € domW)Ap' S'A (g = g )N
WFCRST(n—1,g’,g/,5,W)
where(p',g’, g1, g )i = W(S"R(3ra))

Figure 35. The Interpretation Function for SCAP-CR

These constraints are reflected in the follow@yCALL rule.

(p.e'gt.8r)i = WL (£)
vS.pS—p'S
VS,S.pS—g SS —
(' R(sra) € domW,) Ap” S'A
(VS”. g// S/ S// s g S S//) A (VS”. g{/ S/ S// — g; S/ S//))
where(p”,g" g’ & )i = W1 (S"R($ra))

F{(l(p.g 8.8 )ilw it

VS,S'.pS— g/ SS' — g S

(CR-CcALL)

The return rulecR-RET is similar to theReT rule in SCAP, ex-
cept that we also need to ensure that the expected calléréwioe
g, from the return point to the next switch point satisfies thargu
anteed behaviag;.

VS.pS—gSS vS,8.pS—g SS —g SY
F{{l(p.&. &1, )i])w, }ir $ra

(CR-RET)

Thecr-swiTcHrule is similar to theswiTCcHrule in CAP-CR,
but we also need to enforce that the guaranteed behavioreof th
function is satisfied,e.,G; i SS' — g §'S” — gS§".

VS.pS—gSS
vS.pS—
(SR($rx) € domW,) A (gf = Gi)
(VS G1i SS —
S'R(3ry) = SR($) Ap' S'A(VS". g’ §'S" — gSS")))
where(p',g’. g1, g )i = WL (S.-R($rx))

F{l(p.& &t,80 )i )w, }ir $ry

(CR-SWITCH)

The following crR-sEQrule is straightforward, which is simply

guaranteeG; which captures the invariant of the code segments a combination of thsEQrules in SCAP and CAP-CR.

between any two consecutive switch points.

As shown in Figure 34, we need to enforce the following con-
straints for the function call in SCAP-CR.

« the behaviog; satisfies the caller’s guaranteed behagjdrom
the calling point to the next switch point;

 when the callee returns, the caller’s behayjfrom the return
point to the next switch point satisfies the callee’s exgamia
gr; and

e the constraints for return code pointers and function biensy
as enforced in theALL rule of SCAP-I.

1We may not needs, if we require that the global guaranté® be a
transitive relation,i.e., vS,S',S". GSS'AG S’ §" — G S S”. Although

reasonable in a non-deterministic concurrent setting,dbnstraint ot is

too restrictive for coroutines. We decide to present SCAPHCthe most
general setting and use an exggato link the caller and callee.
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FUL@' g etg)i])w T VS.pS— p' (Nextc(S))
vS,S'pS —

(g (Nextc(S))S' — gSS) A (gl (Nextc(S)) S’ — g SS)
F{l(p.& 81,8 )i [)w }eil

(CR-SEQ

In SCAP-CR, we need to enforce the invariant on two well-
formed control stacks, as we did in SCAP. The interpretdiioe-
tion for the specificatiortp, g, g;, g, )i is defined in Figure 35. The
predicateWFCR ensures that:

e there is a well formed control stack for the current coroitin
¢ at the switch pointgry contains a valid code pointer;

e the precondition of théry to which we are switching is satisfied
at the switch pointi.e.,p’ S';

¢ the code to which we are switching will satisfy the coroutine
(1—i)'s global guaranteé.e.,g{ = G1_j; and

¢ at the switch point, there is a well-formed control stackha t
coroutine(1—1i).



Q = {t~R}"
0 = {t~ (p,g,A,G)}*

r, r, InDom(Q, W) £ vt; € dom(Q).Q(ti)($ra) € dom(W)
= 2 W{Q} £ {t~ 6|W(Q(t)(3ra)) = 6}

GetQ(H) £ {t ~R'}
ra, M, wheret = H(hd_q), andR’ = Ht]

Figure 36. Organization of TCB Hlt] £ {ro~ 0,r1~ -, 12~ H(t),...,ra1~ H(t +29)}

CurThrd £ 3t.{cid — t,t+— _,...,t +29— _}
(Assertion p
(Guarantee g
(Assumptiop A
(Th-Guarant) g,G
(CdSpeg 6

State— Prop
State— State— Prop
RegFile— Heap— Heap— Prop

GoodQ £ 3t.{hd.q — t,t—_,...,t +29— _}

[(p,8,A,G)] £ AWA(H,R).
JHy, Ha.H1 WHy = HA
p (H1,R) A (CurThrd %« GoodQ) (Hz,R)A
InDom(Q,¥) AWFTQ(Q,0,g, (H1,R))
ANI(©{H(cid) ~ (p,&,A,G)},Q{H(cid) ~ R})
whereQ = GetQ(H) and® = W{Q}

m M M M

RegFile— Heap— Heap— Prop
i= (p.g) | (p.8,A,G)

Figure 37. Code Specifications in Foundational CCAP

The definition of the well-formed control stack is similartie WFTQ(Q,0,g, (H,R)) £ Vt; € dom©).

definition of WFST in SCAP, except we also need to ensure that
the caller’'s behavior from the return point to the next stvipoint
actually satisfies the callee’s expected behavier,g; = g, .

As usual, inference rules in SCAP-CR are provable as CAPO
lemmas based on this interpretation function.

(VR7H7H,‘pi (HvR) — A RHH — Pi (H/vR»
A(VE! g R HE = p; (H'R)))
where(p;,g;,Ai,Gi) = O(ti), andR; = Q(ti).

NI(©,Q) £ Vti,tj € dom(©).t; # tj —

VH,H,Gi R HH' — Aj Rj HH'
Where(_, LALGH) = @(ti), (_,_,Ai,Gi) = @(ti),

8. Foundational CCAP R = Q(ti), andRj = Q(t))

In the implementation of thread libraries, the routine foread

A
context-switching does not follow the regular calling cention: [e.g)] = P P
it fetches the return code pointer from the target threadisksand )‘q;‘;\,(g’ %%%m A VH,R g (HLR) (H,RY) —

(R'($ra)) = (p',&", A", G')
(I8, A", G W) (H',R')

SameQ((H,R), (H',R')) £
GetQ(H){H(cid) ~» R} = GetQ(H'){H'(cid) ~» R’}

returns to the target thread instead of the calling thretdiak
believed [41] that support of general first-class code pognare
required to reason about the context-switch routine.

In previous work [41, 13], we applied the rely-guaranteetrodt
in to support thread-modular verification of concurrenteassly
code. There threads yield by executing a “yield” pseudaitsion
instead of making a function call to a certified implememtatof
a “yield” function, which involves certifying the contestwitching
code.

In this section, we show how to use SCAP-like rules to certify
a simple implementation of “yield”, which can be linked in €A
with certified user-level CCAP [41] thread code. To simplihe
presentation, we work on the two-thread version of CCAPsThi
work allows us to generate foundational PCC for real comaurr
machine code (instead of code for the abstract CCAP machine)

It also |IIu_strate how different reasoning methodologies de files are thread-private data. Therefaged’ and G only specify
interfaced in CAPO. . .
. o the relation between a pair of shared data heaps. They are als
Figure 36 shows the organization of thread control blocks harameterized with the current register file. To distinguisem
(TCBs) in memory. Each TCB contains the saved register file (€  from the guarantees used in SCAPand CAP-CR, weggall and
ceptrg andrj) of the thread. The global variabte d contains the G in ECCAP “Thread Guarantee”.
pointer that points to the current thread’s TCB, whiteq contains Figure 38 shows the predicates and macros used to define in-

the pointer that points to the thread queue. Since therelaeys ter ; O .
. P pretations of code specificatioti@.is the abstract thread queue,
two threads |n.t.he §ystem, only one_thre_ad IS in the threadeque. which maps thread id to its register file saved in its TCB. We us
Code specifications are defined in Figure 37. We use two kinds the pointer to the TCB as the thread @.maps each thread to its
of specifications: SCAP specificati¢p, g) for theyield function, specification. The predicateDom requires the return code pointer
and CCAP specificatiortp,g, A,G) for user thread code. Here  gayed in each TCB be a valid code pointg{Q} extracts the spec-
Suz?gngtegélsthuz eS;riT;\ecnc]:Tgl?g s\,/lvjlgg)c;[?torfﬁnlr;rggnﬁ;ivzh?hrlgggl ification for the return code pointer of each thread)ifrom W.
o, . < . - GetQ(H) extracts TCBs in the thread queue pointed talyy
model. Similar tog; in CAP-CR,g describes the behavior of code and retu(rnl the abstract que@ The predicateCurThrd says

segments from the current instruction to the next “yieldinpoT he . - ; .
assumptionh and global guarante® describe the state transition that cid points to the TCB of the current executing thread, while

HeapID(g) £ VR, R, Ho, Hy, H'.
(CurThrd * GoodQ) (H1,R) — g (Ho WH1,R) (H',.R') —
JH}.H' = HowH) A (CurThrd x GoodQ) (H7,R)

Figure 38. Definition of Macros for CCAP

between two “yield” points. For each thread, if state traoss
made by the environment satisfy the assumptigrthe thread’s
transitions will meet its guarante@ to the environment. Th&

here has the same meaning with the one in CAP-CR. However,
since we save the register file during thread context-sywggfister
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GoodQ requireshd_q point to a list of TCBs. In our case there is
only one TCB in the list.

The interpretation for(p, g, A,G) requires the data heap can
be split into two disjoint partsH; andHy. Hj is the user thread
heap and satisfies which has no knowledge dfl,, while Hs
contains TCBs for the current thread and threads in the qUéwee
separating conjunctioR x Q is borrowed from separation logic,
which saysP and Q hold for disjoint portions of the data heap.
The interpretation function also encodes the invarianbred in
original CCAP:

e the return code pointer for each thread in the queue is valid;

e when the current thread yields, threads in the queue can take
control from their return code pointers (definedifF TQ); and

e threads do not interfere with each other (definetlin

Interested readers can refer to CCAP [41] for more details.

The interpretation for(p,g) is straightforward. It simply re-
quires that, when the function returns, there be a validmetode
pointer in$ra pointing to the user thread’s code, and that the inter-
pretation of its specification hold.

In our system, therield instruction in original CCAP is re-
placed with a function call to thgield function. TheYIELD rule
combines the origina¥IELD rule in CCAP and thecALL rule in
SCAP, and bridges the system call from CCAP code to SCAP code.

yield,fret € domW)
(py-&y) = W(yield)

VR,H,H,p (H,R) » ARHH — p (H',R)
VR,H.p (H,R) — g R HH

vS,8'.g, SS — SameQ(S,S’) HeaplD(g,)
VS.(p*CurThrd * GoodQ) S — py S

'_{<[[(p7é7A7G)H >W}ja| yield7fret

(PG, A,G) =W(fret)

(YIELD)

The first two lines show specifications for the functipreld and
the return code pointer. The premise in line 3 says the cttinesad
can take control after any state transitions satisfyindNote that
the register file is not changed during the state transitione
4 says the current thread has finished the state transitiochwh
satisfies its guarantgg These two premises are adapted from the
original YIELD rule in CCAP. The last three premises are similar to
those in thecALL rule of SCAP. The first premise in line 5 requires
that theyield function save the current thread’s register file and
restore the register file for the thread which is scheduledrioThe
predicateHeaplD(gy) requires theyield function not touch the
user thread heap. BoBemeQ(S,S’) andHeaplD(g,) are defined
in Figure 38. The last premise says the preconcfi/tion ofytha d
function holds on the conjunction of the user thread heapr&iis
for threads.

The Y-RET rule is used foryield to return to the user-level
thread code. It is almost the same with tterT rule in SCAP.

VSpS—gSS

F{{[(p.g)])w}ir $ra (Y-RET)

In addition to theYlELD andY-RET rules, for each instruction
we have two rules: the original SCAP rule and the original ®CA
rule. Depending on the place an instruction is used, thespand-
ing rule is used to verify it.

In Figure 39 we show the TM code fgtiield, which essentially
implements the context switch routine. The specificatiogiven
on the top. Readers can check that it satisfies the premisae of
YIELD rule.
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Save £ [cid] = [hd_q]'A
[[cid]] = [r2] A... A[[cid] +29) = [r31]
Restore £ [hd_q] = [cid]'A
[r2] = [[hd-q]] A... A[r31] = [[hd_q] + 29
HID £V1 ¢ {cid, hd_q,[cid],...,[cid]+29}.[I] = I
py = CurThrd + GoodQ + TRUE
gy £ Save A Restore AHID
yield:
1w rl, cid(x0)
sw r2, 0(r1)
sw r3, 1(r1)

;load pointer to current thrd
;save context of cur thrd

r31, 29(r1l)
r2, hd_q(r0)
r2, cid(r0)
rl, hd_q(r0)
r3, 1(r2)

sw
1w
swW
sw
1w

;swap cid & hd_q

;resume context of next thrd
1w
1w
jr

r31, 29(r2)
r2, 0(r2)
r31

Figure 39. Thread Library Code - Yield

9. Implementation

We use the Coq proof assistant [35] and the underlying highaber
predicate logic for fully mechanized verification of asséyrdnde.
The syntax of the TM is encoded in Coq using inductive debtingi
Operational semantics of TM and the inference rules of CARR0O a
defined as inductive relations. The soundness of the CARS isil
formalized and proved in Coq.

Instead of defining the syntax and semantics of the assertion
language (which is known as the deep embedding approach), we
use CiC, the underlying higher-order logic in Coq, as oued&m
language. This shallow embedding approach greatly redinzes
work load of formulating our logic systems.

Our implementation includes around 370 lines of Coq enapdin
of TM and its operational semantics, 200 lines encoding oPGA
rules, and 700 lines of Coq tactics for the soundness proef. W
also encoded in Coq the definition of SCAP inference rules and
their proofs as CAPO lemmas, which consists of around 9@ lin
of Coq inductive definitions and tactics. We have written entian
10 thousand lines of Coq tactics to certify practical proggain-
cluding themalloc/free library which was first certified in the
original CAP [40]. According to our experience, human smess
is required to come up with proper program specificatiores dift
ficulty depending on the property one is interested in andstle
tlety of algorithms. Given proper specifications, proof swaction
of assembly code is mostly routine work. Some premises of SCA
rules can be automatically derived after defining lemmasdon-
mon instructions. For generality, we intentionally avopesifying
the layout of the physical stack and calling convention iPABC
The low abstraction level causes lengthy (but still striigivard)
proof for instructions involving memory operations. Thedgn of
the programmer can be reduced if we define higher-level lesnma
for specific stack organization. We leave this as the futurekw

10. More Related Work and Conclusion

Reasoning about Stacks and ExceptionsContinuing over the
related work discussed in Section 2.1, STAL [23] and itsasri
tions [11, 37] support static type-checking of functionl/caturn
and stack unwinding, but they all treat return code poirdsrirst-
class code pointers and stacks as “closures”. Introducitwgta
instruction [11] does not change this fact because therayjhe
ing rule for “ret” requires a valid code pointer on the top of the
stack, which is very different from our SCARET rule. Impredica-



tive polymorphism has to be used in these systems to abstract
unused portions of the stack (as a closure), even thougtretusn
addresses are stored on the stack. Using compound stacks, ST
can type-check exceptions, but this approach is rathetdanilf
multiple exception handlers defined at different depthsiefdtack
are passed to the callee, the callee has to specify their ordine
stack, which breaks modularity. This problem may be overom
by using intersection types [11], though it has never beemvseh
Moreover, there is no known work certifyinget jmp/longjmp
and weak continuations using these systems.

Also, unlike STAL, SCAP does not require any built-in stack
structure in the target machine (TM), so it does not need two
sets of instructions for heap and stack operations. As shawn
Figure 13, SCAP can easily support general data pointecs int
the stack or heap, which are not supported in STAL. In addlitio
SCAP does not enforce any specific stack layout, therefoemibe
used to support sequential stacks, linked stacks, and dieaated
activation records.

Concurrently with our work, Benton [5] proposed a typed pro-
gram logic for a stack-based abstract machine. His instnuste-
quence specification is similar to tgen SCAP. Typing rules in his
system also look similar to SCAP rules. However, to protetitmn
code pointers, Benton uses a higher-level abstract maaehiite
separate data stack and control stack; the latter cannatuicbed
by regular instructions excepéll andret. Benton also uses a pair of
pre- and postcondition as the specification which requioaspiex
formalization of auxiliary variables.

At higher-level, Berdinet al. [6] showed that function call and
return, exceptionsgoto statements and coroutines follow a dis-
cipline of linearly used continuations. The idea is formmetl by
typing continuation transformers as linear functions, ferifi-
cation logic was proposed for reasoning about programsowol
ing the producer/consumer model (in Figure 2), our reagphas
a flavor of linearity, but it is not clear how our work and limea
continuation-passing relate to each other.

Walkeret al.[1, 17] proposed logical approaches for stack typ-
ing. They used CPS to reason about function calls. Their vimrk
cused on memory management and alias reasoning, while ilPSCA
we left the stack layout unspecified. Although the higheteor
predicate logic is general enough to specify memory progert
substructural logic provides much convenience for mempecis
fication. Applying their work to provide lemmas for diffeftestack
layouts and calling conventions will be our future work.

Reasoning about First-Class Code PointersNi and Shao [29]
introduce a special syntaoptr(£,a) in their assertion language to
certify first-class code pointers. To support first-clasgecpointers
in SCAP, we can extend it in a similar way by usie@r (£, (p,g)),
which meanst is a function pointer with the specificatidp, g).
However, as we mentioned before, return code pointers and ex
ception handlers have subtly different invariants fromegahfirst-
class code pointers. So even with the support of first-clase c
pointers, it is still desirable toot treat regular stack-based con-
trol abstractions as general code pointers. Embedding S&AP
its extensions into the CAPO framework allows interopditgbi

between SCAP and other systems. We can reason about func-

tion call/return, exception handling, and coroutine askefand
then useptr(£f, (p,g)) to reason about unavoidable first-class code
pointers. Another interesting observation is that somengagy
first-class code pointers, such as threads’ return codetgusin
stored in the thread queue, can actually be reasoned usiA§-SC
based systems. We need more experience to fully explorepthe a
plicability and the limitations of SCAP.

State Relations as Program SpecificationsSCAP is not the first
to use relations between two states as program specifisafibe
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rely-guarantee method [18], TLA [21], and VDM [19] all usetst
relations to specify programs. However, the guaragiesed in
SCAP is different from those used in previous systems. Gdizer
ing the idea of local guarantee [41], SCAP uge® describe the
obligation that the current function must fulfill before @rcreturn,
raise an exception, or switch to other coroutines and tisteldd-
tice that at the beginning of a function, agimatches precisely the
VDM postcondition, but intermediatg’s used in OUrSCAP-SEQ
rule differ from the intermediate postconditions used msbquen-
tial decomposition rule in VDM: the second state specifiedun
g's always refers to the (same) state at the exit point. We hesset
intermediateg’s to bridge the gap between the entry and exit points
of functions—this is hard to achieve using VDM'’s post coiulis.

Yu's pioneer work [42] on machine code verification can also
support stack-based procedure call and return. His coesstthe-
orem for each subroutine resembles our guaragyteat it requires
auxiliary logical predicates counting the number of instians ex-
ecuted between different program points. Itis unclear tvretheir
method can be extended to handle complex stack-based Iscedro
discussed in our current paper.

Conclusion. We have proposed a new methodology for modular
verification of assembly code with all kinds of stack-basenitiol
abstractions, including function call/return, tail calleak contin-
uation, set jmp/longjmp, stack cutting, stack unwinding, multi-
return function call, coroutines, and thread context dwikor each
control abstraction, we have formalized its invariants ahdwed
how to certify its implementation. All reasoning systeme pro-
posed as instances of the generic CAPO framework, whickvallo
programs certified in different PCC systems to be linked ttogre
Our system is fully mechanized [36]: we give the completensibu
ness proof and a full verification of several examples in tiog C
proof assistant [35].
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A. Soundness of SCAP, SCAP-I and SCAP-II

In this section, we prove the soundness of inference rul8<iaP,
SCAP-I and SCAP-II by showing that they can be derived from
CAPO rules. We only show the derivation of the most important
rules, i.e., the cAaLL and RET rules in SCAP, thecALL-I rule

in SCAP-I andcALL-1l rule in SCAP-II. Derivations for other
inference rules in each system are similar and omitted hee.
also encoded the derivation of the complete set of SCAP iaoles
the Coq proof assistant, which is available at [36].

Lemma A.1 (Stack Strengthen)For alln, g, &, S, S’ andW, if
WFST(n,g,S,¥) andvS".g'S'S” —gS§”,
we haveWFST(n,g’,S", W).

Proof. This trivially follows the definition oWFST. m|

Lemma A.2 (Call) Supposef, fret € dom(W¥,), (
and(p”,g”) = LIJL (fret). If
1. VH,R.p (H,R) — p’ (H,R{$ra~ fret});
2. VH,R,S". p (H,R) — g’ (H,R{$ra~fret}) S —
(p// S/ /\ (VS//. g// S/ S// — g (HR) S//)),
3.VS,S'.g’ SS' — SR($ra) = S'.R($ra);
we have
YW H,R([(p,g)[)w, ¥ (H,R) —
[W(E)] W (H,R{$ra~>fret}).

(In short, thecALL rule can be derived from thL rule).

pg) =W ()

Proof. Unfolding the definition of the interpretation function, we
know that, given

4.9 CW,;

5. p (H,R);

6. WFST(n,g, (H,R),¥);
we need to prove

a.p’ (H,R{$ra~ fret}); and

b. WFST(n+1,¢/, (H,R{$ra~>fret}),¥);

The proof of ais trivial (by 1 and 5). We focus on the proof of b.

By 4 and the assumption, we know tHat et € domW), W(f) =
(p',g') and¥W(fret) = (p”,g"). ForallS, if g’ (H, R{$ra~sfret}) S,



¢ by 3 we knowS.R($ra) = fret, thereforeS.R($ra) € dom(W);

¢ by 5 and 2 we know” S;

e by 5, 2,6, and Lemma A.1 we knowFST(n,g”,S,W).
Then, by the definition ofWVFST we get

WFST(n+1¢g/, (H,R{$ra~> fret}),W). o

Lemma A.3 (Return) If VS.p S — g S S, then for all¥, H andR,
we have

[(pg)] ¥ (H,R) — [W(R($ra))] ¥ (H,R).

That is, thereT rule can be derived from an instantiation of the
rule, wherers is instantiated t@ra.

Proof. Given|[ (p,g)] ¥ (H,R) and our assumption, we know that
1. p (H,R);

2. g (H,R) (H,R); and

3. WFST(n, g, (H,R), W) for somen.

By 2, 3 and the definition 0iVFST we know thain > 0. Therefore,
according to the definition GWFST, we can prove

4. R($ra) € dom¥);
5. p' (H,R);
6. WFST(n—1,¢’, (H,R),¥);

where(p',g') = W(R($ra)). By the definition of the interpretation
function, we know[ W(R($ra))]] ¥ (H,R). O

Lemma A.4 (Call-l) Supposet € domW, ) and(p’,g’) = W (£).
If
1. VS.pS—)p/S;
2.VS,8.pS—g'SS —
S’ R($ra) € dom(W ) Ap” S'A(VS".g" §'S" — gSS")
where(p”,g”) = W (S'.R($ra));
we have

VW.S([(p.g))w, WS — [W(E)] WS.

(In short, thecALL-I rule is derivable from therule).

Proof. Unfolding the definition of the interpretation function, we
know that, given

.Y CY,

4.p5S;

5. WFST(n,g,S,¥);
we need prove

a.p’S;and

b. WFST(n+1,¢,S,¥);

The proof of ais trivial (by 1 and 4). We focus on the proof of b.
Foralls',if g’ S ¥/,

e by 4, 2 and 3 we knovw®'.R($ra) € dom¥) and (p”.g") =
WS R($ra));

e by 4 and 2 we know" §';
e by 4,2,5, and Lemma A.1 we knowFST(n,g”,S',W).
Then, by the definition oWFST we get

WFST(n+1,g’,S,W).
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Lemma A.5 (Stack Strengthen-Il) For alln, g, ¢/, S, S’ andW, if
WFST'(n,g,S, W) andvs”".¢' S'S” — gS§”,
we haveWFST'(n,g’.S", W).

Proof. This trivially follows the definition o WFST’. a

Lemma A.6 (Call-1l) Supposet € dom(W, ) and(p’,g’) =W, (£).
If
1.YS.pS—p'S;
2.VS,8.pS—¢g'SS —

(gSS'Vv

S’ R($ra) e domW )Ap” S'A(VS".g"S'S" — gSS"))

where(p”,g") = W, (S R($ra));
we have
VWS ([(p,8)w, WS —[WE)] WS,

where we use the interpretation function defined in Secti@ 5
which is different than the one used in Lemma A.4.

Proof. Unfolding the definition of the interpretation function, we
know that, given

.Y CY,

4.p5S;

5. WFST'(n,g,S,¥);
we need prove

a.p’S;and

b. In. WFST/ (', g, S, W¥);
The proof of ais trivial (by 1 and 4). We focus on the proof of b.
For allS’, by 4 and 2 we know either

g SS —¢gS¥,

or

g/ Ss —

S’ R($ra) € domW )Ap”" S'A(VS". g’ S'S” — gSS").

In the first case, we set to n and getWFST'(n,g’,S, W) from
the Lemma A.5.

In the second case, we sgétto n+ 1. The proof oWFST’(n+
1,¢/,S,¥) is the same with the proof for Lemma A.4. |

B. Derivation of EUCAP Inference Rules

Lemma B.1 (EUCAP Stack Strengthen)For all n, p, p’, r, and
W, if WFSE(n,p,r,W) andvS.p’ S — p S, we haveVFSE(n,p’, r, V).

Proof. This trivially follows the definition ofWFSE. m|

Lemma B.2 (EUCAP Stack Stengthen’) For alln, p, r, r’, and
W, if WFSE(n,p,r, W) andvS.r’ S — r' S, we haveVFSE(n,p,r’, ).

Proof. This trivially follows the definition ofWFSE. a

Lemma B.3 (EUCAP Spec. Strengthen}or all n, p, r, ¥ and
W if WFSE(n,p,r, W), an d¥ C W', we haveWFSE(n,p,r,¥').

Proof. Induction onn. O

Lemma B.4 (EU-Call) Suppose € domW), (p/,g’,h’) = W(£)).
If
1. VH,R.p (H,R) — p (H,R)



2. VH,R,S'p (H,R) — g’ (H,R) S’ —
R(sra) € dom W) Ap” S’ A
(VS// /1 S/ S// N g (H R
( SH h// S/ SH — h (H R
where(p” g// h//) ( (
3. VH,R,S".p (H,R) — b’ (H,R) S’ —
R($rh) € domW) Ap” S' A
(VS”.gW s's" g (]HLR)
(VSH h/// S/ S// —h (H R
where(p’” g/// h///) (
4.¥S,8'.¢'SS — S.R($ra) = S’ R($
5.VS,S.¢’ SS' — S.R($rh) = S'.R($rh)
we have
YW HLRA([(p.g:h))w W (HLR) — [W(£)] W' (H,R)
(In short, theeu-cALL rule is derivable from therule).

%vv
4
=

Proof. Unfolding the definition of the interpretation function, we
know that, given

6.WwCw
7. p (H,R)
8. WFSE(n,g (H,R),h
we need to prove
p' (H,R)
b. WFSE(n+1,¢’ (H,R),h’ (H,R), )
The proof of ais trivial (by 1 and 7). We focus on the proof of b.
Foralls, if ¢’ (H,R) S/,
by 7 and 2 we know:
9. §'.R($ra) € domW¥)
10.p" &
11.v8".g"S'S" — g (H,R) S
12.v§8"n"s'S” —h (H,R) S”
By lemmas B.1 and B.2, from 8, we know
13. WFSE(n,g" §/,n" &/, W)
Forall§, if v’ (H,R) S,
by 8 and 3 we know:
14. S'.R($rh) € dom W)
15.p"' 8
16.v§".¢"S'S” — g (H,R) S”
17.¥8" 0" §'S” —h (H,R) 8"
18. WFSE(n,g"” S/, §', W) by lemmas B.1 and B.2

By definition of WFSE with (9,10,13) and (14,15,18),
WFSE(n+1,¢’ (H,R),h’ (H,R),¥) m

(H,R),¥)

Lemma B.5 (EU-Ret) If ¥YS.p S — g S S, then for all¥, H andR,
we have

[(pgh)] ¥ (H,R) = [W(R($ra))] W (H,R).

That is, theeu-RETrule is derivable from an instantiation of the
rule, wherers is instantiated t@ra.

Proof. Unfolding the definition of the interpretation function, we
know that, given

1.pS

2. WFSE(n,g S,h S,¥)
we need to prove

a.p's
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b. IMWFSE(m,g’ S,1’ S, W)
where(p’,g’,b') = W(R($ra)).
By 1 we knowg S S
Then, eithem =0 orn > 0. If n= 0, then we know-3S'.¢ S §S'.
Therefore, this case is vacuous.

Thenn > 0.
Then by 2, we know

* S.R($ra) € dom(¥)

° p’ S

e WFSE(n—1,g' S,b’ S, W)
where(p’,g’,b') = W(R($ra)).

By choosing m=n-1, we satisfy both a and b. a

Lemma B.6 (EU-Raise)If VS.pS — h S S, then for all\¥, H and
R, we have
[(p.g:0)] W (H,R) — [W(R($rh))] W (H,R).

That is, theeu-RAISE rule is derivable from an instantiation of the
JRrule, whererg is instantiated t@rh.

Proof. Unfolding the definition of the interpretation function, we
know that, given

1.pS
2. WFSE(n,g S,h S,¥)
we need to prove
a.p’s
b. IMWFSE(m,g” S,1” S, W)
where(p”,g”,h") = W(R($rh)).
By 1we knowh S S
Then, eithem =0 orn > 0. If n= 0, then we know-3S'.h S S'.
Therefore, this case is vacuous.

Thenn> 0.
Then by 2, we know

* S.R($rh) € dom(W)

° p/ S

e WFSE(n—1,¢’ S,1’ S, W)
where(p’,g’,b') = W(R($rh)).

By choosing m=n-1, we satisfy both a and b. m|

C. Derivation of ECAP Inference Rules

Lemma C.1 (ECAP Stack Strengthen)For alln, p, p’, r, andW¥,
if WFSC(n,p,r,W) andvS.p’S — p S, we haveWFSC(n,p’,r,W¥).

Proof. This trivially follows the definition oWFSC. m|

Lemma C.2 (ECAP Stack Strengthen’)For alln, p, r, r’, andW¥,
if WFSC(n,p,r,¥) andvS.r’ S — r'S, we haveWFSC(n,p,r’, ).

Proof. This trivially follows the definition oWFSC. a

Lemma C.3 (ECAP Spec. Strengthen)or alln, p, r, ¥ and¥/,
if WFSC(n,p,r,¥), an d¥ C W, we haveWFSC(n,p,r, V).

Proof. Induction onn. O

Lemma C.4 (E-Call) Suppose € domW), (p/,¢g',b’) =
1. VH,R.p (H,R) — p’ (H,R)

W(E)). If



2. VH,R,S"p (H,R) — g (H,R)S" —
S . R(sra) € dom W) Ap” S’ A
(v§".g"S'S" — g (H,R) S") A
(VSH.h// S/ S" —~h (]HLR) S//)
where(p”,g”,h") = W(S'.R($ra))
3.¥S,SpS—1nSS —hnS¥
4.vS,5".¢ SS' — S.R($ra) = S'.R($ra)
we have
YW H,R.
([(pg: ) )y W (HR) — [W(£)] ¥ (H,R)
(In short, thee-cALL rule is derivable from therule).

Proof. Unfolding the definition of the interpretation function, we

know that, given

5. Ycw

6. p (H,R)

7. WFSC(n,g (H,R),h (H,R),¥)
we need to prove

a.p (HR)

b. WFSC(n+1,g’ (H,R),n’ (H,R),W¥")

The proof of a is trivial (by 1). We focus on the proof of b.

ForallS, if ¢’ (H,R) S,
by 6 and 2 we know:

8. S'.R($ra) € dom¥') by 5 and above equality
0. p// s/

10.VS".g" S'S" — g (H,R) S”

11.vS"n’§'S” —h (H,R) S”

12. WFSC(n,g” §',n” §',¥) by C.1 and C.2
where(p”,g”.b") = W (S'R($ra))

Forall§, if ' (H,R) S,

by 3,h (H,R) S’

by 7 we know:

13. S'.R($rh) € domW')

14.p"S

15. 3Imm< nAWFSC(m,g” S’ n" §', W)

16. Imm< n+1AWFSC(m,g” §',h” S, W) by math

where(p”,g",h") = W (S .R($rh))

By definition of WFSC, 12 and 16
WFSC(n+1,¢’ (H,R),h’ (H,R),¥)

Lemma C.5 (E-Try) Suppose €dom W) and(p’,g’,h’) =W(£)).

If
1. VH,R.p (H,R) — p' (H,R)
2.VH,R,S'p (H,R) — g (H,R) S —
S .R(sra) € dom W) Ap” S’ A
(VSH.g” S/ S" —g (]HLR) S//)
(VS//.h// S/ S// —h (]HLR) S//)
where(p”,¢g”,h") = W(S'.R($ra))
3. VH,R,S,S".p (H,R) — 4’ (H,R) S’ —
S'.R($rh) € domW) Ap” S'A
(g/// S/ S// — g (H,R) S//) A
(h/// S/ S// —h (]HLR) S//)
where(p™”,g" h") = W(S'.R($rh))
4.VS,S'.¢/ SS — S.R($ra) = S'.R($ra)
5.vS,S'1'SS' — S.R($rh) =S .R($rh)

]
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we have
VW H, R.
([(p.g.n))w ¥ (H,R) — [W(£)] ¥ (H,R)
(In short, thee-TRY rule is derivable from the rule).

Proof. Unfolding the definition of the interpretation function, we
know that, given

6. WCW
7. p (H,R)
8. WFSC(n,g (H,R),h (H,R),¥')
we need to prove
a.p (HR)
b. WFSC(n+1,g' (H,R),n’ (H,R),W¥")
The proof of a is trivial (by 1). We focus on the proof of b.
ForallS, if ¢’ (H,R) S,
by 7 and 2 we know:
9. S".R($ra) € domW¥')
10.p' S
11.v8".g' S'S” — g (H,R) S”
12.v§"1'§'S” —h (H,R) S
13. WFSC(n,g’ §',n’ §',W) by C.1 and C.2
Forall§, if ' (H,R) S,
by 4,R($rh) = S’ .R($rh)
by 3 we know:
14. S'R($rh) € dom(W') by above equality
15.p”S
16.vS".¢"S'S" — g (H,R) S
17.v8" 1" S'S” —n (H,R) 8"
18. WFSC(n,g” §',n” S, W) by C.1 and C.2
19. Imm< n+1AWFSC(m,g” S, n” S, W) by m=n.
where(p”,g"” h") = W (S .R($rh))
By definition of WFSC, 13 and 19,
WFSC(n+1,¢’ (H,R),n (H,R),¥) o

Lemma C.6 (E-Ret) If VS.pS — gS S, then for allW, H andR,
we have
[(p.g:0)] W (H,R) — [W(R($ra)) ] W (H,R).

That is, theE-RET rule is derivable from an instantiation of the
rule, whererg is instantiated t@ra.

Proof. Unfolding the definition of the interpretation function, we
know that, given

1.pS

2. WFSC(n,g S,h S,¥)
we need to prove

a.p's

b. IMWFSC(m,g’ S,1v’ S, W)
where(p’,g’,b') = W(R($ra)).

By 1. we knowg S S

Then by 2, we know that either= 0 or n > 0. In the first case

-35".gSS, but sinceg S S, this case is vacuous.
Thenn > 0, and we know the following:

* S.R($ra) € dom(¥)
L] p/ S



e WFSC(n—1,¢' S, S, W)
where(p’,g’,b') = W(R($ra)).

By choosing m=n-1, we satisfy both a and b. m|

Lemma C.7 (E-Raise)If VS.pS —h S S, then for all¥, H andR,
we have
[(p.g.0)] W (H,R) — [W(R($rh))] ¥ (H,R).

That is, theE-RAISE rule is derivable from an instantiation of the
JRrule, whererg is instantiated t@rh.

Proof. Unfolding the definition of the interpretation function, we
know that, given

1.pS
2. WFSC(n,g S,h S, W) for somen.
we need to prove
a.p’sS
b. ILWFSC(l,g” S,h” S, W)
where(p”,g”,h") = W(R($rh)).
By 1. we knowh S S
Then by 2, we know that either= 0 or n > 0. In the first case

—-3S'hSS/, but sinceh S S, this case is vacuous.
Thenn > 0, and we know the following:

o S.R($th) € domW)

° p// S

e Imm< nAWFSC(n,g” S,n” S, W)
where(p”,g”,h") = W(R($rh)).

By using m as |, we satisfy both a and b. m|
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