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Goal: formally prove an end-to-end information-flow policy 
that applies to the low-level code of these systems 

 



 How to specify the information flow policy? 
• ideally, specify at high level of abstraction 

• allow for some well-specified flows (e.g., declassification) 
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 Most systems are written in both C and assembly 

• must deal with low-level assembly code 

• must deal with compilation 

• even verified compilation may not preserve security 



 How to prove security on low-level code? 
• Security type systems (e.g., JIF) don’t work well for weakly-

typed languages like C and assembly 

• How do we deal with declassification? 

• Systems may have “internal leaks” hidden from clients 

 

 

 How to prove security for all components in a 
unified way that allows us to link everything 
together into a system-wide guarantee? 



New methodology to specify, prove, and propagate 
IFC policies with a single unifying mechanism: the 
observation function 

 

 specify – expressive generalization of classical 
noninterference 

 

 prove – general proof method that subsumes both 
security label proofs and information hiding proofs 

 

 propagate – security-preserving simulations 

 



Application to a real OS kernel (CertiKOS [POPL15]) 
  

 First fully-verified secure kernel involving C and 
assembly, including compilation 

 

 Verification done entirely within Coq 

 

 Fixed multiple bugs (security leaks) 

 

 Policy: user processes running over CertiKOS cannot 
influence each other in any way (IPC disabled) 



Security Policy 

Proof: spec secure wrt policy 
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1. Specifying security 

 

2. Proving security (example) 

 

3. Propagating security across simulations 

 

4. Experience with CertiKOS security proof 
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“Alice’s behavior is influenced only by her own data.” 
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“Alice’s behavior is influenced only by her own observation.” 



Θ :  principal    program state    observation 
(can be any type) 

S :  program state  program state  prop 

“spec S is secure for principal p” 

∀ σ1 , σ2, σ’1, σ’2 .  
 

Θp(σ1) = Θp(σ2)  ∧  S(σ1, σ’1)  ∧  S(σ2, σ’2) 

⟹  

 
 

Θp(σ’1) = Θp(σ’2) 
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1. Specifying security 

 

2. Proving security (example) 

 

3. Propagating security across simulations 

 

4. Experience with CertiKOS security proof 
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Definition va_load va σ rs rd := 

  match ZMap.get (PDX va) (ptpool σ) with 

    PDEValid _ pte => 

      match ZMap.get (PTX va) pte with 

        | PTEValid pg _ =>  

      Next (rs # rd <-  

              FlatMem.load (HP σ) (pg*PGSIZE + va%PGSIZE)) 

        | PTEUnPresent => exec_pagefault σ va rs 

      end 

  end. 

Process p 

:= fun va => va_load va σ Θp(σ) 

High Security Declassify? 



 

1. Specifying security 

 

2. Proving security (examples) 

 

3. Propagating security across simulations 

 

4. Experience with CertiKOS security proof 



 OS and compiler refinement proofs use simulations 

 Simulations may not preserve security! 
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• Define an observation function for each machine, ΘM and ΘN 
• Require that the simulation is security-preserving 

 
 
 
 
 
 
 
 
 
 
 

• No significant changes to CompCert were needed 

Security-Preserving  Simulation (for principal p) 

∀ σ1 , σ2, s1, s2 .  
 

ΘM
p (σ1) = ΘM

p (σ2)  ∧  R(σ1, s1)  ∧  R(σ2, s2) 

⟹  
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1. Specifying security 

 

2. Proving security (examples) 

 

3. Propagating security across simulations 

 

4. Experience with CertiKOS security proof 



 Certified functionally correct OS kernel with 32 layers 

 

 354 lines of assembly code, ~3000 lines of C code 
◦ CompCert compiles C to assembly 

 

 Each layer has primitives that can be called atomically 

 

 Bottom layer MBoot is the x86 machine model 

 

 Top layer TSysCall contains 9 system calls as primitives 
◦ init, vmem load/store, page fault, memory quota, spawn child, yield, print 



 For a process p, the observation function is: 
◦ registers, if p is currently executing 

◦ the output buffer of p 

◦ the function from p’s virtual addresses to values 

◦ p’s available memory remaining (quota) 

◦ the number of children p has spawned 

◦ the saved register context of p 

◦ the spawned status and currently-executing status of p 
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Generalized Noninterference: 

∀𝜎1, 𝜎2, 𝑠1, 𝑠2 .  

Θ𝑝
𝑆

𝜎1 = Θ𝑝
𝑆

𝜎2 ∧ 𝜎1, 𝑠1 ∈ 𝑅 ∧ 𝜎2, 𝑠2 ∈ 𝑅 
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𝐼 𝑠1 = 𝐵𝑝
𝐼 (𝑠2) 

End-to-End Security: 



function alice { 

  int pid1 = proc_spawn(); 

  yield(); 

  int pid2 = proc_spawn(); 

  print(pid2 – pid1 + 1); 

} 

function bob { 

  int secret = 42; 

  for i = 0 to secret { 

    proc_spawn(); 

  } 

  yield(); 

} 
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 New methodology using observation function to 
specify, prove, and propagate IFC policies 
◦ applicable to all kinds of real-world systems! 

 

 Verification of secure kernel done fully within Coq 
◦ machine-checked proofs! 

 

 Future Work: virtualized time (already done), more 
realistic x86 model, preemption, concurrency 



CertiKOS info - http://flint.cs.yale.edu/certikos/ 
PLDI certified artifact - ask me for link 

http://flint.cs.yale.edu/certikos/
http://flint.cs.yale.edu/certikos/
http://flint.cs.yale.edu/certikos/

