
David Costanzo, Zhong Shao, Ronghui Gu
Yale University

PLDI 2016
June 17, 2016

a.com b.com

Web Browser

Proc 1 Proc 2

OS Kernel

VM 1 VM 2

Hypervisor

Mach 1 Mach 2

Distributed System

Goal: formally prove an end-to-end information-flow policy
that applies to the low-level code of these systems

 How to specify the information flow policy?
• ideally, specify at high level of abstraction

• allow for some well-specified flows (e.g., declassification)

Proc 1 Proc 2

OS Kernel

policy?

 Most systems are written in both C and assembly

• must deal with low-level assembly code

• must deal with compilation

• even verified compilation may not preserve security

 How to prove security on low-level code?
• Security type systems (e.g., JIF) don’t work well for weakly-

typed languages like C and assembly

• How do we deal with declassification?

• Systems may have “internal leaks” hidden from clients

 How to prove security for all components in a
unified way that allows us to link everything
together into a system-wide guarantee?

New methodology to specify, prove, and propagate
IFC policies with a single unifying mechanism: the
observation function

 specify – expressive generalization of classical
noninterference

 prove – general proof method that subsumes both
security label proofs and information hiding proofs

 propagate – security-preserving simulations

Application to a real OS kernel (CertiKOS [POPL15])

 First fully-verified secure kernel involving C and
assembly, including compilation

 Verification done entirely within Coq

 Fixed multiple bugs (security leaks)

 Policy: user processes running over CertiKOS cannot
influence each other in any way (IPC disabled)

Security Policy

Proof: spec secure wrt policy

End-to-End Guarantee

Observation
Function

x86 Machine Model

Security-
Preserving
Simulation V

e
ri

fi
e
d

1. Specifying security

2. Proving security (example)

3. Propagating security across simulations

4. Experience with CertiKOS security proof

Bob1

Alice

Bob1'

Alice'

Bob2

Alice

Bob2'

Alice'

=

=

“Alice’s behavior is influenced only by her own data.”

σ1

ΘA(σ1)

σ1'

ΘA(σ1')

σ2

ΘA(σ2)

σ2'

ΘA(σ2')

=

=
“Alice’s behavior is influenced only by her own observation.”

Θ : principal  program state  observation
(can be any type)

S : program state  program state  prop

“spec S is secure for principal p”

∀ σ1 , σ2, σ’1, σ’2 .

Θp(σ1) = Θp(σ2) ∧ S(σ1, σ’1) ∧ S(σ2, σ’2)

⟹

Θp(σ’1) = Θp(σ’2)

w (5, {A})

x (17, {A,B})

y (42, {B})

z (13, {})

w (5, {A})

x (?, {A,B})

y (?, {B})

z (13, {})

ΘA

{}

{A} {B}

{A,B}

ΘA

employee
salaries

avg
salary

ΘA

M T W F M T W F

Bob’s detailed
event calendar

Bob’s available /
unavailable time slots

ΘA

1. Specifying security

2. Proving security (example)

3. Propagating security across simulations

4. Experience with CertiKOS security proof

va_load

page
tables

va pa
global
heap data

Definition va_load va σ rs rd :=

 match ZMap.get (PDX va) (ptpool σ) with

 PDEValid _ pte =>

 match ZMap.get (PTX va) pte with

 | PTEValid pg _ =>

 Next (rs # rd <-

 FlatMem.load (HP σ) (pg*PGSIZE + va%PGSIZE))

 | PTEUnPresent => exec_pagefault σ va rs

 end

 end.

Process p

:= fun va => va_load va σ Θp(σ)

High Security Declassify?

1. Specifying security

2. Proving security (examples)

3. Propagating security across simulations

4. Experience with CertiKOS security proof

 OS and compiler refinement proofs use simulations

 Simulations may not preserve security!

x 17

y 42

x 17

y 42

z 0

x 42

y 17

z 17

x 42

y 17

swap(x,y)

z = x; x = y;
y = z

R R

𝑅 𝜎𝑀, 𝜎𝑁 ≔ (𝜎𝑀 𝑥 = 𝜎𝑁 𝑥 ∧ 𝜎𝑀 𝑦 = 𝜎𝑁(𝑦))

Machine M

Machine N

• Define an observation function for each machine, ΘM and ΘN
• Require that the simulation is security-preserving

• No significant changes to CompCert were needed

Security-Preserving Simulation (for principal p)

∀ σ1 , σ2, s1, s2 .

ΘM
p (σ1) = ΘM

p (σ2) ∧ R(σ1, s1) ∧ R(σ2, s2)

⟹

ΘN
p (s1) = ΘN

p (s2)

1. Specifying security

2. Proving security (examples)

3. Propagating security across simulations

4. Experience with CertiKOS security proof

 Certified functionally correct OS kernel with 32 layers

 354 lines of assembly code, ~3000 lines of C code
◦ CompCert compiles C to assembly

 Each layer has primitives that can be called atomically

 Bottom layer MBoot is the x86 machine model

 Top layer TSysCall contains 9 system calls as primitives
◦ init, vmem load/store, page fault, memory quota, spawn child, yield, print

 For a process p, the observation function is:
◦ registers, if p is currently executing

◦ the output buffer of p

◦ the function from p’s virtual addresses to values

◦ p’s available memory remaining (quota)

◦ the number of children p has spawned

◦ the saved register context of p

◦ the spawned status and currently-executing status of p

TSysCall

MBoot

ΘS
p = (as described)

ΘI
p = p’s current output buffer

R

p’s “final” output buffer
(whole-execution behavior)

BI
p =

∀𝜎1, 𝜎2, 𝜎1
′, 𝜎2

′ .

Θ𝑝
𝑆

𝜎1 = Θ𝑝
𝑆

𝜎2 ∧ 𝜎1, 𝜎1
′ ∈ 𝑆 ∧ 𝜎2, 𝜎2

′ ∈ 𝑆

⇒ Θ𝑝
𝑆

𝜎1
′ = Θ𝑝

𝑆
(𝜎2

′)

Generalized Noninterference:

∀𝜎1, 𝜎2, 𝑠1, 𝑠2 .

Θ𝑝
𝑆

𝜎1 = Θ𝑝
𝑆

𝜎2 ∧ 𝜎1, 𝑠1 ∈ 𝑅 ∧ 𝜎2, 𝑠2 ∈ 𝑅
⇒ 𝐵𝑝

𝐼 𝑠1 = 𝐵𝑝
𝐼 (𝑠2)

End-to-End Security:

function alice {

 int pid1 = proc_spawn();

 yield();

 int pid2 = proc_spawn();

 print(pid2 – pid1 + 1);

}

function bob {

 int secret = 42;

 for i = 0 to secret {

 proc_spawn();

 }

 yield();

}

||

pid1 pid2

secret

IDs

0
max children = 3

1 2 3

4 5 6 7 8 9 10 11 12

 New methodology using observation function to
specify, prove, and propagate IFC policies
◦ applicable to all kinds of real-world systems!

 Verification of secure kernel done fully within Coq
◦ machine-checked proofs!

 Future Work: virtualized time (already done), more
realistic x86 model, preemption, concurrency

CertiKOS info - http://flint.cs.yale.edu/certikos/
PLDI certified artifact - ask me for link

http://flint.cs.yale.edu/certikos/
http://flint.cs.yale.edu/certikos/
http://flint.cs.yale.edu/certikos/

