End-to-End Verification of
Information-Flow Security for
C and Assembly Programs

David Costanzo, Zhong Shao, Ronghui Gu
Yale University

PLDI 2016
June 17, 2016

Information-Flow Security

Goal: formally prove an end-to-end information-flow policy
that applies to the low-level code of these systems

Distributed Syqs@fem

Challenges

» How to specify the information flow policy?

ideally, specify at high level of abstraction
allow for some well-specified flows (e.g., declassification)

OS Kernel

Challenges

» Most systems are written in both C and assembly
- must deal with low-level assembly code
- must deal with compilation
- even verified compilation may not preserve security

—>

primitive &
function calls

High-level information-flow security policy specification

0S Syscall Spec

—e
> T — “implements”
User CModules ' User
Process Q AsmSpec Process e

P1 P2 T
CompCert T \I;ftmg
* Asm.s
_)l CMods.s r— Low-level
end-to-end
l security
h b 4 N

guarantee
x86 Assembly Machine Model

Challenges

» How to prove security on low-level code?

- Security type systems (e.g., JIF) don’t work well for weakly-
typed languages like C and assembly

- How do we deal with declassification?
- Systems may have “internal leaks” hidden from clients

» How to prove security for all components in a
unified way that allows us to link everything
together into a system-wide guarantee?

Contribution 1

New methodology to specify, prove, and propagate
IFC policies with a single unifying mechanism: the
observation function

specify - expressive generalization of classical
noninterference

prove - general proof method that subsumes both
security label proofs and information hiding proofs

propagate - security-preserving simulations

Contribution 2
Application to a real OS kernel (CertiKOS [POPL15])

- First fully-verified secure kernel involving C and
assembly, including compilation

- Verification done entirely within Coq
- Fixed multiple bugs (security leaks)

- Policy: user processes running over CertiKOS cannot
influence each other in any way (IPC disabled)

Our Solution

Observation
Function

Security Policy

0S Syscall Spec Proof: spec secure wrt policy
* b

CModules A 5
E S SToPEe Security-
T CompCert T Preserving
g 3 Simulation

Asm.s
CMods.s r
x86 Machine Model End-to-End Guarantee

Rest of Talk

2. Proving security (example)
3. Propagating security across simulations

4. Experience with CertiKOS security proof

Pure Noninterference

“Alice’s behavior is influenced only by her own data.”

Generalized Noninterference

“Alice’s behavior is influenced only by her own observation.”

Observation Function

O : principal > program state > observation
(can be any type)

S : program state - program state - prop

“spec S is secure for principal p”
Vo, 0,0 0,.

G)p(0'1) = G)p(cz) A S(oy 07y) A S(o;, 07))

—

0,(0’;) = 6,(d’,)

Example Observation Functions

w (5, {AD @A w (5, {AD
X (17, {A,B}) X @, {A,B)
y (42, {B} |:>> y (2, {B}
z (13, {h z (13, {h
{A,B}
< N

Example Observation Functions

<>
O
employee avg
salaries salary

Bob’s detailed Bob’s available /
event calendar unavailable time slots

GG o, HEUE
EEEE

Rest of Talk

1. Specifying security

3. Propagating security across simulations

4. Experience with CertiKOS security proof

Virtual Address Translation

(vlosd

|
[e T

Definition va load va o rs rd :=
match ZMap.get (PDX wva) (ptpool o) with
PDEValid pte =>
match ZMap.get (PTX wva) pte with

e
| PTEvalid— — Declassify?

Process p

High Security

Rest of Talk

1. Specifying security

2. Proving security (examples)

4. Experience with CertiKOS security proof

Insecure Simulation

» OS and compiler refinement proofs use simulations
» Simulations may not preserve security!

swap(x,y)

Machine M

Machine N

R(oy, on) = (oy(x) = oy(x) Aoy (y) = on(¥))

Propagating Security

« Define an observation function for each machine, ©M and ©N
« Require that the simulation is security-preserving

Security-Preserving Simulation (for principal p)

VO, 0,5 S;.

G)Mp (0-]) = G)Mp(o-z) A R(o.]’ S]) A R(o.z’ Sz)

—
ON, (s;) = ON, (s,)

« No significant changes to CompCert were needed

Rest of Talk

1. Specifying security

2. Proving security (examples)

3. Propagating security across simulations

CertiKOS Overview

Certified functionally correct OS kernel with 32 layers

v

v

354 lines of assembly code, ~3000 lines of C code

- CompCert compiles C to assembly

Each layer has primitives that can be called atomically

v

Bottom layer MBoot is the x86 machine model

v

Top layer TSysCall contains 9 system calls as primitives
> init, vmem load/store, page fault, memory quota, spawn child, yield, print

v

CertiKOS Observation Function

» For a process p, the observation function is:

> registers, if p is currently executing

- the output buffer of p

- the function from p’s virtual addresses to values

> p’s available memory remaining (quota)

- the number of children p has spawned

- the saved register context of p

- the spawned status and currently-executing status of p

CertiKOS Security Property

m ﬂ @3, = (as described)
m ﬂ ©!, = p’s current output buffer

= p’s “final” output buffer
(whole-execution behavior)

Generalized Noninterference: .,
Voy,07,01,0; .

@;(01) = p(Uz) A (01,01{) € SA(03,05) ES
= 05 (07) = 03 (a3)

End-to-End Security:

VO-]_, 02,51,S57 .
63(01) = @g(gz) A(01,51) ER N (0y,5;) ER
= B)(s1) = B)(s;)

CertiKOS Security Leak

function alice { function bob {
int pidl = proc spawn(); int secret = 42;
yield(); for 1 = 0 to secret {
int pid2 = proc spawn(); proc spawn () ;
print (pid2 - pidl + 1); }

} yield() ;

IDs

SNNEEEEEEEEE

pidl pid?2
\ J
|

secret

Solution to Leak

Conclusion

» New methodology using observation function to
specify, prove, and propagate IFC policies
- applicable to all kinds of real-world systems!

» Verification of secure kernel done fully within Coqg
- machine-checked proofs!

» Future Work: virtualized time (already done), more
realistic x86 model, preemption, concurrency

Thank You!

CertiKOS info - http://flint.cs.vale.edu/certikos/

PLDI certified artifact - ask me for link

http://flint.cs.yale.edu/certikos/
http://flint.cs.yale.edu/certikos/
http://flint.cs.yale.edu/certikos/

