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ABSTRACT

We propose the Write-Once Register (WOR) as an abstraction for
building and verifying distributed systems. AWOR exposes a simple,
data-centric API: clients can capture, write, and read it. Applica-
tions can use a sequence or a set of WORs to obtain properties such
as durability, concurrency control, and failure atomicity. By hiding
the logic for distributed coordination underneath a data-centric
API, the WOR abstraction enables easy, incremental, and exten-
sible implementation and verification of applications built above
it. We present the design, implementation, and verification of a
system called WormSpace that provides developers with an address
space of WORs, implementing each WOR via a Paxos instance. We
describe three applications built over WormSpace: a flexible, effi-
cient Multi-Paxos implementation; a shared log implementation
with lower append latency than the state-of-the-art; and a fault-
tolerant transaction coordinator that uses an optimal number of
round-trips. We show that these applications are simple, easy to
verify, and match the performance of unverified monolithic imple-
mentations. We use a modular layered verification approach to link
the proofs for WormSpace, its applications, and a verified operating
system to produce the first verified distributed system stack from
the application to the operating system.
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1 INTRODUCTION

Cloud-scale platforms offer developers a number of storage and
coordination services that expose simple, data-centric interfaces. At
first glance, these services are diverse: they provide different APIs
such as key-value stores, block stores, shared logs, object stores,
and filesystems. However, the protocols used by these systems to
provide properties such as durability, failure atomicity, consistency,
and concurrency control are quite similar. Thus, codebases are often
highly redundant, re-implementing protocols such as Paxos [33]
and Two-Phase Commit (2PC) [22] with slight variations. Each
variation leads to different APIs and performance characteristics,
but can introduce subtle code and protocol bugs.

In this paper, we explore a data-centric abstraction for distributed
systems called the write-once register (WOR). The WOR has a
simple API: a client can capture a WOR; write to a captured WOR;
and read the WOR. The WOR offers linearizable consistency and is
safe for concurrent accesses: if multiple clients attempt to capture
and write the same WOR, only one will succeed.

WORs can be naturally implemented via the Paxos protocol
(with modifications to support quorum reads), offering durability
and availability against a minority of storage servers failing. In
fact, the WOR capture/write API mirrors the phases of single-shot
Paxos. WORs can also be implemented via other protocols such
as Primary-Backup or Chain Replication [57], obtaining different
durability and availability guarantees.

Most distributed services embed WORs, but hide them under-
neath a higher-level API:

• A sequence of WORs is often used to impose a total order, but
hidden behind restrictive interfaces such as replicated state ma-
chines [49, 55], shared logs [3], groups [6, 56], namespaces [9, 30],
filesystems, databases [5], or objects [4]. Often, the implementa-
tion of the WOR is fused with the machinery that implements
the high-level API.

• A set of WORs represents decisions taken by participants in
distributed transaction protocols such as 2PC; the final com-
mit decision for a transaction is a function of these WORs. In
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Figure 1:WormSpace architecture: clients can access a shared address

space of write-once registers.

fault-tolerant protocols, each decision WOR is either layered in-
efficiently over a replicated state machine, or entwined with a
transaction coordination logic [21].

We argue that the WOR should be a first-class system-building
abstraction. By providing single-shot consensus via a simple yet
versatile data-centric API, the WOR acts as the bottom layer in a
modular stack for building strongly consistent distributed systems.
The resulting modularity has two benefits. First, it enables simple

systems: the code and logic for consensus can be provided by a small
number of high-quality implementations (e.g., Paxos and Chain
Replication) and reused across different systems. Second, it enables
verified end-to-end systems. With a portable layered verification
approach [23, 25], the WOR implementation can be verified once
and reused for the verification of applications that use the WOR.
The application can be verified easily without dealing with the
complexity of distributed asynchrony and failures. Also, the WOR
can be layered over a verified OS to enable full-stack verification
from the application to the OS.

Accordingly, we present the design, implementation, and veri-
fication of WormSpace (contracted from Write-Once-Read-Many
Address Space), which provides applications with a shared address
space of durable, highly available, and strongly consistent WORs
(see Figure 1). WormSpace divides the address space into contiguous
write-once segments (WOSes), which act as coarse-grained units
for allocation, notification, reconfiguration, and garbage collection.
Internally, eachWOR is implemented via a conventional single-shot
Paxos instance; WormSpace can be viewed as a system to organize,
access, and manipulate these Paxos instances via data-centric APIs.
We implementWormSpace via a combination of a client-side library
and storage servers. We formally verify the client-side library and
the server code written in C using the Coq [14] proof assistant. We
verify the functional correctness of the code, as well as distributed
properties (e.g., write-once semantics) achieved collaboratively by
the client library and the server code.

Applications built over WormSpace consist entirely of cap-
ture, write, and read commands on the write-once address space,
rather than message-passing protocols. As a result, they are easy
to develop and verify. We implement three applications over
WormSpace: WormPaxos, a Multi-Paxos implementation; Worm-
Log, a distributed shared log; and WormTX, a distributed, fault
tolerant transaction coordinator. All these applications are built
entirely over the WOR API, yet provide efficiency comparable to or
better than handcrafted implementations. Specifically, we do not

‘open the Paxos box’ while implementing these applications; the
logic for consensus and durability remains strictly contained within
the WOR abstraction. In contrast, state-of-the-art implementations
for all three applications require the complex melding of Paxos
logic with other protocols to obtain efficiency. Further, separating
out the WOR enables novel design points: for example, a shared
log that uses Paxos (rather than Chain Replication) to replicate
each command, supporting appends in just two round-trips in the
failure-free case.

WormSpace and its modular WOR design facilitate verification
of distributed systems. Contextual refinement, the key technique
in a layered verification approach (detailed in Section 2.2) [23],
allows for the code above the WormSpace API to be verified easily
and incrementally. Applications can be verified without having
to deal with the complexity of distributed coordination, which
is encapsulated within the WOR layer. To verify an application’s
correctness against WormSpace, we simply link its proof to the
top-most layer proof of WormSpace. Similarly, we can easily link
the bottom-most layer proof of WormSpace to CertiKOS [24], a
fully verified OS, enabling the first verified system stack from the
distributed application to the OS, excluding only the hardware and
the network. The linking ensures that verified software components
interact with each other correctly as verified without leaving any
anomalous corner cases [17]. As a result, we can verify each layer
once and reuse the proof multiple times to easily expand the verified
code base.

In this paper, we make three contributions. First, we identify the
WOR abstraction inherent in many distributed systems and present
a simple, data-centric WOR API as a first-class programming ab-
straction. Second, we implement three distributed applications over
this API; for each one, our modular design easily allows new con-
figurations with different performance and availability properties,
while matching the performance of an existing monolithic imple-
mentation in a similar configuration. Finally, we show that the
modular design of the resulting systems, when combined with the
layered verification approach, facilitates the reuse of software cor-
rectness proofs, and enables verification that crosses distributed
system/application boundaries.

2 BACKGROUND

2.1 A Least Common Denominator API

We stated that various systems hide WOR functionality behind
high-level APIs. We examine different classes of systems to make
two points: most systems are similar in their use of a WOR ker-
nel; but they hide it behind APIs that hinder flexibility, reusability,
and performance. While some of these APIs can be implemented
over each other, none of them acts naturally as a lowest common
denominator for all others. The WOR fills this gap.

StateMachine Replication (SMR) /Multi-Paxos [49, 55] sys-
tems allow arbitrary (but deterministic) application code to be repli-
cated, via an interface that allows servers to propose new commands
and learn them via an upcall. The SMR API is general and easy to
use; however, it limits applications by not exposing the underlying
address space of WORs. In a sense, SMR imposes a sequential write
/ sequential read interface on an address space of WORs. The SMR
interface can be implemented via multiple protocols; in the other
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direction, however, Multi-Paxos protocols are exclusively used to
support an SMR interface, and designed for the sequential write /
sequential read API.

Shared logs [3] provide an append/read API to applications.
Unlike in SMR, applications can directly read from WOR instances,
examining the history of commands. However, as with SMR, appli-
cations cannot directly write to WOR instances; all writes must be
funneled through the shared log API, which imposes a total order
on commands. In effect, a shared log imposes a sequential write /
random read interface on an address space of WORs.

Group communication (GC) systems allow sending messages
to groups of servers; each message is atomically delivered with or-
dering guarantees. Each slot in the total or partial order of messages
to the group is effectively a write-once register; the message send
primitive acts as a write operation. As with SMR, the GC send/re-
ceive API can be viewed as imposing a sequential write / sequential
read interface on an address space of WORs.

Coordination services (e.g., Chubby [9] and ZooKeeper [30])
typically expose a filesystem-like API to applications. Such an API is
ideal for use cases such as membership management and leadership
election, but is awkward for the replication of arbitrary data or
general-purpose ordering of commands. These systems are usually
implemented over SMR, GC, or shared log APIs.

Transaction coordinators are responsible for coordinating
transactions across distributed state. In effect, they are manipu-
lating a set of WORs, each one representing the prepare/abort
decision for a participant so that an atomic commit happens across
the system. Concurrency control is usually implemented via an
orthogonal mechanism such as locking.

We argue that WORs represent a least common denominator
interface: all the systems described above can be implemented easily
and efficiently over a WOR.

2.2 Verification Approach

Modularity of WOR enables verification based on the certified con-
current abstraction layer (CCAL) approach [23, 25], wherewe divide
the system into modular layers, verify the correctness of each layer
independently, and verify the end-to-end behavior of the system
via contextual refinement between layers. Each layer L is a state
machine which has its corresponding implementation i and an exe-
cution environment context t . The context t includes programs and
configurations that can run on the state machine; and such context
is not limited to a sequential program but it can be a concurrent
operating system or even an entire distributed system. Informally,
a layer Llow contextually refines the higher layer Lhiдh if each
state transition made by Lhiдh based on any context t corresponds
to a sequence of state transitions by Llow which has the context
t and Lhiдh ’s implementation ihiдh . We can formally represent
contextual refinement Llow ⊑cr Lhiдh as verifying the following:

∀t ,Llow (ihiдh ⊕ t) ⊑ Lhiдh (t),

where ⊑ is the refinement relation and ⊕ computes the union of
implementation modules and contexts.

Contextual refinement is powerful since layers can be verified
only once independently; and layers can be linked by verifying that
each layer refines the layer above it for an arbitrary context. When

the stack is extended with a new verified layer on top, the inter-
layer contextual refinement proofs can be reused with an updated
context to include the new layer. For example, if we add a new layer
Ltop on top of verified layers Lmid and Lbtm , we need one new
proof that shows Lmid contextually refines Ltop , but we can reuse
the proof for Lbtm ⊑cr Lmid without requiring any modification
to the proof because the proof holds łfor all" context t . After the
proof of Lmid ⊑cr Ltop , we are automatically guaranteed that
Lbtm contextually refines all the way up to Ltop as follows:

∀t ,Lbtm (imid ⊕ (itop ⊕ t)) ⊑ Lmid (itop ⊕ t) ⊑ Ltop (t).

Internally, each layer is composed of the C implementation, spec-
ifications, and proofs. To develop a layer Lk , the developer writes
source code in C; the high-level and the low-level specifications
in Coq, which specify how the code changes abstract state and
memory, respectively; auto-generates the Coq representation of C
source code using CompCertX [23]; and writes three proofs: 1) pk ,
a proof that the generated code refines the low-level specification;
2) rk , a proof that the low-level specification refines the high-level
specification; and 3) Rk−1,k , a proof using pk and rk to verify that
Lk−1 contextually refines Lk . The proofs pk and rk guarantee that
the C code (i.e., its verified Coq representation) is correct as defined
by the specifications. With the contextual refinement proof Rk−1,k ,
we are assured that the C code in Lk never uses the code in Lk−1
in an undefined way; calls to C functions in Lk−1 always return
defined results to Lk ; and variables used and allocated in each layer
have their own memory locations and are safely accessed.

Consequently, proving the contextual refinement relation for
each pair of layers in the stack guarantees the functional correct-
ness of the entire system: all layers function correctly from Lbtm to
Ltop independently and together. With the help of the verified Com-
pCertX compiler, the correctness of system continues to hold even
after the C code is compiled into assembly. To build an application
on top of a verified system, we simply add layers corresponding
to the application on top of Ltop . The application uses Ltop as its
bottom layer for verification and is oblivious to the layers under-
neath. The contextual refinement relation between Ltop and the
application guarantees that the application uses the underlying
system (from Lbtm to Ltop ) correctly.

Such co-verification of the application and the system is crit-
ical, but often overlooked and considered difficult. Without co-
verification, the application and the system can be verified indepen-
dently but still be incorrect as a whole, since the application can
abuse the system interface or take actions based on wrong assump-
tions [17]. For example, for the same write interface, the system
and the application may have different address bounds and the
application can write beyond the system’s address limit. Another
example involves slightly different definitions for correctness condi-
tions: a storage system may interpret durability as łflushing to local
diskž, while the application may expect durability from the storage
system to mean łstored on a backup machinež; both can be verified
correct, yet the combination will be incorrect. Such mismatches can
neutralize the verification effort. Contextual refinement not only
guarantees that the application uses the system interface correctly
but also guarantees that the application’s assumptions about the
interface are valid.
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/∗ WormSpace APIs ∗/
// allocates a WOS
int alloc (char ∗metadata, int size , segid_t ∗newsegid);
// trims a segment
int trim(segid_t seg) ;

/∗ WOS APIs ∗/
// batch captures a sub−range within the WOS
int seg_capture(segid_t seg , int ∗ retcodes , off_t start ,

off_t end) ;
// batch writes a sub−range within the WOS
int seg_write(segid_t seg , char ∗buf , int size , int ∗ retcodes ,

off_t start , off_t stop) ;
// registers a listener for write notifications
int seg_listen ( segid_t seg , callback_t listener ) ;

/∗ WOR APIs ∗/
// captures a WOR
int capture(segid_t seg , off_t addr, int ∗captureID) ;
// writes a single WOR
int write( segid_t seg , off_t addr, char ∗buf , int size ,

int captureID) ;
// reads a single WOR
int read( segid_t seg , off_t addr, char ∗buf , int size ) ;

Figure 2: The WormSpace API.

In addition to the functional correctness proof, we verify the
distributed protocols and global properties of the entire system that
are not immediately visible from the code by adding a ghost layer.
We add a new network model to the ghost layer and tie together
independent nodes in distributed systems to enable the verification
of their collective behavior such as distributed nodes maintaining
consensus. Although the ghost layer is a logical layer without a C
implementation, it is part of our contextual refinement chain where
the verified properties are guaranteed to hold in any layer above.

We later show that the verification of WormSpace leads to easy
verification of applications on top and can extend the verification
of a fully verified OS stack.

3 THE WORMSPACE SYSTEM

The WormSpace API (Figure 1 and 2) provides applications running
on client machines with a shared, random-access address space
of WORs. All calls in the WormSpace API are safe for concurrent
access, providing linearizable semantics for the address space. The
address space is divided into write-once segments (WOSes) of fixed
size. Segments are explicitly allocated via an alloc call that takes
in a segment ID and succeeds if it is as yet unallocated. The alloc
call takes an optional metadata payload to be associated with the
new segment. Clients can check a segment to see if it is allocated
by some other client, obtaining the metadata if this is the case.

Once a client has allocated a WOS, any client in the system can
operate on WORs within the segment. Specifically, it can capture

a WOR; write to it; and read from it. Any call to a WOR in an
unallocated segment fails with an error code. Clients must capture
an address before writing to it to coordinate replicated servers to
make the write atomic and immutable. The capture call is similar to
a preemtable lock (e.g. prepare of Paxos): the lock must be acquired
to write, but it can be stolen by others.

A successful capture call returns a unique, non-zero captureID; a
subsequent write by the same thread is automatically parameterized

with this ID, and succeeds if theWORhas not been captured by some
other client in the meantime. Alternatively, threads, processes, and
even clients can capture a WOR and then hand over the captureID
to some other thread/process/client that passes it in explicitly as a
parameter to a write, allowing the capture andwrite to be decoupled
in space. Finally, a write parameterized with a captureID of 0 does
not require a prior capture; we call this an unsafe write. Unsafe
writes are fast because capturing is unnecessary, but not safe for
concurrent access; applications must ensure that at most one client
issues an unsafe write to a particular WOR.

The WOS provides seg_capture and seg_write APIs, which act
as batched operations, capturing all the WORs in the segment or
writing a single value to all of them. A client can also receive noti-
fications when WORs in a particular WOS are written to, via the
seg_listen call. Garbage collection can be triggered by the applica-
tion via the trim call, which trims individual WOSes. WormSpace
returns an error code when a trimmed address is accessed.

3.1 Design and Implementation

WormSpace is implemented via a combination of a client-side li-
brary exposing the API shown in Figure 2 and a collection of servers,
which we call wormservers (Figure 1). In a sense, the WormSpace
design is similar to a distributed key-value store: WORs are associ-
ated with 64-bit IDs (consisting of segment IDs concatenated with
offsets within the segment) and mapped to partitions, which in turn
consist of replica sets of wormservers. Partitioning occurs at WOS
granularity; to perform an operation on a WOR within a WOS, the
client determines the partition storing the segment (via a modulo
function) and issues the operation to the replica set.

Each WOR is implemented via a single-shot Paxos consensus
protocol, with the wormservers within a partition acting as a set
of acceptors. In the context of a single WOR, the wormservers act
identically to Paxos acceptors [34]; a capture call translates to a
phase 1a prepare message, whereas a write call is a phase 2a accept
message. The read protocol mirrors a phase 1a message, but if it
encounters a half-written quorum, it completes the write. Each
wormserver maintains a map from WOR IDs to the acceptor state
for that single-shot Paxos instance. If a map entry is not found, the
WOR is treated as unwritten.

Above this basic WOR interface, the client-side library layers
the logic for enforcing write-once segments. Each WOS segment
is implemented via a set of data WORs, a single metadata WOR,
and a single trim WOR. Allocating the WOS requires writing to the
metadata WOR. If two clients race to allocate a WOS, the first one
to capture and write the WOR wins.

The trim call for garbage collection is implemented via a special
message where the client instructs the wormserver to return errors
on requests for affected WORs, and delete all states of the WORs.
The trim WOR in each WOS enables consensus on a trim command.
On subsequent reads or writes to a trimmed WOR, if a subset of
the accessed quorum replies that the ID is trimmed, the client-side
library completes the trim by issuing it to the remainder of the
quorum, and then returns an E_TRIMMED error to the application.

Reconfiguration Replacing a minority of wormservers from a
partition requires a reconfiguration protocol along the lines of Verti-
cal Paxos [35]. In essence, a reconfiguring client ‘seals’ the existing
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configuration by contacting a majority of the servers. The servers
promise to respond with errors to messages sent by clients with
the existing configuration to prevent progress using this configura-
tion. A new configuration is installed at an auxiliary location; this
could be an external membership service, a different partition of
the WormSpace deployment, or a different instance of WormSpace
altogether. Clients that receive error messages from servers due
to a sealed configuration must go check this location for the new
configuration, and reissue the command to the new set of servers
in the partition.

AlternativeWOR implementationsWithin eachWormSpace
partition, wormservers can be organized in different ways to realize
other consensus protocols. For example, instead of Paxos, we access
the wormservers via a client-driven variant of Chain Replication
used in CORFU [3]. The client captures and writes to each server in
the chain in sequence, and issues reads to the tail. Such a protocol
has the benefit of efficient reads which contact a single server
rather than a majority quorum, and provides durability against f
failures with f + 1 nodes rather than 2f + 1. The downside is the
increased write latency, which is linear in the number of servers,
and unavailability for writes if a single server goes down until a
reconfiguration. In our implementation, we did not implement the
CRAQ [54] optimization, which allows for reads to go to any replica
instead of the tail. We call our two implementations chain-WOR
and paxos-WOR.

WORs could be implemented via Byzantine consensus [10, 12];
we leave this for future work. Note that consensus cannot be real-
ized using a single round trip under asynchronous networks [29].
The capture API is intended to encapsulate such extra coordination
for different implementations.

In a sense, the WOR is analogous to the logical block device
abstraction found at the bottom of a single-machine storage stack.
TheWOR simplifies the construction of systems such as shared logs
and SMR/Multi-Paxos by hiding the complexity of asynchrony and
failures; a block device simplifies the construction of filesystems
by hiding the complexity of storage hardware. Following this anal-
ogy, it is possible to implement the WOR itself over a shared log
or SMR/Multi-Paxos (similar to how a block device can be imple-
mented over a filesystem). However, themore conventional layering
places the WOR at the bottom and this simplifies the higher-level
system design (Section 4) and verification (Section 5).

4 WORMSPACE APPLICATIONS

To illustrate how WormSpace simplifies applications, we present
WormPaxos, WormLog, and WormTX.

4.1 WormPaxos over WormSpace

In principle, implementing Multi-Paxos over WormSpace is sim-
ple: the sequence of commands is stored on the WormSpace ad-
dress space. WormPaxos is an implementation of Multi-Paxos over
WormSpace, exposing a conventional state machine replication
(SMR) API to applications. In WormPaxos, servers that wish to
replicate state act as WormSpace clients; we call these WP-servers.
They can propose new commands by preparing and writing to the
next free address; and learn commands by reading the address space
in sequential order. If a client finds that the current tail is at the
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Figure 3:WormPaxos: servers replicate state by ordering proposals

on the WormSpace address space.

end of a WOS, the client allocates a new WOS and then writes to
the next address.

The chief benefit of this layered design is extreme simplicity;
the Multi-Paxos consists of a few hundreds of lines of code, which
calls data-centric commands over the WormSpace address space.
This design also enables flexibility along a number of dimensions
(Figure 3):

Flexible Consensus (i.e., how is the WOR implemented?): Con-
sensus in WormPaxos is hidden under the WOR abstraction and
can be implemented via many different protocols, ranging from
variants of Paxos, atomic broadcast protocols such as Zab [31], and
protocols such as Primary-Backup and Chain Replication. In con-
trast, existingMulti-Paxos designs weld together the single-decision
consensus engine ś typically Paxos ś with the state machine repli-
cation machinery responsible for consistency and availability. For
example, the WormPaxos codebase can run with no modification
over a different WOR implementation such as the chain-WOR; in
contrast, existing Multi-Paxos implementations require extensive
modification to run over a different single-shot consensus protocol.

Flexible Leadership (i.e., who calls capture?): Sticky leadership
ś i.e., retaining a single leader across multiple commands ś is a key
performance imperative for Multi-Paxos implementations, since it
allows commands to be decided within a single round-trip rather
than two in the absence of failures, and eliminates contention be-
tween leaders. In many Multi-Paxos implementations, leadership
strategy is baked into the system design; for example, Raft [46]
is explicitly designed to support sticky leadership as a first-class
consideration. In WormPaxos, a WP-server becomes a sticky leader
simply by using a batch capture on a WOS; accordingly, leadership
strategies such as sticky leader, rotating leader, etc. can be imple-
mented simply as policies on who should call the batch capture

and when. Further, the leader’s identity can be stored within the
metadata for each segment, obviating the need for WormSpace
to know about the notion of a leader or the leadership strategies
involved. If the leader crashes, a new leader that allocates the next
WOS can batch capture the WOS of the previous leader, complete
partially finished operations, and fill in junk values [3] to unwritten
WORs to prevent holes in the SMR/Multi-Paxos log.

Flexible Durability (i.e., when is trim called?): By varying when
it calls trim, WormPaxos can employ different strategies for durabil-
ity. For instance, a WP-server can trim a prefix of the WormSpace
as soon as a certain number of WP-servers have seen it, or some
WP-server has stored a snapshot in an external data store; this
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Figure 4: WormLog: clients can append by obtaining a token from

the sequencer and writing to WormSpace.

information can be piggybacked on new commands appended to
the address space. In contrast, existing Multi-Paxos designs are tied
to a particular strategy for durability (e.g., when all replicas have
seen a command [55]).

Flexible Consistency (i.e., what addresses do we write and

read?): WormPaxos derives consistency properties such as lineariz-
ability, sequential consistency, or eventual consistency via strate-
gies for writing/reading to the address space. The state at each
WP-server reflects some subset of updates in the WormSpace. For
linearizable writes and reads, each command has to locate a slot
after any completed writes in the address space, but before any
empty slots that could be filled by later commands. For a weaker
guarantee such as sequential consistency, WP-servers can allocate
separate segments and write to them in parallel [40]. Similarly,
causal consistency can be obtained by ensuring that new writes
from a WP-server go to a later address than any it has already
seen. For these weaker consistency guarantees, the random write /
random read nature of the WormSpace API allows us to parallelize
proposing in a way that we could not do over a conventional SMR
(sequential write / sequential read) or shared log (sequential write /
random read) interface.

4.2 WormLog over WormSpace

A shared log is a shared address space that provides an append /
read API to clients. CORFU [3] is a system that implements a shared
log API over a set of write-once addresses. To append a new entry
to the shared log, a client first contacts a centralized sequencer
machine to reserve and increment a tail position on the address
space. It then issues a write to a write-once address. In CORFU,
each write-once address is implemented via a client-driven variant
of Chain Replication, where the client writes to each replica in
sequence. The write-once semantics are derived by using the head
replica of the chain to arbitrate between competing writes to the
same address. A key aspect of this design is that the sequencer is
merely a soft-state hint about the tail of the log, and does not have
to be durable or available.

Achieving a CORFU-like design over WormSpace is straightfor-
ward: we simply have each client contact a sequencer node when it
wants to append an entry, obtain a slot in the WormSpace address
space, and then write to that position (Figure 4). With this design
(which we call WormLog), we obtain the two properties that differ-
entiate a shared log from a Multi-Paxos system [42]: the decoupling
of sequencing from I/O, since the sequencer does not see the append
payload; and the time-slicing of individual commands over different

replica sets, assuming that the WOS size is small compared to the
volume of in-flight appends in the system.

WormLog addresses a problem with the CORFU system’s use of
Chain Replication: appends no longer take latency linear in the num-
ber of replicas, since they simply issue a WormSpace capture/write,
which in turn invokes the Paxos two-phase protocol. However, the
WormLog design described thus far takes three round-trips: one
to the sequencer, one to capture the WOR, and one to write to it.
By decoupling I/O from sequencing, we lose ‘sticky leadership’; we
can no longer perform a batch capture on the WOS and write to
the WOR in a single round-trip, since multiple clients are writing
to a single WOS.

Eliminating this extra round-trip is simple. The sequencer allo-
cates WOSes before handing out sequence numbers to clients. The
sequencer also pre-captures the WOS and provides the client with
the captureID as a token; the client can then predicate its write
with this captureID. Accordingly, WormLog realizes a CORFU-like
design that uses Paxos (reducing latency to 2 round-trips from the
N + 1 required by client-driven Chain Replication).

4.3 WormTX over WormSpace

Two-Phase Commit (2PC) [52] solves the transaction commit prob-
lem via a transaction manager (TM). Any participant (RMs, or
resource managers) that wishes to initiate a commit contacts the
TM (message delay #1). The TM contacts all participants to elicit
a yes/no vote (#2). Each RM votes, records its vote in local stable
storage and responds to the TM (#3). The TM makes a decision
based on the votes it receives, and sends back a commit or abort
command to the RMs (#4). The TM’s decision can be a deterministic
function of the RM votes ś i.e., the decision is yes if all the votes
are yes. Alternatively, the TM can decide no even if all the votes
are yes, in which case it stores its decision in stable storage before
sending the decision.

The failure model for 2PC is that nodes ś TMs or RMs ś can
crash, but will subsequently come back online. 2PC is known to
be a blocking protocol in the presence of such failures. In the case
where the decision is deterministic, if a single RM fails ś after it has
locally stored its vote in stable storage, but before it has responded
to the TM ś then the protocol has to block until the RM comes
back online. In the case where the TM fails ś after storing its final
decision in stable storage but before sending commit messages ś
the protocol has to block until the TM comes back online. In both
cases, the remaining RMs cannot determine the decision.

We consider making the deterministic (i.e., the TM does not have
a separate vote) version of 2PC non-blocking. We come up with a
number of variants that use WORs. We describe them below and in
Figure 5.

[Variant A8: 8 message delays] An obvious solution is to sim-
ply store the votes in a set of per-RM WORs. If the TM decision
is non-deterministic, a WOR is used to store the decision as well.
In the WOR-based 2PC protocol, an RM initiates the protocol by
contacting the TM (message delay #1); the TM contacts the RMs
(#2); they capture the WOR (#3 and #4), and then write to it (#5
and #6); send back their decision to the TM (#7), which sends back
a commit message to all the RMs (#8). This corresponds exactly
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cols. Dashed arrows are notifications.

to using Paxos as a black box to replicate the RM decisions for
availability; we condered this design as our baseline.

[Variant B6: 6 message delays] A simple optimization in-
volves eliminating the capture messages from the critical path.
Each RM can allocate a dedicated WOS for its decisions and batch
capture the WOS in advance. This eliminates delays #3 and #4 from
variant A8, bringing us down to 6 message delays.

[Variant C5: 5 message delays] Further, rather than have the
RM wait for an ACK on the write (message delay #6 in variant
A8) and relay it to the TM (#7 in A8), the TM can directly observe
the decision by listening for write notifications on the WOS. This
compresses #6 and #7 of variant A8 into a single step, bringing us
down to 5 message delays.

[Variant D4: 4 message delays] Finally, rather than have the
TM wait to be notified of all the WOR writes and then send out a
commit message to all the participants (#8 of variant A8), individual
RMs can directly listen to each other’s WOSes; this brings us down
to 4 message delays.

This progression of increasingly fast protocols exactly matches
the description by Gray and Lamport [21]; they too proceed from an
unoptimized 8-step protocol to an optimized 4-step one in identical
fashion, via 6-step and 5-step protocols. In their case, this is achieved
by opening up the Paxos protocol and rewiring the flow of requests
and ACKs between the various Paxos roles of acceptors, leaders,
proposers, and learners. In our case, the optimizations are achieved
via the WormSpace API, without requiring any knowledge of the
Paxos protocol.

[Variant E3: 3 message delays] We now observe that we do
not need a TM, since the final decision is a deterministic function
of the WORs, and any RM can time-out on the commit protocol and
write a no vote to a blocking RM’s WOR to abort the transaction.
The initiating RM can simply contact the other RMs on its own to
start the protocol (combining #1 and #2 of variant A8), bringing
down the number of delays to 3. Interestingly, this variant is not
described by Gray and Lamport.

[Variant F2: 2 message delays] Finally, if RMs can ‘sponta-
neously’ start and vote, we eliminate delays #1 and #2 of variant A8,
bringing the protocol down to two delays, the theoretical minimum
for atomic commit. Since this is not a realistic assumption for many
systems, we choose variant E3 as our final solution.
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Figure 6: Layer diagram: client and server stacks are combined as

a distributed system in the ghost layer and the distributed nature is

invisible from the WOR layer.

Our protocol is in contrast to other non-blocking commit pro-
tocols, which require complex message passing logic [52]. Instead,
we assemble a non-blocking protocol via simple, data-centric com-
mands on WORs.

Concurrency Control: So far we have described a non-
blocking atomic commit protocol built using WORs. To implement
distributed transactions with transactional isolation and atomicity,
this protocol requires some form of concurrency control. We do
not discuss concurrency control schemes in detail because they
vary depending on user needs and do not affect the message delays
for atomic commit. For completeness, however, we implemented a
simple concurrency control protocol based on locking that uses a
write-ahead log and Immediate-Restart [1] for deadlock prevention.

Consider variant E3. The server that performs a transaction
notifies all servers involved. Each server tries to acquire a lock on
its local data for the transaction. If it succeeds, the server writes
a write-ahead log and then a yes vote to its WOR. Upon failure
to lock, the server aborts the transaction by writing a no vote to
its WOR. If each server receives yes ACKs for its own yes write
from all servers involved, it updates the data and releases the lock.
Otherwise, it releases the lock without the update. This protocol
provides strict serializability and failure atomicity.

5 FORMAL VERIFICATION

WormSpace acts as a foundation for verifying distributed systems.
We verifyWormSpace once and reuse its proof for verifying systems
built on top while hiding the complexity of distributed protocol ver-
ification. To do so, we extend the Certified Concurrent Abstraction
Layer (CCAL) approach [23, 25] introduced in Section 2.2, modeling
an asynchronous network of distributed nodes. We apply CCAL
beyond a single system verification for the first time and link the
proof of WormSpace, applications and a verified OS.

5.1 Layer Structure for Verification

WormSpace consists of two separate stacks of verification layers,
the client library (17 layers) and the wormserver (2 layers), over a
common set of base functionalities (5 layers). While the number of
layers may seem excessive, it matches a conventional software stack
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designed for modularity: each layer is a C component implementing
some interface. A simplified layer diagram is shown in Figure 6.

Both stacks share a common set of base layers: the bottom layer
provides an interface to the trusted computing base (TCB), including
network communication functions and a small number of system
calls. Above this bottom layer, we introduce a data layer which
implements various data structures over the trusted primitives.
Above the data layer, the client and server stacks diverge. The
server stack includes Paxos acceptor layers and the wormserver
code above it. The client stack includes layers for Paxos proposer
logic and a wormclient layer that issues individual Paxos proposals.

The ghost layer composes these two stacks into a single tran-
sition system that models and enables reasoning about multiple
wormservers and clients. The ghost layer includes a global state
transition system that can reason about all concurrent client and
server interactions based on a network model. Safety properties of
Paxos (i.e., the write-once guarantee of WOR) are proved in this
layer. The contextual refinement proof between the ghost layer and
the composition of wormserver and wormclient provides a power-
ful guarantee for the layers built on top of the ghost layer. Any layer
that the ghost layer contextually refines is guaranteed to be correct
with respect to both client and server layers. It is guaranteed that
any concurrent behaviors of distributed nodes using the client and
server layers are correct. Verified distributed protocol properties
hold in higher layers while complex proofs are encapsulated in the
ghost layer.

Verification above the ghost layer is as easy as verifying a se-
quential program. For example, the top-level specification for a
write in WormSpace is simply translating the global address to a
segment address and offset and passing the captureID (cid) to call
the lower-level write which is already proved safe under concurrent
distributed accesses:

Func WormSpace_write (addr: Z) (val : Payload)

( cid : Z) (adt : EnvVars) : option (EnvVars ∗ Z) :=

let segment:= addr / WOS_SIZE in

let offset := addr mod WOS_SIZE in

write segment offset val cid adt .

We verify the WOR, the WOS and the WormSpace abstractions. The
client stack can be extended to applications such as WormPaxos,
WormLog, and WormTX.

5.2 Network Model

To model a real-world network and to prove distributed proper-
ties about the system, we employ techniques from concurrency
verification [25, 32]. Our network model uses the rely-guarantee
reasoning [38] and includes two basic primitives, send_msg and
recv_msg, which manipulate the modeled network state. The model
includes a logically linearized sequence of network operations,
which we call the global network log. Each distributed node can
extract its local interaction with the network from the log, and the
log is used to reason about the interaction between nodes.

However, we depart from single-node concurrency verification
by modeling the network as unreliable (but non-Byzantine). In
our model, send_msg simply creates a send event in the log, while
recv_msg creates either timeout (this models dropped packet) or
recv events in an arbitrary future location (this models packet

Function WOR_ghost_write (addr: Z) (val : Payload) ( cid : Z)

(adt : EnvVars) : option (EnvVars ∗ Z) :=

let net_l := adt . net_l (∗ get net log from Env context ∗)

let nid := get_node_id adt in (∗ get current node id ∗)

(∗ replay the net log ; get the local node state ; and

check if the node is in a writable status ∗)

if (can_write (( replay_log(net_l ) ) [nid ]) addr val cid ) then

(∗ log write intent with a ghost msg to the net log ∗)

let net_l1 := (ghost_write nid addr val cid ) :: net_l in

(∗ broadcast msgs and collect acks : reflect behaviors

of other nodes to add send/recv events by this and

other nodes to the net log ∗)

let net_l2 := bcast_n_recv nid addr val cid net_l1 adt in

(∗ replay the net log to compute global state ; get

node's local state ; and check the quorum status ∗)

let result := is_qrm (( replay_log(net_l2))[nid ]) addr in

(∗ log the result using a ghost msg to the net log ∗)

let net_l3 := ( ghost_result nid result ) :: net_l2 in

(∗ return the updated net log and the result ∗)

(adt { net_l := net_13}, result )

else None.

Figure 7: A simplified log construction function. It logs local and

network events of a node to the network log and calls the log replay

function to check state changes.

delays) than the send event in the log. In between a pair of send
and timeout/recv, any other nodes can freely record their oper-
ations (this models packet reordering). A recv after a send does
not necessarily mean that the recv event received the value sent
by this send. The actual value can be a duplicate message from a
previous send (this models duplicate packets).

5.3 Proving Global Properties

The global state transition system in the ghost layer models a dis-
tributed system with multiple concurrent Paxos clients and accep-
tors from the viewpoint of the global network to enable the dis-
tributed protocol verification. It includes (network) log construction
functions, a (network) log replay function, and a global state. The
log construction function models how each client/server operation
affects the network; it governs the communication pattern of each
node in the network log to define the Paxos protocol. The log replay
function constructs the global state ś which is a snapshot of the
entire distributed system state or a combination of Paxos-related
states in all nodes ś by interpreting network events in the network
log. Log construction and replay functions are derived from worm-
client and wormserver specifications and their refinement relations
for the derivation are verified.

Log construction functions interact with the network log and
the global state to introduce new network events in the network
log. To record local state changes of a node which do not involve
network operations, ghost messages are written to the network log.
Log construction functions use the log replay function to learn and
use state changes incurred by other concurrent nodes and itself.
Figure 7 shows an example of how a log construction functionwhich
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corresponds to awrite interacts with the network log from the global
environmental context (EnvVars) and creates new network events.

The log replay function by itself can replay all behaviors and
state changes of a distributed system step by step from the global
network log. Based on this capability we prove the Paxos-based
safety property of WormSpace:

Theorem 1. Once a value is written to a WOR, the value in the

WOR never changes.

To prove Theorem 1, we prove the key lemma:

Lemma 1. Given a valid network log ℓ, if there exists a Paxos round

n where a value v is successfully written to a WOR r , any following

write to r in Paxos rounds n′ > n in the log ℓ can only attempt to

write v ′
= v .

The valid network log is the log that preserves verified invariants
such as communication patterns derived from log construction
functions. Lemma 1 is proved by induction onwrites in the log using
other supporting lemmas: e.g., n′ is unique and is monotonically
increasing, the Paxos-phase-1a/capture at round n′ on r returns
the written value v , etc. Based on Theorem 1, the immutability and
uniqueness of WOS allocation (including leader/sequencer election
of WormPaxos/Log) and trim are easily verified.

5.4 Top-Level Theorem of WormSpace

The top-level theorem that we prove for WormSpace is,

Theorem 2. ∀t ,LTCB (iAllW S ⊕ t) ⊑ LWormSpace (t),

where t is the context and iAllW S is the implementation of all
WormSpace layers combined. The contextual refinement proof be-
tween all adjacent layers are used as lemmas to guarantee the
correctness of the entire code. Theorem 2 also guarantees that the
verified Paxos properties in the ghost layer (e.g., Theorem 1) hold
for the WormSpace implementation.

5.5 Reusability and Linking

Because the ghost layer encapsulates the distributed nature
of WormSpace, the verification of WormPaxos, WormLog, and
WormTX does not have to reason about complex Paxos proofs.
The verification of any additional distributed protocols above
WormSpace reuses the same network model, but requires a new
ghost layer. Protocols at different levels of the stack are indepen-
dently verified within separate ghost layers; invariants of interfaces
to the protocol and contextual refinement proofs guarantee non-
interference among protocols.

The top-level theorems that we prove forWormPaxos, WormLog,
and WormTX are in the same format:

Theorem 3. ∀t ,LWormSpace (iApp ⊕ t) ⊑ LApp (t),

where App can be one of WormPaxos, WormLog, and WormTX. By
reusing Theorem 2 and transitively combining it with Theorems 3,
applications are guaranteed to be correct with respect to all layers of
WormSpace and to encapsulate verified Paxos properties. Similarly,
Theorem 2 can be reused to verify any system in Section 2.1 and
beyond to guarantee WOR semantics, if we use WormSpace as a
building block.

WormSpace WormPaxos WormLog WormTX (C5)
4,551 359 362 547

Table 1: C lines of code for WormSpace and applications. C5 has the

largest size among WormTX variants.

To enable end-to-end verification of WormSpace, WormPaxos,
WormLog, and WormTX, we link WormSpace to CertiKOS. The
linking requires contextual refinement proof between two inter-
facing layers. When linking independently developed and verified
software pieces together, it is important to check that the speci-
fication exposed by the lower layer matches the expectations of
the higher layer. Since WormSpace and its applications were co-
designed, such a consistency check was unnecessary, but linking
WormSpace to CertiKOS required careful consistency checks. Once
we link WormSpace with CertiKOS the correctness of WormSpace
and the applications is guaranteed from the bottom-level (Lx86asm )
of the OS without any side-effects [17]; this verifies and guarantees,

Theorem 4. ∀t ,Lx86asm (iCer tiKOS ⊕ iAllW S ⊕ iApp ⊕ t)

⊑ LApp (t).

The extensibility of WormSpace verification to applications and
the OS is difficult for other verified systems [27, 45] to achieve.
Especially, it is unnatural and difficult to support contextual refine-
ment, which is based on high-order logic, when the verification
tool is based on a SMT solver or first-order logic [13, 36].

5.6 Discussion

The verification of WormSpace relies on a trusted computing base
(TCB) consisting of the operating system (OS), the hardware, and
the network. However, when we link our verification to CertiKOS,
the TCB consists of only the hardware and the network. Our ver-
ification tool chain guarantees the correctness up to the assem-
bly level, in contrast to other work that often generate high-level
code that require untrusted transformation to low-level executable
code [45, 50, 59]. A small part of our system remains unverified: the
reconfiguration in WormSpace and the Chain Replication WOR.

6 EXPERIENCE

The main benefit of WormSpace is that compared to Paxos, devel-
opers do not need to reason about or understand Paxos protocols to
build applications on top, and compared to other fault-tolerant repli-
cated systems, the developer has the flexibility to choose low-level
implementation details.

WormSpace applications are easy to build, relying largely on
simple invocations on the data-centricWormSpace API to store data
durably and to coordinate across machines. The effort taken to im-
plement WormTX was similar to implementing a non-fault-tolerant
version. In other cases, WormSpace simplified application-level co-
ordination. The leader election scheme of WormPaxos and the
failure recovery scheme for WormLog sequencer are implemented
with the WOS alloc call: it ensures that among multiple concurrent
nodes that try to become the new leader or the sequencer, only
one succeeds. The C lines of code to build WormSpace and the
applications are summarized in Table 1.
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per operation makes WormPaxos outperform

E/CPaxos in persistent mode.

Although functionally-equivalent applications could be built
on top of existing fault-tolerant replicated systems (e.g., an SMR),
WormSpace provides clear advantages over such systems. The
WormSpace API that maps to a lower-level system behavior nat-
urally allows for a more optimized design (e.g. as demonstrated
for WormTX). To reach the level of optimization provided by the
WormSpace API, most existing systems require modifying the sys-
tem itself (e.g., to rewire the communication pattern); this would
necessitate a greater effort. Additionally, verifying such existing
systems as a whole and extending the correctness proof to the
application would remain as great challenges [27, 59], whereas
WormSpace is designed to solve both problems.

Our experience with verification was similar to application de-
velopment, where the verification of WormSpace facilitates that
of applications. Our Coq-based verification cannot be fully auto-
mated, but the CCAL framework provides templates and libraries
that dramatically reduce the proof effort. The entire Coq verifica-
tion code size is 108K lines. Overall, it took 6 person months to
verify WormSpace: 4.5 person months to prove functional correct-
ness and 1.5 person months to prove properties in the ghost layer.
Yet, verifying WormPaxos, WormLog, and WormTX, linking these
applications to WormSpace, and linking WormSpace to CertiKOS
took in a total of 5 person weeks. The proof effort for WormSpace
was not small, but reusing the proof for the application was easy.
We believe the verification stack can be extended easily (e.g., a
key-value store layer on top of the WormPaxos layer), the same
way that WormPaxos, WormLog, and WormTX were verified over
WormSpace and CertiKOS.

7 EVALUATION

We evaluate the performance of WormSpace and show that ver-
ified systems can be as fast as existing unverified systems. Our
evaluations demonstrate the potential for using verified distributed
code in real life without any slowdown. We run the experiment
in two modes: the verified WormSpace stack over a commodity
unverified OS (on Amazon EC2, on m4.xlarge instances running
Ubuntu 14.04), unless mentioned otherwise; and an end-to-end
verified stack running over CertiKOS on a local cluster. We run
three wormservers and up to sixteen client nodes. WormSpace has
in-memory and persistent modes, which determine whether the
data is stored in memory or in persistent storage; in-memory mode
is used by default. The data size we use for all experiments is 8

bytes. We focus on the write-related workloads as reads can be
massively parallelized ś for example, by using a proxy node ś in
all applications that we use.

7.1 Micro-benchmarks

We use a micro-benchmark to test the base performance of
WormSpace (Figure 8). We evaluate the performance of reads and
writes. We first pre-fill the address space with data and have clients
read different parts of it sequentially. We increase the number of
concurrent clients to get different throughput/latency points. A
read to a WOR entails 1 RTT between the client and wormservers.
The read latency stays low at around 250 microseconds when the
load is low and the throughput saturates at about 70K/s operations,
which is the peak capacity of a single wormserver.

Similar to the read experiment, we have clients write to a disjoint
set of WORs so that clients do not contend to write on the same
WOR. We measure two different cases where each client issues a
capture to individual WORs before a write, and another case where
clients are writing to WORs that are already captured in a batch.
The latter is equivalent to writing to a WOS that is captured or
doing an unsafe write. The overhead of incorporating a capture call,
which adds 1 RTT on every write, doubles the latency and halves
throughput compared to issuing writes on batch-captured WORs.

7.2 WormPaxos

To evaluate the verified WormSpace application performance, we
compare WormPaxos against the unverified open source code of
the Egalitarian Paxos (EPaxos) paper [43]. Under the same config-
uration, Figure 9 compares the write performance of WormPaxos
against EPaxos and the classical Paxos (CPaxos) that is used in
the EPaxos evaluation. CPaxos shows slightly lower latency than
WormPaxos but the maximum throughput of WormPaxos is much
higher than the others. The performance difference comes from
different implementations, WormPaxos in C versus the others in
Go, and an extra commit phase that exists in E/CPaxos. E/CPaxos
asynchronously notifies all acceptors about the written value af-
ter the two Paxos rounds, whereas WormPaxos omits this step
because WormSpace clients use a quorum read. We also measure
the throughput with data persistence on an Amazon EBS GP2 SSD
(Figure 10). The absence of the commit phase, makes WormPaxos
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mize the latency of a shared log design.
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aboveWormSpace are easy and enable

lower latency.

achieve higher throughput. Our point here is not to claim Worm-
Paxos runs faster than EPaxos, which internally does dependency
checks and ordering, but to show that verified code is not necessar-
ily slow and can run on par with unverified code depending on the
implementation choice.

7.3 WormLog

We evaluate the performance of WormLog with Paxos-based WORs
(paxos-WOR) and Chain Replication WORs (chain-WOR), and com-
pare it with CorfuDB [58], an unverified open source Java imple-
mentation of CORFU. Note that theWormLog code does not change
for Chain Replication WORs (in fact, neither does the WormSpace
stack above the WOR abstraction). However, performance differs
due to N +1 RTT for the Chain Replication design and 2 RTT for the
Paxos-based design. CorfuDB employs the same Chain Replication
design as chain-WOR.

Figure 11 shows that with three wormservers, the write latency
of aWormLog over paxos-WOR is the half of that forWormLog over
chain-WOR for almost identical throughput. Under the same con-
figuration, CorfuDB performs with 2 to 4X higher latency and 14%
of the throughput of WormLog partly due to different languages for
the implementation. We further vary the number of wormservers
(replicas) and measure the access latency (Figure 12). While the
Paxos-based WormLog has the same latency distribution regardless
of the number of wormservers, Chain-Replication-based designs
show linearly increasing latency with wider distributions depend-
ing on the number of wormservers. The experiment demonstrates
that a Paxos-based WormSpace can enable a CORFU sequencer-
based design while eliminating the latency of Chain Replication.
Also, we show that different WOR implementations can be used
without application code changes.

7.4 WormTX

Next, we present the performance of WormTX that implements
fault-tolerant atomic commit. We compare the variants A8, B6, C5,
D4, and E3, where A8 is the baseline that is equivalent to using
Paxos as a black box to replicate the decision of resource managers.
The numeric suffix represents the message delays of each WormTX
variant. We focus on the latency as each variant optimizes for fewer
message delays. Figure 13 illustrates linearly decreasing latency
as more optimizations are applied. This shows that WormSpace
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is bottlenecked by the lwIP network stack.

facilitates applying optimizations step by step to the atomic commit
protocol, and with the concurrency control mechanism described
in Section 4.3, a low latency distributed transaction protocol can be
easily supported on top of WormSpace.

7.5 End-to-end Verification

Finally, we show the evaluation of WormSpace on CertiKOS which
forms an end-to-end verified distributed system from the OS layer.
To utilize CertiKOS, the experiment is run on a local cloud. Virtual
machines are configured to mimic the set up in Amazon EC2: Cer-
tiKOS and WormSpace were placed inside QEMU instances with
the same amount of resources as the m4.xlarge instance and the
instances are placed such that all network communication crosses
the physical machine boundaries.

We evaluate microbenchmark, WormPaxos, and WormLog and
the throughput is approximately 10x lower and the latency is ap-
proximately 2x higher than running the experiments on Linux in
Amazon EC2 (Figure 14). The main cause of this performance degra-
dation has little to do with verification and is mainly attributed to
the network stack used in CertiKOS. CertiKOS uses rather slow
lwIP [15], which is intended for embedded systems, as its network
stack and a single dedicated thread multiplexes packets to and from
applications. The performance number showed similar results even
when we ran all WormSpace servers and clients in a single VM due
to this inefficiency. Once we replaced the network stack with a cus-
tom IPC call, we achieved over 100 Kops/s for all experiments when
the same number of WormSpace clients and servers were placed in
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a single VM. We plan to replace lwIP with a higher-performance
network stack for a better end-to-end performance in the future.

8 RELATED WORK

Distributed systems: A number of abstractions similar to the
WOR exist in theoretical distributed systems, including sticky regis-
ters [48], consensus objects [29], and the Paxos register [37]; these
are abstractions for theoretical reasoning. However, we propose the
WOR as a programming abstraction and build a system exposing
the WOR APIs. Other theoretical work points out the link between
fault-tolerant atomic commit and consensus [18, 26]. Single writer
many reader registers, which can be written multiple times, can be
used to implement a WOR using a protocol like Disk Paxos [19].
Horus [56] is a modular stack for group communication that led to
a verification effort called Ensemble [39].

Distributed applications often use services that embed consensus
or replication protocols, such as Chubby [9] and Zookeeper [30].
WormSpace supports a more primitive abstraction compared to
these services. Distributed transaction systems [44, 61] often com-
bine transaction and consensus protocols, ‘opening the Paxos box’
to implement optimizations. These could conceivably be imple-
mented over the WOR in similar fashion to the optimizations in
Section 4.3.

Verification: Applying machine-checkable formal verification
to real-world systems has been actively explored in recent years.
IronFleet [27] and Verdi [59, 60] propose distributed system verifi-
cation approaches and use Multi-Paxos/Raft as a verification target.
IronFleet separates the verification into implementation, specifi-
cation, and protocol layers; the first two layers are similar to a
single WormSpace layer, and the protocol layer is similar to the
WormSpace ghost layer. Verdi focuses on writing and verifying sys-
tem code under an idealized network model first, and then adapting
the proofs to a more realistic network model, whereas we assume an
unreliable network to begin with. While both papers propose a sys-
tematic way to verify standalone distributed systems, WormSpace
enables extensible verification via a modular layer-based verifica-
tion approach, where the proofs can be reused and connected with
new verified application layers.

It is well known that modularity leads to ease of verification.
DISEL [50] verifies independent distributed protocols in isola-
tion and horizontally combines them. Taube et al. [53] explores
modularity for automated distributed system verification. Prior
work has examined a layered storage system verification for crash
safety [2, 11, 51] and a modular Paxos verification [7, 20, 47].
WormSpace shares the same insight about modularity, but leverages
contextual refinement to provide incremental and extensible verifi-
cation; enables both vertical and horizontal composition of layers;
and verifies correctness of practical C programs in a concurrent
and distributed environment.

Formal verification plays a key role for guaranteeing the correct-
ness of security features [8, 16, 28, 41]. While WormSpace’s proof
does not focus on security, adding security features to the system
and guaranteeing the security properties across WormSpace and
application layers is a direction for future work.

WormSpace uses the CCAL approach [23, 25] for the verification.
While CertiKOS [24] demonstrated the power of CCAL by verifying

an entire OS, WormSpace augments the CCAL framework with an
asynchronous network model to verify distributed systems and to
connect verified distributed systems, applications and the OS.

9 CONCLUSION

Distributed systems are difficult to design, implement, and verify
due to asynchrony and failures. Often, they re-implement the logic
for consensus, durability, and availability in slightly different ways.
The WOR abstraction proposed in this paper is the least common
denominator for strongly consistent, fault-tolerant distributed sys-
tems. When the abstraction is exposed as a first-class programming
primitive, it enables application stacks that are simple, realizing
complex functionality in 100s of lines of code; flexible, allowing for
different combinations of high-level application APIs and low-level
consensus protocols; and verifiable, enabling layered verification
techniques that allow easy and extensible verification of distributed
application code.
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