ARTIFACT
EVALUATED

ARTIFACT
EVALUATED

ARTIFACT
EVALUATED

IEEE 58P IEEE S8P IEEE 58P

AVAILABLE REPRODUCED

Mechanized Safety and Liveness Proofs for the Mysticeti Consensus Protocol under
the LiDO-DAG Framework

Longfei Qiu
longfei.qiu@yale.edu
Yale University

Abstract—Directed acyclic graphs (DAG) have recently be-
come a popular building block for high-throughput consensus
protocols used in blockchains. Mysticeti is a state-of-the-art
DAG-based consensus protocol that is currently deployed in
the Sui blockchain and the IOTA blockchain. Compared to
previous protocols, Mysticeti achieves lower commit latency
by eliminating reliable broadcast and increasing leader vertex
frequency. However, this comes at the cost of significantly more
complex security proofs than previous protocols. In fact, shortly
after Mysticeti was published, flaws were found in its liveness
proof, leaving the correctness of the protocol uncertain.

In this work, we resolve the controversy around correctness
of Mysticeti by presenting the first complete analysis of the
safety and liveness properties of Mysticeti. Our key finding is
that, unlike previous DAG-based protocols like Narwhal and
Bullshark, liveness of Mysticeti is highly sensitive to the round-
jumping behavior of honest participants. If honest processes
are allowed to jump over rounds arbitrarily, then we present an
explicit counterexample to the liveness of Mysticeti: an infinite
trace where no data blocks are ever committed. We then
introduce a simple restriction on the round-jumping behavior,
and show that our modification is sufficient to restore liveness
of Mysticeti. We mechanized proofs of safety and liveness of
Mysticeti under the LiDO-DAG framework, an abstract model
of DAG-based consensus protocols proposed by Qiu et al.,
confirming that our modified protocol is fully correct. We also
audited the current implementation of Mysticeti in the Sui
blockchain and found it is susceptible to the described liveness
bug. We have contacted Mysten Labs and are working with
them to fix the liveness issues.

1. Introduction

Blockchains are public, distributed ledgers that enable
secure financial transactions without the need of a centralized
bank. Early blockchains like Bitcoin [1] are based on proof-
of-work, where each participant must solve a cryptographic
puzzle locally before proposing a block. This approach has
the drawback of being energy-intensive [2], and its security
properties are difficult to analyze [3]. Instead, many newer
blockchains such as Ethereum 2.0 [4] and Aptos [5] are
based on proof-of-stake, where the validators participate
in a byzantine fault-tolerant (BFT) consensus protocol to

Jingqi Xiao
Xjq_xjq@sjtu.edu.cn
Shanghai Jiao Tong University

Zhong Shao

zhong.shao@yale.edu
Yale University

Round 1 Round 2 Round 3

Process 1

Process 2

Process 3

Process 4

Figure 1. Example of DAG-based mempool. Each vertex in the figure is
a block of transactions. Each edge is a reference embedded in the block.
Some vertices are considered leader vertices and typically marked with a
crown. The location and frequency of leader vertices are protocol-specific.

propose and agree on a sequence of transactions. As public
blockchains need to support both a large number of validators
and a large volume of transactions, there has been a long
line of research over improving the latency, throughput, and
scalability of BFT protocols [6], [7], [8], [9], [10], [11].

DAG-Based Consensus. Many classic BFT protocols like
PBFT [6] and HotStuff [8], are leader-based. Their execution
is structured as an infinite sequence of views, each view
having a single predesignated leader who is responsible for
proposing and commiting data blocks. The other participants
merely replicate the blocks and confirm the leader is not
equivocating. Although this architecture is well-understood
and easy to implement, it has the obvious drawback of
placing unbalanced burden on the resources of the leader,
an issue known as the leader bottleneck [12], [13].

To overcome the leader bottleneck, the latest trend
in BFT protocol design is to combine consensus with a
mempool component [12], [14], [15], [16], [17], [18], [19].
All participants can add blocks to the mempool, even when
they are not the consensus leader. Each view of consensus
selects a list of blocks in the mempool to commit. This
allows a large number of blocks from different participants
to be committed in each view of consensus, improving
the throughput of the protocol. The mempool is typically
structured as a directed acyclic graph (DAG) (Fig. 1). Each
vertex of the graph represents a block of transactions. The
edges correspond to references to previous blocks that are

embedded in each block. As such these protocols are called
DAG-based consensus.

How DAG-Based Consensus Works. At a high level, how
DAG-based protocols work can be described as follows. The
mempool DAG graph is stratified into layers called rounds.
We assume that rounds are numbered from 1. In each round,
each participant is supposed to create at most one vertex.
Also, each vertex in round r > 1 should contain references
to n — f vertices from different participants in round r — 1,
where n is the total number of participants and f is the
byzantine fault threshold. These rules ensure chain quality:
at least half of the committed blocks are from honest parties,
and byzantine parties cannot flood the network with blocks.
A combination of a round number and a participant ID
is called a slot. Thus each vertex belongs to a single slot.
Honest participants never create two vertices in a single
slot, but byzantine participants may attempt to do so. Each
protocol designates a subset of slots as leader vertex slots.
Vertices created in these slots are called leader vertices.
Each participant of consensus maintains a local consensus
log, which is a linear list of vertices in the mempool. The
basic goals are safety and liveness, which we define as:

« Safety: the consensus logs of honest parties are consis-
tent with each other;

o Liveness: All vertices created by honest parties get
included in the consensus log within bounded time.

To obtain the consensus log, each participant runs an ordering
algorithm on its locally-observed DAG, which returns a
leader vertex consensus log. Each entry v in the leader
vertex consensus log is expanded into the list of all vertices
that are directly or indirectly referenced by that leader vertex.
As long as the leader vertex consensus log seen by each
participant is consistent with each other, the full consensus
logs remain consistent. Thus leader vertices play a key role
in the safety and liveness of DAG-based protocols, and the
latency of consensus is mainly determined by:

o Leader vertex frequency: how often leader vertex slots
appear in the mempool DAG;

o Leader vertex commit latency: how long it takes to
commit a leader vertex after creation.

Authenticated and Unauthenticated DAG. As explained
above, chain quality of DAG-based protocols relies on each
participant creating no more than one vertex in each round.
There are two possible ways to enforce this rule. The first way
is to require each party to distribute their vertices through
a reliable broadcast (RBC) protocol [20], [21], [22]. RBC
ensures that even if a byzantine party attempts to create
multiple vertices in a single slot, only one of the vertices
will ever be delivered to any honest party. Protocols based
on RBC are called authenticated or certified DAG.

While RBC proactively prevents equivocation, it also
takes up a significant portion of the commit latency, as the
leader vertex cannot be committed before it is received by the
peers through RBC. This has led to works exploring DAG-
based protocols without RBC [17], [18]. They rely on honest
parties detecting equivocations from byzantine parties, and

punishing the violators by mechanisms like stake-slashing.
Protocols not using RBC are called unauthenticated DAG.

Mysticeti. Within this context, Babel et al. [18] recently
proposed a new DAG-based protocol called Mysticeti.
Compared to previous protocols like Narwhal [12] and
Bullshark [15], Mysticeti achieves lower commit latency
by incorporating several optimizations. First, inspired by
Cordial Miners [17], Mysticeti uses an unauthenticated DAG
rather than an authenticated DAG. Second, inspired by the
pipelining optimization in HotStuff [8] and Jolteon [9],
Mysticeti supports having a leader vertex in every single
round, rather than having a leader vertex in every second
round (Bullshark [15]) or third round (Cordial Miners [17]).
In July 2024, Mysticeti was adopted by the Sui blockchain,
and the developers reported a 75% drop in actual commit
latency [18]. In May 2025, the IOTA blockchain also rebased
itself to Mysticeti [23].

Correctness of Mysticeti. While Mysticeti seems to be
performing well so far, its security under byzantine attacks
is currently disputed. Shortly after Mysticeti was published,
[16, Appendix D] pointed out flaws in the liveness proof of
Mysticeti. It claims that due to these errors, the honest parties
may not always commit leader vertices within bounded time.
However, it does not provide an explicit counterexample for
liveness of Mysticeti. As such there are several possibilities
regarding correctness of Mysticeti:
o The protocol is correct, and the flaws are merely gaps
in the proofs that can be patched;
o The protocol satisfies liveness but does not achieve its
claimed commit latency in the worst case;
o The protocol does not satisfy liveness: it does not
commit blocks within bounded time in the worst case.
Currently, it is unclear which of the above situations is the
actual case. If the protocol is incorrect, it is also unclear
how to restore its liveness and latency properties.

Our Analysis. In this work, we critically analyze the flaws
in the liveness proof of Mysticeti. We show that the original
presentation of Mysticeti [18] underspecified the round-
jumping behavior of honest parties, which is the action that
a parties takes to catchup when it finds itself lagging too far
behind the global network progress. While previous DAG-
based protocols like Narwhal [12] and Bullshark [15] are
mostly insensitive to the details of round-jumping, liveness
of Mysticeti requires specific actions to be taken by honest
parties when they jump over a round.

The interpretation taken in Shrestha et al. [16] is that
round-jumping should be implemented in the same way as
Bullshark [15]: honest parties do not need to take specific
actions upon jumping. Under the same assumption, we con-
struct an explicit counterexample for liveness of Mysticeti: an
infinite trace in which no leader vertices are ever committed.
Thus there is a real liveness bug in Mysticeti, and to patch
the bug one must include restrictions on round-jumping.

We then introduce a simple rule regarding round-jumping.
We show that, if all honest parties follow our specified
actions when jumping over rounds, then we can recover
the liveness and latency properties of Mysticeti claimed in

Babel et al. [18]. Our modified protocol remains compatible
with the original Mysticeti (i.e. implementations which do
not follow our rule). Moreover, we do not require the
honest parties to follow our rule from the beginning of
execution. We define a timepoint called the global catchup
time (GCT), which is analogous to the global synchronization
time (GST) used in the partial synchrony assumption [24].
We assume that honest parties do not need to follow our
rule before GCT, but must follow it after GCT. We provide
full liveness guarantees after max{GST,GCT}. As such we
expect existing implementations of Mysticeti can be easily
upgraded to incorporate our proposed fix.

Formal Verification of Mysticeti. Although we claim
that our modified protocol avoids the flaws in the original
Mysticeti protocol, there are still chances that we introduce
new unintentional bugs in our specification. The only way
to fully ascertain correctness of the protocol is to formally
model it in a specification language, and construct machine-
checkable proofs of its security properties.

Verifying safety and liveness of consensus protocols has
traditionally been a daunting task. For example, the Verdi
project [25], [26] verified only safety properties of Raft, a
consensus protocol that only tolerates benign faults, which
took more than 50,000 lines of formal proof.

Recently, Qiu et al. [27] introduced a refinement-based
formal framework called LiDO for verifying both safety
and liveness of leader-based consensus, which has been
successfully applied to Jolteon [9], a pipelined leader-based
consensus protocol. In Qiu et al. [28], the framework was
extended to LiDO-DAG which was used to verify several
authenticated DAG-based protocols, but not unauthenticated
protocols like Mysticeti. LiDO and LiDO-DAG are formal-
ized in the Rocq proof assistant (formerly called Coq). The
key innovations of LiDO that simply proof engineering of
consensus protocols are 1) the LiDO cache tree, an abstract
representation of the global consensus log; 2) the abstract
pacemaker, which allows decomposing liveness of consensus
into safety properties that are easy to prove by refinement.

In this work, we construct a formal model of the modified
Mysticeti protocol in Rocq and prove its safety and liveness
via refinement to LiDO-DAG. This eliminates all ambiguities
in the specification of Mysticeti and confirms the modified
protocol is fully correct. Our proofs are available as an
artifact at [29].

Real-world Implementations of Mysticeti. Since Mysticeti
has been adopted by multiple real-world blockchains, one
naturally asks whether the liveness bug described here also
affects existing implementations. To this end, we audited the
source code of the Sui blockchain which uses Mysticeti at
its core. We found that current versions of Sui indeed imple-
mented round-jumping incorrectly, making them susceptible
to liveness attacks. We have contacted Mysten Labs and they
have acknowledged the issue. We are currently working with
them to resolve the liveness issues.

The implementation used by the IOTA blockchain is a
fork of Sui. We also discussed the issue with its developers.
The IOTA developers are working on a different fix [30],

which we discuss in Sec. 7.

Summary of Our Contributions. In this work, we 1)
construct an explicit counterexample to liveness of the
Mysticeti protocol; 2) describe a modification to Mysticeti
that fixes the liveness issue and maintains compatibility
with existing implementations; 3) provide a formal model of
Mysticeti with our modification and machine-checked proofs
its safety and liveness properties; 4) identify vulnerabilities
in deployed implementations of Mysticeti that make them
susceptible to the liveness bug we found.

2. Background: The Mysticeti Protocol and its
Liveness Flaw

In this section, we first provide an introduction to the
Mpysticeti protocol. We then focus on the round-jumping
behavior of honest participants in Mysticeti, which lies at
the heart of the liveness dispute. We take a close look at
the argument that the round-jumping behavior in current
implementations is flawed. The argument implies there are
errors in the current liveness proof of Mysticeti, but it is
unclear whether it implies a genuine liveness bug in Mysticeti,
or merely a gap in the proof that can be patched.

Notations. We use [z1;--- ;x,] to represent a finite list
whose entries are x1,--- ,x,. If L1, Ly are two finite lists,
we use L ++ Lo to denote their concatenation. If L is a
finite list of items with decidable equality (e.g. integers), we
use |L| to denote the number of non-duplicate items in L.

System Model. We consider a network system consisting
of 3f + 1 processes, of which 2f 4 1 are honest and f are
byzantine. This is a standard setting in BFT protocols, since
[31] has shown that it is not possible to tolerate byzantine
faults in more than 1/3 of the processes without sacrificing
safety or liveness. Within this setting, a set S of at least
2f 4+ 1 processes is called a quorum. By the pigeonhole
principle, two quorum sets must intersect on at least f + 1
processes. Since there are only f byzantine processes, they
intersect on at least one honest process. This is a key property
exploited by most BFT protocols, including Mysticeti.

We assume each honest process is equipped with a local
timer that can be reset to a fixed duration. Each honest
process is an atomic state machine that receives three kinds
of signals: 1) a client submits a transaction to the process;
2) a network message is delivered to the process; 3) the
local timer expires. Upon each event the process faithfully
executes the corresponding event handler. For each process
only one event handler may execute at a time. The byzantine
processes have no internal state and can inject arbitrary
messages into the network, subject to conditions that will
be explained later.

Communication between the processes follows the partial
synchrony model [24]. There is a timepoint called the global
synchronization time (GST) that is unknown to the honest
parties. Before GST, message delivery can be arbitrarily
delayed, but each message must be delivered within a
known bound A after GST, provided both the sender and

Algorithm 1 Building the Global DAG

1: State variables: verts : FinMap (ID — Vertez),
2: State variables: usedI D : list N, invalidI D : list N.
3: initialize:
4: Assume usedID = [], invalidID = [].
S Assume Vid, verts[id] = L.
6: upon process p; creates record (p;, 7, d, preds):
7: Choose id s.t. id &€ usedI D A id & invalidl D.
8: Add id to usedI D list.
9: if Ap € preds, verts[p] = L then
10: Add every p € preds s.t. verts[p] = L to invalidI D list.
11: Discard record and return.
12: if 3p € preds, verts[p].round > r then
13: Discard record and return.
14: ifr = 1 A preds = [] then
15: verts[id] < (pi, 7, d, preds) and return.
16: strongEdges <+ filter (p — verts[p].round = r — 1) preds.
17: if |map (p — verts[p].builder) strongEdges| > 2f + 1 then
18: verts[id] < (ps,r,d, preds) and return.
19: else
20: Discard record and return.

the recipient are honest. Formally, if a message is sent at
timepoint ¢, then we assume it is delivered at least once
before max{t, GST} + A.

Also, before GST we do not assume the local timers
of honest processes provide reliable timing, but they must
timeout reliably after GST. This assumption is more difficult
to encode formally. In our formal proofs, we follow the
technique suggested in [27] and encode it using segmented
traces. See Sec. 5 for details.

Global and Local DAGs. The only kind of message that is
exchanged between the processes is the vertex record, which
we model as follows:

Vertez = Nyyitder * Nyound * Data * (list Npeqs).

The builder field records the ID of the process that created
the record. We assume each vertex record is cryptographically
signed by its builder, so that byzantine processes can only
put their own IDs into this field. The round field records the
round this vertex record belongs to, and we assume round >
1. The data field is used to embed transaction requests, but
we do not model its content. Finally, each vertex record
contains a list of predecessor references, which correspond
to edges in the DAG. Each reference is represented by the
ID of the target record, which is uniquely assigned upon
creation of the record and explained later.

At any given moment, the set Vi of all vertex records
ever sent into the network forms a global DAG, which is
formally defined in the next paragraph. However, the set
V; of vertex records seen by any particular process p; is
a subset of V. Thus, each process needs to reconstruct a
local DAG from the vertex records it has received. For most
DAG-based protocols, the local DAG is always a subgraph
of the global DAG, and this is also true for Mysticeti (see
Proposition 1). The idea of DAG-based consensus is to define
a global consensus log on the global DAG. Each process
runs an ordering algorithm on its local DAG to obtain a

local consensus log, which in general must be a prefix of
the global consensus log.

We now look at how the global DAG is constructed from
the vertex records. We assume there is a virtual system agent
S that can monitor all vertex record creations in the system.
S maintains a map from record IDs to vertex records, a list
of used 1IDs, and a list of invalid IDs.

When process p; creates a record (p;,r,d,preds), S
follows Alg. 1 to update the global DAG. It first assigns
an ID to this record. In actual implementations, the ID is
computed with a cryptographic hash function. If we model
this hash function as a random oracle [32], then the ID is
uniformly drawn from the set of all possible IDs, and the
probability of choosing any used or invalid ID is negligible.
We model this step as non-deterministically choosing an ID
that is not in the used or invalid ID list.

After adding the chosen ID to the list of used IDs, S
performs several semantic checks on the record. If » = 1 then
the record is a genesis vertex, and the list of predecessors
must be empty. If » > 1 then S looks at the IDs in the
predecessor list. If any id € preds does not refer to an
existing vertex in the global DAG, then such IDs are added
to the list of invalid IDs, and the whole record is discarded.
Otherwise, S checks that each id € preds refers to a vertex
in some round 7’ < r. Also, preds must contain references
to 2f + 1 vertices in round r — 1 from different builders.
If all these semantic conditions are satisfied, the record is
considered valid and added to the global DAG.

When any honest process p creates or receives a vertex
record, it executes a procedure similar to Alg. 1 to update
its local DAG. There only differences are:

o At lines 7-8, instead of assigning a new ID, p calls the
random oracle to retrieve the ID that S has assigned;

o At lines 9-11, if preds contains any id that p has not
seen, then it cannot tell whether id is invalid, or refers
to a record it has not yet received. In this case, instead
of discarding the record, p stores it in a “staging area”
and revisits it when all IDs in preds have been resolved.

If a byzantine process creates a record that is discarded by
S, then we can easily see it cannot be added to the local DAG
of any honest process either. In the worst case the record
stays permanently in the staging area of honest processes.
Therefore, Mysticeti maintains the following property:

Proposition 1. The local DAG of any honest process p is a
subgraph of the global DAG constructed by S. O

This property is currently implicitly assumed in our
formal model as it does not yet capture the staging area
of each process. We are developing more realistic refinement
layers that model these details, but as we explain in Sec. 5,
the current high-level model is sufficient to capture the safety
and liveness proofs.

The Ordering Algorithm. As explained in the introduction,
DAG-based consensus centers around the leader vertex
ordering algorithm, which interprets the local DAG and
returns a list of committed leader vertices. The ordering

Round 1 Round 2 Round 1 Round 2 Round 1 Round2 Round3 Round 1 Round 2
Process 1 Process 1 Process 1 Process 1
Process 2 Process 2 Process 2 Process 2
Process 3 Process 3 Process 3 Process 3
Process 4 Q Process 4 Q Process 4 Process 4
(a) (b) (c) (d)

Figure 2. Supporter, certificate, and skip patterns in Mysticeti. Reproduced from similar figures in [18]. (a) The two vertices in round 2 are supporters of
the leader vertex in round 1. The bold arrows are the references to the leader vertex. (b) Even if the leader in round 1 equivocates, each vertex in round 2
can still support only one leader vertex in round 1. This is guaranteed by the definition of the supporter relation. (c) The vertices shown in the dashed box
form a certificate pattern for the leader vertex in round 1. The bold arrows are the references to the leader vertex, and references to the supporters. (d) The
vertices shown in the dashed box form a skip pattern for round 1. In this case no certificate for any leader vertex of round 1 may ever be created.

algorithm of Mysticeti is shown in Alg. 2, and we now
explain how it works.

We assume every round r has a predefined leader
leader_at(r), which is one of the 3f + 1 processes. The
leader vertex slots are (r,leader_at(r)) with r > 1. Since
byzantine leaders may equivocate, there may be more than
one leader vertex in a round. As such, the process of adding
a leader vertex into the consensus log requires two steps:

1) From the possibly multiple vertices created by the leader,
the consensus participants choose a single vertex to be
potentially committed.

2) The consensus participants decide on whether to commit
the leader vertex chosen in the first step.

Many leader-based BFT protocols such as PBFT [6] and
Jolteon [9] rely on voting to complete each step. For example,
in the first step each process sends out a vote for one of
the leader vertices it has observed. Of course, byzantine
processes may equivocate and send out multiple votes, but
each honest processes can only make one vote. A leader
vertex is chosen when it gets votes from 2f + 1 processes,
which is a quorum set. By the quorum overlapping property,
no two leader vertices in a single round can both get 2f + 1
votes. This guarantees only a single leader vertex can be
chosen in the first step. In the second step, the leader vertex
also needs 2f + 1 votes to become committed.

In DAG-based protocols like Mysticeti there are no ex-
plicit vote messages. Instead, voting information is implicitly
encoded into the topological structure of the global DAG. In
Mysticeti they are embodied as supporter, certificate, and
skip patterns, which we define as follows:

Definition 1 (Supporters). Within the DAG, if v is a leader
vertex of round r, v’ is a vertex in round r + 1, then v’ is a
supporter of v if v is the first vertex in v'.preds that is in
the leader vertex slot of round r. We also say v’ supports v.

Definition 2 (Certificates). Within the DAG, if v is a leader
vertex of round r, v' is in round v+ 2, then v' is a certificate
of v if v'.preds contains 2f + 1 vertices in round r + 1 from

Algorithm 2 The Ordering Algorithm

State variable: decisions : FinMap (N — Decision).
initialize: Assume V r, decisions|[r] = Undecided.
upon observing 2 f + 1 certificates for some leader vertex v:
decisions[v.round] < Committed(v).
upon observing a skip pattern for round 7:
decisions|r] < Skipped.

A A R ol

upon observing two rounds r, 7', such that v’ > r+3, decisions[r] =
Undecided, decisions[r’] = Committed(v), and Vr'/,r +3 <
r'" < r' = decisions|r] = Skipped:

8: if v directly or indirectly references a certificate for some leader
vertex v of round r then
9: decisions[r| + Committed(v')
10: else
11: decisions|r] + Skipped

different processes that are supporters of v. We also say v’
certifies v.

Definition 3 (Skip patterns). Within the DAG, if S is a set
of at least 2f + 1 vertices from different processes in round
r+1, then S is a skip pattern for round r if no vertex in S
references any leader vertex of round r.

Fig. 2 shows some examples of these patterns. Each
supporter can be understood as a vote in the first step of
committing a leader vertex, in the two-step process described
earlier. Notice that Definition 1 guarantees each vertex can
only support a single leader vertex. Since each honest process
creates at most one vertex in each round, it can also only
cast a single vote in the first step.

Similarly, each certificate can be seen as a vote in the
second step. Recall that to proceed to the second step, a
leader vertex must get at least 2f + 1 votes in the first step.
This corresponds to the requirement in Definition 2 that a
certificate for a leader vertex must reference at least 2f + 1
supporters of it. Thus all certificates in a single round must
be for a single leader vertex.

A skip pattern is the opposite of a certificate. If we

observe a 2f 4 1 vertices in round r + 1 not supporting
any leader vertex in round r, then no certificate for any
leader vertex in round r may ever be created. In this
case we can skip waiting for certificates of round r. This
is an optimization intended for reducing failover latency
when a leader has experienced crash fault. However, not
implementing this feature does not affect overall safety and
liveness of the protocol.

Given a valid DAG G, the ordering algorithm assigns to
each round r a decision, whose possible values are:

o Committed(v) where v is a leader vertex of round 7,
meaning v has been committed;

o Skipped, meaning no leader vertex of this round will
ever be committed;

e Undecided, meaning a decision for this round cannot
yet be made.

Initially, all rounds are undecided. If an honest process
p; assigns the decision Committed(v) to round r, we say p;
has committed vertex v. We may also say it has committed
round 7. If it assigns the decision Skipped to round r, we
say p; has skipped round r. In either case, we say it has
decided round r.

When 2 f+1 certificate patterns (from different processes)
are observed for a leader vertex v, the status of v.round is
set to Committed(v). When a skip pattern is observed for
round r, the status of round r is set to Skipped. In [18],
these two rules are known as the direct decision rules.

In case of network failures or byzantine leaders, direct
decision rules are not sufficient to decide all rounds. Mysticeti
additionally uses an indirect decision rule: to decide round r,
we look for the earliest round 7’ > r-+3 whose current status
is not Skipped. If round 7’ is still undecided, then round
r remains undecided. Otherwise, round 7’ has a committed
leader vertex v. If v directly or indirectly references any
certificate for a leader vertex v’ of round r, then the status
of round r is set to Committed(v'); if v does not reference
any such certificate, then round r is skipped.

Important Note: In this paper, “skipping” a round and
“jumping over” a round (introduced later) are two different
notions. To skip round r is the decision not to commit any
leader vertex from round r. To jump over round r is to not
create any vertex in round r. The terminology of “jumping”
comes from [16].

Theorem 1 (Safety of Mysticeti). If two honest processes
both decided round r, their decisions must be the same.

Safety of Mysticeti is mostly uncontroversial. We give
an outline of the proof of Theorem 1 in Sec. 5. This theorem
corresponds to the Rocq lemmas mcommit_safety and
mcommit_commit_eq in the artifact.

Once all rounds » < R have been decided, the leader
vertex consensus log up to round R can be found by taking
the list of all committed leader vertices in rounds r < R
and ordering them by round number. To compute the full
consensus log, we define the closure of each vertex v as
follows:

cl(v) =cl(predy) ++ -+ ++ cl(pred,) ++ [v]

Algorithm 3 Vertex Creation Rules in Original Mysticeti

1: State variables: curr_round : N (short for current_round).

2: initialize:

3: Assume timer is disabled.

4: Create vertex in round 1.

5: curr_round < 1.

6: upon observing 2 f 4 1 vertices in round curr_round, and the process
has already created a vertex in curr_round:

7: Enable and reset local timer to 2A.

8: curr_round < curr_round + 1.

9: upon observing both a leader vertex of round curr_round — 1 and
2f 4+ 1 supporters of some leader vertex of round curr_round — 2:
10: Disable local timer.

11: Create vertex in round curr_round.

12: upon local timer expires:

13: Disable local timer.

14: Create vertex in round curr_round.

15: upon observing 2 f + 1 vertices in some round r > curr_round:
16: Enable and reset local timer to 2A.

17: Create vertex in round 7.

18: curr_round < r + 1.

19: Predecessor Rule: When creating a vertex in round r, if the process has
observed at least one leader vertex of round r — 1, the new vertex should
be a supporter for some leader vertex of round r — 1; if the process has
observed 2f + 1 supporters for a single leader vertex in round r — 2,
the new vertex should be a certificate for that leader vertex.

where pred;,--- ,pred, is the list of predecessors of v.
Since each predecessor of v must have a smaller round
number than v, the closure is always well-defined. Vertices
in round 1 have no predecessor, so their closure is a list
containing only themselves.

If the leader vertex consensus log is [v1;- -+ ;v,], then
the full consensus log is dedup (cl(vy) ++ - -+ ++ cl(vy,))
where dedup is list deduplication. Note that to compute the
consensus log up to round R, we need decisions for all
rounds before R, not just the decision for round R.

Theorem 2. If an honest process has committed all three
rounds R, R+ 1, R+ 2, then it can make a decision for all
rounds r < R + 2.

Proof: Since the rounds R, R+ 1, R + 2 are committed,
the indirect decision rule immediately provides a decision
for the rounds R — 3, R — 2, R — 1. If all rounds r with
R—k < r < R+2 have been decided, then the round R —k
can also be indirectly decided through the earliest committed
leader vertex after round R — k. Such a leader vertex always
exists since round R is committed. O

This theorem corresponds to the Rocq lemma
mcommit_can_decide in the artifact.

Vertex Creation Rules. To finish defining the Mysticeti
protocol we have to specify when and how honest processes
create new vertices. Unfortunately this is where the original
presentation [18] gets vague and the liveness bug creeps in.

The creation rules in [18] are summarized in Alg. 3.
At the beginning of execution, each honest process should
create a genesis vertex in round 1. After creating a vertex
in round 7, the minimal condition for creating a vertex in
round r + 1 is to receive 2f other vertices in round r, apart

Round 1

Round 2 Round 3

Process 1

Process 2

Process 3

Process 4

Figure 3. Example of round-jumping behavior. Vertices 1 and 2 are in the
local DAG of process 1 and marked with green check. Vertices 4,5,6,7,8,9
are currently in the staging area of process 1 and marked with S. Vertex 3
has not yet been delivered to process 1. At this point, if we deliver vertex
3 to process 1, then process 1 should jump to round 3.

from the one created by itself. This is because any vertex
the process creates in round r + 1 must reference at least
2f + 1 vertices in round 7.

However, this does not mean honest processes should
create a vertex in round r + 1 immediately upon observing
2f+1 vertices in round . Since a major goal of the protocol
is to commit leader vertices, honest processes should try their
best to create supporters and certificates. To achieve this, each
honest process resets its local timer to 2A upon observing
2f + 1 vertices in round 7. It creates a vertex in round r + 1
when it receives both the leader vertex of round r and 2f 41
supporters for a leader vertex in round r — 1, or when the
timer expires, whichever comes first.

When creating the vertex, the process is required to try its
best to make the new vertex a supporter and/or a certificate,
as formalized in line 19 of Alg. 3. Thus, for example, if an
honest process executes line 11 to create a vertex, then the
new vertex should be both a supporter and a certificate.

By case analysis on the vertex creation rules in Alg. 3,
we also see that Mysticeti maintains the following invariant:

Proposition 2. For each honest process, if curr_round >
1, then it has both 1) observed 2f + 1 vertices in
round curr_round — 1, and 2) created a vertex in round
curr_round — 1. O

This property is currently encoded as an explicit rule on
updating the curr_round variable in the formal model.

Round-jumping. We now consider a situation shown in
Fig. 3. Suppose that process 1 has created a vertex in round
1, and is waiting for 2f other vertices in round 1. However,

due to network failure, so far it has only received vertex 2.
Meanwhile, the processes 2, 3, 4 have progressed to round 3.
The six vertices 4,5,6,7,8,9 have been delivered to process 1.

They are still in the staging area of process 1 because it has
not yet received vertex 3. At this point, we deliver vertex
3 to process 1. Now process 1 suddenly observes 2f + 1
vertices in round 3, even though it has not yet created a
vertex in round 2. How should process 1 behave in this case?

Since there are already 2f + 1 vertices in round 3, it is
likely that some honest processes are waiting for supporters

Round r Round r+1 Round r+2 Round r+3

\
Process 1
N4
SetA
RN
Process 2
Set B { Process 3
/ B \
Byzantine { Process 4 {
N4

Figure 4. A counterexample to a key lemma in the liveness proof of Mysticeti.
Refer to the text below on the steps that lead to the shown scenario. Assume
that the leader of round 7 is process 2, and subsequent leaders are assigned
with round-robin. Green: vertices from honest processes in step 2, which
support L,. Red: vertices from the byzantine process in step 2, which do
not support L. Blue: vertices from processes in A in step 4, which certify
L, and support L, 1. Yellow: vertices from the byzantine process in step
5, which support L, 1 but do not certify L,.. Purple: vertices created in
steps 6 and 7, which certify L,41. At this point, if we deliver the purple
vertices to processes in B, then they jump over round r + 2, and L, will
never get 2f + 1 certificates.

and certificates in round 3 (lines 7-10 of Alg. 3). If process
1 continues waiting for timer expiration, it may lag further
behind global network progress. This will jeopardize liveness
of the whole protocol, as other honest processes will not
be able to collect supporter and certificate vertices built
by process 1. Thus it is natural to require that process
1 immediately “jumps” to round 3 and creates a vertex
there (lines 15-18 of Alg. 3). This behavior is called round-
Jjumping. It is analogous to the view synchronization behavior
in leader-based consensus protocols [8], [33].

But what about round 2? Should process 1 also create a
vertex in round 2, or should it just ignore round 2 altogether?
[18] provides no explicit answer to this question. In previous
DAG-based protocols, the liveness proof is mostly insensitive
to this particular detail. In Bullshark [15], for example, when
an honest process jumps to a higher round, it does not matter
if it creates vertices in the intermediate rounds. Therefore,
the intuitive answer seems to be that honest processes in
Mysticeti can jump over these intermediate rounds as well.
This is the interpretation taken in [16] and Alg. 3. As we
will see in Sec. 6, it is also the how current Mysticeti
implementations behave.

The Liveness Flaw. Sadly, the round-jumping behavior
specified on lines 15-18 of Alg. 3 is wrong. It was first
noted in [16] that the current behavior leads to gaps in the
liveness proof of Mysticeti.

One of the key lemmas (Lemma 10 in [18]) in the liveness
proof of Mysticeti is that, after GST, when any honest process
creates a leader vertex v, every honest process will eventually
create a certificate for v. Hence every honest process will
eventually observe 2f + 1 certificates for v and commit
v directly. The counterargument in [16] is that under our
current interpretation, honest processes do not always create
certificates for leader vertices, so the key lemma is incorrect.

For a more explicit example, consider the following

sequence of events, shown in Fig. 4:

1) The leader of round r creates a leader vertex L,;

2) All honest processes create vertices in round r + 1 that
support L,., but byzantine processes create vertices that
do not support L,; the vertex created by the leader of
round r + 1 is denoted by L,41;

3) We segregate the honest processes into two sets A =
{p17 e 7pf+1} and B = {pf+27 e 7p2f+1};

4) We deliver the vertices in round r + 1 to processes in
A, and they create vertices in round r + 2 that certify
L, and support L,1;

5) The byzantine processes create vertices in round r + 2
that support L, but do not certify L,;

6) We deliver the vertices in round 7 + 2 to processes in
A, and they create certificates in round r + 3 for L, 1;

7) The byzantine processes also create vertices in round
r + 3, so that there are 2f + 1 vertices in round r + 3;

8) Finally, we deliver the vertices in round r + 3 to
processes in B; these processes immediately jump to
round r + 3 without creating a vertex in round r 4 2,
thus L, will never get 2f + 1 certificates.

While the above argument correctly points out gaps in
the liveness proof, it does not immediately imply Mysticeti
is incorrect. For a complete counterexample we have to
show that L, will definitely never be committed. However,
although L, will never get 2f + 1 certificates, it at least gets
f + 1 certificates from honest processes. This is sufficient
to show that every vertex in round 7’ > r + 3 will indirectly
reference at least one certificate of L,. Perhaps this implies
L, can still be indirectly committed within bounded time?

For an analogy with leader-based consensus, we notice
the liveness proof of Jolteon [9] also incorrectly states that
after GST every honest process will eventually vote for an
honest leader’s proposal, for the same reason that the network
adversary may manipulate a subset of the honest processes
to jump over the view. This does not imply there are liveness
bugs in Jolteon. In Jolteon, even if some honest processes
jump over view v, it can be shown that any proposal from
the leader of view v + 1 must still reference the proposal
from view v, which is sufficient to commit the proposal of
view v. Can we fix the proof of Mysticeti in the same way?

In Sec. 3, we answer this question negatively by present-
ing a full counterexample of Mysticeti: an infinite trace where
no leader vertex can be directly committed. Since indirect
commit relies on direct commit, this means no leader vertex
will ever be committed. Thus there is a genuine liveness
bug in Mysticeti, and the round-jumping behavior (lines
15-18 of Alg. 3) must be modified. In Sec. 4, we present
a simple modification to Mysticeti, which is sufficient to
restore liveness of Mysticeti.

3. A Counterexample to Liveness of Mysticeti

In this section, we describe an explicit counterexample
to liveness of Mysticeti. We present an infinite trace of
Mysticeti having the property that in each round r, at most
2f certificates will ever be created. Since a direct commit

requires 2f + 1 certificates, this is sufficient to ensure no
leader vertex will be committed.

3.1. Some Early False Hopes on Salvaging the
Liveness Proof

The definition of liveness is that every new leader vertex
created by an honest process after GST will eventually be
committed. The negation of this statement is that some leader
vertex created by an honest process after GST will never
be committed. As introduced in Sec. 2, in Mysticeti there
are two different ways to commit a leader vertex, known
as direct and indirect commit. In the scenario shown in
Fig. 4, it is true that L, will never be directly committed.
However, it is still possible to commit L, indirectly, since
f + 1 honest processes have created certificates for it. This
is actually a general phenomenon. As we will see in Sec. 4,
after GST each new leader vertex from an honest process
will eventually get f+1 certificates that are also from honest
processes, a result which we call “weak liveness.”

To extend Fig. 4 into a full counterexample of Mysticeti,
a simple idea is to repeat the steps that lead to Fig. 4, using
round r+3 as the new round r. Notice that in Fig. 4, although
L, is not committed, L, is committed since every vertex
in round r + 3 is a certificate for L, ;. Therefore, if we
repeat the process of building Fig. 4, then L, 4 would also
be committed. Since L, 4 references at least one certificate
of L,, this is very close to committing L, indirectly, the
only obstacle being we cannot decide round r + 3.

In an early stage of this investigation, the above obser-
vation has led to some suggestions that it is possible to
salvage the original liveness proof, perhaps through some
extensions to the ordering algorithm. After some deliberation,
we found this is a dead end, as we came up with a trace in
which no leader vertices are directly committed, which is
what we describe below. This dispels all hopes of recovering
liveness by extending the ordering algorithm, and so the
round-jumping behavior must be modified.

3.2. The Counterexample Construction

Assume we have 2 f+1 honest processes and f byzantine
processes. We require f > 3. The basic idea is to make each
process behave as follows in each round r > 3:

e At least f + 2 and at most f + 3 honest processes
create vertices in round r, and these vertices are both
supporters for a leader vertex in round r — 1 and
certificates for a leader vertex in round r — 2;

The other honest processes jump over round r without

creating any vertex;

« Each byzantine process creates two vertices vy, vg, such
that vy is a supporter of a leader vertex in round r — 1
but not a certificate, while vy is neither a supporter nor
a certificate.

The rationale for the conditions listed above is as follows:

First, to make an honest process create a vertex in round
r, we have to let it observe a leader vertex of round

Round r+2

Round r Round r+1 Round r+3

Process 1

Process 2

Process 3

Process 4

Process 5

Process 6

Process 7

Process 8

Process 9

Process 10

Figure 5. A counterexample to Mysticeti with f = 3 where no leader vertex
gets directly committed. Refer to Sec. 3.2 for explanation. In each round,
vertices of the same color have the same predecessor list. To reduce visual
clutter, for each color we show the predecessor list of only one vertex. A
gap indicates that the process has jumped over this round. Green: vertices
created by honest processes, which are both supporters and certificates.
Orange: the v1 vertices created by byzantine processes, which are supporters
but not certificates. Blue: the va vertices created by byzantine processes,
which are neither supporters nor certificates.

r — 1, as well as 2f + 1 supporters for a leader vertex
of round r — 2. This means the leader of round r — 1
must create at least one vertex in round r — 1. Also,
the byzantine processes must create supporter vertices
so we get a total of 2f + 1 supporters. These are the
vy vertices from byzantine processes.

« To allow byzantine processes to create vertices in round
r which are not certificates, we have to ensure there is at
least one vertex in round 7 — 1 that is not a supporter of
any leader vertex. We fulfill this requirement by letting
the byzantine processes create the vy vertices.

¢ Now each of the vy vertices in round r must reference
at least 2f 4+ 1 vertices in round r — 1, and they cannot
come from the leader of round r — 1. Therefore, at
least 2f 4 2 processes (the leader plus 2f + 1 other
processes) must create vertices in round r — 1. Among
them, at least f + 2 must be honest.

« Finally, we cannot delay delivering vertices to the honest
processes indefinitely, due to the partial synchrony
assumption. If an honest process p does not create
any vertex in round r, then eventually it has to create
a vertex in some round r’ > r. Therefore, we have
to periodically refresh the set of honest processes that
create vertices in each round.

To fulfill the last bullet above, we associate each round
r > 3 with a set S(r) of honest processes, such that the
processes creating certificates in round r are exactly the
processes in S(r) U S(r + 1). Formally, we require the sets
S(r) to satisfy the following properties:

o If leader_at(r) is honest, then leader_at(r) € S(r)
(because leader_at(r) must create at least one vertex
in round r);
o [S() = f+2
e |S(r)US(r+1) < f+3.
Thus the number of certificates in each round is upper-
bounded by f+ 3. If we assume f > 3, we have f+3 < 2f.

One way to construct the S(r) sets is to first pick any
set S with |S| = f + 2 and leader_at(3) € S as S(3).
If S(r) includes leader_at(r + 1) then set S(r + 1) =
S(r). Otherwise, remove one element from S(r) and insert
leader_at(r + 1) to get S(r +1).

Fig. 5 shows how the global DAG with f = 3 would look
like when all the conditions described above are satisfied.
One can check that in each round there are indeed at most
2f certificates in each round. Thus no leader vertex can be
directly committed.

In what follows we describe an infinite trace that con-
structs Fig. 5 in a round-by-round fashion. We begin from
the state where each process has created a genesis vertex in
round 1. In round 2, we make every honest process create
a supporter vertex by including L in its predecessor list.
These are not certificates since there is no round 0. Each
byzantine process creates two vertices v, vo. We let v; be a
supporter of L; and v, be a non-supporter, by not including
L, in its predecessor list.

In each round r > 3, we perform the following actions:

1) At the beginning, all processes in S(r) should have
created a vertex in round r — 1, and are waiting for
other vertices;

2) We deliver 2f + 1 supporter vertices in round r» — 1 to
the processes in set S(r), so they enter round r and
create vertices that both support a leader vertex of round
r — 1 and certify a leader vertex of round r — 2;

3) Each byzantine process creates a supporter for a leader
vertex of round r — 1; these vertices do not certify any
leader vertex of round r — 2; this is possible as there are
byzantine vertices in round r — 1 that are not supporters;

4) Each byzantine process additionally creates a vertex
that neither supports any leader vertex of round r — 1
nor certifies any leader vertex of round r — 2;

5) Now that there are 2 f+1 vertices in round 7, we deliver
these vertices to processes that are in S(r + 1) but not
in S(r), so they jump to round r and create vertices
that both support a leader vertex of round r» — 1 and

Algorithm 4 Modified Round-jumping Behavior

1: GCT: the timepoint where every honest process has been updated to
follow the new round-jumping behavior.

2: upon observing 2 f + 1 vertices in some round r > curr_round:
3 Enable and reset local timer to 2A.
4 if after GCT then
5: Update commit decisions based on current DAG.
6: for each round 7’ with curr_round < r’ < r do
7 if ' > 3 and decisions|[r’ — 2] = Undecided then
8: Create vertex in round 7.
9: else
10: Whether to create vertices in rounds
11: curr_round < r’ < r is implementation-defined.
12: Create vertex in round r.
13: curr_round < r + 1.

certify a leader vertex of round r — 2; this restores the
loop invariant at the beginning of this procedure.

Since every honest process gets periodically updated about
the latest vertices, we are not violating the partial synchrony
assumption. As long as we deliver these vertices fast enough,
we will not trigger any timeouts either. Thus an adversary
that controls both byzantine processes and message delivery
order can break liveness of Mysticeti.

4. Restoring Liveness of Mysticeti

As shown in Sec. 3, Mysticeti as specified by Algs. 1
to 3 does not satisfy liveness. In this section we describe a
modification to Mysticeti that restores its liveness property.

Our modification is to replace lines 15-18 of Alg. 3 with
Alg. 4. We assume there is a timepoint called the global
catchup time (GCT) that is known to the honest parties.
Before GCT, when an honest process jumps to round r, it is
implementation-defined whether it creates vertices in rounds
r’ < r. In particular, existing implementations that follow
Alg. 3 are compatible with Alg. 4 before GCT.

After GCT, we require that if an honest party jumps
to round r, it must create a vertex in every round r’ < r,

unless it has already made a decision for the round ' — 2.

The intuition behind this rule is as follows. After GCT,
suppose that an honest leader creates a vertex L, in round
r. Before any honest process times out in round r + 2, it
should have received 2f + 1 supporters for L,.. Now if some
honest process chooses to jump over round r + 2, it must
have already made a decision for round r, which it should
disseminate to other processes. We will prove later that the
decision can only be to commit L,.. If none of the honest
processes jump over round r + 2, then they should all create
certificates for L,. In that case L, is also committed.
What about leader vertices created before GCT? Can
we still provide some liveness guarantee to them? Due to
the counterexample in Sec. 3 we cannot ensure they will
be committed within bounded time. However, it turns out
the adversary cannot manipulate honest processes to skip
them either. The idea is that we can still prove at least f + 1
honest processes will create certificates for a leader vertex
L, that is created before GCT but after GST. Thus every

10

vertex in round 7’ > r + 3 will indirectly reference at least
one certificate of L,, so it will not be indirectly skipped.

To summarize, our modified Mysticeti satisfies the fol-
lowing liveness properties:

Theorem 3 (Weak Liveness of Mysticeti). After GST + A,
every honest process will always eventually create new leader
vertices; all new leader vertices created by honest processes
will get at least f + 1 certificates from honest processes.

Theorem 4 (Strong Liveness of Mysticeti). Affer max{GST+
A, GCT}, every new leader vertex created by an honest
process will be committed within bounded time.

In Sec. 5, we show how to formally prove
these results. They correspond to the Rocq lemmas
mys_liveness_weak and mys_liveness_strong
in the artifact.

Performance Impact of our Fix. The notion that honest
processes should create vertices in every round they jump
over might sound alarming. An honest process might be
manipulated into creating a large number of vertices in a
short period of time, which would congest the network.
Nevertheless, in the normal case where all participating
parties are honest, and the adversary is only capable of
reordering network messages, we can show this performance
concern can be dismissed.

Theorem 5. If all processes are honest, then after GST+6A
every new vertex is a certificate.

This lemma 1is a side-result of the liveness
proof. The corresponding Rocq lemma is called
every_vert_certificate in the artifact. See

Appendix B for the proof. Thus after GST + 6A, if an
honest process jumps to round r, it must have observed
2f + 1 certificates for every round ' < r — 2. Following
Alg. 4, it only needs to create one vertex in round 7.

In the case where there is active byzantine attack, honest
processes can still revert back to the behavior before GCT,
to limit the number of vertices created during jumping. As
shown in Theorem 3, this will not break liveness of the
protocol, but may delay committing leader vertices.

S. Formalizing Safety and Liveness of Mysticeti
under LiDO-DAG

The LiDO-DAG Model. Readers will notice that the “safety”
and “liveness” theorems of Mysticeti (Theorems 1, 3 and 4)
are not quite the same as what we define as safety and live-
ness in the introduction. For example, Theorem 1 concerns
only the decisions made by honest processes for each round,
but says nothing about the global consensus log. A proper
safety proof following the definition given in the introduction
usually takes the following form:

e For every reachable network state s, we define a
corresponding global consensus log log(s);

o For every network state s’ that is reachable from s, we
prove that log(s) is a prefix of log(s');

AddVertex Pull Invoke Push

T

LiDO Cache Tree

DAG

Graph :
- Abstract Pacemaker

I

Elapse NewView

Figure 6. The LiDO-DAG model of DAG-based consensus.

« For every honest process p;, we prove the local consen-
sus log of p; under state s must be a prefix of log(s).

These conditions are sufficient to ensure the local consensus
logs of honest processes are always consistent with each
other, as they are all prefixes of the global log. However,
extracting the global consensus log from a given network
state is often a complex process that is inconvenient to
reason about formally. This is especially true for DAG-based
consensus as its consensus log is defined in multiple steps:
first ordering the leader vertices and then expanding each
entry to its graph closure. This makes proof engineering
rather tedious, and the proofs are difficult to reuse.

The general philosophy of LiDO [27] and LiDO-DAG
[28] is to provide resuable abstractions that factor out the
common logic of consensus protocols, so that it is easier
to connect the network-level safety and liveness theorems
(Theorems 1, 3 and 4) to the abstract-level statements. To
reuse the proofs of LiDO-DAG, one defines a refinement
mapping from the network model to LiDO-DAG, and then
translate the theorems of LiDO-DAG back to network-level
properties. Here we give an overview of LiDO-DAG.

As shown in Fig. 6, LIDO-DAG is a transition system
whose state consists of three parts: 1) the global DAG graph;
2) the LiDO cache tree; 3) the abstract pacemaker. Only the
first two parts are related to the safety proof and will be
introduced first. The abstrace pacemaker will be described
as we introduce the liveness proof.

The global DAG graph of LiDO-DAG corresponds
directly to the global DAG in the network model. Its state
consists of a finite set of vertices, which are defined as:

Verter = Nig * Npyitder * Npouna * Data * (list Npreds)-

The only allowed operation on the global DAG is
AddVertex() which adds a single vertex to the graph.

In authenticated DAG protocols like Bullshark, each
vertex can be uniquely identified by its builder and round.
Therefore in [28] the id field is always implicitly defined
by builder and round. For unauthenticated DAG protocols
like Mysticeti, we instead use the cryptographic hash of
vertex records to identify vertices. Refinement from the
global DAG of Mysticeti to the global DAG of LiDO-DAG
is straightforward: whenever a new vertex record is accepted
by the system agent S (see Alg. 1), the corresponding vertex
is added to the global DAG of LiDO-DAG.

The LiDO cache tree is a representation of the leader
vertex consensus log that abstracts away details like leader

11

vertex slot location and frequency. It postulates that DAG-
based consensus protocols can be interpreted as simulating
leader-based consensus, and progresses through logical views.
In each view, a predefined leader attempts to commit a new
leader vertex. For example, in the Bullshark protocol [15]
there is one leader vertex slot in every second round, thus a
logical view of Bullshark corresponds to two DAG rounds
(called a wave in [15]). For Mysticeti, DAG rounds and
logical views are in one-to-one correspondence: DAG round
r corresponds to logical view v with v = r.

The task of committing a leader vertex is further broken
into three steps:

o Pull: the parent of the current view is uniquely deter-
mined, which is the branch of the global consensus log
the current view will append to;

« Invoke: the leader vertex itself is uniquely determined;

o Push: the leader vertex is committed.

When each step succeeds, a corresponding cache node is
added to the cache tree. The state of the LiDO cache
tree is thus a finite set of cache nodes. The cache nodes
corresponding to pull, invoke, and push are called ECache
(leader Election), MCache (Method invocation), and CCache
(Commit), respectively. There is also a root cache node
corresponding to the initial empty consensus log. Formally,
they are defined as:

CacheNode £ Root
| ECache(Nyiew * Nparent)
| MCache(Nyjew * Nicader_vert_1D)
| CCache(Nyjew)-

If ¥ is a cache tree, we use X[v].ecache to represent
the ECache of view v. If such a cache node does not exist,
we write X[v].ecache = L. Similarly, we use X[v].mcache
to represent the MCache of view v, and use X[v].ccache to
represent the CCache of view v. The cache creation rules of
LiDO guarantees the uniqueness of these nodes.

Each cache node except root has a parent node defined,
which chains the nodes into a tree structure (Fig. 7). The
parent relation is defined as:

Root
parent(ECache(r,p)) = {E[p] meache

parent(MCache(r,m)) = X[r].ecache
parent(CCache(r)) = X[r].mcache

(p=0)
(p>0)

The consensus log up to an MCache is the list of all MCaches
along the path from root to that MCache.

The cache node creation rules of LiDO-DAG maintain the
following invariant: if view v has a CCache, and view v’ > v
has an ECache, then v’.ccache.parent > v. Intuitively this
means if the leader vertex of view v is committed, then all
future views must append after the leader vertex of view wv.
It is shown in [27], [28] that this invariant is sufficient to
ensure all committed leader vertices are on a single branch.

The highest committed view is the view with the highest
number that contains a CCache. The global leader vertex

ECache MCache
Root view =1 view =1
parent = 0 LV_ID = A4

MCache
view =2
LV_ID=A,

ECache
view = 2
parent =1

MCache
view =3
LV_ID = A3

ECache
view =3
parent = 1

CCache
view =3

Figure 7. Example of LiDO-DAG cache tree. Reproduced from [27]. LV_ID stands for leader_vertex_ID.

| Record MDAG_State : Type := {
(* The global DAG x)
mdag_udag : UDAG_State;
4 (x History variable (p, r) that indicates
5 process p has received leader vertex of
6 round r before timeout in round r+l =)
mdag_recv_leader_verts list (nat = nat);
8 (x History variable (p, r) that indicates
9 process p has received 2f+1 supporters for
10 leader vertex of round r before timeout
11 in round r+2 x)
12 mdag_recv_certs list (nat % nat);
13 (x History variable (p, r) that indicates
14 process p has timed-out in round r x)
15 mdag_timeouts list (nat = nat);
16 (x History variable (p, r) that indicates
17 process p has decided to jump over round
18 r without creating a vertex «)
19 mdag_jumps list (nat = nat);

Figure 8. The MysticetiDAG Layer.

consensus log is the consensus log up to the MCache of the
highest committed view. In [28], it is proved that if 3, %’
are two LiDO cache trees and Y’ is reachable from ¥, then
the leader vertex consensus log of ¥ is a prefix of the leader
vertex consensus log of X'

The full consensus log is defined to be the leader vertex
consensus log with each entry replaced by its graph closure.
[28] similarly proved that if ¥’ is reachable from X, then
the full consensus log of ¥ is a prefix of the full consensus
log of X'. Thus the two remaining steps of proving safety
of a protocol are:

o Construct a refinement mapping from network states to
LiDO-DAG states;

o Prove that the local leader vertex consensus logs are
prefixes of the global log.

The Network Model of Mysticeti. To describe details of
the safety proof as well as the liveness proof we need to
introduce how the network system is formally modeled.

The network model is defined in two layers. In the first
layer (MysticetiDAG.v) we only consider the vertex cre-
ation rules. In this layer we prove the weak liveness theorem
(Theorem 3). In the second layer (MysticetiCommit.v)
we add in the ordering algorithm and prove safety and the
strong liveness theorem (Theorem 4).

The state variables of the MysticetiDAG layer are
shown in Fig. 8. To keep things simple, the model does not

12

capture the local DAGs of individual processes. Instead, we
record only the global DAG, and use history variables to
keep track of the parts each honest process has received.

A complete modeling of Algs. 3 and 4 would also need
to capture the curr_round variable and the remaining time
of the local timer. As these variables are unrelated to the
safety proof, they are defined later in the liveness proof.

As shown in Alg. 3, there are three conditions under
which an honest process may create a vertex in round r: 1)
it has received both a leader vertex of round r—1 and 2f +1
supporters of a leader vertex of round r—2; 2) it has timed-out
in round r; 3) it has received 2 f 4 1 vertices of round r. The
formal encodings of these conditions are straightforward,
except one important detail. When an honest process p;
creates a vertex v in round r, we require it to “try its best”
to make the vertex a supporter and a certificate. Formally:
if p; has previously received a leader vertex of round r — 1,
ie. (pi;,r —1) € mdag_recv_leader_verts, then we
require v to reference at least one leader vertex of round r—1.
Similarly, if p; has previously received 2 f + 1 supporters for
a leader vertex v’ of round r — 2, then we require v to be
a certificate for v’. Fig. 9 shows the formal precondition of
process p; adding vertex v upon timeout in round r, which
shows how the above conditions are formalized.

The MysticetiCommit layer is shown in Fig. 10. In this
layer we add history variables about the commit decisions
the honest processes have made. We also record whether we
are before or after GCT, as it controls the round-jumping
rules of honest processes.

The Safety Proof. To prove safety of Mysticeti, we construct
a refinement mapping from traces of the network model
to traces of LiDO-DAG. Since the MysticetiCommit layer
records all valid vertices and all commit decisions, we
are essentially acting as the virtual system agent S which
monitors all network activities and builds the global DAG
and consensus log.

Let D be the set of all decisions made by honest
processes. The difficult part of the proof is to show that two
processes cannot make conflicting decisions for the same
round (Theorem 1). Once this is established, constructing the
cache tree is relatively straightforward. We find the largest
R such that every round r < R is decided in D. For each
round that is skipped, we do not create any cache node. For
each round r that has a committed leader vertex v, we create

| Definition mdag_add_vert_timeout_pre

2 (r nat) (nid nat) (id nat)

(vert UDAG_Vert) (mdag MDAG_State) :=
4 (x r = 1 or the process has created vertex in
5 round r - 1 or the process has decided to
6 jump over round r - 1 x)
7 (r =1 \/
8 (exists id,

9 match NatMap_find id

10 mdag. (mdag_udag) . (udag_verts) with

11 | None => False

12 | Some v => v. (udag_vert_round) = r - 1 /\
13 v. (udag_vert_builder) = nid

14 end) \/

15 In (nid, r - 1) mdag. (mdag_jumps)) /\

16 (The new vertex is valid, and honest

17 processes do not create two vertices

18 in a single round x)

19 udag_add_vert_pre id vert mdag. (mdag_udag)
20 (x If the process has previous received a
21 leader vertex of round r—-1, then it
references at least one leader vertex
23 of round r-1
(In (vert. (udag_vert_builder),

25 vert. (udag_vert_round) - 1)

26 mdag. (mdag_recv_leader_verts)
27 mdag_vert_is_supporter vert mdag)
28 (*

/\

*)

->

/\
If the process has previous received
29 2f+1 supporters for some leader vertex
30 of round r-2, then the new vertex is

31 a certificate)

32 (In (vert. (udag_vert_builder),

vert. (udag_vert_round) - 2)
34 mdag. (mdag_recv_certs) ->
35 mdag_vert_is_certificate vert mdag) .

Figure 9. Formal requirements of adding vertices upon timeout.

| Record MDAG_Commit_State Type
2 (* The MysticetiDAG state x)
3 mcommit_mdag MDAG_State;

4 (x History variable (r, v) that indicates

5 leader vertex v of round r has been

6 committed by an honest process x)

7 mcommit_commit list (nat * nat);

8 (x History variable r that indicates an honest
9 process has decided to skip round r x)
10 mcommit_nack list nat;

1 (» Whether we are before or after GCT x)
12 mcommit_gct bool;

3 }.

=

Figure 10. The MysticetiCommit layer.

cache nodes as follows:

 Pull: the parent of round r is set to the largest round
r’ < r that is committed. If such a round does not exist,
the parent is set to the root node.

o Invoke: the leader_vert_ID is set to the ID of v.

e Push: we create a CCache to indicate this round has
been committed.

Now because the decisions made by any honest process
is a subset of D, it is easy to see the local leader vertex
consensus logs must be prefixes of the global log. Then we
invoke lemmas in the LiDO-DAG model to show the local
full consensus logs are also prefixes of the global log.

Proof of Theorem I: First we notice the following lemmas.

13

In the artifact they are contained in the proofs of the safety
theorems.

Lemma 1. If there exists a certificate for a leader vertex v
in round r, then there cannot exist a skip pattern for round r.
Also, there cannot exist certificates for two different leader
vertices v,w in the same round.

Proof: If v’ is a certificate for v then we have 2f + 1
supporters for v in round r 4 1. If a skip pattern for round
r exists then we also have 2f + 1 vertices which do not
support v in round r + 1. By quorum overlapping, at least
one honest process must have created two vertices, one of
which supports v, the other does not, which is impossible.

If v’ is a certificate for v and w’ is a certificate for w,
then we have 2f + 1 supporters for v, as well as 2f + 1
supporters for w in round r 4+ 1. By quorum overlapping, at
least one honest process must have created two vertices that
support v and w respectively, which is also impossible. []

Lemma 2. If two honest processes decide to commit v, v’
in round r respectively, then v = v’

Proof: Regardless of whether we use the direct or indirect
decision rule to commit v, there must exist at least one
certificate of v. By Lemma 1, we cannot commit two different
vertices in round r. L]

Lemma 3. If there exists 2f + 1 certificates for a leader
vertex v in round r, then every vertex in round v’ > r + 3
directly or indirectly references at least one certificate for
v, and no honest process will skip round r. This lemma is
also true if we replace “2f + 1 certificates” with “f + 1
certificates from honest processes.”

Proof: Every vertex in round ' > r+ 3 will reference at
least 2f + 1 vertices of round r + 2. By quorum overlapping,
it should reference at least one certificate of v. O

Now there are four different ways to decide a round
(direct/indirect commit/skip). If two processes both make a
decision for round r, there are 16 combinations, of which
14 can be directly closed with Lemmas 1 to 3 above.

The remaining cases are where one process indirectly
commits vertex v of round r, and the other process indirectly
skips round r. This case requires induction over the network
trace. Suppose process p; has decided to skip every round
r’ with r + 3 <7’ < R and commit vertex v’ of round R.
Meanwhile, process p, has decided to skip every round 7’
with » + 3 < r’ < R’ and commit vertex v"" of round R’.
Notice that we must have R = R’, otherwise the decisions
on round min{R, R’} are conflicting which violates the
induction hypothesis. Then we have v’ = v”, which proves
ps,p; cannot make conflicting decision for round 7. O

The Liveness Proof: Segmented Traces. To prove liveness
of Mysticeti we have to model the local timers of honest pro-
cesses. In general, to model the dynamics of time-dependent
systems we have to introduce timed-traces [34]. However,
continuous time variables can be difficult to work with.
Especially in partially synchronous protocols like Mysticeti,
we have to deal with multiple time variables, one at each

| Class MysticetiWeakOracle : Type := {
(» k |=> MysticetiDAG state at end of tau_k x)
mys_weak_oracle_dag : nat —-> MDAG_State;
4 (» (k, p) |—-> current_round of process p
at end of tau_k x)
6 mys_weak_oracle_local_ar : nat -> nat -> nat;
(k, p) |-> remaining time of local timer of
8 process p at end of tau_k «)
9 mys_weak_oracle_local_rt : nat —-> nat

(*
—> nat;

) (x Reachability of traces x)

12 mys_weak_oracle_init_valid :

13 mdag_valid (mys_weak_oracle_dag 0);
14 mys_weak_oracle_reachable :

15 forall n,

16 mdag_reachable

17 (mys_weak_oracle_dag n)

18 (mys_weak_oracle_dag (S n));

Figure 11. Encoding of segmented traces of Mysticeti.

mys_weak_oracle_timeout
(x For any given k and process ID nid ...
forall k nid,
(+ if nid is an honest participant
In nid participant ->
6 node_assump nid Synchronous —>
(x local timer remaining time has reached 0
8 at the end of tau_k ...
9 mys_weak_oracle_local_rt k nid = 0 ->
10 (» the process does not enter a new round
I within delta ...
12 mys_weak_oracle_local_ar (S k) nid
13 mys_weak_oracle_local_ar k nid ->
14 (» then it times out before the
15 end of tau_{k+1l}
16 In (nid, mys_weak_oracle_local_ar k nid)
17 (mys_weak_oracle_dag (S k)).(mdag_timeouts);

*)

*)

*)

*)

Figure 12. Example of encoding temporal assumptions on segmented traces.

local timer. Adding to the difficulty is the fact that the model
is parametric in the number of participants and the network
latency A. To handle these difficulties, [27] introduced a
formalism called segmented traces for encoding the temporal
dynamics of honest processes.

The core idea of segmented traces is to take snapshots of
the system at regular intervals of A after GST. Formally, if
7 is an infinite timed-trace, then its (GST, A)-segmentation
is 79,71, - where 7y is the prefix of 7 consisting of all
events occurred before the timepoint GST + kA. Thus each
Tk 1s a prefix of 7,41, as 7,4+1 extends 7 with the events

occurred within the interval [GST + kA, GST + (k+1)A).

The reason segmented traces are useful is it allows
encoding temporal assumptions of network systems without
explicit reference to the latency parameter A. Fig. 11 shows
how we formally represent segmented traces of Mysticeti. We
assume a function mys_weak_oracle_dag which maps
k to the system state at the end of the partial trace 7. We
also introduce two functions that represent the curr_round
variables and the remaining time of local timers in Alg. 3.

Fig. 12 shows how the timeout assumption is encoded
using segmented traces. We follow [27] and represent the
remaining time ¢ of the local timer by its discrete approximate

14

value [t/A]. This makes it an integer that decreases by
exactly 1 over each period of A, unless the timer is reset.
We then state that, if at the end of 7, the remaining time is
0 (which means 0 <t < A), and the process does not enter
a new round between 7 and 741, then by the end of 751
there should be at least one timeout event delivered to that
process. See Appendix B.

The Liveness Proof: The Abstract Pacemaker. Our goal
is to prove that after GST, every honest process can always
eventually create and commit new leader vertices. It is
tempting to think that, if an honest process p is in round r
when GST commences, then it can commit a leader vertex
in every round ' > r with leader_at(r’) = p. This is not
strictly true, for when GST commences p might be lagging
behind global network progress, so that even if it creates a
leader vertex in some round ' > r it might not get enough
certificates to be committed. The gist is that to prove liveness
of consensus protocols it is not sufficient to look at the state
of any single process. We have to consider the timer status
of all honest processes together.

LiDO and LiDO-DAG simplifies the issue by introducing
a pacemaker abstraction. The pacemaker consists of just
two variables called global active view (GAV) and global
remaining time (GRT). They provide a useful summary of
the local timers of honest processes. For Mysticeti, they are
related to the local states as follows:

e GAV = maXpchonest p-curr_round, i.e. the highest
round any honest process has ever entered.

¢ GRT = min pEhonest p.remaining_time, i.e.

p.curr_round =GAV
the least amount of remaining time among processes

that are in the GAV round.

By a slight abuse of notation, for any finite trace 7 we
shall write GAV(7) to denote the value of GAV in the final
system state after replaying the trace 7. Similarly, GRT(7)
is the value of GRT after replaying the trace 7. With the
pacemaker abstraction, liveness of Mysticeti is decomposed
into the following safety properties:

o There exists constant C, s.t. for any k£ we have
CLNV(Tk+Cﬂ >'(L§V(Tkﬁ

o After GCT, there exists constant C’, s.t. for any 7
with [eader_at(r) being honest, if GAV(r) < r and
GAV(1i41) > r, then a leader vertex of round r is
committed by the end of 7,4 ¢/;

o The leader schedule periodically admits three consecu-
tive honest leaders, so that all previous rounds can be
decided via Theorem 2.

The first property can be easily proved from liveness as-
sumptions. The third property is true for the special case of
round-robin leader schedule [9], but we simply state it as an
assumption. The second property is the tricky part.

The Liveness Proof: Liveness Checkpoints. To prove that
a leader vertex of round r will be eventually committed, we
need to analyze the dynamics of the system starting from
the point where the first honest process enters round r.

An informal outline of the proof is as follows. We first
introduce an important lemma, which can be easily proved

@ @ @ o
o

Figure 13. Round checkpoint transition guarantees. Once the network state
has reached a certain checkpoint for round r, it should hop to the next
checkpoint within bounded time. Dashed lines represent transitions only
guaranteed after GCT.

by induction over the network trace.

Lemma 4. If no honest process has ever timed out in some
round R, then every vertex in round R built by an honest
process must support a leader vertex in round R — 1, and
also certify a leader vertex in round R — 2.

Proof: If no honest process has ever timed out in round
R, then honest processes can create vertices in round R
under only two conditions: 1) it has observed a leader vertex
of round R — 1 and 2f + 1 supporters for a leader vertex
of round R — 2; 2) it has received 2f + 1 other vertices in
round R.

In the first case, the lemma immediately follows from
the predecessor rule (line 19 of Alg. 3. In the second case,
among the 2f + 1 vertices that already exist in round R,
at least f + 1 must come from honest processes. By the
induction hypothesis, they must all support a leader vertex
in round R — 1, and certify a leader vertex in round R — 2.
The lemma follows again from the predecessor rule. O

Now suppose that GAV(7;) < . We wait until the the
first honest process enters round r + 1. Within A, the leader
of round r will have either created a vertex in round r, or
jumped over round r. The second case is impossible, because
to jump over round r there must be 2f + 1 vertices in round
r + 1, of which at least f + 1 must be supporters for some
leader vertex of round r, which contradicts the fact that
leader_at(r) has jumped over round 7.

After the leader vertex v of round 7 is created, within
A every honest process will receive v. They could not have
timed out in round r + 1 at this point. Therefore, within
another A each process will either create a supporter for v,
or jump over round 7 4 1. In the second case, we can show
that there must be 2f + 1 vertices in round r + 2, of which
at least f 4 1 are from honest processes and are certificates
for v. This is the weak liveness result. If no honest process
jumps over round r + 1, then every honest process will
receive 2f + 1 supporters for v, so eventually there should
be at least f + 1 certificates for v in round r + 2 as well.

To get the strong liveness result, notice that every honest
process will eventually either create a vertex in round r + 2,
or jump over round 7 + 2. In the second case it must have
already made a decision for round r. Since there exists at
least f + 1 certificates from honest processes in round r + 2,
by Lemma 3, the decision must be to commit v. If no honest
process jumps over round r + 2, then there will be 2f + 1
certificates for v, and we can directly commit v. O

To translate the above outline into a rigorous proof,
we defined a list of “checkpoints” for round r that the
network state must progress through. There are a total of

15

9 checkpoints. Appendix B lists the formal definition of
every checkpoint. The first checkpoint states that at least one
honest process has entered round r + 1. The final checkpoint
is that a leader vertex of round r is committed. However,
before GCT we can only guarantee each round will reach
checkpoint 6 or 7.

Fig. 13 summarizes the checkpoint progress guarantees
we have proved. Once the network state reaches a certain
checkpoint for round r, it should advance by one hop in
the figure within bounded time (A or 2A depending on the
checkpoint). For example, if the network state at the end of 7
satisfies checkpoint 2, then we should reach checkount 3, 4, or
6 by the end of 7. By chaining these guarantees together,
we formally derived liveness guarantees for Mysticeti.

An Example of Liveness Reasoning. We explain the proof
for the following statement, as an example of how we perform
liveness reasoning.

Lemma 5. If the network state at the end of T, satisfies
checkpoint 2 of round r, then at the end of Tyy1 it must
satisfy checkpoint 3, 4, or 6 of round r. Relevant definitions:

e Checkpoint 2: GAV =r + 1, GRT > 1, and the leader
of round r has created a vertex in round 7.
Checkpoint 3: GAV = r + 1 and every honest process
has received a leader vertex of round r.

Checkpoint 4: GAV = r 4+ 2, GRT > 2; each honest
process either has received a leader vertex of round
r, or is still in some round v < r + 1 and will not
time out in round r + 1 within A; at least f + 1 honest
processes have created supporter vertices in round r+ 1
for a leader vertex of round r.

Checkpoint 6: GAV > r + 3; each honest process either
has received 2f + 1 supporters for a leader vertex of
round r, or is still in some round ' < r + 2 and will
not time out in round v + 2 within A; at least f + 1
honest processes have created certificates in round r+2
for a leader vertex of round r.

Proof: Checkpoint 2 states that GAV = r+1 and GRT >
1 at the end of 7%, and the leader of round r has created a
vertex in round r. Let R = GAV(7x41). Since curr_round
can only increase but not decrease, we have R > r + 1. We
have three cases: R=r+1,R=r+2,or R >r+ 3.

Case 1: R = r+1: In this case, every honest process must
have received the leader vertex of round r, so checkpoint 3
is satisfied.

Case 2: R = r + 2: Since GRT > 1 at the end of 7,
no honest process could have timed out in round r 4+ 1 by
the end of 74y1. Since R = r + 2, there must be 2f + 1
vertices in round 7 + 1, of which at least f 4+ 1 come from
honest processes. By Lemma 4, these f 4 1 vertices must be
supporters for the leader vertex of round r. Hence checkpoint
4 is satisfied.

Case 3: R > r + 3: Since GAV = r + 1 by the end
of 7k, no honest process could have timed out in round
r + 2 by the end of 7411. Since R = r + 3, there must be
2f + 1 vertices in round r + 2, of which at least f + 1 come
from honest processes. By Lemma 4, these f + 1 vertices

AuthorityNode

new_block new_block
<

<

Core LeaderTimeoutTask

> P>

new_round

add_blocks

Figure 14. Simplified architecture of the Sui implementation of Mysticeti.
The Core and LeaderTimeoutTask structures roughly correspond to
the atomic state machine and local timer in our system model. Core
communicates with other peers via gRPC over TLS. It accepts vertex
records via add_blocks (). Byzantine peers can exploit add_blocks ()
to inject vertex records into the staging area in a controlled order.

must be certificates for the leader vertex of round r. Hence
checkpoint 6 is satisfied. O

Proof Effort. Beyond the files imported from the LiDO-
DAG project, the proofs specific to Mysticeti span 6271 lines
and was developed by two persons in two months.

6. Real-world Implementations of Mysticeti

In the previous sections we have fully resolved the
theoretical correctness issues of Mysticeti. However, there
remains the question of how Mysticeti behaves in practice.
In particular we want to know whether the liveness attack
described in Sec. 3 will work on existing implementations.
To this end we audited the source code of the Sui blockchain
[35, commit 2f52a72] which is based on Mysticeti. Here we
describe our findings.

Fig. 14 shows a simplified architecture of the consensus
component of Sui. The two most important structures are
Core and LeaderTimeoutTask, which roughly corre-
sponds to the atomic state machine and local timer in our
system model. Core structures communicate with each
other through gRPC over TLS. LeaderTimeoutTask
only serves to deliver timeout signals to the local Core.

There are two different ways to deliver vertex records
to a process. First, the builder of a vertex may perform
gRPC calls to push the record to its peers. This code-path
is difficult to manipulate because TLS already protects the
order of messages. In Fig. 3, for example, we cannot deliver
vertex 5 before vertex 3 through this method because process
3 is honest and it must send vertex 3 before vertex 5.

However, the implementation has a second way of
receiving vertices via synchronizers. When a process suspects
it is lagging behind global network progress, it executes one
of the synchronizers to fetch missing blocks from its peers.
The simplest kind of synchronizer is triggered when the
process receives a vertex record with missing predecessors.
In this case the synchronizer makes a gRPC call to the author
of the record to fetch the missing vertices. If the author is
byzantine, this allows the adversary to inject an arbitrary list
of vertices into the staging area of the honest process.

We constructed a testcase that simulates delivering ver-
tices to an honest process in the order shown in Fig. 3. We
confirmed that the current implementation follows Alg. 3
and jumps over round 2 without creating a vertex. We also
confirmed that a malicious peer can trigger the synchronizers

16

of honest processes by sending vertex records. Together, this
provides an actual path to launch the attack shown in Sec. 3
and delay committing leader vertices.

7. Discussions and Related Works

Formal verification of security properties of distributed
systems is a longstanding topic that has been attacked from
many angles, including proof checking (e.g. [25], [27],
[36]), model checking (e.g. [37], [38], [39]), and specialized
languages that enable correctness-by-construction (e.g. [40],
[41]). However, since DAG-based consensus is a relatively
new paradigm, its formal security has received comparatively
little attention.

[42] introduced a formal model for DAG-based consen-
sus in TLA+ and applied it to several protocols including
DAG-Rider [14], Bullshark [15], and Cordial Miners [17].
Similarly, [43] presented a model of DAG-based consensus
with dynamic stakes in the ACL2 proof checker. However,
both works only considered the safety aspect of consensus.
[44] verified both safety and liveness of Hashgraph [45], an
early DAG-based consensus algorithm. Another work [46]
verified safety and liveness of “Nakamoto-style proof-of-
stake,” a consensus protocol that also uses a DAG of blocks,
but quite distinct from what is called DAG-based protocols
today. In these works, liveness of consensus depends on
probability, but the probabilistic part of the proof is not
verified. In contrast, the Mysticeti protocol does not use
probability, and liveness is deterministic.

The liveness flaw of Mysticeti was first noted in [16], but
[16] does not provide suggestions on how to fix the protocol.
In [30], it is suggested that each honest process must create a
vertex in every single round. This rule is more stringent than
our proposed fix. Our rule still allows honest processes to
jump over rounds, provided they have made commit decisions
for their leader vertices. As argued in Sec. 4, in the normal
case where there is no active byzantine attack, our rule allows
much more efficient round-jumping. Also, [30] requires their
rule to be observed from the beginning of protocol execution.
Our analysis allows adopting the rule during the middle of
execution, making our model more compatible with existing
implementations.

One aspect of round-jumping we have not yet considered
in this work is making the intermediate vertices logical rather
than physical. That is, when jumping to a higher round the
honest processes do not actually need to create and distribute
the intermediate vertices. They can simply embed commit
votes for earlier vertices in their latest vertices. However, this
will likely complicate a protocol that is already extremely
complex and subtle, as evidenced by the counterexamples in
this work. It might also increase the computational overhead
of the ordering algorithm. Therefore, we leave this possbility
of improving the Mysticeti protocol to future work.

Acknowledgement

We would like to thank Alberto Sonnino and other authors
of [18], the anonymous reviewers, and the shepherd for their

helpful feedback. This work is supported in part by a Sui
Academic Research Award, by NSF grants 2019285 and
2313433, and by the Defense Advanced Research Projects
Agency (DARPA) under Agreement No. HR00112590130.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the funding agencies.

References

[1] S. Nakamoto. (2008, Oct.) Bitcoin: A peer-to-peer electronic cash
system. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[2] H. Vranken, “Sustainability of bitcoin and blockchains,”
Current Opinion in Environmental Sustainability, vol. 28,
pp- 1-9, 2017, sustainability governance. [Online]. Available:

(3]

(4]

[3]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

https://www.sciencedirect.com/science/article/pii/S1877343517300015

M. Saad, A. Anwar, S. Ravi, and D. Mohaisen, “Revisiting nakamoto
consensus in asynchronous networks: A comprehensive analysis
of bitcoin safety and chain quality,” IEEE/ACM Transactions on
Networking, vol. 32, no. 1, pp. 844-858, 2024.

V. Buterin, D. Hernandez, T. Kamphefner, K. Pham, Z. Qiao,
D. Ryan, J. Sin, Y. Wang, and Y. X. Zhang, “Combining ghost and
casper,” 2020. [Online]. Available: https://arxiv.org/abs/2003.03052

Aptos Foundation, “The aptos blockchain: Safe, scalable, and
upgradeable web3 infrastructure,” 2022. [Online]. Available:
https://aptosfoundation.org/whitepaper/aptos-whitepaper_en.pdf

M. Castro, “Practical byzantine fault tolerance,” Ph.D.
dissertation, Massachusetts Institute of Technology, 2001.
[Online]. Available: https://www.microsoft.com/en-us/research/wp-
content/uploads/2017/01/thesis-mcastro.pdf

E. Buchman, J. Kwon, and Z. Milosevic, “The latest gossip on bft
consensus,” 2019. [Online]. Available: https://arxiv.org/abs/1807.04938

M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and 1. Abraham,
“Hotstuff: Bft consensus with linearity and responsiveness,” in
Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, ser. PODC *19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 347-356. [Online]. Available:
https://doi.org/10.1145/3293611.3331591

R. Gelashvili, L. Kokoris-Kogias, A. Sonnino, A. Spiegelman, and
Z. Xiang, “Jolteon and ditto: Network-adaptive efficient consensus
with asynchronous fallback,” in Financial Cryptography and Data
Security, 1. Eyal and J. Garay, Eds. Cham: Springer International
Publishing, 2022, pp. 296-315.

O. Naor, M. Baudet, D. Malkhi, and A. Spiegelman,
“Cogsworth: Byzantine View Synchronization,” Cryptoeconomic
Systems, vol. 1, no. 2, oct 22 2021. [Online]. Avail-

able: https://cryptoeconomicsystems.pubpub.org/pub/naor-cogsworth-
synchronization

A. Lewis-Pye, D. Malkhi, O. Naor, and K. Nayak, “Lumiere: Making
optimal bft for partial synchrony practical,” 2024. [Online]. Available:
https://arxiv.org/abs/2311.08091

G. Danezis, L. Kokoris-Kogias, A. Sonnino, and A. Spiegelman,
“Narwhal and tusk: a dag-based mempool and efficient bft consensus,”
in Proceedings of the Seventeenth European Conference on Computer
Systems, ser. EuroSys '22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 34-50. [Online]. Available:
https://doi.org/10.1145/3492321.3519594

R. Neiheiser, M. Matos, and L. Rodrigues, “Kauri: Scalable bft
consensus with pipelined tree-based dissemination and aggregation,”
in Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, ser. SOSP ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 35-48. [Online]. Available:
https://doi.org/10.1145/3477132.3483584

17

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

I. Keidar, E. Kokoris-Kogias, O. Naor, and A. Spiegelman, “All
you need is dag,” in Proceedings of the 2021 ACM Symposium on
Principles of Distributed Computing, ser. PODC’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 165-175.
[Online]. Available: https://doi.org/10.1145/3465084.3467905

A. Spiegelman, N. Giridharan, A. Sonnino, and L. Kokoris-Kogias,
“Bullshark: Dag bft protocols made practical,” in Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 2705-2718. [Online]. Available:
https://doi.org/10.1145/3548606.3559361

N. Shrestha, R. Shrothrium, A. Kate, and K. Nayak, “ Sailfish:
Towards Improving the Latency of DAG-based BFT ,” in 2025 IEEE
Symposium on Security and Privacy (SP). Los Alamitos, CA, USA:
IEEE Computer Society, May 2025, pp. 21-21. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP61157.2025.00021

I. Keidar, O. Naor, O. Poupko, and E. Shapiro, “Cordial miners: Fast
and efficient consensus for every eventuality.” Schloss Dagstuhl
— Leibniz-Zentrum fiir Informatik, 2023. [Online]. Available:
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2023.26

K. Babel, A. Chursin, G. Danezis, A. Kichidis, L. Kokoris-Kogias,
A. Koshy, A. Sonnino, and M. Tian, “Mysticeti: Reaching the
limits of latency with uncertified dags,” 2024. [Online]. Available:
https://arxiv.org/abs/2310.14821

A. Spiegelman, B. Arun, R. Gelashvili, and Z. Li, “Shoal:
Improving dag-bft latency and robustness,” 2023. [Online]. Available:
https://arxiv.org/abs/2306.03058

G. Bracha, “Asynchronous byzantine agreement
protocols,” Information and Computation, vol. 75,
no. 2, pp- 130-143, 1987. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/089054018790054X

C. Cachin and S. Tessaro, “Asynchronous verifiable information
dispersal,” in 24th IEEE Symposium on Reliable Distributed Systems
(SRDS’05), 2005, pp. 191-201.

S. Das, Z. Xiang, and L. Ren, “Asynchronous data dissemination and
its applications,” in Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 2705-2721.
[Online]. Available: https://doi.org/10.1145/3460120.3484808

IOTA Foundation, “Iota rebased: Fast forward,” 2024. [Online].
Available: https://blog.iota.org/iota-rebased-fast-forward/

C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of the ACM, vol. 35, no. 2, p. 288-323,
Apr. 1988.

J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang,
M. D. Ernst, and T. Anderson, “Verdi: A framework for
implementing and formally verifying distributed systems,” SIGPLAN
Not., vol. 50, no. 6, p. 357-368, jun 2015. [Online]. Available:
https://doi.org/10.1145/2813885.2737958

D. Woos, J. R. Wilcox, S. Anton, Z. Tatlock, M. D.
Ernst, and T. Anderson, “Planning for change in a formal
verification of the raft consensus protocol,” in Proceedings of
the 5th ACM SIGPLAN Conference on Certified Programs and
Proofs, ser. CPP 2016. New York, NY, USA: Association for
Computing Machinery, 2016, p. 154-165. [Online]. Available:
https://doi.org/10.1145/2854065.2854081

L. Qiu, Y. Kim, J.-Y. Shin, J. Kim, W. Honoré, and Z. Shao, “Lido:
Linearizable byzantine distributed objects with refinement-based
liveness proofs,” Proc. ACM Program. Lang., vol. 8, no. PLDI, Jun.
2024. [Online]. Available: https://doi.org/10.1145/3656423

L. Qiu, J. Xiao, J.-Y. Shin, and Z. Shao, “LiDO-DAG: A framework
for verifying safety and liveness of dag-based consensus protocols,”
Yale Univ., Tech. Rep. TR1574, Apr. 2025. [Online]. Available:
https://flint.cs.yale.edu/publications/lido-dag.html

(29]

(30]

[31]

(32]

[33

—

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

L. Qiu, J. Xiao, and Z. Shao, “Artifact for s&p 2026 paper #131
mechanized safety and liveness proofs for the mysticeti consensus
protocol under the lido-dag framework,” Oct. 2025. [Online].
Available: https://zenodo.org/records/17345693

N. Polyanskii, S. Mueller, and I. Vorobyev, “Starfish: A high
throughput BFT protocol on uncertified DAG with linear amortized
communication complexity,” Cryptology ePrint Archive, Paper
2025/567, 2025. [Online]. Available: https://eprint.iacr.org/2025/567

L. Lamport, R. Shostak, and M. Pease, “The byzantine generals
problem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, p. 382-401,
Jul. 1982. [Online]. Available: https://doi.org/10.1145/357172.357176

M. Bellare and P. Rogaway, “Random oracles are practical: a paradigm
for designing efficient protocols,” in Proceedings of the 1st ACM
Conference on Computer and Communications Security, ser. CCS *93.
New York, NY, USA: Association for Computing Machinery, 1993, p.
62-73. [Online]. Available: https://doi.org/10.1145/168588.168596

M. Bravo, G. V. Chockler, and A. Gotsman, “Liveness and latency of
byzantine state-machine replication,” in 36th International Symposium
on Distributed Computing, DISC 2022, October 25-27, 2022, Augusta,
Georgia, USA, ser. LIPIcs, C. Scheideler, Ed., vol. 246. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2022, pp. 12:1-12:19.
[Online]. Available: https://doi.org/10.4230/LIPIcs.DISC.2022.12

L. Lamport, “Real time is really simple,” Tech. Rep. MSR-TR-2005-
30, March 2005. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/real-time-is-really-simple/

Mysten Labs, “Sui.” [Online].
https://github.com/MystenLabs/sui

C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno,
M. L. Roberts, S. Setty, and B. Zill, “Ironfleet: Proving practical
distributed systems correct,” in Proceedings of the 25th Symposium
on Operating Systems Principles, ser. SOSP °15. New York, NY,
USA: Association for Computing Machinery, 2015, p. 1-17. [Online].
Available: https://doi.org/10.1145/2815400.2815428

O. Padon, J. Hoenicke, G. Losa, A. Podelski, M. Sagiv, and
S. Shoham, “Reducing liveness to safety in first-order logic,” Proc.
ACM Program. Lang., vol. 2, no. POPL, dec 2017. [Online].
Available: https://doi.org/10.1145/3158114

1. Berkovits, M. Lazi¢, G. Losa, O. Padon, and S. Shoham, “Veri-
fication of threshold-based distributed algorithms by decomposition
to decidable logics,” in Computer Aided Verification, 1. Dillig and
S. Tasiran, Eds. Cham: Springer International Publishing, 2019, pp.
245-266.

Available:

C. Enea, D. Giannakopoulou, M. Kokologiannakis, and R. Majumdar,
“Model checking distributed protocols in must,” Proc. ACM Program.
Lang., vol. 8, no. OOPSLA2, Oct. 2024. [Online]. Available:
https://doi.org/10.1145/3689778

A. K. Hirsch and D. Garg, “Pirouette: higher-order typed functional
choreographies,” Proc. ACM Program. Lang., vol. 6, no. POPL, Jan.
2022. [Online]. Available: https://doi.org/10.1145/3498684

M. A. Le Brun and O. Dardha, “Magm: Types for failure-prone
communication,” in Programming Languages and Systems: 32nd
European Symposium on Programming, ESOP 2023, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2023, Paris, France, April 22-27, 2023, Proceedings. Berlin,
Heidelberg: Springer-Verlag, 2023, p. 363-391. [Online]. Available:
https://doi.org/10.1007/978-3-031-30044-8_14

N. Bertrand, P. Ghorpade, S. Rubin, B. Scholz, and P. Subotic,
“Reusable formal verification of dag-based consensus protocols,” 2024.
[Online]. Available: https://arxiv.org/abs/2407.02167

A. Coglio and E. McCarthy, “Formal verification of blockchain
nonforking in dag-based bft consensus with dynamic stake,” 2025.
[Online]. Available: https://arxiv.org/abs/2504.16853

K. Crary, “Verifying the hashgraph consensus algorithm,” 2021.
[Online]. Available: https://arxiv.org/abs/2102.01167

18

I Record Client_ViewDesc

2 client_view_pull_src : option (nat * nat);
client_view_mcaches : NatMap nat;
client_view_max_ccache : option nat;

s).

Type := {

Figure 15. View descriptors of LiDO cache tree.

I Record UDAG_Vert Type := {

2 udag_vert_round : nat;
udag_vert_builder : nat;
udag_vert_data : dag_t;

5 udag_vert_preds list nat;

6 }.

s Record UDAG_State Type := {

9 udag_verts : NatMap UDAG_Vert;

10 udag_closure : NatMap (list nat);

1}

Figure 16. The unauthenticated DAG

[45] L. Baird, “The swirlds hashgraph consensus algorithm:
Fair, fast, byzantine fault tolerance,” Swirlds, Tech.
Rep. SWIRLDS-TR-2016-01, 2016. [Online]. Available:

https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf

[46] S. E. Thomsen and B. Spitters, “Formalizing nakamoto-style proof of
stake,” in 2021 IEEE 34th Computer Security Foundations Symposium
(CSF), 2021, pp. 1-15.

Appendix A.
Some Formal Details of the LiDO-DAG Model

Here we provide some formal details of the LiDO-DAG
encoding in the artifact. See also the artifact README file
which contains more extensive documentation.

In the Rocq formalization, the LiDO cache tree is
encoded as a finite map from view numbers to view
descriptors (Fig. 15). Each view descriptor is a succint
representation of the cache nodes within a single view. The
client_view_pull_src field is the parent field of
ECache. It is a pair of numbers because we might have
multiple MCaches in a single view (supported by LiDO
formalization but not currently used). The first number is the
parent view number, and the second number is the version
number that is used to distinguish between multiple MCaches
within that view. client_view_mcaches is a finite map
from version numbers to method entries. In the LiDO-DAG
model, each method entry must be an existing vertex ID
in the DAG. Finally, client_view_max_ccache is the
highest MCache version that has a corresponding CCache,
i.e. the latest method entry that is successfully committed.

The unauthenticated DAG is formalized in UDAG. v. The
basic definitions are in Fig. 16. Each vertex is represented by
a record of type UDAG_Vert. The udag_vert_round
field and the udag_vert_builder field specify the round
number and the builder ID of the vertex, respectively. The
udag_vert_data field contains the data block of this
vertex. Its type is a user-specified parameter dag_t. The
only assumption we make on dag_t is that its equality is
decidable (so we can perform list deduplication). Finally,
the udag_vert_preds field contains the list of predeces-
sor references embedded in this vertex. Each reference is
represented using the ID of the target vertex.

The DAG state consists of two finite maps. The
udag_verts map is from vertex IDs to vertex records.
The udag_closure map is from vertex IDs to the closure
of each vertex (represented as a list of vertex IDs). The
closure is defined on page 6. It is automatically computed
when a vertex is added to the graph.

Appendix B.
Further Details of the Liveness Proof

B.1. The Liveness Assumptions

Here we describe the assumptions we make on segmented
traces. They can be classified into three groups. The first
group concerns how the curr_round variable and the re-
maining time variable change over time:

o Each honest process has curr_round > 0.

« Each local timer has remaining time < 2A.

o Let 7 and ¢ be the value of curr_round and local timer
remaining time of process p at the end of 7. Let 7’/
and ¢’ be the corresponding values at the end of 741.
Then either ¥’ =randt' =t —1,or v >r and t/ = 2.

o If process p has created a vertex in round r, then
curr_round > r for process p.

o If (p,r) € mdag_timeouts, then r < curr_round
of process p. If r = curr_round then the remaining
time of the local timer of process p must be 0.

e If (p,r) € mdag_timeouts at the end of 741, then
either the timeout already occurred before the end of
Tk, Or 7 = curr_round of process p at the end of 7y,
and the remaining time of the local timer of process p
is 0 at the end of 7.

o If the remaining time of the local timer of process p is
0 at the end of 7, and curr_round does not increase
between 7, and 741, then (p,r) € mdag_timeouts
by the end of 741, where r is the curr_round value
of p at the end of 7.

The second group of assumptions model Proposition 2.

o If curr_round > 1 for process p, then there exists a
vertex of round curr_round — 1 created by p.

o If curr_round > 1 for process p, then there exists
2f 4 1 vertices in round curr_round — 1.

The third group of assumptions are consequences of the
partial synchrony assumption. Informally, we assume that
after an honest process adds a vertex into the global DAG,
within A all honest processes will receive that vertex, as
well as any direct or indirect predecessors of it.

« If an honest process p is in round r at the end of 7y,
then by the end of 751 every honest process p’ is in
some round 7’ > r. (Rationale: because they must have
received 2f + 1 vertices in round 7 — 1.)

« If every honest process p has created a vertex in round r
by the end of 7, then by the end of 714 every honest
process is in some round 7’ > 7. (Same rationale.)

« If the leader of round r is honest and has created a vertex
v in round 7 by the end of 7, then by the end of 754 ev-

19

ery honest process must have received v, as indicated by
the history variable mdag_recv_leader_verts.

o If the leader of round r is honest, and every honest
process has created a supporter for a leader vertex of
round r by the end of 7, then by the end of 74 every
honest process must have received 2f + 1 supporters for
that leader vertex, as indicated by the history variable
mdag_recv_cert.

o If every honest process has created a certificate for
some leader vertex v of round r by the end of 7, then
(r,v) € mcommit_commit by the end of 7441.

B.2. The Liveness Checkpoints

The 9 checkpoints for round 7 are:

1) GAV =r 41 and GRT > 2.

2) GAV = r + 1, GRT > 1, and the leader of round r has

created a vertex in round r.

GAV =r + 1 and every honest process has received a

leader vertex of round r.

GAV = r+2, GRT > 2; each honest process either has

received a leader vertex of round r, or is still in some

round ' < r + 1 and will not time out in round r + 1

within A; at least f + 1 honest processes have created

supporters for a leader vertex of round r.

GAV =1+ 2, GRT > 1, and every honest process has

created a supporter vertex in round r + 1 for a leader

vertex of round r.

GAV > r + 3; each honest process either has received

2f + 1 supporters for a leader vertex of round r, or is

still in some round 7’ < r + 2 and will not time out in

round r + 2 within A; at least f + 1 honest processes

have created certificates for a leader vertex of round r.

GAV > r + 2 and every honest process has received

2f + 1 supporters for a leader vertex of round r.

8) Every honest process has created a certificate in round
r + 2 for a leader vertex of round r.

9) A leader vertex of round r is committed.

3)

4)

5)

6)

7)

B.3. Proof of Theorem 5

Let R be the GAV when GST commences. The liveness
proof establishes that, every round » > R with an honest
leader will eventually reach checkpoint 6 or 7. Theorem
5 assumes that every process is honest, thus every round
r > R will reach checkpoint 6 or 7.

For each round r that reaches checkpoint 6 or 7, we can
see that every honest process will eventually either jump
over round r + 2, or create a certificate for a leader vertex
in round r. The argument is similar to the proof of Lemma
4. Since every process is honest, this means every vertex in
round r + 2 must be a certificate.

It remains to prove that after GST + 6A, every new
vertex is in some round r > R + 2. Note that since the timer
is always reset to 2A, GAV should increase at least once
every 3A. Thus after 6A no honest process should continue
to create vertices in round r < R + 2.

Appendix C.
Meta-Review

The following meta-review was prepared by the program
committee for the 2026 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

C.1. Summary

The paper presents a counterexample to the liveness of
the consensus protocol Mysticeti, which also affects existing
protocol deployments. It then presents a mechanized safety
and liveness proof for a fixed version of Mysticeti in the
proof assistant Rocq.

C.2. Scientific Contributions

« Identifies an Impactful Vulnerability
e Provides a Valuable Step Forward in an Established
Field

C.3. Reasons for Acceptance

1) The paper shows that a previously found issue in
Mysticeti’s manual soundness proof indeed translates to
a concrete liveness issue. With this, the paper identifies
an impactful vulnerability since, to this point, it was
unknown whether the identified issue in the proof indeed
pointed to a liveness bug or if it could have been fixed
by enhancing the proof. As Mysticeti is implemented in
existing projects (e.g., the Sui and the IOTA blockchain),
the identified liveness bug could affect the guarantees of
such real-world deployments. This was acknowledged
by the developers of the affected projects.

2) It is shown how the liveness of Mysticeti can be
reestablished with a careful protocol adjustment. It
is confirmed that the adjusted protocol satisfies both
liveness and safety guarantees. The corresponding proof
is mechanized in the proof assistant Rocq. With this,
the paper provides a valuable step forward in the field,
since it provides the first mechanized safety and liveness
proof for the Mysticeti protocol. It is generally the first
such proof for an unauthenticated DAG-based consensus
protocol.

20

