
Certifying the Concurrent State Table Implementation in a Surgical Robotic

System (Extended Version)

Yanni Kouskoulas

Johns Hopkins University

Applied Physics Laboratory

Ming Fu

University of Science and Technology of China

School of Computer Science and Technology

Zhong Shao

Yale University

Dept. of Computer Science

Peter Kazanzides

Johns Hopkins University

Dept. of Computer Science

Abstract

This paper describes the application of formal methods

to the reduction of defects in software used to control a sur-

gical robot. We use a recently developed program logic

called History for Local Rely/Guarantee (HLRG) to ver-

ify that the software implementation behaves according to

the intended design. HLRG enables precise description

of a system’s functionality, its desired behavior, and facil-

itates rigorous, mathematical proofs about properties of the

system via sound inference rules. During this process, we

found a subtle bug in the system, corrected it, and were able

to formally prove that within the component we were ana-

lyzing, with respect to two critical properties, the system

had no flaws in its design or implementation.

1 Introduction

The overall goal of this research is to help develop

a practical technique to improve the reliability of safety-

critical software systems that control robotic machinery. In

particular, we apply a recently developed program logic

(HLRG) to help reduce defects in the Surgical Assistant

Workstation (SAW), a software framework designed to run

surgical robots. This work will help ensure that patient

safety is not adversely affected by flaws or bugs in the SAW

software.

The main contributions in this paper are twofold: first,

we begin the process of transitioning the HLRG program

logic to practical use by applying it to a real system and

identifying areas that need further development; second,

our work increases the reliability of key components of the

SAW framework, illustrating how HLRG can be used on a

real system.

The target of our analysis is a software framework called

the Surgical Assistant Workstation (SAW), created by the

Engineering Research Center for Computer Integrated Sur-

gical Systems and Technology (CISST ERC) at Johns Hop-

kins University. It is currently used for research with the

da Vinci surgical system (shown in Fig. 1), the JHU mi-

crosurgery workstation, and other surgical robotic systems

[5].

Because SAW is a software framework, there are many

configurations and many applications for which it can be

used. For example: it could create a heads-up display, dy-

namically superimposing pre-operative CT or MRI images

onto the surgical field to highlight and orient the surgeon to

anatomical features that are not otherwise visible; it could

enforce no-cut volumes, preventing the surgeon from cut-

ting into tissue or organs that he identified volumetrically on

pre-operative images; or it could actually make cuts based

on the surgeon’s preoperative plan.

Figure 1: The da Vinci surgical workstation. Photo courtesy

of Intuitive Surgical, Inc.

The SAW has stringent timing constraints that are based

on the physics of the mechanical components being con-

1

trolled and the nature of the task at hand, i.e. surgery. We

expect that most software that controls robotic machinery

has similar requirements. To ensure that the software re-

sponse is rapid, the SAW features a high level of concur-

rency and lock-free algorithms.

Concurrent, lock-free algorithms are difficult to develop

correctly, and difficult to debug, because of the unpre-

dictable timing of interactions between different threads.

Although conventional unit testing may be sufficient to find

defects and flaws in some sequential programs, it is inad-

equate for ensuring safe and correct operation for the con-

current algorithms that we find in the SAW.

During this process, we did not evaluate the effectiveness

of the software design, or attempt to correlate the use of the

system to patient surgical outcomes, which would be neces-

sary steps to take during the production and deployment of

such a system.

2 The SAW State Table

We have chosen to analyze one of the core algorithms

that mediate concurrent interaction between threads, which

allows threads to read feedback data, such as the position

of the robot, while simultaneously allowing the same in-

formation to be continually updated. This information is

held in a data structure called the state vector, and is con-

stantly changing as the robot moves to reflect its position

in space. Depending on the SAW’s configuration, the state

vector could include position and velocity for each of the

joints of the robotic arms, the state of end effectors, and the

state of different imaging sensors, among other things.

The difficulty in storing the state vector is that the SAW

framework supports multiple, interacting, concurrent pro-

cesses, and as time progresses, the state vector’s value

changes rapidly. It must be both updated and read by dif-

ferent processes, simultaneously, in an accurate and reliable

manner. The SAW framework has a data structure, called

the state table, that provides an interface for the rest of the

system to read and write the state vector. The state table is

essentially a circular buffer that maintains a time history of

the state vector.

2.1 State Table Requirements

We wish to guarantee:

1. Data Integrity: For each successful read of the state

vector, no writer altered or was in the process of al-

tering data during the read; and successful reads are

distinguishable from unsuccessful reads.

2. Data Freshness: Each read accesses the most recent

version of the state vector available at the start of the

read.

We assume there is exactly one process that updates the

state vector, and many concurrent readers, each of which

can start at any time, and progress at any speed.

There are other useful guarantees that we did not address

in this research, such as guarantees about reader starvation,

i.e. the possibility of the reader never being able to success-

fully complete a read, or guarantees about there actually be-

ing only one writer thread active in the system. These prop-

erties are taken as axiomatic for this research, and must be

proven separately in the context of the larger system.

What would happen to the system if these properties did

not hold? A thread might read corrupted state information,

and act on it, causing serious malfunction. If, for example,

the SAW were used to enforce restricted volumes of move-

ment for a surgical robot, the enforcement might be applied

incorrectly, allowing the robot to injure the patient.

2.2 State Table Algorithm Design

To do its job, the state table maintains space for storage

of H copies of the state vector, each with an identifying

version number attached. Figure 2 shows a single copy of

the state vector, along with its version number.

V

Figure 2: A single copy of the state vector in memory, along

with its version number. The top storage location is for the

version number, while the lower array is for the state vector

itself. The array is shown with two elements, but in general

its length is configurable. Writing to and reading from the

state vector is not an atomic operation, but writing to and

reading from the version number is.

Shared memory used by this algorithm is organized as a

circular buffer, as shown in Fig. 3, where each element in

the circular buffer is a copy of the state vector at some point

in time, and its version number. We call each element of the

buffer a “slot.” It also maintains two slot indices.

The writer updates the slots sequentially using the fol-

lowing algorithm: it writes a fresh state vector into the slot

referred to by the write-index; it advances the write-index

clockwise; it updates the version number of the slot newly

pointed to by the write-index; and it advances the read-

index to point to the slot that was previously referred to by

the write index, that has a freshly updated version of the

state vector. This process is repeated, with the write-index

progressing around the circle in a clockwise fashion. The

2

1
7

1
3

1
4

1
6

12

18

1
5 7

11

19

9

2
1

6
8

20

10

R
e
a
d
 I
n
d
e
x

W
rite

 In
dex

Figure 3: The circular buffer used to store copies of the

state vector in memory. The read- and write-indices each

independently refer to a single slot in the circular buffer.

The read-index is indicated by a dashed outline surrounding

the slot to which it refers, and the write-index is indicated

by a solid outline around the slot to which it refers.

figure below shows the sequence of events in a write of the

state vector. It displays the condition of a single slot repeat-

edly over time, so different positions on the horizontal axis

represent different steps. A square with magenta shading

indicates inconsistent data in memory due to a non-atomic

write. The bold outline indicates that the write-index refers

to this slot during this time step; the read-index is not shown

on this time progression.

V V W W W W W W X XW W W

One cycle

Active/write portion of cycle

The data contained in a slot changes for each cycle of

the write-index around the buffer, so a single read needs to

be contained within one cycle to be uncorrupted. Tracing

through the algorithm, we can convince ourselves that the

state vector data in a slot may not change without that slot

first having had its version number updated. Consequently,

the reader strategy compares version numbers before and

after a read to determine whether the read is valid: if the

version numbers match, the read is assumed to be uncor-

rupted; if not, an error is returned.

The figure below illustrates this read strategy by showing

the same slot repeatedly, with the horizontal axis represent-

ing the progression of time. A square with green shading

indicates that a particular data element is being read during

this point in time.

If the version is not the same at the beginning and at the

end of the read, we can conclude that the read spanned a

cycle boundary, and the data read may be inconsistent. An

example of a corrupted read is shown by the figure below:

W W W WW

The step where the state vector has both magenta and green

shading represents simultaneous reading and writing of the

data. Note that this read took quite a bit longer, and so the

intermediate states where the data was being read are more

numerous. Because the reader began before the write point,

and continued during and after it, the read was corrupted.

In this case, the read strategy correctly identifies this read

as corrupted based on the altered version number after read

completion.

3 Related Work

The literature related to building higher-assurance soft-

ware for control of robotic systems approaches the problem

from a wide variety of perspectives. However, we are not

aware of any work that could directly address verification

of the concurrent algorithms found within the SAW.

For example, there is work on adding assurance to the

software development process [11], and on verification of

the behavior of sequential programs for robots [8], which

while related, does not address concurrency.

There are testing approaches that are designed to apply to

concurrent software that are also inapplicable to our prob-

lem. For example, [3] is an approach based on sequences of

synchronization primitives, but the state-table algorithm we

wish to analyze has none. Another example is [7], which

offers an approach that explicitly “is not designed to test for

synchronization errors that lead to rare probabilistic faults,”

while we remain interested in preventing such faults.

3

The closest paper in the literature to the current work that

we are aware of is [10], which applies a model-checking

approach to verify properties in a concurrent system. How-

ever, this work verifies the system at a higher level of ab-

straction, and could not produce the specific, local guaran-

tees relating implementation with design that HLRG does.

This technique is complementary to the current work, and

could help produce higher-level inferences by reasoning

about specific local guarantees in the context of the larger

system. It also offers an interesting approach to formaliz-

ing and reasoning about analog characteristics of the robotic

system.

4 Formal Verification

To guarantee that there are no defects with respect to the

properties that we describe, we applied a recently developed

program logic called History for Local Rely/Guarantee

(HLRG) [2]. HLRG allows us to precisely describe the soft-

ware, and then apply sound inference rules to reason about

it in a mathematically rigorous manner.

HLRG builds upon LRG [1] which combines separation

logic [9, 4] to enable local reasoning, with rely-guarantee

reasoning to make guarantees about multiple processes ac-

cessing the same data structures concurrently, with trace-

based assertions and temporal operators to describe time-

based properties of the algorithm.

Within HLRG, logical statements, or assertions, about

the system, are not confined to the current state of the sys-

tem, but refer to a vector of system states, where each el-

ement represents the system state at a particular step in its

evolution. We call this vector of states a trace, and it is what

allows our assertions to refer to the history of the system

(the origin of the “H” in HLRG). To refer to history, HLRG

introduces a number of temporal operators. Intuitively, if a

and b are predicates on traces: a ⊲ b means that a held at

some point in the past, and b has held at every step since;

a ◮ b means that a held at some point in the past, and b

held at some point subsequently; a ⋉ b means that a held

one step ago, and b holds now; ⊟a means that a holds at

every step in the trace; and ♦− a means that a held at some

point in the past.

Following convention, we use ∗ to represent the sep-

arating conjunction, an operator that allows us to reason

about local data structures without specifying all of mem-

ory. Thus, a ∗ b means that both a and b hold for the cur-

rent trace, but that the subtrace satisfying a is disjoint from

the subtrace satisfying b. (A subtrace is a trace where the

state for each time step has a subset of the state contained

in the original trace. Disjoint subtraces have disjoint state

for each pair of corresponding time steps.) We use ∧ to

represent the regular conjunction, and ∨ to represent dis-

junction, as usual. Following [6] and notational convention,

we treat heap variables as resources using binding operators

that represent assertions about state: writeindex 7→ 5
is an assertion about the heap, namely that the heap in

the most recent state of the trace consists of one cell at

memory location writeindex pointing to the value 5.

We can represent multi-celled heaps by using the separat-

ing conjunction, so a two-celled heap could be written as:

(writeindex 7→ 5) ∗ (readindex 7→ 4). We use to

be an imprecise binding assertion, i.e. readindex 5
means that the heap has at least the memory cell at address

readindexwhich containing value 5, and may have more

state as well.

4.1 Modeling the System

First, we created a model of the program by computing

backwards program slices at all points where shared state is

accessed, using the shared state as our slicing criteria. The

union of these program slices is then converted to a sim-

ple C-like language that makes all complicated semantics

explicit. The strength of our guarantees depends on the fi-

delity of our model, shown in Fig. 4.

Next, we create an invariant I that describes the shape of

the heap throughout the evolution of the program (i.e. what

memory is mapped), without specifying the values con-

tained in those locations. Shared state in our case, consists

of the the read- and write- indices, the state vector copies

and their version numbers.

VersArray
def

= ⊛i∈[0,...,H−1]version+i 7→

Vector(i)(j)
def

= Vec+i×N + j 7→

Vector
def

= ⊛j∈[0,...,N−1]

(⊛i∈[0,...,H−1]Vector(i)(j))

I
def

= ∃X.Y.VersArray ∗ Vector∗
readindex 7→ X∗
writeindex 7→ Y

Underscores are don’t cares, while ⊛ is to ∗, as Σ is to +.

The next step is to write all of the atomic actions that are

taken on shared state as predicates.

Lines 6 and 7 in Fig. 4 are one atomic action from the

perspective of shared state, that updates the write-index,

writeindex, to point to the next element in the buffer.

We write a predicate that is satisfied with a trace that has

just taken this step as follows:

UpdWrite
def

= Id ∗ ((UpdData ⊲ Id) ∧ ∃X,X ′.

writeindex 7→ X ⋉ writeindex 7→ X ′∧
X ′ = (X + 1)mod H)

This step must follow the UpdData step, with some number

of intervening steps, all of which must be steps that do not

4

00 global Vector[N][H], readindex, writeindex, version[H];

01 void Write(int data[N]){

02 local old, i, tmp, wr;

03 old = writeindex;

04 for (i=0;i<N;i++)

05 Vector[i][old] = data[i]

06 wr = (old + 1) mod H;

07 writeindex = wr;

08 tmp = version[old] + 1;

09 version[wr] = tmp;

10 readindex = old;

11 }

12 int Read(int data[N]){

13 local rd, curTic1,

14 curTic2, i;

15 rd = readindex;

16 curTic1 = version[rd];

17 for (i=0;i<N;i++)

18 data[i] = Vector[i][rd];

19 curTic2 = version[rd];

20 if (curTic1 == curTic2)

21 return 1;

22 else return 0;

23 }

Figure 4: Model of Code

change shared state, Id, so we use the temporal operator ⊲

to enforce this sequencing. This predicate, along with all of

the others that describe atomic steps, have an Id connected

to them with a separating conjunction, which ensures that

any variables in the domain not explicitly referred to in the

predicate remain unchanged.

Lines 8 and 9 also constitute an atomic block, updating

the version, or version element, associated with the slot

referred to by the write-index. This step must follow the

UpdWrite

UpdVer
def

= Id ∗ ((UpdWrite ⊲ Id) ∧ ∃X,X ′, V, V ′.

writeindex 7→ X ∗ version+X ′ 7→ V ′
⋉

(writeindex 7→ X ∗ version+X 7→ V ′+1∗
version+X ′ 7→ V ′) ∧X = (X ′ + 1)mod H)

Line 10 is an atomic action, updating the read-index, or

readindex. It must follow the UpdVer step, with some

intervening number of identity transitions.

UpdRead
def

= Id ∗ ((UpdVer ⊲ Id) ∧ ∃X,Y.

writeindex 7→ Y ⋉ readindex 7→ X∗
writeindex 7→ Y) ∧ Y = (X + 1)mod H)

The following predicate describes an atomic portion of

the update in lines 4 and 5. This predicate can occur any

number of times in sequence, but the sequence must always

follow the UpdRead step, again with some number of tran-

sitions that do not change shared state.

UpdData
def

= ((UpdData ∨ UpdRead) ⊲ Id)∧
∨

j∈[0,...,N−1] ∃X.

(Vector(X)(j) ∗ writeindex 7→ X⋉

Vector(X)(j) ∗ writeindex 7→ X) ∗ Id

Finally, we used the description of the program’s atomic

steps to create rely and guarantee predicates describing the

operation of the Write program in a fairly straightforward

way.

G
def

= (Id ∨ UpdData ∨ UpdWrite ∨ UpdVer∨
UpdRead) ∧ (I ⋉ I)

R
def

= Id ∧ (I ⋉ I)

M
def

= ⊟(R ∨G)

The guarantee predicate G, is a guarantee about the be-

havior of the thread executing the Write function: it tells

us how a step taken by that thread affects shared state. R

assures us that the rest of the concurrent processes (namely

the multitude of possible readers executing Read) have no

effect on the state at all. M describes the behavior of the

system as a whole: any step in the system will either ex-

ecute a step in the Write function or a step in the Read

function, and the state of the system changed (or not) ac-

cordingly. Furthermore, (I ⋉ I) tells us that the invariant

that describes the domain of the program doesn’t change

from step to step. Through this process, we have described

the effect of Write on shared state, and its interaction with

other concurrent processes.

4.2 Proving Data Integrity

To prove data integrity, we began with a predicate of true

as a precondition to Read, and used the sound inference

rules associated with HLRG to propagate the precondition

through the function. Via this process, we sought to guar-

antee that when the if statement takes the return 1;

branch, the postcondition of the computation of the branch-

ing condition guarantees that Vector(X) D held during

the time period that included copying of state vector ele-

ments, where X is the index of the slot we were reading.

5

This implies not just that Read read data that was con-

stant during the copy, but that its contents could not have

been altered by a writer during that period, because where

updates cannot occur in the Write algorithm, the state-

vector is considered uncorrupted. This is subtle but impor-

tant: it guarantees that our read did not occur in the middle

of a Write that had stalled, leaving the value constant but

corrupted.

With such a guarantee, when the Read completes suc-

cessfully, the value that is returned accurately reflects an un-

corrupted version of what was stored in that slot by Write.

4.2.1 Proving the Stable Data Lemma

Going through this process is straightforward, once one

proves the following, which we call the Stable Data Lemma:

((version+h X ◮ Vector(h) D)∧
(Vector(h) D′ ∗ version+h X)) ⇒ (D = D′)

This is an invariant tied to our Read algorithm, that says:

If, at some time in the past, we looked at the value of

version+h, and then we looked at the state vector in slot

h, Vector(h), and we look at version + h in the present

and its value matches what we saw the first time, then the

value of Vector(h) in the present is also the same as what

we read in the past. We need this lemma to prove that there

is a continuous period of time when Vector(h) D holds.

When we initially attempted to write down a proof of the

stable data lemma by inducting over the steps in a trace, we

found that it was not true of our system, and thus the read

data integrity property was not true: readers could unknow-

ingly read uncorrupted data. We had found a subtle bug, not

by informally examining the system, or by testing it, but by

carefully modeling it, writing a lemma, and attempting a

formal proof.

The crux of the problem is that there is a very short pe-

riod of time at the beginning of the “active-write” portion of

the cycle, that occurs after the version number has changed

but before the data update has been completed. During this

time, the data may become inconsistent without the version

number changing. If the read occurs during this time, the

result may be inconsistent without us being able to detect it.

The figure below shows the portion of the cycle that is the

problem.

V V W W W W W W X XW W W

Inconsistent data without version change

Active6write portion of cycle

An example interleaving that exhibits this problem is as fol-

lows:

V V W W W WWW

We cannot guarantee that this situation never happens, be-

cause the change of version happens separately from the

update of index-writer. If these updates were one atomic

operation, this would not be a problem. This algorithm was

deliberately designed to be lock-free, however, so we would

like to avoid this solution.

4.2.2 Proving an Improved Stable Data Lemma

We observe that in every situation like the one above, the

problem occurs when the initial version check and the read

occur within the active write portion of the cycle. If both are

in the active portion of the cycle, then the state in between

the initial version check and the read must also be in the ac-

tive write portion of the cycle. We modify our Read algo-

rithm so that it checks the status of the write-index between

the first version check and the read of the data. This strategy

is illustrated below, with the check of the write-index status

indicated by the double-line rectangle.

To guarantee that we solved this problem, we rewrote the

statement of our lemma to reflect the changes we made:

((version+h X ◮ writeindex h′ ◮

Vector(h) D) ∧ (Vector(h) D′∗
version+h X) ∧ (h 6= h′)) ⇒ (D = D′)

This modification of the read algorithm creates three cases:

one where the write-index points to the current slot, one

where it comes directly after the active-read portion of the

cycle, and another when it comes directly before the active-

read portion of the cycle. The intuition behind these cases

is given below.

1. When the write-index indicates that this element is in

the “active write” portion of the cycle between the ver-

sion check, we assume the read is inconsistent. All of

our bad traces exhibit this feature, and this is the par-

ticular case we would like to distinguish. The trace

below is an example of this interleaving:

6

V V W W W WWW

2. When the write-index check indicates that this element

is not in the “active write” portion of the cycle, and the

active write portion occurred before the write-index

check, the data read within this cycle will be consis-

tent unless the read spans multiple cycles, in which

case it will be flagged as inconsistent by the version

check. Example traces that exhibit this situation are

shown below.

V V W W W W WW

V V W W W W W W

We can accept any such reads without fear of having

read inconsistent data, although the version check will

conservatively reject some uncorrupted reads, as in the

second example.

3. When the write-index check indicates that this element

is not in the “active write” portion of the cycle, and the

active write portion occurs after the initial write-index

check, the first version check will read the version as-

sociated with the previous cycle. If the data is changed

during the read, it will be altered after the version has

been changed, and because of the first version check

happens during the previous cycle, these traces will be

eliminated by comparing the versions before and after

the read. If the read completes before the version is

changed, then we have a guarantee that the data has

not been changed, even if the write-index indicates we

are in the active write portion of a new cycle by the end

of the read. Traces that exhibit this situation are shown

below:

V V W W WV W

V V W W WV W W

V

With this modification, can now try our proof again. This

time, our formal proof by induction succeeds. The failed

proof of the stable data lemma, as well as the completed

proof of the improved stable data lemma is given in Ap-

pendix A, along with a number of other lemmas.

Once the stable data lemma has been proved, we can

complete the proof of the read data integrity property that

we seek. Adding the write-index check to correct the bug

in our program is a small matter. The program, with the

appropriate corrections is shown in Fig. 5. The completed

proof of read data integrity is given in Appendix B.

4.3 Proving Data Freshness

Unlike the data integrity property, data freshness is ex-

pressed as a program invariant. We say that a slot is fresh

if the copy of the state vector it contains is the last one

changed by any part of the program. We want to make sure

that readindex always points to the freshest slot. We

state this invariant as follows:

Vector(k) X ′ ∗⊛i6=kVector(i) Di ⊲

Vector(k) X ∗⊛i6=kVector(i) Di∧
readindex k ∧ (X ′ 6= X)

When we attempt this proof, as in the previous case, we

discover that it is not true of our system. The details of this

proof attempt are given in Appendix C.

What went wrong here? Just as in the previous case,

there is a gap of time between when the writer completes

the last write in the state vector element, and when it up-

dates the read-index. There is no way to simultaneously

complete the last atomic write action and update the read-

index. Unlike the previous case, this bug is not cause for

alarm, it is the result of an imprecise statement of what we

really expect the system to provide for us. We will have to

amend our statement of freshness to accept the most recent,

or the second most recent copy of the state vector.

We rewrite our invariant to allow the read-index to point

7

00 global Vector[N][H], readindex, writeindex, version[H];

01 void Write(int data[N]){

02 local old, i, tmp, wr;

03 old = writeindex;

04 for (i=0;i<N;i++)

05 Vector[i][old] = data[i]

06 wr = (old + 1) mod H;

07 writeindex = wr;

08 tmp = version[old] + 1;

09 version[wr] = tmp;

10 readindex = old;

11 }

12 int Read(int data[N]){

13 local rd, wr, curTic1,

14 curTic2, i;

15 rd = readindex;

16 curTic1 = version[rd];

17 wr = writeindex;

18 if (rd == wr)

19 return 0;

20 for (i=0;i<N;i++)

21 data[i] = Vector[i][rd];

22 curTic2 = version[rd];

23 if (curTic1 == curTic2)

24 return 1;

25 else return 0;

26 }

Figure 5: Corrected code

to the second freshest slot:

((Vector(j) Y ∗ Vector(k) X ′∗
⊛i6=j,kVector(i) Di) ⊲
(Vector(j) Y ′ ∗ Vector(k) X ′∗
⊛i6=j,kVector(i) Di)) ⊲
(Vector(j) Y ′ ∗ Vector(k) X∗
⊛i6=j,kVector(i) Di)∧
(readindex k ∨ readindex j)∧
(X ′ 6= X) ∧ (Y ′ 6= Y))

This time, our proof by induction succeeds. The completed

proof is presented in Appendix D.

5 Conclusion

We have been able to provide very strong guarantees

about the correct functioning of a library that is intended

to control a surgical robotic systems. During this process,

we found and corrected a subtle bug associated with con-

currency. Furthermore, we proved that with respect to these

properties, there are no more flaws or bugs in our system.

Figure 6 illustrates the process graphically.

5.1 Future Work

HLRG is a leap forward in capability, when compared

with non trace-based program logics, making it simple to

express and reason about the relationship between data

structures at different times. However, there are practical

problems applying HLRG widely, and hopefully these can

be addressed as the technique matures. We identify five

problems with this approach, and improvements that would

be necessary to make this technique more practical.

First, transformation of the program from the original

language (in this case C++) to HLRG is tedious and error

prone as it must be done by hand.

Second, the proof representation does not lend itself to

being machine checkeed, or maintained during further de-

velopment of the software.

Third, the approach was applied after the software was

developed. In order to make this approach practical, there

should be a strategy that integrates the approach with the

software development process, allowing a flawed design to

be identified and corrected sooner.

Fourth, our guarantees of correct operation are local to a

particular component of the SAW and very specific in refer-

ring to implementation details and behavior. If we want to

make some higher level guarantee (e.g. “operations within

the SAW are thread-safe”) we need some way to “knit” to-

gether these more detailed guarantees and infer the broader

conclusion.

Finally, HLRG in its current form may not be sufficiently

expressive to describe properties that we need. We had

some difficulty formalizing some of our lemmas (e.g. the

Continuously Constant Version Lemma) and had to write

them partially in English.

A Proof of Improved Stable Data, and Other

Lemmas

There are a number of properties that are useful in prov-

ing our read data integrity property. In this section, we will

state these as lemmas, and prove them. We end this section

with a complete proof of the Improved Stable Data lemma.

8

Figure 6: The process of verifying code after it has been developed. The left-hand side of the figure shows the software

developer looking at system requirements, creating a design, and implementing it in code. The design is used to create

properties we wish to guarantee, and the code is transformed into an HLRG representation that models its features. We then

reason about the model, using sound inference rules, to show that the properties hold. If the proofs fail, then (illustrated by

the topmost arrow) the design must be modified, as was the case for this study. If the proof succeeds, then (as illustrated by

the bottommost arrow) the software may be used in the system, and we can assert and expect that the guarantees we proved

hold in practice.

A.1 Cyclical Update Lemma

The program cycles endlessly through a fixed sequence

of atomic transitions described by the following list:

UpdWrite :: UpdVer :: UpdRead :: UpdData+

List elements are separated by double colons ::, and + is the

Kleene plus, indicating that the preceeding state may have

occurred more than once.

We prove this lemma by inpection of the predicates that

we used to describe atomic transitions with attention to the

portion of the predicates that enforce ordering:

UpdWrite
def

= · · · (UpdData ⊲ Id) · · ·

UpdVer
def

= · · · (UpdWrite ⊲ Id) · · ·

UpdRead
def

= · · · (UpdVer ⊲ Id) · · ·

UpdData
def

= · · · (UpdData ∨ UpdRead) ⊲ Id) · · ·

The definition of UpdWrite says that this state transition

must have been preceeded by zero or more identity transi-

tions, which were in turn preceeded by an UpdData state

transition. The only variation in the predictable, straight-

line sequence of steps is the possible repetition of the

UpdData predicate more than once. We also note that the

structure of the predicate does not contain any other dis-

junctive terms, so the linear ordering follows.

A.2 Monotonic Version Lemma

A given version number is monotonic.

version+h X ◮ version+h X ′ ⇒ (X ≤ X ′)

The only step in a trace that affects Ticks+h is the UpdVer

step, and only when writeindex h. Each time a trace

enters this state, it increments Ticks+h by 1. Assume the

implicant. A given trace will enter this state n ∈ N times.

Consequently, X ′ = X + n, so for X ∈ N, (X ≤ X ′).

A.3 Constant Version Lemma

If we measured the version of a slot at some time in the

past, and its value then is the same is its value now, its value

at some time in between these points is also the same.

version+h X ◮ version+h X ′ ◮

version+h X ′′ ⇒ ((X = X ′′) ⇒ (X = X ′))

Assume the implicants, that version+h X ◮

version+h X ′, version+h X ′ ◮

version+h X ′′, and (X = X ′′). Apply the mono-

tonic version lemma to the first two terms, and conclude that

X ≤ X ′ and X ′ ≤ X ′′. Substitute X = X ′′ in the second

term, and we find X ≤ X ′ ≤ X . Consequently, (X = X ′).

9

A.4 Continuously Constant Version
Lemma

If we measured the version of a slot at some time in the

past, and its value then is the same as its value now, its value

between these points was the same at every point in time.

Our formalization for this lemma includes some English:

If

♦− (Ticks+X Y) ∧ (Ticks+X Y)

then we can conclude that from the initial time when we

first measured the version, until now, (Ticks+X Y)
held continuously.

Assume the implicant, that the first term is satsfied by a

state in the trace T , si, and that the second term is satisfied

by the current state in the trace T.last.

For each state s′ in between si and T.last, we can mea-

sure (Ticks+X), and by application of the constant ver-

sion lemmawe can show that (Ticks+X Y) forall s′.

States si and T.last satisfy (Ticks+X Y), by the

assumption of the implicant.

Consequently, (Ticks+X Y) held continuously,

from the first time we looked at Ticks, until the present

moment.

A.5 Stable Data Lemma (Attempted)

A
︷ ︸︸ ︷

version+h X ◮ Vector(h) D∧
Vector(h) D′ ∗ version+h X

︸ ︷︷ ︸

B

⇒ (D = D′)

We will do a proof by induction, inducting over the steps

in a trace. We begin by proving that i ⇒ i + 1. Different

terms of the implicant have been named using capital letters,

as indicated by the brackets in the statement of the lemma.

These letters will be used during the proof to refer to each

term.

Assume we have a trace T that satisfies this lemma.

Show that any step taken produces a trace T ′ that also sat-

isfies this lemma. The possible steps that can be taken are:

1. UpdWrite Changes writeindex in the current state,

but the predicate refers to this variable in the past, so it

does not affect the truth of the predicate.

2. UpdVer Changes Ticks+h when writeindex

h. It could falsify the implicant, but this could only

preserve the truth of the predicate.

3. UpdRead Does not affect any terms in the prediate.

4. UpdData This step could change D′ when

writeindex h, and falsify the implicand.

When this occurs, we know from the cyclical update

lemma that it must have been preceeded by the

following state-changing steps, in the following order:

UpdWrite :: UpdVer :: UpdRead :: UpdData+

In order to show that this step does not falsify the pred-

icate, we must show that every time the implicand is

falsified, the implicant is falsified as well.

If term A were satisfied by a state in the trace be-

fore the UpdVer step in the sequence, then the most

recent UpdVer step would have been taken with

writeindex h, falsifying term B, preserving the

truth of the predicate, since UpdVer never repeats ver-

sion numbers and no other predicate changes the Ticks

binding.

If term A were satisfied by a state in the trace after

the UpdVer step in the sequence, then terms A and B

would be satisfied, and the implicant would be true.

This falsifies our predicate.

This lemma cannot be proven!

A.6 Improved Stable Data Lemma

A
︷ ︸︸ ︷

version+h X ◮

B
︷ ︸︸ ︷

writeindex h′
◮

Vector(h) D ∧ Vector(h) D′∗
version+h X
︸ ︷︷ ︸

E

∧ (h 6= h′)
︸ ︷︷ ︸

F

⇒ (D = D′)

Our proof is by induction, inducting over the steps in

a trace. We begin by proving that i ⇒ i + 1. Different

terms of the implicant have been named using capital letters,

as indicated by the brackets in the statement of the lemma.

These letters will be used during the proof to refer to each

term, as before.

Assume we have a trace T that satisfies this lemma.

Show that any step taken produces a trace T ′ that also sat-

isfies this lemma. The possible steps that can be taken are:

1. UpdWrite Changes writeindex in the current state,

but the predicate refers to this variable in the past, so it

does not affect the truth of the predicate.

2. UpdVer Changes Ticks+h when writeindex

h. It could falsify the implicant, but this could only

preserve the truth of the predicate.

3. UpdRead Does not affect any terms in the prediate.

10

4. UpdData This step could change D′ when

writeindex h, and falsify the implicand.

When this occurs, it must have been preceeded by the

following state-changing steps, in the following order:

UpdWrite :: UpdVer :: UpdRead :: UpdData+

In order to show that this step does not falsify the pred-

icate, we must show that every time the implicand is

falsified, the implicant is falsified as well.

If term A were satisfied by a state in the trace be-

fore the UpdVer step in the sequence, then the most

recent UpdVer step would have been taken with

writeindex h, falsifying term E, preserving the

truth of the predicate, since UpdVer never repeats ver-

sion numbers and no other predicate chanes the Ticks

binding.

If term A were satisfied by a state in the trace after

the UpdVer step in the sequence, then terms A and

E would be satisfied, and points in the trace available

to satisfy term B must occur after the UpdVer step as

well, when writeindex h, falsifying term F ,

and preserving the truth of this predicate.

Now prove the base case to be true. Any trace that only

has one state, where the write-index does not point to the

slot h satisfies the implicant and satisfies the whole predi-

cate. Traces with a single state where the write-index points

to h falsify the implicant, also satisfying the predicate.

We have shown that the base case satisfies our predicate,

and we have shown that for any trace that satisfies the pred-

icate, any one step also produces a trace that satisfies the

predicate. By induction, we can conclude that our predicate

holds for any trace produced by our system.

B Proof of Data Integrity

This appendix gives the completed proof of data integrity

property, following the strategy we described in Section 4.2.

Figures 7 and 10 show the propagation of the predi-

cate starting with the precondition of true, and ending at

return 1; indicating a successful read. In these figures,

lines of the function are shown in between predicates so it

is clear where in the program each predicate applies. Predi-

cates are shown in curly braces.

Figures 8 and 9 show in detail the transformations that

we apply to the predicate to reason about the non-atomic

reading of state (i.e. lines 20 and 21 in the program) in

the presence of a concurrent thread running Write. In the

original SAW C++ source code, this read is a single instruc-

tion; here it has been transformed into a loop to remind our-

selves of its non-atomic nature.

The precondition for the successful completion of the

program shown in Fig. 10 contains data = D, and at some

range of time time during this program, Vector(X) D.

We know from the properties of the Write that for any

range of time where a slot is guaranteed not to be written,

the slot may be considered uncorrupted.

We conclude that when the read successfully completes,

the value returned accurately reflects what was stored in

memory for that state vector element during the read; and

that value was stable and uncorrupted during the read, i.e.

no writer was altering it or may have altered it during that

time.

C Proof of Data Freshness (Attempted)

We attempt to prove:

Vector(k) X ′ ∗⊛i6=kVector(i) Di ⊲

Vector(k) X ∗⊛i6=kVector(i) Di∧
readindex k ∧ (X ′ 6= X)

We will do a proof by induction, inducting over the steps in

a trace. We begin by proving that i ⇒ i+ 1.

Assume we have a trace T that satisfies this lemma.

Show that any step taken produces a trace T ′ that also sat-

isfies this lemma. The possible steps that can be taken are:

1. UpdWrite Has no effect.

2. UpdVer Has no effect.

3. UpdRead This step changes the read-index, pointing

it to the element that the write-index was pointing to

before its current position.

We again invoke the cyclical update lemma and ob-

serve that this step must have been preceeded by the

following sequence of state-changing steps (with the

possible addition of identity steps between each of

these):

UpdRead :: UpdData+ :: UpdWrite :: UpdVer

If before this step, the read-index was pointing to

the freshest index k, then readindex k and

the last UpdData must have been conducted with

writeindex k. However writeindex is now

something other than k, since it was changed by the

most recent UpdWrite. The read-index is going to be

changed to what the write-index was before, namely

k. So the read-index remains pointing at the most re-

cently changed slot and the predicate continues to hold

for the new trace T ′.

4. UpdData This action could change the state vector

element and falsify our predicate. If the predicate is

11

{true}

12 int Get(int data[N]){

13 local rd, wr, curTic1,

14 curTic2, i;

15 rd = readindex;

{∃X.♦− readindex X ∧ (rd = X)}

16 curTic1 = Ticks[rd];

{∃XY.readindex X ◮ version+X Y ∧ (curTic1 = Y) ∧ (rd = X)}

{∃XY.♦− version+X Y ∧ (curTic1 = Y) ∧ (rd = X)}

17 wr = writeindex;

{∃XX ′Y.version+X Y ◮ writeindex X ′ ∧ (wr = X ′)∧
(curTic1 = Y) ∧ (rd = X)}

18 if (rd == wr)

19 return 0;

{∃XX ′Y.version+X Y ◮ writeindex X ′ ∧ (wr = X ′)∧
(curTic1 = Y) ∧ (rd = X) ∧ (X 6= X ′)}

Figure 7: Beginning the proof of the data integrity property. A straightforward collection of state. Before line 17, we drop

the information about having the value of the read-index, because it is not necessary for the proof of data integrity.

{∃XX ′Y.version+X Y ◮ writeindex X ′ ∧ (wr = X ′)∧
(curTic1 = Y) ∧ (rd = X) ∧ (X 6= X ′)}

{∃XX ′Y.version+X Y ◮ writeindex X ′ ∧ version+X Y ′ ∗ Vector(X) D∧
(wr = X ′) ∧ (curTic1 = Y) ∧ (rd = X) ∧ (X 6= X ′)}

{∃XX ′Y.

(version+X Y ◮ writeindex X ′ ∧ version+X Y ′ ∗ Vector(X) D∧
(wr = X ′) ∧ (curTic1 = Y) ∧ (rd = X) ∧ (X 6= X ′) ∧ (Y 6= Y ′))∨
(version+X Y ◮ writeindex X ′ ∧ version+X Y ∗ Vector(X) D∧
(wr = X ′) ∧ (curTic1 = Y) ∧ (rd = X) ∧ (X 6= X ′))}

Figure 8: We apply sound inference rules to transform the postcondition of line 19 into two cases, one where the version for

the slot from which we are reading has changed, and the other where the version has stayed constant.

12

{∃XX ′Y.

(version+X Y ◮ writeindex X ′ ◮ (version+X Y ′ ∗ Vector(X) D)∧
(wr = X ′) ∧ (curTic1 = Y) ∧ (rd = X) ∧ (X 6= X ′) ∧ (Y 6= Y ′))∨
(version+X Y ◮ writeindex X ′ ◮ (version+X Y ∗ Vector(X) D)∧
∧version+X Y ∗ Vector(X) D′ ∧ (wr = X ′) ∧ (curTic1 = Y) ∧ (rd = X) ∧ (X 6= X ′))∨
(version+X Y ◮ writeindex X ′ ◮ (version+X Y ∗ Vector(X) D)∧
∧version+X Y ′′ ∗ Vector(X) D′ ∧ (wr = X ′) ∧ (curTic1 = Y) ∧ (rd = X) ∧ (X 6= X ′) ∧ (Y 6= Y ′′))}

{∃XX ′Y.

(version+X Y ◮ writeindex X ′ ◮ (version+X Y ′ ∗ Vector(X) D)∧
(wr = X ′) ∧ (curTic1 = Y) ∧ (rd = X) ∧ (X 6= X ′) ∧ (Y 6= Y ′))∨
(version+X Y ◮ writeindex X ′ ◮ (version+X Y ∗ Vector(X) D)∧
∧version+X Y ∗ Vector(X) D′∧
(wr = X ′) ∧ (curTic1 = Y) ∧ (rd = X) ∧ (X 6= X ′))}

{∃XX ′Y.

(version+X Y ◮ writeindex X ′ ◮ (version+X Y ′ ∗ Vector(X) D)∧
(wr = X ′) ∧ (curTic1 = Y) ∧ (rd = X) ∧ (X 6= X ′) ∧ (Y 6= Y ′))∨
(version+X Y ◮ writeindex X ′ ⊲ (version+X Y ∗ Vector(X) D)∧
(wr = X ′) ∧ (curTic1 = Y) ∧ (rd = X) ∧ (X 6= X ′))}

{∃XX ′Y.

Q1 ∨Q2}

Figure 9: The first predicate shown is the result of allowing our system to evolve a single step past line 19, allowing us to

transform the resulting predicate in Fig. 8 to distinguish two new cases. The first disjunctive term is the same as the first

disjunctive term of the result of Fig. 8, except time has passed that has made the then present state part of the history. The

second and third terms are the new cases associated with having the second version check match the first, and having a third

version checks match and not match, respectively. The second predicate shown is the result of collapsing the first and third

disjunctive terms into one by waiting for the present moment to pass into history and ignoring some of the state we have

collected in the third. The third predicate uses the three identical measurements of the version in the history to apply the

continuous version lemma, and show that the version number must have been this value continuously between the original

accumulation of the Vector(X) D term in this predicate and the present moment. We can then apply the stable data

lemma to show that since version+X Y , Vector(X) D during this time period. Finally, in the fourth predicate,

we have simply named the disjunctive terms of the third predicate Q1 and Q2 for ease of reference. This is an invariant that

applies at each moment during the for loop in lines 20 and 21.

13

{∃XX ′Y.version+X Y ◮ writeindex X ′ ∧ (wr = X ′)∧
(curTic1 = Y) ∧ (rd = X) ∧ (X 6= X ′)}

20 for (i=0;i<N;i++)

21 data[i] = Vector[i][rd];

{∃XX ′Y.

(version+X Y ◮ writeindex X ′ ◮ (version+X Y ′ ∗ Vector(X) D)∧
(wr = X ′) ∧ (curTic1 = Y) ∧ (rd = X) ∧ (X 6= X ′) ∧ (Y 6= Y ′) ∧ (data = D′))∨
(version+X Y ◮ writeindex X ′ ⊲ (version+X Y ∗ Vector(X) D)∧
(wr = X ′) ∧ (curTic1 = Y) ∧ (rd = X) ∧ (X 6= X ′) ∧ (data = D))

{∃XX ′Y.(Q1 ∧ (data = D′))∨
(Q2 ∧ (data = D))}

22 curTic2 = Ticks[rd];

{∃XX ′Y.(Q1 ◮ version+X Y ′′ ∧ (data = D′) ∧ (curTic2 = Y ′′) ∧ (Y ′ 6= Y))∨
(Q2 ∧ (data = D) ∧ (curTic2 = Y))}

23 if (curTic1 == curTic2)

{∃XX ′Y.Q2 ∧ (data = D) ∧ (curTic2 = Y)}

{∃XX ′Y.version+X Y ◮ writeindex X ′ ⊲ (version+X Y ∗ Vector(X) D)∧
(wr = X ′) ∧ (curTic1 = Y) ∧ (rd = X) ∧ (X 6= X ′) ∧ (data = D) ∧ (curTic2 = Y)}

24 return 1;

25 else return 0;

26 }

Figure 10: Using the series of transformations described in Figs. 8 and 9, we can reason about the propagation of the predicate

past the non-atomic read in lines 20 and 21. At the completion of the read, data = D′, and some subset of these moments

in the period between the first version check and the present are used to read the state vector into the local variable data. If

the value of Vector(X) was constant, then we can conclude that at the end of the read, D = D′.

14

pointing to the most recently changed slot, then chang-

ing data in another slot automatically makes this into

the second most recently changed element. The second

most recently changed element is not the same as the

most recently changed element, since elements are al-

tered sequentially by the action of the writer. We have

falsified our predicate.

This statement of freshness is not provable for our program.

D Proof of Data Freshness

We prove:

((Vector(j) Y ∗ Vector(k) X ′∗
⊛i6=j,kVector(i) Di) ⊲
(Vector(j) Y ′ ∗ Vector(k) X ′∗
⊛i6=j,kVector(i) Di)) ⊲
(Vector(j) Y ′ ∗ Vector(k) X∗
⊛i6=j,kVector(i) Di)∧
(readindex k ∨ readindex j)∧
(X ′ 6= X) ∧ (Y ′ 6= Y))

We approach the proof by induction, inducting over the

steps in a trace. We begin by proving that i ⇒ i+ 1.

Assume we have a trace T that satisfies this lemma.

Show that any step taken produces a trace T ′ that also sat-

isfies this lemma. The possible steps that can be taken are:

1. UpdWrite Has no effect.

2. UpdVer Has no effect.

3. UpdRead This step changes the read-index, pointing

it to the element that the write-index was pointing to

before its current position.

We again invoke the cyclical update lemma and ob-

serve that this step must have been preceeded by the

following sequence of state-changing steps (with the

possible addition of identity steps between each of

these):

UpdRead :: UpdData+ :: UpdWrite :: UpdVer

If before this step, the read-index was pointing to the

freshest index k, then the argument we presented in our

earlier attempt is still valid, and the predicate continues

to hold for the new trace T ′.

If before this step, the read-index was pointing to the

second-freshest index j, then the most recently change

to the read-index points to what the write-index was

before its most recent change; which incidentally is k,

the index of the most recently altered slot. So if the

read-index was pointing to the second-freshest index,

and it is updated with this atomic step, it will end up

pointing to the freshest index.

4. UpdData This action could change the state vector

element and falsify our predicate. If the predicate is

pointing to the most recently changed slot, then chang-

ing data in another slot automatically makes this into

the second most recently changed element. This is ac-

ceptable to this predicate, unlike in our first attempt.

If, however, the read-index is pointing to the second

most recently changed slot, j, then there are two possi-

bilities that we can see from the cyclical update lemma.

The first is the possibility that this UpdData step is the

first that applies to this index in this cycle, and the his-

tory looks something like this:

UpdData+ :: UpdWrite :: UpdVer :: UpdRead

with the previous UpdData applying to another index.

If that is the case, then the read-index was updated in

the state change just previous to this, to be the value

of the write-index just before its most recent value.

That value is the most recently modified slot. So the

read-index must be pointing to the most recent slot

as well as the one before that. The second most re-

cently changed index is not equal to the most recently

changed index, again using the cyclical update lemma.

Thus we have a contradiction, and the read-index must

be pointing to the freshest slot.

If instead, the state transition history looks like this:

UpdData+ :: UpdWrite :: UpdVer ::
UpdRead :: UpdData+

then we can begin with the assumption that the read-

index points to the second-most recently changed slot,

j, and further modifications to this slot will not change

anything, since the most recently modified state vector

copy is the current one under the write-index, and any

changes still apply to it.

We can conclude that writeindex must be pointing to

the freshest or the next freshest written slot at all times.

References

[1] X. Feng. Local rely-guarantee reasoning. In Proceedings

of the 36th annual ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, POPL ’09, pages

315–327, New York, NY, USA, 2009. ACM.

[2] M. Fu, Y. Li, X. Feng, Z. Shao, and Y. Zhang. Reason-

ing about optimistic concurrency using a program logic for

history. In P. Gastin and F. Laroussinie, editors, CONCUR

2010 - Concurrency Theory, volume 6269 of Lecture Notes

in Computer Science, pages 388–402. Springer Berlin / Hei-

delberg, 2010.

15

[3] G.-H. Hwang, K.-C. Tai, and T.-L. Huang. Reachability test-

ing: an approach to testing concurrent software. In Soft-

ware Engineering Conference, 1994. Proceedings., 1994

First Asia-Pacific, pages 246 –255, dec 1994.

[4] S. S. Ishtiaq and P. W. O’Hearn. Bi as an assertion lan-

guage for mutable data structures. In Proceedings of the 28th

ACM SIGPLAN-SIGACT symposium on Principles of pro-

gramming languages, POPL ’01, pages 14–26, New York,

NY, USA, 2001. ACM.

[5] P. Kazanzides, S. DiMaio, A. Deguet, B. Vagvolgyi, M. Bal-

icki, C. Schneider, R. Kumar, A. Jog, B. Itkowitz, C. Hasser,

and R. Taylor. The surgical assistant workstation (saw) in

minimally-invasive surgery and microsurgery. In MICCAI

Workshop on Systems and Arch. for Computer Assisted In-

terventions, Midas Journal, Jun 2010.

[6] M. Parkinson, R. Bornat, and C. Calcagno. Variables as re-

source in hoare logics. In Logic in Computer Science, 2006

21st Annual IEEE Symposium on, pages 137 –146, 2006.

[7] W. Pugh and N. Ayewah. Unit testing concurrent software.

In Proceedings of the twenty-second IEEE/ACM interna-

tional conference on Automated software engineering, ASE

’07, pages 513–516, New York, NY, USA, 2007. ACM.

[8] M. Rahimi and X. Xiadong. A framework for software

safety verification of industrial robot operations. Comput-

ers and Industrial Engineering, 20(2):279 – 287, 1991.

[9] J. C. Reynolds. Separation logic: A logic for shared mutable

data structures. Logic in Computer Science, Symposium on,

page 55, 2002.

[10] Y. Sun, B. McMillin, X. Liu, and D. Cape. Verifying nonin-

terference in a cyber-physical system the advanced electric

power grid. In Quality Software, 2007. QSIC ’07. Seventh

International Conference on, pages 363 –369, oct. 2007.

[11] P. Varley. Techniques for development of safety-related

software for surgical robots. Information Technology in

Biomedicine, IEEE Transactions on, 3(4):261 –267, dec.

1999.

16

